
International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 261
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Developing of Node.js Module for Working with
Effective Temporal Model in NoSQL Data Bases

Dimitar Pilev, Ventzislav Nikolov

Abstract— Ever growing user requirements to access information demands using of temporal database models. In such cases should be
saved not only the data but the time intervals of their validity, as well. The subject of the article is developing of Node.js software module to
process temporal data in the non-relational DBMS MongoDB. Asynchronous software model leads to extremely fast processing of large
data amounts of temporal databases.

Index Terms— Temporal databases, Node.js, NoSQL database, MongoDB, asynchronous programming

—————————— ——————————

1 INTRODUCTION
he continuous increase of the number of users utilizing
the internet as a means of communication, payment,
shopping etc. imposes the use of new technologies when

implementing web-based applications. The applications that
are being developed should process a large number of user
queries towards the large amount of information stored in the
databases.

One of the main requirements towards any contemporary
web-application is related to its quick response time. The main
objective is to decrease the response time of submitted user
queries, regardless of their number and complexity.

At present there are a number of platforms for building
web-based applications, such as the well-known Java EE [1],
Apache PHP [2] and ASP.NET [3], as well as the new, but
recently increasingly popular Node.js[4],[5].

The Node.js [6] platform is quickly gaining popularity
amongst web developers thanks to the ease and speed of
processing user queries. The use of the Node.js technology is
increasing exponentially. Leading companies such as PayPal,
LinkedIn, WalMart [7] have rewritten their applications using
Node.js.

In a number of cases, the data base appears as the primary
source of delay in processing user queries. Delay increases
proportionately to the amount of processed data. This is the
reason why leading companies such as Google, Facebook and
Amazon are making the transition towards using a new type
of databases called non-relational databases (NoSQL - Not
only 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑄𝑆𝑆𝑆𝑄 𝐿𝐿𝐿𝐿𝑆𝐿𝐿𝑆) [8], [9].

The NoSQL database provides a mechanism for storage
and restoration of data using a free, coordinated model of data
unlike the relational model of DB. A non-relational database is
an optimized depository containing information of the type
key-value. Its designed purpose is to ease the processes of
restoration and addition of information for the purpose of
optimizing efficiency under the conditions of introduction and
storage of large amounts of data.

Traditional models of DB and DBMS are capable of storing
and processing only one present state of the modelled subject
area. These are normally present states, whose old values are
destroyed when change is necessary.

The constantly increasing demand of users for access to
information imposes the use of temporal DB, where not only
data is stored, but also the period of its validity. One major
reason for non-reporting of the changing states of data over
the course of time has been the lack of adequate maintenance
of the temporal factor in DBMS. Until recently the existing
DBMS would not allow temporal processing of data. Taking
into consideration the extreme popularity of the problem,
however, commercial DBMS such as Oracle and Teradata have
already published [10], [11] new specifications of DBMS with
temporal support. In order to implement temporal support, an
additional surface layer has been developed in [12] to DBMS
MySQL.
The purpose of the present development is to implement a
module for the Node.js platform, allowing temporal support
of data marked with effective time, stored in MongoDB data-
base. The module allows the processing of queries related to
addition, deletion, modification and searching of temporal
information in the database.

2 EFFECTIVE TEMPORAL MODEL
The effective temporal model (ETM) is using effective time,

representing a combination of valid and transactional time.
The beginning of the effective period has been set at the
current time at the moment of recording the cortege in DB (the
beginning of the period marking the transactional time Ts),
and its end has been set at the time marking the end of the
period of the valid time Ve.

insert (r, (a1, … , an), t’e) =

 r U {(a1, … , an | te)} if ∄te ((a1, … , an ∈ r)

∃te ((a1, … , an | te) ∈ r ∄t ∈ overlap(te, t’e))
 r - {(a1, … , an | te)} U {(a1, … , an | changeETP(te,

t’e)} if
 ∃ te((a1, … , an | te) ∈ r ∧ meet(te, t’e))
 r in opposite case

T

————————————————
• Dr. Dimitar Pilev is currently lecturer at the Depatement of Computer

Science, UCTM-Sofia, Bulgaria. E-mail: d_pilev@yahoo.com
• Dr. Ventzilav Nikolov is currently lecturer at the Depatement of Computer

Science, UCTM-Sofia, Bulgaria. E-mail: nikolov_vnz@abv.bg

IJSER

http://www.ijser.org/
http://bg.wikipedia.org/w/index.php?title=%D0%A1%D1%8A%D0%B3%D0%BB%D0%B0%D1%81%D1%83%D0%B2%D0%B0%D0%BD_%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB&action=edit&redlink=1
http://bg.wikipedia.org/w/index.php?title=%D0%9A%D0%BB%D1%8E%D1%87-%D1%81%D1%82%D0%BE%D0%B9%D0%BD%D0%BE%D1%81%D1%82_%D1%85%D1%80%D0%B0%D0%BD%D0%B8%D0%BB%D0%B8%D1%89%D0%B5&action=edit&redlink=1

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 262
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

a) Data add

delete (r, (a1, … , an)) =

r - {(a1, … , an | te)} U {(a1, … , an | changeETP(te,
t’e)} if

 ∃ te((a1, … , an | te) ∈ r ∧ CT ∈ te)
 r in opposite case

b) Data delete
update (r, (a1, … , an), t’e) =

insert (delete (r, (a1, … , an)), (a1, … , an), t’e)

c) Data modify

Fig. 1 Data manipulation in relation

The addition of data to the relation under ETM shall be im-

plemented when we want to register facts that are not record-
ed in DB (a1, … , an), which are valid for a definite period of
time. The effective time shall coincide with the valid time from
the moment of recording the facts in DB onwards. This means
that facts are valid in the modeled reality and have been rec-
orded in DB. Data recording should return a new updated
version of the relation.

The following functions for work with effective temporal
intervals have been defined in the model in order to present
the semantics of data updating.

The function 𝑚𝑆𝑆𝑆𝑚(𝑆𝑒 , 𝑆𝑒′) shall perform a test for meeting
of two intervals:

meets (te, t’e)
if (Ee = E’s)

return true
else

return false

The function 𝑜𝑜𝑆𝑆𝑜𝐿𝑜(𝑆𝑒 , 𝑆𝑒′) shall perform a test for partial

overlap of two intervals:

overlap (te, t’e)
if (E’s < Ee)

return true
else

return false

There are three cases when adding new data in the relation

(Fig. 1а).
Case one: Let the values of attributes (a1, … , an) , which do

not depend on time, be unrecorded in the relation until now,
or comprise part of its previous states (Fig. 1а). In that case
there is no record where the effective period of time overlaps
with the new period. In that situation we add a new cortege in
the relation.

Case two: If the values of attributes (a1, … , an) have been
recorded in the relation and a record exists, where its period of
validity te meets the new te′ - the effective period, which is
used to mark the cortege shall be updated to [Es, Ee′).

Case three: If the values of attributes (a1, … , an) are part of

the current state of the relation (the effective period, through
which data in the cortege is marked, is still active), then data
modification is required, rather than data addition.

In order to update the values of data (a1, … , an), which is
part of the current state of the relation, the following functions
is used:
changeETP(te, te′). This function changes the effective time pe-
riod, through which data in the cortege is marked in the same
manner regardless whether the old and the new periods meet
or overlap(te and te′).

changeETP(te,t’e)
if (meet (te, t’e) V overlap (te, t’e))

return [Es E’e)
else

return 0

The deletion of a certain cortege consists of its logical re-
moval from the current state of the relation (Fig. 16) The logi-
cal removal of the cortege is performed by correcting the time
period, through which non-temporal attributes (a1, … , an) are
marked. Such correction is performed by setting the time for
ending the effective time period, which time is current at the
moment of deletion. For this purpose we use the function
𝑆𝑆𝑜𝑑𝑑𝑑(𝑆𝑒).

del (te)
if (CT ∈ te)

return [Es CT)
else

return 0

If the values of attributes in the cortege (a1, … , an) do not

exist or, if they do exist but are not part of the current state of
the relation, then deletion of the cortege would not produce an
effect.

The modification of an existing cortege shall be performed
through the "update" operation (Fig. 1c). It is defined as con-
secutive execution of the operations "delete" and "insert". The
proposed ETM significantly reduces the volume of stored da-
ta. There is significant reduction in the excess of information
stored in the DB. At the same time we can obtain a precise
view of data validity over time.

3 ASYNCHRONOUS PROGRAMMING MODEL WITH
NODE.JS
Node.js is a platform built on the basis of Google V8

JavaScript [13] for easy building of quick and scalable network
applications. Node.js uses an "event-driven" asynchronous
input/output model of operation using a single process,
which makes it easy and efficient for real-time applications.

Node.js allows the development of applications written in
JavaScript, which are executed by the server. The platform
contains the most popular operation systems such as
Windows, Mac and Linux. The environment provides the
opportunity to interact with input/output devices through its
API written in C++. This allows the connection with other
external libaries written in different languages, by means of
JavaScript code.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 263
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Node.js uses module module architecture to simplify the crea-
tion of complex applications. It contains built-in asynchronous
input/output libraries for working with files, sockets and
HTTP communication.

With traditional and well-known platforms of Java EE and
PHP queries are processed by creating a separate thread or
process for each query. Unlike them, Node.js implements an
entirely different technology by operating with a single thread
using asynchronous processing of queries (Fig.2).

Fig. 2 Node.js event cycle

For this purpose the so-called event cycle is performed,

which allows the processing of tenths of thousands
simultaneous queries without concerns related to limited
RAM memory and switching between separate threads.

The Node.js platform is only an environment, which means
that the programmer must do everything by himself. By de-
fault there is neither HTTP, nor any other server. A single
script contains the entire communication with users. This sig-
nificantly reduces the number of resources used by the web
application.

4 DATA MODEL AT MONGODB
MongoDB [14] is a document-oriented database

management system, which stores structured information in

TABLE 1.
 TERMINOLOGY USED WITH MONGODB

SQL MongoDB
Database Database
Table collection
Row Document
Column Field
Index Index

SQL MongoDB
Connection of tables Built-in documents
Primary key Primary key

JSON format [15] with dynamic scheme. This makes the
integration of information in certain applications much easier
and faster. MongoDB has gradually become one of the most
popular non-relational DB, often referred to as NoSQL.

Table 1 shows the terminology used with MongoDB com-
pared to relational.

Data in MongoDB is stored in the form of documents set in
JSON format (Fig.3). Within each separate document, the
value of a certain field may be of random type, including
another document, data set or data sets.

Fig.3 MongoDB document

MongoDB stores all documents in collections. A collection
(Fig. 4) is a group of related documents having a set of shared
common indexes. Collections are analogous to tables in rela-
tional databases.

Fig.4 MongoDB collection

The advantage of MongoDB is that it stores information for

IJSER

http://www.ijser.org/
http://bg.wikipedia.org/wiki/JSON

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 264
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fig.5 Storage of data regarding an issued invoice with Mon-
goDB

a particular object in a single document, instead of dividing
and storing it in several tables, which is typical for the rela-
tional DB model. Unlike relational DB, MongoDB allows data
for a particular invoice to be stored in a single document (Fig.
5). A disadvantage of non-relational DB, however, may be the
lack of, or partially minimum support of connections. The
functionality of extracting information stored in several differ-
ent collections must be performed by the application.

DBMS of MongoDB uses an asynchronous model for
processing of queries submitted to the database, which
significantly increases the efficiency of the system when
working with large data sets. This characteristic makes it
suitable for storage and processing of temporal data.

Fig.6 Storage of data under the temporal model supported by
the module

5 DESIGN AND IMPLEMENTATION OF MODULE FOR
WORKING WITH ЕТМ UNDER MONGODB
During the development of the module, a normalized data

model was selected where each document from the collection
is marked with effective time. For this purpose an additional
field (characteristic) "period" was added to document data,
whicih sets the beginning and end of the effective time period
marking the document (Fig.6).

The first step when developing a Node.js module is the
creation of the file package.json. This file provides information
about the functionality of the developed module.
Fig.7 shows the contents of the package.json file used to de-
scribe the developed module. The first two rows contain the
mandatory fields for each Node.js module - name and version.
Followed by description, keywords and name of developer.

Node.js interface MongoDB is used in order to perform a con-
nection MongoDB. The interface is included in the developed
module as dependency (Fig.7, row 16).

Fig.7 Contents of the package.json file, describing the de-
veloped module

The functionality of a module is distributed in the

following functions:
• connect(mongoUrl, collection, callback) – for establishing

a connection to the MongoDB server of DB. The submit-
ted input data consists of the parameters of connection to
MongoDB server, collection and callback function, whicih
starts after the connection is established;

• insert(insObj, pe, callback) – for addition to the collection
of data marked with effective time. The execution of the
function requires data added to the collection (in the
form of a document), the end of the time period marking
the data, and a callback function.

• remove(rеmоvеObj, callback) – for deletion of data from
the collection. Two parameters are set: criteria used to
perform the deletion and a callback function typical for
the asynchronous programming model;

• update(oldObj, newObj, pe, callback) – for modification
of data in the collection. Criteria is set for update, new
values, end of the marking time period and a callback
function;

• find(query, options, callback) – for extraction of temporal
data from the collection. The "query" parameter sets crite-
ria for extraction of data from the collection. The second
parameter "options" is optional and sets additonal set-
tings such as sorting, restriction of the number of docu-
ments returned by the query etc. The callback function
does the processing of the query result;

• close() – for terminating a connection to the MongoDB
server of DB.

All operations related to updating and/or extraction of
data are performed on a single collection.

var update = function(oldObj, newObj, pe, callback){

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 265
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

 remove(oldObj,function(res){
 if(res == 'Done' || res.result.ok==1)
 insert(newObj,pe,callback);
 else
 callback('Cannot update collection!');
 });
}

The implementation of the "update" function is in compliance
with the requirements of ETM and the asynchronous pro-
gramming model of Node.js In an ETM operation, "update" is
restricted to consecutive execution of the operations "delete"
and "insert" In order to observe the sequence of execution of
both operations, theh addition of new data shall be performed
in the callback function of the "remove" function. This guaran-
tees that new values of data are going to be added only after
the deletion of existing ones.

var etm = require("./lib/index.js");
var mongoUrl = 'mongodb://127.0.0.1:27017/test';
etm.connect(mongoUrl, 'proba', function(){
 console.log('Connected correctly to server');
 etm.insert({x:1,y:2}, new Date(2016,2,5),
 function(res){

 console.log(res.result);
 etm.find({}, function(docs){
 docs.toArray(function(err,data){
 console.log(data);
 etm.close();
 });
 });
 });

});

Fig.8 Usage of the developed module

6 CONCLUSION
The present article introduces a new platform for building

network applications - Node.js. The environment allows quick
and effective processing of user queries thanks to their
asynchronous processing. A review is performed on the
advantages and disadvantages of one of the most popular
non-relational DBMS MongoDB. A module has been
developed for the Node.js platform, which allows the
processing of temporal data in an environment of MongoDB.
The module allows the update and extraction of data marked
with effective time. Asynchronous software model leads to
extremely fast processing of large data amounts of temporal
databases.

REFERENCES
[1] Oracle, Java EE Documentation, available:

http://www.oracle.com/technetwork/java/javaee/documentation
/index.html

[2] The Apache Software Foundation, available:
http://www.apache.org/

[3] PHP, PHP Documentation, available: http://php.net/docs.php
[4] ASP.NET, Get Started with ASP.NET, available:

http://www.asp.net/get-started
[5] NodeJS, available: http://nodejs.org/
[6] JSConf Berlin,The European JavaScript Conference, Berlin, Novem-

ber 7 & 8, 2009, available: http://jsconf.eu/2009/
[7] WalMart, available: http://www.walmart.com/
[8] Pramod Sadalage, NoSQL Databases: An Overview, ThoughtWorks,

October 2014
[9] Nosql Database, availeble:http://nosql-database.org/
[10] Database, O., Workspace Manager Developer's Guide. September

2010.
[11] Database, T., Temporal Table Support. Teradata Labs, 2012
[12] DimitarPilev, AnetaGeorgieva, Effective Time Temporal Database

Model, International Journal on Information Technologies and Secu-
rity, 2012. N2: 33-46, ISSN 1313-8251

[13] Google V8, V8 JavaScript Engine, available:
https://code.google.com /p/v8/

[14] MongoDB, available: https://www.mongodb.org/
[15] Introducing JSON, available: http://json.org/ IJSER

http://www.ijser.org/
http://www.oracle.com/technetwork/
http://jsconf.eu/2009/
http://jsconf.eu/2009/
http://jsconf.eu/2009/
http://jsconf.eu/2009/
http://jsconf.eu/2009/
http://www.walmart.com/
https://www.mongodb.org/

	1 Introduction
	2 Effective temporal model
	3 Asynchronous programming model with Node.js
	4 Data model at MongoDB
	5 Design and Implementation of module for working with ЕТМ under MongoDb
	6 Conclusion
	References

