

Fuzzy Techniques in Image ProcessingSolutionGroup 4Adit Madan
Anuj Kaura
Natansh Verma
Sandeepan Jindal2005MT50427
2005CS10184

Presentation Flow

- Introduction to Fuzzy Logic
 - Fuzzy Sets
 - Fuzzy Inference Systems
- Fuzzy Image Processing Model
- Applications
 - Noise Detection and Removal
 - Contrast Enhancement

Fuzzy Sets

- Fuzzy set theory is the extension of conventional (crisp) set theory
- It handles the concept of partial truth using a membership function
- Instead of just black and white, the color belonging to a set has degree of whiteness & blackness

Contd..

As an example, we can regard the variable color as a fuzzy set

color = {yellow, orange, red, violet, blue}

Fuzzy Inference System

The Reasoning Scheme

- Rules
 - If x is A1 and y is B1 then z is C1
 - If x is A2 and y is B2 then z is C2

Fuzzy Image Processing

- Collection of all approaches that understand, represent and process the images, their segments and features as fuzzy sets.
- The representation and processing depend on the selected fuzzy technique and on the problem to be solved.

Fuzzy Image Processing Flow

Why Fuzzy Image Processing?

- Fuzzy techniques can manage the vagueness and ambiguity efficiently (an image can be represented as a fuzzy set)
- Fuzzy Logic is a powerful tool to represent and process human knowledge in form of fuzzy if-then rules

History

1965 Zadeh	Introduction of Fuzzy Sets	
1970 Prewitt	First Approach toward Fuzzy Image Understanding	
1979 Rosenfeld	Fuzzy Geometry	
1980-1986 Rosendfeld et al.,	Extension of Fuzzy Geometry	
Pal et al.	New methods for enhancement / segmentation	
End of 80s-90s Russo/Krishnapuram	Rule-based Filters,	
Bloch et al. / Di Gesu /	Fuzzy Morphology	

Noise Reduction >>

Reference: Noise Reduction by Fuzzy Image Filtering Dimitri Van De Ville, Mike Nachtegael, Dietrich Van der Weken, Etienne E. Kerre, Wilfried Philips and Ignace Lemahieu

Edges and Noise

- Both represent a variation in intensity
- Usually edge has a large variation between adjacent pixels, compared to additive noise
- Use directional gradients to capture variations

$$\nabla_N(x, y) = I(x, y-1) - I(x, y)$$

NW	N	NE
W	(x,y)	E
SW	S	SE

Separating Noise from Edges

 We fire 8 rules to differentiate noise from edges – one for each direction to find the fuzzy directional derivative

if
$$(\nabla_{NW}(x, y) \text{ is small and } \nabla_{NW}(x - 1, y + 1)$$

is small) or
 $(\nabla_{NW}(x, y) \text{ is small and } \nabla_{NW}(x + 1, y - 1)$
is small) or
 $(\nabla_{NW}(x - 1, y + 1) \text{ is small and } \nabla_{NW}(x + 1, y - 1)$
is small)
then $\nabla_{NW}^{F}(x, y) \text{ is small}.$

Filtering – Smoothing

To compute the correction term, we fire additional rules

$$\begin{split} \lambda_{NW}^+ &: \text{if } \nabla_{NW}^F(x, \, y) \text{ is small } \text{and } \nabla_{NW}(x, \, y) \text{ is positive} \\ & \text{then } c \text{ is positive} \\ \lambda_{NW}^- &: \text{if } \nabla_{NW}^F(x, \, y) \text{ is small } \text{and } \nabla_{NW}(x, \, y) \text{ is negative} \end{split}$$

then c is negative.

 Using these, we calculate the correction term

$$\Delta = \frac{L}{8} \sum_{D \in dir} \left(\lambda_D^+ - \lambda_D^-\right)$$

Results

Contrast Enhancement >>>

Contrast Improvement with INT- Operator (Pal/King, 1981/1983)

Contrast Improvement based on Fuzzy If-Then Rules (Tizhoosh, 1997)

INT-Operator

Step 1: Define the membership function

$$\mu_{mn} = G(g_{mn}) = \left[1 + \frac{g_{max} - g_{mn}}{F_d}\right]^{-F_e}$$

Step 2: Modify the membership values

$$\mu_{mn}' = \begin{cases} 2 \cdot [\mu_{mn}]^2 & 0 \le \mu_{mn} \le 0.5 \\ 1 - 2 \cdot [1 - \mu_{mn}]^2 & 0.5 \le \mu_{mn} \le 1 \end{cases}$$

INT-Operator (Contd...)

Step 3: Generate new gray–levels

Fuzzy Rule-Based

Step 1:

Setting the parameters of inference system (input features, membership functions,..)

 Step 2: Fuzzification of the actual pixel (memberships to the dark, gray and bright sets of pixels)

Fuzzy Rule-Based

Step 3: Inference

e.g. if dark then darker, if gray then gray, if bright then brighter

Step 4: Defuzzification of the inference result

Results

Thank You >>>

References

www.wikipedia.org

- pami.uwaterloo.ca/tizhoosh/fip.htm
- Digital Image Processing

Rafael C. Gonzalez

Noise Reduction by Fuzzy Image Filtering

Dimitri Van De Ville, Mike Nachtegael, Dietrich Van der Weken, Etienne E. Kerre, Wilfried Philips and Ignace Lemahieu

Contrast Improvement with INT- Operator

(Pal/King, 1981/1983)

Contrast Improvement based on Fuzzy If-Then Rules

(Tizhoosh, 1997)