

Assessment of various mass transfer models for CO₂ capture processes by 2-amino-2-methyl-1-propanol.

A. Hemmati ^{1*}, A. S. Hemmati ², H. Rashidi ^{1*}, S. Parandin ³

¹ Energy Faculty, Department of Chemical Engineering, Kermanshah University of Technology, Kermanshah, Iran.
² Gachsaran oil and gas production company, Iranian national south oil company, Gachsaran, Iran, 7581873849.
³ Chemical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran

h_rashidi@kut.ac.ir

Abstract

Although there have been various studies on using 2-amino-2-methyl-1-propanol (AMP) as a solvent, none of them have been able to suggest the favorable mass transfer model which accurately predicts CO₂ capture processes' results. In this article, two sets of lap scale data have been used according to Choi et al.'s and Khan et al.'s works [1, 2]. Therefore, the parameters of the kinetics, thermodynamics and hydrodynamics are initially specified with the use of rate-base model, and then in the first validation of the mass transfer models for CO₂ capture process by 2-amino-2-methyl-1-propanol (AMP), the Choi et al.'s experimental data are utilized. To test the reliability of the achieved results in the first validation (and to choose the best correlations for CO₂capture process by AMP), in the second section of this work Khan et al.'s experimental data have been used. In summary, utilizing correlations of Onda et al., Bravo-Fair (B-F) and Billet-Schultes (B-S) in fourteen different experimental conditions (on the report of Choi et al.'s and Khan et al.'s data), show that Bravo-Fair correlation is more accurate than the two other correlations. After the simulation of Choi et al.'s experimental data and employing mass transfer models, the errors of Onda et al., B-F and B-S are achieved as 10.99, 7.92 and 16.67 % respectively in forecasting CO₂ absorption (%). Considering Khan et al.'s experimental data in 6 different conditions and regarding the three different equations, it is revealed that the mean absolute error (MAE) of Onda et al., B-F and B-S models in forecasting the CO₂ absorption (%) are 9.18, 6.6 and 10.81 % respectively. In the last validation, the accuracy of correlations in predicting absorber loading is investigated according to Khan et al.'s experimental data, which shows that B-F has the highest accuracy compared to two other models. The errors of Onda et al., B-F and B-S models in forecasting rich loading are 14.44, 6.6, and 21.4(%) respectively. Hence, the investigation of the second experimental dataset proves that the B-F is more accurate than the two others models in CO_2 capture process by AMP.

Keywords: Post-combustion CO₂ capture; Rate-based model; AMP; Mass transfer models; Liquid and Gas mass transfer correlations; Effective interfacial area

Introduction

Carbon dioxide is the most destructive green house gas which has irrecoverable effects on climate change [3]. Major generators of CO2 discharge are energy supplies (47%), industry (30%), transportation (11%) and building sectors (3%) [4]. Therefore, until a permanent solution

is found for the reduction and prohibition of GHGs emission, alternative ways have to be exploited to decrease the harmful effects of this phenomenon; one of these alternatives are postcombustion CO2 capture [5]. The post-combustion capture technology is the most suitable approach according to the fact that of its easily fitting ability to the existing process units [6]. The most influential and developed method for decreasing the emission of green house gases is employing CO₂ capture processes by chemical solvents especially alkanolamines on condition that flue gas has low pressure [7]. Among alkanolamines, Monoethanolamine is considered the most significant one in CO₂ capture processes, which can be ascribed to its high absorption rate, effortless recovery, and low cost [8]. However, stoichiometry limits the capacity of CO2 capture to a maximum of 0.5 mole CO2 per mole amine [9]. The main problems of MEA industrial applications as an absorbent are higher energy demand for solvent regeneration, higher rate of degradation and corrosive nature [10]. To solve these problems, 2-amino-2-methyl-1-propanol (AMP), which is a sterically hindered form of primary amine, can be considered. Some of the qualities of AMP are as follows: considerable CO₂ capture capacity and rate, low solvent recovery energy, high degradation resistance of the solvent, and its minor effect of corrosion on equipment. These characteristics make AMP a favorable option for absorption and desorption processes [11-13]. The absorption process by AMP is explored in this study in agreement with the AMP's capacities for post-combustion CO₂ capture processes, stated in the previous paragraph, and is compared with the industrial benchmark solvents such as MEA. The simulation of industrial CO₂ capture process by AMP is one of the most important steps for the implementation of CO₂ capture units. Thus, in this work the mass transfer models of CO₂ capture by AMP are employed. In previous studies, the validation of CO₂ absorption process by AMP is limited only to absorber column with structured packings [14]. But in this study, the validation of the mass transfer models in CO₂ absorption process by AMP are investigated according to the experimental results of Choi et al. [15, 16] and Khan et al. [2] for the first time. Another parameter that differentiates this study from the previous ones is the low pressure of the absorber and stripper column. Since the flue gas production in the power plant, petrochemical units, refineries, foundries and cement occurs in atmospheric pressure, the cases that have been studied in this work are at low pressure. Finally, it can be said that the aim of this study is to evaluate the mass transfer models for CO₂ capture process by AMP as a solvent in low pressure and in the absorber column with random packings. In this investigation, the models of Onda et al, B-F and B-S are evaluated using the Rate-Base model. The comparison of the simulated and the experimental results are done according to the Khan et al.'s [2] and Choi et al.'s [1] experimental works at the totality of 14 different experimental conditions.

Material and method

Description of experimental CO₂ capture process

The objective of this work is to use the rate-based model to examine the correctness of the mass transfer and effective interfacial area equations in predicting the results of CO2 capture by AMP. The Aspen Rate-Sep version 8.8 framework, based on the two film theory, has been used as a basis for simulating 14 different experimental conditions for CO_2 absorption by AMP. In this section, first Choi et al.'s and Khan et al.'s experimental setups are explained respectively, then in the second part, the thermodynamic models, physicochemical properties, the kinetic reactions and mass and heat transfer models utilized in this work, are presented. In the experimental setup consists of absorption and stripper columns. The absorber and stripper have been made of 316

S.S with an ID of 5.0 cm. The packings that have been used in the columns are 0.635 cm ceramic Raschig ring. The general explanations of CO_2 absorption process by AMP according to Choi et al.'s and Khan et al.'s studies are similar and presented in the following lines. The second validation of mass transfer and effective interfacial area equations is studied according to the Khan et al.'s works (Figure 1-b). The absorber and stripper column's ID is 4 cm and the total height of the absorber and stripper column is 130 cm but the packing height of the column is 84

Figure 1-a- Choi et al.'s experimental schematic
diagram of the CO2 absorption [1].Figure 1-b- Khan et al.'s Experimental schematic
diagram of the CO2 absorption and regeneration [2].The rate-based model includes the calculations of the reaction rate in the film regions, mass
transfer between phases, electrolyte chemistry and hydrodynamics [17]. The mass transfer model
used in the present work is based on the two-film theory. Thus, CO2 is absorbed from the gas
phase into the liquid phase. CO2 absorption process by amines as solvents are described
according to the film mass transfer model and the rate base model in previous studies[18].

Rate-Base model parameters

Unlike the equilibrium model, when rate-base model is applied in the simulation of postcombustion CO_2 capture processes, in each stage of absorption and desorption columns, the following parameters are taken into account: kinetic reactions in liquid phase (film area), mass transfer and heat transfer phenomena for each of the gas and liquid phases which leave each stage, effective interfacial area between gas and liquid phases in each stage, many of physicalchemical, hydrodynamic, thermodynamic parameters, and the parameters related to gas and liquid flows in addition to the reactive parameters of gas and liquid phases. The kinetic mechanism of CO₂ capture processes by AMP as well as the parameters considered in the simulation of the capture process by Rate-Base model is elucidated in this section. The rate of CO₂ capture is increased with the use of Amine solvents in the presence of chemical reactions. The bicarbonate and carbonate ions are the only major chemical sinks for CO₂, Carbamate (Reaction 5), is very unstable and effortlessly converts into Amine and Bicarbonate (Reaction6). It is suggested that owing to the instability of the carbamate formed, these promptly undergo hydrolysis to form bicarbonate releasing free amine that again reacts with CO₂ [12]. Reaction 7, which is the general reaction of CO₂-AMP-H₂O system, results from reactions 5 and 6. Conferring to equation (7), one mole of CO_2 is absorbed per mole of amine. Steric effects have an impact on the stability of amine-carbamate formed as a result of amine reacting with CO₂. The reactions of CO₂ absorption process by AMP are introduced in Table 1, equations 1 to 7. The characteristics of the CO₂capture process by AMP using the rate-base model are presented in Table 2.

The 11th International Chemical Engineering Congress & Exhibition (IChEC 2020) Fouman, Iran, 15-17 April, 2020

Table 1- The reactions of C	O2 capture proce	ess by AMP in the absor	rption colui		
Reaction	ons	Formation			
$2H_2O \leftrightarrow H_3C$	$O^+ + OH^-$	(Water Dissociation)	(1)		
$HCO_{3}^{-} + H_{2}O \leftrightarrow$	$CO_3^{2-} + H_3O^+$	(Carbonate)	(2)		
$AMPH^+ + H_2O \leftrightarrow$	$AMP + H_3O^+$	(AMP Protonation)	(3)		
$CO_2 + H_2O \rightarrow H_2O$	$H^+ + HCO_3^-$	(Bicarbonate)	(4)		
$2AMP + CO_2 \rightarrow AMP$	$COO^- + AMPH^+$	(Carbamate)	(5)		
$AMPCOO^- + H_2O^-$	$\rightarrow AMP + HCO_3^-$	(Amine,Bicarbonate)	(6)		
$AMP+CO_2+H_2O \rightarrow$	$AMPH^+ + HCO_3^-$	(Catalyzed hydration)	(7)		
Table 2- The rate bas	e model parame	ters which have been er	nployed.		
Model approach Rate		te-base model approach			
Heat transfer coefficient	Chilton and Colburn				
Film resistance options	Film for vapor phase and Discrxn for liquid phase				
Liquid density		Clarke model			
Viscosity	Jones-Dole model				
Surface tension	Onsager-Samaras model				
Binary diffusivity	Nernst-Hartley model				
Thermal conductivity	Riedel model				
Thermodynamic properties		Zhang et al.			
Thermodynamic model	Electrolyte-NRTL in the liquid and RK equation in the vapor phase				

Result and discussion

Kinetic reactions

The characterization of mass transfer models of Onda et al., B-F and B-S are presented in previous Hemmati et al.'s work [18]. Tables 3 and 4 in provide the correlations in gas and liquid phases, respectively. Table 5 present the correlations for the liquid-gas effective interfacial areas in the packed column.

Hikita and Pinsent models

Table 3- Mass transfer coefficients in the liquid phase. $k_L = \frac{0.0051}{(a_p d_p)^{-0.4}} \left(\frac{\mu_L g}{\rho_L}\right)^{\frac{1}{3}} \left(\frac{\rho_L u_L}{a_e \mu_L}\right)^{\frac{1}{3}} S c_L^{-0.5}$ Onda et al. (8) $k_L = C_L \left(\frac{\rho_L g}{\mu_L}\right)^{\frac{1}{6}} \left(\frac{D_L}{d_L}\right)^{0.5} \left(\frac{u_L}{a_R}\right)^{\frac{1}{3}}$ (9) Billet and Schultes (B-S) $k_L = 0.0051 (\text{Re}_L)^{0.667} Sc_L^{-0.5} (a_p d_p)^{0.4} (\frac{\mu g}{2})^{0.333}$ (10)Bravo-Fair (B-F) Table 4- Mass transfer coefficients in the vapor phase. $k_V = 2 (\text{Re}_V)^{0.7} S c_V^{0.333} a_P (a_P d_P)^{-2} D_V$ if $d_P < 0.015m$ (11)(12)Onda et al. $k_V = 5.23 (\text{Re}_V)^{0.7} S c_V^{0.333} a_P (a_P d_P)^{-2} D_V \text{ if } d_P > 0.015 m$ (13) $k_G = C_G \frac{a_p^{0.5} D_G}{\sqrt{d_h (\varepsilon - h_I)}} \left(\frac{\rho_G u_G}{a_p \mu_G} \right)^{\frac{3}{4}} S c_G^{\frac{1}{3}}$ Billet and Schultes (B-S) $k_V = 2 (\text{Re}_V)^{0.7} S c_V^{0.333} a_P (a_P d_P)^{-2} D_V$ if $d_P < 0.015 m$ (14)Bravo-Fair (B-F) $k_V = 5.23 (\text{Re}_V)^{0.7} S c_V^{0.333} a_P (a_P d_P)^{-2} D_V$ if $d_P > 0.015m$ (15) Table 5- Effective interfacial areas' equations in the packed column. (16) $a_I = a_e A_t h_n$ Onda et al. $a_{e} = a_{p} \left| 1 - \exp\left(-1.45 \left(\frac{\sigma_{e}}{\sigma} \right)^{0.75} \operatorname{Re}_{L}^{0.1} Fr_{L}^{-0.05} We_{l}^{0.2} \right) \right|$ (17) $a_{I} = a_{e}A_{I}h_{p}\left(\frac{a_{e}}{a_{p}}\right) = 1.5(a_{p}d_{h})^{-0.5}\left(\frac{\rho_{L}u_{L}d_{h}}{\mu_{L}}\right)^{-0.2}\left(\frac{\rho_{L}u_{L}^{2}d_{h}}{\partial_{L}}\right)^{0.75}\left(\frac{u_{L}^{2}}{gd_{h}}\right)^{-0}$ Billet - Schultes (B-S) (18) $a_{I} = a_{e}A_{I}h_{p}\left(\frac{a_{e}}{a_{p}}\right) = 19.87(Ca_{L}\operatorname{Re}_{v})^{0.392}\frac{\sigma^{0.5}}{h_{p}^{0.4}}$ Bravo-Fair (B-F) (19)

The prevalent study analyzes the performance of mass transfer and effective interfacial area correlations of Onda et al., B-F and B-S in CO_2 capture by AMP as a solvent. It has investigated two sets of experimental data provided by Choi et al. and Khan et al. [1, 2]. First, Choi et al.'s data and then Khan et al.'s experimental works are studied in 8 and 6 different experimental conditions respectively. Table 6 provides Choi et al.'s experimental conditions, (other parameters such as inlet solvent flow rate, the temperatures of lean solvent and flue gas remain constant).

Table 6- Choi et al.'s experimental conditions for CO ₂ absorption by AMP.							
Posibilities #1	Solvent flow rate (ml/min)	AMP (wt%)	Gas flow rate (l/min)	CO ₂ inlet concentration (% Vol)			
1	110	30	5	12			
2	110	30	7.5	12			
3	110	30	10	12			
4	110	30	12.5	12			
5	110	30	15	12			
6	110	10	10	12			
7	110	20	10	12			
8	110	40	10	12			

Comparing the results, it is concluded that B-F's error is 7.9 %, which presents the lowest error in predicting CO₂ absorption (%). B-S model with the error of 16.6 % owns the lowest accuracy. Figures 2-a and 2-b demonstrate the comparison between the amounts of CO₂ absorption (%) in 8 different experimental conditions and the average errors of the correlations in forecasting experimental results respectively.

Figure 2-a- Relative errors of the correlations for CO₂ absorption by AMP and according to the Choi et al.'s works.

To test the reliability of the achieved results, Khan et al.' studies have been utilized in the second validation of the equations which is done to investigate the results of the first validation. For this goal, the 6 different experimental conditions of Khan et al.'s works have been used. These conditions are presented in Table 7. Other parameters such as liquid flow rate, solvent temperature, etc. are kept constant. According to the experimental conditions in Table 7, the validation of the Onda et al., B-F and B-S models is employed for these 6 cases.

Table 7- Knan et al. s experimental conditions for CO2 absorption by AMP.									
Possibilities #2	Gas flow rate (m3/min)	Mole fraction of CO ₂	Solvent concentration (wt %)	Liquid flow rate (m ³ /min)	T (°C)				
1	0.006	0.15	30	0.0003	40				
2	0.007	0.15	30	0.0003	40				
3	0.008	0.15	30	0.0003	40				
4	0.005	0.15	10	0.0003	40				
5	0.005	0.15	20	0.0003	40				
6	0.005	0.15	30	0.0003	40				

Table 7- Khan et al.'s experimental conditions for CO2 absorption by AMP.

The comparison of the correlations in proportion to Khan et al.'s and Choi et al.' works presents that the Bravo-Fair's correlation is the best choice. In other words, Bravo-Fair correlations' mean absolute error (MAE) in forecasting the CO₂ absorption is 6.6 % in proportion to Khan et al.'s works. On the other hand, Onda et al.'s and B-S' models' average errors are 9.18 and 10.81 % respectively. Figure 3-a a comparison between the amounts of CO_2 absorption (%) in 6 different experimental situations, regarding to the Khan et al.'s works, for three different correlations. In Figure 3-b, the MAE of the correlations are presented.

Figure 3-a- Relative errors of three correlations for CO2 absorption by AMP and according to the Khan et al.'s works.

In the last part of this article, absorber loading, in laboratory situation is compared with the loading gained from mass transfer equations regarding to Khan et al.'s experimental results (Table 7). As it is obvious from Figures 4-a and 4-b, the MAE of B-F model is 6.6%. Onda et al. and B-S models have the average errors of 14.44 and 21.4 % respectively for the same conditions. Therefore, the minimum error belongs to B-F model.

The Onda et al. model predicts a wetted area of approximately one half of the total area for the packing used. More area measurements are necessary for a better model. The other reason for Onda et al. model's poor prediction is its incompetence in predicting diffusion calculation. If the main cause of the error is wrong diffusivities, then a constant correction factor is likely to overpredict performance at low loading and to under-predict performance at high loading. This is due to the fact that the diffusivities are unimportant at low loading, whereas they are rate controlling in absorbers that operate at high loading. On the other hand, Choi et al.'s and Khan et al.'s experimental results prove that absorber loading is more than 0.5. Hence, the diffusivities of AMP and reaction products can be significant at this loading. In some cases in the absorber, the mass transfer can be controlled by gas phase resistance. The correlation of Onda et al. for kg is very general, thus it cannot be very accurate for every type of packing and every flow range. However, Bravo-Fair model owns more beneficial prediction compared to other two models.

Figure 3-b- The mean absolute error

(MAE) of the correlations.

Although Bravo-Fair used the same expressions as Onda et al. for the mass transfer coefficients, the modified Reynolds number employed in the calculation of liquid phase mass transfer coefficient is hinged on the effective surface area rather than wetted surface area. Consequently, they recommended that a correspondence between liquid holdup and effective transfer area is to be anticipated due to the nature of the hydraulics and geometry of packed beds with gas and liquid in counter flow. For this reason, the trends perceived in liquid holdup behavior at different loading conditions should be applied for effective area. In addition, an added gas kinetic energy effect should be incorporated for the area analysis on account of its influence on film surface rippling, liquid droplet dispersion, and the occurrence of gas bubbling in puddles. According to Bravo-Fair's studies, the product of the liquid's capillary number, and the gas' Reynolds number, appears to give a suitable parameter for representing effective areas.

Conclusion

In this study, the mass transfer models have been inquired into with the aim of introducing the best one used for CO₂capture process by AMP for the first time. Additionally, two experimental datasets have been employed according to Choi et al.'s and Khan et al.'s works. In the first validation, CO₂ absorption (%) is evaluated in 8 different experimental conditions using Onda et al., B-F and B-S models as stated by Choi et al.'s works. The consequences show that Bravo-Fair correlation is the most accurate model compared to two other correlations. The MAE of Onda et al., B-F and B-S in predicting the CO₂ absorption (%) are 10.99, 7.92 and 16.67 % respectively. To test the reliability of the achieved results in the first validation, Khan et al.'s experimental datasets have been used in the second validation of this work. These evaluations have been done in 6 different experimental conditions. The consequences of Khan et al.'s works regarding mass transfer equations suggest that Bravo-Fair's model has the error of 6.6 % in forecasting CO₂absorption, which is the lowest, compared to two other ones. The same study has also been carried out about the rich loading and as stated by Khan et al.'s works. Based on the results of rich loading, the MAE of Onda et al., B-F and B-S models are 14.44, 6.6 and 21.4% respectively. As a result, like previous study, this one also shows that Bravo-Fair equation gives more accurate prediction compared to two other ones. With regard to the results described in this work, it is proposed that Bravo-Fair correlation be used as the best model for the simulation of CO₂ capture process by AMP.

References

[1] Choi, W. J., et al.," Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process", Journal of Environmental Sciences., 21, 7, 907-913 (2009).

[2] Khan, A. A., G. Halder. and A. Saha.," Comparing CO2 removal characteristics of aqueous solutions of monoethanolamine, 2-amino-2-methyl-1-propanol, methyldiethanolamine and piperazine through absorption process", International Journal of Greenhouse Gas Control, 50, 179-189 (2016).

[3] Yan, S., et al.," Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China", Energy Conversion and Management., 49, 11, 3188-3197 (2008).

[4] Edenhofer, O., Climate change 2014: mitigation of climate change. Vol .3 .2015 :Cambridge University Press.

[5] Rubin, E. and H.J.U.C.U.P.T.C.C.f.C.S. De Coninck, Part, IPCC special report on carbon dioxide capture and storage. 2005. 2: p. 14.

[6] Davison, J. J. E.," Performance and costs of power plants with capture and storageof CO2", , 32,7, 1163-1176 (2007).

[7] Rao, A. B., E.S.J.E.s. Rubin, and technology, A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. 2002. 36(20): p. 4467-4475.

[8] Mandal, B , A. Biswas, and S. Bandyopadhyay, Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine. Chemical engineering science, 2003. 58(18): p. 4137-4144.

[9] Freguia, S. and G.T. Rochelle, Modeling of CO2 capture by aqueous monoethanolamine. AIChE Journal, 2003. 49(7): p. 1676-1686.

[10] Chen, P.-C., et al., Selection of blended amine for CO2 capture in a packed bed scrubber using the Taguchi method. International Journal of Greenhouse Gas Control, 2016. 45: p. 245-252.

[11] Sartori, G. and D.W. Savage, Sterically hindered amines for carbon dioxide removal from gases. Industrial & Engineering Chemistry Fundamentals, 1983. 22(2): p. 239-249.

[12] Chakraborty, A., G. Astarita, and K. Bischoff, CO2 absorption in aqueous solutions of hindered amines. Chemical Engineering Science, 1986. 41(4): p. 997-1003.

[13] Saha, A.K., S.S. Bandyopadhyay, and A.K. Biswas, Kinetics of absorption of CO2 into aqueous solutions of 2-amino-2-methyl-1-propanol. Chemical Engineering Science, 1995 . 50(22) :p. 3587-3598.

[14] Osagie, E., et al., Techno-economic evaluation of the 2-amino-2-methyl-1-propanol (AMP) process for CO2 capture from natural gas combined cycle power plant. International Journal of Greenhouse Gas Control, 2018. 70: p. 45-56.

[15] Choi, W.-J., et al., Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process. 2009. 21(7): p. 907-913.

[16] Khan, A.A., G. Halder, and A.J.I.J.o.G.G.C. Saha, Comparing CO2 removal characteristics of aqueous solutions of monoethanolamine, 2-amino-2-methyl-1-propanol, methyldiethanolamine and piperazine through absorption process. 2016. 50: p. 179-189.

[17] Plus, A.J.A.T.I., Cambridge, MA, USA, Rate Based model of the CO2 capture process by MEA using AspenPlus. 2008.

[18] Hemmati, A., et al., A comparative study of different mass transfer and liquid hold-up correlations in modeling CO2 absorption with MEA. Journal of Natural Gas Science and Engineering, 2019. 62: p. 92-100.