"invistics"

Optimizing Cycle Stock and Lot Sizes: Balancing the Costs of Changeovers with Inventory

The Webinar will begin shortly.

Your phone has been muted, so please submit any questions via the Webex chat window.

Introducing Our Speaker

Invistics Company Overview

- Software & Services to Optimize Cycle Stock and Lot Sizes
- Proven results with numerous customers:
 - Reducing inventory 25-40%
 - Improving customer service by 10-15% points
 - Maximize use of capacity
- Quick, low-risk fix for lot sizing problems
 - Lot Size Optimization in both high-volume and highmix facilities
 - Lot Size Optimization using web-based software and existing data

Tom Knight Founder and CEO

Poll Question 1

Question 1: What is your Primary Improvement Objective for attending this Webinar?

- a.) Reduce Changeover costs
- b.) Reduce Inventory Holding costs
- •c.) Improve Customer Service
- d.) All of the Above
- e.) Personal Education

Agenda

- Urgent Supply Chain Challenges
 - Beyond EOQ: Best Practices for Lot Size Optimization
 - Case Study
 - Sequencing Issues: Best Practices for Rhythm Wheels
 - Case Study
 - Questions & Discussion

Urgent Supply Chain Challenges

- Complex global supply networks
- Fierce offshore competition
- More product variants and SKUs
- Shorter product life cycles
- More complexity within each plant and across the global supply chain

Product Proliferation is Hitting Every Industry

Increased demands by customers:

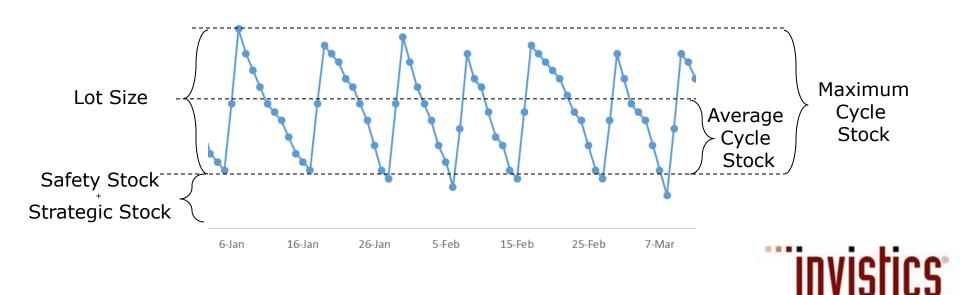
Consumer Products adding 20% more SKUs each year Chemicals experiencing 60% volatility in some SKUs

Every Company Is Being Forced to Change

Then	Now
 Stable demand Repetitive Long runs High utilization Dedicated equipment 	 Highly variable demand Responsiveness Short runs Faster changeovers Shared equipment
High-volume	High-mix

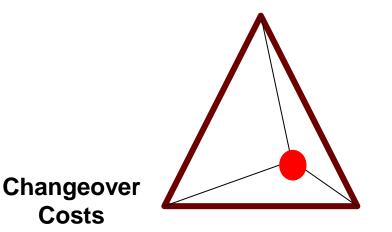
Poll Question 2

Question 2: Question 2: What Best Describes Your Product Mix?


- a.) High Volume, High Mix
- b.) High Volume, Low Mix
- •c.) Low Volume, High Mix
- d.) Low Volume, Low Mix

Quick Notes on Terminology

Three similar terms that we will collectively refer to as 'Lot Sizes':


- <u>Lot Size</u>: Generally used in <u>discrete</u> industries to signify how many units of a product to make before changing of to a different product
- <u>Batch Size</u>: Common term in chemicals, food, beverage and other <u>process</u> industries to denote the amount of product made at one time (often related to vessel or tank sizes)
- <u>Campaign Size</u>: Used by metals, pharmaceutical, and other industries, this indicates the number of individual lots or batches to produce before changing over to another product

The Basic Lot Sizing Challenge

Find the "sweet-spot" between 3 objectives:

Customer Service

Inventory Costs

Costs

Agenda

- Urgent Challenges
- ⇒ Beyond EOQ: Best Practices for Lot Size Optimization
 - Best Practices for Implementing Rhythm Wheels
 - Case Study
 - Questions & Discussion

Four Levels of Maturity for Lot Size Optimization

Level 4: Lot Size Optimization

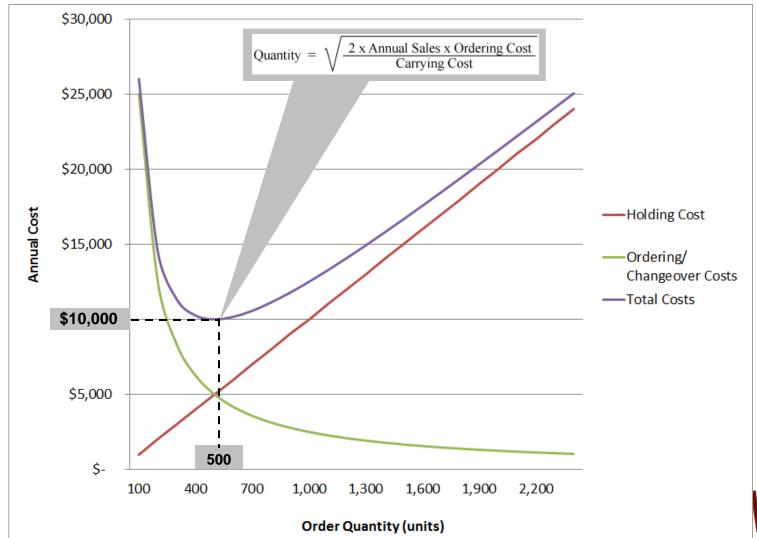
Level 3: Enterprise Resource Planning Heuristics

Level 2: Economic Order Quantity

Level 1: "Acoustical Lot Sizes"

Quality of Results

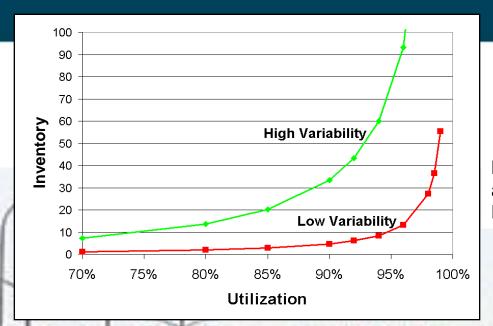
Maturity Level 1: Acoustical Lot Sizes


Increase lot sizes until the yelling stops

- Never allows root causes of manufacturing or supply chain performance to be addressed
- Risks significant excess inventory and increased cycle times
- May result in infeasible capacity plan
- Stressful for all involved
- Enables endless loop of 'firefighting'

Maturity Level 2: Economic Order Quantity (EOQ)

Where EOQ falls short



- EOQ drowns in high mix environments. It assumes:
 - Single Product- no product mix
 - No variability in Demand
 - Replenishment is Instantaneous
 - Infinite Capacity
 - No notion of customer service level

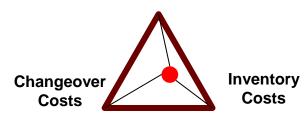
The effect of variability and high utilization

301 SKYWAY TOL

$$\operatorname{CT}_{q} \approx V \times U \times t$$

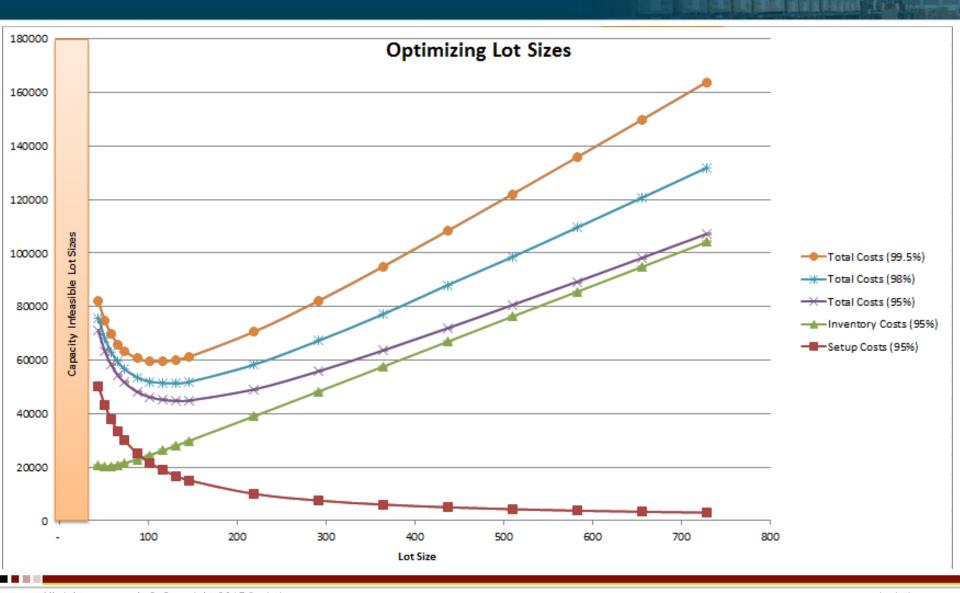
$$\approx \left(\frac{c_{a}^{2} + c_{e}^{2}}{2}\right) \left(\frac{u^{\sqrt{2(m+1)} - 1}}{m(1 - u)}\right) t_{e}$$

In a high mix plant, a line with utilizations above ~90% begins to require infinitely large lot sizes and infinite inventory


Maturity Level 3: Enterprise Resource Planning Heuristics

- Deterministic approaches (aka 'Dynamic' in SAP)
 - Assumes demand is known
 - Most ERP systems have multiple deterministic lot size approaches (Part-Period Balancing, Lot-for-Lot, Groff, etc.)
 - These are easy to understand and implement, but fail in the presence of any appreciable variability
- Stochastic approaches in ERP typically have one or more of the following issues
 - Lack consideration of both supply and demand variability
 - No way to visibly analyze results in a way that makes sense to the user
 - Often ignore capacity
 - Require inputs that are confusing to the user
- In both cases, the largest advantage is that these approaches are built right into existing ERP systems

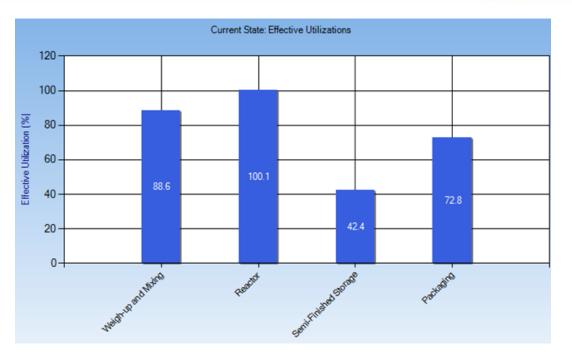
Maturity Level 4: Lot Size Optimization


- Best-of-breed lot sizing approaches allow the following
 - Include both supply and demand variability
 - As a required step, conduct capacity analysis of the process
 - Analyze entire product mix concurrently
 - Require minimal special-expertise
 - Present results in an easy-to-visualize format
 - Use data already in ERP when at all possible
 - As an option: Include analysis of stocking levels as well

Customer Service

Total Cost Curve Tradeoff of Holding Costs and Setup Costs

Poll Question 3


Question 3: Which Maturity Level for Lot Sizing is Your Company using?

- a.) Level 1: "Acoustical" Lot Sizes
- b.) Level 2: Economic Order Quantity
- c.) Level 3: Enterprise Resource Planning Heuristics
- d.) Level 4: Lot Size Optimization

Invistics Lot Sizer

Optimizes lot sizes, batch sizes, and/or campaign sizes

	Total Cost (Inv + Setups)
Current Conditions	\$26,816.66
Optimized Value	\$14,980.64
Improvement	\$11,836.02

(Current State Results Recommendations Text Output										
ı	Recommendations										
	Material Number	Material Description	Number of Setups	Setup Cost	Lead Time	Lot Size	Reorder Point	Target Service	Avg. Inventory Level	Avg. Inventory Cost	Total Cost
	538845	VARIANT BL 3175A 0215.00 KG D009	0.39	211.32	1.47	23953.00	36106.37	0.95	34625.77	386.95	598.26
	928716	VARIANT B 302 0225.00 KG DR09	0.04	19.76	13.65	8800.00	3996.72	0.95	3971.09	39.42	59.18
	2450953	VARIANT N 100 0225.00 KG B01	0.54	286.45	1.15	48514.00	53264.63	0.95	48113.99	466.77	753.21

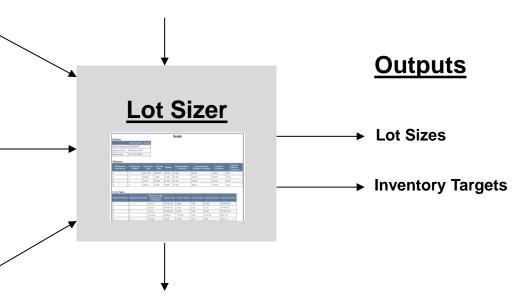
Lot Size Optimization Typical Inputs and Outputs

<u>Inputs</u>

Product Data

- · Demand (mean and std dev.)
- Holding Cost
- Unit Cost

Routing Data


- Process Times (mean and std dev)
- Setup Times (mean and std dev)
- Changeover cost
- Min/Max allowable Lot Sizes

Work Center Data

- Reliability (MTTF/MTTR)
- Crewed Hours

Target Performance

- Customer Service
- Inventory

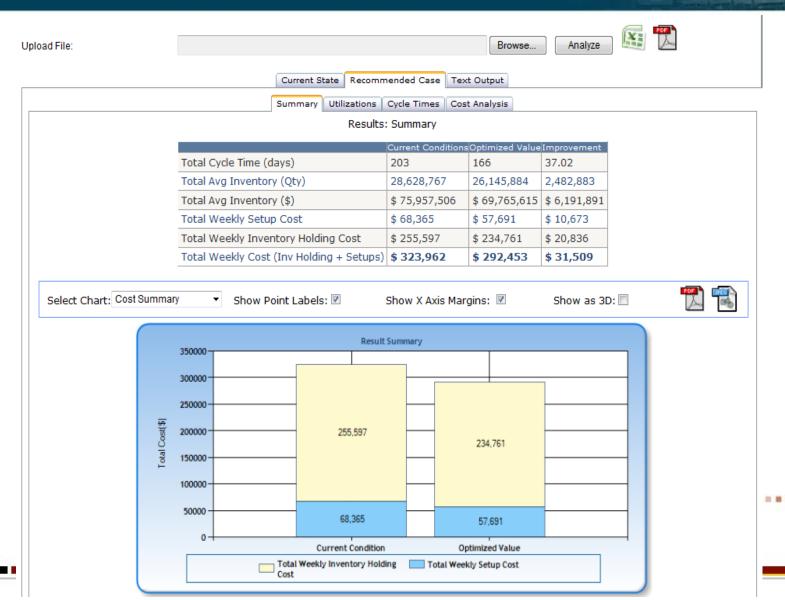
Projected Performance

- Setups Per Week
- Inventory
- Setup costs

Agenda

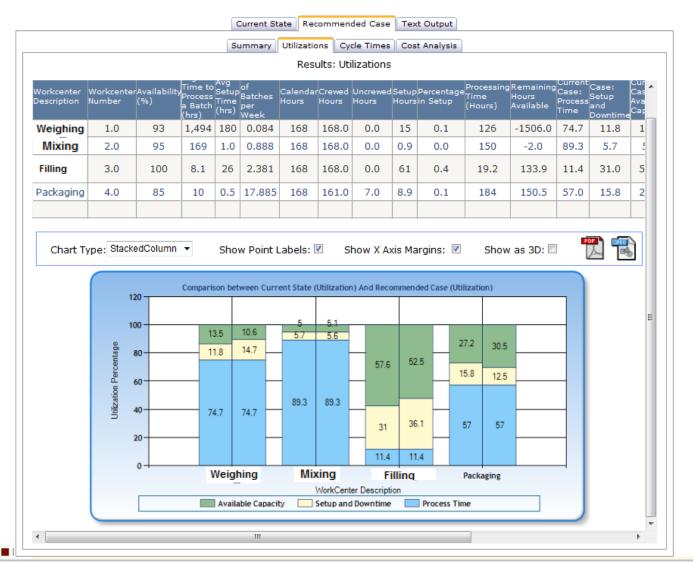
- Urgent Challenges
- Beyond EOQ: Best Practices for Lot Size Optimization
- Case Study
 - Sequencing Issues: Best Practices for Rhythm Wheels
 - Case Study
 - Questions & Discussion

Case Study: Lot Size Optimization Best Practices


Details Company **Products:** High-Mix Specialty chemicals **Characteristics:** Few raw materials transformed into many finished products Excessive working capital Suboptimal lot sizes contributed to Excessive cycle times due to too-large lot sizes for many SKUs Too frequent changeovers due to small lot sizes for some SKUs Capacity Concerns due to high utilizations Lot Sizing: Using Part-Period-Balancing (SAP Heuristic)

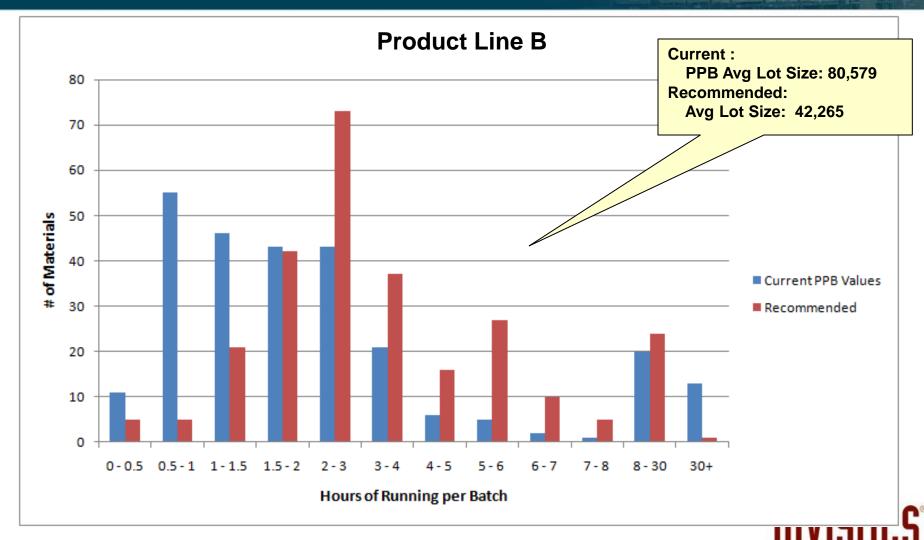
Approach Taken

- 1. Gathered needed data- Not as intimidating as it appeared
- 2. Performed lot size analysis- *Used Invistics software*
- 3. Analyzed results- Big projected improvements
- 4. Entered results into ERP- Continued running their supply chain as usual, but with optimized lot sizes
- Measured the Results reduced change-over costs and inventory significantly

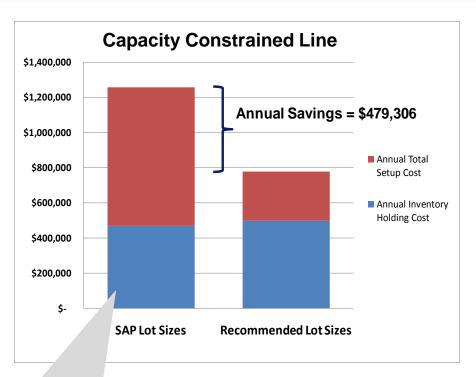


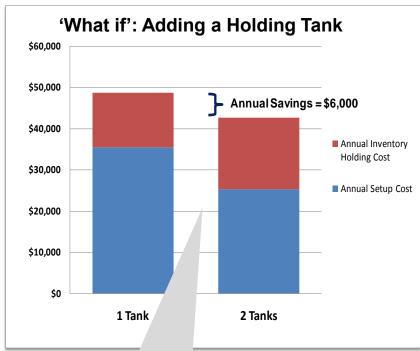
Lot Sizer Overall Summary

LotSizer Overall Utilizations



Sample Output from Lot Sizer


Material Number	Material Description	Recommended Lot Size	Current Lot Sizes (PPB)	Difference Between Recommended and Current Lot Sizes
		51,482	36,288	-15,194
		85,280	81,375	-3,905
		6,393	2,616	-3,777
		115,023	169,529	54,506
		108,330	105,808	-2,522
		95,659	135,124	39,465
		86,337	95,436	9,099
		88,545	84,719	-3,826
		79,953	72,714	-7,239
		47,510	97,716	50,206
		84,880	122,255	37,375
		71,646	65,976	-5,670
	L	54,039	71,412	17,373
	<u>L</u>	98,874	108,331	9,457
		6,209	6,660	451
		5,912	8,960	3,048
		6,076	6,192	116
		5,921	7,252	1,331
		6,153	6,504	351
		62,566	35,490	-27,076
		41,301	34,537	-6,764
		25,658	8,035	-17,623
		33,461	13,635	-19,826
		26,763	31,656	4,893
		27,532	23,322	-4,210
		29,455	23,348	-6,107
		22,437	23,520	1,083
		21,109	26,838	5,729
		33,491	26,148	-7,343
		34,699	22,591	-12,108
		60,652	135,180	74,528
		17,914	14,726	-3,188
		59,211	55,339	-3,872
		89,287	99,290	10,003



Optimized Lot Sizes: Fewer very short runs, Fewer very long runs

Analysis Summary

Recommendations show fewer changeovers for the less expensive materials. This frees up capacity, and ends up saving money overall (even though the qty of less expensive material on hand actually *increases*).

The additional tank allows less changeovers, but more material will be held. The overall cost impact using optimal lot sizes (sometimes less than a full tankful) allows for cost savings.

Results

- Within the next 12 months, the inventory levels decrease by \$4.5 million without any sacrifice to customer service.
- These improvements were all realized by simply changing the lot size values in SAP to the values calculated by Lot Sizer.
- In addition, overall costs were decreased by \$500k annually. This improvement was due to a combination of the improved lot sizes and reconfiguring of the tank farm as recommended during the project.

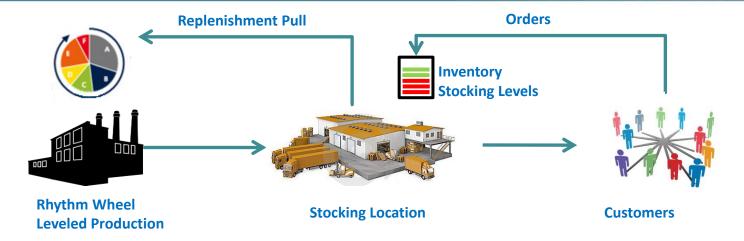
Agenda

- Urgent Challenges
- Beyond EOQ: Best Practices for Lot Size Optimization
 - Case Study
- → Sequencing Issues: Best Practices for Rhythm Wheels
 - Case Study
 - Questions & Discussion

Poll Question 4

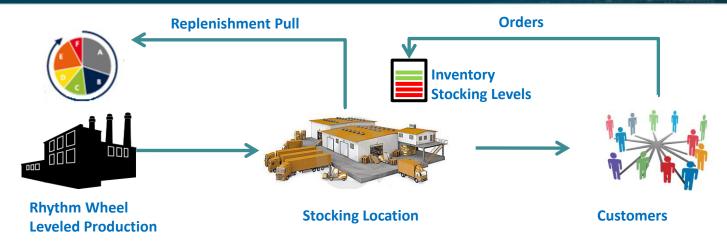
- Question 4: What software, if any, are you using to manage Cycle Stock and Lot Sizing?
- a.) ERP System (SAP, Oracle, JDE, etc.)
- b.) Homegrown Company Software
- c.) Third Party Software
- d.) No Software

Sequencing Issues


Some manufacturing plants have "sequence-dependent" change-over costs/times. Examples:

Industry	Sequence-Dependent Changeover Examples
Food & Beverage	Label changes are faster than flavor changes
Consumer Packaged Goods	Label changes are faster than container changes
Discrete Part Fabrication	Group similar sized parts together to avoid lengthy setups
Electronic Assembly	Group similar board sizes together to avoid lengthy setups

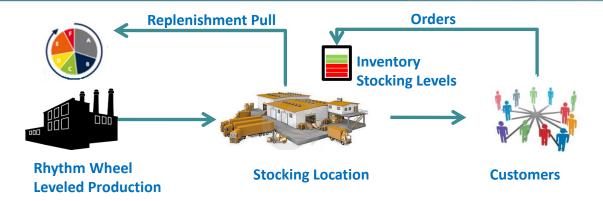
These plants need to optimize both lot sizes and production sequences


Introduction to Rhythm Wheels

- Sequences products on a repeating pattern or "wheel" to minimize changeovers times/costs
- Levels production and lowers demand volatility, while encouraging rapid wheel "frequency"
- Allows the plant to run optimized lot sizes while replenishing inventory stocking levels
- Enables the supply chain to find the sweet-spot that minimizes total costs

Best Practices for Designing a Rhythm Wheel

1. Establish initial policies and conditions:


- A) Decide minimum production quantities by SKU family (sometimes called min. campaign size)
- B) Determine initial sequence (assuming every part every interval (EPEI) to start)
- C) Optional: Estimate initial (non-sequence dependent) lot sizes

2. Optimize Cycle Stock - Design Rhythm Wheel by balancing load across time periods to minimize overall cost:

- A) Select a potential Rhythm Wheel Run Frequency (aka Cycle Length or Cadence)
- B) Group low volume SKU families into selected time periods (not EPIE => skip in some periods)
- C) Optional: Fine-tune sequence within each time period
- D) Recalculate load in each time period. If not balanced/acceptable: return to step 1A, 2A or 2B

3. Optimize Safety Stock - Right-size inventory levels by SKU

Best Practices for Implementing a Rhythm Wheel

1. Update Materials Requirements Planning (MRP) with these parameters:

- A) Minimum/expected lot sizes
- B) Inventory min/max/safety stocks

2. Streamline implementation and Measure success & conformance:

- A) Automate replenishment using optimized inventory stocking levels
- B) Measure/reduce days Between production
- C) Celebrate success, and look for ways to further accelerate Rhythm Wheel Run Frequency

3. Refresh the parameters regularly, at least quarterly

Cadence Advisor Designs Rhythm Wheels and Expected Benefits & Costs

invistics Cadence Advisor: Weekly Workbench

1111101100																
							Totals		1	l	7	2		3		4
			Totals				Shift Hours		Units	Shift Hrs	Units	Shift Hrs	Units	Shift Hrs	Units	Shift Hrs
_			1	Total Capaci	ity		960			80		80		80		80
Recommended Cadence Cycle (we	ek 12		Atlas (Current Plan			591		62,164	34.5	52,461	76.3	84,022	67.7	12,179	18.4
				Remaining (Capacity		369			45.5		3.7		12.3		61.6
Overall Cadence Cycle (week	s) 12			Total Capaci	ity		960			80		80		80		80
			Zeus (Current Plan			366		30,283	17.6	136,331	74.2	26,303	15.7	75,546	38.9
			Remaining Capacity				594			62.4		5.8		64.3		41.1
			Combined Shift-Hrs				963			52.13		150.48		83.40		57.23
			Totals				1	1	l	2		3		4		
			Production			Total shift-										
	Warksonton	Secondary	Weeks	Per Run	First	Total Units per	hrs per		Units	Shift Hrs	Units	Shift Hrs	Units	Shift Hrs	Units	Shift Hrs
	Workcenter		between	Freq.	Week	Cadence Cycle	Cadence		Units	SIIII IIIS	Units	SIIIIL HIS	Units	SIIIIL IIIS	Units	SHILL HIS
SKU Material	-	(override,	run 🔻	(Cases) ▼	-	~	Cycle 🔻	¥	~	~	-	~	-	~	~	~
5 Product 1	Atlas		2	50,774	1	304,645	167.4		50,774	27.9		0.0	50,774	27.9		0.0
6 Product 2	Zeus		2	40,433	2	242,598	121.4	П		0.0	40,433	20.2		0.0	40,433	20.2
88 Product 3	Zeus		4	10,053	2	30,159	17.5	Ш		0.0	10,053	5.8		0.0		0.0
197 Product 4	Zeus		4	24,251	1	72,752	39.0	П	24,251	13.0		0.0		0.0		0.0
501 Product 5	Atlas		4	22,181	3	66,543	77.7	П		0.0		0.0	22,181	25.9		0.0
7400 Product 6	Zeus		2	4,831	2	28,986	16.3	Ш		0.0	4,831	2.7		0.0	4,831	2.7
7829 Product 7	Atlas		4	5,001	3	15,003	11.8	П		0.0		0.0	5,001	3.9		0.0
10977 Product 8	Zeus		6	4,887	2	9,774	6.1	П		0.0	4,887	3.0		0.0		0.0
11098 Product 9	Zeus		4	17,204	2	51,612	26.9	П		0.0	17,204	9.0		0.0		0.0
11141 Product 10	Atlas		4	11,390	1	34,170	19.9	Ш	11,390	6.6		0.0		0.0		0.0
11324 Product 11	Atlas		4	5,167	2	15,502	23.8	П		0.0	5,167	7.9		0.0		0.0
13501 Product 12	Zeus		6	7,431	2	14,861	8.7	Ш		0.0	7,431	4.4		0.0		0.0
13701 Product 13	Atlas		4	32,372	2	97,117	144.2	Ш		0.0	32,372	48.1		0.0		0.0
13747 Product 14	Zeus		6	12,895	2	25,789	14.6	П		0.0	12,895	7.3		0.0		0.0
14135 Product 15	Atlas		4	6,066	3	18,197	30.1	П		0.0		0.0	6,066	10.0		0.0
14320 Product 16	Zeus		6	3,671	2	7,343	4.1	П		0.0	3,671	2.1		0.0		0.0
14345 Product 17	Zeus		6	22,203	4	44,405	23.5	Ш		0.0		0.0		0.0	22,203	11.8
14355 Product 18	Zeus		6	5,735	3	11,471	6.2	П		0.0		0.0	5,735	3.1		0.0
14441 Product 19	Atlas		4	7,522	2	22,565	34.9	Ш		0.0	7,522	11.6		0.0		0.0
14516 Product 20	Atlas		4	3,031	4	9,093	13.8	П		0.0		0.0		0.0	3,031	4.6
14588 Product 21	Atlas		4	2,373	4	7,119	14.9	П		0.0		0.0		0.0	2,373	5.0
15540 Product 22	Zeus		6	7,588	3	15,176	9.9			0.0		0.0	7,588	4.9		0.0
15541 Product 23	Zeus		6	11,322	3	22,645	12.2			0.0		0.0	11,322	6.1		0.0
15542 Product 24	Zeus		6	5,526	2	11,052	5.7			0.0	5,526	2.9		0.0		0.0
15847 Product 25	Atlas		4	3,417	4	10,250	18.9			0.0		0.0		0.0	3,417	6.3
					-											

Cadence Advisor Software to Design Rhythm Wheels Inputs and Outputs

<u>Inputs</u>

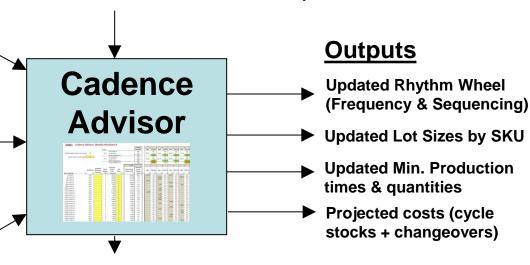
Product Data

- Demand (mean)
- Holding Cost
- Unit Cost
- Sequencing attributes (for setups)

Routing Data

- Process Times (mean)
- Setup Times (mean)
- Setup costs and time (mean)
- Primary/Secondary work centers

Work Center Data

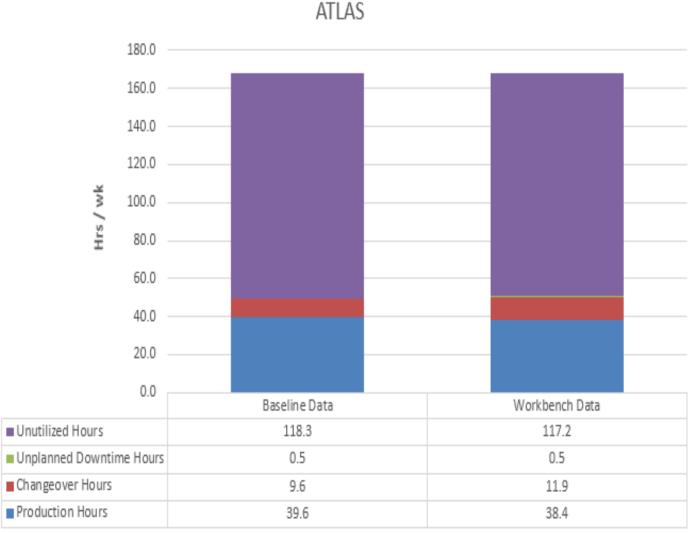

- Crewed Hours
- Minimum production times/quantities

Historical Data

 Historical Orders/Production Qtys and sequences by date

Current Performance

- Current Cadence (Frequency & Sequencing)
- Current Lot/Campaign Sizes by SKU
- Current Min. Production times & quantities


Projected Performance

- Projected Utilization by Line & Time Period
- Projected Setups Per Week & Setup Costs
- Projected Inventory & Inventory Costs

Cadence Advisor

Compare past change-overs/utilizations to expected future benefits, by Line

Cadence Advisor Helps Plants Update Their Rhythm Wheels & Sustain the Benefits Long-Term

"invisiics" Cadence Advisor: Sequencer

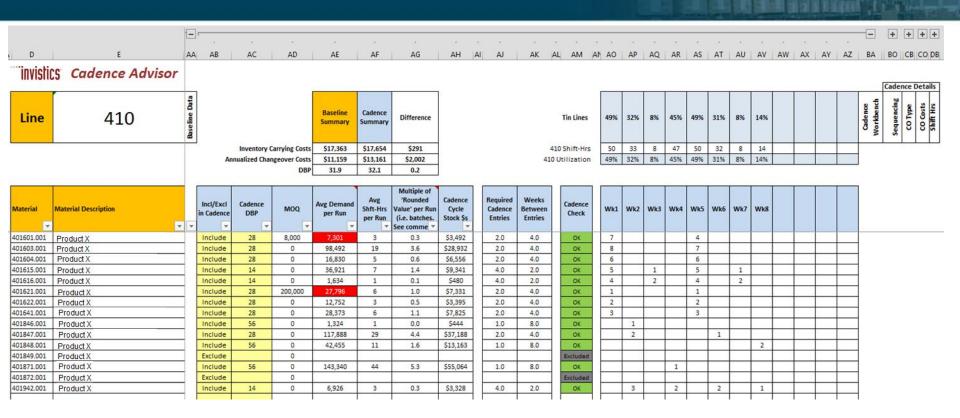
		ATLAS											
							# of Changeovers CO Cost			CO Hrs	Approx	Approx	
	Totals						29	* 1	31,938	80	Run Hrs 359.8	Cases 369,814	
	Totals						25	¥ 31,330		- 00	333.0	303,014	
Wk #	Req'd	Seq#	SKU	Case Size	Bottle Size	Flavor	СО Туре	CO Cost		CO Hrs	Approx Run Hrs	Approx Cases	Remaining Capacity
1 -	5	1	5	6	24fo	OR	SKU (label)	\$	93	0.5	27.9	50,774	45.5
	11141	2	11141	6	24fo	LTOR	Flavor - WF	\$	1,224	0.75	6.6	11,390	
		3											
		4											
		5											
		6											
		7											
		8											
2	11324	1	17842	6	52fo	LTOR	Size	\$	616	3.5	6.1	4,042	3.7
	13701	2	13701	12	40fo	HSR	Size+Flavor+Case - WF	\$	1,828	3.5	48.1	32,372	
	14441	3	18139	6	24fo	OR	Size+Flavor+Case - WF	\$	1,828	3.5	2.5	3,358	
	17842	4	14441	12	36fo	OR	Size+Case	\$	618	3.5	11.6	7,522	
	18139	5	11324	12	40fo	OR	Size	\$	616	3.5	7.9	5,167	
		6											
		7											
		8											
3	5	1	501	9	52fo	OR	Size+Case	\$	618	3.5	25.9	22,181	50.2
	501	2	7829	6	24fo	BMOR	Size+Flavor+Case - PF	\$	1,028	3.5	3.9	5,001	
	7829	3											
	14135	5											
		6											
		7											
		8											

Agenda

- Urgent Challenges
- Beyond EOQ: Best Practices for Lot Size Optimization
 - Case Study
- Sequencing Issues: Best Practices for Rhythm Wheels
- Case Study
 - Questions & Discussion

Case Study: Best Practices for Rhythm Wheels

Company


Details

- Products: Consumer Packaged Goods
- Characteristics:
 - Many finished goods SKUs running on a few shared production work centers
 - Sequence dependent setups require thoughtful production sequencing
- Challenges
 - Create a more level, repeatable production "cadence"
 - Minimize overall costs (cycle stock carrying costs + changeover costs)
 - Avoiding over-utilized lines
 - When possible, shift production from one work center to another to balance utilization

Using Cadence Advisor

- Create 'from-to' Changeover matrix, classifying each changeover by code
- Determine overall Cadence Cycle
- Create estimate of lot sizes for each SKU
- 4. Fill up capacity of each week in Cadence Cycle by allocating SKUs to acceptable periods
- Sequence within each week to minimize changeover costs
- 6. Iterate as needed to arrive at cadence with minimal overall costs

Cadence Advisor: Recommendations

Single view allows users to allocate products to a given week while sequencing on the fly INVISTICS

Cadence Advisor: Recommendations

In the case above, there were many extremely
expensive setups, resulting in a recommendation for
longer runs overall and fewer setups, with slightly higher
cycle stock

Agenda

- Urgent Challenges
- Beyond EOQ: Best Practices for Lot Size Optimization
 - Case Study
- Sequencing Issues: Best Practices for Rhythm Wheels
 - Case Study
- Questions & Discussion

Poll Question 5

Question 5: What was the most relevant part of this Webinar for you?

- a.) Best Practices
- b.) Case Study
- c.) Introduction to Software Tools
- •d.) Q&A

Thank You! Questions?

To learn more:

visit www.invistics.com

or call 800-601-3456

Tom Knight Founder and CEO

