
Network Flow

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms – Network Flow 11-2

Flow Networks

Think of a graph as system of pipes

We use this system to pump water from the source s to sink t

Every pipe/edge has limited capacity

Flow occurs when we pump water through the system.

A flow is amount of water flowing through each pipe

How much water can we pump through the system without blowing up

any pipes?

u

v

s t

20

10 20

10

30

Algorithms – Network Flow 11-3

The Formalism

Flow Networks:

- a digraph G = (V;E)

- every edge e has capacity , a nonnegative number

- there is a single source node s ∈ V

- there is a single sink node t ∈ V

Nodes other than s and t are called internal

ec

Algorithms – Network Flow 11-4

Flows and Flow Networks

A flow network is a digraph with a unique source and sink nodes

Arcs have capacities

A flow is a function f: E → such that

(1) (Capacity condition) For each e ∈ E, we have

(2) (Conservation condition, Kirchhoff principle)

for each node except s and t

The value of the flow is

ecef ≤≤)(0

∑∑ =

veve

efef

 ofout into

)()(

∑
se

ef

 ofout

)(

+
R

u

v

s t

20

10 20

10

30

Algorithms – Network Flow 10-5

The Problem

The Maximum Flow Problem

Instance:

A flow network G, s, t

Objective:

Find a flow of maximal value.

Algorithms – Network Flow 10-6

Algorithm: Simple Flows and Residual Graph

Consider a flow network

Natural idea:

push a flow along a

path

However, the flow cannot be

improved this way,

but can be improved in

a different way

u

v

s t

20

10 20

10

30

u

v

s t

20

10 20

10

30

Algorithms – Network Flow 10-7

Residual Graph

Given a flow network G, and a flow f,

construct the residual graph

with respect to f

- the node set of is the same as G

- for each edge e of G with

include e in with capacity

(forward edge)

- for each edge e = (u,v) in G

with f(e) > 0 include e’ = (v,u) with

capacity f(e) (backward edge)

Capacity of an edge in the residual graph

is called residual capacity

u

v

s t

20

10 20

10

30

u

v

s t

20

10 20

10

20

fG

fG

ecef <)(

)(efce −

10

Algorithms – Network Flow 11-8

Residual Graph

Starting with the zero flow

- push a flow along (s,u), (u,v), (v,t) such that f(s,u) = f(u,v) = f(v,t) = 20

- construct the residual graph w.r.t. f

- push a flow along (s,v), (v,u), (u,t) s. t. g(s,v) = g(v,u) = g(u,t) = 10

- construct the residual graph w.r.t. g

- we cannot push any flow anymore.

- is f + g maximal?

u

v

s t

20

10 20

10

30

u

v

s t

20

10 20

10

2010

u

v

s t

20

10 20

10

1020

Algorithms – Network Flow 10-9

Augmenting a Flow

Let P be an s-t path in

bottleneck(P,f) denotes the minimal residual capacity of the edges of P

Augment(f,P)

set b:=bottleneck(P,f)

for each edge (u,v)∈P do

if e=(u,v) is a forward edge then

increase f(e) by b

else decrease f(e) by b

endfor

return f

Any s-t path in is called an augmenting path

fG

fG

Algorithms – Network Flow 10-10

Augmenting a Flow (cntd)

Let f’ be the function obtained after augmenting

Lemma

f’ is a flow

Proof

Capacity condition:

It suffices to consider arcs of P

Let e = (u,v) ∈ P

By construction bottleneck(P,f) is at most the residual capacity of e

If e is a forward edge, then

ee cefceffPefefef =−+≤+=≤≤))(()(),()()(')(0 bottleneck

Algorithms – Network Flow 10-11

Augmenting a Flow (cntd)

Proof (cntd)

If e is a backward edge, then

Conservation condition:

It suffices to observe that for every node the additional amount of flow,

0 or bottleneck(P,f) entering the node equals the additional amount

of flow, 0 or bottleneck(P,f), leaving the node.

QED

0)()(),()()(')(=−≥−=≥≥ efeffPefefefce bottleneck

Algorithms – Network Flow 10-12

Algorithm Ford-Falkerson

Max-Flow(G)

set f(e):=0 for all e in G

while there is an s-t path in the residual graph do

let P be a simple s-t path in

set f’:=Augment(f,P)

set

set f:=f’

endwhile

return f

fG

fG

': ff GG =

Algorithms – Network Flow 10-13

Termination

We find a parameter that increases every time Augment is applied.

Clearly, it is the value, v(f), of the flow

Lemma

At every stage of the algorithm, the flow values are integers

Lemma

Let f be a flow in G, and let P be a simple s-t path in . Then

v(f’) = v(f) + bottleneck(P,f). Since bottleneck(P,f) > 0, we have

v(f’) > v(f).

Proof

The first arc of P leaves s, and P does not revisit s again.

Moreover, it is a forward arc. Hence v(f’) = v(f) + bottleneck(P,f) > v(f)

fG

Algorithms – Network Flow 10-14

Termination (cntd)

Corollary

Let C be the total capacity of arcs leaving s, i.e.

Then if all capacities in the flow network are integers , Ford-Falkerson

terminates in at most C iterations of the while loop.

Proof

Since all capacities are integer, every iteration increases the value by at

least 1.

QED

∑=

se

ecC

 ofout

Algorithms – Network Flow 10-15

Running Time

Proof

The algorithm executes the while loop at most C times.

The residual graph contains at most 2m edges.

Using BFS we find an s-t path in it in O(m + n) = O(m) time

Augmenting takes O(n) = O(m) time

QED

Theorem

If all the capacities are integers then the Ford-Falkerson algorithm

can be implemented to run in O(mC) time

fG

Algorithms – Network Flow 11-16

Ford-Falkerson: Analysis

Theorem

If all the capacities are integers then the Ford-Falkerson algorithm

finds a maximal flow.

Algorithms – Network Flow 11-17

Cuts

A cut is a partition of G into two sets, A and B, so that s ∈ A and

t ∈ B

The capacity of the cut is

Also

Lemma

For any flow f we have

s t

∑=

Ae

ecBAc

 ofout

),(

∑∑ ==

Ae

in

Ae

out
efAfefAf

 in ofout

)()(),()(

)()()(AfAffv
inout

−=

Algorithms – Network Flow 11-18

Cuts and Flow Value

Proof

By definition

Since we also have

Furthermore, for v ≠ s,t

Thus

If both ends of e belong to A, it contributes 0 to the sum above

If the beginning of e is in A, it contributes positivly

If the end of e is in A, it contributes negatively

Hence

0)()(=− vfvf
inout

)()(sffv
out

=

0)(=sf
in)()()(sfsffv

inout
−=

∑
∈

−=

Av

inout
vfvffv)()()(

)()()()()()()(

AfAfefefvfvffv
inout

AeAeAv

inout
−=−=−= ∑∑∑

∈ in ofout

Algorithms – Network Flow 11-19

Cuts and Flow Value

Corollary

Let f be a flow and (A,B) a cut. Then

Corollary

Let f be a flow, and (A,B) a cut. Then v(f) ≤ c(A,B)

)()()(tftffv
outin

−=

Algorithms – Network Flow 11-20

Max Flow vs. Min Cut

Let f be the flow returned by the Ford-Falkerson algortihm.

We find a cut (A,B) such that v(f) = c(A,B)

By the Corollary above this means that v(f) is maximal possible, and

that c(A,B) is the value of the maximal flow

Lemma

Let f be a flow such that there is no s-t path in the residual graph

Then there is a cut (A,B) in G such that v(f) = c(A,B)

Proof

Let A be the set of all vertices v such that v is reachable from s in

Let B be the remaining vertices

fG

fG

Algorithms – Network Flow 11-21

Max Flow vs. Min Cut (cntd)

First, show that (A,B) is a cut

Obviously, s ∈ A

Since there is no s-t path in we have t ∉ A

Second, suppose that e =(u,v) is an edge in G, for which u ∈ A , v ∈ B

Then .

Indeed, otherwise e would be a forward edge in

A contradiction with the choice of A

s t

y

u v

fG

ecef =)(

fG

Algorithms – Network Flow 11-22

Max Flow vs. Min Cut (cntd)

Third, suppose that e’ =(x,y) is an edge in G, for which x ∈ B , y ∈ A

Then f(e) = 0

Indeed, otherwise the edge e’’ = (y,x) would be a backward edge in

A contradiction with the choice of A

Thus

x

s t

y

u v

fG

∑∑ −=−=

AeAe

inout
efefAfAffv

 in ofout

)()()()()(

),(0

BAcc

Ae

e =−= ∑
 ofout

Algorithms – Network Flow 11-23

Max Flow vs. Min Cut (cntd)

Corollary

The flow returned by the Ford-Falkerson algorithm is a maximal flow

Corollary

In every flow network the maximum value of a flow equals the minimum

capacity of a cut

Corollary

Given a flow of maximal value, we can compute a cut of minimum

capacity in O(m) time

Corollary

If all capacities in a flow network are integers, then there is a maximum

flow f for which every f(e) is an integer

Algorithms – Network Flow 11-24

Faster Flow

Selecting a good augmenting path makes a big difference

u

v

s t

100

100 100

100

1

u

v

s t

99

100
99

100

1
1

1

u

v

s t

99

99
99

99

1
1

1

1

1
…

Algorithms – Network Flow 11-25

Faster Flow

We need to select augmenting paths with large bottleneck

It can be a difficult problem

Use scaling parameter ∆

Let denote the subgraph of the residual graph consisting only

of edges with residual capacity at least ∆

)(∆fG

Algorithms – Network Flow 11-26

Faster Ford-Falkerson

Scaling Max-Flow(G)

set f(e):=0 for all e in G

set ∆:=maximal power of 2 such that

while ∆≥1 do

while there is an s-t path in the residual graph

do

let P be a simple s-t path in

set f’:=Augment(f,P)

set

set f:=f’

endwhile

set ∆:=∆/2

endwhile

return f

)(∆fG

': ff GG =

e
se
c

 ofout
max≤∆

)(∆fG

Algorithms – Network Flow 11-27

Faster Ford-Falkerson: Analysis

Theorem

The Scaling Max-Flow algorithm in a graph with m edges and

integer capacities finds a maximum flow in at most 2m(1 + log C)

augmentations.

It can be implemented in at most time)log(2
CmO

