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Flow Networks

Think of a graph as system of pipes

We use this system to pump water from the source  s  to sink  t

Every pipe/edge has limited capacity

Flow occurs when we pump water through the system.

A flow is amount of water flowing through each pipe

How much water can we pump through the system without blowing up 

any pipes?
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The Formalism

Flow Networks:

- a digraph  G = (V;E)

- every edge  e  has capacity ,  a nonnegative number

- there is a single  source node   s ∈ V

- there is a single  sink node  t ∈ V

Nodes other than  s  and  t  are called internal
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Flows and Flow Networks

A flow network is a digraph with a unique source and sink nodes

Arcs have capacities

A flow is a function  f: E → such that

(1) (Capacity condition)   For each  e ∈ E, we have 

(2) (Conservation condition, Kirchhoff principle)

for each node except  s  and  t

The  value of the flow is
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The Problem 

The Maximum Flow Problem

Instance:

A flow network  G, s, t

Objective:

Find a flow of maximal value.
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Algorithm: Simple Flows and Residual Graph

Consider a flow network

Natural idea:

push a flow along a 

path

However, the flow cannot be 

improved this way,

but can be improved in 

a different way
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Residual Graph

Given a flow network  G,  and a flow  f,

construct the  residual graph  

with respect to  f

- the node set of         is the same as  G

- for each edge  e  of  G  with  

include  e  in          with capacity

(forward edge)

- for each edge  e = (u,v)  in  G

with  f(e) > 0  include  e’ = (v,u)  with

capacity  f(e)  (backward edge)

Capacity of an edge in the residual graph

is called residual capacity
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Residual Graph

Starting with the zero flow

- push a flow along  (s,u), (u,v), (v,t) such that  f(s,u) = f(u,v) = f(v,t) = 20

- construct the residual graph w.r.t.  f

- push a flow along  (s,v), (v,u), (u,t)  s. t.  g(s,v) = g(v,u) = g(u,t) = 10

- construct the residual graph w.r.t.  g

- we cannot push any flow anymore.   

- is f + g maximal?
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Augmenting a Flow

Let  P  be an  s-t path in  

bottleneck(P,f)  denotes the minimal residual capacity of the edges of  P

Augment(f,P)

set b:=bottleneck(P,f)

for each edge (u,v)∈P do

if e=(u,v) is a forward edge then

increase f(e) by b

else decrease f(e) by b

endfor

return f

Any  s-t path in         is called an augmenting path
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Augmenting a Flow (cntd)

Let  f’  be the function obtained after augmenting

Lemma

f’  is a flow

Proof

Capacity condition:

It suffices to consider arcs of  P

Let  e = (u,v) ∈ P

By construction  bottleneck(P,f)   is at most the residual capacity of  e

If  e  is a forward edge, then  
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Augmenting a Flow (cntd)

Proof (cntd)

If  e  is a backward edge, then  

Conservation condition:

It suffices to observe that for every node the additional amount  of flow,  

0  or  bottleneck(P,f)  entering the node  equals the additional amount 

of flow,  0  or  bottleneck(P,f),  leaving the node.

QED
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Algorithm Ford-Falkerson

Max-Flow(G)

set f(e):=0 for all e in G

while there is an s-t path in the residual graph    do

let P be a simple s-t path in 

set f’:=Augment(f,P)

set

set f:=f’

endwhile

return f
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Termination

We find a parameter that increases every time  Augment is applied.

Clearly, it is the value,  v(f),  of the flow

Lemma

At every stage of the algorithm, the flow values are integers

Lemma

Let  f  be a flow in  G,  and let  P  be a simple  s-t path in         .  Then  

v(f’) = v(f) + bottleneck(P,f).  Since  bottleneck(P,f) > 0,  we have      

v(f’) > v(f).

Proof

The first arc of  P  leaves  s,  and  P does not revisit  s again.

Moreover,  it is a forward arc.  Hence  v(f’) = v(f) + bottleneck(P,f) > v(f)

fG
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Termination (cntd)

Corollary

Let  C  be the total capacity of arcs leaving  s,  i.e.

Then if all capacities in the flow network are integers , Ford-Falkerson 

terminates in at most  C  iterations of the  while  loop.

Proof

Since all capacities are integer, every iteration increases the value by at 

least 1.

QED
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Running Time

Proof

The algorithm executes the  while  loop at most  C  times.

The residual graph          contains at most  2m  edges.

Using  BFS we find an s-t path in it in  O(m + n) = O(m)  time

Augmenting takes  O(n) = O(m)  time

QED

Theorem

If all the capacities are integers then the Ford-Falkerson algorithm 

can be implemented to run in  O(mC)  time

fG
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Ford-Falkerson: Analysis

Theorem

If all the capacities are integers then the Ford-Falkerson algorithm 

finds a maximal flow.
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Cuts

A  cut is a partition of  G  into two sets,  A  and  B,  so that  s ∈ A  and   

t ∈ B

The capacity of the cut is

Also

Lemma

For any flow  f  we have    
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Cuts and Flow Value

Proof

By definition

Since                        we also have 

Furthermore,                                          for  v ≠ s,t

Thus

If both ends of  e  belong to  A,  it contributes  0  to the sum above

If the beginning of  e  is in  A,  it contributes positivly

If the end of  e  is in  A,  it contributes negatively

Hence
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Cuts and Flow Value

Corollary

Let  f  be a flow and  (A,B)  a cut.  Then  

Corollary

Let  f  be a flow,  and  (A,B)  a cut.  Then  v(f) ≤ c(A,B)
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Max Flow vs. Min Cut

Let   f  be the flow returned by the Ford-Falkerson algortihm.

We find a cut  (A,B)  such that  v(f) = c(A,B)

By the Corollary above this means that  v(f)  is maximal possible,   and  

that  c(A,B)  is the value of the maximal flow

Lemma

Let  f  be a flow such that there is no  s-t  path in the residual graph          

Then there is a cut  (A,B)  in  G  such that   v(f) = c(A,B)

Proof

Let  A  be the set of all vertices  v  such that  v  is reachable from  s  in

Let  B  be the remaining vertices
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Max Flow vs. Min Cut (cntd)

First, show that  (A,B)  is a cut

Obviously,  s ∈ A

Since there is no  s-t path in         we have  t ∉ A

Second, suppose that  e =(u,v)  is an edge in  G,  for which  u ∈ A , v ∈ B

Then                   .

Indeed,  otherwise   e  would be a forward edge in         

A contradiction with the choice of  A
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Max Flow vs. Min Cut (cntd)

Third, suppose that  e’ =(x,y)  is an edge in  G,  for which  x ∈ B , y ∈ A

Then    f(e) = 0              

Indeed,  otherwise  the edge  e’’ = (y,x)  would be a backward edge in         

A contradiction with the choice of  A

Thus
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Max Flow vs. Min Cut (cntd)

Corollary

The flow returned by the Ford-Falkerson algorithm is a maximal flow

Corollary

In every flow network the maximum value of a flow equals the minimum 

capacity of a cut

Corollary

Given a flow of maximal value, we can compute a cut of minimum 

capacity in  O(m)  time

Corollary

If all capacities in a flow network are integers, then there is a maximum 

flow   f  for which every  f(e)  is an integer
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Faster Flow

Selecting a good augmenting path makes a big difference
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Faster Flow

We need to select augmenting paths with large  bottleneck

It can be a difficult problem

Use  scaling parameter   ∆

Let                 denote the subgraph of the residual graph consisting only 

of edges with residual capacity at least  ∆

)(∆fG
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Faster Ford-Falkerson

Scaling Max-Flow(G)

set f(e):=0 for all e in G

set ∆:=maximal power of 2 such that 

while ∆≥1 do

while there is an s-t path in the residual graph 

do

let P be a simple s-t path in 

set f’:=Augment(f,P)

set

set f:=f’

endwhile

set ∆:=∆/2

endwhile

return f
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Faster Ford-Falkerson: Analysis

Theorem

The Scaling Max-Flow algorithm in a graph with  m  edges and 

integer capacities finds a maximum flow  in at most  2m(1 + log C) 

augmentations.

It can be implemented in at most                          time)log( 2
CmO


