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Chapter 13
Kronecker Products

13.1 Definition and Examples

Definition 13.1. Let A € R™*", B € RP*4. Then the Kronecker product (or tensor
product) of A and B is defined as the matrix

anB -+ ayB
AQ B = e R4, (13.2)

amlB te amnB

Obvioudly, the same definition holds if A and B are complex-valued matrices. We
restrict our attention in this chapter primarily to real-valued matrices, pointing out the
extension to the complex case only where it is not obvious.

Example 13.2.
LletA=[3 5 i]andB=[; 3] Then

21426 3

B 2B 3B 234669
A®B=[3323 B}Z 634221
6 94623

Notethat B® A # A ® B.

2. Forany B € RP*4, 12®B:[g g].

Replacing I, by I, yields a block diagonal matrix with n copies of B aong the
diagonal.

3. Let B bean arbitrary 2 x 2 matrix. Then

b1y 0 b1 0
0 bn 0 b1

by 0 bp O
0 by 0 by

B® I, =

139
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140 Chapter 13. Kronecker Products

The extension to arbitrary B and I,, is obvious.

4. Letx € R™, y € R". Then

X®y = [xlyTv--'axmyT]T

T
= [X1y1, .o, X1y X2V1, - oo, X Yn]” € R™

5. Letx € R", y € R". Then

X ®yT = [xlyv ~~,Xm)’]T
X1y1 cee X1V
XmYL -+ XmYn
— .XyT e Rmxn‘

13.2 Properties of the Kronecker Product
Theorem 13.3. Let A e R™*", B € R™, C e R"*?,and D € R**. Then

(A® B)(C® D) = AC® BD (e R™>P"), (13.2)

Proof: Simply verify that

B a]_lB e al,,B C_‘]_]_D e C]_I,D
(A®B)(C®D)=| : : :
L amlB e amnB CnlD e CnpD
B ZZ:]_ alkcleD s ZZ:l alkckpBD
L 22:1 amkcleD e ZZ::]_ amkckpBD
=ACQ® BD. 0

Theorem 13.4. Forall Aand B, (A® B)" = AT @ B”.

Proof: For the proof, simply verify using the definitions of transpose and Kronecker
product. 0O

Corollary 13.5. If A € R"*" and B € R™*™ are symmetric, then A ® B is symmetric.
Theorem 13.6. If A and B arenonsingular, (A® B) ' =A"1Q B~ 1.
Proof: Using Theorem 13.3, simply notethat (A ® BY(A*@ B H=1I=1. 0O
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13.2. Properties of the Kronecker Product 141

Theorem 13.7. If A € R"" and B € R™ ™ arenormal, then A ® B isnormal.

Proof:

(A® BT (A® B) = (AT ® BT)(A® B) by Theorem 13.4

=ATA® B"B by Theorem13.3

= AAT ® BBT since A and B are normal

=(A® B)(A® B)T by Theorem 13.3. 0
Corollary 13.8. If A € R"*" isorthogonal and B € R™*™ is orthogonal, then A ® B is
orthogonal.
Example 13.9. LetA=[_ % S0]and B =[_ 5 Si%]. Thenitis easily seen that
A isorthogonal with eigenvaluese*/? and B isorthogonal with eigenvaluese*/¢. The4 x 4
matrix A ® B isthen also orthogonal with eigenvalues e*/ @9 and ¢*/ =),

Theorem 13.10. Let A € R™*" have a singular value decomposition U, V! and let
B € RP*4 have a singular value decomposition Uz =V, . Then

(Ua® Up)(Za ®@ Zp)(V{ ® Vy)
yields a singular value decomposition of A ® B (after a simple reordering of the diagonal
elements of 4 ® X and the corresponding right and left singular vectors).

Corollary 13.11. Let A € R™*" havesingular valueso; > --- > o, > Oandlet B € RY™?
have singular valuest; > --- > 1, > 0. Then A ® B (or B ® A) hasrs singular values
o111 > -+ > 0,7, > 0and

rank(A ® B) = (rankA)(rankB) = rank(B ® A) .

Theorem 13.12. Let A € R"*" have eigenvalues %;,i € n, and let B € R™*" have
eigenvalues i ;, j € m. Thenthemn eigenvaluesof A ® B are

A’lMl’ cees Al/”“m7 )‘fZMla s )\vZMma s )\n,um-

Moreover, if x1, ..., x, are linearly independent right eigenvectors of A corresponding
toAs,..., A, (p < m),and z4, ..., z, are linearly independent right eigenvectors of B
corresponding to u1, ..., ug (¢ < m), thenx; ® z; € R™ arelinearly independent right
eigenvectorsof A @ B correspondingto A;u;,i € p, j € q.

Proof: The basic idea of the proof is as follows:
(A® B)(x ®7) = Ax ® Bz

=Ax ® uz
=Au(x ® 2). a

If A and B are diagonalizable in Theorem 13.12, we can take p = n and ¢ = m and
thus get the complete eigenstructure of A ® B. In generd, if A and B have Jordan form
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142 Chapter 13. Kronecker Products

decompositions given by P~1AP = J, and Q1B Q = Jj, respectively, then we get the
following Jordan-like structure:

(PRO)MA®B(PR®Q) =P @0 HA®B)(P® Q)
= (P7'AP)® (07 BQ)
=Js® Jp.

Note that /4, ® Jg, while upper triangular, is generally not quite in Jordan form and needs
further reduction (to an ultimate Jordan form that also depends on whether or not certain
eigenvalues are zero or nonzero).
A Schur form for A ® B can be derived similarly. For example, suppose P and
Q are unitary matrices that reduce A and B, respectively, to Schur (triangular) form, i.e.,
PHAP = T, and Q" BQ = Ty (and similarly if P and Q are orthogonal similarities
reducing A and B to real Schur form). Then
(P O"(A®B)(P® Q) =(P"®0")(A®B)(P® Q)
= (P"AP)® (Q"BQ)
=Ty QTp.

Corollary 13.13. Let A € R™ and B € R™*™. Then
1 Tr(A® B) = (TrA)(TrB) = Tr(B ® A).
2. det(A ® B) = (det A)"(det B)" = det(B ® A).

Definition 13.14. Let A € R"™*" and B € R™*™. Then the Kronecker sum (or tensor sum)
of A and B, denoted A @ B, isthe mn x mn matrix (I,, ® A) + (B ® I,). Notethat, in
general, A®@ B # B® A.

Example 13.15.

1. Let
12 3
11 4
Then
123000 200100
321000 020010
114000 002001
ABB = (L@A)+BR)=| 5 ¢ g 1 2 3|72 00 3 0 0
000321 0200 30
00011 4 00200 3

Thereader isinvitedto compute B® A = (I3® B) + (A ® I,) and notethe difference
with A @ B.
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13.2. Properties of the Kronecker Product 143

2. Recall therea JCF

M I 0 ... 0 7
O M I O
J = : oMo € R&*x2,
’ I 0
: M I
| O 0 M |
oa B .
where M = [ } Define
B «
0 1 O 07
0O 0 1 :
Ek: E '.. '.. O ERka
1
| 0 ... <o 0]

Then J can bewritteninthevery compactformJ = (I, @ M)+ (E; Q1) = M @ Ej.
Theorem 13.16. Let A € R"*" have eigenvalues %;,i € n, and let B € R™*" have

eigenvalues i ;, j € m. Then the Kronecker smA @ B = (I, ® A) + (B ® I,) hasmn
eigenvalues
)\l+/le’-~~»)¥1+I/Lm»)\2+/1«1»~-~a)"2+,um»~--’)"n+/'Lm-

Moreover, if x1, ..., x, are linearly independent right eigenvectors of A corresponding
toA1,..., A, (p < m), and z4, ..., z, are linearly independent right eigenvectors of B
corresponding to u1, ..., uqg (¢ < m), thenz; ® x; € R™ arelinearly independent right
eigenvectorsof A @ B correspondingto A; + uj,i € p, j € q.

Proof: The basic idea of the proof is as follows:
(I, ® A)+ (B L)](z®x) = (z® Ax) + (Bz® x)
=(Z®Ax)+ (nz ® x)
=G+ x). a

If A and B are diagonalizable in Theorem 13.16, we can take p = n and ¢ = m and
thus get the complete eigenstructure of A & B. In generdl, if A and B have Jordan form
decompositionsgivenby P~*AP = J, and Q1B Q = J;, respectively, then

[(Q® I)UIy ® P)] Iy ® A) + (B® L)I(Q ® 1)y ® P)]
= [y ® P)"HQ ® L) 1[(In ® A) + (B L)I(Q ® I,) (I, ® P)]
=[Un @ P"HOQ @ INUn ® A) + (B INI(Q ® 1,) (I ® P)]
=Un®Ja)+ s ® 1)

is aJordan-like structure for A & B.
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144 Chapter 13. Kronecker Products

A Schur formfor A @ B can be derived similarly. Again, suppose P and Q are unitary
matrices that reduce A and B, respectively, to Schur (triangular) form, i.e., PYAP = T,
and Q" BQ = Tp (and similarly if P and Q are orthogonal similarities reducing A and B
to real Schur form). Then

[(Q® L) ® P)I"[(1y ® A) + (B INI(Q ® L)y ® P) = (In @ Ta) + (T ® 1),

where [(Q ® I,)(I,, ® P)] = (Q ® P) isunitary by Theorem 13.3 and Corollary 13.8.

13.3 Application to Sylvester and Lyapunov Equations

In this section we study the linear matrix equation
AX+XB=C, (13.3)

where A € R, B € R™™ and C € R™". Thisequation isnow often called a Sylvester
equation in honor of J.J. Sylvester who studied general linear matrix equations of the form

A specia case of (13.3) isthe symmetric equation
AX+XAT =C (13.4)

obtained by taking B = AT. When C is symmetric, the solution X € R"*" iseasily shown
also to be symmetric and (13.4) is known as a Lyapunov equation. Lyapunov equations
arise naturally in stability theory.

The first important question to ask regarding (13.3) is, When does a solution exist?
By writing the matricesin (13.3) in terms of their columns, it is easily seen by equating the
ith columns that

Ax; + Xb; = ¢; = Ax; + ij,‘x]‘.
j=1

These equations can then be rewritten asthe mn x mn linear system

A+ byl byl e byl X c
biol A+bpl - b2l ! !
. ) . = | (13.5)
bl bowl -+ A+ byl m Cm

The coefficient matrix in (13.5) clearly can be written as the Kronecker sum (7,, ® A) +
(BT ® I,). Thefollowing definition is very helpful in completing the writing of (13.5) as
an “ordinary” linear system.

“ajlbook” — 2004/11/9 — 13:36 — page 144 — #152

From "Matrix Analysis for Scientists and Engineers" Alan J. Laub.
Buy this book from SIAM at www.ec-securehost.com/SIAM/ot91.html



Copyright ©2005 by the Society for Industrial and Applied Mathematics
This electronic version is for personal use and may not be duplicated or distributed.

13.3. Application to Sylvester and Lyapunov Equations 145

Definition 13.17. Let ¢; € R" denote the columns of C € R"*" sothat C = [c1, ..., Cpn)-

Then vec(C) is defined to be the mn-vector formed by stacking the columns of C on top of
c1

one another, i.e, vec(C) = : e R™,

Cﬂ'l

Using Definition 13.17, the linear system (13.5) can be rewritten in the form
(I, ® A) + (BT ® I,,)]vec(X) = vec(C). (13.6)

Thereexistsaunique solutionto (13.6) if and only if [(1,, ® A) + (BT ® I,,)] isnonsingular.
But [(I, ® A) + (BT ® I,)] is nonsingular if and only if it has no zero eigenvalues.
From Theorem 13.16, the eigenvalues of [(I,, ® A) + (BT ® I,)] are A; + wj, where
i € A(A),i en,and u; € A(B), j € m. Wethus have the following theorem.

Theorem 13.18. Let A € R"", B € R™*", and C € R"*. Then the Sylvester equation
AX+XB=C (13.7)
has a unique solution if and only if A and — B have no eigenvalues in common.

Sylvester equations of the form (13.3) (or symmetric Lyapunov eguations of the form
(13.4)) are generally not solved using the mn x mn “vec” formulation (13.6). The most
commonly preferred numerical algorithm is described in [2]. First A and B are reduced to
(real) Schur form. An equivalent linear system is then solved in which the triangular form
of thereduced A and B can be exploited to solve successively for the columns of asuitably
transformed solution matrix X . Assuming that, say, n > m, thisalgorithm takesonly O (n%)
operations rather than the O (n®) that would be required by solving (13.6) directly with
Gaussian elimination. A further enhancement to this algorithm is available in [6] whereby
the larger of A or B isinitialy reduced only to upper Hessenberg rather than triangular
Schur form.

The next few theorems are classical. They culminate in Theorem 13.24, one of many
elegant connections between matrix theory and stability theory for differential equations.

Theorem 13.19. Let A € R™*", B € R™*™ and C € R"*™". SQuppose further that A and B
are asymptotically stable (a matrix is asymptotically stable if all its eigenvalues have real
partsin the open left half-plane). Then the (unique) solution of the Sylvester equation

AX+XB=C (13.8)

can be written as

+00
X = —/ etce't dr. (13.9)
0

Proof: Since A and B are stable, A;(A) 4+ ;(B) # Ofor al i, j so there existsaunique
solutionto (13.8) by Theorem 13.18. Now integratethedifferential equation X = AX+XB
(with X (0) = C) on [0, +00):

+00 +0oo
Iirp X(@)— X0 = A/ X(@)dt + (/ X(t)dt) B. (13.10)
—>—+00 0 0
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146 Chapter 13. Kronecker Products
Using the results of Section 11.1.6, it can be shown easilythattliin et = t ”T e? =0.
—+00 —+00

Hence, usingthesolution X (1) = ¢’4Ce'8 from Theorem 11.6, wehavethatt ”T X(t)=0.
— 400
Substituting in (13.10) we have

+00 +00
—C=A (/ eACe'B dt) + (/ eiCe'B dt) B
0 0

+00
andso X = —/ e'ACe'® dr satisfies (13.8). O
0

Remark 13.20. An equivalent condition for the existence of a unique solutionto AX +
XB=Cistha[q ]besmilarto[y %] (viathesimilarity [o ).
Theorem 13.21. Let A, C € R™*". Then the Lyapunov equation

AX+XAT =C (13.11)

has a unique solution if and only if A and —A” have no eigenvalues in common. If C is
symmetric and (13.11) has a unique solution, then that solution is symmetric.

Remark 13.22. If thematrix A € R"™" haseigenvalues A4, ..., A,, then —A” has eigen-
values —Xq, ..., —A,. Thus, a sufficient condition that guarantees that A and —A” have
no common eigenvalues isthat A be asymptotically stable. Many useful results exist con-
cerning the relationship between stability and Lyapunov equations. Two basic results due
to Lyapunov are the following, thefirst of which followsimmediately from Theorem 13.19.

Theorem 13.23. Let A, C € R™" and suppose further that A is asymptotically stable.
Then the (unique) solution of the Lyapunov equation

AX +XAT =C
can be written as

+o00 .
X=- / etce dr. (13.12)
0

Theorem 13.24. A matrix A € R**" is asymptotically stable if and only if there exists a
positive definite solution to the Lyapunov equation
AX + XAT =C, (13.13)

whereC = CT < 0.

Proof: Suppose A is asymptotically stable. By Theorems 13.21 and 13.23 a solution to
(13.13) exists and takes the form (13.12). Now let v be an arbitrary nonzero vector in R”.
Then

+00
v Xv = / (vTe’A)(—C)(vTe’A)T dt.
0
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13.3. Application to Sylvester and Lyapunov Equations 147

Since —C > 0 and ¢'“ is nonsingular for all ¢, the integrand above is positive. Hence
v’ Xv > 0and thus X is positive definite.

Conversely, suppose X = X7 > Oand let » € A(A) with corresponding left eigen-
vector y. Then

0> yiCy=y"AXy +y# X ATy
=+ 0y Xy.

Since y# Xy > 0, we must have A + 1 = 2Rex < 0. Since A was arbitrary, A must be
asymptotically stable. 0O

Remark 13.25. The Lyapunov equation AX + XAT = C can also be written using the
vec notation in the equivalent form

[ ® A) + (A ® I)]vec(X) = vec(C).

A subtle point arises when dealing with the “dual” Lyapunov equation AT X + XA = C.
The equivalent “vec form” of thisequationis

[(I®AT) + (AT @ I)]vec(X) = vec(C).
However, the complex-valued equation A7 X + XA = C isequivalent to
(I ®A™) + (AT ® I)]vec(X) = vec(C).

The vec operator has many useful properties, most of which derive from one key
result.

Theorem 13.26. For any three matrices A, B, and C for which the matrix product ABC is
defined,

vec(ABC) = (CT ® A)vec(B).

Proof: The proof followsin afairly straightforward fashion either directly from the defini-
tions or from the fact that vec(xy”) = y®@ x. 0O

Animmediate application isto the derivation of existence and uniqueness conditions
for the solution of the simple Sylvester-like equation introduced in Theorem 6.11.
Theorem 13.27. Let A € R™*", B € R?*¢, and C € R"*4. Then the equation

AXB=C (13.14)

hasasolution X € R"*? ifandonlyif AATCB*B = C, inwhich case the general solution
is of the form
X =ATCBT+Y - ATAYBB™, (13.15)

where Y € R"*? isarbitrary. The solution of (13.14) isuniqueif BBt @ ATA = 1.

Proof: Write (13.14) as
(BT @ A)vec(X) = vec(C) (13.16)
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148 Chapter 13. Kronecker Products

by Theorem 13.26. This “vector equation” has asolution if and only if
(B" ® A)(BT ® A) "vec(C) = vec(C).

It is astraightforward exercise to show that (M ® N)* = M+ ® N*. Thus, (13.16) hasa
solution if and only if

vec(C) = (BT ® A)(B")" ® A™)vec(C)
— [(BTB)" ® AAT]vec(C)
=Vvec(AATCB'B)

and henceif andonly if AATCB™B = C.
The general solution of (13.16) isthen given by

vec(X) = (BT @ A)"vec(C) + [1 — (BT ® A)" (BT ® A)lvec(Y),
where Y isarbitrary. This equation can then be rewritten in the form
vec(X) = (BM)' ® A")vec(C) + [1 — (BBT)" ® At Alvec(Y)
or, using Theorem 13.26,
X =A*CB*+Y — ATAYBB™.

The solutionisclearly uniqueif BB* @ ATA=1. O

EXERCISES

1. For any two matrices A and B for which the indicated matrix product is defined,
show that (vec(A))” (vec(B)) = Tr(AT B). Inparticular, if B € R"*", then Tr(B) =
vec(1,)T vec(B).

2. Provethat for all matrices A and B, (A® B)t = AT @ B*.

3. Show that the equation AX B = C hasasolution for al C if A hasfull row rank and
B hasfull column rank. Also, show that asolution, if it exists, isuniqueif A hasfull
column rank and B has full row rank. What isthe solution in this case?

4. Show that the general linear equation

can be written in the form

[Bf ® A1+ -+ B] ® Aclvec(X) = vec(C).
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5 Letx e R"andy € R". Show that x” ® y = yxT.
6. Let A € R and B € R™*™,

(@ Showthat [|[A ® Bl = |All2llBll2
(b) What is ||A ® B|| in terms of the Frobenius norms of A and B? Justify your
answer carefully.

(c) What isthe spectral radiusof A ® B in terms of the spectral radii of A and B?
Justify your answer carefully.
7. Let A, B € R"™*",

(@ Showthat (I ® A)¥ =T ® A* and (B ® I)* = B¥ ® I for all integersk.
(b) Showthat ¢’®4 =1 @ ¢4 and e?®’ =B @ I.

(c) Show that the matrices I ® A and B ® I commute.

(d) Show that

eABB _ JURAT(BRI) _ B o oA

(Note: This result would look a little “nicer” had we defined our Kronecker
sum the other way around. However, Definition 13.14 is conventional in the
literature.)

8. Consider the Lyapunov matrix equation (13.11) with

1 0
AZ[O _1]
and C the symmetric matrix
2 0
0o -2 |
Clearly
10
6=l 1]

isasymmetric solution of the equation. Verify that

11
an= |: _1 1 }
isalso asolution and is nonsymmetric. Explain in light of Theorem 13.21.
A B
=[]
where A € R"™" and D € R™ . Itisdesired to find a similarity transformation

of theform 0
1
=[x 7]

such that T-1ST isblock upper triangular.

9. Block Triangularization: Let
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150 Chapter 13. Kronecker Products

(8) Show that S issimilar to

A+ BX B
0 D—-XB

if X satisfiesthe so-called matrix Riccati equation

C-XA+DX—-XBX=0.

(b) Formulate asimilar result for block lower triangularization of S.

A B
=[6 5]
where A € R™" and D € R™*"™. It isdesired to find a similarity transformation of

theform
1 Y
TZ[O 1}

such that T7-1ST isblock diagonal.
A O
0 D

if Y satisfies the Sylvester equation

10. Block Diagonalization: Let

(8) Show that S issimilar to

AY — YD = —B.

(b) Formulate asimilar result for block diagonalization of

23]
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