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106 The Foundation Engineering Handbook

A shallow spread footing is designed for a building column in order to safely transmit the 
structural load to the ground without exceeding the bearing capacity of the ground and 
causing excessive settlements. The system that encompasses the footing and the ground 
influenced by the footing is generally referred to as the foundation.

3.1  Design Criteria

3.1.1  Bearing Capacity Criterion

The maximum contact stress that can be borne by the foundation is termed the ultimate 
bearing capacity of the foundation. If the contact ground stress imposed by the structural 
load exceeds the ultimate bearing capacity, the shear stresses induced in the ground would 
cause plastic shear deformation within the foundation’s influence zone (Figure 3.1). This 
overloading condition can lead to either a global or a punching shear failure, which would 
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45 + φ/2

FIGURE 3.1
Influence zone of a shallow footing.
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107Spread Footings

result in immediate sinking of the footing without prior warning. Therefore, the following 
condition must be satisfied for safety from bearing capacity failure, the following

 
P
A

q
F

≤ ult , (3.1a)

where
 qult = ultimate bearing capacity of the foundation (kN/m2, kPa, or ksf)
 P = total load at the footing level (structural + refill soil load) (kN or kips)
 A = footing area (m2 or ft2)
 F = appropriate safety factor that accounts for the uncertainties involved in the deter-

mination of the structural loads (P) and the ultimate bearing capacity (qult)

3.1.2  Settlement Criterion

The designer must also ensure that the footing does not undergo either excessive total 
settlement as a unit or differential settlement within the footing. Excessive settlement of 
the foundation generally occurs as a result of irreversible compressive deformation tak-
ing place immediately or in the long term. Excessive time-dependent settlement occurs 
in saturated compressible clays with prior warning through cracking, tilting, and other 
signs of building distress. On the other hand, significant immediate settlement can occur 
in loose sands or compressible clays and silts. Therefore, the footing must be proportioned 
to limit its estimated settlements (δest) within tolerable settlements (δtol).

 δest ≤ δtol (3.1b)

3.2  Evaluation of Bearing Capacity

Based on the discussion in Section 3.1.1, a foundation derives its bearing capacity from the 
shear strength of the subsoil within the influence area (Figure 3.1) and the embedment 
of the footing (D). Over the years, many eminent geotechnical engineers have suggested 
expressions for the ultimate bearing capacity of foundations that have also been verified 
on various occasions by load tests (e.g., Plate load test in Section 3.2.7.3). Several common 
expressions for the ultimate bearing capacity are provided next.

3.2.1  Bearing Capacity Evaluation in Homogeneous Soil

Terzaghi’s bearing capacity expression

 qult = cNcsc + qNq + 0.5BγNγsγ (3.2)

Meyerhoff’s bearing capacity expression

For vertical loads

 qult = cNcscdc + qNqsqdq + 0.5BγNγsγdγ (3.3)
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108 The Foundation Engineering Handbook

For inclined loads

 qult = cNcdcic + qNqdqiq + 0.5BγNγdγiγ (3.4)

Hansen’s bearing capacity expression

 qult = cNcscdcic gcbc + qNqsqdqiqgqbq + 0.5BγNγsγdγiγgγbγ (3.5)

For undrained conditions

 q s s d i g b qc c c c cult u= + ′ + ′ − ′ − ′ − ′ +5 14 1. ( )  (3.6)

Vesic’s bearing capacity expression

 qult = cNcscdcic gcbc + qNqsqdqiqgqbq + 0.5BγNγsγdγiγgγbγ (3.7)

where
 c = cohesive strength
 ϕ = friction angle
 Ni = bearing capacity factors (Table 3.1)
 q = effective vertical stress at the footing base level
 γ = unit weight of surcharge soil
 s = shape factors (Tables 3.2a, 3.2b, and 3.2c)
 d = depth factors (Tables 3.2a, 3.2b, and 3.2c)
 i = inclination factors (Tables 3.2a, 3.2b, 3.2c, 3.3a, and 3.3b; see also Figure 3.2)
 g = ground slope factors (Tables 3.3a and 3.3b)
 b = base tilt factors (Tables 3.3a and 3.3b)

TABLE 3.1

Bearing Capacity Factors

ϕ

Terzaghi’s (1943) 
Expression

Hansen, Meyerhoff, 
and Vesic’s Expressions

Hansen 
(1970)

Meyerhoff 
(1951, 1963)

Vesic (1973, 
1975)

Nc Nq Nγ Nc Nq Nγ Nγ Nγ

0 5.7 1.0 0.0 5.14 1.0 0.0 0.0 0.0
5 7.3 1.6 0.5 6.49 1.6 0.1 0.1 0.4
10 9.6 2.7 1.2 8.34 2.5 0.4 0.4 1.2
15 12.9 4.4 2.5 11.0 3.9 1.2 1.1 2.6
20 17.7 7.4 5.0 14.8 6.4 2.9 2.9 5.4
25 25.1 12.7 9.7 20.1 10.7 6.8 6.8 12.5
30 37.2 22.5 19.7 30.1 18.4 15.1 15.7 22.4
35 57.8 41.4 42.4 46.4 33.5 34.4 37.6 48.1
40 95.7 81.3 100 75.3 64.1 79.4 93.6 109.3
45 172 173 298 134 135 201 262.3 271.3
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109Spread Footings

Finally, appropriate safety factors recommended for various construction situations are 
given in Tables 3.4a, 3.4b, and 3.4c.

TABLE 3.2a

Shape and Depth Factors for Hansen’s Expression

Shape Factors Depth Factors

′ = =s
B
Lc 0 2 0. for φ °

′ = =d kc 0 4 0. for φ °

dc = 1.0 + 0.4k

s
N

N
B
Lc

q

c

= +1 0. .
k = D/B for D/B ≤ 1

k (rad) = tan−1 (D/B) for D/B > 1

s
B
Lq = +1 0. sinφ

dq = 1 + 2 tan ϕ (1 − sin ϕ)2 k

s
B
Lγ = −1 0 0 4. .

dγ = 1.00

Source: Hansen, J.B., A revised and extended formula for bearing capacity, 
Danish Geotechnical Institute, Copenhagen, Bulletin No. 28, 1970. 
Reproduced with permission from Bowles, J.E., Foundation Analysis and 
Design, McGraw-Hill, New York, 2002.

TABLE 3.2b

Shape, Depth, and Inclination Factors for Meyerhoff’s Expression

Shape factor
s K

B
Lc P= +1 0 2.

s s K
B
Lq P= = +γ 1 0 1. ϕ > 10°

sq = sγ = 1 ϕ = 0°
Depth factor

d K
D
Bc P= +1 0 2.

d d K
D
Bq P= = +γ 1 0 1. ϕ > 10°

dq = dγ = 1 ϕ = 0°
Inclination factor

i ic q= = −




1

90

2
θ°

°

iγ
θ
φ

= −






1
2

°
°

ϕ > 0°

iγ = 0 for θ > 0 ϕ = 0°

Note: θ is the load inclination to the vertical and KP = tan2(45 + ϕ/2).
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110 The Foundation Engineering Handbook

TABLE 3.3a

Inclination, Ground Slope, and Base Tilt Factors for Hansen’s Expression (Figure 3.2)

Load Inclination Factors Factors for Base on Slope (β) Factors for Tilted Base (η)

′ = − −i
H

A Cc
i

f a

0 5 0 5 1. . ′ =gc
β°

°147
′ =bc

η°
°147

i i
i

Nc q
q

q

= −
−

−
1

1
gc = −1 0

147
.

β°
°

bc = −1
147
η°

°

i
H

V A Cq
i

f a

= −
+













1
0 5 1.

cotφ

α gq = gγ = (1 − 0.5 tan β)5 bq = exp(−0.0349η° tanϕ)

2 ≤ α1 ≤ 5 (β° measured clockwise from 
horizontal)

bγ = exp(−0.0471η° tanϕ)

i
H

V A C
i

f a
γ

α
θ

φ
= − −

+












1
0 7 450

2
( . )

cot

� �/
(η is measured counter-clockwise from 

horizontal)

2 ≤ α2 ≤ 5

Source: Hansen, J.B., A revised and extended formula for bearing capacity, Danish Geotechnical Institute, 
Copenhagen, Bulletin No. 28, 1970. Reproduced with permission from Bowles, J.E., Foundation 
Analysis and Design, McGraw-Hill, New York, 2002.

Note: Primed factors are for ϕ = 0. C (cohesion) = attraction between the same material; Ca (adhesion) = 
attraction between two different materials (e.g., concrete and soil). Hence, Ca < C; Bowles (2002) sug-
gests Ca = (0.6 – 1.0)C. The actual value depends on the concrete finish. If concrete foundation base is 
smooth then, Ca would be higher than that of a rough base.

TABLE 3.2c

Shape and Depth Factors for Vesic’s Expression

Shape Factors Depth Factors

s
N

N
B
Lc

q

c

= +1 0. .
′ =d kc 0 4. for ϕ = 0°
dc = 1.0 + 0.4k

k = D/B for D/B ≤ 1
k (rad) = tan−1(D/B) for D/B > 1

s
B
Lq = +1 0. tanφ dq = 1 + 2 tan ϕ (1 − sin ϕ)2 k

s
B
Lγ = −1 0 0 4. . dγ = 1.00

Source: Vesic, A.S., J. Soil Mech. Found. Eng. Div., ASCE, 99, SM 1, 45–763, 
1973. Foundation Engineering Handbook, 1st ed., Winterkorn, H.F., 
Fang, H.Y. (eds.), Van Nostrand-Reinhold, New York, 1975. 
Reproduced with permission from Bowles, J.E., Foundation 
Analysis and Design, McGraw-Hill, New York, 2002.
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111Spread Footings

TABLE 3.3b

Inclination, Ground Slope, and Base Tilt Factors for Vesic’s Expression (Figure 3.2)

Load Inclination Factors Factors for Base on Slope (β) Factors for Tilted Base (η)

′ = −i
mH

A C Nc
i

f a c

1 ′ =gc
β

5 14.
′ = ′b gc c

i i
i

Nc q
q

q

= −
−

−
1

1
g i

i
c q

q= −
−1

5 14. tanφ
bc = −1

2
5 14

η
φ. tan

i
H

V A Cq
i

f a

m

= −
+













1 0.
cotφ

gq = gγ = (1.0 − tan β)2

(β° measured clockwise from 
horizontal)

b bq = = −γ η φ( . tan )1 0 2

 
(η measured counterclockwise 

from horizontal)

i
H

V A C
i

f a

m

γ φ
= −

+












+

1 0
1

.
cot

When H is parallel to B

m m
B L
B LB= = +

+
2
1

/
/

When H is parallel to L

m m
L B
L BL= = +

+
2
1

/
/

When H has components 
parallel to both B and L
m m mB L

2 2 2= +

Source: Vesic, A.S., J. Soil Mech. Found. Eng. Div., ASCE, 99, SM 1, 45–763, 1973. Foundation Engineering 
Handbook, 1st ed., edited by Winterkorn, H.F. and Fang, H.Y., Van Nostrand-Reinhold, New 
York, 1975. Reproduced with permission from Bowles, J.E., Foundation Analysis and Design, 
McGraw-Hill, New York, 2002.

Note: Primed factors are for ϕ = 0. C (cohesion) = attraction between the same material; Ca (adhesion) = 
attraction between two different materials (e.g., concrete and soil). Hence, Ca < C; Bowles (2002) 
suggests Ca = (0.6 – 1.0)C. The actual value depends on the concrete finish. If concrete foundation 
base is smooth then, Ca would be higher than that of a rough base.

R

Hi

Vi

θ < φ

FIGURE 3.2
Guide for obtaining inclination factors.
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3.2.1.1  Mathematical Expressions for Meyerhof’s and Hansen’s Bearing Capacity Factors

For spreadsheet applications, the following mathematical expressions of the bearing 
capacity factors would be quite useful.

 Nq = eπtanϕ tan2 (45 + ϕ/2) (3.8a)

TABLE 3.4c

Variable Factors of Safety on Ultimate Bearing Capacity of Spread Footings

Category
Typical 

Structures
Category 

Characteristics

Required Minimum Factor of Safety (FS)

Permanent Structures Temporary Structures

Complete 
Soil 

Exploration
Limited Soil 
Exploration

Complete 
Soil 

Exploration

Limited 
Soil 

Exploration

A Railway bridges
Warehouses

Blast furnaces
Hydraulic

Retaining Walls
Silos

Maximum design 
load likely to 
occur often; 
consequences of 
failure 
disastrous

3.0 4.0 2.3 3.0

B Highway 
bridges

Light industrial 
and public 
buildings

Maximum 
design load 
may occur 
occasionally; 
consequences of 
failure serious

2.5 3.5 2.0 2.6

C Apartment and 
office buildings

Maximum design 
load unlikely to 
occur

2.0 3.0 2.0 2.3

Source: AASHTO, Standard Specifications for Highway Bridges, American Association for State Highway and 
Transportation Officials, Washington, DC, 1996.

TABLE 3.4a

Factors of Safety on Ultimate Geotechnical Capacity of Spread Footings for Bearing Capacity and 
Sliding Failure

Failure Condition Required Minimum Factor of Safety (FS)

Bearing capacity of footing on soil or rock 3.0

Sliding resistance of footing on soil or rock 1.5

Source: AASHTO, Standard Specifications for Highway Bridges, American Association for State Highway and 
Transportation Officials, Washington, DC, 1996.

TABLE 3.4b

Factors of Safety on Ultimate Bearing Capacity of Spread Footings on Soils

Basis for Soil Strength Estimate Suggested Minimum Factor of Safety (FS)

Standard penetration tests 3.0

Laboratory/field strength tests 2.5

Source: AASHTO, Standard Specifications for Highway Bridges, American Association for State Highway and 
Transportation Officials, Washington, DC, 1996.
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 Nc = (Nq − 1)cot ϕ (3.8b)

For Meyerhoff’s expression

 Nγ = 1.5 (Nq − 1)tan (1.4 ϕ) (3.9a)

For Hanson’s expression

 Nγ = 1.5 (Nq − 1)tan ϕ (3.9b)

Example 3.1

For the column shown in Figure 3.3a, design a suitable footing to carry a column load 
of 400 kN, in a subsoil that can be considered homogenous silty clay with the following 
properties: unit weight (γ) = 17 kN/m3, internal friction (ϕ) = 15°, cohesion (C) = 20 kPa

Case (1). Assume that the groundwater table is not in the vicinity.
Case (2). Assume that the groundwater table is 0.5 m above the footing.

Solution

First, one must decide on a suitable footing shape and depth. In the case of the footing 
shape, unless there are limitations in spacing such as the close proximity to the prop-
erty line, there is generally no reason for one not to use a square or a circular footing. 
Hence, in this design one can assume a circular footing.

As for the foundation depth, typically one would seek some significant embedment 
that does not reach the groundwater table or a weak layer known to be underlying the 
foundation soil. In the current case, obviously none of these can be used as a criterion 
to select the footing depth. Therefore, one could assume a depth approximately equal 
to the minimum footing dimension (diameter) of the footing. However, once the design 
parameters are obtained, one can reevaluate this criterion to verify that the depth is 
realistic from a construction point of view.

P = 400 kN

d

Silty clay

B

D

FIGURE 3.3a
Illustration for Example 3.1.



D
ow

nl
oa

de
d 

B
y:

 1
0.

3.
98

.1
04

 A
t: 

06
:4

8 
07

 N
ov

 2
02

1;
 F

or
: 9

78
14

39
89

27
87

, c
ha

pt
er

3,
 1

0.
12

01
/b

15
59

2-
4

114 The Foundation Engineering Handbook

The tables indicate the following bearing capacity parameters:

• Terzaghi’s factors (Table 3.1)

Nc = 12.9 Nq = 4.4 Nγ = 2.5
sc = 1.3 sγ = 0.6

• Hansen’s factors (Table 3.1)

Nc = 10.97 Nq = 3.9 Nγ = 1.2
sc = 1.359 sq = 1.26 sγ = 0.6
dc = 1.4 dq = 1.294 dγ = 1.0

The vertical effective stress at the footing base level (q) = (17)(depth) = 17B.
Then, the following expressions can be written for the ultimate bearing capacity:

• Tezarghi method (Equation 3.2)

 

q B Bult = + +20 12 9 1 3 17 4 4 0 5 17 2 5 0( . )( . ) ( )( . ) . ( )( )( . )( .. )

. .

6

335 4 87 55= + B

• Hansen method (Equation 3.5)

 

q Bult = +20 10 97 1 359 1 4 17 3 9 1 26 1 2( . )( . )( . ) ( )( . )( . )( . 994 0 5 17 1 2 0 6 1 0

417 4 114 22

) . ( )( )( . )( . )( . )

. .

+
= +

B

B

Contact stress at the foundation level = 4 × 400/(πB2) + 17B = stresses imposed by the 
column and the recompacted soil (Figure 3.3a).

The following criterion can be applied to compare the contact stress and the ultimate 
bearing capacity with a safety factor of 2.5.

 4 × 400/(πB2) + 17B = qult/(2.5)

From Terzaghi’s expression,

 509.3/B2 + 17B = (335.4 + 87.55B)/2.5

 B = 1.75 m

From Hansen’s expression,

 509.3/B2 + 17B = (417.4 + 114.22B)/2.5

 B = 1.55 m

Although the two solutions are different, one realizes that the disparity is insignifi-
cant from a construction point of view. Furthermore, in both cases, the footing depth 
obtained is within practical limits.

Case (2). Assume that the water table is 0.5 m above the footing.
Using Hansen’s expression (Equation 3.5),

 

q Bult = + −20 10 97 1 359 1 4 17 9 8 0 5 3 9( . )( . )( . ) [ ( . )( . )]( . ))( . )( . ) . ( . )( )( . )( . )( . )1 26 1 294 0 5 17 9 8 1 2 0 6 1 0

3

+ −
=

B

886 27 110 69. .+ B
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115Spread Footings

 509.3/B2 + 17B = (386.27+110.69B)/2.5

 B = 1.62 m

It is noted that a slightly larger area is needed to counteract the loss of foundation 
strength due to the groundwater table.

Example 3.2

Design a flooring for the same soil conditions, when a horizontal load of 50 kN also acts 
along the footing base as shown in Figure 3.3b.

Case (1). Groundwater table is not in the vicinity.

• Hansen’s factors (Table 3.1)

Nc = 10.97 Nq = 3.9 Nγ = 1.2
sc = 1.359 sq = 1.26 sγ = 0.6
dc = 1.4 dq = 1.294 dγ = 1.0

(Table 3.3a)

 Hi = 50 kN

 V = 400 kN

 Af = (πB2)/4

Ca Adhesion between soil and concrete / cohes= = 2 3 iion (see the footnote in Table 3.3a)

/= =2 3 20 1( ) 33 33. kPa

 ϕ = 15°

P = 400 kN

d

Silty clay

H = 50 kN

B

D

FIGURE 3.3b
Illustration for Example 3.2
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 i
H

V A Cq
i= −

+












1
0 5

1
.

cotf a φ

α

 (use 2 as the exponent without other information)

 i
H

V A C
i

f
γ

α
θ

φ
= − − ° °

+








1

0 7 450 2( . )
cot

/

a

 (use 2 as the exponent without other information)

 tan θ = 50/400, then θ = 7.1°.

  Since B is to be determined, we do not want to complicate the equations by 
having a B2 term in the i factors. Therefore, it is convenient to set up a spread-
sheet (assume B values) and perform the design. In this case, one can assume 
that B is approximately 1.0 (only in the i factors expressions) to obtain an 
explicit solution.

 
i i

i

Nc q
q

q

= −
−

−
1

1

 ic = 0.85 iq = 0.89, iγ = 0.85 

• Hansen method (Equation 3.5)

 

q Bult = +20 10 97 1 359 1 4 17 3 9 1 2( . )( . )( . )( ) ( )( . )( .0.85 66 1 294 0 5 17 1 2 0 6 1 0)( . )( ) . ( )( )( . )( . )( . )(0.89 0.85+ B ))

. .= +354 8 101 65B

Contact stress at the foundation level = 4 × 400/(πB2) + 17B = stresses imposed by the 
column and the recompacted soil (Figure 3.3b).

The following criterion can be applied to compare the contact stress and the ultimate 
bearing capacity with a safety factor of 2.5.

 4 × 400/(πB2) + 17B = qult/(2.5)

From Hansen’s expression,

 509.3/B2 + 17B = (354.8 + 101.65B)/2.5

 B = 1.75 m

It is seen that a larger footing is needed to support an inclined load.
(Case 2). When the groundwater table is in 0.5 m below the footing, one can solve the 

problem like in Example 3.1 with the above determined i factors.

3.2.2  Net Ultimate Bearing Capacity

If the structural (column) load is to be used in the bearing capacity criterion (Equation 
3.1) to design the footing, then one has to strictly use the corresponding bearing capacity 
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that excludes the effects of the soil overburden. This is known as the net ultimate bearing 
capacity of the ground and it is expressed as

 qn,ult = qult − q, (3.10)

where q denotes the total overburden stress.
On the other hand, the net load increase on the ground would be the structural load 

only, if it is assumed that concrete counteracts the soil removed to lay the footing.
Then, Equation 3.1 can be modified as

 P A
q

Fstructural
n,ult/ ≤  (3.11)

3.2.3  Foundations on Stiff Soil Overlying a Soft Clay Stratum

One can expect a punching type of bearing capacity failure if the surface layer is relatively 
thin and stiffer than the underlying softer layer. In this case, if one assumes that the stiff 
stratum (i.e., stiff clay, medium dense or dense sand) where the footing is founded satisfies 
the bearing capacity criterion with respect to the surface layers, then the next most critical 
criterion is that the stress induced by the footing (Figure 3.4) at the interface of the stiff 
soil/soft clay must meet the relatively low bearing capacity of the soft layer. The distrib-
uted stress can be computed by the following equations:

For rectangular spread footings

 ∆p q
BL

B d L dc c

=
+ +









( )( )

 (3.12a)

Sandy

1.2 m
2.0 m

1.0 m

Clayey

FIGURE 3.4
Illustration for Example 3.3.
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For square or circular spread footings

 ∆p q
B

B dc

=
+









( )

2

 (3.12b)

For strip footings

 ∆p q
B

B dc

=
+









( )

 (3.12c)

Example 3.3

Assume that the square footing shown in Figure 3.4 has been well designed to be 
founded in the sand layer overlying the soft clay layer. Check the bearing capacity crite-
rion in the clay layer (undrained cohesion = 20 kPa).

If Hansen’s bearing capacity equation (Equation 3.5) is used to estimate the net ulti-
mate bearing capacity of the clay layer,

 qn,ult = cNcscdcicgcbc + q(Nq − 1)sqdqiqgqbq + 0.5BγNγsγdγiγgγbγ (3.5)

Under undrained conditions, since Ou = 0,

 Nc = 5.14 Nq = 1.0 Nγ = 0 (Table 3.1)

 qn,ult = cNcscdcicgcbc (Equation 3.5)

 sc = 1.195 (square footing)

 
dc = +







1 0 0 4
3 0
1 2

. .
.
.

 

qn,ult

kPa

=
=

( )( . )( . )( . )

.

20 5 14 1 195 2 0

245 69

Alternatively, from Equation 3.6

 q s s d i g b q qc c c c cn,ult u= + ′ + ′ − ′ − ′ − ′ + −5 14 1. ( )

From Table 3.2a,

 ′ =sc 0 2.

′ = =






d kc 0 4 0 4
3 0
1 2

. .
.
.

 (since d/b = 3.0/1.2 when one considers that the bearing capacity of 

the clay layer with respect to the distributed load from the footing).
Also, ′ =ic 0 , ′ =gc 0  and ′ =bc 0
Hence,

 q s s d i g b q qc c c c cn,ult u= + ′ + ′ − ′ − ′ − ′ + − =5 14 1 5 14 2. ( ) . ( 00 1 0 2 1 226 16)( . ) .+ + = kPa
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The net stress applied on the soft clay can be estimated as

 

∆p q
B

B dc

=
+











=
=

( )

[ ( . ) ][( . . ) ]
.

2

2 2500 1 2 1 2 3 2
48

/ /
88 kPa  

(3.12b)

 Factor of safety (FOS) = 226.16/48.8 = 4.63 (satisfactory) 

3.2.4  Foundations on Soft Soil Overlying a Hard Stratum

When foundations are constructed on thin clayey surface layers overlying relatively hard 
strata (Figure 3.5), the mechanism of bearing capacity failure transforms into one in which 
the footing tends to squeeze the soft layer away while sinking in. In such cases, the net 
ultimate bearing capacity of the surface layer can be obtained from the following expres-
sions (Tomlinson and Boorman, 1995):

 Circular/square footings

 q
B
d

S
B
dn,ult u for= + +







≥
2

1 2π  (3.13)

 Strip footings

 q
B
d

S
B
dn,ult u for= + +







≥
3

1 6π  (3.14)

where
 B = footing dimension
 d = thickness of the surface layer
 Su = undrained strength of the surface layer

P

Soft layer

B

Hard stratum

d

FIGURE 3.5
Soft surface layer overlying a harder layer.
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It must be noted that if the criteria B
d

≥ 2  and B
d

≥ 6  are not satisfied for circular and 

strip footings, respectively, then the foundation can be treated as one placed in a homo-
geneous clay layer. For homogeneous cases, the bearing capacity estimation can be per-
formed based on the methods discussed in the Section 3.2.1.

3.2.5  Bearing Capacity in Soils Mixed in Layers

When the subsurface constitutes an alternating (sandwiched) mixture of two distinct soil 
types as shown in Figure 3.6, one can use engineering judgment to estimate the bearing 
capacity. As an example, Figure 3.6 has the following layers as identified by the cone pen-
etration test (CPT) results (Section 2.5):

 1. SM (silty sand), which is sand contaminated with a significant portion of silt. As 
expected, the cone resistance qc profile peaks out for sand.

 2. CL or ML (clay and silt). As one would expect, the qc profile drops for clay or silt 
(if the shaft friction, fs, profile was provided, it would be relatively high for these 
layers).

In order to estimate the bearing capacity, the qc values have to be averaged within the influ-
ence zone (Section 3.2.7.1). Because the soil types are not physically separated into two dis-
tinct layers, and because SM and CL (or ML) have very different engineering properties, it 
is conceptually incorrect to average the qc values across the entire influence zone. Hence, 
the only way to address this is to assume one soil type at a time and obtain two bearing 
capacity estimates, an upper bound and a lower bound for the actual bearing capacity.

Step 1. Assume SM type only with a continuous linear qc profile (with depth) defined 
by the peaks in Figure 3.6, thus ignoring the presence of clay and silt (CL/ML). Then, one 
deals with a silty sand only and the corresponding bearing capacity estimate would be 
Qult)2 (the upper bound).

Depth

qc

SM

CL/ML

CL/ML profile SM profile

FIGURE 3.6
Bearing capacity of soils mixed in layers.
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Step 2. Assume CL/ML type only with a continuous linear qc profile (with depth) 
defined by the troughs (indentations), thus ignoring the presence of sand (SM) and assum-
ing undrained conditions. Then, one deals with clay/silt only and the corresponding bear-
ing capacity estimate would be Qult)2 (the lower bound).

Then, the effective bearing capacity could be estimated from the following inequality:

 Qult)2 < Qult < Qult)1 (3.15)

3.2.6 Bearing Capacity of Eccentric Footings

The pressure distribution on the bottom of an eccentric footing can be determined from 
combined axial and bending stresses, as shown in Figure 3.7. One also realizes that, in 
order to prevent tensile forces at the bottom that tends to uplift the footing, the following 
conditions must be satisfied.

 e
B

e
L

x y≤ ≤
6 6

 (3.16a)

The above conditions are modified for rock as follows:

 e
B

e
L

x y≤ ≤
4 4

 (3.16b)

For the load and resistance factor design (LRFD) method (Section 3.4), the following 
modifications are made in the maximum eccentricity criteria (for no tension at the footing/
soil interface) in view of load factoring:

 
e

B
x ≤

4  (3.17a)

and

 e
L

y ≤
4

 (3.17b)

(P/BL)[1 + 6e/B]

B

P 

(P/BL)[1−6e/B]

e

FIGURE 3.7
Bottom pressure distribution on rigid eccentric footings.
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The above conditions are modified for rock as follows:

 e
B

x ≤ 3
8

 (3.17c)

 e
L

y ≤ 3
8

 (3.17d)

Because the contact pressure is nonuniform at the bottom of the footing (Figure 3.7), 
Meyerhoff (1963) and Hansen (1970) suggested the following effective footing dimensions 
to be used in order to compute the bearing capacity of an eccentrically loaded rectangular 
footing. For eccentricities in both X and Y directions (Figure 3.8),

 B′ = B − 2ex (3.18a)

 L′ = L − 2ey (3.18b)

At times, a horizontal load that has two components, that is, HB parallel to B and HL parallel 
to L, can act on the column producing two eccentricities ex and ey on the footing. In such 
cases, shape factors (Tables 3.2a, 3.2b, and 3.2c) are computed twice by interchanging B′ 
and L′. Also, i factors (Tables 3.3a and 3.3b) are computed twice by replacing Hi once with 
HL and then with HB. Finally, the B′ term in the qult expression also gets replaced by L′. Thus, 
in such cases, one would obtain two distinct qult values. The lesser of them is compared to 
P/A for the footing design.

In the case of circular footings having load eccentricity e and radius R, one must first 
locate the diameter corresponding to the eccentricity (point E in Figure 3.8b) and then con-
struct a circular arc centered at F (EF = CE) with a radius equal to that of the footing. Then, 
the shaded area represents the effective footing area. Because the effective footing area is 
not of a geometrically regular shape, typically this is transformed into an equivalent rect-
angular footing of dimensions B′ and L′. The effective dimensions can be found from the 
following expression:

B

(a) L'

Y

O

L

X

ey

ex

B'

R
R Effective area

e e

(b)

C E F

FIGURE 3.8
(a) Rectangular footings with eccentricity. (b) Circular footings with eccentricity.
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 ′ ′ =






−








−B L R R

e
R

e2 1cos  (3.19)

However, it must be noted that the unmodified B and L must be used when determining 
the depth factors (d) in the bearing capacity equations.

When footings are to be designed for a column that carries an unbalanced moment, 
M, and an axial force, P, that are fixed in magnitude, the resulting eccentricity (e = M/P) 
induced on the footings can be avoided by offsetting the column by a distance of x = –e, 
as shown in Figure 3.9. It is seen how the axial force in the column creates an equal and 
opposite moment to counteract the moment in the column. However, this technique can-
not be used to prevent footing eccentricities when eccentricities are introduced by variable 
moments due to wind and wave loading.

3.2.7  Bearing Capacity Using In Situ Test Data

3.2.7.1  CPT Data

Cone penetration data can be used to obtain the undrained strength of saturated fine-
grained soils using the following expression (Equation 2.6d):

 S
q P

Nk
u

c o= −
, (3.20)

where Nk is the cone factor that ranges between 15 and 20 for normally consolidated clay 
and 27 and 30 for overconsolidated clays. Bowles (2002) suggests the following expression 
for Nk

 Nk = +13
5 5
50
.

PI, (3.21)

where PI is the plasticity index.
To determine an average qc for a footing design, one would consider a footing influence 

zone that extends 2B below the footing and 1/2D above the footing.

M P

x e

x = Offset
e = Load
eccentricity

FIGURE 3.9
Designing footings to avoid eccentricity.
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3.2.7.2 Standard Penetration Test Data

Parry (1977) provided the following expression for the allowable bearing capacity of spread 
footings on cohesionless soils.

For Df < B,

 q N
s

n,all =






30
25 455 .

 (3.22)

where N55 is the corrected SPT blow count corresponding to a 55% hammer efficiency and 
s is the settlement (in mm). A modified and more versatile form of this expression is pro-
vided in Section 4.4 under mat footing design.

Typically, when SPT data are provided, one can use the following correlation to estimate 
an equivalent angle of friction ϕ for the soil and determine the bearing capacity using the 
methods presented in Section 3.2.

 φ = +






25 28 55

1 2
N
q

/

 (3.23)

The footing influence zone suggested in Section 3.2.7.1 can also be used for computations 
involving Equations 3.22 and 3.23.

3.2.7.3  Plate Load Test Data

Figure 3.10 shows a typical plot of plate-load test results on a sand deposit. When one 
scrutinizes Figure 3.10, it is seen that the ultimate bearing capacity of the plate can be 
estimated from the eventual flattening of the load–deflection curve. Knowing the ultimate 
bearing capacity of the plate, one can predict the expected bearing capacity of a footing to 
be placed on the same location using the following expressions:

Clayey soils

 qu(f) = qu(p) (3.24)

2B influence of plate 

2B of actual footing 

Sand

Soft clay

FIGURE 3.10
Illustration of influence zones.
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Sandy soils

 q q
B
Bu(f) u(p)

f

p

=






 (3.25)

 where Bp is the plate diameter and Bf is the equivalent foundation diameter, which 
can be determined as the diameter of a circle having an area equal to that of the 
footing.

It must be noted that the above expressions can be applied if it is known that the influ-
ence zones (Figure 3.10) of both the plate and the footing are confined to the same type of 
soil and the effects of the groundwater table would be similar in both cases.

3.2.8  Presumptive Load-Bearing Capacity

The building codes of some cities suggest bearing capacities for a certain building sites based 
on the classification of the predominant soil type at that site. Tables 3.4a, 3.4b, 3.4c, 3.5, 3.6a, 

TABLE 3.5

Presumptive Bearing Capacities from Indicated Building Codes (kPa)

Soil Description
Chicago, 

1995

Natl. Board of Fire 
Underwriters, 

1976
BOCA, 
1993a

Uniform 
Building Code, 

1991b

Clay, very soft 25
Clay, soft 75 100 100 100
Clay, ordinary 125
Clay, medium stiff 175 100 100
Clay, stiff 210 140
Clay, hard 300
Sand, compact and clean 240 — 140 200
Sand, compact and silty 100 }
Inorganic silt, compact 125 }
Sand, loose and fine } 140 210
Sand, loose and coarse, or sand–gravel 
mixture, or compact and fine

140–400 240 300

Gravel, loose and compact coarse sand 300 } 240 300
}

Sand–gravel, compact — 240 300
Hardpan, cemented sand, cemented 
gravel

600 950 340

Soft rock
Sedimentary layered rock (hard shale, 
sandstone, siltstone)

6000 1400

Bedrock 9600 9600 6000 9600

Source: Bowles, J.E., Foundation Analysis and Design, McGraw-Hill, New York, 2002. With permission.
Note: Values converted from pounds per square foot to kilopascals and rounded. Soil descriptions vary widely 

between codes. The following represents author’s interpretations.
a Building Officials and Code Administrators International, Inc.
b Bowles (2002) interpretation.
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3.6b, and 3.7 present a comprehensive list of presumptive bearing capacities for various 
soil types. However, it must be noted that these values do not reflect the foundation shape, 
depth, load inclination, location of the water table, and the settlements associated with the 
sites. Hence, the use of these bearing capacity factors are advocated primarily in situations 
where a preliminary idea of the potential foundation size is needed for the subsequent site 
investigation followed by detailed design.

TABLE 3.6a

Presumptive Bearing Capacities for Foundations in Granular Soils Based on SPT Data (at a 
Minimum Depth of 0.75 m below Ground Level)

Description of Soil N value in SPT

Presumed Bearing Value (kN/m2) for 
Foundation of Width

1 m 2 m 4 m

Very dense sands and gravels >50 800 600 500
Dense sands and gravels 30–50 500–800 400–600 300–500
Medium-dense sands and gravels 10–30 150–500 100–400 100–300
Loose sands and gravels 5–10 50–150 50–100 30–100

Source: Tomlinson, M.J., Boorman, R., Foundation Design and Construction, Longman Scientific and 
Technical, Brunthill, Harlow, England, 1995. With permission.

Note: The water table is assumed not to be above the base of foundation. Presumed bearing values for 
pad foundations up to 3 m wide are approximately twice the above values.

TABLE 3.6b

Presumptive Bearing Capacities for Foundations in Clayey Soils Based on Undrained Shear 
Strength (at a Minimum Depth of 1 m below Ground Level)

Description
Undrained Shear 
Strength (kN/m2)

Presumed Bearing Value (kN/m2) 
for Foundation of Width

1 m 2 m 4 m

Hard boulder clays, hard-fissured clays (e.g., 
deeper London and Gault Clays)

>300 800 600 400

Very stiff boulder clay, very stiff “blue” London 
Clay

150–300 400–800 300–500 150–250

Stiff-fissured clays (e.g., stiff “blue” and brown 
London Clay), stiff weathered boulder clay

75–150 200–400 150–250 75–125

Firm normally consolidated clays (at depth), 
fluvio-glacial and lake clays, upper weathered 
“brown” London Clay

40–75 100–200 75–100 50–75

Soft normally consolidated alluvial clays (e.g., 
marine, river and estuarine clays)

20–40 50–100 25–50 Negligible

Source: Tomlinson, M.J., Boorman, R., Foundation Design and Construction, Longman Scientific and Technical, 
Brunthill, Harlow, England, 1995. With permission.
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TABLE 3.7

Presumptive Bearing Capacities for Foundations on Rock Surface (Settlement Not Exceeding 50 mm)

Rock Group Strength Grade
Discontinuity Spacing 

(mm)
Presumed Allowable 

Bearing Value (kN/m2)

Pure limestones and 
dolomites, carbonate 
sandstones of low porosity

Strong 60 to >1000 >12,500a

Moderately strong >600 >10,000b

200–600 7500–10,000
60–200 3000–7500

Moderately weak 600 to >1000 >5000a

200–600 3000–5000
60–200 1000–3000

Weak >600 >1000a

200–600 750–1000
60–200 250–750

Very weak See noteb

Igneous, oolitic, and marly 
limestones; well-cemented 
sandstones; indurated 
carbonate mudstones; 
metamorphic rocks 
(including slates and schists 
with flat cleavage/foliation)

Strong 200 to >1000 10,000 to >12,500a

60–200 5000–10,000
Moderately strong 600 to >1000 8000 to >100,000a

200–600 4000–8000
60–200 1500–4000

Moderately weak 600 to >1000 3000 to >5000a

200–600 1500–3000
60–200 500–1500

Weak 600 to >1000 750 to >1000a

>200 See noteb

Very weak All See noteb

Very marly limestones: 
poorly cemented 
sandstones; cemented 
mudstones and shales; slates 
and schists with steep 
cleavage/foliation

Strong 600 to >1000 10,000 to >12,500b

200–600 5000–10,000
60–200 2500–5000

Moderately strong 600 to >1000 4000 to >6000b

200–600 2000 to >4000
60–200 750–2000

Moderately weak 600 to >1000 2000 to >3000b

200–600 750–2000
60–200 250–750

Weak 600 to >1000 500–750
200–600 250–500

<200 See noteb

Very weak All See noteb

(continued)
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3.3  Settlement Analysis

Methodologies used for computation of ground settlement under building foundations 
have been discussed in detail in Section 1.5. Therefore in this section, a number of tech-
niques commonly used to evaluate the ground stress increase due to footings will be 
reviewed. Then, a number of examples will be provided to illustrate the application of 
these techniques.

3.3.1  Stress Distribution in Subsurface Soils due to Foundation Loading

3.3.1.1  Analytical Methods

The vertical stress induced in the subsurface by a concentrated vertical load, such as the 
load on a relatively small footing founded on an extensive soil mass, can be approximately 
estimated by Boussinesq’s elastic theory as follows:

 ∆σ
πz
P z

r z
=

+
3
2

3

2 2 5 2( ) /  (3.26)

where r and z are indicated in Figure 3.11.
Equation 3.26 can be used to derive the magnitude of vertical stress imposed at any 

depth z vertically below the center of a circular foundation (of radius R) carrying a distrib-
uted load of q as (Figure 3.12)

TABLE 3.7 (Continued)

Presumptive Bearing Capacities for Foundations on Rock Surface (Settlement Not Exceeding 50 mm)

Rock Group Strength Grade
Discontinuity Spacing 

(mm)
Presumed Allowable 

Bearing Value (kN/m2)

Uncemented mudstones and 
shales

Strong 200–600 250–5000
60–200 1250–2500

Moderately strong 200–600 1000–2000
60–200 1300–1000

Moderately weak 200–600 400–1000
60–200 125–400

Weak 200–600 150–250
60–200 See noteb

Very weak All See noteb

Source: Tomlinson, M.J., Boorman, R., Foundation Design and Construction, Longman Scientific and Technical, 
Brunthill, Harlow, England, 1995. With permission.

Note: Presumed bearing values for square foundations up to 3 m wide are approximately twice the above values, 
or equal to the above values if settlements are to be limited to 25 mm.

a Bearing pressures must not exceed the unconfined compression strength of the rock if the joints are tight. Where 
the joints open the bearing pressure must not exceed half the unconfined compression strength of the rock.

b Bearing pressures for these weak or closely jointed rocks should be assessed after visual inspection, supple-
mented as necessary by field or laboratory tests to determine their strength and compressibility.



D
ow

nl
oa

de
d 

B
y:

 1
0.

3.
98

.1
04

 A
t: 

06
:4

8 
07

 N
ov

 2
02

1;
 F

or
: 9

78
14

39
89

27
87

, c
ha

pt
er

3,
 1

0.
12

01
/b

15
59

2-
4

129Spread Footings

 ∆σz q
R z

= −
+









1

1
1 2 3 2[ ( ) ] //

 (3.27)

Stress increments in the horizontal (x and y) and vertical (z) directions due to other shapes 
of uniformly loaded footings (e.g., rectangular, strip) can be estimated based on analytical 
expressions presented by Harr (1966).

3.3.1.2 Approximate Stress Distribution Method

At times, it is more convenient to estimate the subsurface stress increments due to footings 
using approximate distributions. A commonly used distribution is the 2:1 distribution 
shown in Figure 3.13. Based on Figure 3.13, it can be seen that the stress increment caused 
by a uniformly loaded rectangular footing (B × L) at a depth of z is

 ∆σz q
BL

B z L z
=

+ +








( )( )

 (3.28)

Example 3.4

Assume that it is necessary to compute the ultimate consolidation settlement and the 
10-year settlement of the 1.5 × 1.5 m footing carrying a 200-kN load as shown in Figure 

P

r
z∆σz

FIGURE 3.11
Stress increase due to a concentrated load.

q

R

z∆σz

a

(a) (b)

b

FIGURE 3.12
(a) Stress increase due to a distributed circular footing. (b) Stress increase due to a distributed rectangular footing.
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3.14. Soil properties are provided in Table 3.8. Also assume that the laboratory consolida-
tion characteristics of a representative sample (from the mid-plane area of the clay layer) 
are represented by Figure 3.15, and the coefficient of consolidation (Cv) of the clay was 
determined to be 1.0 × 10–8 m2/s based on the methodology presented in Section 1.5.

From Figure 3.15,

 Preconsolidation pressure (pc) = 60 kPa

 Contact pressure (q) = 200/(1.5)2 = 88.89 kPa

 Overburden pressure at the footing depth = 16.5 × 1.0 = 16.5 kPa

B

P

z
2

1

q = P/A

∆σz

FIGURE 3.13
Approximate estimation of subsurface vertical stress increment.

–6.0 m

–3.5 m

Sandy
soil

Soft
clay

3.75 m

–2.0 m

–1.0 m

FIGURE 3.14
Illustration for Example 3.4.
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The average stress increase in the clay layer can be obtained using the Newmark’s influence 
chart (reproduced in Figure 3.16) by considering the mid-plane depth of clay. This can be 
obtained from Figure 3.16 by mapping the footing to the scale indicated at the bottom of 
the figure, that is, dc (the depth from the footing to the location where the stress increase is 
needed) = the distance indicated as OQ. In this example, one can see that dc = 3.75 m.

The stress increase at a depth dc can be found using Equation 1.19

 Δp = NqI, (1.19)

where N and I are the number of elements of the Newmark’s chart covered by the scaled 
footing and I is the influence factor of the diagram. For the chart shown in Figure 3.16, I = 
0.001. If the footing were to behave as a flexible footing, the center settlement would be the 
maximum, whereas the corner settlement would be the minimum within the footing. Thus,

 Δpcenter = (4 × 19) × 88.89 × 0.001 = 6.75 kPa

 Δpconner = (58) × 88.89 × 0.001 = 5.2 kPa

On the other hand, if the footing were to behave as a rigid footing, then the average 
stress increase at the mid-plane level of the clay layer within the footing can be deter-
mined by using an appropriate stress attenuation (Figure 3.13). Using the commonplace 
2:1 stress attenuation (Equation 3.28), one can estimate the stress increase as:

 ∆p q
BL

B d L dc c

=
+ +









( )( )

where B and L are the footing dimensions.

TABLE 3.8

Soil Properties for Example 3.3

Layer Unit Weight (kN/m3) SPT(N′) E (MPa)

Dry sand 16.5 15 11.5
Wet sand 17.5 14 10.7
Soft clay 18.0 10 2.56

10 pc = 60 kPa 100 
p (kPa)

Cc

Cr1.1
1.085

1.045

1.0

0.93

0.9

e

120

FIGURE 3.15
Laboratory consolidation curve.
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Thus,

 Δpaverage = 88.89[1.5/(1.5 + 3.75)]2 = 7.256 kPa

It must be noted that if one were to have averaged the above stress estimates for the 
center and corner of the footing, one would have obtained,

 ∆paverage (6.75 + 5.2) 5.975 kPa= =1
2

A B
Depth of point

I = 0.001

FIGURE 3.16
Use of Newmark’s chart in Example 3.3. (From Holtz, R.D., Kovacz, W.D., An Introduction to Geotechnical 
Engineering, Prentice Hall, Englewood Cliffs, NJ, 1981.)
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Because the estimates are significantly different, the author suggests using the aver-
ages of the estimates in Figure 3.15 as opposed to the approximate estimate obtained 
from Figure 3.13. The average effective overburden pressure at the mid-plane of the clay 
layer is found from Equation 1.4b as

 ′ = + + − =σvo 16 5 2 17 5 1 5 18 0 1 25 9 8 2 75 54. ( ) . ( . ) . ( . ) . ( . ) .88 kPa

Since ′ <σvo cp , one can assume that the overall clay layer is in an overconsolidated state.
Ultimate Settlement beneath the Center of (Flexible) Footing
The following expression can be used to estimate the ultimate consolidation settlement 
since ′ + ∆ >σvo center cp p  (Figures 1.20c and 3.15)

 
s
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e
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Ultimate Settlement beneath the Corner of (Flexible) Footing
The following expression can be used to estimate the ultimate consolidation settlement 
since ′ + ∆ <σvo corner cp p  (Figures 1.20b and 3.15):
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Average Ultimate Settlement of Footing (Rigid)
The following expression can be used to estimate the average ultimate consolidation set-
tlement since ′ + ∆ >σvo average cp p  (Figures 1.20c and 3.15)
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Estimation of 10-Year Settlement
The settlement of the footing at any intermediate time (t) can be estimated by using the 
average degree of consolidation, Uave, of the clay layer corresponding to the particular time 
t in combination with any one of the above ultimate settlement estimates.

 st = Uavesult (3.29)

Using Terzaghi’s theory of one dimensional (1-D) consolidation (Terzaghi, 1943), the aver-
age degree of consolidation at time t, Uave can be determined from Table 1.8 knowing the 



D
ow

nl
oa

de
d 

B
y:

 1
0.

3.
98

.1
04

 A
t: 

06
:4

8 
07

 N
ov

 2
02

1;
 F

or
: 9

78
14

39
89

27
87

, c
ha

pt
er

3,
 1

0.
12

01
/b

15
59

2-
4

134 The Foundation Engineering Handbook

Time Factor (T) corresponding to the time t. T can be determined using the following 
expression:

 T
C t
H

= v

dr
2 , (1.16)

where Hdr is the longest path accessible to draining pore water in the clay layer. In Figure 
3.14, one can see that, for this example, Hdr = 2.5 m.

Then,

 
T = × × × × =

−10 10 365 24 60 60
2 5

0 504
8

2

( )
.

.

From Table 1.8,

 Uave = 0.77

Example 3.5

Assume that it is necessary to compute the ultimate total differential settlement of the 
foundation shown in Figure 3.14, for which the strain influence factor plot is shown in 
Figure 3.17. The average CPT values for the three layers are given in Table 3.9.

0.6–1.75 m

–4.0 m

–6.0 m

–3.5 m

–2.0 m
Sandy
soil

Soft
clay

–1.0 m

FIGURE 3.17
Immediate settlement computation.

TABLE 3.9

Soil Properties Used in Example 3.5

Soil Type qc (MPa) Es MPa

Dry sand 2.875 11.5 (Es = 4qc from Table 1.7)
Wet sand 2.675 10.7
Clay 5 10 (Es = 2qc from Table 1.7)
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Solution

For the above data,

 Contact pressure (Δσ) = 200/(1.5)2 kPa = 88.89 kPa

 Overburden pressure at footing depth (q) = 16.5 × 1.0 kPa = 16.5 kPa

Immediate Settlement. Areas of the strain-influence diagram covered by different elas-
tic moduli are

 A1 = 0.5(0.1 × 0.75) + 0.5(0.75 × 0.6) + 0.5(0.25)(0.533 + 0.6) = 0.41 m

 A2 = 0.5(1.5)(0.533 + 0.133) = 0.5 m

 A3 = 0.5(0.5)(0.133) = 0.033 m

Then, by applying Equation 1.13, one obtains the immediate settlement as

scenter =  {1 – 0.5[16.5/(88.89 – 16.5)]}[1.0][88.89 – 16.5][0.41(1.0)/(11.5 × 103) + 0.5/(10.7 × 103) 
+ 0.033/(2.57 × 103)] = 5.9 mm

From Equation 1.12, scorner can be deduced as 0.5(5.87) = 2.95 mm.
Therefore, the total settlement at the center of the footing will be 14.06 (= 8.19 + 5.87) 

mm or 0.55 in, whereas that at the corner will be 6.0 (3.06 + 2.94) mm or 0.24 in.
Total Settlement Check. Most building codes stipulate the maximum allowable total 

settlement to be 1.0 in. Hence, the above value is acceptable.
Differential Settlement Check. The differential settlement is equal to

 (scenter – scorner)/distance from center to corner

or (14.00 – 6.00)/(1.06)/1000 = 0.007.
According to most building codes, the maximum allowable differential settlement to 

prevent structural cracks in concrete is 0.013. Hence, the differential settlement criterion 
is also satisfied.

3.3.2 Settlement Computation Based on Plate Load Test Data

The immediate settlement of a shallow footing can be determined from a plate load test 
performed at the same location and the depth that the footing would be constructed. For 
the same magnitude in the contact stress level, settlement of the foundation can be esti-
mated based on the settlement of the plate and the following expressions:

Clayey soils

 s s
B
Bf p

f

p

=  (3.30)

Sandy soils

 s s
B

B Bf p
f

f p

=
+







2

2

, (3.31)
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where Bp is the plate diameter and Bf is the equivalent foundation diameter, which 
can be determined as the diameter of a circle having an area equal to that of the 
footing.

3.3.3  Computation of Settlement in Organic Soils

Foundations constructed in organic soils exhibit prolonged settlement due to secondary 
compression that is relatively larger in magnitude than the primary consolidation. This is 
particularly the case when the organic content of the soil deposit is significant. Therefore, 
foundation designers, who do not recommend the removal of organic soils from poten-
tial building sites, must alternatively use specific analytical techniques to estimate the 
expected secondary compression component that predominates the total settlement of the 
foundation. The following analytical treatise is presented to address this need.

The organic content of a soil (oc) is defined as

 
oc (O

S

= ×W
W

100 %)
 

(3.32)

where
 WO = weight of organic matter in the soil sample (usually determined based on the loss 

of weight of the sample on combustion)
 WS = total weight of the solids in the soil sample

Many researchers (Andersland and Al-Khafaji, 1980; Gunaratne et al., 1998) have dis-
covered linear relationships between the organic content of organic soils and their initial 
void ratios and water contents. Gunaratne et al. (1998) determined the following specific 
relationships for Florida organic soils, based on an extensive laboratory testing program:

 e∞ = 0.46 + 1.55(oc) (3.33)

 oc = ∗ +w 0 136 2 031. .  (3.34)

where e∞ and w are  the ultimate void ratio and the water content, respectively. 
The ultimate 1-D compressibility of organic soils (vertical strain per unit load increment) 

constitutes a primary compressibility component, a, and a secondary compressibility com-
ponent, b, as expressed below.

 ∊ult = Δσ [a + b] (3.35)

The a and b parameters specific to any organic soil can be expressed in terms of the pri-
mary and secondary void ratio components (ep and es, respectively) of the initial void ratio, 
e0, as illustrated in Equations 3.36a and 3.36b

 a
e

e
= −

+
∂
∂

1
1( )

p

σ
 (3.36a)

 b
e

e= −
+

∂
∂

1
1( )

s

σ
 (3.36b)
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Based on observed linear relationships such as that in Equation 3.33, Gunaratne et al. 
(1998) also determined that

 a
e

I M= −
+

+










1
1( )

( ) ( )
d

d
oc

d
dp pσ

σ
σ

σ  (3.37a)

 b
e

I M= −
+

+










1
1( )

( ) ( )
d

d
oc

d
ds sσ

σ
σ

σ , (3.37b)

where I Mp p,( ) ( )σ σ   and I Ms s,( ) ( )σ σ   are stress-dependent functions associated with 
primary and secondary compressibilities, respectively. Finally, by using Equations 3.37a 
and 3.37b, Gunaratne et al. (1998) derived the following specific relationships for Florida 
organic soils:

 a
F

= +
+

+
97 79

1 27 97 79
23 13

0 16 23 132 2

.
( . . )

.
( . . )

(
σ σ

oc

occ, )σ
 (3.38a)

 b
F

= +
+

+
360 17

1 86 360 17
40 61

0 52 40 612 2

.
( . . )

.
( . . )σ σ

oc

(( , )oc σ
 (3.38b)

where F( , ) .
( . . )

.
( .

oc ocσ σ
σ

σ= −
+









 + −2 79

0 78 74 28
9 72

0 12σσ +








15 33. )

The a and b parameters specific for a field organic soil deposit would be dependent on 
the depth of location, z, because of their strong stress dependency.

The vertical strain in a layer of thickness, Δz, can be expressed in terms of its total (pri-
mary and secondary) 1-D settlement, Δsp+s, as in Equation 3.39

 εult
p+s=

∆
∆
s

z
 (3.39)

Hence, the total 1-D settlement can be determined as

 s a z b z zz

H

p+s d= +∫ [ ( ) ( )]( )∆σ
0

, (3.40)

where a(z) and b(z) are a and b parameters in Equations 3.38a and 3.38b expressed in terms 
of the average current stress [initial overburden stress, ′σvo+ 1 2 stress increment, Δσz, pro-
duced due to the footing at depth z]. Δσz can be determined using the Bousinesq’s distribu-
tion (Equation 3.27) or any other appropriate stress attenuation such as the 2:1 distribution 
(Equation 3.28) commonly used in foundation design.
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Because of the complex nature of a and b functions (Equations 3.38a and 3.38b), one can 
numerically integrate Equation 3.40 to estimate the total settlement of an organic soil layer 
due to a finite stress increment imposed by a foundation.

Example 3.6

Assume that, based on laboratory consolidation tests, one wishes to predict the ultimate 
1-D settlement expected in a 1-m-thick organic soil layer (oc = 50%) and the current 
overburden pressure of 50 kPa due to an extensively placed surcharge of 50 kPa.

Solution

Because there is no significant stress attenuation within 1 m due to an extensive sur-
charge, the final pressure would be

 σv + Δσz = 50 + 50 = 100 kPa

throughout the organic layer. Then by applying Equation 3.35

 ∈ = +∫ult d[ ( ) ( )]( )a bσ σ σ
50

100

,

where a(σ) and b(σ) are obtained from Equation 3.38 using an oc and σ values of 0.5 and 
50 kPa, respectively.

Finally, on the performing the integration numerically, one obtains primary and sec-
ondary compressions of 0.107 and 0.041 m, which produces a total settlement of 0.148 m.

Fox and Edil (1992) used the Cα/Cc concept to predict the secondary settlement of 
organic soils.

3.4  Load and Resistance Factor Design Criteria

The two design philosophies commonly used in design of foundations are

 1. Allowable stress design (ASD)
 2. LRFD

Of the above, the more popular and historically successful design philosophy is the ASD, 
which has been adopted in this chapter so far. ASD can be summarized by the following 
generalized expression:

 R Qin/FS ≥ ∑  (3.41)

where
 Rn = nominal resistance
 Qi = load effect
 FS = factor of safety
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The main disadvantages of the ASD methods are (1) factor of safety (FS) is applied only 
to the resistance part of the equation without heeding the fact that varying types of loads 
have different levels of uncertainty, (2) FS is only based on judgment and experience, and 
(3) no quantitative measure of risk is incorporated in FS.

The design of spread footings using LRFD requires evaluation of the footing perfor-
mance at various Limit States. The primary Limit States for spread footing design include 
strength limits such as bearing capacity failure or sliding failure and service limits such as 
excessive settlements or vibration.

The goal of LRFD is to design, without being conservative as to be wasteful of resources, 
a foundation that serves its function without reaching the Limit States.

3.4.1  LRFD Philosophy

LRFD-based evaluation of strength limit state can be summarized as

 φ η γR Qi in ≥ ∑  (3.42)

where
 ϕ = resistance factor
 γi = load factors
 η = load modifier

Load factors account for the uncertainties in magnitude and direction of loads, location 
of application of loads, and combinations of loads.

On the other hand, resistance factors can be made to incorporate variability of soil prop-
erties, reliability of predictive equations, quality control of construction, extent of soil 
exploration, and even the consequences of failure. The main advantages of LRFD are that 
it accounts for variability in both resistance and loads and provides a qualitative measure 
of risk related to the probability of failure. However, LRFD also has the limitation of not 
facilitating the selection of appropriate resistance factors to suit the design of different 
foundation types. The LRFD-based evaluation of service limit state can be described by 
the same Equation 3.1b in Section 3.2.

Three different methods are adopted to select the resistance and load factors (FHWA, 
1998):

 1. Calibration by judgment requires extensive experience
 2. Calibration by fitting to ASD
 3. Calibration by the theory of reliability

The procedure used for the selection of load and resistance factors is known as the calibra-
tion of LRFD. The two latter procedures will be discussed in this chapter.

3.4.2  Calibration by Fitting to ASD

Using Equations 3.41 and 3.42 and assuming η = 1.0

 φ γ γ= +
+

D D L L

D LFS
Q Q

Q Q( )
 (3.43)
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where QD denotes dead load and QL denotes live load.
If one assumes a dead load/live load ratio (= QD/QL) of 3.0, FS = 2.5, and load factors of 

γD = 1.25 and γL = 1.75, then

 
φ = +

+
=1 25 3 0 1 75 1 0

2 5 3 0 1 0
0 55

. ( . ) . ( . )
. ( . . )

.

Hence, the resistance factor, ϕ, corresponding to an ASD safety factor of 2.5 and a deal/
live load ratio of 3 is 0.55. Similarly, one can estimate the ϕ values corresponding to other 
FS and QD/QL values as well.

3.4.3  Calibration by Reliability Theory

In the LRFD calibration using the theory of reliability, the foundation resistance and the 
loads are considered random variables. Therefore, the resistance and the loads are incor-
porated in the design using their statistical distributions. The statistical concepts relevant 
to the calibration procedure are discussed in the next section.

3.4.3.1  Variability of Soil Data

A quantitative measure of the variability of site soil can be provided by the coefficient of 
variation (COV) of a given soil property, X, defined as follows:

 COV( )x = σ
µ

, (3.44)

where
 μ = mean of the entire population of X at the site
 σ = standard deviation of the entire population of X at the site

However, both μ and σ can be estimated by their respective sample counterparts x  and s 
obtained from an unbiased finite sample of data (on X) of size n, obtained at the same site 
using the following expressions:

 x

x

n

i

i

n

= =
∑

1  (3.45)

 s

x x

nx

i

i

n

2

2

1

1
=

−( )
−

=
∑

 (3.46)

Using data from Teng et al. (1992) (Figure 3.18), it can be illustrated how the sample stan-
dard deviation is related to the population standard deviation. Figure 3.18 shows that in 
the estimation of the undrained shear strength (Su) of clay at a particular site using three 
different methods: (1) CPT, (2) vane shear test (VST), and (3) preconsolidation pressure 



D
ow

nl
oa

de
d 

B
y:

 1
0.

3.
98

.1
04

 A
t: 

06
:4

8 
07

 N
ov

 2
02

1;
 F

or
: 9

78
14

39
89

27
87

, c
ha

pt
er

3,
 1

0.
12

01
/b

15
59

2-
4

141Spread Footings

′( )σp  based on the laboratory consolidation tests. Figure 3.18 shows that, in each case, the 

estimation can be improved by increasing the sample size up to an optimum size of about 
7. The corresponding standard deviation estimate can be possibly interpreted as the popu-
lation standard deviation. However, the best estimate of the standard deviation that one 
can make varies with the specific technique used in the estimation. Moreover, Figure 3.18 
also shows that, based on the laboratory prediction method, VST provides a much more 
accurate estimate of the “true” standard deviation of the undrained shear strength (Su) 
of a clayey site soil. Alternatively, the information contained in research findings such as 
that shown in Figure 3.18 can be used in planning subsurface investigations. Intuitively, 
one also realizes that the standard deviation estimates obtained from a given evaluation 
method correlate well with reliability of the evaluation method, that is, a relatively higher 
standard deviation indicates a less reliable evaluation method.

The typical variability associated with soil index tests and strength tests as reported by 
Phoon et al. (1995) are shown in Tables 3.10 and 3.11, respectively. For analytical purposes, 
one can describe a random variable completely using an appropriate probability density 
function (in the case of a continuous random variable) or probability mass function (in the 
case of a discrete random variable) that satisfies the statistics of that particular random 

TABLE 3.10

Soil Variability in Index Tests

Property Soil Type
Inherent Soil Variability 

(COV)
Measurement Variability 

(COV)

Natural water content Fine grained 0.18 0.08
Liquid limit Fine grained 0.18 0.07
Plastic limit Fine grained 0.16 0.1
Plasticity index Fine grained 0.29 0.24
Bulk density Fine grained 0.09 0.01
Dry density Fine grained 0.07 —
Relative density—direct Sand 0.19 —
Relative density—indirect Sand 0.61 —

Source: Phoon, K. et al., Reliability-based design of foundations for transmission line structures, TR 105000 
Final report, report prepared by Cornell University for the Electric Power Research Institute, Palo 
Alto, CA, 1995. With permission.
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FIGURE 3.18
Reliability variation of undrained strength prediction with sample size. (From Teng, W.H. et al., Soils Found., 32, 
4, 107–116, 1992.)
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variable. The distribution that satisfies all the statistical properties of the random variable 
would obviously be its own histogram. However, what is assumed in many instances is 
a mathematical function that would closely “model” the statistical properties of the con-
sidered random variable. When selecting an appropriate mathematical distribution for a 
given variable, it is most common to match only the mean and the standard deviation of 
that variable with the corresponding quantities that are computed using the mathematical 
equation of the considered distribution as follows:

 

µ = = =
−∞

∞

∫E x xf x x( ) ( )d moment of area of the

distribbution about the origin of the axis centroidX = aal location  (3.47)

 E(x) = expected value of x

 

σ µ2 2= − =
−∞

∞

∫ ( ) ( )x f x xd second moment of area of thee

distribution about the centroidal location (mmean)  (3.48)

The following statistical relations can be derived between two different random vari-
ables, a and b

 E(a + b) = E(a) + E(b), (3.49a)

where E indicates the expected value or the mean.

 σ2(a + b) = σ2(a) + σ2(b) (3.49b)

TABLE 3.11

Soil Variability in Strength Tests

Property Soil Type
Inherent Soil 

Variability (COV)
Measurement 

Variability (COV)

Undrained strength (unconfined compression 
testing)

Fine grained 0.33 —

Undrained strength (unconsolidated undrained 
triaxial testing)

Clay, silt 0.22 — 

Undrained strength (preconsolidation pressure from 
consolidated undrained triaxial testing)

Clay 0.32 0.19

Tan ϕ (triaxial compression) Clay, silt 0.20 — 
Sand, silt — 0.08

Tan ϕ (direct shear) Clay, silt 0.23 — 
Clay — 0.14

Source: Phoon, K. et al., Reliability-based design of foundations for transmission line structures, TR 105000 Final 
report, report prepared by Cornell University for the Electric Power Research Institute, Palo Alto, CA, 
1995. With permission.
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Two very commonly used distributions that merely satisfy the above-mentioned mean 
and the standard deviation criteria (Equations 3.47 and 3.48) only are the normal and the 
lognormal distributions. However, in the case of a given variable, if the analyst is forced to 
select a probability distribution that would represent the random variation of that variable 
more accurately, then in addition to the mean and the standard deviation estimates, one 
could also compute the coefficients of skewness and kurtosis (flatness) computed from the 
sample data (Harr, 1977). It must be noted that the coefficients of skewness and kurtosis 
for the population can be related to the third and the fourth moments of the area of the 
probability distribution about the mean, respectively.

3.4.3.2  Normal (Gaussian) Distribution

If a continuous random variable X is normally distributed, its probability density function 
is given by Equation 3.49

 f x
x

( ) exp= − −



















1

2

1
2

2

σ π
µ

σ  (3.50)

It can be shown that Equation 3.50 automatically satisfies the conditions imposed by 
Equations 3.47 and 3.48.

3.4.3.3  Lognormal Distribution

If a continuous random variable X is lognormally distributed, then the natural logarithm 
of x, ln(x), is normally distributed and its probability density function is given by Equation 
3.51a

 f x
x

( ) exp
ln( )= − −




















1

2

1
2

2

ξ π
λ

ξ
 (3.51a)

where λ and ζ are the mean and the standard deviation of ln(x), respectively. The statistics 
of ln(x) can be expressed by those of x as

 λ µ=
+













ln
( ( ))1 2COV X

 (3.51b)

and

 ξ = +ln( ( ))1 2COV X  (3.51c)

Furthermore, it can be shown that when the random variable X exhibits a variation 
within a relatively minor range, that is, when the COV(X) is relatively small (<0.2), the 
above expressions simplify to

 λ = ln(μ) (3.51d)
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and

 ξ = COV(X) (3.51e)

3.4.3.4  Estimation of Probabilities

A primary use of mathematically expressed probability distributions such as the normal 
or the lognormal distribution is the convenience that such a distribution provides in the 
computation of probability estimates. Similar computations also significantly enhance 
the assessment of reliability estimates in the design procedures that incorporate the ran-
dom characteristics of loads applied on earthen structures and the relevant geotechnical 
parameters of the foundation soil. Accordingly, if X is a random variable that assumes 
values in the range of [a,b], then the probability of finding values of X less than c (<b) can 
be expressed in terms of its probability distribution as

 P X c f x x
a

c

( ) ( )< = ∫ d  (3.52)

3.4.3.5  Reliability of Design

If the effect of a load applied on a substructure such as a foundation, and the resistance 
provided by the shear strength of the foundation soil are expressed in terms of random 
variables Q and R, respectively, then the reliability of the design can be expressed as

 Re = P(R ≥ Q) (3.53)

In order to compute the reliability of a design that involves randomly distributed load 
effects, Q, and soil resistance, R, it is convenient to express the interaction between R and 
Q in terms of the combined random variable g(R,Q) = (R – Q).

The Central axis theorem of statistics (Harr, 1977) states that, if both R and Q are nor-
mally distributed, that is, normal variates, then g(R,Q) would be normally distributed as 
well. Therefore, it follows that, if both R and Q are lognormally distributed, that is, lognor-
mal variates, then g′(R,Q) = lnR – lnQ would be normally distributed as well.

Based on Equation 3.49, g′(R,Q) would have the following characteristics:

 mean[g′(R,Q)] = mean(lnR) − mean(lnQ) (3.54a)

 standard deviation [ ]=′ +g R Q R Q( , ) ln( ) ln( )σ σ2 2  (3.54b)

Using Equation 3.51b,

 mean
COV COV

[ ( , )] ln
( )

ln
( )

′ =
+













−
+

g R Q
R Q

R Q1 12 2
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 µ =
+

+













ln
( )

( )

R
Q

Q

R

1

1

2

2

COV

COV
 (3.55a)

Similarly, using Equations 3.51c

Standard deviation COV[ ( , )] ln( ) ln′ = +  +g R Q R1 2 (( )1 2+ COVQ

 σ = +( ) +( )



ln 1 12 2COV COVR Q  (3.55b)

Then, the reciprocal of the coefficient of variation of g′(R,Q) can be expressed as

 β µ
σ

= =

+

+













+( )

ln
( )

( )

ln

R
Q

Q

R

R

1

1

1 1

2

2

2

COV

COV

COV ++( )



COVQ

2
 (3.55c)

If one expresses the mathematical expression for the normal distribution (Equation 3.50) 
in terms of the standard normal variate z, where

 R − Q = X (3.56a)

 z
x= − µ

σ , (3.56b)

then Equation 3.50 simplifies to

 f z z( ) exp= −










1

2

1
2

2

σ π
 (3.57)

Then, from the differential form of Equation 3.56b,

 σ(dz) = dx (3.58)

Therefore, the estimation of probability in Equation 3.52 would be simplified as follows

 P X c f x x
c

( ) ( )< =
−∞
∫ d

 P X c P Z
c

f z x

c

( ) ( )< = < −





=
−∞

−

∫µ
σ

µ
σ

d  (3.59)
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Substituting from Equations 3.57 and 3.58,

 

P X c z z

c

( ) exp ( )

exp

< = −










= −

−∞

−

∫ 1

2

1
2

1

2

1
2

2

σ π
σ

π

µ
σ

d

zz z

z z

c

c

2

21

2

1
2











−










−∞

−

−∞

−

∫

∫

µ
σ

µ
σ

π

d

= dexp  

(3.60)

3.4.3.6 Reliability Index

The reliability of the design can be computed using Equations 3.56a and 3.52 as

 Re = P(R ≥ Q) = P(R − Q ≥ 0) = 1 − P[(R − Q) < 0] = 1 − P(X < 0)

Then, setting the arbitrary value c = 0 in Equation 3.60,

 P X z z( ) exp< = −






−∞

−

∫0
1

2

1
2

2

π

µ
σ

d

 1
1

2

1
2

2− = −










−∞

−

∫Re z z
π

µ
σ

exp d

Since β = μ/σ (Equation 3.55c),

 
1

1

2

1
2

2− = −










−∞

−

∫Re z z
π

β

exp d

If one defines the above integral in terms of the error function (erf), which is conveniently 
tabulated in the standard normal distribution tables, as follows:

 F z z( ) ( ) exp− = − = −










−∞

−

∫β
π

β
π

β
1

2

1

2

1
2

2erf d  (3.61a)

Then, the reliability of the design,

 Re = 1 – F(–β), (3.61b)
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where the reliability index β is defined in terms of the load and resistance statistics in 
Equation 3.55c as

 β =

+

+













+( ) +

ln
( )

( )

ln

R
Q

Q

R

R

1

1

1 1

2

2

2

COV

COV

COV COVVQ
2( )





 (3.55c)

3.4.3.7 Resistance Statistics

The measured resistance Rm can be expressed in terms of the predicted (nominal) resis-
tance, Rn, as

 Rm = λRRn (3.62)

where λR represents the bias factor for resistance. The bias factor includes the net effect of 
various sources of error such as the tendency of a particular method (e.g., Hansen’s bear-
ing capacity) to underpredict foundation resistance, energy losses in the equipment in 
obtaining SPT blow counts, and soil borings in strata not being representative of the site. 
For n number of sources of error with individual factors affecting the strength of resistance 
prediction procedure, the mean bias factor can be expressed as follows:

 λR = λ1λ2…λn (3.63a)

Then based on the principles of statistics, the coefficient of variation of λR is given by

 COV COV COV COVR n
2

1
2

2
2 2= + + +�  (3.63b)

Table 3.12 indicates the values recommended by FHWA (1998) for λR and COVR.

TABLE 3.12

Resistance Statistics

Correction

Statistics for Correction Factors

λi COVi

Model error 1.3 0.5
Equipment/procedure used in SPT 1.0 0.15–0.45 (use 0.3)
Inherent spatial variability 1.0 (0.44/L)0.5

Source: Federal Highway Administration, Load and Resistance Factor Design (LRFD) for 
Highway Bridge Superstructures, Washington, DC, 1998. With permission.

Note: L = length of pile.
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3.4.3.8 Load Statistics

Similarly for the measured load, one can write

 Qm = λQDQD + λQLQL, (3.64)

where the load bias factor includes various uncertainties associated with dead and live 
loads. λQD values for commonplace materials are found in Table 3.13. On the other hand, 
AASHTO (American Association for State Highway and Transportation Officials) LRFD 
live load model specifies λQL = 1.15 and COVQL = 0.18 for the live loads. If there are two 
significant sources of bias for dead loads in a given design situation, then from Equations 
3.63a and 3.63b

 λQD = λ1λ2…λi (3.65a)

 COV COV COV COVDQ n
2

1
2

2
2 2= + + +�  (3.65b)

3.4.3.9 Determination of Resistance Factors

By rearranging Equation 3.55c, one obtains

 R Q R Q
R= +( ) +( )



{ } +( )

+
exp lnβT COV COV

COV

CO
1 1

1

1

2 2
2

VVQ
2( )

 (3.66a)

where Q Q= m.
Using Equation 3.62

 R R R= =m n nλ  (3.66b)

From Equation 3.42

 ϕRRn = γQn = γDQD + γLQL (3.66c)

By eliminating Rn from Equations 3.66b and 3.66c, and using the relation

 COV COV COVD LQ Q Q
2 2 2= +  (3.66d)

TABLE 3.13

Bias Factors and Coefficients of Variation for Bridge Foundation Dead Loads

Component λQD COVQD

Factory made 1.03 0.08
Cast-in-place 1.05 0.10
Asphaltic wearing surface 1.00 0.25
Live load (1.15 = λQL) (0.18 = COVQL)

Source: Federal Highway Administration, 1998, Load and Resistance Factor Design (LRFD) 
for Highway Bridge Superstructures, Washington, DC, 1998. With permission.
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the resistance factor can be derived as

 φ

λ γ γ

R

R
Q Q

R

Q Q

Q
=

+
+ +( )

+( )[ ]

exp

D D L L
D L

m

COV COV

COV

1

1

2 2

2

ββT D LCOV COV COVln 1 12 2 2+ +( ) +( )



{ }Q Q R

 (3.67)

where

 Qm = λQDQD + λQLQL (3.67a)

and βT is the target reliability index evaluated from Table 3.14.
Finally, the resistance factors suggested by FHWA (1998) for SPT and CPT results based 

on selected reliability indices are provided in Table 3.15.
Table 3.16 outlines the suggested resistance factors for a variety of foundation strength 

prediction methods in common use.

TABLE 3.14

Relationship between Probability of Failure and Reliability 
Index for Lognormal Distribution

Reliability Index Probability of Failure

2.0 0.85 × 10−1

2.5 0.99 × 10−2

3.0 1.15 × 10−3

3.5 1.34 × 10−4

4.0 1.56 × 10−5

4.5 1.82 × 10−6

5.0 2.12 × 10−7

5.5 2.46 × 10−8

Source: Federal Highway Administration, Load and Resistance Factor 
Design (LRFD) for Highway Bridge Superstructures, Washington, 
DC, 1998. With permission.

TABLE 3.15

Bias Factors and Coefficients of Variation for Soil Strength Measurements

Test λR COVR

SPT 1.3 0.6–0.8
CPT 1.0 0.4
Angle of friction (ϕ) 1.0 0.1
Cohesion 1.0 0.4
Wall friction (δ) 1.0 0.2
Earth pressure coefficient (K) 1.0 0.15

Source: Federal Highway Administration, Load and Resistance Factor Design (LRFD) 
for Highway Bridge Superstructures, Washington, DC, 1998. With permission.
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3.4.3.10 Determination of the Simplified Resistance Factor

The denominator of Equation 3.55c can be simplified as follows:

 ln ln ln1 1 1 12 2 2 2+( ) +( )



 = +( ) + +(COV COV COV COVR Q R Q ))  (3.68)

Using the Taylor series expansion, for relatively small values of COV (e.g., <0.3), Equation 
3.68 can be written as

 
ln 1 12 2 2 2+( ) +( )



 ≈ +COV COV COV COVR Q R Q

Similarly, the numerator of Equation 3.55c can be simplified as

 

ln ln ln
R
Q

R
Q

Q

R

Q

1

1
1

2

2

2
+( )
+( )

















= + +
COV

COV
COV(( ) − +( )ln 1 2COVR

For relatively small values of COV (e.g., <0.3), the above expression can be simplified to

 ln ln ln ln
R
Q

R
QQ R+ +( ) − +( ) ≈1 12 2COV COV

TABLE 3.16

Resistance Factors for Geotechnical Strength Limit State for Shallow 
Foundations

Method/Soil/Condition Resistance Factor

Sand
Semiempirical procedure using SPT data 0.45
Semiempirical procedure using CPT data 0.55
Rational method using shear strength (N) from

SPT data 0.35
CPT data 0.45

Clay
Semiempirical procedure using CPT data 0.5
Rational method using shear strength (Su) from

CPT data 0.5
Laboratory test (UU triaxial) 0.6
Field vane shear tests 0.6

Rock
Semiempirical procedure 0.6
Plate load test 0.55

Source: Federal Highway Administration, Load and Resistance Factor Design (LRFD) 
for Highway Bridge Superstructures, Washington, DC, 1998. With permission.
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Hence, the expression for β can be simplified to

 β =
+

ln
R
Q

R QCOV COV2 2
 (3.69)

By defining the α factor as follows

 COV COV COV COVR Q R Q
2 2+ = +α( )

and rearranging terms in Equation 3.69, one obtains

 R
Q

e R Q= +αβ( )COV COV  (3.70a)

Separately combining R and Q terms, one obtains

 Re QeR Q− =αβ αβCOV COV  (3.70b)

Using the definitions of the nominal resistance and load in Equations 3.62 and 3.64, respec-
tively, one can obtain

 λ λαβ αβ
RR e Q eR Q

n
COV

n n
COV− =  (3.70c)

Recalling Equation 3.42,

 ϕRn = γQn (3.42)

From Equation 3.70c, it is seen that the load and resistance factors, γ and ϕ, respectively, 
depend on the statistics of each other (COVR and COVQ) as well. However, for convenience, 
if one assumes that the resistance and load factors are independent of each other’s statis-
tics, then comparison of Equation 3.70c with Equation 3.42 yields a convenient and approx-
imate method to express the resistance and load factors as follows:

 φ λ αβ= −
Re RTCOV  (3.70d)

 γ λ αβ= n
COVTe Q  (3.70e)

where βT is the target reliability. Resistance factors corresponding to a target reliability of 
3.5 are listed in Table 3.17.

Example 3.7

Estimate a suitable resistance factor for a bridge footing that is to be designed based on 
SPT tests.
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Solution

From Table 3.13 and Equation 3.65,

 λQD = 1.03(1.05)(1.00) = 1.08

 
COV DQ = + + =( . ( . ) ( . ) .0 08 0 1 0 25 0 2892 2 2

From Table 3.15, for SPT, λR = 1.3, COVR = 0.7.
Also, since it is recommended that λQL = 1.15, COVQL = 0.18 (FHWA, 1998; Table 3.13) 

and assuming that γL = 1.75 and γD = 1.25 (Table 3.18).

TABLE 3.17

Resistance Factors for Semiempirical Evaluation of Bearing Capacity for Spread Footings on 
Sand Using Reliability-Based Calibration

Estimation 
Method

Factor of 
Safety, FS

Average 
Reliability 

Index, β

Target 
Reliability 
Index, βT Span (m)

Resistance Factor

Fitting 
with ASD

Reliability 
Based Selected Φ

SPT 4.0 4.2 3.5 10 0.37 0.49 0.45
50 0.37 0.53 0.45

CPT 2.5 3.2 3.5 10 0.60 0.52 0.55
50 0.60 0.57 0.55

Source: Federal Highway Administration, Load and Resistance Factor Design (LRFD) for Highway Bridge 
Superstructures, Washington, DC, 1998. With permission.

TABLE 3.18

Load Factors for Permanent Loads

Type of Load

Load Factor

Maximum Minimum

Components and attachments 1.25 0.90
Downdrag 1.8 0.45
Wearing surfaces and utilities 1.5 0.65
Horizontal earth pressure

Active 1.5 0.9
At rest 1.35 0.9

Vertical earth pressure
Overall stability 1.35 N/A
Retaining structure 1.35 1.00
Rigid buried structure 1.30 0.90
Rigid frames 1.35 0.90
Flexible buried structure 1.95 0.90
Flexible metal box 1.50 0.90

Culverts
Earth structures 1.50 0.75

Source: Federal Highway Administration, Load and Resistance Factor Design 
(LRFD) for Highway Bridge Superstructures, Washington, DC, 1998. With 
permission.
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Applying Equation 3.67,

 

φR

Q
Q

=
+











+ +
+
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0 7

1 08 1 15 1 0 289

2

2Q
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L
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 + +β (( . ) )(( ( . ) )]0 18 1 0 72 2+{ }

 

 

φR

Q
Q

Q
Q

=
+











+










1 13 1 25 1 75

1 08 1 15

. . .

. . ex

D

L

D

L

pp{ . }0 5βT

Using Equation 3.67 and Table 3.14, the resistance factor can be expressed in terms of the 
probability of failure and the dead load/live load ratio (Table 3.19).

Example 3.8

For the column shown in Figure 3.19, use LRFD concepts to design a suitable footing 
to carry a column load of 400 kN. The subsoil can be considered as a homogenous 

TABLE 3.19

Variation of Resistance Factor ΦR with QD/QL and Required Reliability

Q
Q

D

L

Probability of Failure

0.085 0.0099 0.00115 0.000134

β = 2 β = 2.5 β = 3 β = 3.5
1.0 0.554 0.432 0.336 0.262
2.0 0.529 0.412 0.321 0.2250
3.0 0.516 0.402 0.313 0.244

P = 400 kN

D

B

FIGURE 3.19
Illustration for Example 3.7.
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silty clay with the following properties (assume that the groundwater table is not in 
the vicinity):

Unit weight (γ) = 17 kN/m3

Internal friction (ϕ) = 15°
Unit cohesion (c) = 20 kPa

Assume resistance factors ϕR of 0.6 and 0.6 (Table 3.16) for tan ϕ and c, respectively.

 ϕ′ = tan–1 [0.6 tanϕ] = 9°

 c′ = 20(0.6) = 12 kPa

Table 3.5 indicates the bearing capacity parameters
Using Hansen’s bearing capacity expression (Equation 3.5),

Nc = 8 Nq = 2 Nγ = 0.4
sc = 1.359 sq = 1.26 sγ = 0.6
dc = 1.4 dq = 1.294 dγ = 1.0

The vertical effective stress at the footing base level (q) = (17)(depth) = 17B.
Then, the following expressions can be written for the ultimate bearing capacity:

 

q Bult = + +( )( )( . )( . ) ( )( )( . )( . )12 8 1 359 1 4 17 2 1 26 1 294 00 5 17 0 4 0 6 1 0

182 65 57 47

. ( )( )( . )( . )( . )

. .

B

B= +

Factored contact stress at the foundation level = 1.25 × 4 × 400/(πB2) + (1.0)17B.
The load factor for the dead load is obtained from Table 3.18. It must be noted that the 

recommended load factor for recompacted soil is 1.0.

By applying φ η γR Qi in = ∑  with no load modifier (η = 1.0)

 qult = 1.25 × 4 × 400/(πB2) + 17B

From Hansen’s expression

 637/B2 + 17B = 182.65 + 57.47B

 637/B2 = 182.65 + 40.47B

 B = 1.6 m

When one compares the above footing width with B = 1.55 m obtained from the ASD 
method (Example 3.1), the limit state design is seen to be slightly more conservative.

3.5  Design of Footings to Withstand Vibrations

Foundations subjected to dynamic loads such as that due to operating machines, wave 
loadings, etc., have to satisfy special design criteria in addition to the regular bearing 



D
ow

nl
oa

de
d 

B
y:

 1
0.

3.
98

.1
04

 A
t: 

06
:4

8 
07

 N
ov

 2
02

1;
 F

or
: 9

78
14

39
89

27
87

, c
ha

pt
er

3,
 1

0.
12

01
/b

15
59

2-
4

155Spread Footings

capacity and settlement criteria. Table 3.20 lists a number of additional criteria that may 
be considered during the design of a foundation that would be subjected to vibrations. 
However, the main design criteria are related to the limiting amplitude of vibration and 
the limiting acceleration for a given operating frequency. Figure 3.20 indicates the order of 
magnitudes of vibration corresponding to different levels of severity.

For steady-state harmonic oscillations, the limiting accelerations can be deduced from 
the limiting amplitudes in terms of the frequency of oscillation (ω) as

 accelerationlimit = displacementlimitω2 (3.71)

TABLE 3.20

List of Criteria for Design of Vibrating Footings

I. Functional considerations of installation
 A. Modes of failure and the design objectives
 B. Causes of failure
 C. Total operational environment
 D. Initial cost and its relation to item A
 E. Cost of maintenance
 F. Cost of replacement
II.  Design considerations for installations in which the equipment produces exciting forces
 A. Static bearing capacity
 B. Static settlement
 C. Bearing capacity: static + dynamic loads
 D. Settlement: static + repeated dynamic loads
 E. Limiting dynamic conditions
 1. Vibration amplitude at operating frequency
 2. Velocity
 3. Acceleration
 F. Possible modes of vibration—coupling effects
 G. Fatigue failures
 1. Machine components
 2. Connections
 3. Supporting structure
 H. Environmental demands
 1. Physiological effect on persons
 2. Psychological effect on persons
 3. Sensitive equipment nearby
 4. Resonance of structural components
III. Design considerations for installation of sensitive equipment
 A. Limiting displacement, velocity, or acceleration amplitudes
 B. Ambient vibrations
 C. Possible changes in ambient vibrations
 1. By construction
 2. By new equipment
 D. Isolation of foundations
 E. Local isolation of individual machines

Source: Richart, F.E. et al., Vibrations of Soils and Foundations, Prentice Hall, Englewood Cliffs, NJ, 1970. With 
permission.
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On the other hand, the maximum amplitudes (or accelerations) undergone by a given 
vibrating foundation can be determined by the principles of soil dynamics. Analytical for-
mulations available from such analyses are provided in the ensuing sections for a number 
of different modes of vibration.

3.5.1  Vertical Steady-State Vibrations

The equation of motion for a rigid foundation of mass m subjected to a vertical steady-state 
constant amplitude simple harmonic force can be written as (Lysmer and Richart, 1966)

 mz c z k z P P e P t i tz z
i t�� �+ + = = = +0 0
ω ω ω[cos( ) sin( )]  (3.72)

If the foundation is circular, the spring and the damping constants are given by

 k
G B

z =
−

2
1

s

sν
 (3.73a)

and

 c
B

Gz
2

20 85
1

=
−

.
ν

ρ
s

s s  (3.73b)

respectively, where B is the equivalent footing diameter, Gs, ρs, and νs denote the shear 
modulus, mass density, and Poisson’s ratio of the foundation soil, respectively (Figure 3.21).

Then, the following important parameters that relate to the vibratory motion can be 
derived using the elementary theory of vibrations:

 1. Natural frequency of vibration

 f
G B

mn
s

s

=
−

1
1

2
2
1

12– 23
π ν

 (3.74a)

−4

−3

−2

−1

0
0 1 2 3 4

Frequency in log (cycles per minute)

lo
g 

[A
m

pl
itu

de
 o

f v
ib

ra
tio

n 
(in

)]

Lower limit of
structural tolerance

Lower limit of human
tolerance

Upper limit of
machine and
machine foundations

Upper limit of human
tolerance

FIGURE 3.20
General limits of displacement amplitude for a particular frequency of vibration (note: 1 in = 25.4 mm). (From Richart, 
F.E. et al., Vibrations of Soils and Foundations, Prentice Hall, Englewood Cliffs, NJ, 1970. Reproduced by author.)
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 2. Resonant frequency
  For force-type excitation

 f
B

G B
B

Bz

z
zr

s

s

for= − >1 0 36
0 3

π ρ
( . )

.  (3.74b)

 where the modified dimensionless mass ratio Bz is given by

 B
m
Bz s

s

= −2 1 3( )ν
ρ

 (3.74c)

 3. Damping ratio
  Damping ratio = D = (damping constant)/(critical damping constant)
  Critical damping constant = 2(kzm)1/2

 D D
B

z
z

= = 0 425.  (3.74d)

 4. Amplitude of vibration
  The amplitude of vibration can be expressed as follows:

 A
P
k

M P
G B

Mz
z

= = −0
0

1
2

νs

s

, (3.74e)

 where M is the amplification factor, 
A

P k
z

zo/( ), expressed in Equation 3.74f and plot-

ted in Figure 3.22 against the nondimensional frequency or frequency ratio, ω/ωn, 
and the damping ratio, D.

 M

D

=

−














 +







1

1 2
2

2
2

ω
ω

ω
ωn n

 (3.74f)

P

B

FIGURE 3.21
Footing subjected to vertical vibration.
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 where

 ω π
νn n
s

s

= =
−

2
2
1

1
f

G B
m

  (3.74a)

 5. The phase lag ϕ can be determined from Equation 3.74g or Figure 3.22b.

 
φ ω ω

ω ω
=

−






−tan 1
2

2 n

n
2

D

 (3.74g)

6
D = 0
D = 0.1
D = 0.2
D = 0.3
D = 0.4
D = 0.5
D = 0.6

D = 0
D = 0.1
D = 0.2
D = 0.3
D = 0.4
D = 0.5
D = 0.6

5
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FIGURE 3.22
(a) Magnification factor (M) against frequency ratio (ω/ωn). (b) Magnification factor (M) against frequency ratio 
(ω/ωn).
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Example 3.9

A rigid circular concrete foundation supporting a machine is 4 m in diameter (Figure 3.23). 
The total weight of the machine and foundation is 700 kN. The machine imparts an 
equivalent vertical harmonic force of 25 sin 20t kN on the footing. If the foundation 
soil is dense sand having the following properties; unit weight = 17 kN/m3 and elastic 
modulus = 55 MPa. Determine (1) the resonant frequency, (2) amplitude of the vibration 
at the resonant frequency, and (3) amplitude of the vibration at the operating frequency.

Solution

For sandy soil, Poisson’s ratio can be assumed to be 0.33.
Hence, the shear modulus and the mass ratio can be computed as

 G
E=
+

= =s

s

/ / MPa
2 1

55 2 1 33 20 7
( )

( ) . .
ν

 
B

m
Bz = − = −2 1 2 1 0 33 700 1000 17 10003( ) ( . )( )( ) ( )(ν

ρs
s

/g //g/( ) .4 0 863 =

(Note that weight and the unit weight are used in the computation in place of the mass 
and mass density.)

 (1) Resonant frequency

 
f

B
G B

B
z

z
r

s

s

= − = ×1 0 36 1
4

20 7 1 000 000 0 8
π ρ π

( . )
( )

( . , , )( . 66 0 36
17 1000 9 8 0 86

6 63
−

×
=. )

( . )( . )
.

/
cps

 (2) Natural frequency

 
f

G B
mn

s

s

=
−

=
−

1
2

2
1

1 1
2

2 20 7 1 000 000 4
1 0 33π ν π

( . )( , , )( )
.

11
700 1000 9 8

9 36
( ) ( . )

.
/

cps=

P = 25 sin 20t kN

4 m

FIGURE 3.23
Illustration for Example 3.8.
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 (3) Operating frequency

 fo = 20/(2π) = 3.18 cps

  Hence, fm/fo = 6.63/3.18 = 2.08 > 2.
  Thus, the operating frequency range is considered safe.

 (4) Amplitude of vibration

 fm/fn = 6.63/9.36 = 0.71

 D = 0.425/Bz = 0.425/0.86 = 0.491

  In Figure 3.21, the magnification factor, M = 1.2

 
A

P
k

M P
G B

Mz
z

= = − = − × ×0
0

1
2

25 1 0 33 1 2 2 20 7 10
νs

s

/( . )( . ) ( . 000 4 0 12× =) . mm

  Based on an operating frequency of 3.18 cps or 191 cpm, the above ampli-
tude of 0.27 mm or 0.011 in would fall below the upper limit of human toler-
ance in Figure 3.20.

3.5.2  Rocking Oscillations

The motion of a rigid foundation subjected to a steady-state constant amplitude harmonic 
rocking moment about the y axis, can be written as (Hall, 1967)

 I c k M ei t
θ θ θ θ

ωθ θ θ�� �+ + =  (3.75a)

where

 I m
B h

θ = +






2 2

16 3
 (3.75b)

B and h are the diameter and height of the foundation, respectively (Figure 3.24).

My

X
Y

X

B

FIGURE 3.24
Footing subjected to rocking.
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If the foundation is circular, the spring and the damping constants are given by

 k
G B

θ ν
=

−
s

s

3

3 1( )
 (3.76a)

and

 c
B

B
Gθ

θν
ρ=

− +
0 05

1 1

4.
( )( )s

s s  (3.76b)

respectively; Bθ, the inertia ratio, is given by

 B
I
Bθ ν

ρ
= −12 1 5( )s  (3.76c)

Then, the following parameters relevant to the vibratory motion can be derived using the 
elementary theory of vibrations:

 1. Natural frequency of vibration

 f
k
In = 1

2π
θ

θ
 (3.77a)

 2. Resonant frequency
  Moment-type excitation

 f f
B Br n= −

+
1

0 45
1 2

.
( )θ θ

 (3.77b)

 3. Damping ratio

 D D
B B

= =
+

θ
θ θ

0 15

1

.

( )
 (3.77c)

 4. Amplitude of vibration
  The amplitude of vibration can be expressed as follows:

 θ
θ

=
M

k
My , (3.77d)

 where M is the magnification factor, 
θ

θM ky/( ), which is plotted in Figure 3.22a 

against the nondimensional frequency ω/ωn; where
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 ω π θ

θ
n n= =2 f

k
I

 (3.77a)

 The phase lag ϕ can be determined from Equation 3.74g or Figure 3.22b.

The above relations can be applied to a rectangular footing (of the same height, h) using 
an equivalent Be that is determined by equating the moment of area of the surface of the 
footing about the y axis (Iθ) to that of the equivalent circular footing.

Thus,

 

1
64

1
12

4 3πB BLe =

3.5.3  Sliding Oscillations

A mass–spring–dashpot analog was developed by Hall (1967) to simulate the horizontal 
sliding oscillations of a rigid circular footing of mass m (Figure 3.25). This can be expressed 
by Equation 3.78

 mx c x k x P ex x
i t�� �+ + = 0
ω  (3.78)

If the foundation is circular, the spring and the damping constants are given by

 k
G B

x = −
−

16 1
7 8

( )ν
ν
s s

s

 (3.79a)

and

 c
B

Gz = −
−

4 6 1
7 8

2. ( )ν
ν

ρs

s
s s  (3.79b)

respectively.
Then, the following important parameters with respect to the above motion can be 

derived:

 1. Natural frequency of vibration

 f
G B

mn
s s

s

= −
−

1
2

16 1
7 8

1
π

ν
ν

( )
 (3.80a)

B

P

FIGURE 3.25
Footing subjected to sliding oscillation.
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 2. Resonant frequency
  Moment-type excitation

 f f
Bx

r n= −1
0 166.

 (3.80b)

 where the modified dimensionless mass ratio Bx is given by

 B
m
Bx = −

−
7 8
4 1 3

ν
ν ρ

s

s( )
 (3.80c)

 3. Damping ratio

 D D
B

x
x

= = 0 288.
 (3.80d)

 4. Amplitude of vibration
  The amplitude of vibration can be expressed as follows:

 A
P
k

Mx
x

= 0 , (3.80e)

 where M is the amplification factor, P0/kx, which is also plotted in Figure 3.22 
against the nondimensional frequency ω/ωn, where

 ω π ν
νn n
s s

s

= = −
−

2
16 1

7 8
1

f
G B

m
( )

 (3.80a)

  The phase lag ϕ can be determined from Equation 3.74g or Figure 3.22b.

3.5.4  Foundation Vibrations due to Rotating Masses

If the foundation vibrations described in Sections 3.5.1 through 3.5.3 are created by unbal-
anced masses (m1 with an eccentricity of e) rotating at an angular frequency of ω, then, the 
modifications in the following sections must be made to Equations 3.72, 3.75a, and 3.78. In 
all of the above cases, the new equations of motion have to be solved to determine the reso-
nance frequencies and the amplitudes of vibrations. In keeping with the new solutions, the 
amplification factor in Equation 3.74f can be modified as

 M

D

1

2

2
2

2

1 2

=







−


















+






ω
ω

ω
ω

ω
ω

n

n n

 (3.81)

M1 is plotted in Figure 3.26.



D
ow

nl
oa

de
d 

B
y:

 1
0.

3.
98

.1
04

 A
t: 

06
:4

8 
07

 N
ov

 2
02

1;
 F

or
: 9

78
14

39
89

27
87

, c
ha

pt
er

3,
 1

0.
12

01
/b

15
59

2-
4

164 The Foundation Engineering Handbook

3.5.4.1 Translational Oscillations

P0 = m1eω2 must be substituted in Equation 3.72 for P0

 mz c z k z P P e m e t i tz z
i t�� �+ + = = = +0 1

2ω ω ω ω[cos( ) sin( )]  (3.82a)

The amplitude of vibration can be expressed by the modified Equation 3.74e as

 A
m e
m

Mz = 1
1  (3.82b)

3.5.4.2 Rocking Oscillations

My = m1ezω2 must be substituted in Equations 3.75a for My, where z = moment arm of the 
unbalanced force

 I c k m ez ei t
θ θ θ

ωθ θ θ ω�� �+ + = 1
2  (3.83a)

The amplitude of vibration can be expressed by the modified Equation 3.77d as

 θ = m ez
I

M1

0
1  (3.83b)

3.5.4.3 Sliding Vibrations

P0 = m1eω2 must be substituted in Equation 3.78 for P0

 mx c x k x m e ex x
i t�� �+ + = 1

2ω ω  (3.84a)
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FIGURE 3.26
Magnification factor (M1) against frequency ratio (ω/ωn).
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The amplitude of vibration can be expressed by the modified Equation 3.80e as

 A
m e
m

Mx = 1
1  (3.84b)

Further details are also found in Das (1993).

3.6  Additional Examples

Example 3.10

Predict the following settlement components for a circular footing with a 2 m diameter 
that carries a load of 200 kN as shown in Figure 3.27.

 (a) Average consolidation settlement of the footing in 5 years (use the 2:1 distribu-
tion method)

 (b) Maximum ultimate differential settlement
 (c) Elastic settlement from Schmertmann’s method
 (d) Total ultimate settlement of the center of the footing

Consolidation properties of the clay layer can be obtained from Figure 3.15. Assume its 
coefficient of consolidation to be 1 × 10–8 m2/s. Suitable elastic parameters of the sandy 
soil can be obtained from Chapter 1 (Tables 1.5 and 1.6).

200 kN 
Elev. 0.0

GWT – elev. –2.0 m

Dry NC sand, SPT = 15
Unit weight = 16.5 kN/m3

Elev. –3.0 m

Elev. –5.0 m

Elev. –1.2 m

Soft clay
Unit weight = 18 kN/m3

FIGURE 3.27
Illustration for Example 3.10.
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Increase stress at the center of the soft clay (2-m-diameter footing),

 
∆σ

π
=

+
Q
D Z/4 2( )

To compute the increase in vertical stress at the mid-plane of the clay layer, apply 
Equation 3.28.

At mid-plane of clay

 

∆

∆

σ
π

σ

=
+

=

200
4 2 2 8

11 05

2/
kPa

( . )
.

From Figure 3.15, the preconsolidation pressure (Pc) = 60 kPa.
The average effective overburden pressure at the mid-plane of the soft clay,

 

′ = + + −
=

σvo ( . )( ) ( . )( ) ( )( ) ( . )( )

.

16 5 2 17 5 1 18 1 9 8 2

48 9 kkPa c< P

Thus, it is in the oc region

 ′ + = + = <σ σvo ckPa kPa∆ 48 9 11 05 59 95 60. . . ( )P

 

∴ =
+











′ +
′
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H
e

C
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vo

vo1
log

σ σ
σ

∆

mm=
+



















 =2

1 1 06
0 064

59 95
48 9

5 5
.

. log
.
.

.

 T = 5 years, Hdr = 2 m, Cu = 1 × 10–8 m2/s

 
T

C t
H

= = × × × × × =
−

v

dr
2

8

2

1 10 5 365 24 60 60
2

0 394
( )

.

For T = 0.394, Uavg = 0.69

 (a)  ∴ S5yrs = (5.5)(0.69) = 3.795 mm

 (b) Using Newmark’s chart, AB = 2.8 m (Figure 3.16)

 footing radius m= = =1
1

2 8
0 36

.
.OQ OQ

  Placing the center of footing at the center of chart

 
Ncenter center /

= × = = × ×48 4 192 192 0 001
200
4 2

, .
( )( )

∆σ
π 22 12 2= . kPa
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  Placing the edge of footing at the center of chart

 Nedge = 150

 ∆σ
πedge /

kPa= × × =150 0 001
200
4 2

9 52.
( )( )

.

 ′ + = + =σ σvo center ckPa >∆ 48 9 12 2 61 1. . . P
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=
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.

mm
∆S 33 4 79 30 5− =. . mm

  If it is assumed that the immediate settlement under the center is equal to 
that under the edge, the angular distortion of the footing can be computed as

 30.5 mm/1 m (= radius of the footing) = 1/32

  It is noted that the angular distortion is greater than 1/75 (= 0.0133), which 
is the limiting angular distortion needed for structural damage.

 (c) Determination of the immediate settlement

 stress increase at the foundation level (Δσ) = 200/π(2)2 = 63.66 kPa

 Initial effective overburden stress at the foundation level (q) = 1.2 × 16.5 = 19.8 kPa

 E for dry sand (Table 1.7) = 500(N + 15) = 15,000 kPa

 E for saturated sand (Table 1.7) = 250(N + 15) = 6750 kPa

 E for clays (Table 1.7) = 300(N + 6) = 10,000 kPa
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 (d) Total ultimate settlement

 
= +
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center consolidation elastic settlement
35 3 4. .. .7 40 0= mm

Example 3.11

Assuming that the depth of embedment is 1.5 m, design a suitable strip footing for the 
wall that carries a load of 150 kN/m, as shown in Figure 3.28. The average corrected 
SPT value for the subsurface is 12. Suitable soil parameters for the site can be obtained 
in Chapter 2.
 For SPT – N´ = 12

From Table 2.5, medium stiff clay From Table 2.6,

γ
φ φ

moist kN/m

Assume

=
= = °

18 9

3 0

3.

( )°

γ

γ
φ

sat

sub

kN/m

kN/m

=

=
= °

18 9

9 1

0

3

3

.

.

C
N
Ti

= =

= =

12
8

1 5 0 0718

ksf

. .ksf MPa

Using Meyerhoff’s bearing capacity: Equation 3.3

 qult = cNcscdc + qNqsqdq + 0.5BγNγsγdγ

Elev. 0.0

Elev. –1.2m

GWT – Elev. –2.0m

150 kN/m

Medium stiff clay, SPT = 12

FIGURE 3.28
Illustration for Example 3.11.
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From Table 3.1 (for ϕ = 0, Meyerhoff)

 Nc = 5.14, Nq = 1.0, Nγ = 0.0

From Table 3.2b ( ) tan .for pφ φ φ= = +
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1
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0 3

22 68

( )

( . )
.

.






2 5.

 

Therefore, B ≥ 1.0 m

Example 3.12

A 5-kN horizontal load acts on the column shown in Figure 3.29 at a location of 1.5 m above 
the ground level. If the site soil is granular with an angle of friction 20° and a unit weight of 
16.5 kN/m3, determine a suitable footing size. If the groundwater table subsides to a depth 
outside the foundation influence zone, what would be the factor of safety of the footing?

 ϕ = 20°, γ = 16.5 kN/m3, Kp = tan2 (45 + ϕ/2) = 2.04

Elev. 0.0

Elev. –2.2 m

GWT – Elev. –1.1 m

Granular soil

50 kN

5 kN

Elev. 1.5 m

FIGURE 3.29
Illustration for Example 3.12.
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Meyerhoff’s bearing capacity expression:

qult = c Ncscdcic + qNqsqdqiq + 0.5Bγ′Nγsγdγiγ

From Table 3.1, for ϕ = 20°, Nq = 6.4, Nγ = 2.9
From Table 3.2b

 S S
B
Bq = = + =γ 1 0 1 2 04 1 204. ( . ) . (Assume circular or ssquare footing)

 
d d

D
B B

Dq = = + = + =γ 1 0 2 2 04
0 314

1 1. .
.

. )(since m

 tan θ = 5/50; θ = 5.71°

 i iq = −




 = = −





 =1

5 71
90

0 877 1
5 71
20

0 5
2 2

.
. ,

.
.γ 11

 q = (16.5)(1.1) + (16.5 − 9.8)(1.1) = 25.52 kPa

 

q
Bult = +
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54 15
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54 15

5 97.
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 q
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 Moment = 5 × 3.7 = 18.5
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γ 50

25 52
18 5

2

12

174 33
5

2.
. .

44 15
5 97

2 5

.
.

.
B

B+

 B = 1.65 m

With no water within influence zone:

 B = 1.65 m

 Q = (16.5)(2.2) = 36.3 kPa
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q
P
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D
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I B

B

B Bd kPa= + + = + +
×

×
=γ 50

36 3
185

2

12

95 52 3.
.

.

 

q
Bult = +
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3

B
B

+






= 220 kPa

 
F = =320

95 5
3 35

.
.

Therefore, the safety factor increases from 2.5 to 3.35.

Example 3.13

A concrete machine foundation shown in Figure 3.30a is subjected to a periodic force 
that can be represented by

P(t) = 5 sin(45t) + 10 sin(90t) + 2.5 sin(135t)kN

1.5 m

3 m
4 m

(a)

(b) (c)

15

10

5

0

–5

–10

–15

0 0.05 0.1 0.15 0.2
Time (s) Time (s)

Re
sp

on
se

 (r
ad

)

Fo
rc

e (
kN

)

0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
–2

–1.5

–1

–0.5

0

0.5

1

1.5 × 10–4

5 sin(45t)+10 sin(90t)
+ 2.5 sin(135t)

2 m

P(t)

FIGURE 3.30
(a) Illustration for Example 3.13. (b) Forcing function P(t). (c) Resultant rocking response.
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 (a) Plot P(t) in components and as a resultant force by selecting an appropriate time 
scale to show at least two cycles of the least frequency component of P(t).

 (b) Neglecting the horizontal force components, estimate the amplitudes of rock-
ing vibration corresponding to all three frequency components of P(t).

 (c) Estimate the phase shifts associated with all three frequency components of 
P(t).

 (d) Express the rocking response in the form θ ω φ( ) sin( )t A ti i i= −∑1

3
, tabulate Ai, 

ωi, and θi, and plot the resultant rocking response.

Assume the unit weight of concrete to be 23 kN/m3.
The mass moment of inertia of the foundation is

 I
W
g

r h
0

0 0
2 2

4 3
423 000

9 81
1 8

( )
,
.

.
foundation = +







= 44

4
1 5

3
83 178

2 2
2+







=.

,  kg m /rad

where
 W0 = BLhγconc. = 4(3)(1.5)(23,000) = 414, 000 N is the weight of the foundation
 g = 9.81 m/s2 = acceleration due to gravity

 
r

BL
0

3
4

3
4

3
4 3
3

1 84= = = =
π π

( )
. m equivalent radius

 h = 1.5 m = height of the foundation

It will be assumed that the machine mass moment of inertia is negligibly small with 
respect to those of the foundation and the vibrating soil, I0(machine) ≈ 0.

Using Equations 3.76a through 3.76c, the static spring constant is

 k
Gr

θ µ
=

−
= ×

−
= ×8

3 1
8 30 10 1 84

3 1 0 2
6 23 100

3 6 3

( )
( )( . )

( . )
. 88 N m/rad

The dashpot coefficient is

 c
r G

Bθ
θ

ρ
µ

=
− +

= × ×
−

0 8
1 1

0 8 1 84 30 10 1700
1

0
4 4 6.

( )( )
. ( . )

( 00 2 1 0 696
1 53 107

. )( . )
.  

+
= × N m

rad/s

where

 B
I
rθ

µ
ρ

= − = − =3 1
8

3 1 0 2
8

83 178
1700 1 84

0 60

0
5 5

( ) ( . ) ,
( . )

. 996

is the inertia ratio.
The natural frequency of the system is

 ω θ
n rad/s= = × =k

I0

86 23 10
83 178

86 54
.

,
.

The frequency ratios corresponding to the components of the horizontal force (kN) 
5 sin(45t), 10 sin (90t), and 2.5 sin(135t) are



D
ow

nl
oa

de
d 

B
y:

 1
0.

3.
98

.1
04

 A
t: 

06
:4

8 
07

 N
ov

 2
02

1;
 F

or
: 9

78
14

39
89

27
87

, c
ha

pt
er

3,
 1

0.
12

01
/b

15
59

2-
4

173Spread Footings

 

ω
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ω
ω

ω
ω

1

3

2

45
86 54

0 52

86 54
1 04

135
86 54

90

n

n

n

= =
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=

.
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== 1 56.

The damping ratio is

 

D
c
c B B

θ
θ

θ θ θ

= =
+

=
+

=
c  

0 15

1

0 15

0 696 1 0 696
0 106

.

( )

.
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From Figure 3.22a,

 Θ Θ1

1
1 8

51 4
1 4 5000 2

2 25 10
6 23 10M ky /

r
θ

= ⇒ = ×
×

= × −.
. ( )

.
.

aad

 Θ Θ2

2
2 8

44 3
4 3 10 000 2

1 38 10
6 23 10M ky / θ
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×

= × −.
. ( , )

.
.

rad
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3
3 8

60 7
0 7 2500 2

5 62 10
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r
θ
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×

= × −.
. ( )
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From Figure 3.22b,

 

φ
φ
φ

1

2

3

0 15

1 15

0 2

=
= −
= −

.  

.  

.  

rad

rad

rad

The rocking response is then

 θ(t) = (2.25 × 10−5) sin (45t − 0.15) + (1.38 × 10−4) sin (90t − 1.15) + (5.62 × 10−6) sin (1.35t + 0.2)

θi (rad) ωi (rad) ϕi (rad)
2.25 × 10−5 45 0.15
1.38 × 10−4 90 –1.15
5.62 × 10−6 135 –0.2
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