LP Rounding

Design and Analysis of Algorithms Andrei Bulatov Algorithms - Linear Programming

Linear Programming

Linear Programming

Instance

Objective function $z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$ Constraints:

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &\leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &\leq b_2 \end{aligned}$$

:
$$a_{m1}x1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$$

Objective

Find values of the variables that satisfy all the constraints and maximize the objective function

Algorithms - LP-Rounding **Weighted Vertex Cover** Weighted vertex cover Instance An undirected graph G = (V, E) with vertex weights $w_i \ge 0$ Find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S 10 total weight = 55

Algorithms - LP-Rounding

Weighted Vertex Cover: IP Formulation

Integer programming formulation.

- Model inclusion of each vertex i using a 0/1 variable x_i.

$$x_i = \left\{ \begin{array}{ll} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{array} \right.$$

Vertex covers in 1-1 correspondence with 0/1 assignments: $S = \{i \in V : x_i = 1\}$

- Objective function: minimize Σ_i w_i x_i.
- Must take either i or j: $x_i + x_j \ge 1$.

Algorithms - LP-Rounding

Weighted Vertex Cover: IP Formulation

$$\begin{array}{lll} (\mathit{ILP}) \text{min} & \sum_{i \in V} w_i x_i \\ \\ \text{such that} & x_i + x_j & \geq 1 & (i,j) \in E \\ \\ & x_i & \in \{0,\!\!\!1\} & i \in V \end{array}$$

Observation.

If x^* is optimal solution to (ILP), then $S = \{i \in V : x^*_i = 1\}$ is a min weight vertex cover.

Algorithms - LP-Rounding

Integer Programming

Integer Programming Given integers a_{ij} and b_{i} , find integers x_{i} that satisfy:

$$\max_{\substack{\text{max} \quad c'x\\ \text{such that}}} \sum_{j=1}^n a_{ij} x_j \geq b_i \qquad 1 \leq i \leq m$$

$$\sup_{\substack{j \in A\\ x \text{ integral}}} x_j \geq 0 \qquad 1 \leq j \leq m$$

$$\lim_{\substack{j \in A\\ x \text{ integral}}} x_j \qquad \inf_{\substack{j \in A\\ x \text{ integral}}} 1 \leq j \leq m$$

Observation.

Vertex cover formulation proves that integer programming is NPhard search problem.

> even if all coefficients are 0/1 and at most two variables per inequality

Compare to Linear Programming

Algorithms - LP-Rounding

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover: Linear programming formulation.

$$\begin{array}{lll} (LP) \text{min} & \sum_{i \in V} w_i x_i \\ & \text{such that} & x_i + x_j & \geq & 1 & (i,j) \in E \\ & x_i & \geq & 0 & i \in V \end{array}$$

Observation.

Optimal value of (LP) is $\,$ less than or equal to the optimal value of (ILP).

Proof

LP has fewer constraints.

Algorithms - LP-Rounding

Weighted Vertex Cover: LP Relaxation

Note: LP is not equivalent to vertex cover.

How can solving LP help us find a small vertex cover?

Solve LP and round fractional values.

Algorithms – LP-Rounding

Weighted Vertex Cover

Theorem

If x^* is optimal solution to (LP), then $S = \{i \in V : x^*_i \geq 1/2\}$ is a vertex cover whose weight is at most twice the min possible weight.

Proof.

S is a vertex cover:

Consider an edge $(i, j) \in E$.

Since $\mathbf{x}^{\star}_{i} + \mathbf{x}^{\star}_{j} \geq 1$, either $\mathbf{x}^{\star}_{i} \geq 1$ or $\mathbf{x}^{\star}_{j} \geq 1$ implying (i, j) covered.

S has desired cost:

LP is a relaxation $x_i^* \ge \frac{1}{2}$

Let S* be optimal vertex cover. Then

er. Then $\sum_{i \in S^*} w_i \ge \sum_{i \in S} w_i x_i^* \ge \frac{1}{2} \sum_{i \in S} w_i$

Algorithms – LP-Rounding

Weighted Vertex Cover

Theorem

Linear Programming gives a 2-approximation algorithm for weighted vertex cover.

Theorem [Dinur-Safra, 2001]

If $P \neq NP$, then no ρ -approximation for $\rho \leq 1.3607$, even with unit weights

10 √5 - 21

Open research problem.

Close the gap.

Algorithms - LP-Rounding

unding

Generalized Load Balancing

Generalized Load Balancing

Instance

Set of m machines M; set of n jobs J.

Job j must run continuously on an authorized machine in $\,M_j \subseteq M.$

Job j has processing time t_i.

Each machine can process at most one job at a time.

Let J(i) be the subset of jobs assigned to machine i. The load of machine i is L_i = $\Sigma_{j \in J(i)} \, t_j.$

The makespan is the maximum load on any machine = max_i L_i.

Objective

Assign each job to an authorized machine to minimize makespan.

Algorithms - LP-Rounding

GLB: Integer Linear Program

ILP formulation: x_{ii} denotes the time machine i spends processing job j.

 $\begin{array}{lll} (IP) \text{min} & L \\ \text{such that} & \sum_i & x_{ij} &= t_j & & \text{for all } j \in J \\ & & \sum_j & x_{ij} &\leq L & & \text{for all } i \in M \end{array}$

 x_{ij} $\in \{0, t_j\}$ for all $j \in J$ and $i \in M_j$ x_{ij} = 0 for all $j \in J$ and $i \notin M_j$

Algorithms - LP-Rounding

GLB: Linear Program Relaxation

I P relaxation

$$\begin{array}{lll} (LP) \text{min} & L \\ & \text{such that} & \displaystyle \sum_i & x_{ij} & = & t_j & \text{for all} \ j \in J \\ & \displaystyle \sum_j & x_{ij} & \leq & L & \text{for all} \ i \in M \\ & x_{ij} & \geq & 0 & \text{for all} \ j \in J \ \text{and} \ i \in M_j \\ & x_{ii} & = & 0 & \text{for all} \ j \in J \ \text{and} \ i \notin M_j \end{array}$$

Algorithms - LP-Rounding

GLB: Lower Bounds

Lemma 1

Let L be the optimal value to the LP. Then, the optimal makespan $L^{\star} \geq L.$

Proof.

LP has fewer constraints than IP formulation.

. .

The optimal makespan $L^* \ge \max_j t_j$.

Proof.

Some machine must process the most time-consuming job.

GLB: Structure of LP Solution

Lemma 3

Let x be solution to LP. Let G(x) be the graph with an edge from machine i to job j if x_{ij} > 0. Then G(x) is acyclic.

Proof. (deferred)

can transform x into another LP solution where G(x) is acyclic if LP solver doesn't return such an x

x_{ij} > 0

G(x) acyclic job
machine

GLB: Rounding

Rounded solution: Find LP solution x where G(x) is a forest. Root forest G(x) at some arbitrary machine node r.

If job j is a leaf node, assign j to its parent machine i.

If job j is not a leaf node, assign j to one of its children.

job

Lemma 4.

Rounded solution only assigns jobs to authorized machines.

Proof.

If job j is assigned to machine i, then x_{ij} > 0. LP solution can only assign positive value to authorized machine

correspondence with LP solutions of value L.

GLB: Structure of Solution

Lemma 3.

Let (x, L) be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_j > 0$. We can find another solution (x', L) such that G(x') is acyclic.

Proof. Let C be a cycle in G(x).

Augment flow along the cycle C.

At least one edge from C is removed (and none are added).

Repeat until G(x') is acyclic.

Algorithms - LP-Rounding

Algorithms – LP-Rounding 31-

Conclusions

Running time:

The bottleneck operation in our 2-approximation is solving one LP with mn + 1 variables.

Remark

Can solve LP using flow techniques on a graph with $\,$ m+n+1 nodes: given L, find feasible flow if it exists. Binary search to find $\,$ L*.

Extensions:

unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

- Job j takes t_{ii} time if processed on machine i.
- 2-approximation algorithm via LP rounding.
- No 3/2-approximation algorithm unless P = NP.