Microservices
with Java

Third Edition

Build enterprise microservices with Spring Boot 2.0, Spring
Cloud, and Angular

www. packt.com
Sourabh Sharma

Mastering Microservices with
Java
Third Edition

Build enterprise microservices with Spring Boot 2.0, Spring
Cloud, and Angular

Sourabh Sharma

BIRMINGHAM - MUMBAI

Mastering Microservices with Java
Third Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar
Acquisition Editor: Denim Pinto

Content Development Editor: Zeeyan Pinheiro
Technical Editor: Romy Dias

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing

Indexer: Mariammal Chettiyar

Graphics: Alishon Mendonsa

Production Coordinator: Deepika Naik

First published: June 2016
Second edition: December 2017
Third edition: February 2019

Production reference: 1220219
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78953-072-8

www.packtpub.com

To my adored wife, Vanaja, and son, Sanmaya, for their unquestioning faith, support, and love.
To my parents, Mrs. Asha and Mr. Ramswaroop, for their blessings.

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Sourabh Sharma has over 16 years of experience in product/application development. His
expertise lies in designing, developing, deploying, and testing N-tier web applications and
leading teams. He loves to troubleshoot complex problems and develop innovative ways to
solve problems. Sourabh believes in continuous learning and sharing your knowledge.

I would like to thank Zeeyan, Romy, and the reviewers for their hard work and critical
review feedback. I also would like to thank Packt Publishing and Denim for providing me
with the opportunity to write this edition.

About the reviewer

Aristides Villarreal Bravo is a Java developer, member of the NetBeans Dream Team and
the Java User Groups community, and a developer of the jmoordb framework. He is
currently residing in Panama. He has organized and participated in various conferences
and seminars related to Java, Java EE, NetBeans, the NetBeans Platform, open source
software, and mobile devices, both nationally and internationally. He is a writer of tutorials
and blogs for web developers about Java and NetBeans. He has participated in several
interviews on sites including NetBeans, NetBeans Dzone, and JavaHispano. He is a
developer of plugins for NetBeans.

I want to thank my parents and brothers for their unconditional support (Nivia, Aristides,
Secundino, and Victor).

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface

Section 1: Section 1: Fundamentals

Chapter 1: A Solution Approach
Services and SOA
Monolithic architecture overview

Limitations of monolithic architectures versus its solution with microservices

architectures
Traditional monolithic design
Monolithic design with services

Microservices, nanoservices, teraservices, and serverless

One-dimension scalability

Release rollback in case of failure

Problems in adopting new technologies

Alignment with agile practices

Ease of development — could be done better

Nanoservices

Teraservices

Serverless

Deployment and maintenance

Microservices build pipeline

Deployment using a containerization engine such as Docker
Containers

Docker
Docker's architecture

Deployment
Summary

Chapter 2: Environment Setup
Spring Boot
Adding Spring Boot to our main project
REST
Writing the REST controller class
The @RestController annotation
The @RequestMapping annotation
The @RequestParam annotation
The @PathVariable annotation
Making a sample RESTapplication executable
An embedded web server
Maven build

10
11

11
12
13
13
15
16
16
17
18
20
20
20
21
21
22
22
23
24

25
25

26
27
28
31
35
35
36
36
37
40
41
42

Table of Contents

Running the Maven build from IDE
Maven build from the Command Prompt
Testing using Postman
Some more positive test scenarios
Negative test scenarios
Summary
Further reading

Chapter 3: Domain-Driven Design
Domain-driven design (DDD) fundamentals
The fundamentals of DDD

Building blocks
Ubiquitous language
Multilayered architecture

Presentation layer
Application layer
Domain layer
Infrastructure layer
Artifacts of DDD
Entities
Value objects
Services
Aggregates
Repository
Factory
Modules

Strategic design and principles
Bounded context
Continuous integration
Context map

Shared kernel
Customer-supplier
Conformist
Anti-corruption layer
Separate ways
Open Host Service
Distillation

Sample domain service
Entity implementation
Repository implementation
Service implementation

Summary

Chapter 4: Implementing a Microservice
OTRS overview

Developing and implementing microservices

Restaurant microservice
OTRS implementation

Restaurant service implementation
Controller class

42
43
44
47
48
49
50

51
52
53
53
53
54
55
56
56
56
56
57
58
60
61
63
64
66
66
66
68
68
70
70
71
71
71
72
72
73
73
76
78

82

83
84
86
87
88
90

[ii]

Table of Contents

API versioning 92

Service classes 94
Repository classes 96

Entity classes 99
Booking and user services 105
Execution 105
Testing 105
Microservice deployment using containers 112
Installation and configuration 112
Docker Machine with 4 GB of memory 113
Building Docker images with Maven 113
Running Docker using Maven 118
Integration testing with Docker 118
Managing Docker containers 119
Executing Docker Compose 120
Summary 122

Section 2: Section 2: Microservice Patterns, Security, and Ul

Chapter 5: Microservice Patterns - Part 1 124
Service discovery and registration 125
Spring Cloud Netflix Eureka Server 126
Implementation 127

Spring Cloud Netflix Eureka client 129
Centralized configuration 133
Spring Cloud Config Server 134
Spring Cloud Config client 138
Execution and testing of the containerized OTRS app 142
Summary 145
References 146
Chapter 6: Microservice Patterns - Part 2 147
The overall architecture 148
Edge server and API gateway 151
Implementation 153
Demo execution 157
Circuit breaker 159
Implementing Hystrix's fallback method 161
Demo execution 165
Centralized monitoring 166
Enabling monitoring 167
Prometheus 173
Architecture 173
Integration with api-service 174
Grafana 179
Summary 189
Further reading 189

[iii]

Table of Contents

Chapter 7: Securing Microservices
Secure Socket Layer
Authentication and authorization
OAuth 2.0
Uses of OAuth
OAuth 2.0 specification — concise details
OAuth 2.0 roles
Resource owner
Resource server
Client
Authorization server
OAuth 2.0 client registration
Client types
Client profiles
Client identifier
Client authentication
OAuth 2.0 protocol endpoints
Authorization endpoint
Token endpoint
Redirection endpoint
OAuth 2.0 grant types
Authorization code grant
Implicit grant
Resource owner password credentials grant
Client credentials grant
OAuth implementation using Spring Security
Security microservice
API Gateway as a resource server
Authorization code grant
Using the access token to access the APls
Implicit grant
Resource owner password credential grant
Client credentials grant
Summary

Further reading

Chapter 8: Consuming Services Using the Angular App
Setting up a Ul application
Angular framework overview
MVC and MVVM
Angular architecture
Modules (NgModules)
Components
Services and dependency injection (DI)
Routing
Directives
Guard
Developing OTRS features
The home page

[iv]

190
190
192
193
193
194
196
196
197
197
197
197
198
199
201
202
202
202
203
203
205
205
209
211
212
213
213
221
223
226
227
227
229
230

230

231
232
235
236
236
237
239
240
240
241
243
244
244

Table of Contents

src/app.module.ts (AppModule) 246
src/app-routing.module.ts (the routing module) 247
src/rest.service.ts (the REST client service) 248
src/auth.guard.ts (Auth Guard) 251
app.component.ts (the root component) 251
app.component.html (the root component HTML template) 252
Restaurants list page 254
src/restaurants/restaurants.component.ts (the restaurants list script) 254
src/restaurants/restaurants.component.html (the restaurants list HTML
template) 255
Searching for restaurants 256
Login page 257
login.component.html (login template) 258
login.component.ts 259
Restaurant details with a reservation option 260
restaurant.component.ts (the restaurant details and reservation page) 262
restaurant.component.html (restaurant details and reservation HTML template) 263
Reservation confirmation 265
Summary 266
Further reading 266

Section 3: Section 3: Inter-Process Communication

Chapter 9: Inter-Process Communication Using REST 268
REST and inter-process communication 269
Load balanced calls and RestTemplate implementation 270

RestTemplate implementation 272
OpenFeign client implementation 276
Java 11 HTTPClient 279
Wrapping it up 282
Summary 283
Further reading 283

Chapter 10: Inter-Process Communication Using gRPC 284

An overview of gRPC 284
gRPC features 285
REST versus gRPC 286
Can | call gRPC server from Ul apps? 286
gRPC framework overview 287

Protocol Buffer 288

The gRPC-based server 291
Basic setup 291
Service interface and implementation 295
The gRPC server 298

The gRPC-based client 299

Summary 302

Further reading 302

[v]

Table of Contents

Chapter 11: Inter-Process Communication Using Events 303
An overview of the event-based microservice architecture 303
Responsive 305
Resilient 305
Elastic 305
Message driven 305
Implementing event-based microservices 306
Producing an event 306
Consuming the event 313
Summary 318
Further reading 319
Section 4: Section 4: Common Problems and Best Practices
Chapter 12: Transaction Management 321
Design Iteration 321
First approach 322
Second approach 322
Two-phase commit (2PC) 322
Voting phase 323
Completion phase 323
Implementation 323
Distributed sagas and compensating transaction 324
Feral Concurrency Control 324
Distributed sagas 325
Routing slips 326
Distributed saga implementation 326
Saga reference implementations 327
Compensating transaction in the booking service 327
Booking service changes 327
Billing service changes 338
Summary 340
Further reading 340
Chapter 13: Service Orchestration 341
Choreography and orchestration 341
Choreography 342
Orchestration 342
Orchestration implementation with Netflix Conductor 343
High-level architecture 343
The Conductor client 344
Basic setup 345
Task definitions (blueprint of tasks) 347
WorkflowDef (blueprint of workflows) 349
The Conductor worker 351
Wiring input and output 353

[vi]

Table of Contents

Using Conductor system tasks such as DECISION
Starting workflow and providing input
Execution of sample workflow

Summary

Further reading

Chapter 14: Troubleshooting Guide
Logging and the ELK Stack
A brief overview
Elasticsearch
Logstash
Kibana
ELK Stack setup
Installing Elasticsearch
Installing Logstash
Installing Kibana
Running the ELK Stack using Docker Compose
Pushing logs to the ELK Stack
Tips for ELK Stack implementation
Using a correlation ID for service calls
Let's see how we can tackle this problem
Using Zipkin and Sleuth for tracking
Dependencies and versions
Cyclic dependencies and their impact
Analyzing dependencies while designing the system
Maintaining different versions
Let's explore more
Summary

Further reading

Chapter 15: Best Practices and Common Principles
Overview and mindset
Best practices and principles
Nanoservice, size, and monolithic
Continuous integration and continuous deployment (CI/CD)
System/end-to-end test automation
Self-monitoring and logging
A separate data store for each microservice
Transaction boundaries
Microservice frameworks and tools
Netflix Open Source Software (OSS)
Build — Nebula
Deployment and delivery — Spinnaker with Aminator
Service registration and discovery — Eureka
Service communication — Ribbon
Circuit breaker — Hystrix
Edge (proxy) server — Zuul
Operational monitoring — Atlas

354
355
356
359
359

360
360
362
362
363
364
364
364
365
367
367
370
371
372
372
372
374
374
375
375
375
376
376

377
377
379
379
381
382
383
384
385
386
386
387
387
387
388
388
388
389

[vii]

Table of Contents

Reliability monitoring service — Simian Army 389

AWS resource monitoring — Edda 390

On-host performance monitoring — Vector 391

Distributed configuration management — Archaius 391

Scheduler for Apache Mesos — Fenzo 392
Summary 392
Further reading 393
Chapter 16: Converting a Monolithic App to a Microservice-Based App 394
Do you need to migrate? 395
Cloud versus on-premise versus both cloud and on-premise 395
Cloud-only solution 395
On-premise only solution 396

Both cloud and on-premise solution 396
Approaches and keys to successful migration 397
Incremental migration 397
Process automation and tools setup 398

Pilot project 398
Standalone user interface applications 398
Migrating modules to microservices 400

How to accommodate a new functionality during migration 401
Summary 403
Further reading 403
Other Books You May Enjoy 404
Index 407

[wiii]

Preface

Presently, microservices are the de-facto way to design scalable, easy-to-maintain
applications. Microservice-based systems not only make application development easier,
but also offer great flexibility in utilizing various resources optimally. If you want to build
an enterprise-ready implementation of a microservice architecture, then this is the book for
you!

Starting off by understanding the core concepts and framework, you will then focus on the
high-level design of large software projects. You will gradually move on to setting up the
development environment and configuring it, before implementing continuous integration
to deploy your microservice architecture. Using Spring Security, you will secure
microservices and integrate sample online table reservation system (OTRS) services with
an Angular-based Ul app. We'll show you the best patterns, practices, and common
principles of microservice design, and you'll learn to troubleshoot and debug the issues
faced during development. We'll show you how to design and implement event-based and
gRPC microservices. You will learn various ways to handle distributed transactions and
explore choreography and orchestration of business flows. Finally, we'll show you how to
migrate a monolithic application to a microservice-based application.

By the end of the book, you will know how to build smaller, lighter, and faster services that
can be implemented easily in a production environment.

Who this book is for

This book is designed for Java developers who are familiar with microservice architecture
and now want to effectively implement microservices at an enterprise level. A basic
knowledge of Java and Spring Framework is necessary.

What this book covers

Chapter 1, A Solution Approach, starts with basic questions about the existence of
microservices and how they evolve. It highlights the problems that large-scale on-premises
and cloud-based products face, and how microservices deal with them. It also explains the
common problems encountered during the development of enterprise or large-scale
applications, and the solutions to these problems. Many of you might have experienced the
pain of rolling out the whole release due to failure of one feature.

Preface

Microservices give the flexibility to roll back only those features that have failed. This is a
very flexible and productive approach. For example, let's assume you are the member of an
online shopping portal development team and want to develop an application based on
microservices. You can divide your application based on different domains such as
products, payments, cart, and so on, and package all these components as a separate
package. Once you deploy all these packages separately, these would act as a single
component that can be developed, tested, and deployed independently—these are called
microservices.

Now let's see how this helps you. Let's say that after the release of new features,
enhancements, and bug fixes, you find flaws in the payment service that need an
immediate fix. Since the architecture is based on microservices, you can roll back just the
payment service, instead of rolling back the whole release. You could also apply the fixes to
the payment microservice without affecting the other services. This not only allows you to
handles failure properly, but helps to deliver features/fixes swiftly to the customer.

Chapter 2, Environment Setup, teaches you how to set up the development environment
from an integrated development environment (IDE), and looks at other development tools
from different libraries. This chapter covers everything from creating a basic project, to
setting up Spring Boot configuration, to building and developing our first microservice.
Here, we'll use Java 11 as our language and Jetty as our web server.

Chapter 3, Domain-Driven Design, sets the tone for rest of the chapters by referring to one
sample project designed using domain-driven design. This sample project is used to
explain different microservice concepts from this chapter onward. This chapter uses this
sample project to drive through different functional and domain-based combinations of
services or apps to explain domain-driven design.

Chapter 4, Implementing a Microservice, takes you from the design to the implementation of
a sample project. Here, the design of our sample project explained in the last chapter is
used to build the microservices. This chapter not only covers the coding, but also other
different aspects of the microservices—build, unit testing, and packaging. At the end of this
chapter, the sample microservice project will be ready for deployment and consumption.

Chapter 5, Microservice Pattern —Part 1, elaborates upon the different design patterns and
why these are required. You'll learn about service discovery, registration, configuration,
how these services can be implemented, and why these services are the backbone of
microservice architecture. During the course of microservice implementation, you'll also
explore Netflix OSS components, which have been used for reference implementation.

[2]

Preface

Chapter 6, Microservice Pattern — Part 2, continues from the first chapter on microservice
patterns. You'll learn about the API Gateway pattern and its implementation. Failures are
bound to happen, and a successful system design prevents the failure of the entire system
due to one component failure. We'll learn about the circuit breaker, its implementation, and
how it acts as a safeguard against service failure.

Chapter 7, Securing Microservices, explains how to secure microservices with respect to
authentication and authorization. Authentication is explained using basic authentication
and authentication tokens. Similarly, authorization is examined using Spring Security 5.0.
This chapter also explains common security problems and their solutions.

Chapter 8, Consuming Microservices Using the Angular App, explains how to develop a web
application using Angular]JS to build the prototype of a web application that will consume
microservices to show the data and flow of a sample project — a small utility project.

Chapter 9, Inter-Process Communication Using REST, explains how REST can be used for
inter-process communication. The use of Rest Template and the Feign client for
implementing inter-process communication is also considered. Lastly, it examines the use
of load balanced calls to services where more than one instance of a service is deployed in
the environment.

Chapter 10, Inter-Process Communication Using gRPC, explains how to implement gRPC
services and how these can be used for inter-process communication.

Chapter 11, Inter-Process Communication Using Events, discusses reactive microservices and
their fundamentals. It outlines the difference between plain microservices and reactive
microservices. At the end, you'll learn how to design and implement a reactive
microservice.

Chapter 12, Transaction Management, teaches you about the problem of transaction
management when a transaction involves multiple microservices, and a call when routed
through various services. We'll discuss the two-phase commit and distributed saga
patterns, and resolve the transaction management problem with a distributed saga
implementation.

Chapter 13, Service Orchestration, introduces you to different designs for establishing inter-
process communication among services for specific flows or processes. You'll learn about
choreography and orchestration. You will also learn about using Netflix Conductor to
implement the orchestration.

[3]

Preface

Chapter 14, Troubleshooting Guide, talks about scenarios when you may encounter issues
and get stuck. This chapter explains the most common problems encountered during the
development of microservices, along with their solutions. This will help you to follow the
book smoothly and will make learning swift.

Chapter 15, Best Practices and Common Principles, teaches the best practices and common
principles of microservice design. It provides details about microservices development
using industry practices and examples. This chapter also contains a few examples where
microservice implementation can go wrong, and how you can avoid such problems.

Chapter 16, Converting a Monolithic App to a Microservices-Based App, shows you how to
migrate a monolithic application to a microservice-based application.

To get the most out of this book

You need to have a basic knowledge of Java and Spring Framework. You can explore the
reference links given at the end of each chapter to get the more out of this book.

For this book, you can use any operating system (out of Linux, Windows, or macOS) with a
minimum of 4 GB RAM. You will also require NetBeans with Java, Maven, Spring Boot,
Spring Cloud, Eureka Server, Docker, and a continuous integration/continuous deployment
application. For Docker containers, you may need a separate virtual machine or cloud host,
preferably with 16 GB or more of RAM.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=N

[4]

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Microservices-with-Java-Third-Edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781789530728_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: " First, we'll add Spring Cloud dependencies, as shown in pom.xm1."

[5]

Preface

A block of code is set as follows:

logging:
level:
ROOT: INFO
org.springframework.web: INFO

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

endpoints:
restart:
enabled: true
shutdown:
enabled: true

Any command-line input or output is written as follows:
Chapter6> mvn clean package

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"After the values are updated, click on the Save and Test button."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

[6]

Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[7]

Section 1: Fundamentals

The following part of this book will teach you about the fundamentals of microservices and
the basics that you need in order to implement microservice-based systems.

In this section, we will cover the following chapters:

e Chapter 1, A Solution Approach

e Chapter 2, Environment Setup

e Chapter 3, Domain-Driven Design

® Chapter 4, Implementing a Microservice

A Solution Approach

As a prerequisite for proceeding with this book, you should have a basic understanding of
microservices and different software architecture styles. Having a basic understanding of
these will help you understand what we discuss in this book.

After reading this book, you will be able to implement microservices for on-premises or
cloud production deployments and you will understand the complete life cycle, from
design and development to testing and deployment, of continuous integration and
deployment. This book is specifically written for practical use and to stimulate your mind
as a solution architect. Your learning will help you to develop and ship products in any
situation, including Software-as-a-Service (SaaS) and Platform-as-a-Service (PaaS)
environments. We'll primarily use Java and Java-based framework tools, such as Spring
Boot and Jetty, and we will use Docker for containerization.

In this chapter, you will learn about microservices and how they have evolved. This chapter
highlights the problems that on-premises and cloud-based products face and how
microservices architectures deal with them. It also explains the common problems
encountered during the development of SaaS, enterprise, or large applications and their
solutions.

In this chapter, we will explore the following topics:

e Services and service-oriented architecture (SOA)
e Microservices, nanoservices, teraservices, and serverless
¢ Deployment and maintenance

A Solution Approach Chapter 1

Services and SOA

Martin Fowler explains the following:

The term microservice was discussed at a workshop of software architects near Venice in
May 2011 to describe what the participants saw as a common architectural style that
many of them had been recently exploring. In May 2012, the same group decided on
uServices as the most appropriate name.

Let's get some background on the way microservices have evolved over the years.
Enterprise architecture evolved from historic mainframe computing, through client-server
architecture (two-tier to n-tier), to SOA.

The transformation from SOA to microservices is not a standard defined by an industry
organization, but a practical approach practiced by many organizations. SOA eventually
evolved to become microservices.

Adrian Cockcroft, a former Netflix architect, describes a microservice-based architecture as
follows:

Fine grain SOA. So microservice is SOA with emphasis on small ephemeral components.

Similarly, the following quote from Mike Gancarz, a member who designed the X Windows
system, which defines one of the paramount precepts of Unix philosophy, describes the
microservice paradigm as well:

Small is beautiful.

Microservice architectures share many common characteristics with SOAs, such as the
focus on services and how one service decouples from another. SOA evolved around
monolithic application integration by exposing APIs that were mostly Simple Object
Access Protocol (SOAP)-based. Therefore, having middleware such as an enterprise
service bus (ESB) is very important for SOA. Microservices are less complex than SOAs,
and, even though they may use a message bus, it is only used for message transport and it
does not contain any logic. It is simply based on smart endpoints.

Tony Pujals defined microservices beautifully:

In my mental model, I think of self-contained (as in containers) lightweight processes
communicating over HTTP, created and deployed with relatively small effort and
ceremony, providing narrowly-focused APIs to their consumers.

[10]

A Solution Approach Chapter 1

Though Tony only talks about HTTP, event-driven microservices may use a different
protocol for communication. You can make use of Kafka to implement event-driven
microservices. Kafka uses the wire protocol, a binary protocol over TCP.

Monolithic architecture overview

Microservices are not new—they have been around for many years. For example, Stubby, a
general purpose infrastructure based on Remote Procedure Call (RPC), was used in Google
data centers in the early 2000s to connect a number of services with and across data centers.
Its recent rise is due to its popularity and visibility. Before microservices became popular,
monolithic architectures were mainly being used for developing on-premises and cloud-
based applications.

A monolithic architecture allows the development of different components such as
presentation, application logic, business logic, and Data Access Objects (DAOs), and then
you either bundle them together in an Enterprise Archive (EAR) or a Web Archive (WAR),
or store them in a single directory hierarchy (such as Rails or Node.js).

Many famous applications, such as Netflix, have been developed using a microservices
architecture. Moreover, eBay, Amazon, and Groupon have evolved from monolithic
architectures to microservices architectures.

Now that you have had an insight into the background and history of microservices, let's
discuss the limitations of a traditional approach—namely, monolithic application
development—and see how microservices would address them.

Limitations of monolithic architectures versus its
solution with microservices architectures

As we know, change is eternal. Humans always look for better solutions. This is how
microservices became what it is today and it will evolve further in the future. Today,
organizations are using agile methodologies to develop applications—it is a fast-paced
development environment that has grown to a much larger scale after the invention of the
cloud and distributed technologies. Many argue that monolithic architectures could also
serve a similar purpose and be aligned with agile methodologies, but microservices still
provide a better solution to many aspects of production-ready applications.

[11]

A Solution Approach Chapter 1

To understand the design differences between monolithic and microservices architectures,
let's take an example of a restaurant table-booking application. This application may have
many services to do with customers, bookings, analytics, and so on, as well as regular
components, such as presentation and databases.

We'll explore three different designs here: the traditional monolithic design, the monolithic
design with services, and the microservices design.

Traditional monolithic design

The following diagram explains the traditional monolithic application design. This design
was widely used before SOA became popular:

Business Logic

Presentation
Application Logic

Traditional monolithic application design

In a traditional monolithic design, everything is bundled in the same archive (all the
presentation code is bundled in with the Presentation archive, the application logic goes
into the Application Logic archive, and so on), regardless of how it all interacts with the
database files or other sources.

[12]

A Solution Approach Chapter 1

Monolithic design with services

After SOA, applications started being developed based on services, where each component
provides services to other components or external entities. The following diagram depicts a
monolithic application with different services; here, services are being used with a
Presentation component. All services, the Presentation component, or any other
components are bundled together:

Customer API

Booking API

Presentation

Analytics API

Microservices, nanoservices, teraservices,
and serverless

The following diagram depicts the microservices design. Here each component is
autonomous. Each component could be developed, built, tested, and deployed
independently. Here, even the application User Interface (UI) component could also be a
client and consume the microservices. For the purpose of our example, the layer designed is
used within the pService.

[13]

A Solution Approach Chapter 1

The API Gateway provides an interface where different clients can access the individual
services and solve various problems, such as what to do when you want to send different
responses to different clients for the same service. For example, a booking service could
send different responses to a mobile client (minimal information) and a desktop client
(detailed information), providing different details to each, before providing something
different again to a third-party client.

A response may require the fetching of information from two or more services:

-

/

Presentation

App Logic

BusinessLogic

A

N
/

Presentation

App Logic

Business Logic

l
|
\
7,

\S

AP| Gateway

Presentation
App Logic
< EB
Business Logic

API3

\

After observing all the sample design diagrams we've just gone through, which are very
high-level designs, you might find that in a monolithic design, the components are bundled
together and tightly coupled. All the services are part of the same bundle. Similarly, in the
second design diagram, you can see a variant of the first diagram where all services could
have their own layers and form different APIs, but, as shown in the diagram, these are also
all bundled together.

[14]

A Solution Approach Chapter 1

Conversely, in the microservices design, the design components are not bundled together
and have loose couplings. Each service has its own layers and database, and is bundled in a
separate archive to all others. All these deployed services provide their specific APIs, such
as Customers or Bookings. These APIs are ready to consume. Even the Ul is also deployed
separately and designed using pServices. For this reason, the microservices provides
various advantages over its monolithic counterpart. I would, nevertheless, remind you that
there are some exceptional cases where monolithic application development is highly
successful, such as Etsy, and peer-to-peer e-commerce web applications.

Now let us discuss the limitations you'd face while working with Monolithic applications.

One-dimension scalability

Monolithic applications that are large when scaled, scale everything, as all the components
are bundled together. For example, in the case of a restaurant table reservation application,
even if you would like to scale only the table-booking service, you would scale the whole
application; you cannot scale the table-booking service separately. This design does not
utilize resources optimally.

In addition, this scaling is one-dimensional. Running more copies of the application
provides the scale with increasing transaction volume. An operation team could adjust the
number of application copies that were using a load balancer based on the load in a server
farm or a cloud. Each of these copies would access the same data source, therefore
increasing the memory consumption, and the resulting I/O operations make caching less
effective.

Microservices architectures give the flexibility to scale only those services where scale is
required and allow optimal utilization of resources. As mentioned previously, when
needed, you can scale just the table-booking service without affecting any of the other
components. It also allows two-dimensional scaling; here we can not only increase the
transaction volume, but also the data volume using caching (platform scale). A
development team can then focus on the delivery and shipping of new features, instead of
worrying about the scaling issues (product scale).

Microservices could help you scale platforms, people, and product dimensions, as we have
seen previously. People scaling here refers to an increase or decrease in team size
depending on the microservices' specific development needs.

Microservice development using RESTful web service development provides scalability in
the sense that the server-end of REST is stateless; this means that there is not much
communication between servers, which makes the design horizontally scalable.

[15]

A Solution Approach Chapter 1

Release rollback in case of failure

Since monolithic applications are either bundled in the same archive or contained in a
single directory, they prevent the deployment of code modularity. For example, many of
you may have experienced the pain of delaying rolling out the whole release due to the
failure of one feature.

To resolve these situations, microservices give us the flexibility to roll back only those
features that have failed. It's a very flexible and productive approach. For example, let's
assume you are the member of an online shopping portal development team and want to
develop an application based on microservices. You can divide your application based on
different domains such as products, payments, cart, and so on, and package all these
components as separate packages. Once you have deployed all these packages separately,
these would act as single components that can be developed, tested, and deployed
independently, and called pService.

Now, let's see how that helps you. Let's say that after a production release launching new
features, enhancements, and bug fixes, you find flaws in the payment service that need an
immediate fix. Since the architecture you have used is based on microservices, you can roll
back the payment service instead of rolling back the whole release, if your application
architecture allows, or apply the fixes to the microservices payment service without
affecting the other services. This not only allows you to handle failure properly, but it also
helps to deliver the features/fixes swiftly to a customer.

Problems in adopting new technologies

Monolithic applications are mostly developed and enhanced based on the technologies
primarily used during the initial development of a project or a product. This makes it very
difficult to introduce new technology at a later stage of development or once the product is
in a mature state (for example, after a few years). In addition, different modules in the same
project that depend on different versions of the same library make this more challenging.

Technology is improving year on year. For example, your system might be designed in Java
and then, a few years later, you may want to develop a new service in Ruby on Rails or
Node.js because of a business need or to utilize the advantages of new technologies. It
would be very difficult to utilize the new technology in an existing monolithic application.

[16]

A Solution Approach Chapter 1

It is not just about code-level integration, but also about testing and deployment. It is
possible to adopt a new technology by rewriting the entire application, but it is a time-
consuming and risky thing to do.

On the other hand, because of its component-based development and design, microservices
architectures give us the flexibility to use any technology, new or old, for development.
They do not restrict you to using specific technologies, and give you a new paradigm for
your development and engineering activities. You can use Ruby on Rails, Node.js, or any
other technology at any time.

So, how is this achieved? Well, it's very simple. Microservices-based application code does
not bundle into a single archive and is not stored in a single directory. Each uService has its
own archive and is deployed separately. A new service could be developed in an isolated
environment and could be tested and deployed without any technical issues. As you know,
microservices also own their own separate processes, serving their purpose without any
conflicts to do with things such as shared resources with tight coupling, and processes
remain independent.

Monolithic systems does not provide flexibility to introduce new technology. However,
introduction of new technology comes as low risk features in microservices based system
because by default these small and self contained components.

You can also make your microservice available as open source software so it can be used by
others, and, if required, it may interoperate with a closed source, a proprietary one, which
is not possible with monolithic applications.

Alignment with agile practices

There is no question that monolithic applications can be developed using agile practices,
and these are being developed all the time. Continuous integration (CI) and continuous
deployment (CD) could be used, but the question is—do they use agile practices
effectively? Let's examine the following points:

e When there is a high probability of having stories dependent on each other, and
there could be various scenarios, a story would not be taken up until the
dependent story is complete.

¢ The build takes more time as the code size increases.

¢ The frequent deployment of a large monolithic application is a difficult task to
achieve.

¢ You would have to redeploy the whole application even if you updated a single
component.

[17]

A Solution Approach Chapter 1

¢ Redeployment may cause problems to already running components; for example,
a job scheduler may change whether components impact it or not.

e The risk of redeployment may increase if a single changed component does not
work properly or if it needs more fixes.

e Ul developers always need more redeployment, which is quite risky and time-
consuming for large monolithic applications.

The preceding issues can be tackled very easily by microservices. For example, Ul
developers may have their own Ul component that can be developed, built, tested, and
deployed separately. Similarly, other microservices might also be deployable
independently and, because of their autonomous characteristics, the risk of system failure is
reduced. Another advantage for development purposes is that Ul developers can make use
of JSON objects and mock Ajax calls to develop the Ul, which can be taken up in an isolated
manner. After development is finished, developers can consume the actual APIs and test
the functionality. To summarize, you could say that microservices development is swift and
it aligns well with the incremental needs of businesses.

Ease of development — could be done better

Generally, large monolithic application code is the toughest to understand for developers,
and it takes time before a new developer can become productive. Even loading the large
monolithic application into an integrated development environment (IDE) is troublesome,
as it makes the IDE slower and the developer less productive.

A change in a large monolithic application is difficult to implement and takes more time
due to the large code base, and there can also be a high risk of bugs if impact analysis is not
done properly and thoroughly. Therefore, it becomes a prerequisite for developers to do a
thorough impact analysis before implementing any changes.

In monolithic applications, dependencies build up over time as all components are bundled
together. Therefore, the risk associated with code changes rises exponentially as the amount
of modified lines of code grows.

When a code base is huge and more than 100 developers are working on it, it becomes very
difficult to build products and implement new features because of the previously
mentioned reason. You need to make sure that everything is in place, and that everything is
coordinated. A well-designed and documented API helps a lot in such cases.

[18]

A Solution Approach Chapter 1

Netflix, the on-demand internet streaming provider, had problems getting their application
developed, with around 100 people working on it. Then, they used a cloud service and
broke up the application into separate pieces. These ended up being microservices.
Microservices grew from the desire for speed and agility and to deploy teams
independently.

Microcomponents are made loosely coupled thanks to their exposed APIs, which can be
continuously integration tested. With microservices' continuous release cycle, changes are
small and developers can rapidly exploit them with a regression test, then go over them
and fix the defects found, reducing the risk of a flawed deployment. This results in higher
velocity with a lower associated risk.

Owing to the separation of functionality and the single responsibility principle,
microservices make teams very productive. You can find a number of examples online
where large projects have been developed with very low team sizes, such as 8 to 10
developers.

Developers can have better focus with smaller code bases and better feature
implementation, leading to a higher empathetic relationship with the users of the product.
This conduces better motivation and clarity in feature implementation. An empathetic
relationship with users allows for a shorter feedback loop and better and speedier
prioritization of the feature pipeline. A shorter feedback loop also makes defect detection
faster.

Each microservices team works independently and new features or ideas can be
implemented without being coordinated with larger audiences. The implementation of
endpoint failure handling is also easily achieved in the microservices design.

At a recent conference, a team demonstrated how they had developed a microservices-
based transport-tracking application for iOS and Android, within 10 weeks, with Uber-type
tracking features. A big consulting firm gave a seven-month estimation for this application
to its client. This shows how the microservices design is aligned with agile methodologies
and CI/CD.

So far, we have discussed only the microservices design—there are also nanoservices,
teraservices, and serverless designs to explore.

[19]

A Solution Approach Chapter 1

Nanoservices

Microservices that are especially small or fine-grained are called nanoservices. A
nanoservices pattern is really an anti-pattern.

In the case of nanoservices, overheads such as communication and maintenance activities
outweigh its utility. Nanoservices should be avoided. An example of a nanoservices (anti-)
pattern would be creating a separate service for each database table and exposing its CRUD
operation using events or a REST API.

Teraservices

Teraservices are the opposite of microservices. The teraservices design entails a sort of a
monolithic service. Teraservices require two terabytes of memory, or more. These services
could be used when services are required only to be in memory and have high usage.

These services are quite costly in cloud environments due to the memory needed, but the
extra cost can be offset by changing from quad-core servers to dual-core servers.

Such a design is not popular.

Serverless

Serverless is another popular cloud architecture offered by cloud platforms such as AWS.
There are servers, but they are managed and controlled by cloud platforms.

This architecture enables developers to simply focus on code and implementing
functionality. Developers need not worry about scale or resources (for instance, OS
distributions as with Linux, or message brokers such as RabbitMQ) as they would with
coded services.

A serverless architecture offers development teams the following features: zero
administration, auto-scaling, pay-per-use schemes, and increased velocity. Because of these
features, development teams just need to care about implementing functionality rather than
the server and infrastructure.

[20]

