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Abstract

We present a novel approach for estimating the intrinsic di-
mensionality of certain point clouds: we assume that the
points are sampled from a manifold M of dimension k, with
k << D, and corrupted by D-dimensional noise. When
M is linear, one may analyze this situation by SVD: with
no noise one would obtain a rank k matrix, and noise may be
treated as a perturbation of the covariance matrix. When M is
a nonlinear manifold, global SVD may dramatically overesti-
mate the intrinsic dimensionality. We introduce a multiscale
version SVD and discuss how one can extract estimators for
the intrinsic dimensionality that are highly robust to noise,
while require a smaller sample size than current estimators.

1. Introduction

The problem of estimating the intrinsic dimensionality of a
point cloud is of interest in a wide variety of problems. To
cite some important instances, it is equivalent to estimating
the number of variables in a statistical linear model in statis-
tics, the number of degrees of freedom in a dynamical sys-
tem, the intrinsic dimensionality of a data set modeled by
a probability distribution highly concentrated around a low-
dimensional manifold. Many applications and algorithms
crucially rely on the estimation of the number of components
in the data, for example spectrometry, signal processing, ge-
nomics, economics, to name only a few. Finally, many man-
ifold learning algorithms assume that the intrinsic dimen-
sionality is given.

When the data is generated by a multivariate linear model,

xi =
∑k

j=1 αjvj for some random variables αj , and the vj’s

are fixed vectors in RD, the number of components is simply
the rank of the data matrix X , where Xij is the j-th coor-
dinate of the i-th sample. In this case principal component
analysis (PCA) or singular value decomposition (SVD) may
be used to recover the rank and the subspace spanned by the
vj’s, and this situation is well understood, at least when the
number of samples n goes to infinity. The more interest-
ing case in most applications assumes that we observe noise
measurements x̃i = xi + ηi, where η represents noise. This
case is also quite well understood, at least when n tends
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to infinity (see e.g., out of many works, (Johnstone 2001),
(Paul 2007), (Silverstein 2007) and references therein).

The finite sample situation is less well understood. While
we derive new results in this direction with a new approach,
the situation in which we are really interested is that of
data having a geometric structure more complicated than lin-
ear. In particular, an important trend in machine learning
and analysis of high-dimensional data sets assumes that data
lies on a nonlinear low-dimensional manifold. Several algo-
rithms have been proposed to estimate intrinsic dimension-
ality in this setting; for lack of space we cite only (Levina
and Bickel 2005) (Haro, Randall, and Sapiro 2008), (Carter
and Hero 2008), (Carter, Hero, and Raich 2007), (Costa and
Hero 2004), (Camastra and Vinciarelli 2002), (Cao and Har-
alick 2006), (Raginsky and Lazebnik 2005), (Takens 1985),
(Hein and Audibert 2005), (Borovkova, Burton, and Dehling
1999), (Grassberger and Procaccia 1983), (Farahmand and
Audibert 2007), (Fukunaga and Olsen 1971) and we refer
the reader to the many references therein. One the most im-
portant take away messages from the papers above is that
most methods are based on estimating volume growth rate
of an approximate ball of radius r on the manifold, and
that such techniques necessarily require a number of sam-
ple points exponential in the intrinsic dimension. More-
over, such methods do not consider the case when high-
dimensional noise is added to the manifold. The methods of
this paper, on a restricted model of “manifold+noise”, only
requires a number of points essentially proportional to the
intrinsic dimensionality, as detailed in (Lee et al. 2009).

2. Multiscale Dimensionality Estimation

We start by describing a stochastic geometric model generat-
ing the point clouds we will study. Let (M, g) be a smooth
k-dimensional Riemannian manifold with bounded curva-
ture, isometrically embedded in RD . Let η be RD-valued
with E[η] = 0, Var[η] = σ2 (the “noise”), for example
η ∼ σN (0, ID). Let X = {xi}n

i=1 be a set of uniform

(with respect to the natural volume measure on M) 1 inde-

pendent random samples on M. Our observations X̃ are

noisy samples: X̃ = {xi +σηi}n
i=1, where ηi are i.i.d. sam-

1In fact, the same techniques work for a measure µ abso-
lutely continuous w.r.t. the volume measure, with Radon-Nykodym
derivative bounded above and below.
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ples from η and σ > 0. These points may also be thought

of as sampled from a probability distribution M̃ supported
in RD, concentrated around M. Here and in what follows
we represent a set of n points in RD by an n × D matrix,
whose (i, j) entry is the j-th coordinate of the i-th point. In

particular, X and X̃ will be used to denote both the point
cloud and the associated n×D matrices, and N is the noise
matrix of the ηi’s.

The problem we consider is to estimate k = dimM,

given X̃ . Let us first consider the case when M is a linear
manifold (e.g. the image of a cube under a linear map), and
η is Gaussian noise; the standard approach is to compute the

principal components of X̃ , and use the singular values to
estimate k. Let cov(X) = 1

nXT X be the D×D covariance

matrix of X , and Σ(X) = (σ2
i )D

i=1 its eigenvalues. These

are the singular values (S.V.) squared of n−1/2X , i.e. the
first D diagonal entries of Σ in the singular value decompo-
sition (SVD) X = UΣV T . At least for n ∼ k log k, it is
easy to show that with high probability (w.h.p.) exactly k
S.V.’s are nonzero, and the remaining D − k are equal to 0.

Since we are given X̃ and not X , we think of X̃ as a

random perturbation of X and expect that Σ(X̃) is close to
Σ(X), so that σ1, . . . , σk ≫ σk+1, . . . , σD, allowing us to
estimate k correctly with high probability (w.h.p.). This is a
very common procedure, applied in a wide variety of situa-
tions, and often generalized to kernelized versions of princi-
pal component analysis, such as widely used dimensionality
reduction methods.

In the general case when M is a nonlinear manifold,
there are several problems with the above line of reason-
ing. Curvature in general forces the dimensionality of a
best-approximating hyperplane, such as that provided by a
truncated SVD, to be much higher than necessary. As a
first trivial example, consider a planar circle (k = 1) em-
bedded in RD: cov(X) has exactly 2 nonzero eigenvalues
equal to the radius squared. More generally, it is easy to
construct a one-dimensional manifold (k = 1) in RD such
that cov(X) has full rank D: it is enough to pick a curve
that spirals out in more and more dimensions. A simple
construction (sometimes called Y. Meyer’s staircase) is the
following: let χ[0,1)(x) = 1 if x ∈ [0, 1) and 0 otherwise.

Then the set {xt := χ[0,1)(· − t)}t∈R ⊂ L1(R) := {f :

R → R, f meas. s.t.
∫

R
|f | < ∞} is a one-dimensional

manifold which is not contained in any subspace of dimen-
sion less than D. Notice that xt1 and xt2 are orthogonal
whenever |t1 − t2| > 1, so this curve spirals into larger
and larger subspaces as t increases. Similar considerations
would hold after discretization of the space and restriction
of t to a bounded interval. The above phenomena are a con-
sequence of performing SVD globally: if one thinks locally,
the matter seems once again easily resolved. Let z ∈ M, r
a small enough radius and consider only the points X(z,r) in

Bz(r) ∩M (the ball is in RD). For r small enough, X(z,r)

is well-approximated by a portion of k-dimensional tangent

plane Tz(M), and therefore we expect cov(X(z,r)) to have
k large eigenvalues, growing like O(r2), and smaller eigen-
values caused by curvature, growing like O(r4). By letting

rz → 0, i.e. choosing rz small enough dependent on curva-
ture, the curvature eigenvalues tend to 0 faster than the top k
eigenvalues. Therefore, if we were given X , in the limit as
n → ∞ and rz → 0, this would give a consistent estimator
of k. It is important to remark that these two limits are not
unconditional: we need rz to approach 0 slow enough and n
to grow fast enough so that Bz(r) contains enough points to
accurately estimate the SVD in Bz(r).

However, more interestingly, if we are given X̃ , i.e. noise
is added to the samples, we meet another constraint, that

forces us to not take rz too small. Let X̃(z,r) be M̃∩Bz(r).
If rz is comparable to a quantity dependent on σ and D (for

example, rz ∼ σ
√

D when η ∼ σN (0, ID)), and Bz(r)

contains enough points, cov(X̃(z,r)) may approximate the
covariance of η rather than that of points on Tz(M). Only
for rz larger than a quantity dependent on σ, yet smaller than
a quantity depending on curvature, conditioned on Bz(r)

containing enough points, will we expect cov(X̃(z,r)) to ap-
proximate a “noisy” version of Tz(M).

Since we are not given σ, nor the curvature of M, we can-
not determine quantitatively the correct scale r = r(z) qual-
itatively described above. This suggests that we take a multi-
scale approach. For every point z ∈ M and scale parameter

r > 0, let cov(z, r) = cov(X̃(z,r)) and let {σ(z,r)
i }i=1,...,D

be the corresponding eigenvalues, as usual sorted in nonin-
creasing order. We will call them multiscale singular values

(S.V.’s) (P.W.Jones 1990). What is the behavior of σ
(z,r)
i as

a function of i, z, r? How can they be used to detect k, and
what can they tell us about M? What is the effect of sam-
pling and noise in estimating them? To build our intuition,
we start with a simple yet surprising example.

2.1 Example: k-dimensional sphere in RD, with
noise

Let Sk = {x ∈ Rk+1 : ||x||2 = 1} be the unit sphere in
Rk+1, so dim(Sk) = k. We embed Sk in RD using the
natural embedding of Rk+1 in RD via the first k + 1 co-
ordinates. We obtain X by sampling n points uniformly at

random from Sk, and X̃ is obtain by adding D-dimensional
white Gaussian noise of variance σ in every direction. We
call this data set Sk(D, n, σ).

In Figure 1 we consider the multiscale S.V.’s of
S9(100, 1000, 0.1) as a function of r. Several observations
are in order. First of all, notice that R10 is divided into 210

sectors, and therefore by sampling 1000 points on S9 we ob-
tain about 1 point per sector (!). Secondly, observe that the
noise size, if measured by ||xi−x̃i||22, i.e. by how much each
point is displaced, would be of order E[σ2χ2

D] ∼ 1 (where
χ2

D is a χ2 distribution with D degrees of freedom), which
is comparable with the radius of the sphere itself (!). There-
fore this data set may be described as randomly sampling
one point per sector at distance 1 from the origin in the first
k + 1 coordinates, then moving by 1 in a random direction
in R100. The situation may seem hopeless.

In fact, we can reliably detect the intrinsic dimensional-
ity of M. At very small scales, Bz(r) is empty or contains
less than O(k) points, and the rank of cov(z, r) is even less
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than k. At small scales, no gap among the σ
(z,r)
i is visible:

Bz(r) contains too few points, scattered in all directions by
the noise, and new increasing S.V.’s keep arising for several
scales. At larger scales, the top 9 = k S.V.’s start to sepa-
rate from the others: at these scales the noisy tangent space
is detected. At even larger scales, the curvature starts affect-
ing the covariance, as indicated by the slowly (quadratically)
growing 10th S.V., while the remaining smaller S.V.’s tend
approximately to the one-dimensional noise variance σ: this
is the size of the noise relevant in our procedure, rather than
the much larger expected displacement measured in the full
RD, which was of size O(1).
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Figure 1: S9(100, 1000, 0.1): plot of Ez[σ
(z,r)
i ], and correspond-

ing standard deviation bands (dotted), as a function of r. The top 9
S.V.’s dominate and correspond to the intrinsic dimensions; the 10-
th S.V. corresponds to curvature, and slowly increases with scale
(note that at large scale ∆10 > ∆9); the remaining S.V.’s corre-
spond to noise in the remaining 90 dimensions, and converge to
the one-dimensional noise size σ.

3. Analysis

Motivated by applications to large data sets in high-
dimensional spaces that are assumed to be intrinsically low-
dimensional, we are interested in the regime where D is
large, k << D, and will ask how small n needs to be in
order to estimate k correctly w.h.p. In a classical statistical
framework one may rather be interested in the regime where
D, k are fixed and n tends to infinity, but in that case one
would conduct the analysis as r → 0 and this would lead
essentially to the problem of consistency of PCA, and noise
would be a relatively minor complication. In many applica-
tions D is large and n cannot be taken much larger than D
itself: we will therefore be interested in the regime where D
and n are large but n

D = O(1) or, even more ambitiously,
n
k = O(1), independently of D.

Let us fix z ∈ M and a radius r, and focus our attention
on M∩Bz(r), the intersection of M with the Euclidean ball
of radius r around z. Let us observe n points sampled from
M∩Bz(r) and corrupted by noise. With the same notation

as in section 2., let X, X̃ ∈ Mat(n, D) be the matrices repre-
senting the noiseless samples and the noisy samples. With-
out loss of generality we may assume that Tz(M) is spanned
by the first k coordinates in RD. Let N ∈ Mat(n, D) be the

noise matrix (i.e. Nij is the j-th coordinate of ηi), so that

X̃ = X +N . It will be handy to write N = [N1|N2], where

N1 ∈ Mat(n, k) and N2 ∈ Mat(n, d), and X̃1 = X + N1.
Here and in what follows, d = D − k is the dimension of
the normal bundle of M. Finally, let X0 = n−1/2X and
σmax = E[σmax(X0)].

3.1 Case A: Linear and single-scale

We start from the following special setting: we assume that
M is a k-dimensional subspace of RD ∩Bz(r). In this case
everything is scale invariant, and we may as well focus on
any scale r and location z: assume therefore that we have

n points X(z,r) in M∩ Bz(r). We are interested in study-

ing cov(X̃(z,r)) = cov(X(z,r) + N), in particular deciding
under which conditions we can detect the intrinsic dimen-
sionality k. To simplify the notation, in this subsection we

let X = X(z,r) and X̃ = X̃(z,r).
Clearly the gaps between the S.V.’s of cov(X) will play a

fundamental role.
Definition. Let ∆i := ∆i(C) := σi(cov(X)) −

σi+1(cov(X)) = σ2
i (X0)−σ2

i+1(X0), for i = 1, . . . , D−1,

∆D := ∆D(C) = σD(cov(X)), and let ∆̃i be the analo-

gous quantities for X̃ .
The introduction of the noise η generates immediately

random matrices. We shall work with noise such that the
ηi’s are Gaussian i.i.d. random variables, albeit all the re-
sults hold much more generally.

We recall the following properties of random matrices.
We are interested in non-asymptotic results, that hold for
finite m, n, since they will imply finite sample inequali-
ties with high probability (w.h.p.). These results are there-
fore quite different from the usual asymptotic results, either
“classical” (n → +∞, everything else being fixed) or from
random matrix theory (Dn−1 → γ, with both D, n → +∞,
see e.g. (Johnstone 2001), (Silverstein 2007), (Baik and Sil-
verstein 2006)). Another fundamental difference between
our results is that they focus on the case where the structure
of the data is intrinsically low-dimensional, and therefore the
true covariance is very singular. Such singularity is often ei-
ther avoided by assumption or considered as a consequence
of lack of data (n too small), rather than as a fundamental as-
sumption on the underlying geometric structure of the data
as we do here.

The following is well known (Rudelson and Vershynin
2008):

Theorem 3..1. Let Y ∈ Mat(m, n) with Yij i.i.d. standard
Gaussian random variables. Then for t ≥ 0,
√

m −√
n − t ≤ σmin(Y ) ≤ σmax(Y ) ≤ √

m +
√

n + t (1)

with probability at least 1 − 2e−t2/2, and
√

m −√
n ≤ E[σmin(Y )] ≤ E[σmax(Y )] ≤ √

m +
√

n (2)

In particular, an n × n random matrix as in the Theorem
has norm ∼ √

n on the complement of an event with very
(exponentially) small probability. In our context we deduce
the following bounds (we postpone the proofs to the Ap-
pendix):
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Lemma 3..2. With the notation and assumptions above,

E[n−1||NT
1 N1||] ≤ σ2(1 +

√
kn−1)2 (3)

E[n−1||NT
2 N2||] ≤ σ2(1 +

√
dn−1)2 (4)

E[n−1σmin(N
T
2 N2)] ≥ σ2(1 −

√
dn−1)2 (5)

E[n−1||NT
1 X ||] ≤ 2c1σ

√
kn−1 σmax (6)

E[n−1||NT
2 X̃1||] ≤ σ(c1σmax + c2σ) ·

·
√

n−1(
√

k +
√

d) (7)

Here c1, c2 are universal constants that depend only on the
distribution of η.

The first two inequalities bound the size of the noise tan-
gent and normal to M, resp., and the last two inequalities

bound the size of the correlations between M,M̃ and tan-
gential and normal noise. We observe that (3), (4) may be
replaced by exponential tail inequalities as in (1), and stan-
dard ǫ-net arguments (see e.g. (Vershynin 2008)) show that
the same holds in (6).

To relate the singular values of C̃ to those of C, we split

the perturbation C̃ − C as follows:

nC =

„

XT X 0
0 0

«

→P1

„

X̃T
1 X̃1 0
0 0

«

→P2

„

X̃T
1 X̃1 0
0 NT

2 N2

«

→P3 nC̃ =

„

X̃T
1 X̃1 X̃T

1 N2

NT
2 X̃1 NT

2 N2

«

We shall also let C = n−1XT X , C̃1 = n−1X̃T
1 X̃1 and

C̃2 = n−1NT
2 N2. These perturbations are essentially inde-

pendent, and therefore we expect sharp bounds by bounding
the norm of their sum by the sum of their norms.

We could estimate accurately σi(C̃) (and the singular vec-

tors), but for lack of space we discuss only ∆̃i. In particular

we upper bound ∆̃i for i < k (these are the “manifold”
S.V.’s, corresponding to perturbed tangent eigenvectors) and
for i > k (these are the “noise” S.V.’s, corresponding to

perturbed normal eigenvectors), and we lower bound ∆̃k,
which separates tangent S.V.’s from noise S.V.’s and will be
used for intrinsic dimensionality estimation.

Proposition 3..3. Conditioned on Ω1 := {σmin(C̃1) ≥
σmax(C̃2)},

E
ˆ

∆̃i

˜

≤ ∆i + 8c1σmaxσ
√

kn−1 + σ
2(1 +

√
kn−1)2

+ (c1σmax + c2σ)σ
√

n−1(
√

k +
√

d) , i ≤ k − 1

E[∆̃k] ≥ σk(C) − 4c1σmaxσ
√

kn−1 − σ
2(1 +

√
dn−1)2

E
ˆ

∆̃i

˜

≤ (c1σmax + c2σ)σ(
√

kn−1 +
√

dn−1)

+ 4σ
√

dn−1 , k + 1 ≤ i ≤ D − 1

E
ˆ

∆̃D

˜

∼ σ
2(1 +

√
dn−1)2

Deviation inequalities also hold. Since M is linear, σmax =
σ1(C) = · · · = σk(C), and ∆i = 0 for all i ≤ k−1. Ω1 has

small probability as soon as σk(C) > 8c1σmaxσ
√

kn−1 +

σ2(1 +
√

dn−1)2.

Several observation are in order.

(1) In the language of signal processing, we can inter-
pret the terms above in terms of signal and noise, where
the signal here is dictated by the geometry of M. In the

lower bound for E[∆̃k] we clearly see the interaction be-
tween the term representing the strength of the “geometric
signal” σk(C) and two noise terms: one is the projection of
the noise along the tangent space of M (the “signal” space),
which has strength that depends on the intrinsic dimension
k of M, and the other is the component of the noise normal
to M, of strength depending on the ambient dimension D.

(2) We see here quantified our previous empirical obser-
vation that the “size” of the noise that affects our algorithm
is not, as one may expect for an algorithm based on dis-
tance computations, proportional to the distance distortion
E[||x̃i − x̃j ||2]/||xi − xj ||2E[σ2χ2

d] ∼ σ2D, but has size

only ∼ σ2(1 +
√

Dn−1)2. Therefore, as soon as n = γD
and γ > O(1), the size of the noise is essentially σ2 which,
among other things, is independent of the ambient dimen-
sion. This is apparent in Figure 1, as well as in all our ex-
periments. Another regime in which things are dimension-

independent is when σ ∼ D−
1

2 , so that E[||η||2] = O(1)
independently of D. This is a very natural geometric scal-
ing that fixes the size of the D-dimensional noise when D
varies by shrinking the size of the noise in each dimension.
In this regime too, we show in (Lee et al. 2009) that we may
estimate k w.h.p. with n ∼ k log k points.

(3) This is also in sharp contrast with other methods (e.g.
(Haro, Randall, and Sapiro 2008), (Carter and Hero 2008),
(Carter, Hero, and Raich 2007)) based on volume considera-
tions, i.e. counting the number of points in Bz(r). While we
are not aware of theoretical analyses of such algorithms, it
seems clear upon inspection that they will require a number
of points proportional to the volume of Bz(r), i.e. at least
exponential in k when there is no noise, and possibly in D
in the noisy case.

3.2 Case B: Linear and multiscale

Suppose now that M is a linear submanifold of RD (with
uniform volume measure); without loss of generality we can
translate and rescale and focus our attention on X = M ∩
B0(1); we assume we have n points in this intersection. We

fix z = 0 and consider X̃(0,r). As r increases, n(r) =

|X̃(0,r)| increases, in a way that depends on k but also on
D and η. For example when η is Gaussian, E[||xi − x̃i||] =

E[||ηi||2] = σ2D, so that X̃ is obtained by scattering the
points of X into RD by moving each of them, w.h.p., by a

quantity very close to σ
√

D. Moreover, at least when D >>
k (in fact D/k larger than a constant such as 5 will suffice),
ηi is almost orthogonal to M w.h.p.. Then n(r) will be close
to 0 for r small, it will increase rapidly when r ∼ E[||ηi||],
and it will grow at a slower rate for r & E[||η||].

The estimates in Proposition 3..3 can be applied effectively
for C(η, D, k) < r < 1−C(η, D, k), where C is a constant
(in r) depending on η, D, k, i.e. in the range when n is not
too small nor too large for ∂X to have any effect. There-
fore, provided that n(r) is large enough in this range, the
estimates in Proposition 3..3 will predict when k is identifi-
able w.h.p.
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Some remarks about the effect of the boundary of M are
in order. It is well known that when k is not small (k > 5
will suffice) the fraction of points close to ∂M may be very
large. This can be seen in many ways, for example, in the
isotropic case, by observing that the number of points in
B0(r) (as above) is |B0(1)|

∫ r

0 ρk−1dρ (integration in polar

coordinates), and because ρk−1 is very close to 0 unless ρ is
very close to 1, very few points are close to 0. Algorithms
for dimensionality estimation that are based on volume con-
siderations are heavily impacted by this phenomenon, to
the point of justifying extra work to “debias” their results
(Carter, Hero, and Raich 2007). Our algorithm is not im-
pacted by this issue: the crucial quantity measured by the
S.V.’s is not volume- or density- related, but is the length of
orthogonal vectors spanning the local subspace spanned by
the data. Qualitatively speaking, in absence of noise, O(1)
points at roughly equal distance in each of k orthogonal di-
rections are enough for our approach to declare dimension-
ality at least k. These points exist as soon as Bz(r) con-
tains O(k) randomly sampled points from M, regardless
of whether z is in the interior of M or at the boundary of
M. In order to verify this empirically, we considered the k-
dimensional unit cube centered at 0 ∈ Rk, looked at the be-

havior of σ
(z,r)
i as a function of ||z||, and noticed no changes

impacting our ability to estimate k.

3.3 Case C: Nonlinear and multiscale

In the general case when M is a nonlinear manifold, it
is not true anymore, as in the case when M is a linear

subspace, that larger r’s lead to the most useful σ
(z,r)
i for

detecting k. This is due to the curvature of M in RD,

which forces X(z,r) to have extrinsic dimensionality pos-
sibly much higher than k. First of all notice that we are
not talking about the intrinsic curvature of M, but of the
curvature of M inside RD. The same Riemannian mani-
fold (M, g) may be isometrically embedded in RD in dif-
ferent ways, without of course any change in intrinsic cur-
vatures (for example Gauss curvature for 2-manifolds), but
with very significant changes in the (extrinsic) curvatures
relevant to our analysis.

Nevertheless, certain intrinsic properties of M may be re-
covered. For example if M is flat, an isometric parametriza-
tion may be recovered (at least in the limit n → ∞) by Hes-
sian eigenmaps (Donoho and Grimes 2003); more generally,
bi-Lipschitz atlases may be found by heat kernel triangula-
tion (Jones, Maggioni, and Schul 2008).

Fix a point z ∈ M and consider a chart u : U ⊆ Rk →
M ⊆ RD, where U is an open set of Rk containing the ori-
gin, and u(0) = z. Consider a path γ : (−δ, δ) → U such
that γ(0) = 0. Then u ◦ γ is a path on M through z, and
by a Taylor expansion it is easy to see that up to first-order
the Jacobian of u governs the first order variations of the
path, and the Hessian of u governs the second order vari-
ations of the path. There are therefore at most k(k + 1)/2
extrinsic principal curvatures. At any rate, one may compute

exactly {σ(z,r)
i }i=1,2 in the case of each path γ and see that

the effect of curvature is, for small r, to generate a second

nontrivial S.V. σ
(z,r)
2 with σ

(z,r)
2 ∼ O(κ2)σ

(z,r)
1 , where κ is

the curvature of γ viewed as a path on M ⊂ RD.
We therefore expect to see at most k + k(k + 1)/2 “cur-

vature” S.V.’s when running our algorithm on a general k-

dimensional manifold M. These σ
(z,r)
i ’s, however, will ex-

hibit a behavior different from that of the first k “tangen-

tial” σ
(z,r)
i ; more precisely, we expect σ

(z,r)
l ∼ O(σ

(z,r)
i

2
),

where i ≤ k, and l > k indexes the curvature S.V.’s.
Another issue that we need to consider is that we can-

not expect in general to have σ
(z,r)
1 ≅ · · · ≅ σ

(z,r)
k . Re-

call that from the bounds in Proposition 3..3 it was useful to

have σk(C(z,r)) as large as possible, i.e. as close as pos-

sible to σ1(C
(z,r)). Geometrically, this corresponds to as-

suming that X(z,r) is close to being locally round, i.e. lo-
cally the principal curvatures should be roughly the same.
A prototypical example when this is not the case, is an el-
lipsoid with axes of very different lengths: in this situation

the first k σi(C
(z,r))’s will have different sizes, depending

on the lengths of the axes. Depending on these lengths, and
on the scale r, our line of thinking leads to declare that the
ellipsoid would have different dimensionalities at different
scales. While this may sound strange, it is related to the
ill-posedness of estimating the intrinsic dimensionality of a
long and thin cigar-shaped manifold: at infinitesimally small
scale (i.e. infinitely many points and no noise) we would
recognize the true dimensionality, but at any given scale r,
certain axes are too short to be visible, and the effective di-
mensionality is lower.

4. The algorithm

We assume that the data is indeed noisy, i.e. σ > 0, as
well as that there exists a hyperplane of dimension D′ <
D containing M. The results above suggest the following
algorithm

(1) compute σ
(z,r)
i , for each z ∈ M, r > 0, i = 1, . . . , D.

(2) estimate the noise size σ, obtained from the bottom S.V.’s
which do not grow with r. Split the S.V.’s into noise S.V.’s
and non-noise S.V.’s.

(3) identify a range of scales where the noise S.V.’s are small
compared to the other S.V.’s.

(4) estimate, in the range of scales identified, which S.V.’s,
among the non-noise S.V.’s, correspond to tangent direc-
tions and which ones correspond to curvatures, by com-
paring the growth rate as being linear or quadratic in r2.

4.1 Algorithmic and computational considerations

(1) Instead of computing cov(z, r) for every z, r, we may per-
form a randomized subsampling as follows. We select an
increasing sequence 0 ≤ δ0 < · · · < δj < . . . with
δj → ∞, and for every j we construct a δj-net, called

Γj
2. In the current implementation, we choose the δj’s

as follows: we fix the number of desired scales J , and let

nj = (j+1)N
J , for j = 0, . . . , J − 1, and let δj be the

2A set Γ ⊂ X is called a δ-net in X if {Bz(2δ)}z∈Γ covers X
and inf{dX(z1, z2), z1, z2 ∈ X, z1 6= z2} ≥ δ.
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smallest radius r such that in average (over z ∈ X) the
ball Bz(r) contains at least nj points. This allows us to
quickly go through the scales were there are few points,
and have more scales around the distances where lots of
points are being added to a ball Bz(r) as r increases. We

compute {{σ(z,δj)
i }z∈Γj

}j=0,...,J−1. Here i may range
from 1 up to min{D, |Bz(rz)|}, the maximum rank of
cov(z, r). In practice, if we have an upper bound K on
the intrinsic dimension, we only compute the first K sin-
gular values.

This construction yields a discretization of the continuous

(in space and scale space) quantities σ
(z,r)
i

3. The cost of

computing {σ(z,rj)
i }i=1,...,I is O(K · |Bz(rj)| · I · Cnn),

where Cnn is the cost of computing a nearest neigh-
bor, and this is done O(|M|/|Bz(rj)|) times (for each
z ∈ Γj), and then across all scales j = 0, . . . , J ,
with J = O(log |M|), for a total cost of O(K · I ·
n log nCnn). In the worst case, I = min{K, n}, yield-
ing O(Kn min{K, n} logn).

(2) The noise estimation is performed by identifying the noise
eigenvalues at large scales, which are the smallest eigen-
values, are lumped together, and do not grow with r. This
identification is easy since we assumed σ > 0 and that M
is contained in a D′-dimensional subspace, with D′ < D.
This identifies K largest S.V.’s that are not noise S.V.’s.

(3) We identify a range of scales r > r0 where the noise is
small compared to the other singular values. For example
in Figure 1 we would have r0 ∼ 1.7. We also identify
a largest r1 beyond which no singular value grows. In
Figure 1 we would have r1 ∼ 2.1. From this point on we
focus on r ∈ (r0, r1).

(4) We need to determine which of the K largest S.V.’s corre-
spond to tangent singular vectors, and which ones are due
to curvature. The tangential ones are expected to grow lin-
early in r2, while the curvature ones are expected to grow
quadratically and be concave. Therefore we do a linear
and quadratic fit to each multiscale S.V. (as a function of
the scale r2), starting from the smallest; if the quadratic
fit is significantly better than the linear fit, and is concave,
then we declare such a S.V. to be due to curvature, and
proceed to the next largest, with a similar analysis.

5. Experimental Results

We have already introduced the set Sk(D, n, σ). We let
Qk(D, n, σ) be n i.i.d. points uniformly sampled from the
unit k-dimensional cube embedded in RD (D ≥ k), with
added noise σN (0, ID). We also introduce Shk+2(D, n, σ),
consisting of n i.i.d. points uniformly sampled from a man-
ifold obtained as tensor product of an S-shaped curve (of
diameter O(1)) with Qk, embedded in RD (D ≥ k + 2),
with added noise σN (0, ID). Our test sets consists of:
Qk(d, n, σ) with (k, d) = {(5, 10), (5, 100)} and for each
such choice, any combination of n = 500, 100, σ =

3In order to avoid artifacts due to the randomness of Γj , one
may repeat this construction a few times and take the expectation,
over the runs, of all the quantities we shall be interested in.

0, 0.01, 0.05, 0.1, 0.2; Sk(d, n, σ) with k = {5, 9} and the
other parameters as for the cube. We therefore have a por-
tion of a linear manifold (the cube), a manifold with simple
curvature (the sphere). We considered several other cases,
with more complicated curvatures, with similar results, but
we have no space to include and discuss them here. We com-
pare our algorithm with the algorithms of (Haro, Randall,
and Sapiro 2008), (Carter and Hero 2008), (Carter, Hero,
and Raich 2007), see Figure 2. It is apparent that all the
algorithms that we tested against are at the very least ex-
tremely sensitive to noise, and in fact they do not seem re-
liable even in the absence of noise. We are not surprised
by such sensitivity, however we did try hard to optimize the
parameters involved. First of all we note that our algorithm

has no parameters besides X̃ . The algorithms we are com-
paring it to have several parameters (from 4 to 7), which
we tuned after rather extensive experimentation, relying on
the corresponding papers and commentary in the code. In
Figure 2 we report the mean, minimum, and maximum es-
timated dimensionality by each algorithm, upon varying the
parameters of the algorithm. In most cases, this did non im-
prove their performance significantly. Our algorithm, as de-
scribed in the Algorithm section, is randomized (the multi-
scale nets are random), and we reported mean, minimum and
maximum dimensionality estimates over 5 runs. The tiny
variability certainly justifies the multiscale subsampling ap-
proach suggested in the Algorithm section. We also ran the
TPMM algorithm from (Haro, Randall, and Sapiro 2008),
but notwithstanding extensive experimentation we were un-
able to find any range of parameters (including the defaults
in the code) that would give results comparable to the others.

We interpret these experiments, also in light of the the-
oretical results of (Lee et al. 2009), as a consequence that
our algorithm, unlike the others considered, is not volume-
based. The estimation of volumes is expected to require a
number of samples exponential in the dimensionality of M
(). The results in this paper, and their considerable refine-
ments in (Lee et al. 2009) for the finite sample case, sup-
port the intuition that the presented technique only requires
a number of points linear in the dimensionality of M.

We also ran our algorithm on the MNIST data set: for
each digit from 0 to 9 we extracted 2000 random points, ap-
plied the algorithm, and projected them onto their top 80
principal components to regularize the search for nearest
neighbors. The estimated intrinsic dimensionalities where:
2, 3, 5, 3, 5, 3, 2, 4, 3. However, the plots of multiscale sin-
gular values is not consistent with the hypothesis that the
data is generated as a low-dimensional manifold plus noise
4. In particular, for several digits the intrinsic dimensionality
depends on scale.

6. Conclusion and future directions

We presented and analysed an algorithm based on multi-
scale geometric analysis via principal components, that can
very effectively and in a stable way estimate the intrinsic

4Increasing the number of points (or decreasing it, for that mat-
ter!) did not produce appreciable changes.
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Figure 2: Benchmark data sets, comparison between our algorithm and “Debiasing” (Carter, Hero, and Raich 2007), “Smoothing” (Carter
and Hero 2008) and RPMM in (Haro, Randall, and Sapiro 2008) (with choice of the several parameters in those algorithm that seem optimal).
Qk(D, n, σ) consists of n points uniformly sampled from the k-dimensional cube embedded in D dimensions, and corrupted by η ∼
σN (0, ID). Sk is a k-dimensional sphere. We report mean, minimum and maximum values of the output of the algorithms over several
realizations of the data and noise. The horizontal axis is the size of the noise, the vertical is the estimated dimension. Even without noise
current state-of-art algorithm do not work very well, and when noise is present they are unable to tell the noise from the intrinsic manifold
structure. Our algorithm shows great robustness to noise.

dimensionality of point clouds generated by perturbing low-
dimensional manifolds by high-dimensional noise. In (Lee
et al. 2009) it is shown that the results in expectation in this
paper can be transformed into finite sample guarantees of
success with high probability. Moreover, under reasonable
hypotheses on the manifold M and the size of the noise, the
probability of success is high as soon as the number of sam-
ples n is proportional to the intrinsic dimension k of M. It
is therefore a manifold-adaptive technique. This is the case
even for the pointwise estimation of intrinsic dimensionality.

Future research directions include kernelization, for ex-
ample by using approximated heat kernels one would obtain
an embedding in a feature space where the manifold would
have maximally large almost flat pieces (Jones, Maggioni,
and Schul 2008), thereby maximizing the probability of de-
tection of the correct dimensionality. The results above seem
robust under bi-Lipschitz perturbation, so in particular M
does not need to be smooth. Besides studying this robust-
ness, this suggests that the technique may be combined with
random projections (of dimensionality essentially dependent
only on k, the dimensionality of M) such as those analyzed
in (Baraniuk and Wakin 2009). Our preliminary experiments
seem to suggest that this may not be as successful as theory
predicts, because of loss of information about the curvature.
We are also considering the extension to multiple manifolds

of different dimensionality.

In general, we expect multiscale geometric methods to
become important in the analysis of high-dimensional data
sets.
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Figure 3: Our algorithm can produce pointwise estimates, with-
out taking advantage of any “smoothness” or clustering property of
the local dimension as a function of the point. The data is a very
noisy 1-dimensional spiral intersecting a noisy two-dimensional
plane. Our algorithm assigns dimensionality 3 to the spiral (be-
cause of the noise), dimension 2 to the plane, and again dimension
3 to points at the intersection between the spiral and the plane, as
well as to a portion of the plane very close to the spiral. These
results are worse, in the sense of classification error for the task
of assigning points to the plane or the spiral, than those showed in
(Haro, Randall, and Sapiro 2008).
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7. Appendix
Proof of Lemma 3..2. The first three inequalities follow from (2),
the fourth follows from (Vershynin 2008):

E[n−1
σmax(N

T
1 X)] = E

ˆ

E[n−1
σmax(N

T
1 X)

˛

˛||X0||]
˜

≤ 2c1σ
√

kn−1 E[||X0||] ,
where we used the fact that X0 and N1 are independent. The last
inequality follows similarly.

Proof of Prop. 3..3. First of all we observe that by the min-max
properties of eigenvalues of symmetric matrices, under P3 the
first k S.V.’s increase and the last d S.V.’s decrease. Quite inter-
estingly, this is to our advantage since it increases ∆̃k: ∆̃k ≥
σmin(C̃1) − σmax(C̃2), whenever the latter quantity is nonnega-
tive (i.e. on Ω1).

To prove the first inequality, observe that

E
ˆ

∆̃i

˜

≤ E
ˆ

σi(C̃1) − σi+1(C̃1) + σn
−1||X̃T

1 N2||
˜

≤ E
ˆ

∆i + 4σn
−1||NT

1 X|| + σ
2
n
−1||NT

1 N1||
+ σn

−1||X̃T
N2||

˜

≤ ∆i + 8c1σmaxσ
√

kn−1 + σ
2(1 +

√
kn−1)2

+ (c1σmax + c2σ) · σ
√

n−1(
√

k +
√

d)

where for the first inequality we used the observation above that

σi(C̃1) ≥ σi(C̃), and for all the other inequalities we used Lemma

3..2. To prove the lower bound on E[∆̃k] we estimate, using again
the observation above about P3 and Lemma 3..2:

E[∆̃k] ≥ σmin(C̃1) − n
−1

σmax(N
T
2 N2)

≥ σk(XT
0 X0 + n

−1
N

T
1 N1) − 2σn

−1
E

ˆ

||NT
1 X||

˜

− σ
2
E

ˆ

n
−1||NT

2 N2||
˜

≥ σk(C) − 4c1σmaxσ
√

kn−1 − σ
2(1 +

√
dn−1)2

where the second inequality uses the monotonicity principle of
eigenvalues for positive definite matrices, i.e. λi(A+E) ≥ λi(A)
whenever A, E are positive definite (here applied to A = XT X
and E = n−1NT

1 N1).
The estimates for the other gaps follow immediately from the

observation above about P3 and from Lemma 3..2.

References
Baik, J., and Silverstein, J. W. 2006. Eigenvalues of large sam-
ple covariance matrices of spiked population models. Journal of
Multivariate Analysis 97(6):1382–1408.

Baraniuk, R. G., and Wakin, M. B. 2009. Random projections of
smooth manifolds. Foundations of Computational Mathematics
9(1):51–77.

Borovkova, S.; Burton, R.; and Dehling, H. 1999. Consistency
of the Takens estimator for the correlation dimension. Ann. Appl.
Probab. 9(2):376–390.

Camastra, F., and Vinciarelli, A. 2002. Estimating the intrinsic
dimension of data with a fractal-based method. IEEE P.A.M.I.
24(10):1404–10.

Cao, W., and Haralick, R. 2006. Nonlinear manifold clustering
by dimensionality. icpr 1:920–924.

Carter, K., and Hero, A. 2008. Variance reduction with neighbor-
hood smoothing for local intrinsic dimension estimation. Acous-
tics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE
International Conference on 3917–3920.

Carter, K.; Hero, A. O.; and Raich, R. 2007. De-biasing for in-
trinsic dimension estimation. Statistical Signal Processing, 2007.
SSP ’07. IEEE/SP 14th Workshop on 601–605.

Costa, J., and Hero, A. 2004. Geodesic entropic graphs for di-
mension and entropy estimation in manifold learning. Signal Pro-
cessing, IEEE Transactions on 52(8):2210–2221.

Donoho, D., and Grimes, C. 2003. Hessian eigenmaps: new
locally linear embedding techniques for high-dimensional data.
Proceedings of the National Academy of Sciences 100(10):5591–
5596.

Farahmand, A. M., and Audibert, C. S. J.-Y. 2007. Manifold-
adaptive dimension estimation. Proc. I.C.M.L.

Fukunaga, K., and Olsen, D. 1971. An algorithm for finding
intrinsic dimensionality of data. I.E.E.E. Trans. on Computer C-
20(2).

Grassberger, P., and Procaccia, I. 1983. Measuring the
strangeness of strange attractors. Phys. D 9(1-2):189–208.

Haro, G.; Randall, G.; and Sapiro, G. 2008. Translated poisson
mixture model for stratification learning. Int. J. Comput. Vision
80(3):358–374.

Hein, M., and Audibert, Y. 2005. Intrinsic dimensionality estima-
tion of submanifolds in euclidean space. In De Raedt, L., S. W.,
ed., ICML Bonn, 289 – 296.

Johnstone, I. M. 2001. On the distribution of the largest eigen-
value in principal components analysis. Ann. Stat.

Jones, P.; Maggioni, M.; and Schul, R. 2008. Manifold
parametrizations by eigenfunctions of the Laplacian and heat ker-
nels. Proc. Nat. Acad. Sci. 105(6):1803–1808.

Lee, J.; Little, A.; Maggioni, M.; and Rosasco, L. 2009. Mul-
tiscale estimation of intrinsic dimensionality of point clouds and
data sets. in preparation.

Levina, E., and Bickel, P. 2005. Maximum likelihood estima-
tion of intrinsic dimension. In Advances in NIPS 17,Vancouver,
Canada.

Paul, D. 2007. Asymptotics of sample eigenstructure for a large
dimensional spiked covariance model. Statistica Sinica 17:1617–
1642.

P.W.Jones. 1990. Rectifiable sets and the traveling salesman prob-
lem. Inventiones Mathematicae 102:1–15.

Raginsky, M., and Lazebnik, S. 2005. Estimation of intrinsic
dimensionality using high-rate vector quantization. Proc. NIPS
1105–1112.

Rudelson, M., and Vershynin, R. 2008. The least singular value

of a random square matrix is O(n−1/2). Comptes rendus de
l’Acadmie des sciences - Mathmatique 346:893–896.

Silverstein, J. 2007. On the empirical distribution of eigenvalues
of large dimensional information-plus-noise type matrices. Jour-
nal of Multivariate Analysis 98:678–694.

Takens, F. 1985. On the numerical determination of the di-
mension of an attractor. In Dynamical systems and bifurca-
tions (Groningen, 1984), volume 1125 of Lecture Notes in Math.
Berlin: Springer. 99–106.

Vershynin, R. 2008. Spectral norm of products of random and
deterministic matrices. Submitted.

33




