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ABSTRACT

          Saltwater intrusion occurs in coastal areas worldwide and a theoretical
investigation of its sources is crucial because dissolved salts are probably the most
common contaminants in freshwater.  In the case of coastal aquifers, contamination
arises from saltwater invasion, caused primarily by human activities due to heavy
urbanisation. Hence, there is a need to predict the location and movement of the
saltwater interface to be able to protect freshwater aquifers from the possible danger
of contamination. Saltwater intrusion into aquifers presents an extremely complex
problem that generally cannot be solved analytically and hence, numerical methods
are ideal tools for producing the simulation results.
          In this paper, a two-dimensional finite volume unstructured mesh method
(FVUM) based on a triangular background interpolation mesh is developed for
analysing the evolution of the saltwater intrusion into single and multiple coastal
aquifer systems. The model formulation consists of a ground-water flow equation and
a salt transport equation. These coupled and non-linear partial differential equations
are transformed by FVUM into a system of differential/algebraic equations, which is
solved using backward differentiation formulas of order one through five. Simulation
results are compared with previously published solutions where good agreement is
observed.

INTRODUCTION

          The major causes of saltwater intrusion into aquifers are due to the
overpumping of coastal areas, excessive pumping in noncoastal regions which overlay
saline water bodies, advancement of saltwater through leaky well casings, and natural
sources and processes such as drought or tidal variations. Such encroachment
obviously limits the usage of groundwater for domestic, agricultural, or industrial
purposes. Hence, there is a need to predict the location and movement of the possible
danger of contamination fronts. Practical management requires knowledge of not only
the present response, but also of the long-term transient response. For these
managerial purposes, a numerical model can assist  in estimating the location of the
freshwater/saltwater interface for given sets of hydrological conditions.
          In the past, several numerical models have been proposed to simulate the
problem of saltwater intrusion into aquifers. As early as 1964, Henry [1964]
developed the first analytical solution for the steady-state salt distribution in a
confined coastal aquifer. In many cases, however, a steady-state solution for transient
simulations was not obtained due to the high computing costs. Segol, Pinder and Gray
[1975] developed the first transient solution based on a velocity-dependent dispersion
coefficient using the Galerkin finite element method to solve the set of non-linear
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partial differential equations describing the movement of a saltwater front in a coastal
confined aquifer.  Numerous other researchers, such as Frind [1982], Huyalorn,
Andersen, Mercer, Harold and White [1987], Voss  [1984] and Cheng, Strobl, Yeh,
Lin and Choi [1998] have implemented numerical models for simulating saltwater
intrusion problems using a variety of different methods.
          The problem of saltwater intrusion into coastal aquifers can be formulated in
terms of two tightly coupled, non-linear partial differential equations. The first
equation describes the flow of a variable-density fluid, and the second equation
describes the transport of dissolved salt. Due to the inherently complex boundary
conditions and intricate physical geometries in any practical problem, an analytical
solution is not possible.  In order to obtain a transient solution, it is necessary to resort
to some numerical strategy. This paper presents a finite volume unstructured mesh
method  (FVUM) for saltwater intrusion into aquifer systems. The solution domain is
tessellated with triangles and the control volumes are constructed around the triangle
vertices (see Ferguson and Turner, 1996 or more recently Perré and Turner, 1999 for
further details). Using this strategy the coupled partial differential conservation
equations are discretised into a system of differential/algebraic equations. These
equations are then resolved in time according to the backward differentiation formulas
that range in order from one through five, depending on the condition of the system.
Such temporal integration schemes are known to produce accurate results. These
methods are suitable for intricate physical geometries and density-dependent flow and
transport through saturated-unsaturated porous media. Simulation results for the case
of a confined aquifer are presented and compared with previously published solutions
to assess the performance of the newly proposed computational model.

MATHEMATICAL MODEL

          The problem of seawater intrusion into aquifers is governed by a coupled non-
linear system of two partial differential equations. The first differential equation is the
flow equation that describes the head distribution in the aquifer of interest. The
classically used pressure head variable employed in the flow equation has been
replaced by the use of an equivalent freshwater head that generally results in the
elimination of static quantities and improves numerical efficiency.
          The flow equation may be written as [Frind, 1982; Huyakorn et al., 1987]:

                                     ( )s

h
S h C z

t
η∂ = ∇ ⋅ ∇ + ∇  ∂

K                                                  (1)

where h  is the reference hydraulic head referred to as the freshwater head; K  is the
hydraulic conductivity tensor; η  is the density coupling coefficient; C  is the solute

concentration; sS  is the specific storage; t   is time; z  is elevation.

         The reference head and the density coupling coefficient in  (1) are defined as

                                                   z
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p
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0ρ
                                                              (2)

and
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εη =                                                                 (3)



�

where p  is the fluid pressure; g  is the gravitational acceleration; maxC  is the

concentration that corresponds to the maximum density maxρ ; 0ρ  is the reference

(freshwater) density;  ε  is the density difference ratio defined as

                                                       max

0

1.
ρε
ρ

= −                                                           (4)

ρ  is  the density of the mixed fluid  (fresh water and saltwater) and  the relationship
between fluid density and concentration under isothermal conditions can be expressed
in the form:
                                                  ( ) ( )0 01 1 rCρ ρ η ρ ρ= + = +                                      (5)

where rρ  is the relative density.
          The other differential equation is the transport (dispersion) equation, which is
used to describe the chemical concentration. To describe salt transport, we use the
following form of the advective-dispersive equation:

                                               ( ) ( )C
C C

t
φ ∂ = ∇ ⋅ ∇ − ∇ ⋅

∂
D v                                     (6)

where  φ   is porosity and φ=D D , with D   being the dispersion tensor, whose terms,
according to Bear [1979],  are defined in a two-dimensional zx −  coordinate system
as:

                            

( )

2 2 2 2

, ,x z x z
xx L T d xx zz T L d zz

x z
xz zx L T

v v v v
D D T D D T

v v
D D

α α α α

α α

= + + = + +

= = −

v v v v

v

             (7)

where  Lα  and Tα  are the longitudinal and transverse dispersivities respectively, dD

is the molecular diffusion coefficient, and xxT , zzT  are the principal components of the

tortuosity tensor. The Darcy velocity vector may be expressed as
                                                   ( )h C zη= − ∇ + ∇v K .                                              (8)

          To obtain a unique solution to (1) and (6), initial and boundary conditions must
be specified.
          For the flow equation, the initial condition may be expressed as
                                                  ( ) ( )zxhzxh ,0;, 0=  in R                                            (9)

where R  is region of interest; 0h  is the initial head.

          The boundary conditions may be stated as follows.
Dirichlet boundary condition:
                                             ( ) ( )tzxhtzxh bbdbb ;,;, =   in dB  .                                 (10)

Neumann  boundary condition:
                                              ( ), ;n b bV x z t⋅ =v n  in nB                      (11)

where n  is the outward unit vector normal to the boundary; ( )bb zx ,  is a spatial

coordinate on the boundary; dh  and nV  are the Dirichlet functional value and

Neumann flux, respectively.
          For the transport equation, the initial condition may be expressed as
                                              ( ) ( )zxCzxC ,0;, 0=    in  R .                                        (12)

The boundary conditions may be stated as follows.
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Dirichlet boundary condition:
                                               ( ) ( )tzxCtzxC bbdbb ;,;, =   in dB  .                             (13)

Neumann  boundary condition:
                                                ( ) ( ), ;n b bn C V x z t⋅ − ∇ =D   in nB  .                            (14)

Cauchy  boundary conditions:
                                            ( ) ( ), ;c b bC C V x z t⋅ − ∇ =n v D    in cB                            (15)

where dC , nV   and cV  are the Dirichlet  functional value , Neumann flux and Cauchy

flux, respectively.

A FINITE VOLUME BASED ON TRIANGULAR  UNSTRUCTURED MESH
METHOD

          During the last twenty years there has been a strong focus upon the utilisation of
the Finite Volume (FV) or Control Volume (CV) approaches for solving fluid flow
and heat transfer problems or, as it is more generally known, problems in
Computational Fluid Dynamics (CFD). This success is mostly due to the conservative
nature of the scheme and the fact that the terms appearing in the resulting algebraic
equations have a specific physical interpretation. In fact, the straightforward
formulation and low computational cost compared with other methods have made CV
the preferred choice for most CFD partitioners. Over the last ten years, several control
volume based-unstructured mesh (FVUM) approaches have in some way overcome
the structured nature of the original control volume method  [Chow, 1993].
          In general, the FVUM methods can be categorised into two approaches, namely,
vertex-centred or cell-centred. The classification of the approach is based on the
relationship between the control volume and the finite element like unstructured mesh.
The approach described here is the vertex-centred, which is  more generally known as
the Control Volume based Finite Element Mesh method by Baliga and Patankar
[1988]. Ferguson and Turner [1996] and Perré and Turner [1999] have used the
method for studying the drying of porous media such as wood. In a discrete solution
procedure, the solution domain is subdivided into smaller regions and nodes are
distributed throughout the domain, the connections between the nodes and the
subregions is known as a mesh. In a finite element mesh, the subregions are called
elements, with the vertices of the elements being the nodal locations. For the vertex-
centred approach only the basic elements are considered, which are three node
triangles in this work.
          In the solution domain, each node is associated with one control volume. Each
surface of the control volume is defined as the vector that joins the centroid of the
element to the midpoint of one of its sides as shown in Figure 1. Consequently, each
of the triangular elements is divided into three by these control surfaces (CS). These
quadrilateral shapes are called sub-control volumes (SCV) and are illustrated in Figure
2.  Thus, a control volume consists of the sum of all neighbouring SCVs that surround
any given node. The CV is polygonal in shape and can be assembled in a
straightforward and efficient manner at the element level. The flow across each
control surface must be determined by an integral. The FVUM discretisation process
is initiated by utilising the integrated form of the Eqs. (1) and (6). Integrating the flow
Eq. (1)  and the transport equation (6) over an arbitrary control volume yields:



�

                                ( )s

v v

h
S dv h C z dv

t
η∂ = ∇ ⋅ ∇ + ∇  ∂∫ ∫ K ,                                    (16)

                               [ ] ( )
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          Applying the Gauss divergence theorem to the right-hand side of Eqs. (16), (17)
and using a lumped mass approach for the time derivative term gives

                                  ( )p
p p
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h
S v h C z d

t
η

∂
= ∇ + ∇ ⋅  ∂ ∫ K n ,                                       (18)

                                   [ ] ( )p
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C
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t
φ

∂
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∂ ∫ ∫D n v n                                      (19)

where  dn  represents the components of the outward normal surface vector to the
control surface S and an anticlockwise traversal  of the finite volume integration is

assumed, i.e., dn  can be approximated in the discrete sense by ˆ ˆd zk xi= ∆ −∆n ; x∆
and   z∆  represent the  x  and z   components of the SCV face; pv  is the area of the

control volume, and is evaluated for the vertex case as

                                                         ∑
=

=
PSCV

i

N

i
SCVp vv

1

                                                   (20)

where PSCVN  is the total number of  SCV’s that make up the control volume

associated with the node p .
          The integrals in Eqs. (18) and (19)  are line integrals. These integrals will be
approximated by the midpoint approximation for each control  surface. To effect this
midpoint approximation, the  argument of the integrals is required at the midpoint of
the control surface and it is for these surfaces that the outward normal vector will be
required.
          The integral in Eq. (18) can be rewritten as
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          The first integral  of  the right hand side  in Eq. (19) can be rewritten as
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          The second integral  of  the right hand side  in Eq. (19) can be rewritten as
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          To evaluate the terms in Eqs. (21), (22) and (23),  consider the triangular
element,  where ic  and ib  are obtained from the anti-cyclic permutation of x  and the

cyclic permutation of z , respectively. These terms are defined as
                             231 xxc −= ,   321 zzb −= ,                                                        (24a)

                             312 xxc −= ,   132 zzb −= ,                                                        (24b)

                             123 xxc −= ,   213 zzb −= .                                                        (24c)

          The nodal shape functions, which are given in terms of area coordinates, for any
point inside 123∆  are given by

                                         3,2,1, == i
A

A
N i

i                                                               (25)

where iA  represent the areas of the triangles in the element,
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2

1
                                                     (26)

with
                        1 2 3 3 2 2 3 1 1 3 3 1 2 2 1, ,a x z x z a x z x z a x z x z= − = − = −                                 (27)

and A  is the area of the triangular element:
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          Thus, 1N , 2N  and 3N  satisfy the relationship:

                                             1321 =++ NNN .                                                        (29)

          Any variable in the element    123∆     may be defined if the nodal values are

known. Let
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          The derivatives of any variable with respect to x  and z  within the element can
be approximated in  the same manner as the variable itself:
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          If  the approximations to the global derivations are used and  Eqs. (32) and (33)
are substituted into Eqs. (21), (22), (23), the final form of the discretised equations
becomes
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where the upstream weighting  technique will be used in this work (see Figure 2):
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          Upstream weighting can be shown to converge to the physically correct solution
[Sammon, 1988].  The  upstream weighting techniques have been used for saturated-
unsaturated flow with dry initial conditions in heterogeneous media (Forsyth, Wu and
Pruess, 1995). This strategy has been used here for the flow term concentration in Eq.
(35).
          The concentration  ,

j
r SC  in the gravitational term within each SCV is

represented by the use of shape functions at the midpoint ( ( , ), 1,2IPr IPrIPr x z r = ) of

each SCV, i.e., the ,
j

r SC  will be evaluated at the SCV integration point for each face

(see Figure 2):

                                              ( )
3

,
1

,j j
r S i i IPr IPr

i

C C N x z
=

= ∑ .                                            (37)

          The components of the dispersion tensor will be approximated as
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NUMERICAL SOLUTION STRATEGY

          Eqs. (1) and (6) are transformed into a system of  ordinary differential equations
of the form (34) and (35)  for each node using  FVUM  as described in the above
section. In this discretisation, a lumped mass approach  and upstream weighting
technique have been used.  A large number of numerical techniques have been
developed for the time-discretisation of this system.  In particular, Huyakorn et al.
(1987) used the finite difference method, Frind (1982) used a time-weighted form. In
this paper, the ordinary differential equations (34) and (35) are solved numerically by
using the differential algebraic system solver package DASSL. This program uses the
backward differentiation formulas of orders one through five to solve a system of the
differential-algebraic equations (Petzold, 1982). The order is selected automatically
depending on the condition of the system. Time step control is also adaptive and
automatically controlled by the package. The numerical technique has been used to
solve adsorption problems involving steep gradients in bidisperse particles (Liu and
Bhatia, 1999) and hyperbolic models of transport in bidisperse solids (Liu and Bhatia,
2000).
          In order to solve the ordinary differential equations (34) and (35), the boundary
conditions must be treated numerically. After assembly of the nodal control volume
equations, complete conservation equations will exist for all interior control volumes.
However, at solution boundaries, the corresponding control volume will have two
control surfaces for which boundary conditions must be applied to complete the
equations for conservation. Figure 3 illustrates sub-control volumes for a triangular
element where two of its sides form part of the solution domain boundary. In
evaluating the boundary conditions along these sides it is necessary to integrate the
corresponding boundary control surfaces (BCS) as shown in Figure 3. The usual
boundary conditions (10), (11), (13), (14) and (15) can now be easily and directly
applied.

NUMERICAL SIMULATION RESULTS: saltwater intrusion in a confined
aquifer
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          This example concerns groundwater flow and salt transport in a coastal
confined aquifer.  This example is known widely as Henry’s saltwater intrusion
problem [Henry, 1959] and  is described schematically in Figure 4. The transient
analyses were performed. The parameters were chosen so that the cases analyzed
correspond to those solved numerically by other researchers [Huyakorn et al., 1987;
Cheng et al., 1998]. The boundary conditions employed in our numerical simulation
are also shown in Figure 4. The aquifer under consideration is a uniform isotropic
aquifer that is bounded below and above by impermeable strata.  In addition, the
aquifer is exposed on the right side by a stationary saltwater  body and is recharged on

the left side by a constant freshwater influx. The coastal boundary condition allows
convective mass transport out of the system over the top portion ( )mzm 10080 ≤≤ .
Thereupon, the normal concentration gradient is set equal to zero. The initial
concentration and reference hydraulic head were set to zero.
          The aquifer region was represented by a two-dimensional triangular
unstructured mesh  consisting of  476 triangular elements and 269 nodes as shown in
Figure 5.
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Figure 5: A two-dimensional unstructured mesh
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          Two cases of variable dispersion and constant coefficients were selected.
          For the variable dispersion case, dD  was set to zero, and the longitudinal and

transverse dispersivities Lα  and Tα  were set to 3.5m.
          Figures 6 and 7 show the reference head and the 0.5-isochlor distributions using
FVUM  for the transient state at  t=6000 days. It is apparent from Figures 6 and 7 that
the present analyses are in good agreement with those of  Huyakorn et al. [1987] and
Cheng et al. [1998].
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Figure 6: Reference head distribution for transient state
at t=6000 days, variable dispersion case
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Figure 7: The 0.5-isochlor distribution for transient state
at t=6000 days, variable dispersion case

          For the constant dispersion case, the molecular diffusion coefficient  dD  was

set equal to dm /106.6 22−× , and the Lα  and Tα  were set to zero.
          Figures 8 and 9 show the reference  head and the 0.5-isochlor distributions
using  FVUM for the  transient state at  t=6000 days for the constant dispersion case.
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It can be observed  from these figures that the results are in satisfactory agreement
with previously published solutions [Huyakorn et al., 1987; Frind, 1982; Cheng et al.,
1998].
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Figure 8: Reference head distribution for transient state
at t=6000 days, constant dispersion case
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Figure 9: The 0.5-isochlors distribution for transient state
at t=6000 days, constant dispersion case
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