

Learning to Learn How to Learn: Self-Adaptive Visual Navigation Using Meta-Learning

Mitchell Wortsman¹, Kiana Ehsani², Mohammad Rastegari^{1,3}, Ali Farhadi^{1,2,3}, Roozbeh Mottaghi¹

² University of Washington ¹ PRIOR @ Allen Institute for Al

Network Architecture

MOTIVATION: In reality there is no clear distinction between training and inference: We learn as we perform.

全分分分分分分分

Meta-Learning Inference

Traditional navigation approaches freeze the model during inference.

We introduce a self-adaptive agent for visual navigation (SAVN). SAVN learns how to adapt via self-supervised interaction with the environment.

Goal

- We learn a self-supervised interaction loss $\mathcal{L}_{\mathrm{int}}^{\varphi}$ to help minimize the supervised navigation loss \mathcal{L}_{nav} .
- During training we maximize the similarity between the gradients we receive from $\mathcal{L}_{ ext{int}}^{\phi}$ and $\mathcal{L}_{ ext{nav}}$ – we may then continue "learning" when there is no supervision.

³XNOR.AI

The agent's policy:

A distribution over

should take next.

navigation loss,

e.g. A3C Loss [1].

Parameters of the

Navigation trajectory.

A traditional

supervised

model.

the actions an agent

--> Navigation-Gradient (Training only)

---> Interaction-Gradient (Training and Inference)

→ Forward Pass

- Scenes equally split between Kitchen, Living Room, Bedroom, and Bathroom.
- 18 target object classes.
- 1000 test episodes.

SAVN has fewer failed actions (e.g. bumping into walls) at test time.

Learning to Learn how to Learn

Objective: Learn the best self-supervised interaction loss and model parameters such that we succeed at navigation after adapting to the environment with a gradient step from the learned loss.

Self-Supervised interaction loss computed via a neural network parameterized by ϕ .

 $heta -
abla_{ heta} \mathcal{L}_{ ext{int}}^{\phi} \left(heta, \mathcal{D}_{ au}^{ ext{int}}
ight)$

Adapted model parameters.

[3] Wei Yang et al. Visual semantic navigation using scene priors. In ICLR, 2019.

[4] E. Kolve et al. AI2-THOR: An Interactive 3D Environment for Visual AI. arXiv, 2017.