5th Planetary Data and PSIDA 2021 (LPI Contrib. No. 2549)

7015.pdf

FUNCTIONAL PROGRAMMING FOR DUMMIES: THE DATA FLOW PERSPECTIVE.
B. Grieger, Aurora Technology B.V. for the European Space Agency (ESA), European Space Astron-
omy Centre (ESAC), Camino Bajo del Castillo s/n, 28692 Villanueva de la Canada, Madrid, Spain

(bgrieger@sciops.esa.int).

Introduction: Until recently, functional pro-
gramming was not widely known and mostly only
used in academics (from where it originated). But
now, also major companies have started to pick it
up and the phrase is heard more often. Many people
might in fact have applied functional programming
long before they first heard it.

The name may not be quite elucidating to many,
as all programming languages know functions. The
definition of pure functions and the lambda calculus
used to describe functional programming are very
abstract.

The principal property of functional program-
ming is that it establishes a data flow. A data flow
can be defined in terms of functions, but it does not
have to. Describing the data flow directly makes
functional programming much more intuitive.

Spreadheets: The commonly used spreadsheet
programs are in fact manifestations of functional
programming. A spreadsheet cell can contain a
function of values from other cells (which may also
contain functions). Such a function establishes a
data flow between cells. These function are pure in
the functional programming sense in that they only
provide their value when called and have no side
effects.

Note that the user does not write a sequence of
commands (imperative programming), but rather
defines a data flow (functional programming). The
spreadsheet program decides what to execute, and
when.

OpenDX: OpenDX provides a right away view
on the data flow. OpenDX is a powerful 3D visual-
ization system introduced by IBM in 1991 as Visu-
alization Data Explorer. It was envisaged to super-
seed IDL in the world of scientific visualization, but
never really succeded. In 2000, it was handed over
to the open source community as OpenDX. Further
development idled out about 2007.

Open DX is a true data-flow implementation [1],
where all modules are pure functions (i. e., their out-
puts are fully defined by their inputs). While Open
DX uses (pure) functions under the hood, the visual
programming interface visualizes directly the data
flow, see Fig. 1.

The visual program can be executed on demand
or automatically if something changes. In the latter
case, only modules downstream of the change are

Import
1=
Normals Replace
Integer Compute | |Integer Integer
r - r

Switch Isosurface Switch
| |

Color

=

Collect
|

Figure 1: An OpenDX program is composed visu-
ally by placing modules from the tool bar on the
canvas and connecting them by click and drag.

re-executed.

The *nix make utility: The make utility [2]
available on all xnix systems is mostly used to build
executables from source code. The user provides
a so-called Makefile which contains rules that de-
scribe the dependencies between files (i. e., the ob-
ject file for a subroutine depends on the file which
contains the source code) and commands to create
or update files (compile or link commands). The
make utility reads the Makefile, checks the modi-
fication times of all files, and executes (only) the
commands needed to update everything.

The rules in the Makefile represent a data flow
description. The sequence of rules is arbitrary
(though the placement of other structures, e.g.,
macros, may matter). The make utility decides
which comands to execute, and when. The make
language is true funtional programming without
functions.

The make utility cannot only be used to build
executables but basically for all kinds of compu-
tations. A peculiarity is that make connects sev-
eral main programs, not subroutines, that exchange
data via the hard disk. So all intermediate results

5th Planetary Data and PSIDA 2021 (LPI Contrib. No. 2549)

are preserved between make runs.

The arcs wrapper language for make: As-
sume one wants to connect two programs with
make, e.g., a program that applies a dark correc-
tion to an image (or many) with a program that
afterwards applies a flat field. The benefit of this
is that when the dark correction is updated, ev-
erything has to be recomputed, but when the flat
fielding is updated, only that has to be rerun. The
user does not need to keep track of any changes and
take care of appropriate recomputation — the make
utility will do that.

Establishing such a connection requires insert-
ing code at three places: code to write the dark
corrected image to file in the dark correction pro-
gram, code to read the dark corrected image from
file in the flat fielding program, and the rule with
the file dependencies and the program execution
commands in the Makefile. This is not only te-
dious, but also error prone. All three code snippets
have to be absolutely consistent which each other.

This made the author creating a pure data flow
description language called arcs. The arcs compiler
reads a file which contains “arcs” describing connec-
tions between “modules”. The compiler inserts the
code to read and write files as appropriate into the
source code of the modules and writes a Makefile
with the respective rules. Each “arc” is maintained
at a single point in the arcs file.

One application of the arcs language is the tool
Envisionary for early science operations studies for
the EnVision mission to Venus. The data flow of the
computation of ground station events is illustrated
in Fig. 2.

The spk arc (top right) is the SPICE spacecraft
position kernel, which contains the spacecraft tra-
jectory. The two compute_* modules right below
are quite time consuming, but they have only to be
re-executed when the spacecraft trajectory changes,
which does not happen often. Everything else runs
pretty fast, so for any changes downstream of the
compute_* modules, re-running Envisionary takes
very little time.

Envisionary can perform various other tasks,
e.g., computation of Region Of Interest coverage.
The data flow approach has proven to be very effi-
cient in terms of rapid development and computa-
tional performance.

The dataflow C++4 template library:
Functional programming languages like Haskell or
functional programming extensions for other lan-
guages all use functions to establish a data flow.
In order to be able to directly describe the data
flow, the author has created a C+4 template li-

7015.pdf

computc_gs_pointing ‘

zenith_sun_moon_angles

get_pass_window

read_orbit_pattern_2 read_allowed_orbits compute_ray_dist

get_occult_window

Figure 2: The data flow of the computation of
gorund station events with Envisionary. Boxes are
modules, ovals are “arcs” (data structures passed
between modules). Only a subset of modules (13
out off ~ 220) is displayed. Such diagrams are auto-
matically created by the arcs compiler from source
code.

brary called dataflow.

The dataflow library is implemented object ori-
ented. Modules are objects which provide methods
to access their output. The output of a module can
be connected to the input of another module by a
simple command. If an output is requested, only
upstream modules directly or indirectly connected
for which any input has changed are re-executed.

Conclusions: Functional programming is a
powerful programming paradigm and the specifica-
tion of a data flow to solve a problem is in fact
intuitive and straight forward. However, the use
of functions to describe the data flow obscures the
inherent simplicity and makes writing and under-
standing functional programs more difficult. We
have discussed some tools that allow the user to
directly describe the data flow and facilitate “func-
tional programming without functions”.

References: [1] IBM Visualization Data Ex-
plorer User’s Guide, http://www.opendx.org/
support.html. [2] GNU Make Manual, https:
//www.gnu.org/software/make/manual.

