

 Praise from the Experts

“Using SAS macros can provide functionality as well as flexibility within code. Reading
Michele Burlew’s book, SAS Macro Programming Made Easy, Second Edition, helps
eliminate the ‘fear factor’ often associated with using macros, while offering valuable
insight to programmers with a broad range of experience.

“This book appeals to the less experienced SAS programmer by explaining how a macro
works in an easy-to-understand way and offers insight on various programming
techniques. Michele compares the use of the macro procedure to using an office assistant
to perform repetitive tasks in a way that most can relate to. Experienced programmers
will also find this second edition of SAS Macro Programming Made Easy a useful tool in
better understanding the mechanics associated with macros. This book was easy to
follow and provides an excellent reference for macro programmers.”

Suson vonLehmden
 Supervisor, System Analysis & Programming

Research Computing Division
RTI International

“This second edition updates the classic macro book with SAS®9 features and new
sections, making this excellent reference to the SAS macro language even better.
Michele's friendly style is especially good for programmers who might be fearful of
macro programming (like me!).

“This book is filled with examples showing how to store and reuse macro programs,
build a library of routines, debug macro programs, and a stepwise method for writing
macro code.

“The discussion of the autocall and compiled macro facilities is very well done. In this
section, Michele gives examples of both of these facilities, explaining the advantages and
disadvantages of each. As an added value, you may want to include the macros she
presents in your own macro library.

“Michele Burlew has added new material and brought her already excellent first edition
up to date. This is a book that anyone who uses the macro facility needs to have in their
collection.”

Dr. Ron Cody
Professor (retired)

Robert Wood Johnson Medical School

“We all want a ‘SAS programming assistant’ to help us complete our jobs more quickly.
In her book SAS Macro Programming Made Easy, Second Edition, Michele Burlew
encourages us to take advantage of the SAS Macro Facility as our ‘SAS programming
assistant.’ She demonstrates how macros can handle many of the SAS programming
tasks that you presently spend a lot of time on.

“The Macro ‘newbie’ will learn well from the logical progression of topics and the in-
depth coverage of concepts. Both beginner and intermediate macro programmers will
benefit from the behind-the-scenes explanations of how macro programs process, the
debugging tools and tips (because unexpected results do happen), and the stepwise macro
development method, which is a wonderful approach to maintain your sanity when
writing macros.

“Whether you read this book sequentially or jump right to topics you need to know, you
will find this book to be a valuable resource.”

 Marje Fecht
Senior Partner

Prowerk Consulting

“Whether you are new to macro programming or at an intermediate level, this second
edition of a first-time favorite, with its abundance of examples and helpful explanations,
will show you how to shorten code, minimize repetitive tasks, and give you the tools to
potentially make your programs dynamic in scope.”

Robert Francis, Ph.D.
Contractor, NOVA Research Company

Michele M. Burlew

SAS® Macro
Programming
Made Easy
Second Edition

The correct bibliographic citation for this manual is as follows: Burlew, Michele M. 2006. SAS® Macro
Programming Made Easy, Second Edition. Cary, NC: SAS Institute Inc.

SAS® Macro Programming Made Easy, Second Edition

Copyright © 2006, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-59047-882-0

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the
prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by
the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set
forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, December 2006

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS
software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-
copy books, visit the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

Preface ix
Acknowledgments xi

Part 1 Understanding the Concepts and Features of
 Macro Programming 1

Chapter 1 Introduction 3
What Is the SAS Macro Facility? 4
What Are the Advantages of the SAS Macro Facility? 6
Where Can the SAS Macro Facility Be Used? 12
Examples of the SAS Macro Facility 13

Chapter 2 Mechanics of Macro Processing 23
Introduction 23
The Vocabulary of SAS Processing 24
SAS Processing without Macro Activity 25
Understanding Tokens 26
Tokenizing a SAS Program 28
Comparing Macro Language Processing and SAS Language
Processing 29
Processing a SAS Program That Contains Macro Language 30

Chapter 3 Macro Variables 39
Introduction 40
Basic Concepts of Macro Variables 40
Referencing Macro Variables 42
Understanding Macro Variable Resolution and the Use of Single and
Double Quotation Marks 44
Displaying Macro Variable Values 46
Understanding Automatic Macro Variables 52

iv Contents

Understanding User-Defined Macro Variables 56
Combining Macro Variables with Text 59
Referencing Macro Variables Indirectly 65

Chapter 4 Macro Programs 73
Introduction 74
Creating Macro Programs 74
Executing a Macro Program 78
Displaying Notes about Macro Program Compilation in the
SAS Log 80
Displaying Messages about Macro Program Processing in the
SAS Log 82
Passing Values to a Macro Program through Macro Parameters 85

Chapter 5 Understanding Macro Symbol Tables and the
 Processing of Macro Programs 101

Introduction 102
Understanding Macro Symbol Tables 102
Processing of Macro Programs 122

Chapter 6 Macro Language Functions 133
Introduction 133
Macro Character Functions 134
Macro Evaluation Functions 138
Macro Quoting Functions 140
Macro Variable Attribute Functions 143
Other Macro Functions 147
SAS Supplied Autocall Macro Programs Used Like Functions 154

Chapter 7 Macro Expressions and Macro Programming
 Statements 159

Introduction 160
Macro Language Statements 160
Constructing Macro Expressions 163

Contents v

Conditional Processing with the Macro Language 167
Iterative Processing with the Macro Language 177
Branching in Macro Processing 184

Chapter 8 Masking Special Characters and Mnemonic
 Operators 189

Introduction 190
Why Are Quoting Functions Called Quoting Functions? 191
Illustrating the Need for Macro Quoting Functions 191
Describing the Commonly Used Macro Quoting Functions 192
Understanding How Macro Quoting Functions Work 194
Applying Macro Quoting Functions 195
Specifying Macro Program Parameters That Contain Special
Characters or Mnemonic Operators 203
Unmasking Text and the %UNQUOTE Function 213
Using Quoting Versions of Macro Character Functions and Autocall
Macro Programs 214

Chapter 9 Interfaces to the Macro Facility 217
Introduction 218
Understanding DATA Step Interfaces to the Macro Facility 218
Using Macro Facility Features in PROC SQL 251
Using Macro Facility Features in SAS Component Language 262

Part 2 Applying Your Knowledge of Macro
 Programming 267

Chapter 10 Storing and Reusing Macro Programs 269
Introduction 270
Saving Macro Programs with the Autocall Facility 270
Saving Macro Programs with the Stored Compiled Macro
Facility 278
Resolving Macro Program References When Using the Autocall
Facility and the Stored Compiled Macro Facility 283

vi Contents

Chapter 11 Building a Library of Utilities 285
Introduction 285
Writing a Macro Program to Behave Like a Function 286
Programming Routine Tasks 290

Chapter 12 Debugging Macro Programming and Adding Error
 Checking to Macro Programs 297

Introduction 298
Understanding the Types of Errors That Can Occur in Macro
Programming 298
Minimizing Errors in Developing SAS Programs That Contain Macro
Language 299
Categorizing and Checking for Common Problems in Macro
Programming 299
Understanding the Tools That Can Debug Macro Programming 303
Examples of Solving Errors in Macro Programming 307
Improving Your Macro Programming by Including Error
Checking 326

Chapter 13 A Stepwise Method for Writing Macro Programs 335
Introduction 336
Building a Macro Program in Four Steps 336
Applying the Four Steps to an Example 337

Part 3 Appendixes 369

Appendix A Abridged Macro Language Reference 371
Selected SAS Options Used with the Macro Facility 372
Automatic Macro Variables 373
Macro Functions 377
Macro Language Statements 381
PROC SQL Interface to the Macro Facility 386
SAS Functions and Routines That Interface with the Macro
Facility 387

Contents vii

Appendix B Reserved Words in the Macro Facility 391

Appendix C Sample Data Set 393

Appendix D Reference to Programs in This Book 399

Index 407

viii Contents

Preface

How Can This Book Help You Understand the
SAS Macro Facility?
This book is for beginning through experienced users of SAS who want to learn about
SAS macro programming. It assumes that you have beginning to intermediate experience
writing SAS language programs, and it does not review SAS language and SAS
programming concepts.

The focus of this book is to make the macro facility a tool you can use in your
programming. It is less inclusive and spends less time on reference details than SAS
Macro Language: Reference.

The technical aspects of macro processing are described in this book. While
understanding the technical aspects is not necessary to begin to reap the benefits of the
SAS macro facility, this knowledge might help you more wisely apply macro
programming techniques.

Don't worry if the technical aspects are difficult to grasp at first. Instead, jump in and
start using the simpler features of the macro facility. Try macro variables first. You're
bound to make some errors, but those errors help you understand macro processing.
Eventually, as your macro programming skills improve, a more thorough understanding
of macro processing can reduce the number of macro programming errors you make and
make it easier to debug your programs.

This book is grouped into three parts. The first part explains the elements and mechanics
of the macro programming language. The second part shows ways of applying your
knowledge of macro programming that you gained in the first part. The third part
contains four appendixes that provide a quick reference to the macro language, the data
set used for most of the examples, and a short description of the example programs.

This book starts with the easier features of the SAS macro facility. These features are
building blocks for the later topics. The features of the macro facility are interrelated, and
so occasionally you might see some features used before they are formally discussed.

Because macro facility features are interrelated, this book does not have to be read in a
linear fashion. Work through sections as appropriate for your needs. Return to earlier
sections when that information becomes pertinent. However, it is best to start with the
technical information in Chapter 2 and move on to the macro variable chapter, Chapter 3.
You might then work with macro variables extensively and try some of the features like
macro functions and macro expressions that are described in Chapters 6 and 7. After

x Preface

gaining an understanding of how macro variables work, you might try writing macro
programs. You can learn how to do this in Chapter 4 and then try using the macro
programming statements in Chapter 7. Read Chapter 13 to see how a macro program can
be designed and constructed.

You might find it useful to learn about macro facility interfaces before you cover macro
programs. Chapter 9 includes information useful for DATA step programmers, PROC
SQL programmers, and SCL programmers.

About the Data and Programs in This Book
The examples in this book are illustrated with sales data from a fictitious bookstore. The
DATA step to create this data set is in Appendix C. A PROC CONTENTS listing for this
data set is also in Appendix C.

The programs in this book are written to expect the sales data set to be a permanent data
set with a libref of BOOKS and a data set name of YTDSALES.

The examples and screens in this book were produced using SAS®9 under Windows XP.

The programs in each chapter are numbered. Appendix D lists all the numbered programs
in this book along with a brief description.

The Typographical Styles in This Book
The typographical styles in this book follow that of SAS documention.

Values in italics identify arguments and values that you supply.

Arguments enclosed in angle brackets (< >) are optional.

Arguments separated with a vertical bar (|) indicate mutually exclusive
choices.

For example, the syntax of the %SYSEVALF function is written as follows:

%SYSEVALF(arithmetic expression|logical expression
 <,conversion-type>)

When specifying the %SYSEVALF function, you must specify either an arithmetic
expression or a logical expression. Specifying a conversion type is optional.

Acknowledgments

Many thanks to all involved in producing the second edition of this book.

Thanks to my editors at SAS, John West and Julie Platt, for their guidance in completing
this project. I appreciate the opportunity to write a second edition on a subject that I
really like.

Thanks to the technical reviewers, Kay Alden, Patrick Garrett, Amy Gumm, Cynthia
Johnson, Russ Tyndall, and Ed Vlazny, for their careful review of the material and useful
suggestions. Thanks especially to Russ for his expertise and generous assistance in
answering my multiple questions.

Thanks to the SAS Publishing copyedit and production team for their hard work in the
layout, figure redesign, copyediting, and marketing of this book. The team members
contributing to this book include Mike Boyd for copyediting, Patrice Cherry for cover
design, Jennifer Dilley for graphic design and redesign of the figures for the second
edition, Candy Farrell for layout, Shelly Goodin for preproduction marketing, Mary Beth
Steinbach as SAS Press Managing Editor, and Liz Vallani for postproduction marketing.

As in the first edition, I want to acknowledge my friends and former coworkers from St.
Paul Computer Center at the University of Minnesota, especially Jim Colten, Janice
Jannett, Mel Sauve, Dave Schempp, Karen Schempp, and Terri Schultz. Not only were
they a great group to work with, but the programming skills I learned from them have
helped me over and over again.

Thanks to Mike Davern, Lynn Blewett, Pamela Johnson, and Michelle Casey with the
Division of Health Policy and Management at the University of Minnesota, and Brian
Gray with the U.S. Geological Survey Upper Midwest Environmental Sciences Center
for the very interesting work that keeps me writing SAS macros on a nearly daily basis.

xii Acknowledgments

P a r t 1
Understanding the Concepts and Features of
Macro Programming

Chapter 1 Introduction 3

Chapter 2 Mechanics of Macro Processing 23

Chapter 3 Macro Variables 39

Chapter 4 Macro Programs 73

Chapter 5 Understanding Macro Symbol Tables and the Processing of
 Macro Programs 101

Chapter 6 Macro Language Functions 133

Chapter 7 Macro Expressions and Macro Programming
 Statements 159

Chapter 8 Masking Special Characters and Mnemonic
 Operators 189

Chapter 9 Interfaces to the Macro Facility 217

2 SAS Macro Programming Made Easy, Second Edition

C h a p t e r 1
Introduction

What Is the SAS Macro Facility? 4

What Are the Advantages of the SAS Macro Facility? 6

Where Can the SAS Macro Facility Be Used? 12

Examples of the SAS Macro Facility 13

Imagine you have an assistant to help you write your SAS programs. Your assistant
willingly and unfailingly follows your instructions allowing you to move on to other
tasks. Repetitive programming assignments like multiple PROC TABULATE tables,
where the only difference between one table and the next is the classification variable,
are delegated to your assistant. Jobs that require you to run a few steps, review the
output, and then run additional steps based on the output are not difficult; they are,
however, time-consuming. With instructions on selection of subsequent steps, your
assistant easily handles the work. Even having your assistant do simple tasks like editing
information in TITLE statements makes your job easier.

Actually, you already have a SAS programming assistant: the SAS macro facility. The
SAS macro facility can do all the tasks above and more. To have the macro facility work
for you, you first need to know how to communicate with the macro facility. That's the
purpose of this book: to show you how to communicate with the SAS macro facility so
that your SAS programming can become more effective and efficient.

4 SAS Macro Programming Made Easy, Second Edition

An infinite variety of applications of the SAS macro facility exist. An understanding of
the SAS macro facility gives you confidence to appropriately use it to help you build
your SAS programs. The more you use the macro facility, the more adept you become at
using it. As your skills increase, you discover more situations where the macro facility
can be applied. The macro programming skills you learn from this book can be applied
throughout SAS.

You do not have to use any of the macro facility features to write good SAS programs,
but, if you do, you might find it easier to complete your SAS programming assignments.
The SAS programming language can get you from one floor to the next, one step after
another. Using the macro facility wisely is like taking an elevator to get to a higher floor:
you follow the same path, but you'll likely arrive at your destination sooner.

What Is the SAS Macro Facility?

Fundamentally, the SAS macro facility is a tool for text substitution. You associate a
macro reference with text. When the macro processor encounters that reference, it
replaces the reference with the associated text. This text can be as simple as text strings
or as complex as SAS language statements. The macro processor becomes your SAS
programming assistant in helping you construct your SAS programs.

The SAS macro facility is a component of Base SAS. The Base SAS product is integral
to SAS and must be installed at your computing location if you want to write SAS
programs or run SAS procedures in any of the SAS products. Therefore, if you have
access to SAS, you have access to the macro facility, and you can include macro facility
features in your programs. Indeed, many of the SAS products that you license contain
programs that use the macro facility.

As shown in Figure 1.1, the SAS macro facility works side-by-side with Base SAS to
build and execute your programs. The macro facility has its own language distinct from
the SAS language, but the language and conventions of the macro facility are similar to
the style and syntax of the SAS language. If you already write DATA steps, you have a
head start on understanding the language and conventions of the macro facility.

Chapter 1: Introduction 5

Figure 1.1 How the SAS macro facility fits into SAS

Base SAS: DATA
Step, PROC Steps,

PROC SQL

SAS/AF

SAS/FSP

SAS/GRAPH

SAS Macro Facility

SAS/CONNECT

SAS/EIS

and so on....

The two main components of the SAS macro facility are SAS macro variables and SAS
macro programs. With SAS macro variables, you create references to larger pieces of
text. A typical use of a macro variable is to repeatedly insert a piece of text throughout a
SAS program. SAS macro programs use macro variables and macro programming
statements to build SAS programs. Macro programs can direct conditional execution of
DATA steps and PROC steps. Macro programs can do repetitive tasks such as creating or
analyzing a series of data sets.

Example 1.1 shows how a macro variable can be used, and Example 1.2 shows how a
macro program can be used.

Example 1.1: Using a Macro Variable to Select Observations to
 Process
The macro variable MONTH_SOLD defined in Program 1.1 is used to select a subset of
a data set and place information in the report title. Macro language and macro variable
references are in bold.

Program 1.1
%let month_sold=4;
proc print data=books.ytdsales
 (where=(month(datesold)=&month_sold));
 title "Books Sold for Month &month_sold";
 var booktitle saleprice;
 sum saleprice;
run;

6 SAS Macro Programming Made Easy, Second Edition

Example 1.2: Using a Macro Program to Execute the Same
 PROC Step on Multiple Data Sets
When Program 1.2 executes, it submits a PROC MEANS step three times: once for each
of the years 2007, 2008, and 2009. Each time, it processes a different data set. The macro
language and references that generate the three steps are in bold.

Program 1.2
%macro sales;
 %do year=2007 %to 2009;
 proc means data=books.sold&year;
 title "Sales Information for &year";
 class section;
 var listprice saleprice;
 run;
 %end;
%mend sales;
%sales

The macro facility was first released in SAS 82.0 in 1982. There are relatively few
statements in the macro language, and these statements are very powerful.

In a world of rapidly changing software tools and techniques, the macro facility remains
one of the most widely used components of SAS. What you learn now about the macro
facility will serve you for many years of SAS programming.

What Are the Advantages of the SAS Macro
Facility?

Your SAS programming productivity can improve when you know how and when to use
the SAS macro facility. The programs you write can become reusable, shorter, and easier
to follow.

In addition, by incorporating macro facility features in your programs you can

accomplish repetitive tasks quickly and efficiently. A macro program can be
reused many times. Parameters passed to the macro program customize the
results without having to change the code within the macro program.

provide a more modular structure to your programs. SAS language that is
repetitive can be generated by macro language statements in a macro program,

Chapter 1: Introduction 7

and that macro program can be referenced in your SAS program. The reference
to the macro program is similar to calling a subroutine. The main program
becomes easier to read—especially if you give the macro program a meaningful
name for the function that it performs.

Think about automated bill paying as a real-world example of the concepts of macro
programming. When you enroll in an automated bill paying plan, you no longer initiate
payments each month to pay recurring bills like the mortgage and the utilities. Without
automated bill paying, it takes a certain amount of time each month for you to initiate
payments to pay those recurring bills. The time that it takes to initiate the automated bill
paying plan is likely longer in the month that you set it up than if you just submitted a
payment for each monthly bill. But, once you have the automated bill paying plan
established (and perhaps allowing the bank a little debugging time!), the amount of time
you spend each month dealing with those recurring bills is reduced. You instruct your
bank how to handle those recurring bills. In turn, they initiate those monthly payments
for you.

That's what macro programming can do for you. Instead of editing the program each time
parameters change (for example, same analysis program, different data set), you write a
SAS program that contains macro language statements. These macro language statements
instruct the macro processor how to make those code changes for you. Then, when you
run the program again, the only changes you make are to the values that the macro
language uses to edit your program–like directing the bank to add the water department
to your automatic payment plan.

Example 1.3: Defining and Using Macro Variables
Consider another illustration of macro programming, this time including a sample
program. The data set that is analyzed here is used throughout this book. The data
represent computer book sales at a fictitious bookstore.

Program 1.3 produces two reports for the computer section of the bookstore. The first is a
monthly sales report. The second is a pie chart of sales from the beginning of the year
through the month of interest.

If you were not using macro facility features, you would have to change the program
every time you wanted the report for a different month and/or year. These changes would
have to be made at every location where the month value and/or year value were
referenced.

Rather than doing these multiple edits, you can create macro variables at the beginning
of the program that are set to the month and the year of interest, and place references to
these macro variables throughout the program where they are needed. When you get
ready to submit the program, the only changes you make are to the values of the macro
variables. After you submit the program, the macro processor looks up the values of

8 SAS Macro Programming Made Easy, Second Edition

month and year that you set and substitutes those values as specified by your macro
variable references.

You don't edit the DATA step and the PROC steps; you only change the values of the
macro variables at the beginning of the program. The report layout stays the same, but
the results are based on a different subset of the data set.

Don't worry about understanding the macro language coding at this point. Just be aware
that you can reuse the same program to analyze a different subset of the data set by
changing the values of the macro variables.

Note that macro language statements start with a percent sign (%) and macro variable
references start with an ampersand (&). Both features are in bold in the following code.

Program 1.3
%let repmonth=4;
%let repyear=2007;
%let repmword=%sysfunc(mdy(&repmonth,1,&repyear),monname9.);

data temp;
 set books.ytdsales;
 mosale=month(datesold);
 label mosale='Month of Sale';
run;

proc tabulate data=temp;
 title "Sales During &repmword &repyear";
 where mosale=&repmonth and year(datesold)=&repyear;
 class section;
 var saleprice listprice cost;
 tables section all='**TOTAL**',
 (saleprice listprice cost)*(n*f=4. sum*f=dollar10.2);
run;

proc gchart data=temp
 (where=(mosale <= &repmonth and
 year(datesold)=&repyear));
 title "Sales Through &repmword &repyear";
 pie section / coutline=black percent=outside
 sumvar=saleprice noheading ;
run;
quit;

Output 1.3a presents the output from Program 1.3.

Chapter 1: Introduction 9

Output 1.3a Output from Program 1.3

 Sales During April 2007

 --

 | | Sale Price | List Price |Wholesale Cost |

 | |---------------+---------------+---------------|

 | | N | Sum | N | Sum | N | Sum |

 |--------------+----+----------+----+----------+----+----------|

 |Section | | | | | | |

 |--------------| | | | | | |

 |Certification | | | | | | |

 |and Training | 62| $2,709.54| 62| $2,745.90| 62| $1,398.42|

 |--------------+----+----------+----+----------+----+----------|

 |Internet | 89| $3,896.43| 89| $3,965.55| 89| $2,018.03|

 |--------------+----+----------+----+----------+----+----------|

 |Networks and | | | | | | |

 |Telecommunica-| | | | | | |

 |tion | 60| $2,627.57| 60| $2,694.00| 60| $1,376.47|

 |--------------+----+----------+----+----------+----+----------|

 |Operating | | | | | | |

 |Systems | 79| $3,467.53| 79| $3,539.05| 79| $1,780.11|

 |--------------+----+----------+----+----------+----+----------|

 |Programming | | | | | | |

 |and | | | | | | |

 |Applications | 130| $5,689.23| 130| $5,806.50| 130| $2,943.80|

 |--------------+----+----------+----+----------+----+----------|

 |Web Design | 57| $2,500.71| 57| $2,559.15| 57| $1,293.26|

 |--------------+----+----------+----+----------+----+----------|

 |**TOTAL** | 477|$20,891.01| 477|$21,310.15| 477|$10,810.10|
 --

 (continued)

10 SAS Macro Programming Made Easy, Second Edition

Changing just the first line of the program from

%let repmonth=4;
to

%let repmonth=5;

runs the same program, but now processes the data collected for May. No other editing of
the program is required to process this subset. Output 1.3b presents the output for May.

Chapter 1: Introduction 11

Output 1.3b Output from revised Program 1.3

 Sales During May 2007

 --

 | | Sale Price | List Price |Wholesale Cost |

 | |---------------+---------------+---------------|

 | | N | Sum | N | Sum | N | Sum |

 |--------------+----+----------+----+----------+----+----------|

 |Section | | | | | | |

 |--------------| | | | | | |

 |Certification | | | | | | |

 |and Training | 31| $1,420.69| 31| $1,449.45| 31| $741.81|

 |--------------+----+----------+----+----------+----+----------|

 |Internet | 79| $3,359.32| 79| $3,425.05| 79| $1,751.58|

 |--------------+----+----------+----+----------+----+----------|

 |Networks and | | | | | | |

 |Telecommunica-| | | | | | |

 |tion | 38| $1,603.27| 38| $1,660.10| 38| $834.65|

 |--------------+----+----------+----+----------+----+----------|

 |Operating | | | | | | |

 |Systems | 51| $2,229.91| 51| $2,284.45| 51| $1,154.91|

 |--------------+----+----------+----+----------+----+----------|

 |Programming | | | | | | |

 |and | | | | | | |

 |Applications | 72| $3,223.63| 72| $3,254.40| 72| $1,639.38|

 |--------------+----+----------+----+----------+----+----------|

 |Web Design | 29| $1,252.09| 29| $1,284.55| 29| $650.97|

 |--------------+----+----------+----+----------+----+----------|

 |**TOTAL** | 300|$13,088.90| 300|$13,358.00| 300| $6,773.29|

 --

 (continued)

12 SAS Macro Programming Made Easy, Second Edition

Where Can the SAS Macro Facility Be Used?

The macro facility can be used with all SAS products. You've seen in the monthly sales
report an example of macro programming in Base SAS.

Table 1.1 lists some SAS products and possible macro facility applications that you can
create. It also lists existing macro applications that come with SAS.

Chapter 1: Introduction 13

Table 1.1 SAS macro facility applications

SAS Product Typical Applications of the Macro Facility
Base SAS Customizes data set processing

Customizes PROC steps
Customizes reports
Passes data between steps in a program
Conditionally executes DATA steps and PROC steps
Iteratively processes DATA steps and PROC steps
Contains libraries of macro program routines

SAS Component
Language

Communicates between SAS program steps and SCL
programs
Communicates between SCL programs

SAS/CONNECT Passes information between local and remote SAS sessions
SAS/GRAPH Contains libraries of macro routines for annotating

SAS/GRAPH output
SAS/TOOLKIT Creates functions that can be used with the macro facility

Examples of the SAS Macro Facility

The following examples of the SAS macro facility illustrate some of the tasks that the
macro processor can perform for you. There's no need to understand the coding of these
programs at this point (although the code is included and might be useful to you later).
What you should gain from this section is an idea of the kinds of SAS programming
tasks that can be delegated to the macro processor.

In addition to the examples that follow, Program 1.3 demonstrates reuse of the same
program by simply changing the values of the macro variables at the beginning of the
program. A new subset of data is analyzed each time the values of the macro variables
are changed.

It is relatively easy to create and reference these macro variables. Besides being able to
reuse your program code, the advantages in using macro variables include reducing
coding time and reducing programming errors by not having to edit so many lines of
code.

14 SAS Macro Programming Made Easy, Second Edition

Example 1.4: Displaying System Information
SAS comes with a set of automatic macro variables that you can reference in your SAS
programs. Most of these macro variables deal with system-related items like date, time,
operating system, and version of SAS. Using these automatically defined macro variables
is one of the simplest applications of the macro facility.

Program 1.4 incorporates some of these automatic macro variables, and these macro
variables are in bold in the code. Note that the automatic macro variable names are
preceded by ampersands. Assume the report was run on February 20, 2008.

Program 1.4
title "Sales Report";
title2 "As of &systime &sysday &sysdate";
title3 "Using SAS Version: &sysver";
proc means data=books.ytdsales n sum;
 var saleprice;
run;

Output 1.4 presents the output from Program 1.4.

Output 1.4 Output for program using automatically defined SAS macro
 variables

 Sales Report

 As of 15:46 Wednesday 20FEB08

 Using SAS Version: 9.1

 The MEANS Procedure

 Analysis Variable : saleprice Sale Price

 N Sum

 6096 263678.15

Chapter 1: Introduction 15

Example 1.5: Conditional Processing of SAS Steps
Macro programs can use macro variables and macro programming statements to select
the steps and the SAS language statements to execute in a SAS program. These
conditional processing macro language statements are similar in syntax and structure to
SAS language statements.

Macro program DAILY in Program 1.5 contains two PROC steps. The first PROC
MEANS step runs daily. The second PROC MEANS step runs only on Fridays. The
conditional macro language statements direct the macro processor to run the second
PROC step only on Fridays. Assume the program was run on Friday, August 17, 2007.

Macro language statements start with percent signs, and macro variable references start
with ampersands.

Program 1.5
%macro daily;
 proc means data=books.ytdsales(where=(datesold=today()))
 maxdec=2 sum;
 title "Daily Sales Report for &sysdate";
 class section;
 var saleprice;
 run;

%if &sysday=Friday %then %do;
 proc means data=books.ytdsales
 (where=(today()-6 le datesold le today()))
 sum maxdec=2;
 title "Weekly Sales Report Week Ending &sysdate";
 class section;
 var saleprice;
 run;

%end;
%mend daily;

%daily

Output 1.5 presents the output from Program 1.5.

16 SAS Macro Programming Made Easy, Second Edition

Output 1.5 Output from Program 1.5 that uses conditional macro language
 statements

 Daily Sales Report for 17AUG07 1

 The MEANS Procedure

 Analysis Variable : saleprice Sale Price

 N

 Section Obs Sum

 --

 Certification and Training 5 229.16

 Internet 7 312.96

 Networks and Telecommunication 3 122.76

 Operating Systems 3 132.85

 Programming and Applications 2 100.41

 Web Design 4 173.80

 --

 Weekly Sales Report Week Ending 17AUG07 2

 The MEANS Procedure

 Analysis Variable : saleprice Sale Price

 N

 Section Obs Sum

 --

 Certification and Training 13 562.78

 Internet 28 1210.22

 Networks and Telecommunication 15 645.16

 Operating Systems 27 1206.67

 Programming and Applications 23 1007.57

 Web Design 14 610.61

 --

Chapter 1: Introduction 17

Example 1.6: Iterative Processing of SAS Steps
Coding each iteration of a programming process that contains multiple iterations is a
lengthy task. The %DO loops in the macro language can take over some of that iterative
coding for you. A macro program can build the code for each iteration of a repetitive
programming process based on the specifications of the %DO loop.

Program 1.6 illustrates iterative processing. It creates 12 data sets, one for each month of
the year. Without macro programming, you would have to enter the 12 data set names in
the DATA statement and enter all the ELSE statements that direct observations to the
right data set. A macro language %DO loop can build those statements for you.

Program 1.6
%macro makesets;
 data

 %do i=1 %to 12;
 month&i

%end;
 ;
 set books.ytdsales;
 mosale=month(datesold);
 if mosale=1 then output month1;

%do i=2 %to 12;
 else if mosale=&i then output month&i;

%end;
 run;
%mend makesets;

%makesets

After interpretation by the macro processor, the program becomes:

 data month1 month2 month3 month4 month5 month6
 month7 month8 month9 month10 month11 month12
 ;
 set books.ytdsales;
 mosale=month(datesold);
 if mosale=1 then output month1;
 else if mosale=2 then output month2;
 else if mosale=3 then output month3;
 else if mosale=4 then output month4;
 else if mosale=5 then output month5;
 else if mosale=6 then output month6;
 else if mosale=7 then output month7;
 else if mosale=8 then output month8;
 else if mosale=9 then output month9;

18 SAS Macro Programming Made Easy, Second Edition

 else if mosale=10 then output month10;
 else if mosale=11 then output month11;
 else if mosale=12 then output month12;
 run;

Macro language statements built the SAS language DATA statement and all of the ELSE
statements in the DATA step for you.

A few macro programming statements direct the macro processor to build the complete
DATA step for you. By doing this, you avoid the tedious task of entering all the data set
names and all the ELSE statements. Repetitive coding tasks are a breeding ground for
bugs in your programs. Thus, turning these tasks over to the macro processor can reduce
the number of errors in your SAS programs.

Example 1.7: Passing Information between Program Steps
The macro facility can act as a bridge between steps in your SAS programs. The SAS
language functions that interact with the macro facility can transfer information between
steps in your SAS programs.

Program 1.7 calculates total sales for two sections in the computer department of the
bookstore. That value is then inserted in the TITLE statement of the PROC GCHART
output. The SYMPUTX SAS language routine instructs the macro processor to retain the
total sales value in macro variable INTWEBSL after the DATA step finishes. The total
sales value is then available to subsequent steps in the program.

Program 1.7
data temp;
 set books.ytdsales end=lastobs;
 retain sumintwb 0;
 if section in ('Internet','Web Design') then
 sumintwb=sumintwb + saleprice;
 if lastobs then

call symputx('intwebsl',put(sumintwb,dollar10.2));
run;
proc gchart data=temp;
 title "Internet and Web Design Sales: &intwebsl";
 hbar section / sumvar=saleprice;
 format saleprice dollar10.2;
run;
quit;

Output 1.7 presents the output from Program 1.7.

Chapter 1: Introduction 19

Output 1.7 Output from Program 1.7 that passes data from a DATA step to
 a TITLE statement

Without the SYMPUTX routine, you would have to submit two programs. The first SAS
program would calculate the total sales for the two sections. After the first program ends,
you find the total sales value in the output. Then, before submitting the second program,
you would have to edit the second program and update the TITLE statement with the
total sales value that you found in the output from the first program.

Example 1.8: Interfacing Macro Language and SAS Language
 Functions
The SAS language has libraries of functions that also can be used in your macro
language programs. Some uses of these functions include incorporating information
about a data set in a title, checking the existence of a data set, and finding the number of
observations in a data set.

Macro program DSREPORT in Program 1.8 produces a PROC MEANS report for a data
set whose name is passed as a parameter to DSREPORT. The number of observations
and creation date of the data set are obtained with the ATTRN SAS language function,
and these attributes are inserted in the report title. The date value is formatted by the
PUTN SAS language function. Macro program DSREPORT opens and closes the data
set with the OPEN and CLOSE SAS language functions. The SAS language functions
are underlined in Program 1.8.

20 SAS Macro Programming Made Easy, Second Edition

Program 1.8
%macro dsreport(dsname);
 %*----Open data set dsname;
 %let dsid=%sysfunc(open(&dsname));

 %*----How many obs are in the data set?;
%let nobs=%sysfunc(attrn(&dsid,nobs));

 %*----When was the data set created?;
%let when = %sysfunc(putn(

 %sysfunc(attrn(&dsid,crdte)),datetime9.));

 %*----Close data set dsname identified by dsid;
 %let rc=%sysfunc(close(&dsid));

 title "Report on Data Set &dsname";
 title2 "Num Obs: &nobs Date Created: &when";

 proc means data=&dsname sum maxdec=2;
 class section;
 var saleprice;
 run;
%mend dsreport;

%dsreport(books.ytdsales)

Output 1.8 presents the output from Program 1.8.

Chapter 1: Introduction 21

Output 1.8 Output from Program 1.8 that uses SAS language functions

 Report on Data Set books.ytdsales

 Num Obs: 6096 Date Created: 01JAN2007

 The MEANS Procedure

 Analysis Variable : saleprice Sale Price

 N

 Section Obs Sum

 --

 Certification and Training 726 31648.52

 Internet 1456 62295.78

 Networks and Telecommunication 717 30803.81

 Operating Systems 922 39779.11

 Programming and Applications 1429 62029.41

 Web Design 846 37121.52

 --

Example 1.9: Building and Saving a Library of Utility Routines
In your work, you might frequently need to program the same process in different
applications. Rather than rewriting the code every time, you might be able to write the
code once and save it in a macro program. Later when you want to execute that code
again, you just reference the macro program. With the macro facility, there are ways to
save the code in special libraries and to even save the compiled code in permanent
locations. For example, perhaps certain reports all require the same SAS options, titles,
and footnotes. You can save these standardizations in a macro program and call the
macro program rather than write the statements every time.

You can store the macro program in a special location called an autocall library. Then
when you want to submit the macro program for compilation and execution during a later
SAS session, you just need to tell SAS to look for macro programs in the autocall library,
and you do not have to explicitly submit the code in the SAS session.

The macro program STANDARDOPTS in Program 1.9 submits an OPTIONS statement
to ensure that three SAS options are in effect: NODATE, NUMBER, and BYLINE. It
also specifies TITLE1 and FOOTNOTE1 statements. Assume STANDARDOPTS is
stored in a file named STANDARDOPTS.SAS in Windows directory
c:\mymacroprograms. (Note that if you were using UNIX, the filename must be in
lowercase.)

22 SAS Macro Programming Made Easy, Second Edition

Program 1.9
%macro standardopts;
 options nodate number byline;
 title "Bookstore Report";
 footnote1 "Prepared &sysday &sysdate9 at &systime using SAS
&sysver";
%mend standardopts;

In a later SAS session, you do not need to submit the previous code. Instead, you can
submit the following OPTIONS statement and call the macro program
STANDARDOPTS. The SASAUTOS option specifies that SAS have access to the
autocall library shipped with SAS (“sasautos”) and to the autocall library in the
mymacroprograms folder.

options mautosource sasautos=(sasautos,'c:\mymacroprograms');
%standardopts

After submitting the macro program STANDARDOPTS, the title text on subsequent
reports is

Bookstore Report

If STANDARDOPTS was submitted on February 22, 2008, from a SAS session that
started at 8:36 using SAS 9.1, the footnote text on subsequent reports would be:

Prepared Friday 22FEB2008 08:36 using SAS 9.1

C h a p t e r 2
Mechanics of Macro Processing

Introduction 23

The Vocabulary of SAS Processing 24

SAS Processing without Macro Activity 25

Understanding Tokens 26

Tokenizing a SAS Program 28
Comparing Macro Language Processing and SAS Language
Processing 29

Processing a SAS Program That Contains Macro Language 30

Introduction

Understanding the steps that SAS takes to process a program will help you determine
where macro facility features can be incorporated in your SAS programs. You do not
need a detailed knowledge of the mechanics of macro processing to write SAS programs
that include macro features. However, an understanding of the timing of macro language

24 SAS Macro Programming Made Easy, Second Edition

processing, as it relates to SAS language processing, can help you write more powerful
programs and make it easier for you to debug programs that contain macro features.

The examples in Chapter 1 showed how you can enhance your SAS programming with
the macro facility. The examples in this chapter illustrate when and how the macro
processor does its work.

There are just a few basic concepts in macro processing to add to your knowledge of
SAS processing. If you already know how SAS programs are compiled and executed,
you are well on your way to understanding the mechanics of macro processing.

As you read through this chapter, keep in mind that the macro processor is your SAS
programming assistant, helping you code your SAS programs.

The Vocabulary of SAS Processing

In this chapter, several terms are used to describe SAS processing. Table 2.1 reviews
these terms.

Table 2.1 Terms commonly used to describe SAS processing

Term Description
input stack Holds a SAS program after it is submitted and before it is

processed by the word scanner.
word scanner Scans the text it takes from the input stack and breaks the text

into tokens. Determines the destination of the token: DATA
step compiler, macro processor, etc.

token Fundamental unit in the SAS language. SAS statements must
be broken down into tokens, or tokenized, before the
statements can be compiled. Tokens are the actual words in the
SAS statements as well as the literal strings, numbers, and
symbols.

compiler Checks the syntax of tokens received from the word scanner.
After it completes checking the syntax, the compiler translates
the tokens into a form for execution.

macro processor Processes macro language references and statements.
macro trigger The symbols & and %, when followed by a letter or

underscore, that signal the word scanner to transfer what
follows to the macro processor.

macro symbol table The area in memory where macro variables and their
associated values are stored.

Chapter 2: Mechanics of Macro Processing 25

SAS Processing without Macro Activity

SAS programs can be submitted for processing from several locations including:

an interactive SAS session from the Editor

a batch program

a noninteractive program

from the command line in the SAS windowing environment

an SCL SUBMIT block

the SCL Compile command

In all cases, submitted SAS programs start in the input stack. The word scanner takes
statements from the input stack and tokenizes the statements into the fundamental units
of words and symbols. The word scanner's job is then to direct the tokens to the right
location. The word scanner might direct tokens to the DATA step compiler, the macro
processor, the command processor, or the SCL compiler. The compiler or processor that
receives the tokens checks for syntax errors. If none are found, the step executes.

Figure 2.1 illustrates the processing of a SAS program that contains no macro facility
features.

26 SAS Macro Programming Made Easy, Second Edition

Figure 2.1 Basic processing of a SAS program

Understanding Tokens

The fundamental building blocks of a SAS program are the tokens that the word scanner
creates from your SAS language statements. Each word, literal string, number, and
special symbol in the statements in your program is a token.

The word scanner determines that a token ends when either a blank is found following a
token or when another token begins. The maximum length of a token under SAS®9 is
32,767 characters.

Chapter 2: Mechanics of Macro Processing 27

Two special symbol tokens, when followed by either a letter or underscore, signal the
word scanner to turn processing over to the macro processor. These two characters, the
ampersand (&) and the percent sign (%), are called macro triggers.

Table 2.2 describes the four types of tokens that SAS recognizes.

Table 2.2 The types of tokens that SAS recognizes

Type of
Token Description Examples

literal A string of characters enclosed in single or
double quotation marks.

'My program text'
"My program text"

numbers A string of digits including integers, decimal
values, and exponential notation. Dates,
times, and hexadecimal constants are also
number tokens.

123456 '30APR1982'D
98.7654 3. '01'x
6.023E23

names The "words" in your programs. Name tokens
are strings of characters beginning with a
letter or underscore and continuing with
letters, underscores, or digits. Periods can be
part of a name token when referring to a
format or informat.

proc _n_ ssn.
if mmddyy10.
descending
var1 var2 var3 var4 var5

special Characters other than a letter, number, or
underscore that have a special meaning to
SAS.

; + - * / **
() {}
& %

The importance of understanding tokenization is evident if you have ever dealt with
unmatched quotation marks in your SAS language statements. Matched quotation marks
delimit a literal token. When you omit a closing quotation mark, SAS continues to add
text to your literal token beyond what you intended. The SAS programming statements
added to the literal token never get tokenized by the word scanner. Eventually, the literal
token terminates when either another quotation mark is encountered or the literal token
reaches its maximum length (32K characters under SAS®9). At that point, your program
cannot compile correctly and processing stops.

28 SAS Macro Programming Made Easy, Second Edition

Tokenizing a SAS Program

The next two figures illustrate the tokenization of a DATA step. In Figure 2.2, the
program has been submitted and is waiting in the input stack for tokenization by the
word scanner.

Figure 2.2 A SAS program has been submitted and waits in the input stack
 for tokenization

In Figure 2.3, the word scanner tokenizes the program and determines the destination of
the tokens. In this example, the word scanner sends the tokens to the DATA step
compiler.

Chapter 2: Mechanics of Macro Processing 29

Figure 2.3 The word scanner tokenizes the SAS language statements in the
 program

When the compiler receives the semicolon following the RUN statement, it stops taking
tokens from the word scanner. The compiler looks for syntax errors. If it finds no errors,
it compiles and executes the step.

Comparing Macro Language Processing and
SAS Language Processing

It is important to realize that there are differences between the SAS language and the
SAS macro language. You probably are familiar with terms like variables and statements
in the SAS language. The macro language also has variables and statements, but these
variables and statements are different from those in the SAS language and serve different
purposes.

30 SAS Macro Programming Made Easy, Second Edition

The main function of the macro facility is to help you build SAS language statements that
can be tokenized, compiled, and executed. By taking over some of your coding tasks, the
macro processor decreases the amount of coding you do.

Recall that all SAS programs are compiled and executed the same way. After a SAS
program is submitted, the statements wait in the input stack for processing. The word
scanner then takes each SAS language statement from the input stack and tokenizes it.
The compiler requests the tokens, does syntax checking, and (at a step boundary) passes
the compiled statements on for execution.

When the word scanner detects a macro trigger followed by a name token, it sends what
follows to the macro processor and temporarily turns processing over to the macro
processor. The word scanner suspends tokenization while the macro processor completes
its job. Therefore, processing of a macro language reference occurs after tokenization
and before compilation.

As your SAS programming assistant, the macro processor codes SAS language
statements for you based on the guidelines you give it. The way you communicate your
requests to the macro processor is through the macro language. The macro processor
takes the macro language statements you write and turns them into SAS language
statements. The macro processor puts the SAS language statements that it builds back on
top of the input stack. The word scanner then resumes its work by tokenizing the newly
built SAS language statements that have come from the macro processor.

Processing a SAS Program That Contains
Macro Language

This section describes how SAS processes a program that includes macro language
statements. The macro processor starts working when the word scanner encounters a
macro trigger followed by a letter or underscore. The word scanner then directs the
results of its tokenization to the macro processor. The word scanner sends tokens to the
macro processor until the macro reference is terminated. The macro processor resolves
macro language references and returns the results to the top of the input stack. The word
scanner then resumes tokenization. Figure 2.4 illustrates this process.

Chapter 2: Mechanics of Macro Processing 31

Figure 2.4 SAS processing when macro facility features are included in the
 program

The next several figures illustrate the process described in Figure 2.4 with the program
from Figure 2.2. This program now contains one macro language statement and one
macro variable reference.

The %LET macro language statement assigns a value to a macro variable. The %LET
statement tells the macro processor to store the macro variable name and its associated
text in the macro symbol table.

The macro variable is placed in the DATA step where the text associated with the macro
variable should be substituted. The ampersand token followed by a name token is the
instruction to the macro processor to look in the macro symbol table for the text
associated with the macro variable whose name follows the ampersand. At the location
of the macro variable reference in the DATA step, the macro processor replaces the
reference with the macro variable's value.

32 SAS Macro Programming Made Easy, Second Edition

The value of the macro variable REPGRP in the program in the next several figures is
used to define a subset of the data set. In this example, only observations from the
section "Web Design" are written to the output data set.

The value of the macro variable is stored in the macro symbol table for the duration of
the SAS session. When a SAS session starts, SAS automatically defines several macro
variables. These automatic macro variables are also stored in the macro symbol table. A
few of the automatic macro variables are included in the figures.

In Figure 2.5, the program has been submitted.

Figure 2.5 The program with macro facility features has been submitted and
 the word scanner is ready to tokenize

Chapter 2: Mechanics of Macro Processing 33

Figure 2.6 shows how a macro language statement is taken from the input stack,
tokenized by the word scanner, and passed to the macro processor.

Figure 2.6 A macro language statement is processed

The three steps in Figure 2.6 are:

 Statements are taken from the input stack one at a time. The %LET statement is the
 first one to be processed by the word scanner.

 The word scanner detects a macro trigger when it encounters a percent sign (%)
 followed by the word LET. This causes the word scanner to direct the tokens that
 follow to the macro processor. The word scanner stops sending tokens to the macro
 processor when it encounters the semicolon (;) that terminates the %LET statement.

34 SAS Macro Programming Made Easy, Second Edition

 Last, the macro processor places the macro variable REPGRP and its associated text,
Web Design, in the macro symbol table.

No quotation marks enclose the literal token Web Design. This is one way in which the
macro language is different from the SAS language. Macro variable values are always
text; quotation marks are not needed to indicate text constants in the macro language.

The word scanner continues to tokenize the program. It now encounters the macro
variable reference to REPGRP and directs resolution of this reference to the macro
processor. This is shown in Figure 2.7.

Figure 2.7 The macro processor resolves the macro variable reference
 &REPGRP

Chapter 2: Mechanics of Macro Processing 35

The three steps in Figure 2.7 are:

 When the word scanner encounters the ampersand (&) followed by REPGRP, it
 directs processing to the macro processor.

 The macro processor looks up the macro variable REPGRP and takes its value from
 the macro symbol table.

 The macro processor places the value of the macro variable REPGRP on top of the
 input stack.

The value of the macro variable REPGRP is now on top of the input stack as shown in
Figure 2.8. Remember that the macro variable reference in the SAS language IF
statement was enclosed in double quotation marks. Therefore, the value of the macro
variable is treated as one literal token.

Figure 2.8 The value of macro variable REPGRP is on top of the input stack

36 SAS Macro Programming Made Easy, Second Edition

Next, the value of the macro variable is transferred from the input stack to the word
scanner. Figure 2.9 shows this action.

Figure 2.9 The value of the macro variable REPGRP is transferred to the
 word scanner

Chapter 2: Mechanics of Macro Processing 37

The value of the macro variable REPGRP passes through the word scanner as a literal
token and is transferred to the compiler. Now, the last statement in the DATA step, RUN,
is sent to the word scanner as shown in Figure 2.10.

Figure 2.10 The compiler receives the value of the macro variable REPGRP
 and the last statement in the DATA step is sent to the word
 scanner

Finally, the RUN statement terminating the DATA step is sent to the compiler and the
compiled step executes, which is shown in Figure 2.11.

38 SAS Macro Programming Made Easy, Second Edition

Figure 2.11 The RUN statement is transferred to the compiler and the
 compiled step executes

In conclusion, when you are writing SAS programs that include macro facility features,
remember the distinction between when SAS language is processed and when macro
language is processed. Macro language builds SAS language. Macro language is resolved
before SAS language is compiled and executed. The discussion on how SAS processes
macro language continues in Chapter 5.

C h a p t e r 3
Macro Variables

Introduction 40

Basic Concepts of Macro Variables 40

Referencing Macro Variables 42
Understanding Macro Variable Resolution and the Use of Single and
Double Quotation Marks 44

Displaying Macro Variable Values 46

Using the %PUT Statement 46

Displaying Macro Variable Values As They Resolve by Enabling the

SYMBOLGEN Option 50

Understanding Automatic Macro Variables 52

Understanding User-Defined Macro Variables 56

Creating Macro Variables with the %LET Statement 56

Combining Macro Variables with Text 59

Placing Text before a Macro Variable Reference 60

Placing Text after a Macro Variable Reference 61

40 SAS Macro Programming Made Easy, Second Edition

Concatenating Permanent SAS Data Set Names and Catalog Names with
Macro Variables 63

Referencing Macro Variables Indirectly 65
Resolving Two Ampersands That Precede a Macro Variable
Reference 65

Resolving Multiple Ampersands before a Macro Variable Reference 69

Introduction

Macro variables are the most fundamental part of the SAS macro facility. They are the
tools to use when you want to begin writing reusable programs. There is relatively little
to learn and yet there is great potential in the application of macro variables.

This chapter describes how to define and use SAS macro variables as symbols for text
substitution. Before you finish this chapter, you will be able to write programs that
contain macro variables. Programming with macro variables will give you an
appreciation of the timing of macro processing and provide you with a foundation for
understanding the features described later in this book.

Basic Concepts of Macro Variables

Some of the many features of macro variables are summarized in the following list.

A macro variable can be referenced anywhere in a SAS program other than
in data lines.
When the macro processor encounters the reference, the value assigned to the
macro variable is substituted in the reference's place. Macro variables can
modify SAS language statements in DATA steps, PROC steps, and SCL
programs.

Macro variables can be used in open code as well as in macro programs.
When macro variables are used outside of macro programs, they are in open
code. Macro programs are described in the next chapter. The examples in this
chapter deal only with macro variables in open code.

Chapter 3: Macro Variables 41

Macro variables can be created by SAS and by your programs.
There are two types of macro variables: automatic macro variables and user-
defined macro variables. Automatic macro variables are defined by SAS each
time a SAS session is started, and they remain available for you to use
throughout your SAS session. Most automatic macro variables contain
information about your SAS session such as time of day that the session was
invoked, version of SAS, and the operating system you’re using. Most automatic
macro variable values remain constant throughout your SAS session and most
cannot be modified by you.

User-defined macro variables are defined by you for your own applications.
They can be defined anywhere in your SAS program other than in data lines.

Macro variables can be stored in either the global symbol table or in a local
symbol table.
When a macro variable is created, the macro processor adds the macro variable
to a macro symbol table. There are two types of macro symbol tables: global and
local.

Macro variables created in open code reside in the global symbol table. A macro
variable created in a macro program can reside either in a macro symbol table
local to that macro program or in the global symbol table. Since the examples in
this chapter deal with macro variables created in open code, these macro
variables reside in the global symbol table.

The value that you assign to a macro variable stored in the global symbol table
stays the same throughout the SAS session unless you change it. SAS stores
automatic macro variables in the global symbol table.

The value assigned to a macro variable created in a macro program and defined
as local to a macro program stays the same throughout execution of the macro
program unless you change it. A local macro variable is deleted when the macro
program that created it ends.

Macro variable values are text values.
All values assigned to macro variables are considered text values. This includes
numbers. When you want to do calculations with macro variables, you must tell
the macro processor to treat the values as numbers. The result of a calculation is
considered a text value.

The case of the character value assigned to a macro variable is preserved. That
is, a value in lowercase remains lowercase, uppercase remains uppercase, and
mixed case remains mixed case.

42 SAS Macro Programming Made Easy, Second Edition

Leading and trailing blanks are removed from the macro variable value before
the value is placed in the macro symbol table unless masked by special macro
functions. (These functions are described in Chapters 6 and 8.)

The maximum length of text that can be assigned to a macro variable value in
SAS®9 is 65,534 (64K); the minimum length is zero characters. You do not have
to declare the length of a macro variable; its length is determined each time a
value is assigned.

The name assigned to a macro variable must be a valid SAS name.
A macro variable name can be up to 32 characters in SAS®9. The macro variable
name must start with a letter or underscore and continue with letters, numbers,
or underscores. For a list of reserved words that should not be used to name
macro variables, see Appendix B.

Macro variables are not data set variables, and their purpose is different
from data set variables.
Macro variables help you build your SAS programs and do not directly relate to
observations in a data set. A macro variable has only one value while a data set
variable can have multiple values, one for each observation in a data set.

Referencing Macro Variables

You tell the macro processor to resolve a macro variable value by preceding the macro
variable name with an ampersand (&). When referencing macro variables in a SAS
statement, double quotation marks enclosing a string allow resolution of macro variable
references while single quotation marks do not. The next section describes the use of
quotation marks.

Example 3.1: Defining and Referencing Macro Variables
The two %LET statements in Program 3.1a create two macro variables, REPTITLE and
REPVAR, in open code and assign them values. (The %LET statement is described in
more detail later in this chapter.) The program then references the macro variables in the
TITLE statement and in the TABLES statement associated with PROC FREQ. Program
3.1 also references an automatic macro variable, SYSDAY, that was defined by SAS at
the start of the SAS session.

Note the double quotation marks around the text on the TITLE statement.

Chapter 3: Macro Variables 43

Program 3.1a
%let reptitle=Book Section;
%let repvar=section;

title "Frequencies by &reptitle as of &sysday";
proc freq data=books.ytdsales;
 tables &repvar;
run;

After the macro processor resolves the macro variable references, and assuming Program
3.1a was submitted on a Friday, the program that executes follows. The items derived
from the macro variable values are in bold.

title "Frequencies by Book Section as of Friday";
proc freq data=books.ytdsales;
 tables section;
run;

Since these macro variables were created in open code, you can reference them anywhere
in your program any number of times. The values of these macro variables remain the
same until you tell the macro processor to change them. Program 3.1b adds a PROC
MEANS step to Program 3.1a.

Program 3.1b
%let reptitle=Book Section;
%let repvar=section;

title "Frequencies by &reptitle as of &sysday";
proc freq data=books.ytdsales;
 tables &repvar;
run;

title "Means by &reptitle as of &sysday";
proc means data=books.ytdsales;
 class &repvar;
 var saleprice;
run;

The two user-defined macro variables REPTITLE and REPVAR were defined only once,
but they were referenced more than once. After the macro processor resolves the macro
variable references, and assuming Program 3.1b was submitted on a Friday, the program
that executes follows. The results from resolving the macro variable references are in
bold.

44 SAS Macro Programming Made Easy, Second Edition

title "Frequencies by Book Section as of Friday";
proc freq data=books.ytdsales;
 tables section;
run;

title "Means by Book Section as of Friday";
proc means data=books.ytdsales;
 class section;
 var saleprice;
run;

Understanding Macro Variable Resolution and
the Use of Single and Double Quotation Marks

When you want a macro variable's value to be included as part of a literal string in the SAS
language, you must enclose the string with double quotation marks. A macro variable
reference enclosed within single quotation marks is not resolved. The word scanner does not
look for macro triggers in the characters between single quotation marks.

Example 3.2: Resolving Macro Variables Enclosed in
 Quotation Marks
The first TITLE statement in Program 3.2 encloses text in double quotation marks. The
macro variable references on that statement are resolved. The second TITLE statement
has text enclosed in single quotation marks. The macro variable references on that
statement are not resolved.

Program 3.2
%let reptitle=Section;
%let repvar=section;

title "Frequencies by &reptitle as of &sysday";
proc freq data=books.ytdsales;
 tables &repvar;
run;

title 'Means by &reptitle as of &sysday';
proc means data=books.ytdsales sum maxdec=2;
 class &repvar;
 var saleprice;
run;

Chapter 3: Macro Variables 45

After the macro processor resolves the macro variable references, and assuming Program
3.2 was submitted on a Friday, the program that executes follows. The items derived
from the macro variable values are in bold. The unresolved macro variable references are
underlined and in bold.

title "Frequencies by Section as of Friday";
proc freq data=books.ytdsales;
 tables section;
run;

title 'Means by &reptitle as of &sysday';
proc means data=books.ytdsales sum maxdec=2;
 class section;
 var saleprice;
run;

The macro variable references on the second TITLE statement are not sent to the macro
processor for resolution. The references instead are treated as part of the text in the
TITLE statement, and thus no warnings or error messages are displayed. Output 3.1
presents the output from the PROC MEANS step in Program 3.2.

Output 3.1 Output for PROC MEANS step in Program 3.2 with title enclosed
 in single quotation marks

 Means by &reptitle as of &sysday

 The MEANS Procedure

 Analysis Variable : saleprice Sale Price

 N

 Section Obs Sum

 --

 Certification and Training 726 31648.52

 Internet 1456 62295.78

 Networks and Telecommunication 717 30803.81

 Operating Systems 922 39779.11

 Programming and Applications 1429 62029.41

 Web Design 846 37121.52

 --

46 SAS Macro Programming Made Easy, Second Edition

Displaying Macro Variable Values

Displaying macro variable values as the macro processor resolves them is very useful in
showing you how and when the macro processor does its work. Furthermore, this
information can help you debug your programs. See Chapter 12 for information on
debugging macro language.

Two ways to display macro variable values are with the macro language statement
%PUT and with the SAS system option SYMBOLGEN. Both of these features write the
values of macro variables to the SAS log.

Using the %PUT Statement
The %PUT statement instructs the macro processor to write information to the SAS log.
Text and macro variable values can be displayed with %PUT. The %PUT statement can
be submitted by itself from the windowing environment Editor or from within a SAS
program. Since %PUT is a macro language statement, it does not need to be part of a
DATA step or PROC step, nor can it be part of a DATA step or PROC step. A %PUT
statement displays only text and information about macro variables.

The syntax of the %PUT statement follows.

%put <text |
 ALL | _AUTOMATIC_ | _GLOBAL_ | _LOCAL_ | _USER_ |
 ERROR: | WARNING: | NOTE: >;

The text option includes both literal text and references to macro variables. The first five
options are keywords that list different classifications of macro variables. The last three
options are keywords that can simulate SAS generated messages. Table 3.1 describes the
features of these eight %PUT statement options.

Chapter 3: Macro Variables 47

Table 3.1 %PUT statement options

Option Usage

ALL Lists the values of all user-defined and automatic macro variables.

AUTOMATIC Lists the values of automatic macro variables. The automatic
variables listed depend on the SAS products installed at your site and
on your operating system.

GLOBAL Lists user-defined global macro variables.

LOCAL Lists user-defined local macro variables. Local macro variables are
those defined in the currently executing macro program that have not
been designated as global macro variables.

USER Lists user-defined global and local macro variables.

ERROR: Simulates a SAS error message by displaying the text ERROR: and
remaining specifications on the %PUT statement in red.

WARNING: Simulates a SAS warning message by displaying the text
WARNING: and remaining specifications on the %PUT statement in
green.

NOTE: Simulates a SAS note message by displaying the text NOTE: and
remaining specifications on the %PUT statement in blue.

When you debug your macro programming or when you write complex macro programs
that others can use, you might find the ERROR:, WARNING:, and NOTE: features of
the %PUT statement useful. These features display text in different colors just like SAS
generated ERROR, NOTE, and WARNING messages. Note that the keywords must be
capitalized and must terminate with a colon (:). Some examples in Chapter 12 make use
of these features when debugging macro programs.

Example 3.3: Submitting %PUT _AUTOMATIC_
The _AUTOMATIC_ option on the %PUT statement in Program 3.3 lists the values of
all the automatic macro variables.

Program 3.3
%put _automatic_;

An excerpt of the SAS log after submitting Program 3.3 from the Editor of a SAS®9
session under Windows XP follows.

48 SAS Macro Programming Made Easy, Second Edition

AUTOMATIC AFDSID 0
AUTOMATIC AFDSNAME
AUTOMATIC AFLIB
AUTOMATIC AFSTR1
AUTOMATIC AFSTR2
AUTOMATIC FSPBDV
AUTOMATIC SYSBUFFR
AUTOMATIC SYSCC 3000
AUTOMATIC SYSCHARWIDTH 1
AUTOMATIC SYSCMD
AUTOMATIC SYSDATE 12JAN08
AUTOMATIC SYSDATE9 12JAN2008
AUTOMATIC SYSDAY Saturday
AUTOMATIC SYSDEVIC
AUTOMATIC SYSDMG 0
AUTOMATIC SYSDSN _NULL_
AUTOMATIC SYSENDIAN LITTLE
AUTOMATIC SYSENV FORE
AUTOMATIC SYSERR 0
AUTOMATIC SYSFILRC 0
AUTOMATIC SYSINDEX 8
AUTOMATIC SYSINFO 0
AUTOMATIC SYSJOBID 2736
AUTOMATIC SYSLAST BOOKS.YTDSALES
AUTOMATIC SYSLCKRC 0
AUTOMATIC SYSLIBRC 0
AUTOMATIC SYSMACRONAME
AUTOMATIC SYSMAXLONG 2147483647
AUTOMATIC SYSMENV S
AUTOMATIC SYSMSG
AUTOMATIC SYSNCPU 2
AUTOMATIC SYSPARM
AUTOMATIC SYSPBUFF
AUTOMATIC SYSPROCESSID 41D5AD21T288F5C34020000000000000
AUTOMATIC SYSPROCESSNAME DMS Process
AUTOMATIC SYSPROCNAME
AUTOMATIC SYSRC 0
AUTOMATIC SYSSCP WIN
AUTOMATIC SYSSCPL XP_PRO
AUTOMATIC SYSSITE 0099999999
AUTOMATIC SYSSIZEOFLONG 4
AUTOMATIC SYSSIZEOFUNICODE 2
AUTOMATIC SYSSTARTID
AUTOMATIC SYSSTARTNAME
AUTOMATIC SYSTIME 13:58
AUTOMATIC SYSUSERID My Name
AUTOMATIC SYSVER 9.1

Chapter 3: Macro Variables 49

AUTOMATIC SYSVLONG 9.01.01M3P061705
AUTOMATIC SYSVLONG4 9.01.01M3P06172005

Example 3.4: Submitting %PUT _GLOBAL_
Once you start writing macro programs, you might find the _GLOBAL_ and _LOCAL_
references on the %PUT statement useful in differentiating the domains of your macro
variables. The _GLOBAL_ reference lists in the SAS log all user-defined macro
variables stored in the global symbol table, while the _LOCAL_ reference lists in the
SAS log all user-defined macro variables stored in the local symbol table defined within
a macro program.

The _GLOBAL_ option on the %PUT statement in Program 3.4 lists in the SAS log the
two macro variables the program defines in open code. It identifies them as global macro
variables, and the output includes the text “GLOBAL”.

Program 3.4
%let reptitle=Book Section;
%let reptvar=section;
%put _global_;

The SAS log from these statements follows.

87 %symdel x;
88 %let reptitle=Book Section;
89 %let reptvar=section;
90 %put _global_;
GLOBAL REPTITLE Book Section
GLOBAL REPTVAR section

Example 3.5: Submitting %PUT Statements to Display Text and
 Macro Variable Values
Text added to %PUT statements can make the results more informative and easier to
read. Program 3.1a is modified below in Program 3.5 to include three %PUT statements
that list text and macro variable values.

Program 3.5
%let reptitle=Book Section;
%let reptvar=section;
%put My macro variable REPTITLE has the value &reptitle;
%put My macro variable REPTVAR has the value &reptvar;
%put Automatic macro variable SYSDAY has the value &sysday;

50 SAS Macro Programming Made Easy, Second Edition

title "Frequencies by &reptitle as of &sysday";
proc freq data=books.ytdsales;
 tables &reptvar;
run;

The SAS log from Program 3.5 follows:

31 %let reptitle=Book Section;
32 %let reptvar=section;
33
34 %put My macro variable REPTITLE has the value &reptitle;
My macro variable REPTITLE has the value Book Section
35 %put My macro variable REPTVAR has the value &reptvar;
My macro variable REPTVAR has the value section
36 %put The automatic macro variable SYSDAY has the value
&sysday;
Automatic macro variable SYSDAY has the value Friday
37
38 title "Frequencies by &reptitle as of &sysday";
39 proc freq data=books.ytdsales;
40 tables &reptvar;
41 run;

NOTE: There were 6096 observations read from the data set
 BOOKS.YTDSALES.
NOTE: PROCEDURE FREQ used (Total process time):
 real time 0.04 seconds
 cpu time 0.03 seconds

Note that the values of the macro variables on the %PUT statements are displayed in the
SAS log. The values of the same macro variables in the PROC FREQ step are not
displayed as they are resolved. The next section describes how you can display, in the
SAS log, the values of macro variables that are included in SAS language statements.

Displaying Macro Variable Values As They Resolve by
Enabling the SYMBOLGEN Option

SAS option SYMBOLGEN is the most useful SAS option to use as you start writing
programs that contain macro variables. With SYMBOLGEN enabled, SAS presents the
results of the resolution of macro variables in the SAS log. SYMBOLGEN displays the
value of a macro variable in the SAS log near the statement with the macro variable
reference.

Chapter 3: Macro Variables 51

SYMBOLGEN shows the values of both automatic and user-defined macro variables.
The SYMBOLGEN option helps you debug your programs. If you are getting
unexpected results when using macro variables, enable this option and read the SAS log.

It is easier to enable SYMBOLGEN than to write %PUT statements. However,
SYMBOLGEN displays the values of all macro variables you reference in your program,
while %PUT lets you selectively display macro variable values. The %PUT statement
gives you control of where and when a macro variable value is displayed. Option
SYMBOLGEN displays macro variable values only when they are referenced; macro
variable values are not displayed at the time they are created with %LET.

Example 3.6: Displaying Macro Variable Values with the
 SYMBOLGEN Option
Program 3.6 references three macro variables: two user-defined and one automatic. The
OPTIONS statement enables SYMBOLGEN. (To turn off SYMBOLGEN, enter:
options nosymbolgen;)

Note that Program 3.6 is the same as Program 3.1b with the addition of the OPTIONS
statement.

Program 3.6
options symbolgen;

%let reptitle=Book Section;
%let repvar=section;

title "Frequencies by &reptitle as of &sysday";
proc freq data=books.ytdsales;
 tables &repvar;
run;

title "Means by &reptitle as of &sysday";
proc means data=books.ytdsales;
 class &repvar;
 var saleprice;
run;

The SAS log for Program 3.6 follows. The SYMBOLGEN messages are in bold.

26 options symbolgen;
27
28 %let reptitle=Book Section;
29 %let repvar=section;
30
SYMBOLGEN: Macro variable REPTITLE resolves to Book Section

52 SAS Macro Programming Made Easy, Second Edition

SYMBOLGEN: Macro variable SYSDAY resolves to Tuesday
31 title "Frequencies by &reptitle as of &sysday";
32 proc freq data=books.ytdsales;
SYMBOLGEN: Macro variable REPVAR resolves to section
33 tables &repvar;
34 run;
NOTE: There were 6096 observations read from the data set
 BOOKS.YTDSALES.
NOTE: PROCEDURE FREQ used (Total process time):
 real time 0.15 seconds
 cpu time 0.01 seconds

SYMBOLGEN: Macro variable REPTITLE resolves to Book Section
SYMBOLGEN: Macro variable SYSDAY resolves to Tuesday
35
36 title "Means by &reptitle as of &sysday";
37 proc means data=books.ytdsales;
SYMBOLGEN: Macro variable REPVAR resolves to section
38 class &repvar;
39 var saleprice;
40 run;
NOTE: There were 6096 observations read from the data set
 BOOKS.YTDSALES.
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.01 seconds
 cpu time 0.03 seconds

Understanding Automatic Macro Variables

SAS automatically defines a set of macro variables when a SAS session starts. The
macro processor maintains these variables and their values in the macro symbol table.
Other than in data lines, you can use these macro variables anywhere in your SAS
programs. Typically, automatic macro variables are used to store information about your
SAS session such as time of day the SAS session was invoked, version of SAS, and site
number.

Chapter 3: Macro Variables 53

Table 3.2 lists a few automatic macro variables, and Appendix A presents a more
complete list. There are three types of automatic macro variables. The macro variables in
Table 3.2 are grouped by type:

The first type of automatic macro variable has values fixed at the start of the
SAS session; these values never change during the SAS session.

The values of the second type are also set at the start of the SAS session, but
these values can be changed by SAS.

The values of the third type are initialized at the start of the SAS session and
these values can be modified by you or by SAS.

Table 3.2 A sample of automatic macro variables

Type of
Automatic Macro
Variable

Automatic Macro
Variable Description

Values that
remain fixed

SYSDATE the character value that is equal to the date
the SAS session started in DATE7. format

SYSDATE9 the character value that is equal to the date
the SAS session started in DATE9. format

SYSDAY text of the day of the week the SAS session
started

SYSVER the character value representing the release
number of SAS that is executing

SYSTIME the character value representing the time the
SAS session started

Values that can be
changed by SAS

SYSERR return code set at end of each DATA step
and most PROC steps

SYSERRORTEXT text of the last error message generated
within the SAS log

SYSFILRC return code from most recent FILENAME
statement

SYSLIBRC return code from most recent LIBNAME
statement

(continued)

54 SAS Macro Programming Made Easy, Second Edition

Table 3.2 (continued)

Type of
Automatic Macro
Variable

Automatic Macro
Variable Description

Values that can be
changed by SAS
(continued)

SYSMACRONAME returns the name of the currently
executing macro program

SYSRC returns a value corresponding to an error
condition

SYSWARNINGTEXT text of the last warning message
generated within the SAS log

SYSDSN name of the most recently created data
set in two fields: WORK TEMP

Values that can be
changed by you or
by SAS SYSLAST name of the most recently created data

set in one field: WORK.TEMP

The values of all automatic macro variables are text values even the date and time
values are treated as text.

The SYS prefix is reserved for automatic macro variables. Avoid using this prefix when
creating your own macro variables. Also, don't define any of your own macro variables
with the name of an automatic macro variable. If you do, you will probably get an error
message since most automatic macro variables are read-only and fixed in value at the
time of their definition. The few automatic macro variables that can be modified are
defined for items that can change throughout your SAS session, such as last data set
accessed.

Example 3.7: Using Automatic Variables
Program 3.7 references five automatic macro variables. The automatic macro variable
names are in bold. Assume that the program was run on June 22, 2007. The program
extracts a subset of observations from BOOK.YTDSALES for the Web Design section
for books sold from June 16–June 22, 2007, and PROC PRINT lists the selected
observations.

Chapter 3: Macro Variables 55

Program 3.7
data web;
 set books.ytdsales;
 if section='Web Design' and datesold > "&sysdate"d-6;
run;

proc print data=web;
 title "Web Design Titles Sold in the Past Week";
 title2 "Report Date: &sysday &sysdate &systime";
 footnote1 "Data Set Used: &syslast SAS Version: &sysver";

 var booktitle datesold saleprice;
run;

Output 3.2 presents partial output from Program 3.7.

Output 3.2 Partial output from Program 3.7 that contains macro variables

 Web Design Titles Sold in the Past Week

 Report Date: Tuesday 22JUN07 13:50

 Obs booktitle datesold saleprice

 1 Web Design Title 250 06/22/2007 $40.95

 2 Web Design Title 454 06/22/2007 $36.95

 3 Web Design Title 92 06/23/2007 $50.95

 4 Web Design Title 84 06/17/2007 $40.95

 5 Web Design Title 16 06/28/2007 $36.86

 6 Web Design Title 302 06/26/2007 $40.95

 7 Web Design Title 368 06/25/2007 $36.86

 .
 .
 .

 Data Set Used: WORK.WEB SAS Version: 9.1

56 SAS Macro Programming Made Easy, Second Edition

Understanding User-Defined Macro Variables

The applications of user-defined macro variables are limitless. Other than in data lines,
user-defined macro variables can be created and referenced anywhere in your programs.
The macro processor maintains the values of user-defined macro variables in the macro
symbol table. Tasks that you can accomplish with user-defined macro variables include
the following:

annotating reports

selecting subsets of data sets

passing information between PROC steps and DATA steps

using variables in macro programs

Creating Macro Variables with the %LET Statement
One way to create and update a macro variable is with a %LET statement. The %LET
statement tells the macro processor to add the macro variable to the macro symbol table
if the macro variable does not exist. It also tells the macro processor to associate a text
value with that macro variable name.

The %LET statement is written as follows and is terminated with a semicolon. No
quotation marks are required to enclose the macro variable value.

%let macro-variable-name=macro-variable-value;

The %LET statement can be submitted from the Editor window or from a SAS program.
It is a SAS macro language statement, not a SAS language statement. It creates macro
variables, not SAS data set variables.

The %LET statement is executed as soon as the macro processor receives it from the
word scanner. For example, if you place a %LET statement within a DATA step, the
%LET statement is processed before the DATA step executes. This happens in the midst
of the tokenization of the SAS language statements in the DATA step, before
compilation and execution of the DATA step. The DATA step eventually executes after
all the SAS language statements in the DATA step are collected by the compiler.

Chapter 3: Macro Variables 57

Example 3.8: Using the %LET Statement
Examples of %LET statements follow in Program 3.8. These statements assign values to
macro variables. They demonstrate how the macro language treats macro values as text.
Unless otherwise instructed, the macro language does not do arithmetic calculations as
demonstrated by the first few statements. An annotated SAS log showing the resolution
of the statements follows Program 3.8.

Program 3.8
%let nocalc=53*21 + 100.1;

%let value1=982;
%let value2=813;
%let result=&value1 + &value2;

%let reptext=This report is for *** Department XYZ ***;

%let region=Region 3;
%let text=Sales Report;
%let moretext="Sales Report";
%let reptitle=&text ®ion;
%let reptitl2=&moretext ®ion;

%let sentence= This one started with leading blanks.;

%let chars=Symbols: !@#$%^&*;

%let novalue=;

%let holdvars=varnames;
%let &holdvars=title author datesold;

The following SAS log results from submission of the preceding statements. A %PUT
statement was added after each %LET statement to display the value of the macro
variable created with the %LET statement. Text was added to the %PUT statement for
the macro variable SENTENCE to more clearly show that the leading blanks were
removed.

Specific concepts are identified by number and described after the SAS log.

1 %let nocalc=53*21 + 100.1;
2 %put &nocalc;
53*21 + 100.1

3 %let value1=982;
4 %put &value1;

58 SAS Macro Programming Made Easy, Second Edition

982
5 %let value2=813;
6 %put &value2;
813
7 %let result=&value1 + &value2;
8 %put &result;
982 + 813

9 %let reptext=This report is for *** Department XYZ ***;
10 %put &reptext;
This report is for *** Department XYZ ***

11 %let region=Region 3;
12 %put ®ion;
Region 3
13 %let text=Sales Report;
14 %put &text;
Sales Report
15 %let moretext="Sales Report";
16 %put &moretext;
"Sales Report"
17 %let reptitle=&text ®ion;
18 %put &reptitle;
Sales Report Region 3
19 %let reptitl2=&moretext ®ion;
20 %put &reptitl2;
"Sales Report" Region 3

21 %let sentence= This one started with leading blanks.;
22 %put Now no leading blanks:&sentence;
Now no leading blanks:This one started with leading blanks.

23 %let chars=Symbols: !@#$%^&*;
24 %put &chars;
Symbols: !@#$%^&*
25 %let novalue=;
26 %put &novalue;

27 %let holdvars=varnames;
28 %put &holdvars;
varnames
29 %let &holdvars=title author datesold;
30 %put &holdvars;
varnames
31 %put &varnames;
title author datesold

Chapter 3: Macro Variables 59

General observations to make from the %LET assignments include:

The macro processor uses the semicolon to detect the end of the assignment of a
value to a macro variable.

All the values that were assigned are acceptable macro variable values.

The following list describes specific observations to make from the preceding code.

The SAS log shows that SAS treats all macro variable values as text. No arithmetic
 calculations are done. (SAS log line 1 and SAS log line 7)

 When assigning values to macro variables, quotation marks are not used to enclose the
 value (SAS log lines 11 and 13). When quotation marks are used, the quotation marks
 become part of the text associated with the macro variables. (SAS log line 15) (The
 use of quotation marks in macro programming is a special topic in the macro facility
 and is discussed in Chapter 8.)

Leading blanks are removed from the value of a macro variable. (SAS log line 21)

 Blanks and special characters are valid macro variable values. The macro processor
 does not interpret the ampersand (&) and percent (%) symbols as macro triggers when
 they are not followed by a letter or underscore. (SAS log line 23)

A macro variable can have a null value. (SAS log line 25)

You can assign macro variable values to other macro variables and combine macro
 variables in a %LET statement to create a new macro variable. The macro processor
 recognizes the ampersand (&) and percent (%) symbols as macro triggers when they
 are followed by a letter or underscore. (SAS log lines 27 and 29)

Combining Macro Variables with Text

This section demonstrates some of the interesting ways that you can program with macro
variables. When you combine macro variable references with text or with other macro
variable references, you can create new macro variable references. These new macro
variable references are resolved before the SAS language statements in which they are
placed are tokenized.

A concatenation operator is not needed to combine macro variables with text. However,
periods (.) act as delimiters of macro variable references and might be needed to delimit
a macro variable reference that precedes text.

60 SAS Macro Programming Made Easy, Second Edition

Placing Text before a Macro Variable Reference
When placing text before a macro variable reference or when combining macro variable
references, you do not have to separate the references and text with a delimiter.

Example 3.9: Placing Text before a Macro Variable Reference
Program 3.9 illustrates how you can create a new macro variable reference by placing
text or other macro variable references before a macro variable reference. The underlined
text indicates where macro variable references are combined with other macro variable
references and text. Note that no concatenation operator was used to combine the macro
variable references with text.

Both programs start out by defining two macro variables in open code. Statements in the
DATA step and PROC step reference these macro variables.

Program 3.9
%let mosold=4;
%let level=25;

data book&mosold&level;
 set books.ytdsales(where=(month(datesold)=&mosold));

 attrib over&level length=$3 label="Cost > $&level";

 if cost > &level then over&level='YES';
 else over&level='NO';
run;

proc freq data=book&mosold&level;
title "Frequency Count of Books Sold During Month &mosold";
title2 "Grouped by Cost Over $&level";
 tables over&level;
run;

After the macro processor creates the two macro variables and resolves the macro
variable references, the program becomes:

data book425;
 set books.ytdsales(where=(month(datesold)=4));

 attrib over25 length=$3 label="Cost > $25";

 if cost > 25 then over25='YES';
 else over25='NO';
run;

Chapter 3: Macro Variables 61

proc freq data=book425;
title "Frequency Count of Books Sold During Month 4";
title2 "Grouped by Cost Over $25";
 tables over25;
run;

With this technique, you can write a program once and reuse it for a different subset by
changing the values of the macro variables. For example, changing the values of the two
macro variables in the preceding program to the values in the following two %LET
statements produce the same style of report, but on different subsets of the data set.

%let mosold=12;
%let level=50;

After the macro processor creates the two macro variables and resolves the macro
variable references, the program becomes:

data book1250;
 set books.ytdsales(where=(month(datesold)=12));

 attrib over50 length=$3 label="Cost > $50";

 if cost > 50 then over50='YES';
 else over50='NO';
run;

proc freq data=book1250;
title "Frequency Count of Books Sold During Month 12";
title2 "Grouped by Cost Over $50";
 tables over50;
run;

Placing Text after a Macro Variable Reference
When you follow a macro variable reference with text, you must place a period at the end
of the macro variable reference to terminate the reference. The macro processor
recognizes that a period signals the end of a macro variable name and determines that the
name of the macro variable is the text between the ampersand and the period. All macro
variable references can be terminated with periods.

The code in Example 3.9 does not require terminating periods for proper resolution of the
macro variable references. A space or semicolon after the macro variable reference
delimits the macro variable reference. The macro processor knows that blanks and
semicolons cannot be part of a macro variable name. Similarly, if you place a macro
variable reference after another macro variable reference, the ampersand of the second
macro variable reference delimits the previous macro variable reference.

62 SAS Macro Programming Made Easy, Second Edition

Example 3.10: Placing Text after a Macro Variable Reference
Text follows macro variable references in Program 3.10a. No periods follow the macro
variable references so the program does not execute as needed.

The goal of this example is to compute frequency counts for the responses to the first
five questions of a customer survey: QUESTION1, QUESTION2, QUESTION3,
QUESTION4, and QUESTION5. These five variables are in data set BOOK.SURVEY.
Program 3.10a defines one macro variable, PREFIX, that is set to the text of the first part
of the five variables’ names. The macro variable references on the TABLES statement
should resolve to the five variables’ names. With the omission of the period delimiter,
however, this does not happen. Program 3.10a does not execute.

Program 3.10a
*----WARNING: This program does not execute;
%let prefix=QUESTION;

proc freq data=books.survey;
 tables &prefix1 &prefix2 &prefix3 &prefix4 &prefix5;
run;

After resolving the macro variable references, the program becomes:

proc freq data=books.survey;
 tables &prefix1 &prefix2 &prefix3 &prefix4 &prefix5;
run;

The following messages are listed in the SAS log.

WARNING: Apparent symbolic reference PREFIX1 not resolved.
WARNING: Apparent symbolic reference PREFIX2 not resolved.
WARNING: Apparent symbolic reference PREFIX3 not resolved.
WARNING: Apparent symbolic reference PREFIX4 not resolved.
WARNING: Apparent symbolic reference PREFIX5 not resolved.

Since the five macro variables PREFIX1, PREFIX2, PREFIX3, PREFIX4, and PREFIX5
have not been defined in Program 3.10a, the macro processor cannot resolve the five
macro variable references. The macro processor sends the macro variable references back
to the input stack as they were received. The word scanner cannot tokenize the TABLES
statement. The PROC FREQ step does not execute.

Program 3.10b contains the necessary delimiters that tell the macro processor when the
macro variable references end, which are missing in Program 3.10a. Now the macro
variable references resolve as desired, and the text that follows the references is
concatenated to the results of the resolution.

Chapter 3: Macro Variables 63

Program 3.10b
*----This program executes correctly;
%let prefix=QUESTION;

proc freq data=books.survey;
 tables &prefix.1 &prefix.2 &prefix.3 &prefix.4 &prefix.5;
run;

The macro processor substitutes QUESTION for the &PREFIX macro variable reference.
After macro variable resolution, the program becomes:

proc freq data=books.survey;
 tables QUESTION1 QUESTION2 QUESTION3 QUESTION4 QUESTION5;
run;

Concatenating Permanent SAS Data Set Names and
Catalog Names with Macro Variables

The macro processor understands that periods delimit macro variable references. Periods
are also used in the SAS language when referring to permanent data sets and catalogs.
Permanent data sets and catalogs have multi-part names, each part delimited with a
period.

When macro variable references are concatenated with permanent data set names or
catalog names, your coding must distinguish the role of the period in your statement. The
question to ask yourself when coding these kinds of macro variable references is whether
the period terminates the macro variable reference or whether it is part of the name of a
data set or catalog.

When a macro variable reference precedes the period in a data set or catalog name, add
one extra period after the macro variable reference. The macro processor looks up the
macro variable reference delimited by the first period and determines that the macro
variable name is complete because of the terminating period. The macro variable value is
put on the input stack and the word scanner tokenizes it. The word scanner recognizes
the second period as text. That second period is then part of the data set name or catalog
name.

Example 3.11: Referencing Permanent SAS Data Set Names and
 Macro Variables
Program 3.11a illustrates the necessity of using two periods. The intention is to analyze
data in data set BOOKSURV.SURVEY1. Macro variable SURVLIB contains the libref.

64 SAS Macro Programming Made Easy, Second Edition

Program 3.11a
*----WARNING: This program does not execute;
%let survlib=BOOKSURV;

proc freq data=&survlib.survey1;
 tables age;
run;

After macro variable resolution, the program becomes:

*----WARNING: This program does not execute;
proc freq data=BOOKSURVsurvey1;
 tables age;
run;

The macro processor does its work before the PROC FREQ statement is completely
tokenized. In Program 3.11a, the word scanner suspends processing when it encounters
the macro variable reference. The macro processor looks for the value of the SURVLIB
macro variable in the global symbol table. The reference to SURVLIB is terminated with
a period. The macro processor interprets that period as terminating the macro variable
reference. The macro processor finds the value for SURVLIB, which is BOOKSURV
and puts BOOKSURV on top of the input stack. The rest of the data set name,
SURVEY1, now ends up being concatenated to the text BOOKSURV. The period could
be used only once, and the macro processor used it first. The program cannot execute
because the data set BOOKSURVSURVEY1 does not exist.

For the program to resolve the macro variable reference and to construct a permanent
data set name, add another period as shown in Program 3.11b. The macro processor is
done with its work after seeing the first period. The remaining text, .SURVEY1, which is
the rest of the data set name, is now concatenated to BOOKSURV.

Program 3.11b
*----This program executes;
%let survlib=BOOKSURV;

proc freq data=&survlib..survey1;
 tables age;
run;

Chapter 3: Macro Variables 65

After macro variable resolution, the program becomes:

*----This program executes;
proc freq data=BOOKSURV.survey1;
 tables age;
run;

Referencing Macro Variables Indirectly

This section discusses the techniques of indirect referencing of macro variables. When
working with a series of macro variables, these techniques add more flexibility to your
macro programming. In an indirect macro variable reference, the resolution of a macro
variable reference leads to the resolution of another macro variable reference.

The macro variable references that have been described so far are written with one
ampersand preceding the macro variable name. This is a direct reference to a macro
variable. For some applications, it is necessary to add a period to delimit the macro
variable reference.

In indirect referencing, more than one ampersand precedes a macro variable reference.
The macro processor follows specific rules in resolving references with multiple
ampersands. You can take advantage of these rules to create new macro variable
references.

The rules that the macro processor uses to resolve macro variable references that contain
multiple ampersands follow.

Macro variable references are resolved from left to right.

Two ampersands (&&) resolve to one ampersand (&).

Multiple leading ampersands cause the macro processor to rescan the reference
until no more ampersands can be resolved.

Resolving Two Ampersands That Precede a Macro
Variable Reference

The first example of referencing macro variables indirectly follows in Program 3.12. Six
macro variables define six sections in the computer department of the bookstore. A
report program analyzes sales information for a section. The macro variable N represents
the section number. Program 3.12 produces the sales information for Section 4,
Operating Systems.

66 SAS Macro Programming Made Easy, Second Edition

The indirect macro variable reference in Program 3.12 is &&SECTION&N. Note that
there are two ampersands preceding SECTION. The macro processor scans the macro
variable reference twice, once for each of the preceding ampersands.

Program 3.12
%let section1=Certification and Training;
%let section2=Internet;
%let section3=Networking and Communication;
%let section4=Operating Systems;
%let section5=Programming and Applications;
%let section6=Web Design;

*----Look for section number defined by macro var n;
%let n=4;
proc means data=books.ytdsales;
 title "Sales for Section: &§ion&n";
 where section="&§ion&n";
 var saleprice;
run;

After macro variable resolution, the preceding program becomes:

proc means data=books.ytdsales;
 title "Sales for Section: Operating Systems";
 where section="Operating Systems";
 var saleprice;
run;

Now consider what happens if only one ampersand precedes SECTION, and you write
the reference as &SECTION&N as shown in Program 3.13a.

The macro processor resolves &SECTION&N in two parts: &SECTION and &N. &N can
be resolved, and in this example, &N equals 4. The macro variable &SECTION is not
defined and cannot be resolved, thus causing a warning message to be written to the SAS
log. The following statements demonstrate how &SECTION&N does not resolve as
desired.

Program 3.13a
options symbolgen;
%let section4=Operating Systems;
%let n=4;

%put §ion&n;

Chapter 3: Macro Variables 67

The SAS log for Program 3.13a follows.

1 options symbolgen;
2 %let section4=Operating Systems;
3 %let n=4;
4
5 %put §ion&n;
WARNING: Apparent symbolic reference SECTION not resolved.

Figure 3.1 shows the process of resolving the macro variable references in Program
3.13a.

Figure 3.1 How the macro processor resolves the two concatenated macro
 variable references in Program 3.13a

§ion&n

4

WARNING message written to SAS Log.

§ion cannot be resolved.

To resolve the macro variable reference as desired, add another ampersand before
SECTION: &&SECTION&N. This forces the macro processor to scan the reference twice.

On the first pass, the two ampersands are resolved to one and the reference to &N is
resolved to 4, yielding &SECTION4. On the second pass, the macro variable reference
&SECTION4 is resolved to Operating Systems, as shown in Figure 3.2.

68 SAS Macro Programming Made Easy, Second Edition

Figure 3.2 Using two ampersands to force the macro processor to scan a
 macro variable reference twice

&§ion&n

section 4

Operating Systems

First
Pass

Second Pass
&

Program 3.13a is modified below in Program 3.13b to include another ampersand before
SECTION.

Program 3.13b
options symbolgen;
%let section4=Operating Systems;
%let n=4;

%put &§ion&n;

The SAS log for Program 3.13b follows.

6 options symbolgen;
7 %let section4=Operating Systems;
8 %let n=4;
9
10 %put &§ion&n;
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable N resolves to 4
SYMBOLGEN: Macro variable SECTION4 resolves to Operating
Systems
Operating Systems

Recall that the SYMBOLGEN option traces the resolution of indirect macro variable
references. The SAS log for Program 3.12 with that option enabled follows.

131 options symbolgen;
132 %let section1=Certification and Training;
133 %let section2=Internet;
134 %let section3=Networking and Communication;

Chapter 3: Macro Variables 69

135 %let section4=Operating Systems;
136 %let section5=Programming and Applications;
137 %let section6=Web Design;
138 *----Look for section number defined by macro var n;
139 %let n=4;
140 proc means data=books.ytdsales;
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable N resolves to 4
SYMBOLGEN: Macro variable SECTION4 resolves to Operating
Systems
141 title "Sales for Section: &§ion&n";
142 where section="&§ion&n";
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable N resolves to 4
SYMBOLGEN: Macro variable SECTION4 resolves to Operating
Systems
143 var saleprice;
144 run;

NOTE: There were 922 observations read from the data set
 BOOKS.YTDSALES.
 WHERE section='Operating Systems';
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.07 seconds
 cpu time 0.01 seconds

Resolving Multiple Ampersands before a Macro Variable
Reference

Program 3.14 illustrates how the macro processor resolves multiple ampersands
preceding a macro variable reference. Three ampersands precede the macro variable
reference.

Program 3.14 provides flexibility in specifying the WHERE statement for a PROC
MEANS step. The macro variable WHEREVAR is assigned the name of the data set
variable that defines the WHERE selection. In the example, the goal is to compute PROC
MEANS for Section 4, Operating Systems.

Program 3.14
options symbolgen;
%let section1=Certification and Training;
%let section2=Internet;
%let section3=Networking and Communication;
%let section4=Operating Systems;
%let section5=Programming and Applications;

70 SAS Macro Programming Made Easy, Second Edition

%let section6=Web Design;
%let dept1=Computer;
%let dept2=Reference;
%let dept3=Science;

%let n=4;
%let wherevar=section;

proc means data=books.ytdsales;
 title "Sales for &wherevar: &&&wherevar&n";
 where &wherevar="&&&wherevar&n";
 var saleprice;
run;

The SAS log for Program 3.14 follows. Note how SYMBOLGEN traces each scanning
step in the resolution of the macro variable reference.

29 options symbolgen;
30 %let section1=Certification and Training;
31 %let section2=Internet;
32 %let section3=Networking and Communication;
33 %let section4=Operating Systems;
34 %let section5=Programming and Applications;
35 %let section6=Web Design;
36 %let dept1=Computer;
37 %let dept2=Reference;
38 %let dept3=Science;
39
40 %let n=4;
41 %let wherevar=Section;
42
43 proc means data=books.ytdsales;
SYMBOLGEN: Macro variable WHEREVAR resolves to Section
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable WHEREVAR resolves to Section
SYMBOLGEN: Macro variable N resolves to 4
SYMBOLGEN: Macro variable SECTION4 resolves to Operating
Systems
44 title "Sales for &wherevar: &&&wherevar&n";
SYMBOLGEN: Macro variable WHEREVAR resolves to Section
45 where &wherevar="&&&wherevar&n";
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable WHEREVAR resolves to Section
SYMBOLGEN: Macro variable N resolves to 4
SYMBOLGEN: Macro variable SECTION4 resolves to Operating
Systems

Chapter 3: Macro Variables 71

46 var saleprice;
47 run;

NOTE: There were 922 observations read from the data set
 BOOKS.YTDSALES.
 WHERE section='Operating Systems';
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

The macro processor scans the reference &&&WHEREVAR&N twice. Figure 3.3 shows
how the macro processor breaks down this reference.

Figure 3.3 How the macro processor resolves multiple ampersands
 preceding a macro variable reference

&&&wherevar&n

& section 4

Operating Systems

First
Pass

Second Pass

72 SAS Macro Programming Made Easy, Second Edition

C h a p t e r 4
Macro Programs

Introduction 74

Creating Macro Programs 74

Executing a Macro Program 78

Displaying Notes about Macro Program Compilation in the SAS Log 80

Displaying Messages about Macro Program Processing in the SAS Log 82
Using MPRINT to Display the SAS Statements Submitted by a Macro
Program 83

Using the MLOGIC Option to Trace Execution of a Macro Program 84

Passing Values to a Macro Program through Macro Parameters 85

Specifying Positional Parameters in Macro Programs 85

Specifying Keyword Parameters in Macro Programs 88

Specifying Mixed Parameter Lists in Macro Programs 92
Defining a Macro Program That Can Accept a Varying Number of
Parameter Values 95

74 SAS Macro Programming Made Easy, Second Edition

Introduction

A macro program is another tool for text substitution. Macro programs are like macro
variables: text is associated with a name. The difference is that the text that is substituted
by a macro program can be created using more powerful macro language programming
statements than have been described so far. Combining these macro language statements
with macro variables and macro functions allows you to write more complicated
instructions for the macro processor than what you can write with macro variables alone.

Each macro program is assigned a name. When you reference a macro program, the
statements inside the macro program execute. The text that results from the execution is
substituted into your SAS program at the location of the macro program reference.

Macro programs use macro variables and macro language statements to generate the text
that builds your SAS programs. The SAS macro programming language has the same
type of statements as other programming languages. Many macro language statements
resemble their SAS language counterparts.

Several macro language statements can be used only inside macro programs. The macro
language statements that we have seen so far, %LET and %PUT, can be used inside or
outside macro programs. Macro language statements and macro variable references
placed outside a macro program, like we've seen in the last chapter, are referred to as
being in open code.

This chapter describes how to create and use macro programs.

Creating Macro Programs

A macro program is defined with the following statements:

%MACRO program <(parameter-list)></ option(s)>;;
 <text>
%MEND <program>;

It starts with the %MACRO statement and terminates with the %MEND statement. Table
4.1 lists the elements of a macro program definition. This table briefly describes the
%MACRO statement options. Many are illustrated with examples later in this book. For
additional information and for those beyond the scope of this book, refer to SAS Macro
Language: Reference.

Chapter 4: Macro Programs 75

Table 4.1 Elements of a macro program definition

Macro Program
Element

Description

%MACRO Marks the beginning of the macro program definition.

program Name assigned to the macro program. The macro program name must be a valid
SAS name (no more than 32 characters in SAS®9) and must start with a letter or
underscore with the remaining characters any combination of letters, numbers, and
underscores.

The macro program name must not be a reserved word in the macro facility (see
Appendix B). Note that the macro program name is not preceded with a percent sign
on the %MACRO statement.

<parameter-
list>

Names one or more local macro variables whose values you specify when you
invoke the macro program. Defining parameters is optional. The two types of
parameters, positional and keyword, are described in this chapter.

The optional arguments include:

CMD Specifies that the macro program can accept either a name-style
invocation or a command-style invocation. Macro programs
defined with the CMD option are sometimes called command-style
macros. For additional information on this option, refer to SAS
Macro Language: Reference.

DES='text' Specifies a description (up to 40 characters) for the macro program
entry in the macro catalog.

PARMBUFF
PBUFF

Assigns the entire list of parameter values in a macro program call
as the value of the automatic macro variable SYSPBUFF. Using the
PARMBUFF option, you can define a macro program that accepts
a varying number of parameter values.

</option(s)>

STMT Specifies that the macro can accept either a name-style invocation
or a statement-style invocation. Macros defined with the STMT
option are sometimes called statement-style macros. For additional
information on this option, refer to SAS Macro Language:
Reference.

(continued)

76 SAS Macro Programming Made Easy, Second Edition

Table 4.1 Elements of a macro program definition (continued)

SOURCE
SRC

Combines and stores the source of the compiled macro program with the
compiled macro program code as an entry in a SAS catalog in a
permanent SAS data library. The SOURCE option requires that the
STORE option and the MSTORED option be set. See Chapter 10 and
SAS Macro Language: Reference for more information.

</option(s)>

STORE Stores the compiled macro program as an entry in a SAS catalog in a
permanent SAS data library. See Chapter 10 and SAS Macro Language:
Reference for more information

<text> is any combination of

text strings
macro variables, macro functions, or macro language statements
SAS programming statements

SAS programming statements are treated as text within the macro program
definition.

%MEND Marks the end of the macro program. Including the macro program name on the
%MEND statement is optional.

Program 4.1 shows an example of a macro program definition. Macro program
SALESCHART produces a horizontal bar chart analyzing profit for the current week by
section of the bookstore.

Program 4.1
%macro saleschart;
 goptions reset=all;
 pattern1 c=graybb;
 goptions ftext=swiss rotate=landscape;

 title "Sales Report for Week Ending &sysdate9";
 proc gchart data=temp;
 where today()-6 <= datesold <= today();
 hbar section / sumvar=profit type=sum;
 run;
 quit;
%mend saleschart;

Chapter 4: Macro Programs 77

To compile this macro program for use later in your SAS session, submit the macro
program definition from the Editor or from within the SAS program that calls it. The
word scanner tokenizes the macro program and sends the tokens to the macro processor
for compilation.

When the macro processor compiles the macro language statements in the macro
program, it saves the results in a SAS catalog. By default, SAS stores macro programs in
a catalog in the WORK library called SASMACR. Macro programs can also be saved in
permanent catalogs and structures called autocall libraries. Chapter 10 discusses how to
do this.

A compiled macro program can be reused within the same SAS session. A macro
program has to be submitted only once in your SAS session. The compiled macro
program remains in the SASMACR catalog throughout the SAS session. When the SAS
session ends, SAS deletes the SASMACR catalog that contains the compiled macro
program. Chapter 10 describes ways to store compiled macro program code.

After submitting the preceding program from the Editor, the WORK directory looks like
Display 4.1. Currently, one catalog, the SASMACR catalog, exists.

Display 4.1 The results of the DIR command

Opening the SASMACR catalog displays the window presented in Display 4.2. Note that
the SALESCHART macro program is in this catalog. The entry in the catalog for
SALESCHART is the compiled version of SALESCHART. The code for the compiled
version cannot be accessed and viewed. (See Chapter 10 for ways to retrieve the code of
stored compiled macro programs.)

78 SAS Macro Programming Made Easy, Second Edition

Display 4.2 Contents of the WORK.SASMACR catalog

You can also list the entries in WORK.SASMACR catalog by submitting the following
PROC CATALOG step in Program 4.2.

Program 4.2
proc catalog c=work.sasmacr;
 contents;
run;
quit;

Executing a Macro Program

A macro program is executed by submitting a reference to the macro program. To
execute a macro program, submit the following statement from the Editor or from within
your SAS program.

%program

where program is the name assigned to the macro program.

Chapter 4: Macro Programs 79

A reference to a macro program that has been successfully compiled can be placed
anywhere in your SAS program except in data lines. This call to the macro program is
preceded by a percent sign (%). The percent sign tells the word scanner to direct
processing to the macro processor. The macro processor takes over and looks for the
compiled program in the WORK.SASMACR catalog of session compiled macro
programs. If found, the macro processor directs execution of the compiled macro
program. If not found, an error message is written to the SAS log. Chapter 10 describes
ways to tell SAS to look in other locations for compiled macro program code.

No semicolon follows the call to the macro program. The call to a macro program is not
a SAS statement. Indeed, using a semicolon to terminate the call to the macro program
might cause errors in the execution of your macro program.

Program 4.3 calls the macro program defined in Program 4.1. Assume that the macro
program in Program 4.1 was already submitted and its compiled code is in the
SASMACR catalog. Assume the program was submitted on Friday, June 15, 2007. When
Program 4.3 is submitted, the DATA step and the PROC GCHART step in macro
program SALESCHART execute.

Program 4.3
data temp;
 set books.ytdsales;
 attrib profit label='Sale Price-Cost' format=dollar8.2;
 profit=saleprice-cost;
run;

%saleschart

Output 4.1 presents the output from Program 4.3.

80 SAS Macro Programming Made Easy, Second Edition

Output 4.1 Output from Program 4.3 that contains a call to macro
 program SALESCHART defined in Program 4.1

Displaying Notes about Macro Program
Compilation in the SAS Log

The SAS option MCOMPILENOTE writes notes to the SAS log about whether a macro
program compiles successfully. The option can be set to one of three values: NONE,
NOAUTOCALL, or ALL. The NONE value suppresses display of all macro program
compilation notes. The NOAUTOCALL value suppresses compilation notes for autocall
macro programs and displays all other types of macro program compilation notes. The
ALL value causes display of all macro program compilation notes. Autocall macro
programs are those stored in external files or SAS catalogs. Chapter 10 describes how to
work with autocall macro programs.

The default setting for MCOMPILENOTE= is NONE. Assuming that is the case when
executing Program 4.1, SAS writes no compilation notes to the SAS log. With Program
4.1 modified in Program 4.4a to include the MCOMPILENOTE= option set to ALL,
SAS now writes compilation notes to the SAS log.

Chapter 4: Macro Programs 81

Program 4.4a
options mcompilenote=all;
%macro saleschart;
 goptions reset=all;
 pattern1 c=graybb;
 goptions ftext=swiss rotate=landscape;

 title "Sales Report for Week Ending &sysdate9";
 proc gchart data=temp;
 where today()-6 <= datesold <= today();
 hbar section / sumvar=profit type=sum;
 run;
 quit;
%mend saleschart;

The SAS log produced by Program 4.4a follows, and it indicates that SALESCHART
was compiled with four instructions.

NOTE: The macro SALESCHART completed compilation without
 errors.
 4 instructions 292 bytes.

Program 4.4b shows the type of note that SAS writes when there are compilation errors
in a macro program. Program 4.4b adds an %IF statement to Program 4.4a, but omits the
required percent sign on the %END statement.

Program 4.4b
options mcompilenote=all;
%macro saleschart;
 goptions reset=all;
 pattern1 c=graybb;
 goptions ftext=swiss rotate=landscape;

 %if &sysday=Friday %then %do;
 title "Sales Report for Week Ending &sysdate9";
 proc gchart data=temp;
 where today()-6 <= datesold <= today();
 hbar section / sumvar=profit type=sum;
 run;
 quit;
 end;
%mend saleschart;

82 SAS Macro Programming Made Easy, Second Edition

The SAS log produced by Program 4.4b follows. The ERROR message indicates that
SALESCHART did not compile. The last part of the NOTE indicates that no instructions
were saved.

ERROR: There were 1 unclosed %DO statements. The macro
 SALESCHART will not be compiled.
NOTE: The macro SALESCHART completed compilation without
 errors.
 0 instructions 0 bytes.

Displaying Messages about Macro Program
Processing in the SAS Log

SAS options MPRINT and MLOGIC write to the SAS log information about the
processing of macro programs. These options assist you in debugging and reviewing
your macro programs. The SYMBOLGEN option described earlier displays information
about macro variables. SYMBOLGEN displays information about macro variables that
are created in open code or inside macro programs.

The SAS log for Program 4.3 follows. The SYMBOLGEN, MPRINT, and MLOGIC
options are turned off. The two notes following the call to SALESCHART are all the
processing information we have about the SAS language statements submitted by the
macro program SALESCHART.

517 options nosymbolgen nomprint nomlogic;
518 data temp;
519 set books.ytdsales;
520 attrib profit label='Sale Price-Cost' format=dollar8.2;
521 profit=saleprice-cost;
522 run;

NOTE: There were 6096 observations read from the data set
 BOOKS.YTDSALES.
NOTE: The data set WORK.TEMP has 6096 observations and 11
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

523
524 %saleschart

NOTE: There were 56 observations read from the data set

Chapter 4: Macro Programs 83

 WORK.TEMP.
 WHERE (datesold>=(TODAY()-6)) and
 (datesold<=TODAY());
NOTE: PROCEDURE GCHART used (Total process time):
 real time 0.12 seconds
 cpu time 0.12 seconds

Using MPRINT to Display the SAS Statements Submitted
by a Macro Program

When you submit a SAS program, SAS normally writes SAS code and processing
messages about the compilation and execution of the SAS language statements to the
SAS log. By default, SAS language statements submitted from within a macro program
are not written to the SAS log. If you want to see the SAS code that the macro processor
constructs and submits, enable the MPRINT option.

The SAS log that follows is for Program 4.3 with the MPRINT option enabled. Now you
can verify the SAS language statements that have been constructed by the macro program.

525 options nosymbolgen mprint nomlogic;
526 data temp;
527 set books.ytdsales;
528 attrib profit label='Sale Price-Cost' format=dollar8.2;
529 profit=saleprice-cost;
530 run;

NOTE: There were 6096 observations read from the data set
 BOOKS.YTDSALES.
NOTE: The data set WORK.TEMP has 6096 observations and 11
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

531
532 %saleschart
MPRINT(SALESCHART): goptions reset=all;
MPRINT(SALESCHART): pattern1 c=graybb;
MPRINT(SALESCHART): goptions ftext=swiss rotate=landscape;
MPRINT(SALESCHART): title "Sales Report for Week Ending
15JUN2007";
MPRINT(SALESCHART): proc gchart data=temp;
MPRINT(SALESCHART): where today()-6 <= datesold <=
today();
MPRINT(SALESCHART): hbar section / sumvar=profit type=sum;
MPRINT(SALESCHART): run;

84 SAS Macro Programming Made Easy, Second Edition

MPRINT(SALESCHART): quit;
NOTE: There were 56 observations read from the data set
 WORK.TEMP.
 WHERE (datesold>=(TODAY()-6)) and
 (datesold<=TODAY());
NOTE: PROCEDURE GCHART used (Total process time):
 real time 0.11 seconds
 cpu time 0.10 seconds

Using the MLOGIC Option to Trace Execution of a Macro
Program

The MLOGIC option traces the execution of macro programs. The information written to
the SAS log when MLOGIC is enabled includes the beginning and ending of the macro
program and the results of arithmetic and logical macro language operations. The
MLOGIC option is useful for debugging macro language statements in macro programs.
The SAS log of Program 4.3 with MLOGIC enabled follows. Examples in Chapter 7 that
deal with macro programming statements further illustrate the usefulness of this option.

573 options nosymbolgen nomprint mlogic;
574 data temp;
575 set books.ytdsales;
576 attrib profit label='Sale Price-Cost' format=dollar8.2;
577 profit=saleprice-cost;
578 run;

NOTE: There were 6096 observations read from the data set
 BOOKS.YTDSALES.
NOTE: The data set WORK.TEMP has 6096 observations and 11
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

MLOGIC(SALES): Beginning execution.
579
580 %saleschart

NOTE: There were 56 observations read from the data set
 WORK.TEMP.
 WHERE (datesold>=(TODAY()-6)) and (datesold<=TODAY());

Chapter 4: Macro Programs 85

NOTE: PROCEDURE GCHART used (Total process time):
 real time 0.13 seconds
 cpu time 0.10 seconds

MLOGIC(SALES): Ending execution.

Passing Values to a Macro Program through
Macro Parameters

Macro program parameters expand the reusability and flexibility of your macro programs
by allowing you to initialize macro variables inside your macro programs. When you use
parameters, macro program code does not have to be modified each time you want the
macro variables to start out with different values. Think of macro programs with
parameters as similar to subroutines in other programming languages.

Macro parameter names are specified on the %MACRO statement. The names assigned
to the parameters must be the same as the names of the macro variables that you want to
reference inside the macro program.

The initial values of the parameters are specified on the call to the macro program. When
the macro program starts, the corresponding macro variables are initialized with the
values of the parameters.

The two types of macro program parameters, positional and keyword, are described in
the next two sections. The third section shows how to combine positional and keyword
parameters in one macro program definition. The last section defines a macro program
with the PARMBUFF option. This option provides the capability to define a macro
program that accepts a varying number of parameters at each invocation.

Specifying Positional Parameters in Macro Programs
Positional macro program parameters define a one-to-one correspondence between the
list of parameters on the %MACRO statement and the values of the parameters on the
macro program call. The following is the general format of a macro program definition
containing positional parameters.

86 SAS Macro Programming Made Easy, Second Edition

%macro program(positional-1, positional-2, ...,positional-n);

 macro program referencing the macro variables in the
 positional parameter list

%mend <program>;

Positional parameters are enclosed in parentheses and are separated with commas. There
is no limit to the number of positional parameters that can be defined. However, too
many positional parameters can make it unwieldy to write the call to the macro program.

When you call a macro program that uses positional parameters, you must specify the
same number of values in the macro program call as the number of parameters listed on
the %MACRO statement. Valid values include null values and text. If you want to assign
a positional parameter a null value and you want to assign values to subsequent
positional parameters, use a comma as a placeholder.

The general format of a call to a macro program that uses positional parameters is

%program(value-1, value-2, ..., value-n)

Example 4.1: Defining a Macro Program with Positional
 Parameters
Program 4.5 defines the macro program LISTPARM. This macro program defines three
positional parameters, OPTS, START, and STOP, and calls LISTPARM twice. It
computes specific statistics with PROC MEANS on SALEPRICE by SECTION for a
specific time period in the BOOKS.YTDSALES data set. The parameter value for OPTS
specifies statistics that PROC MEANS computes and other options valid on the PROC
MEANS statement. The parameter values specified for START and STOP define the
reporting time period.

Program 4.5
options mprint mlogic;

%macro listparm(opts,start,stop);
 title "Books Sold by Section Between &start and &stop";
 proc means data=books.ytdsales &opts;
 where "&start"d le datesold le "&stop"d;
 class section;
 var saleprice;
 run;
%mend listparm;

Chapter 4: Macro Programs 87

*----First call to LISTPARM, all 3 parameters specified;
%listparm(n sum,01JUN2007,15JUN2007)
*----Second call to LISTPARM, first parameter is null,;
*----second and third parameters specified;
%listparm(,01SEP2007,15SEP2007)

The first call to LISTPARM specifies values for each of the three parameters, and
commas separate the parameters. The first parameter specifies two options, N and SUM,
for the PROC MEANS step.

Note that the two options comprising the first parameter are separated by a space. If you
separated them with a comma, the %LISTPARM macro program call would not execute,
and you would receive an error message that more positional parameters (4) were found
than defined (3). See Chapter 8 for ways to specify parameters that contain commas and
other special characters.

The first parameter in the second call to LISTPARM is null. Commas separate the
parameters. Nothing precedes the first comma, so OPTS is null, and no options are added
to the PROC MEANS statement. Therefore, PROC MEANS computes default statistics
and uses default options.

Note that the MLOGIC option displays the parameter values at the start of macro
program execution.

The SAS log for the first call to LISTPARM follows.

30 *----First call to LISTPARM, all 3 parameters specified;
31 %listparm(n sum,01JUN2007,15JUN2007)
MLOGIC(LISTPARM): Beginning execution.
MLOGIC(LISTPARM): Parameter OPTS has value n sum
MLOGIC(LISTPARM): Parameter START has value 01JUN2007
MLOGIC(LISTPARM): Parameter STOP has value 15JUN2007
MPRINT(LISTPARM): title "Books Sold by Section Between
01JUN2007 and 15JUN2007";
MPRINT(LISTPARM): proc means data=books.ytdsales n sum;
MPRINT(LISTPARM): where "01JUN2007"d le datesold le
"15JUN2007"d;
MPRINT(LISTPARM): class section;
MPRINT(LISTPARM): var saleprice;
MPRINT(LISTPARM): run;

NOTE: There were 105 observations read from the data set
 BOOKS.YTDSALES.
 WHERE (datesold>='01JUN2007'D and datesold<='15JUN2007'D);

88 SAS Macro Programming Made Easy, Second Edition

NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

MLOGIC(LISTPARM): Ending execution.

The SAS log for the second call to LISTPARM follows.

32 *----Second call to LISTPARM, first parameter is null,;
33 *----second and third parameters specified;
34 %listparm(,01SEP2007,15SEP2007)
MLOGIC(LISTPARM): Beginning execution.
MLOGIC(LISTPARM): Parameter OPTS has value
MLOGIC(LISTPARM): Parameter START has value 01SEP2007
MLOGIC(LISTPARM): Parameter STOP has value 15SEP2007
MPRINT(LISTPARM): title "Books Sold by Section Between
01SEP2007 and 15SEP2007";
MPRINT(LISTPARM): proc means data=books.ytdsales ;
MPRINT(LISTPARM): where "01SEP2007"d le datesold le
"15SEP2007"d;
MPRINT(LISTPARM): class section;
MPRINT(LISTPARM): var saleprice;
MPRINT(LISTPARM): run;

NOTE: There were 318 observations read from the data set
 BOOKS.YTDSALES.
 WHERE (datesold>='01SEP2007'D and datesold<='15SEP2007'D);
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

MLOGIC(LISTPARM): Ending execution.

Specifying Keyword Parameters in Macro Programs
A call to a macro program that has been defined with keyword parameters contains both
the parameter names and the initial parameter values. On the %MACRO statement
defining the macro program, an equal sign (=) follows each parameter name.

A macro program with many parameters is easier to define and use with keyword
parameters rather than positional parameters. With keyword parameters, you do not have
to keep track of the positions of the parameters when writing the call to the macro
program.

Another advantage of using keyword parameters is that you can specify default values
for the keyword parameters when you define the macro program. Then, when you want

Chapter 4: Macro Programs 89

to use a default value, you can omit the keyword parameter completely from the macro
program call.

Keyword parameters can be specified in any order. A one-to-one correspondence
between the parameters on the %MACRO statement and the values on the call to the
macro program is not required as it is with positional parameters. The general format of a
macro program definition containing keyword macro program parameters is

%macro program(keyword1=value, keyword2=value, ...,
keywordn=value);

 macro program referencing the macro variables in the keyword
 parameter list

%mend <program>;

Keyword parameter lists are enclosed in parentheses, and keyword references are
separated with commas. In the preceding format, keyword1, keyword2, and so on
represent the names of the parameters and the corresponding macro variables in the
macro program.

The values following the equal signs are the default values passed to the macro program.
It is not necessary to specify default values for keyword parameters. However, if a
default value has been defined and you want to call the macro program and use that
default value, you do not have to specify the corresponding keyword parameter in the
macro program call. There is no limit to the number of keyword parameters that can be
defined.

The general format of a call to a macro program that uses keyword parameters is:

%program(keyword1=value1,keyword2=value2,...,keywordn=valuen)

Valid keyword parameter values include null values and text. In a macro program call,
no value after the equal sign of a parameter initializes the macro variable with a null
value.

Example 4.2: Defining a Macro Program with Keyword Parameters
Program 4.6 defines the macro program KEYPARM and calls it three times. Program 4.6
does the same task as Program 4.5. The difference is that the macro program in Program
4.6 is defined with keyword parameters while macro program LISTPARM in Program
4.5 is defined with positional parameters. Macro program KEYPARM defines three
keyword parameters: OPTS, START, and STOP.

90 SAS Macro Programming Made Easy, Second Edition

The first call specifies all three keyword parameters. The second call specifies a null
value for a keyword parameter value. The third call demonstrates how a macro program
defined with keyword parameters that are assigned default values processes.

Program 4.6
options mprint mlogic;

%macro keyparm(opts=N SUM MIN MAX,
 start=01JAN2007,stop=31DEC2007);
 title "Books Sold by Section Between &start and &stop";
 proc means data=books.ytdsales &opts;
 where "&start"d le datesold le "&stop"d;
 class section;
 var saleprice;
 run;
%mend keyparm;

*----First call to KEYPARM: specify all keyword parameters;
%keyparm(opts=n sum,start=01JUN2007,stop=15JUN2007)

*----Second call to KEYPARM: specify start and stop,;
*----opts is null: should see default stats for PROC MEANS;
%keyparm(opts=,start=01SEP2007,stop=15SEP2007)

*----Third call to KEYPARM: use defaults for start and stop,;
*----specify opts;
%keyparm(opts=n sum)

The first call to the KEYPARM macro program specifies values for all three keyword
parameters. The SAS log for the first call to KEYPARM follows.

45 *----First call to KEYPARM: specify all keyword parameters;
46 %keyparm(opts=n sum,start=01JUN2007,stop=15JUN2007)
MLOGIC(KEYPARM): Beginning execution.
MLOGIC(KEYPARM): Parameter OPTS has value n sum
MLOGIC(KEYPARM): Parameter START has value 01JUN2007
MLOGIC(KEYPARM): Parameter STOP has value 15JUN2007
MPRINT(KEYPARM): title "Books Sold by Section Between
01JUN2007 and 15JUN2007";
MPRINT(KEYPARM): proc means data=books.ytdsales n sum;
MPRINT(KEYPARM): where "01JUN2007"d le datesold le
"15JUN2007"d;
MPRINT(KEYPARM): class section;
MPRINT(KEYPARM): var saleprice;
MPRINT(KEYPARM): run;

Chapter 4: Macro Programs 91

NOTE: There were 105 observations read from the data set
 BOOKS.YTDSALES.
 WHERE (datesold>='01JUN2007'D and datesold<='15JUN2007'D);
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

MLOGIC(KEYPARM): Ending execution.

The second call to KEYPARM specifies a null value for the OPTS parameter. That
means that the null value replaces the default value. The result is that the statistics
keywords N, SUM, MIN, and MAX are not on the PROC MEANS statement.
Instead, PROC MEANS computes its set of default statistics and uses its set of default
options. The SAS log for the second call to KEYPARM follows.

48 *----Second call to KEYPARM: specify start and stop,;
49 *----opts is null: should see default stats for PROC MEANS;
50 %keyparm(opts=,start=01SEP2007,stop=15SEP2007)
MLOGIC(KEYPARM): Beginning execution.
MLOGIC(KEYPARM): Parameter OPTS has value
MLOGIC(KEYPARM): Parameter START has value 01SEP2007
MLOGIC(KEYPARM): Parameter STOP has value 15SEP2007
MPRINT(KEYPARM): title "Books Sold by Section Between
01SEP2007 and 15SEP2007";
MPRINT(KEYPARM): proc means data=books.ytdsales ;
MPRINT(KEYPARM): where "01SEP2007"d le datesold le
"15SEP2007"d;
MPRINT(KEYPARM): class section;
MPRINT(KEYPARM): var saleprice;
MPRINT(KEYPARM): run;

NOTE: There were 318 observations read from the data set
 BOOKS.YTDSALES.
 WHERE (datesold>='01SEP2007'D and datesold<='15SEP2007'D);
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

MLOGIC(KEYPARM): Ending execution.

92 SAS Macro Programming Made Easy, Second Edition

The third call to KEYPARM specifies only one parameter, OPTS. The parameter value
for OPTS requests two statistics, N and SUM. The call omits values for the START and
STOP keyword parameters. Therefore, PROC MEANS computes the N and SUM
statistics on observations that fall between the default dates specified for START and
STOP, which are January 1, 2007, and December 31, 2007. The SAS log for the third
call to KEYPARM follows.

52 *----Third call to KEYPARM: use defaults for start and
stop,;
53 *----specify opts;
54 %keyparm(opts=n sum)
MLOGIC(KEYPARM): Beginning execution.
MLOGIC(KEYPARM): Parameter OPTS has value n sum
MLOGIC(KEYPARM): Parameter START has value 01JAN2007
MLOGIC(KEYPARM): Parameter STOP has value 31DEC2007
MPRINT(KEYPARM): title "Books Sold by Section Between
01JAN2007 and 31DEC2007";
MPRINT(KEYPARM): proc means data=books.ytdsales n sum;
MPRINT(KEYPARM): where "01JAN2007"d le datesold le
"31DEC2007"d;
MPRINT(KEYPARM): class section;
MPRINT(KEYPARM): var saleprice;
MPRINT(KEYPARM): run;

NOTE: There were 6096 observations read from the data set
 BOOKS.YTDSALES.
 WHERE (datesold>='01JAN2007'D and datesold<='31DEC2007'D);
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

MLOGIC(KEYPARM): Ending execution.

Specifying Mixed Parameter Lists in Macro Programs
Positional parameters and keyword parameters can both be defined for the same macro
program. Positional parameters must be placed ahead of keyword parameters in the
definition and in the call to the macro program. Otherwise, the same rules for defining
and using each type of parameter apply.

Chapter 4: Macro Programs 93

The general format of a macro program definition containing positional parameters and
keyword parameters is

%macro program(positional-1, positional-2, ...,positional-n,
 keyword1=value,keyword2=value, ..., keywordm=value);

 macro program referencing both kinds of parameters

%mend <program>;

The general format of a call to a macro program that contains positional parameters and
keyword parameters is

%program(positionalvalue-1, positionalvalue-2, ...,
 positionalvalue-n,
 keyword1=value, keyword2=value, ..., keywordm=value)

Example 4.3: Defining a Macro Program with Positional
 Parameters and Keyword Parameters
Program 4.7 defines the macro program, MIXDPARM, with two positional parameters
and two keyword parameters and calls that macro program twice. It does the same task as
Programs 4.5 and 4.6.

Macro program MIXDPARM specifies a PROC MEANS step and its two positional
parameters, STATS and OTHROPTS, specify PROC MEANS statistics and options. The
two keyword parameters, START and STOP, specify a date range for the calculations.

The first call to MIXDPARM specifies a null value for the STATS positional parameter,
which causes calculation of the default PROC MEANS statistics. The call assigns the
value MISSING to parameter OTHROPTS. The MISSING option on the PROC MEANS
statement requests that PROC MEANS include missing values as valid values in creating
combinations of the class variables. The call sets the START keyword parameter to
December 1, 2007, and it does not assign a value to the STOP keyword parameter.
Without a value specified for STOP, the default value of December 31, 2007, specified in
the macro program definitions, is used as the stop date. The first call to MIXDPARM
analyzes information for December 2007.

The second call to MIXDPARM specifies no values for either the positional or the
keyword parameters. With parameters STAT and OTHROPTS both null, PROC MEANS
calculates default statistics. Since the second call specifies no values for START and
STOP, the PROC MEANS step calculates statistics for all of 2007.

In the second call, note that a comma does not separate the null values for positional
parameters STATS and OTHROPTS. If a value were specified for OTHROPTS, a
comma placeholder preceding the OTHROPTS parameter value would be needed.

94 SAS Macro Programming Made Easy, Second Edition

Program 4.7
options mprint mlogic;

%macro mixdparm(stats,othropts,
 start=01JAN2007,stop=31DEC2007);
 title "Books Sold by Section Between &start and &stop";
 proc means data=books.ytdsales &stats &othropts;
 where "&start"d le datesold le "&stop"d;
 class section;
 var saleprice;
 run;
%mend mixdparm;

%*----Compute default stats for December 2007 and allow
 missing values to be valid in creating combinations of
 the CLASS variables;
%mixdparm(,missing,start=01DEC2007)

%*----Compute default stats for all of 2007;
%mixdparm()

The SAS log for the first call to MIXDPARM follows.

343 %mixdparm(,missing,start=01DEC2007)
MLOGIC(MIXDPARM): Beginning execution.
MLOGIC(MIXDPARM): Parameter STATS has value
MLOGIC(MIXDPARM): Parameter OTHROPTS has value missing
MLOGIC(MIXDPARM): Parameter START has value 01DEC2007
MLOGIC(MIXDPARM): Parameter STOP has value 31DEC2007
MPRINT(MIXDPARM): title "Books Sold by Section Between
01DEC2007 and 31DEC2007";
MPRINT(MIXDPARM): proc means data=books.ytdsales missing;
MPRINT(MIXDPARM): where "01DEC2007"d le datesold le
"31DEC2007"d;
MPRINT(MIXDPARM): class section;
MPRINT(MIXDPARM): var saleprice;
MPRINT(MIXDPARM): run;

NOTE: There were 356 observations read from the data set
 BOOKS.YTDSALES.
 WHERE (datesold>='01DEC2007'D and datesold<='31DEC2007'D);
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds
MLOGIC(MIXDPARM): Ending execution.

Chapter 4: Macro Programs 95

The SAS log for the second call to MIXDPARM follows.

344 %mixdparm()
MLOGIC(MIXDPARM): Beginning execution.
MLOGIC(MIXDPARM): Parameter STATS has value
MLOGIC(MIXDPARM): Parameter OTHROPTS has value
MLOGIC(MIXDPARM): Parameter START has value 01JAN2007
MLOGIC(MIXDPARM): Parameter STOP has value 31DEC2007
MPRINT(MIXDPARM): title "Books Sold by Section Between
01JAN2007 and 31DEC2007";
MPRINT(MIXDPARM): proc means data=books.ytdsales ;
MPRINT(MIXDPARM): where "01JAN2007"d le datesold le
"31DEC2007"d;
MPRINT(MIXDPARM): class section;
MPRINT(MIXDPARM): var saleprice;
MPRINT(MIXDPARM): run;

NOTE: There were 6096 observations read from the data set
BOOKS.YTDSALES.
 WHERE (datesold>='01JAN2007'D and datesold<='31DEC2007'D);
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds
MLOGIC(MIXDPARM): Ending execution.

Defining a Macro Program That Can Accept a Varying
Number of Parameter Values

When your application requires that you execute a macro program multiple times by
simply changing one parameter value each time, you might find it useful instead to
define your macro program with the PARMBUFF option. With PARMBUFF, you could
submit your macro program only once by specifying the complete list of values that you
want processed on that single call to your macro program. Additionally with
PARMBUFF, you can specify a varying number of parameter values each time you
execute your macro program.

The PARMBUFF option assigns the entire list of parameter values in your macro
program call to the automatic macro variable SYSPBUFF. Your macro program can
parse the list extracting each value and directing that specific steps be executed for each
value in the list.

96 SAS Macro Programming Made Easy, Second Edition

The general format of a macro program definition containing the PARMBUFF option is:

%macro program(<positional-1,positional-2,...,positional-n)> /
 PARMBUFF;

macro program referencing a varying number of parameter values

%mend <program>;

A typical simple application of the PARMBUFF option is to define the macro program
with no parameters. However, you can define positional and keyword parameters as well
with the PARMBUFF option. These defined parameters receive values, and the values
are also assigned to automatic variable SYSPBUFF. Typically in this situation, because
you could be dealing with a varying number of parameter values, you would place your
defined parameters at the beginning of the macro program call while the list of varying
values would be at the end. When parsing values in SYSPBUFF, your code would have
to account for the positional parameter values before processing your list of varying
values. As with the definition of macro programs that have both positional and keyword
parameters, make sure you place positional parameters ahead of the keyword parameters.

The general format of a call to a macro program defined with the PARMBUFF option is

%program(parmvaluevalue-1, parmvalue-2, ...,
parmvalue-n)

Example 4.4: Defining a Macro Program with the PARMBUFF
 Option
Program 4.8 defines macro program PBUFFPARMS with the PARMBUFF option.
PBUFFPARMS produces a bar chart of total sales by bookstore section. The program is
written to process as its parameter values a list of months. For each month specified in
the value list, the macro program submits a PROC GCHART step that displays monthly
sales by section. When no parameter values are specified, PBUFFPARMS submits a
summary PROC GCHART step that computes total sales by section with subgroups in
the bars defined by the quarter of the sale.

This example uses macro functions and programming statements that are more fully
described in later chapters. Chapter 6 describes macro functions, and Chapter 7 describes
macro programming statements.

Briefly, the %SCAN function extracts words from its argument where the words in the
argument are separated by delimiters. The %IF-%THEN-%ELSE and %DO-%UNTIL
statements process blocks of code. The combination of %SCAN and %DO-%UNTIL
provides you the tools to process each of the values in the list of parameter values passed
to your macro program.

Chapter 4: Macro Programs 97

The macro processor stores the list of parameter values in automatic macro variable
SYSPBUFF. Macro program PBUFFPARMS processes the contents of SYSPBUFF.
References to SYSPBUFF are in bold in Program 4.8.

Program 4.8 submits two calls to PBUFFPARMS. The first call specifies two parameter
values, 8 and 11, which produces one monthly sales chart for August and one for
November. The second call to PBUFFPARMS specifies no parameter values. This
causes PBUFFPARMS to submit the summary PROC GCHART step.

The value assigned to SYSPBUFF by the first call is:

(8,11)

The value assigned to SYSPBUFF by the second call is:

()

Note that parentheses are included in the value assigned to SYSPBUFF.

Example 7.7 presents another example of a macro program defined with the
PARMBUFF option.

Program 4.8
%macro pbuffparms / parmbuff;
 goptions reset=all;
 pattern1 c=graybb;
 pattern2 c=graydd;
 pattern3 c=white;
 pattern4 c=grayaa;
 goptions ftext=swiss rotate=landscape;

 %*----Process this section when parameter values specified;
 %if &syspbuff ne %then %do;
 %let i=1;
 %let month=%scan(&syspbuff,&i);
 %do %while(&month ne);
 proc gchart data=books.ytdsales
 (where=(month(datesold)=&month));
 title "Sales Report for Month &month";
 hbar section / sumvar=saleprice type=sum;
 run;
 quit;
 %let i=%eval(&i+1);
 %let month=%scan(&syspbuff,&i);
 %end;
 %end;

98 SAS Macro Programming Made Easy, Second Edition

 %*----Process this section when no parameter values
 specified;
 %else %do;
 proc gchart data=books.ytdsales;
 title "Annual Sales by Quarter";
 hbar section / sumvar=saleprice type=sum
 subgroup=datesold coutline=black;
 format datesold qtr.;
 run;
 quit;
 %end;
%mend pbuffparms;

*----Analyze sales for August and November;
%pbuffparms(8,11)

*----Analyze sales for entire year;
%pbuffparms()

The SAS log for Program 4.8 with the MPRINT option enabled follows. This shows that
three PROC GCHART steps were submitted, two from the first call to PBUFFPARMS
and one from the second call to PBUFFPARMS.

110 *----Analyze sales for August and November;
111 %pbuffparms(8,11)
MPRINT(PBUFFPARMS): goptions reset=all;
MPRINT(PBUFFPARMS): pattern1 c=graybb;
MPRINT(PBUFFPARMS): pattern2 c=graydd;
MPRINT(PBUFFPARMS): pattern3 c=white;
MPRINT(PBUFFPARMS): pattern4 c=grayaa;
MPRINT(PBUFFPARMS): goptions ftext=swiss rotate=landscape;

MPRINT(PBUFFPARMS): proc gchart
data=books.ytdsales(where=(month(datesold)=8));
MPRINT(PBUFFPARMS): title "Sales Report for Month 8";
MPRINT(PBUFFPARMS): hbar section / sumvar=saleprice type=sum;
MPRINT(PBUFFPARMS): run;
MPRINT(PBUFFPARMS): quit;
NOTE: There were 500 observations read from the data set
 BOOKS.YTDSALES.
 WHERE MONTH(datesold)=8;
NOTE: PROCEDURE GCHART used (Total process time):
 real time 0.15 seconds
 cpu time 0.17 seconds

MPRINT(PBUFFPARMS): proc gchart
data=books.ytdsales(where=(month(datesold)=11));

Chapter 4: Macro Programs 99

MPRINT(PBUFFPARMS): title "Sales Report for Month 11";
MPRINT(PBUFFPARMS): hbar section / sumvar=saleprice type=sum;
MPRINT(PBUFFPARMS): run;
MPRINT(PBUFFPARMS): quit;

NOTE: There were 649 observations read from the data set
 BOOKS.YTDSALES.
 WHERE MONTH(datesold)=11;
NOTE: PROCEDURE GCHART used (Total process time):
 real time 0.03 seconds
 cpu time 0.04 seconds
112
113 *----Analyze sales for entire year;
114 %pbuffparms()
MPRINT(PBUFFPARMS): goptions reset=all;
MPRINT(PBUFFPARMS): pattern1 c=graybb;
MPRINT(PBUFFPARMS): pattern2 c=graydd;
MPRINT(PBUFFPARMS): pattern3 c=white;
MPRINT(PBUFFPARMS): pattern4 c=grayaa;
MPRINT(PBUFFPARMS): goptions ftext=swiss rotate=landscape;

MPRINT(PBUFFPARMS): proc gchart data=books.ytdsales;
MPRINT(PBUFFPARMS): title "Annual Sales by Quarter";
MPRINT(PBUFFPARMS): hbar section / sumvar=saleprice type=sum
subgroup=datesold coutline=black;
MPRINT(PBUFFPARMS): format datesold qtr.;
MPRINT(PBUFFPARMS): run;
MPRINT(PBUFFPARMS): quit;
NOTE: There were 6096 observations read from the data set
BOOKS.YTDSALES.
NOTE: PROCEDURE GCHART used (Total process time):
 real time 0.06 seconds
 cpu time 0.06 seconds

100 SAS Macro Programming Made Easy, Second Edition

C h a p t e r 5
Understanding Macro Symbol Tables and the
Processing of Macro Programs

Introduction 102

Understanding Macro Symbol Tables 102

Understanding the Global Macro Symbol Table 104

Understanding Local Macro Symbol Tables 108

Working with Global Macro Variables and Local Macro Variables 116
Defining the Domain of a Macro Variable by Using the %GLOBAL or
%LOCAL Macro Language Statements 118

Processing of Macro Programs 122

How a Macro Program Is Compiled 122

How a Macro Program Is Executed 127

102 SAS Macro Programming Made Easy, Second Edition

Introduction

As your macro programming applications become more complex, an understanding of
the technical aspects of macro processing becomes more important. This knowledge will
likely speed up development and debugging of your programs.

The discussion of the technical aspects of macro processing that began in Chapter 2 is
continued in this chapter. This chapter describes symbol tables, both global and those
created for macro programs. It illustrates how macro programs are processed and how
macro programs access symbol tables.

Understanding Macro Symbol Tables

There are two types of macro symbol tables: global and local. The global macro symbol
table, as the name implies, stores macro variables that can be referenced throughout your
SAS session, both from open code and from within macro programs. A local macro
symbol table stores macro variables defined within a macro program. References to local
macro variables can be resolved only from within the macro program that defined them.

At the start of a SAS session, the macro processor creates the global macro symbol table
to store the values of automatic macro variables. The global macro symbol table also
stores the values of the macro variables that you create in open code or that you
explicitly define as global in your macro program.

A local macro symbol table is created by executing a macro program that contains macro
variables. By default, macro variables defined in the macro program are stored in the
local macro symbol table associated with the macro program. (There are special cases
where this is not true, however, such as creating a macro variable using CALL SYMPUT
or CALL SYMPUTX, which is described in Chapter 9.) These local macro variables by
default can be referenced only from within the macro program. A local macro symbol
table and all its macro variables are deleted when the macro program that is associated
with it ends.

As your SAS programming assistant, the macro processor keeps track of the domain of
each macro variable that is defined in your SAS program. The context in which you
reference a macro variable directs the macro processor's search for the macro variable
value when called upon to resolve a macro variable.

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 103

Figure 5.1 presents an example of how the domains of the macro symbol tables are
defined by default. Two macro programs, M1 and M2, are invoked. In addition, two
more macro programs, M2A and M2B, are invoked from within macro program M2
when macro program M2 is executing.

Observations to make from Figure 5.1 include:

Macro variables in the global macro symbol table can be referenced in open
code and from within M1, M2, M2A, and M2B.

The macro variables that are created by M1 are available only to M1.

The macro variables that are created by M2 can be referenced by M2A and
M2B.

The macro variables that are created by M2A are available only to M2A.

The macro variables that are created by M2B are available only to M2B.

As your macro programs become more complex and call one another, you might find it
useful to diagram their relationships as in Figure 5.1.

Figure 5.1 Example of macro symbol tables in a SAS session

104 SAS Macro Programming Made Easy, Second Edition

Understanding the Global Macro Symbol Table
The macro processor creates the global macro symbol table at the start of a SAS session.
The first macro variables that are placed in the global macro symbol table are the
automatic macro variables that SAS defines. For example, the automatic macro variables
SYSDATE9, SYSDAY, and SYSVER, as shown in Figure 5.1, are stored in the global
macro symbol table.

User-defined macro variables can also be added to the global macro symbol table. The
user-defined macro variables created in Chapter 3 were all stored in the global macro
symbol table. There are three ways that you can add macro variables to the global macro
symbol table:

Create the macro variable in open code.

List the macro variable on a %GLOBAL statement in the macro program in
which it is defined.

Create the macro variable in a DATA step with either of the SAS language
routines, CALL SYMPUT or CALL SYMPUTX. (These routines provide an
interface between the SAS DATA step and the macro processor, and their usages
are described in Chapter 9.)

Global macro variables can be referenced throughout the SAS session in which they are
created. They can be referenced from open code and from inside macro programs. You
can modify the values of user-defined global macro variables throughout your SAS
session. As described in Chapter 3, you can modify a few of the automatic macro
variables as well.

Program 5.1 creates the macro variable SUBSET in open code and references it both
from open code and from within macro program MAKEDS. The domain of the macro
variable SUBSET is the global macro symbol table because it was created in open code.
Therefore, the macro variable can be successfully referenced and resolved both from
open code and from within a macro program.

Assume Program 5.1 was submitted on March 14, 2008.

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 105

Program 5.1
options symbolgen mprint;

%let subset=Internet;

%macro makeds;
 data temp;
 set books.ytdsales(where=(section="&subset"));
 attrib qtrsold label='Quarter of Sale';
 qtrsold=qtr(datesold);
 run;
%mend makeds;

%makeds

proc tabulate data=temp;
 title "Book Sales Report Produced &sysdate9";
 class qtrsold;
 var saleprice listprice;
 tables qtrsold all,
 (saleprice listprice)*(n*f=6. sum*f=dollar12.2) /
 box="Section: &subset";
 keylabel all='** Total **';
run;

Program 5.1 generates the following SAS log.

46 options symbolgen mprint;
47
48 %let subset=Internet;
49
50 %macro makeds;
51 data temp;
52 set books.ytdsales(where=(section="&subset"));
53 attrib qtrsold label='Quarter of Sale';
54 qtrsold=qtr(datesold);
55 run;
56 %mend makeds;
57
58 %makeds
MPRINT(MAKEDS): data temp;
SYMBOLGEN: Macro variable SUBSET resolves to Internet
MPRINT(MAKEDS): set
books.ytdsales(where=(section="Internet"));
MPRINT(MAKEDS): attrib qtrsold label='Quarter of Sale';

106 SAS Macro Programming Made Easy, Second Edition

MPRINT(MAKEDS): qtrsold=qtr(datesold);
MPRINT(MAKEDS): run;

NOTE: There were 1456 observations read from the data set
BOOKS.YTDSALES.
 WHERE section='Internet';
NOTE: The data set WORK.TEMP has 1456 observations and 11
 variables.
NOTE: DATA statement used (Total process time):
 real time 1.21 seconds
 cpu time 0.06 seconds

59
60 proc tabulate data=temp;
SYMBOLGEN: Macro variable SYSDATE9 resolves to 14MAR2008
61 title "Book Sales Report Produced &sysdate9";
62 class qtrsold;
63 var saleprice listprice;
64 tables qtrsold all,
65 (saleprice listprice)*(n*f=6. sum*f=dollar12.2) /
66 box="Section: &subset";
SYMBOLGEN: Macro variable SUBSET resolves to Internet
67 keylabel all='** Total **';
68 run;

NOTE: There were 1456 observations read from the data set
 WORK.TEMP.
NOTE: PROCEDURE TABULATE used (Total process time):
 real time 0.56 seconds
 cpu time 0.04 seconds

Output 5.1 presents the output for Program 5.1.

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 107

Output 5.1 Output for macro program MAKEDS in Program 5.1 using global
 macro variable SUBSET

 Book Sales Report Produced 14MAR2008

 --

 |Section: | Sale Price | List Price |

 |Internet |-------------------+-------------------|

 | | N | Sum | N | Sum |

 |--------------+------+------------+------+------------|

 |Quarter of | | | | |

 |Sale | | | | |

 |--------------| | | | |

 |1 | 477| $20,168.41| 477| $20,658.15|

 |--------------+------+------------+------+------------|

 |2 | 216| $9,397.20| 216| $9,581.20|

 |--------------+------+------------+------+------------|

 |3 | 341| $14,711.59| 341| $14,995.95|

 |--------------+------+------------+------+------------|

 |4 | 422| $18,018.59| 422| $18,428.90|

 |--------------+------+------------+------+------------|

 |** Total ** | 1456| $62,295.78| 1456| $63,664.20|

 --

Figure 5.2 shows a representation of the global macro symbol table that results when
macro program MAKEDS in Program 5.1 executes. Since MAKEDS does not create any
macro variables, the macro processor does not create a local macro symbol table for
MAKEDS.

108 SAS Macro Programming Made Easy, Second Edition

Figure 5.2 The global macro symbol table when MAKEDS in Program 5.1
 executes

Understanding Local Macro Symbol Tables
If your macro program creates macro variables and does not specify them as global
macro variables, the macro processor creates a local macro symbol table whenever that
macro program executes. A local macro symbol table stores the values of the macro
variables that the macro program creates. When the macro program finishes, the macro
processor deletes the associated local macro symbol table.

It is important to understand the boundaries of the macro symbol tables. By default, the
domain of macro variables that are created in a macro program is local to the macro
program that defines them. For a given local macro variable, if no identically named
macro variable is defined as global, a reference made in open code to that macro variable
cannot be resolved.

A macro program can also be called from within another macro program. The macro
program that is invoked from within another macro program can reference the macro
variables created by the macro program that invoked it. Looking back at Figure 5.1,
macro program M2 calls macro programs M2A and M2B. The local macro variables that
M2 creates are available to M2A and M2B. Conversely, macro program M2 cannot
resolve references to local macro variables created by M2A or M2B.

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 109

Therefore, you can have multiple macro variables, each with the same name, in one SAS
session. Obviously, this can become confusing and is something to avoid, at least while
you are learning how to write macro programs.

There are macro language functions that can assist in you determining domains of macro
variables. These functions are described in the “Macro Variable Attribute Functions”
section in Chapter 6.

Macro parameters are always local to the macro program that defines them. These macro
variables are stored in the local macro symbol table associated with the macro program.
You cannot make these macro variables global, but you can assign their values to global
macro variables.

Program 5.1 in the previous section is revised below so that a parameter passes the value
that defines the subset to MAKEDS. Now, macro variable SUBSET is stored in the local
macro symbol table that is associated with the MAKEDS macro program. SUBSET is
stored in the MAKEDS macro symbol table because it is defined as a parameter to
MAKEDS. Assume that the macro variable SUBSET is not available globally. (A global
macro variable can be deleted by macro language statement %SYMDEL, which is
described in Chapter 7.)

Program 5.2
options symbolgen mprint;

%macro makeds(subset);
 data temp;
 set books.ytdsales(where=(section="&subset"));
 attrib qtrsold label='Quarter of Sale';
 qtrsold=qtr(datesold);
 run;
%mend makeds;

%makeds(Internet)

proc tabulate data=temp;
 title "Book Sales Report Produced &sysdate9";
 class qtrsold;
 var saleprice listprice;
 tables qtrsold all,
 (saleprice listprice)*(n*f=6. sum*f=dollar12.2) /
 box="Section: &subset";
 keylabel all='** Total **';
run;

110 SAS Macro Programming Made Easy, Second Edition

The SAS log for the revised program follows.

124 options symbolgen mprint;
125
126 %macro makeds(subset);
127 data temp;
128 set books.ytdsales(where=(section="&subset"));
129 attrib qtrsold label='Quarter of Sale';
130 qtrsold=qtr(datesold);
131 run;
132 %mend makeds;
133
134 %makeds(Internet)
MPRINT(MAKEDS): data temp;
SYMBOLGEN: Macro variable SUBSET resolves to Internet
MPRINT(MAKEDS): set
books.ytdsales(where=(section="Internet"));
MPRINT(MAKEDS): attrib qtrsold label='Quarter of Sale';
MPRINT(MAKEDS): qtrsold=qtr(datesold);
MPRINT(MAKEDS): run;

NOTE: There were 1456 observations read from the data set
 BOOKS.YTDSALES.
 WHERE section='Internet';
NOTE: The data set WORK.TEMP has 1456 observations and 11
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

135 proc tabulate data=temp;
SYMBOLGEN: Macro variable SYSDATE9 resolves to 14MAR2008
136 title "Book Sales Report Produced &sysdate9";
137 class qtrsold;
138 var saleprice listprice;
139 tables qtrsold all,
140 (saleprice listprice)*(n*f=6. sum*f=dollar12.2) /
141 box="Section: &subset";
WARNING: Apparent symbolic reference SUBSET not resolved.
142 keylabel all='** Total **';
143 run;

NOTE: There were 1456 observations read from the data set
 WORK.TEMP.
NOTE: PROCEDURE TABULATE used (Total process time):
 real time 0.03 seconds
 cpu time 0.01 seconds

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 111

Note the warning in the SAS log for the PROC TABULATE step. The macro processor
cannot resolve the reference to macro variable SUBSET. This reference is made in open
code, outside of the MAKEDS macro program. By the time PROC TABULATE
executes, the MAKEDS macro program has ended and the MAKEDS symbol table has
already been deleted. At that point, the macro processor searches only the global macro
symbol table to resolve the SUBSET macro variable reference.

Output 5.2 presents the output from Program 5.2. This output shows that the macro
processor did not resolve the macro variable reference in the box text.

Output 5.2 Output for macro program MAKEDS in Program 5.2 using local
 macro variable SUBSET

 Book Sales Report Produced 14MAR2008

 --

 |Section: | Sale Price | List Price |

 |&subset |-------------------+-------------------|

 | | N | Sum | N | Sum |

 |--------------+------+------------+------+------------|

 |Quarter of | | | | |

 |Sale | | | | |

 |--------------| | | | |

 |1 | 477| $20,168.41| 477| $20,658.15|

 |--------------+------+------------+------+------------|

 |2 | 216| $9,397.20| 216| $9,581.20|

 |--------------+------+------------+------+------------|

 |3 | 341| $14,711.59| 341| $14,995.95|

 |--------------+------+------------+------+------------|

 |4 | 422| $18,018.59| 422| $18,428.90|

 |--------------+------+------------+------+------------|

 |** Total ** | 1456| $62,295.78| 1456| $63,664.20|

 --

Figure 5.3 shows a representation of the global macro symbol table and the local macro
symbol table when the macro program executes.

112 SAS Macro Programming Made Easy, Second Edition

Figure 5.3 The macro symbol tables during execution of the MAKEDS
 macro program in Program 5.2 when SUBSET is a local macro
 variable

Following are two ways to revise the program so that the reference to macro variable
SUBSET in the PROC TABULATE step can be resolved. Program 5.3 presents the
easier of the two. It places the PROC TABULATE step within the MAKEDS macro
program. Macro variable SUBSET is local to macro program MAKEDS.

Program 5.3
options symbolgen mprint;

%macro makeds(subset);
 data temp;
 set books.ytdsales(where=(section="&subset"));
 attrib qtrsold label='Quarter of Sale';
 qtrsold=qtr(datesold);
 run;

 proc tabulate data=temp;
 title "Book Sales Report Produced &sysdate9";
 class qtrsold;
 var saleprice listprice;

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 113

 tables qtrsold all,
 (saleprice listprice)*(n*f=6. sum*f=dollar12.2) /
 box="Section: &subset";
 keylabel all='** Total **';
 run;
%mend makeds;

%makeds(Internet)

In the second version, Program 5.4, the %GLOBAL statement instructs the macro
processor to create a macro variable, GLBSUBSET, and store it in the global macro
symbol table. A %LET statement in the macro program assigns the value of the SUBSET
macro variable to GLBSUBSET within the MAKEDS macro program. Now, the value of
a local macro variable can be transferred to a global macro variable. The macro variable
reference in PROC TABULATE is changed to the name of the global macro variable,
GLBSUBSET.

Program 5.4
options symbolgen mprint;

%macro makeds(subset);
 %global glbsubset;
 %let glbsubset=⊂

 data temp;
 set books.ytdsales(where=(section="&subset"));
 attrib qtrsold label='Quarter of Sale';
 qtrsold=qtr(datesold);
 run;
%mend makeds;

%makeds(Internet)

proc tabulate data=temp;
 title "Book Sales Report Produced &sysdate9";
 class qtrsold;
 var saleprice listprice;
 tables qtrsold all,
 (saleprice listprice)*(n*f=6. sum*f=dollar12.2) /
 box="Section: &glbsubset";
 keylabel all='** Total **';
run;

114 SAS Macro Programming Made Easy, Second Edition

The SAS log for this second version follows.

194 options symbolgen mprint;
195
196 %macro makeds(subset);
197 %global glbsubset;
198 %let glbsubset=⊂
199
200 data temp;
201 set books.ytdsales(where=(section="&subset"));
202 attrib qtrsold label='Quarter of Sale';
203 qtrsold=qtr(datesold);
204 run;
205 %mend makeds;
206
207 %makeds(Internet)
SYMBOLGEN: Macro variable SUBSET resolves to Internet
MPRINT(MAKEDS): data temp;
SYMBOLGEN: Macro variable SUBSET resolves to Internet
MPRINT(MAKEDS): set
books.ytdsales(where=(section="Internet"));
MPRINT(MAKEDS): attrib qtrsold label='Quarter of Sale';
MPRINT(MAKEDS): qtrsold=qtr(datesold);
MPRINT(MAKEDS): run;

NOTE: There were 1456 observations read from the data set
 BOOKS.YTDSALES.
 WHERE section='Internet';
NOTE: The data set WORK.TEMP has 1456 observations and 11
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

208
209 proc tabulate data=temp;
SYMBOLGEN: Macro variable SYSDATE9 resolves to 14MAR2008
210 title "Book Sales Report Produced &sysdate9";
211 class qtrsold;
212 var saleprice listprice;
213 tables qtrsold all,
214 (saleprice listprice)*(n*f=6. sum*f=dollar12.2) /
215 box="Section: &glbsubset";
SYMBOLGEN: Macro variable GLBSUBSET resolves to Internet
216 keylabel all='** Total **';
217 run;

NOTE: There were 1456 observations read from the data set

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 115

 WORK.TEMP.
NOTE: PROCEDURE TABULATE used (Total process time):
 real time 0.03 seconds
 cpu time 0.03 seconds

Figure 5.4 shows a representation of the macro symbol tables after the %LET statement
inside the MAKEDS macro program executes.

Figure 5.4 The macro symbol tables after the %LET statement inside
 MAKEDS in Program 5.4 has executed

116 SAS Macro Programming Made Easy, Second Edition

Working with Global Macro Variables and Local Macro
Variables

The macro processor follows a specific set of rules to resolve macro variable references.
The context in which you place a macro variable reference tells the macro processor
which symbol table to begin with in its attempt to resolve a macro variable reference.

When you ask the macro processor to resolve a macro variable reference, the macro
processor first looks in the most local domain of that macro variable. If the macro
variable is called from within a macro program, the most local domain of the macro
variable is the local macro symbol table associated with the macro program. If the macro
variable is not in the most local domain, the macro processor moves to the next higher
domain. The search stops when the macro processor reaches the domain of the global
macro symbol table. If the macro variable cannot be found in the global macro symbol
table, the macro processor issues a warning.

When your macro program references a global macro variable, the macro processor does
not by default create a local macro variable with that name. Instead, the macro processor
uses the global macro variable.

When you define more than one macro program in your SAS program, the order of the
macro program definitions does not matter. Furthermore, if one macro program calls
another, you do not have to nest the definition of the called macro program within the
definition of the first. Each macro program definition is its own entity, like a subroutine.
Indeed, it will probably be easier to read your code if you do not nest macro program
definitions.

The macro processor follows the path in Figure 5.5 when it creates or modifies macro
variables.

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 117

Figure 5.5 How the macro processor accesses symbol tables when it
 creates or modifies macro variables

The process that the macro processor follows when it resolves a macro variable reference
is shown in Figure 5.6.

118 SAS Macro Programming Made Easy, Second Edition

Figure 5.6 How the macro processor accesses symbol tables when it
 resolves a macro variable reference

Defining the Domain of a Macro Variable by Using the
%GLOBAL or %LOCAL Macro Language Statements

The %GLOBAL and %LOCAL macro language statements explicitly direct where the
macro processor stores macro variables. These statements can override the rules
described in the previous section as well as help document your programs.

The syntax of both statements is

%GLOBAL macro-variable(s) ;
%LOCAL macro-variable(s) ;

The %GLOBAL statement tells the macro processor to create the macro variables listed
on the statement and store them in the global macro symbol table. The macro processor
initially sets these macro variables to a null value. These macro variables can be used
throughout the SAS session. The %GLOBAL statement can be used in open code or
inside a macro program. A %GLOBAL statement was used in the preceding section in
Program 5.4.

The macro processor places the macro variables listed on the %LOCAL statement in the
domain of the macro program in which the %LOCAL statement was issued. The

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 119

%LOCAL statement can only be used within a macro program. The macro processor will
look only in the local domain to resolve references to macro variables on the %LOCAL
statement.

Program 5.5 uses the same name, SUBSET, for two macro variables in different
domains. The first reference to macro variable SUBSET is made in open code where it is
specified on a %LET statement. The %LET statement assigns the global version of
SUBSET the value Internet.

Macro program LOCLMVAR first references SUBSET on the %LOCAL statement. This
causes the macro processor to look only locally to resolve a reference to SUBSET during
execution of macro program LOCLMVAR. The %LET statement that follows the
%LOCAL statement assigns the local version of SUBSET the value Web Design.

Program 5.5
options symbolgen mprint;

%let subset=Internet;

%macro loclmvar;
 %local subset;
 %let subset=Web Design;

 proc means data=books.ytdsales n sum maxdec=2;
 title "Book Sales Report Produced &sysdate9";
 title2 "Uses LOCAL SUBSET macro variable: &subset";
 where section="&subset";
 var saleprice;
 run;
%mend loclmvar;

%loclmvar

proc means data=books.ytdsales n sum maxdec=2;
 title "Book Sales Report Produced &sysdate9";
 title2 "Uses GLOBAL SUBSET macro variable: &subset";
 where section="&subset";
 var saleprice;
run;

120 SAS Macro Programming Made Easy, Second Edition

The SAS log for the preceding program follows.

269 options symbolgen mprint;
270
271 %let subset=Internet;
272
273 %macro loclmvar;
274 %local subset;
275 %let subset=Web Design;
276
277 proc means data=books.ytdsales n sum maxdec=2;
278 title "Book Sales Report Produced &sysdate9";
279 title2 "Uses LOCAL SUBSET macro variable: &subset";
280 where section="&subset";
281 var saleprice;
282 run;
283 %mend loclmvar;
284
285 %loclmvar
MPRINT(LOCLMVAR): proc means data=books.ytdsales n sum
maxdec=2;
SYMBOLGEN: Macro variable SYSDATE9 resolves to 14MAR2008
MPRINT(LOCLMVAR): title "Book Sales Report Produced
14MAR2008";
SYMBOLGEN: Macro variable SUBSET resolves to Web Design
MPRINT(LOCLMVAR): title2 "Uses LOCAL SUBSET macro variable:
Web Design";
SYMBOLGEN: Macro variable SUBSET resolves to Web Design
MPRINT(LOCLMVAR): where section="Web Design";
MPRINT(LOCLMVAR): var saleprice;
MPRINT(LOCLMVAR): run;

NOTE: There were 846 observations read from the data set
 BOOKS.YTDSALES.
 WHERE section='Web Design';
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

286
287 proc means data=books.ytdsales n sum maxdec=2;
SYMBOLGEN: Macro variable SYSDATE9 resolves to 14MAR2008
288 title "Book Sales Report Produced &sysdate9";
SYMBOLGEN: Macro variable SUBSET resolves to Internet
289 title2 "Uses GLOBAL SUBSET macro variable: &subset";
290 where section="&subset";

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 121

SYMBOLGEN: Macro variable SUBSET resolves to Internet
291 var saleprice;
292 run;

NOTE: There were 1456 observations read from the data set
 BOOKS.YTDSALES.
 WHERE section='Internet';
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.03 seconds
 cpu time 0.03 seconds

Output 5.3 presents the output from Program 5.5.

Output 5.3 Output from Program 5.5, which uses the same name for a local
 macro variable and for a global macro variable

 Book Sales Report Produced 14MAR2008 1

 Uses LOCAL SUBSET macro variable: Web Design

 The MEANS Procedure

 Analysis Variable : saleprice Sale Price

 N Sum

 846 37121.52

 Book Sales Report Produced 14MAR2008 2

 Uses GLOBAL SUBSET macro variable: Internet

 The MEANS Procedure

 Analysis Variable : saleprice Sale Price

 N Sum

 1456 62295.78

122 SAS Macro Programming Made Easy, Second Edition

A representation of the macro symbol tables when the LOCLMVAR macro program
executes is shown in Figure 5.7.

Figure 5.7 The macro symbol tables when LOCLMVAR executes

Processing of Macro Programs

Understanding how the macro processor compiles and executes macro programs will
help you more quickly write and debug SAS programs that contain macro language. This
section describes how SAS and the macro processor process macro programs.

How a Macro Program Is Compiled
The SAS program in Figure 5.8 contains a macro program definition and a call to the
macro program. The remaining figures in this section show the path that SAS and the
macro processor follow in compiling the macro program definition.

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 123

Figure 5.8 A SAS program containing a macro program definition and a call
 to the macro program has been submitted for processing

Tokenization of the program begins in Figure 5.9.

124 SAS Macro Programming Made Easy, Second Edition

Figure 5.9 Statements are transferred from the input stack to the word
 scanner

The two steps in Figure 5.9 are as follows:

The MACRO statement is passed to the word scanner for tokenization.

The word scanner detects a percent sign followed by a nonblank character and sends
 subsequent tokens to the macro processor.

Figure 5.10 shows that the word scanner continues to send tokens to the macro processor.

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 125

Figure 5.10 Tokens continue to be transferred to the macro processor

The three steps in Figure 5.10 are:

An entry in the macro catalog for macro program MYREPORT is created.

The word scanner passes the tokens from the %IF statement to the macro processor.
 The expression &SYSDAY=Friday is temporarily considered one token and will not
 be completely tokenized and resolved until MYREPORT executes.

The entire PROC PRINT step is considered one text token and is passed to the macro
 processor for storage with the MYREPORT macro program.

126 SAS Macro Programming Made Easy, Second Edition

Figure 5.11 shows that the compilation of the macro statements in MYREPORT is
complete. The expression &SYSDAY=Friday is stored as text and will not be resolved
until MYREPORT is executed. The PROC PRINT step is stored as text and will not be
tokenized and compiled until MYREPORT executes.

The call to macro program MYREPORT is in the input stack and ready for processing in
Figure 5.11.

Figure 5.11 Compilation of macro program MYREPORT is complete

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 127

How a Macro Program Is Executed
This section continues with the example from the previous section by executing a call to
the macro program MYREPORT. The figures in this section describe the process.

Figure 5.12 shows that a call to the macro program MYREPORT has been made and that
the value assigned to the parameter SECTION is Web Design.

Figure 5.12 The macro program MYREPORT has been called and begins
 executing

128 SAS Macro Programming Made Easy, Second Edition

The three steps in Figure 5.12 are:

Macro program MYREPORT has been called.

The word scanner detects the percent sign macro trigger followed by text and transfers
 tokens to the macro processor.

The macro processor begins executing macro program MYREPORT. The macro
 processor creates a macro symbol table for MYREPORT. It adds macro variable
 SECTION to the MYREPORT symbol table. The initial value for SECTION that is
 passed as a parameter to the macro program MYREPORT is placed in the symbol
 table.

In Figure 5.13, the macro processor starts executing MYREPORT.

Figure 5.13 The macro program MYREPORT continues executing

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 129

The two steps in Figure 5.13 are:

The macro processor executes the compiled %IF statement.

The macro processor puts the text &SYSDAY=FRIDAY on the input stack so that it
 can be tokenized by the word scanner.

Next, the word scanner tokenizes the &SYSDAY=Friday expression and directs
resolution of the macro variable reference to the macro processor.

Figure 5.14 The word scanner receives the &SYSDAY=Friday expression
 for tokenization and evaluation of the expression is passed to
 the macro processor

130 SAS Macro Programming Made Easy, Second Edition

The two steps in Figure 5.14 are:

The word scanner receives the &SYSDAY=Friday expression.

After receiving the resolved value of SYSDAY from the macro processor, the word
 scanner sends the tokens to the macro processor for evaluation.

Assume that MYREPORT was run on a Friday. Therefore, the %IF condition is true. The
statements in the PROC PRINT step are placed in the input stack by the macro processor.
Execution of MYREPORT continues in Figure 5.15.

Figure 5.15 The PROC PRINT step is tokenized and the macro variable
 reference to &SECTION is resolved

Chapter 5: Understanding Macro Symbol Tables and the Processing of Macro Programs 131

The three steps in Figure 5.15 are:

 The word scanner tokenizes the SAS language statements and passes them to the
 compiler.

The macro processor resolves the reference to &SECTION, which is made within the
 MYREPORT macro program. The macro symbol table for MYREPORT is the first
 place the macro processor looks to resolve &SECTION.

 The macro processor sends the value of macro variable SECTION to the input
 stack. This value is treated as one token.

Figure 5.16 shows that all statements have been tokenized and macro variable references
have been resolved. The macro processor is put “on hold” while the PROC PRINT step
executes. After the step executes, control returns to the macro processor. Since there are
no additional steps or statements in the macro program, the %MEND statement executes
and the macro processor deletes the macro symbol table associated with macro program
MYREPORT.

132 SAS Macro Programming Made Easy, Second Edition

Figure 5.16 The SAS program is ready for compilation

C h a p t e r 6
Macro Language Functions

Introduction 133

Macro Character Functions 134

Macro Evaluation Functions 138

Macro Quoting Functions 140

Macro Variable Attribute Functions 143

Other Macro Functions 147

SAS Supplied Autocall Macro Programs Used Like Functions 154

Introduction

The preceding chapters describe the basic structures of the macro programming language
and the mechanics involved in processing macro language. This chapter describes the
functions that are available in the macro programming language.

134 SAS Macro Programming Made Easy, Second Edition

Macro functions greatly extend the use of macro variables and macro programming.
Macro functions can be used in open code and in macro programs. The arguments of a
macro function can be text strings, macro variables, macro functions, and macro program
calls. The result of a macro function is always text. This result can be assigned to a
macro variable. A macro function can also be inserted directly into your SAS statements
to build SAS statements.

Most macro functions have SAS language counterparts. If you know how to write DATA
step programs, you already have a familiarity with the style and structure of many of the
macro functions.

Some of the tasks you can do with macro functions include:

extracting substrings of macro variables

searching for a string of characters in a macro variable

temporarily converting macro values to numeric so that you can use the macro
variables in calculations

using SAS language functions and functions created with SAS/TOOLKIT in
your macro language statements

allowing semicolons to be treated as a text value rather than as a symbol to
terminate a statement

This chapter classifies the macro functions into five categories: character, evaluation,
quoting, macro variable attribute, and other. These categories and some of the functions
in each category are briefly described below.

Additionally, SAS ships a library of autocall macro programs with its software, which
may or may not be installed at your site. Autocall macro programs are uncompiled source
code and text stored as entries in SAS libraries. This set of autocall macro programs can
be used like macro language functions. This SAS supplied autocall macro program
library is described at the end of this chapter. Also, see Chapter 10 for more discussion
on the application of autocall macro programs.

Macro Character Functions

Macro character functions operate on strings of text or on macro variables. These
functions modify their arguments or provide information about their arguments. Several

Chapter 6: Macro Language Functions 135

of the character functions you might be familiar with in the SAS language have macro
language counterparts. Table 6.1 lists the macro character functions.

Macro functions %SCAN, %SUBSTR, and %UPCASE each have a version that should
be used if the result of the macro function could contain a special character or mnemonic
operator. The names of these macro functions are %QSCAN, %QSUBSTR, and
%QUPCASE.

Table 6.1 Macro character functions

Function Action

%INDEX(source, string) returns the position in source of the first
character of string.

%LENGTH(string|text expression) returns the length of string or the length of
the results of the resolution of text
expression.

%SCAN(argument, n <,delimiters>) returns the nth word in argument where the
words in argument are separated by
delimiters. Use %QSCAN when you
need to mask special characters or mnemonic
operators in the result.

%SUBSTR(argument,position<,length>) extracts a substring of length characters
from argument starting at position. Use
%QSUBSTR when you need to mask special
characters or mnemonic operators in the result.

%UPCASE(string|text expression) converts character string or text
expression to uppercase. Use %QUPCASE
when you need to mask special characters or
mnemonic operators in the result.

Example 6.1: Using %SUBSTR to Extract Text from a Macro
 Variable Value
Program 6.1 shows how the %SUBSTR function extracts text from strings of characters.
The WHERE statement selects observations from the first day of the current month
through the day the program was run.

136 SAS Macro Programming Made Easy, Second Edition

Program 6.1
proc means data=books.ytdsales;
 title "Sales for 01%substr(&sysdate,3,3) through &sysdate9";
 where "01%substr(&sysdate,3)"d le datesold le "&sysdate"d;
 class section;
 var saleprice;
run;

After resolution of the macro variable references, the PROC MEANS step looks as
follows when submitted on September 15, 2007.

proc means data=books.ytdsales;
 title "Sales for 01SEP through 15SEP2007";
 where "01SEP07"d le datesold le "15SEP07"d;
 class section;
 var saleprice;
run;

Example 6.2: Using %SCAN to Extract the Nth Item from a Macro
 Variable Value
The %SCAN macro character function in Program 6.2 extracts a specific word from a
string of words that are separated with blanks. The code specifies that %SCAN, through
the value of REPMONTH, extract the third word from macro variable MONTHS.

One of the default delimiters for %SCAN is a blank. Therefore, the optional third
argument to %SCAN is not specified in Program 6.2.

Under ASCII systems, the other default delimiters for %SCAN are:

 . < (+ & ! $ *) ; ^ - / , % |

Under EBCDIC systems, the other default delimiters for %SCAN are:

 . < (+ | & ! $ *) ; ¬ - / , % ¦ ¢

Chapter 6: Macro Language Functions 137

Program 6.2
%let months=January February March April May June;
%let repmonth=3;

proc print data=books.ytdsales;
 title "Sales Report for %scan(&months,&repmonth)";
 where month(datesold)=&repmonth;
 var booktitle author saleprice;
run;

After resolution of the macro variable references, the PROC PRINT step becomes:

proc print data=books.ytdsales;
 title "Sales Report for March";
 where month(datesold)=3;
 var booktitle author saleprice;
run;

Example 6.3: Using %UPCASE to Convert a Macro Variable Value
 to Uppercase
Macro program LISTTEXT in Program 6.3 lists all the titles sold that contain a specific
text string. The text string is passed to the macro program through the parameter
KEYTEXT. This text string might be in different forms in the title: lowercase, uppercase,
or mixed case. Because of this, both the macro variable's value and the value of the data
set variable TITLE are converted to uppercase. This increases the likelihood of matches
when the two are compared.

Program 6.3
%macro listtext(keytext);
 %let keytext=%upcase(&keytext);
 proc print data=books.ytdsales;
 title "Book Titles Sold Containing Text String &keytext";
 where upcase(booktitle) contains "&keytext";
 var booktitle author saleprice;
 run;
%mend;

%listtext(web)

138 SAS Macro Programming Made Easy, Second Edition

When the macro program executes, the TITLE statement resolves to

Book Titles Sold Containing Text String WEB

The WHERE statement at execution resolves to

where upcase(booktitle) contains "WEB";

Macro Evaluation Functions

The two macro evaluation functions, %EVAL and %SYSEVALF, evaluate arithmetic
expressions and logical expressions. These expressions are comprised of operators and
operands that the macro processor evaluates to produce a result. The arguments to one of
these macro evaluation functions are temporarily converted to numbers so that a
calculation (arithmetic or logical) can be completed. The macro evaluation function
converts the result that it returns to text.

Arithmetic expressions use arithmetic operators such as plus signs and minus signs.
Logical expressions use logical operators such as greater than signs and equal signs.

The %EVAL function evaluates expressions using integer arithmetic. The %SYSEVALF
function evaluates expressions using floating point arithmetic. Macro expressions are
constructed with the same arithmetic and comparison operators found in the SAS
language. A section in Chapter 7 discusses in more detail how to construct macro
expressions.

The syntax of the %EVAL function is

%EVAL(arithmetic expression|logical expression)

The syntax of the %SYSEVALF function is

%SYSEVALF(arithmetic expression|logical expression
 <,conversion-type>)

By default, the result of the %SYSEVALF function is left as a number which is
converted back to text. Otherwise, you can request %SYSEVALF to convert the result to
a different format, as shown in Table 6.2. When requesting one of these four conversion
types, specify the conversion type as the second argument to %SYSEVALF.

Chapter 6: Macro Language Functions 139

Table 6.2 Conversion types that can be specified on the %SYSEVALF
 function

Conversion Type Result that is returned by %SYSEVALF

BOOLEAN 0 if the result of the expression is 0 or null

1 if the result is any other value

(The 0 and 1 are treated as text.)

CEIL text that represents the smallest integer that is greater than or equal
to the result of the expression

FLOOR text that represents the largest integer that is less than or equal to the
result of the expression

INTEGER text that represents the integer portion of the expression’s result

For more discussion on %SYSEVALF and %EVAL, see Example 6.8 later in this
chapter.

The %EVAL function does integer arithmetic. Therefore, this function treats numbers
with decimal points as text. The %EVAL function generates an error when there are
characters in the arguments that are supplied to %EVAL, as demonstrated by the second
example in Table 6.3.

The statements in Table 6.3 show examples of the %EVAL and %SYSEVALF functions.
The %PUT statements were submitted, and the results were written to the SAS log.

140 SAS Macro Programming Made Easy, Second Edition

Table 6.3 Examples of %EVAL and %SYSEVALF evaluation functions

%PUT Statement Results in SAS log

%put %eval(33 + 44); 77

%put %eval(33.2 + 44.1); ERROR: A character
operand was found in the
%EVAL function or %IF
condition where a numeric
operand is required. The
condition was: 33.2 +
44.1

%put %sysevalf(33.2 + 44.1); 77.3

%put %sysevalf(33.2 + 44.1,integer); 77

%let a=3;

%let b=10;

%put %eval(&b/&a); 3

%put %sysevalf(&b/&a); 3.3333333333

%put %sysevalf(&b/&a,ceil); 4

%put %sysevalf(&b/&a,boolean); 1

%let missvalu=.;

%put %sysevalf(&b-&missvalu,boolean);

NOTE: Missing values were
generated as a result of
performing an operation
on missing values during
%SYSEVALF expression
evaluation.

0

Macro Quoting Functions

Macro quoting functions mask special characters and mnemonic operators in your macro
language statements so that the macro processor does not interpret them. The macro
processor instead treats these items simply as text.

Chapter 6: Macro Language Functions 141

For example, you might want to assign a value to a macro variable that contains a
character that the macro processor interprets as a macro trigger. The macro processor
considers ampersands and percent signs followed by text as macro triggers. You must use
a macro quoting function to tell the macro processor to ignore the special meaning of the
ampersands and percent signs and instead treat them as text.

Consider what happens if you assign the name of the publisher, Doe&Lee Ltd., to a
macro variable:

%let publisher=Doe&Lee Ltd.;

If you have not already defined a macro variable named LEE in your SAS session, you
will see the following message displayed in your SAS log:

WARNING: Apparent symbolic reference LEE not resolved.

(If you had already defined a macro variable named LEE in your SAS session, you would
not see the warning. Instead, the macro processor would resolve the reference to &LEE
with the value assigned to the macro variable LEE.)

To prevent the macro processor from interpreting the ampersand as a macro trigger in the
value being assigned to PUBLISHER, you must mask the value that you assign to the
macro variable PUBLISHER. The macro quoting function %NRSTR correctly masks
&LEE from view by the macro processor when the instruction is compiled. Therefore,
when you apply %NRSTR to the text string, the macro processor ignores the ampersand
as a macro trigger, does not attempt to resolve the value of the macro variable &LEE,
and considers this use of the ampersand simply as text.

%let publisher=%nrstr(Doe&Lee Ltd.);

As it steps through its tasks in compiling and executing the %LET statement, the macro
processor defines a global macro variable, PUBLISHER, and assigns the text Doe&Lee
Ltd. to PUBLISHER.

The macro quoting functions can be grouped into three types based upon when they act:
compilation, execution, and preventing resolution during execution.

Table 6.4 lists the macro quoting functions. Chapter 8 discusses the topic of masking
characters in macro programming more thoroughly, and it includes several examples that
illustrate the concepts on how and when to apply the macro quoting functions.

142 SAS Macro Programming Made Easy, Second Edition

Table 6.4 Macro quoting functions

Function Action

%BQUOTE(character-string |
 text expression)

Mask special characters and mnemonic operators in a
character string or the value of resolved text expression
at macro execution. Compared to %QUOTE,
%BQUOTE does not require that unmatched quotation
marks or unmatched parentheses be marked with a
preceding percent sign (%).

%NRBQUOTE(character-string |
 text expression)

Does the same as %BQUOTE and additionally masks
ampersands (&) and percent signs (%).

%QUOTE(character-string |
 text expression)

Mask special characters and mnemonic operators in a
character string or the value of resolved text expression
at macro execution. Compared to %BQUOTE,
%QUOTE requires that unmatched quotation marks and
unmatched parentheses be marked with a preceding
percent sign (%).

%NRQUOTE(character-string |
 text expression)

Does the same as %QUOTE and additionally masks
ampersands (&) and percent signs (%).

%STR(character-string) Mask special characters and mnemonic operators in
constant text at macro compilation.

%NRSTR(character-string) Does the same as %STR and additionally masks
ampersands (&) and percent signs (%).

%SUPERQ(macro-variable-name) Masks all special characters including ampersands (&)
and percent signs (%) and mnemonic operators at macro
execution and prevents further resolution of the value.
Returns the value of a macro variable and does not
resolve any macro references contained in that macro
variable’s value.

%UNQUOTE(character-string |
 text expression)

Unmasks all special characters and mnemonic operators
in a value at macro execution.

Chapter 6: Macro Language Functions 143

Macro Variable Attribute Functions

The three macro variable attribute functions supply information about the existence and
the domain (global vs. local) of macro variables. These functions can be especially useful
when debugging problems with macro variable resolution. Table 6.5 lists the macro
variable attribute functions.

Table 6.5 Macro variable attribute functions

Function Action

%SYMEXIST(macro-variable-name) returns a 0 or 1 depending on whether the named
macro variable exists. The search starts with the most
local symbol table, and the search proceeds up the
hierarchy through other local symbol tables, ending
the search at the global symbol table. If the macro
variable exists, %SYMEXIST return a value of 1;
otherwise, it returns a 0.

%SYMGLOBL(macro-variable-name) returns a 0 or 1 depending on whether the named
macro variable is found in the global symbol table. If
the macro variable exists in the global symbol table,
%SYMGLOBL returns a value of 1; otherwise, it
returns a 0.

%SYMLOCAL(macro-variable-name) returns a 0 or 1 depending on whether the named
macro variable is found in a local symbol table. The
search starts with the most local symbol table, and the
search proceeds up the hierarchy through other local
symbol tables, ending the search at the local symbol
table highest up in the hierarchy. If the macro variable
exists in a local symbol table, %SYMLOCAL returns
a value of 1; otherwise, it returns a 0.

144 SAS Macro Programming Made Easy, Second Edition

Example 6.4: Using Macro Variable Attribute Functions to
 Determine Domain and Existence of Macro Variables
Chapter 5 discusses domains of macro variables. A macro variable can exist in either the
global or local macro symbol table. You can successfully reference a macro variable
stored in the global symbol table throughout your SAS session including within macro
programs. There is only one global symbol table.

A local macro symbol table is created by executing a macro program that contains macro
variables. If the macro variables do not already exist in the global table, macro variables
defined in the macro program are stored in the local macro symbol table associated with
the macro program. These local macro variables can be referenced only from within the
macro program. The macro processor deletes a local macro symbol table when the macro
program associated with the table ends. You can have more than one local macro symbol
table at a time if one macro program calls another.

Program 5.4 in Chapter 5, which demonstrates domains of macro variables, is modified
below in Program 6.4 to include the three functions described in Table 6.5 and illustrates
their use. This program introduces a new statement, %SYMDEL, which deletes macro
variables from the global symbol table.

Program 6.4
%* For example purposes only, ensure these two macro
 variables do not exist in the global symbol table;
%symdel glbsubset subset;

%macro makeds(subset);
 %global glbsubset;
 %let glbsubset=⊂

 %* What is domain of SUBSET and GLBSUBSET inside MAKEDS?;
 %put ******** Inside macro program;
 %put Is SUBSET a local macro variable(0=No/1=Yes):
%symlocal(subset);
 %put Is SUBSET a global macro variable(0=No/1=Yes):
%symglobl(subset);
 %put Is GLBSUBSET a local macro variable(0=No/1=Yes):
%symlocal(glbsubset);
 %put Is GLBSUBSET a global macro variable(0=No/1=Yes):
%symglobl(glbsubset);
 %put ********;

Chapter 6: Macro Language Functions 145

 data temp;
 set books.ytdsales(where=(section="&subset"));
 attrib qtrsold label='Quarter of Sale';
 qtrsold=qtr(datesold);
 run;
%mend makeds;

%makeds(Internet)

%* Are SUBSET and GLBSUBSET in global symbol table?;
%put Does SUBSET exist (0=No/1=Yes): %symexist(subset);
%put Is SUBSET a global macro variable(0=No/1=Yes):
%symglobl(subset);
%put Is GLBSUBSET a global macro variable(0=No/1=Yes):
%symglobl(glbsubset);

proc tabulate data=temp;
 title "Book Sales Report Produced &sysdate9";
 class qtrsold;
 var saleprice listprice;
 tables qtrsold all,
 (saleprice listprice)*(n*f=6. sum*f=dollar12.2) /
 box="Section: &glbsubset";
 keylabel all='** Total **';
run;

The following SAS log for the program shows how the functions %SYMLOCAL,
%SYMGLOBL, and %SYMEXIST resolve in this example.

288 %* For example purposes only, ensure these two macro
289 variables do not exist in the global symbol table;
290
291 %symdel glbsubset subset;
WARNING: Attempt to delete macro variable GLBSUBSET failed.
 Variable not found.
WARNING: Attempt to delete macro variable SUBSET failed.
 Variable not found.
292
293 %macro makeds(subset);
294 %global glbsubset;
295 %let glbsubset=⊂
296
297 %* What is domain of SUBSET and GLBSUBSET inside
MAKEDS?;
298 %put ******** Inside macro program;
299 %put Is SUBSET a local macro variable(0=No/1=Yes):
299! %symlocal(subset);

146 SAS Macro Programming Made Easy, Second Edition

300 %put Is SUBSET a global macro variable(0=No/1=Yes):
300! %symglobl(subset);
301 %put Is GLBSUBSET a local macro variable(0=No/1=Yes):
301! %symlocal(glbsubset);
302 %put Is GLBSUBSET a global macro variable(0=No/1=Yes):
302! %symglobl(glbsubset);
303 %put ********;
304
305 data temp;
306 set books.ytdsales(where=(section="&subset"));
307 attrib qtrsold label='Quarter of Sale';
308 qtrsold=qtr(datesold);
309 run;
310 %mend makeds;
311
312 %makeds(Internet)
******** Inside macro program
Is SUBSET a local macro variable(0=No/1=Yes): 1
Is SUBSET a global macro variable(0=No/1=Yes): 0
Is GLBSUBSET a local macro variable(0=No/1=Yes): 0
Is GLBSUBSET a global macro variable(0=No/1=Yes): 1

NOTE: There were 1456 observations read from the data set
 BOOKS.YTDSALES.
 WHERE section='Internet';
NOTE: The data set WORK.TEMP has 1456 observations and 11
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

313
314 %* Are SUBSET and GLBSUBSET in global symbol table?;
315 %put Does SUBSET exist (0=No/1=Yes):%symexist(subset);
Does SUBSET exist (0=No/1=Yes):0
316 %put Is SUBSET a global macro variable(0=No/1=Yes):
316! %symglobl(subset);
Is SUBSET a global macro variable(0=No/1=Yes): 0
317 %put Is GLBSUBSET a global macro variable(0=No/1=Yes):
317! %symglobl(glbsubset);
Is GLBSUBSET a global macro variable(0=No/1=Yes): 1
318
319 proc tabulate data=temp;
320 title "Book Sales Report Produced &sysdate9";
321 class qtrsold;

Chapter 6: Macro Language Functions 147

322 var saleprice listprice;
323 tables qtrsold all,
324 (saleprice listprice)*(n*f=6. sum*f=dollar12.2) /
325 box="Section: &glbsubset";
326 keylabel all='** Total **';
327 run;

NOTE: There were 1456 observations read from the data set
 WORK.TEMP.
NOTE: PROCEDURE TABULATE used (Total process time):
 real time 0.03 seconds
 cpu time 0.03 seconds

Other Macro Functions

The four macro functions described in this section (Table 6.6) do not fit into any of the
four categories of macro functions described so far. These four functions do one of the
following:

apply SAS language functions to macro variables or text

obtain information from the rest of SAS or the operating system in which the
SAS session is running

The %SYSFUNC and %QSYSFUNC functions are especially useful in extending the use
of the macro facility. These functions allow you to apply SAS language and user-written
functions to your macro programming applications. Several examples of %SYSFUNC
follow. Chapter 8, which presents the topic of masking special characters and mnemonic
operators, also includes an example that applies %QSYSFUNC. Macro function
%QSYSFUNC does the same as %SYSFUNC and it masks special characters and
mnemonic operators in the result.

148 SAS Macro Programming Made Easy, Second Edition

Table 6.6 Other macro functions

Function Action

%SYSFUNC(function(argument(s))
<,format>)

executes SAS language function
or user-written function and
returns the results to the macro
facility (see also macro statement
%SYSCALL)

%QSYSFUNC(function(argument(s))
<,format>)

does the same as %SYSFUNC with
the addition of masking special
characters and mnemonic operators in
the result

%SYSGET(host-environment-variable) returns the value of host-
environment-variable to the
macro facility

%SYSPROD(SAS-product) returns a code to indicate whether
SAS-product is licensed at the site
where the SAS System is currently
running

Using the %SYSFUNC and %QSYSFUNC Macro Functions
The functions %SYSFUNC and %QSYSFUNC apply SAS programming language
functions to text and macro variables in your macro programming. With access to the
many SAS language functions in your macro programming applications, %SYSFUNC
and %QSYSFUNC greatly extend the power of your macro programming.

Since these two functions are macro language functions and the macro facility is a text-
handling language, the arguments to the SAS programming language function are not
enclosed in quotation marks; it is understood that all arguments are text. Also, the values
returned through the use of these two functions are considered text.

Functions cannot be nested within one call to %SYSFUNC and %QSYSFUNC. Each
function must have its own %SYSFUNC or %QSYSFUNC call, and these %SYSFUNC
and %QSYSFUNC calls can be nested.

Chapter 6: Macro Language Functions 149

Example 6.5: Using %SYSFUNC to Format a Date in the
 TITLE Statement
The TITLE statement in Program 6.5 shows how the elements of a date can be formatted
using %SYSFUNC and the DATE SAS language function.

Program 6.5
title
 "Sales for %sysfunc(date(),monname.) %sysfunc(date(),year.)";

On January 30, 2007, the title statement would resolve to

Sales for January 2007

Example 6.6: Using %SYSFUNC to Execute a SAS Language
 Function and Assign the Result to a Macro Variable
Program 6.6 uses %SYSFUNC to access the SAS language function GETOPTION. The
GETOPTION function displays the values of SAS options. The %SYSFUNC function
invokes the GETOPTION function and returns the result to macro variable OPTVALUE.
The %PUT statement lists the value assigned to OPTVALUE. The single parameter to
GETOPTION is the name of the SAS option that should be checked.

Program 6.6
%macro getopt(whatopt);
 %let optvalue=%sysfunc(getoption(&whatopt));
 %put Option &whatopt = &optvalue;
%mend getopt;

%getopt(ps)
%getopt(ls)
%getopt(date)
%getopt(symbolgen)
%getopt(compress)

The SAS log for Program 6.6 follows.

58 %getopt(ps)
Option ps = 54
59 %getopt(ls)
Option ls = 90
60 %getopt(date)
Option date = DATE

150 SAS Macro Programming Made Easy, Second Edition

61 %getopt(symbolgen)
Option symbolgen = NOSYMBOLGEN
62 %getopt(compress)
Option compress = NO

Example 6.7: Using %SYSFUNC and the NOTNAME and NVALID
 SAS Language Functions to Determine If a Value Is
 a Valid SAS Variable Name
Since the macro language generates SAS code for you, a common task that macro
programmers have is to construct SAS items such as variable names and format names.
In doing so, it might be important to check the value that will be used to name the item to
make sure that it does not contain any invalid characters or is too long.

Macro program CHECKVARNAME in Program 6.7 checks a SAS macro variable value
to see if it can be used as a variable name. It uses both the NOTNAME and the NVALID
SAS functions. The NOTNAME function finds the first position in the value that is an
invalid character in naming a variable. The NVALID function determines if the value
can be used as a variable name.

The second argument to NVALID in this example is V7. This argument requires three
conditions to be true if the value is to be determined valid:

The value must start with a letter or underscore.

All subsequent characters must be letters, underscores, or digits.

Its length must be no greater than 32 characters.

The parameter passed to CHECKVARNAME is the prospective variable name that
should be examined. The %SYSFUNC macro function is used in conjunction with the
NOTNAME SAS language function and again with the NVALID SAS language
function. The macro program writes messages to the SAS log about whether the value
can be used as a variable name.

Program 6.7 calls CHECKVARNAME four times. The parameter values specified for the
first two calls to CHECKVARNAME are valid SAS names. The parameter values
specified in the third and fourth calls to CHECKVARNAME are not valid. The space in
the parameter in the third call to CHECKVARNAME is invalid. The length of the
parameter in the fourth call, as well as the exclamation point in the last position, makes
the value invalid as a SAS name.

Chapter 6: Macro Language Functions 151

Program 6.7
%macro checkvarname(value);
 %let position=%sysfunc(notname(&value));
 %put **** Invalid character in position: &position (0 means
&value is okay);
 %let valid=%sysfunc(nvalid(&value,v7));
 %put
 **** Can &value be a variable name(0=No, 1=Yes)? &valid;
 %put;
 %put;
%mend checkvarname;

%checkvarname(valid_name)
%checkvarname(valid_name)
%checkvarname(invalid name)
%checkvarname(book_sales_results_for_past_five_years!)

The four calls to macro program CHECKVARNAME produce the following SAS log.

235 %checkvarname(valid_name)
**** Invalid character in position: 0 (0 means valid_name is
okay)
**** Can valid_name be a variable name(0=No, 1=Yes)? 1

236 %checkvarname(valid_name)
**** Invalid character in position: 0 (0 means valid_name is
okay)
**** Can valid_name be a variable name(0=No, 1=Yes)? 1

237 %checkvarname(invalid name)
**** Invalid character in position: 8 (0 means invalid name is
okay)
**** Can invalid name be a variable name(0=No, 1=Yes)? 0

238 %checkvarname(book_sales_results_for_past_five_years!)
**** Invalid character in position: 39 (0 means
book_sales_results_for_past_five_years! is okay)
**** Can book_sales_results_for_past_five_years! be a variable
name(0=No, 1=Yes)? 0

152 SAS Macro Programming Made Easy, Second Edition

Example 6.8: Using %SYSFUNC to Apply a SAS Statistical
 Function to Macro Variable Values
This example uses %SYSFUNC to apply the SAS statistical function MEAN to four
macro variable values and compute the mean of the four values. In addition to using a
SAS language function in the macro programming environment, this example also
illustrates several concepts of macro programming.

The values assigned to the four macro variables A, B, C, and D are treated as text values
in the macro programming environment. However, note that the MEAN function
interprets them as numbers. The %SYSEVALF function is not needed to temporarily
convert the values to numbers in order to compute the mean. Note also that two periods
follow &MEANSTAT in the %PUT statement. The first period terminates the macro
variable reference. The second period appears in the text written to the SAS log.

Program 6.8a
%let a=1.5;
%let b=-2.0;
%let c=1.978;
%let d=-3.5;
%let meanstat=%sysfunc(mean(&a,&b,&c,&d));
%put ****** The mean of &a, &b, &c, and &d is &meanstat..;

After the above code is submitted, the following is written to the SAS log:

****** The mean of 1.5, -2.0, 1.978, and -3.5 is -0.5055.

A section earlier in this chapter describes the necessity of using the %EVAL and
%SYSEVALF functions when you need to temporarily convert macro variable values to
numbers to perform calculations was mentioned. In this example, if you wanted to
compute the mean using only macro language statements, you would need to use the
%SYSEVALF function. You could not use the %EVAL function because the values are
specified with decimal places. Also, %EVAL would return an integer result, which
would be inaccurate. The code that includes %SYSEVALF could be written as follows.

Program 6.8b
%let a=1.5;
%let b=-2.0;
%let c=1.978;
%let d=-3.5;
%let meanstat=%sysevalf((&a+&b+&c+&d)/4);
%put ****** The mean of &a, &b, &c, and &d is &meanstat..;

Chapter 6: Macro Language Functions 153

After submitting this code, the macro processor writes the same text statement to the SAS
log as the one generated by the code that uses %SYSFUNC and MEAN in Program 6.8a:

****** The mean of 1.5, -2.0, 1.978, and -3.5 is -0.5055.

Example 6.9: Using the %SYSFUNC Function to Apply Several
 SAS Language Functions That Obtain and Display
 Information about a Data Set
Program 6.9 uses the %SYSFUNC macro function and several SAS language file
functions to obtain the last date and time that a data set was updated and to insert that
descriptive information in the title of a report. It also uses %SYSFUNC to format the
date/time value.

The name of the data set is assigned to macro variable DSNAME. The data set specified
by the value of DSNAME is opened with the SAS language OPEN function. Then, the
SAS language ATTRN function obtains the last update information by specifying the
argument MODTE. The results of the ATTRN function are stored in the macro variable
LASTUPDATE. Finally, the SAS language CLOSE function closes the data set.

The value returned by ATTRN is the SAS internal date/time value and is formatted for
display in the title with the DATETIME format. The format is applied to the macro
variable value stored in LASTUPDATE with %SYSFUNC and the PUTN SAS language
function. The second argument to PUTN is the format name DATETIME.

Note that none of the arguments to the SAS file functions are enclosed in quotation
marks. This is because the macro facility is a text-handling language and it treats all
values as text. The SAS language functions are underlined in this example.

Program 6.9
%let dsname=books.ytdsales;
%let dsid=%sysfunc(open(&dsname));
%let lastupdate=%sysfunc(attrn(&dsid,modte));
%let rc=%sysfunc(close(&dsid));

proc report data=books.ytdsales nowd headline;
 title "Publisher List Report &sysdate9";
 title2 "Last Update of &dsname:
%sysfunc(putn(&lastupdate,datetime.))";

 column publisher saleprice;
 define publisher / group width=30;
 define saleprice / format=dollar11.2;
 rbreak after / dol dul summarize;
run;

154 SAS Macro Programming Made Easy, Second Edition

Output 6.1 presents the output from Program 6.9.

Output 6.1 Output from Program 6.9 that includes several applications of
 the %SYSFUNC macro function

 Publisher List Report 18JAN2008

 Last Update of books.ytdsales: 04JAN08:15:27:36

 Publisher Sale Price

 AMZ Publishers $22,485.31

 Bookstore Brand Titles $20,120.64

 Doe&Lee Ltd. $22,688.46

 Eversons Books $24,091.55

 IT Training Texts $22,039.65

 Mainst Media $20,764.50

 Nifty New Books $21,390.29

 Northern Associates Titles $21,213.95

 Popular Names Publishers $21,058.70

 Professional House Titles $23,555.11

 Technology Smith $21,766.46

 Wide-World Titles $22,503.55

 ===========

 $263,678.15

 ===========

SAS Supplied Autocall Macro Programs Used
Like Functions

Autocall macro programs are uncompiled source code and text stored as entries in SAS
libraries. SAS has written several of these useful macro programs and ships them with
SAS software. Not all SAS sites, however, install this autocall macro library, and some
autocall macro programs can be site-specific as well.

These macro programs can be used like macro functions in your macro programming.
Many of the functions perform actions comparable to their similarly named SAS
language counterpart. For example, one autocall macro program is %LOWCASE. This

Chapter 6: Macro Language Functions 155

autocall macro program converts alphabetic characters in its argument to lowercase.
Similarly, you could use %SYSFUNC and the LOWCASE SAS language function to do
the same action. Chapter 10 discusses how you can save your own macro programs in
your own autocall libraries.

Table 6.7 lists several of the autocall macro programs. Autocall macro programs
%CMPRES, %LEFT, and %LOWCASE each have a version that you should use if the
result could contain a special character or mnemonic operator. The names of those
autocall macro programs are: %QCMPRES, %QLEFT, and %QLOWCASE.

Table 6.7 Selected SAS supplied autocall macro programs

Function Action

%CMPRES(text | text expression) Remove multiple, leading, and
trailing blanks from the argument.
Use %QCMPRES if the result might
contain a special character or
mnemonic operator.

%DATATYP(text | text expression) Returns the data type (CHAR or
NUMERIC) of a value.

%LEFT(text | text expression) Aligns an argument to the left by
removing leading blanks. Use
%QLEFT if the result might contain
a special character or mnemonic
operator.

%LOWCASE(text | text expression) Changes a value from uppercase
characters to lowercase. Use
%QLOWCASE if the result might
contain a special character or
mnemonic operator.

%VERIFY(source | excerpt) Returns the position of the first
character unique to an expression.

156 SAS Macro Programming Made Easy, Second Edition

Example 6.10: Determining with %VERIFY and %UPCASE If a
 Value Is in a Defined Set of Characters
This example examines the value of a macro variable to see if its value is a valid
response to a survey question. Macro program CHECKSURVEY in Program 6.10a has
one parameter, RESPONSE. The value of RESPONSE is examined, and the result of the
examination is printed in the SAS log with the %PUT statement. A response to a survey
question in this example must be a digit from 1 to 5 or 9, or a letter from A to E or Z.

The example converts the survey response value to uppercase with the %UPCASE macro
function. It then examines the value with the %VERIFY autocall macro program. The
%VERIFY autocall macro program returns the position in a text value of the first
character that is not in the list supplied as the second argument. In this example, assume
that survey responses are single characters, and only single characters will be specified as
parameters to CHECKSURVEY. Therefore, the %VERIFY function in this example can
only return one of two values: zero (0) for a valid response and one (1) for an invalid
response. The returned value of 1 corresponds to the first and only character specified as
the parameter to CHECKSURVEY.

Since the value of macro variable RESPONSE is converted to uppercase, only the
uppercase letters of the alphabet are specified in the list of valid responses assigned to the
macro variable VALIDRESPONSES. Note that the string of valid values is not enclosed
in quotation marks. Since %VERIFY is a macro program, it treats all values as text and
therefore enclosing quotation marks are not specified as they would be when processing
text in SAS language statements.

Program 6.10a
%macro checksurvey(response);
 %let validresponses=123459ABCDEZ;
 %let result=%verify(%upcase(&response),&validresponses);
 %put ******* Response &response is valid/invalid (0=valid
1=invalid): &result;
%mend checksurvey;

%checksurvey(f)
%checksurvey(a)
%checksurvey(6)

After submitting the preceding three calls to macro program CHECKSURVEY, the
following is written to the SAS log:

175 %checksurvey(f)
******* Response f is valid/invalid (0=valid 1=invalid): 1

Chapter 6: Macro Language Functions 157

176 %checksurvey(a)
******* Response a is valid/invalid (0=valid 1=invalid): 0
177 %checksurvey(6)
******* Response 6 is valid/invalid (0=valid 1=invalid): 1

The same information can be obtained by using the %SYSFUNC macro function in
conjunction with the VERIFY and UPCASE SAS language functions. Program 6.10a is
revised in Program 6.10b to use %SYSFUNC, VERIFY, and UPCASE.

Note that two calls to %SYSFUNC are made, once for each of the two SAS language
functions. As mentioned at the beginning of this section, you cannot nest multiple calls to
SAS language functions within one call to %SYSFUNC, but you can nest multiple
%SYSFUNC calls.

This example nests only one %SYSFUNC call. When you need to have multiple
%SYSFUNC calls, it might be easier to step through the processing by specifying
multiple %LET statements rather than trying to nest several calls on one %LET
statement. Doing so can prevent frustrating debugging tasks as you figure out the proper
positioning of all the parentheses, commas, and arguments.

The SAS language functions are underlined in Program 6.10b.

Program 6.10b
%macro checksurvey(response);
 %let validresponses=123459ABCDEZ;
 %let result=
%sysfunc(verify(%sysfunc(upcase(&response)),&validresponses));
 %put ******* Response &response is valid/invalid (0=valid
1=invalid): &result;
%mend checksurvey;

%checksurvey(f)
%checksurvey(a)
%checksurvey(6)

After submitting the above three macro language statements, the following is written to
the SAS log:

193 %checksurvey(f)
******* Response f is valid/invalid (0=valid 1=invalid): 1
194 %checksurvey(a)
******* Response a is valid/invalid (0=valid 1=invalid): 0
195 %checksurvey(6)
******* Response 6 is valid/invalid (0=valid 1=invalid): 1

158 SAS Macro Programming Made Easy, Second Edition

C h a p t e r 7
Macro Expressions and Macro Programming
Statements

Introduction 160

Macro Language Statements 160

Constructing Macro Expressions 163

Understanding Arithmetic Expressions 164

Understanding Logical Expressions 165
Understanding the IN Operator As Used in Macro Language
Statements 166

Conditional Processing with the Macro Language 167

Iterative Processing with the Macro Language 177

Writing Iterative %DO Loops in the Macro Language 177

Conditional Iteration with %DO %UNTIL 180

Conditional Iteration with %DO %WHILE 182

Branching in Macro Processing 184

160 SAS Macro Programming Made Easy, Second Edition

Introduction

This chapter presents information about macro expressions and macro language
statements, and it shows you how to accomplish several programming techniques with
them. This chapter also shows you how to construct expressions and use macro language
statements to conditionally process SAS steps, branch to different sections of a macro
program, and perform iterative processing. The examples in this chapter use several of
the functions described in Chapter 6. Chapter 8 continues the discussion of macro
programming techniques with the topic of applying quoting functions to mask special
characters and mnemonic operators.

Macro Language Statements

Macro language statements communicate your instructions to the macro processor. With
macro language statements, you can write macro programs that conditionally or
repetitively execute sections of code. Many macro language statements have a SAS
language counterpart. The syntax and function of similarly named statements are usually
the same or very similar.

Remember, however, that macro language statements build SAS programs and are
processed before the SAS programs they build. Macro language statements are not part of
the DATA step programming language. They operate in a different context. They write
SAS programs.

Macro language statements can be grouped into two types:

statements that can be used either in open code or inside a macro program

statements that can be used only inside a macro program

Tables 7.1 and 7.2 list most of the macro language statements. Some are shown by
example in this chapter. Detailed reference information on these statements is in SAS
Macro Language: Reference.

Table 7.3 lists the macro language statements that can be used to display windows and
supply values to macro variables during macro execution, including prompting users for
values. Discussion of this material is beyond the scope of this book. For detailed
information on writing macro code that includes these statements, see SAS Macro
Language: Reference.

Chapter 7: Macro Expressions and Macro Programming Statements 161

As an aid in remembering the type of a macro language statement, observe that the
statements in Table 7.1 work on macro variables or act as definition type statements.
These statements can be used either in open code or inside a macro program.

On the other hand, most of the macro language statements in Table 7.2 are active
programming statements that control processing and work in conjunction with other
statements. These statements can be used only inside a macro program.

Table 7.1 Macro language statements that can be used either in open code
 or inside a macro program

Statement Action

%* comment; Add descriptive text to your macro code.

%COPY Copy specified items from a SAS library.

%GLOBAL Create macro variables that are stored in the global symbol table and
that will be available throughout the SAS session.

%LET Create a macro variable and/or assign it a value.

%MACRO Begin the definition of a macro program.

%PUT Write text or macro variable values to the SAS log.

%SYMDEL Delete the specified macro variable(s) from the global symbol table.

%SYSCALL Invoke a SAS or user-written call routine using macro variables as
the arguments and generating text as the result (see also the
%SYSFUNC macro function).

%SYSEXEC Execute operating system commands immediately and return the
result to automatic macro variable SYSRC.

%SYSLPUT Create a new macro variable or modify the value of an existing
macro variable on a remote host or server. Used with
SAS/CONNECT.

%SYSRPUT Assign the value of a macro variable on a remote host to a macro
variable on the local host. Used with SAS/CONNECT.

Table 7.2 lists the macro language statements that can be used only inside a macro
program.

162 SAS Macro Programming Made Easy, Second Edition

Table 7.2 Macro language statements that can be used only inside a macro
 program

Statement Action

%ABORT Stop the macro program that is executing along with the current DATA
step, SAS job, or SAS session.

%DO Signal the beginning of a %DO group; the statements that follow form
a block of code that is terminated with a %END statement.

%DO, iterative Repetitively execute a section of macro code by using an index
variable and the keywords %TO and %BY; the section of macro code
is terminated with a %END statement.

%DO %UNTIL Repetitively execute a section of macro code until the macro
expression that follows the %UNTIL is true; the section of macro code
is terminated with a %END statement.

%DO %WHILE Repetitively execute a section of macro code while the macro
expression that follows the %WHILE is true; the section of macro code
is terminated with a %END statement.

%END Terminate a %DO group.

%GOTO Branch macro processing to the specified macro label within the macro
program.

%IF-%THEN
%ELSE

Conditionally process the section of macro code that follows the
%THEN when the result of the macro expression that follows %IF is
true. When the macro expression that follows %IF is false, the section
of macro code that follows the %ELSE is executed.

%label: Identify a section of macro code; typically used as the destination of a
%GOTO statement.

%LOCAL Create macro variables that are available only to the macro program in
which the %LOCAL statement was issued.

%MEND End a macro program that was created with a %MACRO statement.

%RETURN Cause normal termination of the currently executing macro program.

Chapter 7: Macro Expressions and Macro Programming Statements 163

Table 7.3 lists the macro language statements that can be used to display windows and
supply values to macro variables during macro execution. These statements can be
included in open code and inside macro programs.

Table 7.3 Macro language statements that can be used to display windows
 and prompt users for input

Statement Action

%DISPLAY Display a macro window.

%INPUT Supply values to macro variables during macro execution.

%WINDOW Define a customized window.

Constructing Macro Expressions

Previous chapters have shown examples of text expressions. A text expression is any
combination of text, macro variables, macro functions, or macro program calls. This
section describes two more types of macro expressions: arithmetic and logical.

Arithmetic and logical macro expressions are comprised of operators and operands that
the macro processor evaluates to produce a result. Arithmetic expressions use arithmetic
operators such as plus signs and minus signs. Logical expressions use logical operators
such as greater than signs and equal signs.

Arithmetic and logical expressions in the macro language are constructed similarly to
expressions in the SAS programming language. Both macro expressions and SAS
language expressions use the same arithmetic and logical operators. The exceptions to
this are that the MIN and MAX operators are not available in the macro language. The
same precedence rules also apply. Parentheses act to group expressions and control the
order of evaluation of expressions.

The section on macro evaluation functions in Chapter 6 presents several examples of
arithmetic expressions when using %EVAL and %SYSEVALF. Subsequent sections in
this chapter show examples that require arithmetic and logical expressions.

Table 7.4 lists the operators in order of precedence of evaluation of arithmetic and logical
operators. The symbols for the NOT and NE operators depend on your computer system.
Do not place percent signs in front of the mnemonic operators.

164 SAS Macro Programming Made Easy, Second Edition

Table 7.4 Arithmetic and logical operators and their precedence in the
 macro language

Operator Mnemonic Action Precedence
Rating

** exponentiation 1

+

-

 positive prefix

negative prefix

2

2

^ NOT logical not 3

*

/

 multiplication

division

4

4

+

-

 addition

subtraction

5

5

<

<=

=

#

^=

>

>=

LT

LE

EQ

IN

NE

GT

GE

less than

less than or equal to

equal

equal to one of a list*

not equal

greater than

greater than or equal to

6

6

6

6

6

6

6
& AND logical and 7
| OR logical or 8

*Note that IN is available starting in SAS 9.2.

Understanding Arithmetic Expressions
Since the macro language is a text-based language, working with numbers is the
exception. Therefore, special considerations are needed when you write expressions that
use numbers where you want to perform calculations with them.

The macro evaluation functions described in Chapter 6, %EVAL and %SYSEVALF,
temporarily convert their arguments to numbers in order to resolve arithmetic
expressions.

Several macro language statements and functions require numeric or logical expressions.
These elements automatically invoke the %EVAL function to convert the expressions
from text.

Chapter 7: Macro Expressions and Macro Programming Statements 165

The macro functions that automatically invoke %EVAL around the expressions supplied
to them are

%SUBSTR and %QSUBSTR

%SCAN and %QSCAN

The macro language statements that automatically invoke %EVAL around the
expressions supplied to them are

%DO

%DO %UNTIL

%DO %WHILE

%IF

Therefore, when you use these functions and statements, explicitly coding the %EVAL
function around the macro arithmetic expression is redundant.

Refer to the section in Chapter 6 on macro evaluation functions for examples of
arithmetic macro expressions. Many examples in this chapter include arithmetic
expressions as well.

Understanding Logical Expressions
A logical expression in the macro language compares two macro expressions. These
macro expressions consist of text, macro variables, macro functions, arithmetic
expressions, and other logical expressions. If the comparison is true, the result is a value
of one (1). If the comparison is false, the result is zero (0). Expressions that resolve to
integers other than zero (0) are also considered true. Expressions that resolve to zero (0)
are false. The comparison operators in Table 7.4 construct logical expressions in the
macro language.

As the macro processor resolves a macro expression, it places a %EVAL around each of
the operands in the expression to temporarily convert the operands to integers. If an
operand cannot be an integer, the macro facility then treats all operands in the expression
as text. Comparisons are then based on the sort sequence of characters in the host
operating system.

When you want numbers with decimal points to be compared as numbers and not
compared as text, place the %SYSEVALF function around the logical expression. The
%SYSEVALF function with the BOOLEAN conversion type acts like a logical
expression because it yields a true-false result of one (1) or zero (0). Logical expressions
are used in conditional processing. Examples of logical expressions and conditional
processing are provided in the next section.

166 SAS Macro Programming Made Easy, Second Edition

Understanding the IN Operator As Used in Macro
Language Statements

As you write your macro programs, you will have situations where you want to execute a
section of code when a macro variable can have any one of the values in a set of values.
Testing for that involves writing the multiple conditions and connecting them with the
OR operator:

%if &month=JANUARY or &MONTH=APRIL or &MONTH=AUGUST or
&MONTH=DECEMBER %then %do;

… statements to execute when one of the conditions is true…
%end;

Beginning with SAS 9.2, you can simplify the %IF statement by using the IN operator
and following the IN operator with the list of acceptable values:

%if &month in JANUARY APRIL AUGUST DECEMBER %then %do;
… statements to execute when one of the conditions is true…
%end;

The way you specify your list of values depends on the value of the SAS option
MINDELIMITER. This can be set either with the OPTIONS statement or as an option in
the %MACRO statement when you define your macro program. A value specified for
MINDELIMITER on the %MACRO statement overrides the value of the
MINDELIMITER= SAS option for the duration of execution of the macro program. The
default value for MINDELIMITER is a blank, and this default value is used in the %IF
statement above.

An example of specifying a %MACRO statement with the MINDELIMITER= option
follows where the delimiter is a comma (,). The delimiter must be a single character
enclosed in single quotation marks.

%macro lists(author) / mindelimiter=',';

Also, the SAS system option MINOPERATOR | NOMINOPERATOR becomes available
with SAS 9.2. This option controls whether the word "IN" (case insensitive) or special
symbol # is recognized by the SAS Macro Facility as an infix operator when evaluating
logical or integer expressions.

Chapter 7: Macro Expressions and Macro Programming Statements 167

Conditional Processing with the Macro
Language

A basic feature of any programming language is conditional execution of code. SAS
macro language uses %IF-%THEN/%ELSE statements to control execution of sections of
code. The sections of code that can be selected include macro language statements or
text.

Remember that text in the macro facility can be SAS language statements like DATA
steps and PROC steps. Thus, within your macro programs, based on evaluation of
conditions you set, you can direct the macro processor to submit specific SAS statements
for execution. With this capability, one macro program can contain many SAS language
statements and steps and can be used repeatedly to manage various processing tasks.

The syntax of the %IF statement is

%IF expression %THEN action;
<%ELSE elseaction;>

Multiple %ELSE statements can be specified to test for multiple conditions. The
expression that you write is usually a logical expression. The macro processor invokes
the %EVAL function around the expression and resolves the expression to true or false.
When the evaluation of the expression is true, action is executed. When the evaluation of
the expression is false and a %ELSE statement is specified, elseaction is executed.

Example 7.1: Using Logical Expressions
This example illustrates evaluation of logical expressions. Macro program COMP2VARS
in Program 7.1 has two parameters. Four different types of logical expression evaluations
that compare the two parameters are made with each call to COMP2VARS. Program 7.1
calls macro program COMP2VARS three times.

Note that the sort sequence of your operating system determines the outcome. These
examples were run under Windows where in ASCII a lowercase letter comes before an
uppercase letter; in EBCDIC, uppercase letters sort before lowercase letters.

168 SAS Macro Programming Made Easy, Second Edition

Program 7.1
%macro comp2vars(value1,value2);
 %put COMPARISON 1:;
 %if &value1 ne &value2 %then
 %put &value1 is not equal to &value2..;
 %else %put &value1 equals &value2..;

 %put COMPARISON 2:;
 %if &value1 > &value2 %then
 %put &value1 is greater than &value2..;
 %else %if &value1 < &value2 %then
 %put &value1 is less than &value2..;
 %else %put &value1 equals &value2..;

 %put COMPARISON 3:;
 %let result=%eval(&value1 > &value2);
 %if &result=1 %then
 %put EVAL result of &value1 > &value2 is TRUE.;
 %else %put EVAL result of &value1 > &value2 is FALSE.;

 %put COMPARISON 4:;
 %let result=%sysevalf(&value1 > &value2);
 %if &result=1 %then
 %put SYSEVALF result of &value1 > &value2 is TRUE.;
 %else %put SYSEVALF result of &value1 > &value2 is FALSE.;

%mend comp2vars;

*----First call to COMP2VARS;
%comp2vars(3,4)

*----Second call to COMP2VARS;
%comp2vars(3.0,3)

*----Third call to COMP2VARS;
%comp2vars(X,x)

The SAS log for % COMP2VARS (3,4) follows.

63 %comp2vars(3,4)
COMPARISON 1:
3 is not equal to 4
COMPARISON 2:
3 is less than 4.

Chapter 7: Macro Expressions and Macro Programming Statements 169

COMPARISON 3:
EVAL result of 3 > 4 is FALSE.
COMPARISON 4:
SYSEVALF result of 3 > 4 is FALSE.

The SAS log for % COMP2VARS (3.0,3) follows.

65 %comp2vars(3.0,3)
COMPARISON 1:
3.0 is not equal to 3
COMPARISON 2:
3.0 is greater than 3.
COMPARISON 3:
EVAL result of 3.0 > 3 is TRUE.
COMPARISON 4:
SYSEVALF result of 3.0 > 3 is FALSE.

The SAS log for % COMP2VARS (X,x) follows.

67 %comp2vars(X,x)
COMPARISON 1:
X is not equal to x.
COMPARISON 2:
X is less than x.
COMPARISON 3:
EVAL result of X > x is FALSE.
COMPARISON 4:
SYSEVALF result of X > x is FALSE.

Example 7.2: Using Macro Language to Select SAS Steps for
 Processing

Program 7.2 shows how you can instruct the macro processor to select certain SAS steps.
Macro program REPORTS contains code for two types of reports: a summary report and
a detail report. The first parameter, REPTYPE, determines which of the two types of
reports should be produced.

The expected values for REPTYPE are either SUMMARY or DETAIL. The second
parameter, REPMONTH, is to be specified as the numeric value of the month for which
to produce the report.

When REPTYPE is specified as SUMMARY, the first PROC TABULATE step
executes. If REPMONTH is equal to the last month of a quarter (March, June,
September, or December), then the second PROC TABULATE step executes.

When REPTYPE is specified as DETAIL, the PROC TABULATE steps are skipped and
only the PROC PRINT step in the %ELSE section executes.

170 SAS Macro Programming Made Easy, Second Edition

This example calls macro program REPORTS twice. The first call to REPORTS requests
a summary report for September. Both PROC TABULATE steps execute since
September is the last month in the third quarter.

The second call to REPORTS requests a detail report for October. Macro program
REPORTS executes a PROC PRINT step that lists the detailed information for October.

Program 7.2
%macro reports(reptype,repmonth);
 %let lblmonth=
 %sysfunc(mdy(&repmonth,1,%substr(&sysdate,6,2)),monname.);

 %*----Begin summary report section;
 %if %upcase(&reptype)=SUMMARY %then %do;
 %*----Do summary report for report month;
 proc tabulate data=books.ytdsales;
 title "Sales for &lblmonth";
 where month(datesold)=&repmonth;
 class section;
 var listprice saleprice;
 tables section,
 (listprice saleprice)*(n*f=6. sum*f=dollar12.2);
 run;
 %*----If end of quarter, also do summary report for qtr;
 %if &repmonth=3 or &repmonth=6 or &repmonth=9
 or &repmonth=12 %then %do;
 %let qtrstart=%eval(&repmonth-2);

 %let strtmo=
 %sysfunc(mdy(&qtrstart,1,%substr(&sysdate,6,2)),monname.);

 proc tabulate data=books.ytdsales;
 title "Sales for Quarter from &strtmo to &lblmonth";
 where &qtrstart le month(datesold) le &repmonth;
 class section;
 var listprice saleprice;
 tables section,
 (listprice saleprice)*(n*f=6. sum*f=dollar12.2);
 run;
 %end;
 %end;
 %*----End summary report section;
 %*----Begin detail report section;
 %else %if %upcase(&reptype)=DETAIL %then %do;
 %*----Do detail report for month;
 proc print data=books.ytdsales;
 where month(datesold)=&repmonth;

Chapter 7: Macro Expressions and Macro Programming Statements 171

 var booktitle cost listprice saleprice;
 sum cost listprice saleprice;
 run;
 %end;
 %*----End detail report section;
%mend reports;

*----First call to REPORTS does a Summary report for September;
%reports(Summary,9)

*----Second call to REPORTS does a Detail report for October;
%reports(Detail,10)

The first call to REPORTS specifies summary reports for September. Macro program
REPORTS submits the following code, which is shown after resolution of the macro
variables.

proc tabulate data=books.ytdsales;
 title "Sales for September";
 where month(datesold)=9;
 class section;
 var listprice saleprice;
 tables section,(listpric saleprice)*(n*f=6.
sum*f=dollar12.2);
run;
proc tabulate data=books.ytdsales;
 title "Sales for Quarter from July to September";
 where 7 le month(datesold) le 9;
 class section;
 var listprice salepric;
 tables section,(listprice saleprice)*(n*f=6.
sum*f=dollar12.2);
run;

The second call to REPORTS specifies a detail report for October. Macro program
REPORTS submits the following code, which is shown after resolution of the macro
variables.

proc print data=books.ytdsales;
 where month(datesold)=10;
 var title cost listprice saleprice;
 sum cost listprice saleprice;
run;

172 SAS Macro Programming Made Easy, Second Edition

Example 7.3: Using %IF-%THEN/%ELSE Statements to Modify
 and Select Statements within a Step

Example 7.3 shows how %IF-%THEN/%ELSE statements can select the statements
within a step to submit for processing. The previous example (Example 7.2) selected
different steps, but did not select different statements within the step.

Macro program PUBLISHERREPORT in Program 7.3 constructs a PROC REPORT step
that summarizes information about publishers. It has one parameter REPTYPE that can
take one of three values: BASIC, DETAIL, and QUARTER. These values each specify a
different report by requesting display and computation of different columns in the PROC
REPORT step.

All three reports list the values of data set variables PUBLISHER and SALEPRICE.
Following is a description of the actions that the macro program takes for each of the
three possible parameter values.

REPTYPE=BASIC: Compute and display PROFIT for each value of PUBLISHER and
overall. Do not display COST, but use it in the COMPUTE block to compute the value of
PROFIT. Specify option NOPRINT on the DEFINE statement for COST.

REPTYPE=DETAIL: Compute and display PROFIT for each value of PUBLISHER
and overall. Compute the N statistic and label this column “Number of Titles Sold.”
Display COST and use it in the COMPUTE block to calculate the value of PROFIT.

REPTYPE=QUARTER: Compute and display PROFIT for each value of PUBLISHER
and overall. Display COST and use it in the COMPUTE block to compute the value of
PROFIT. Define DATESOLD as an ACROSS variable and format the values of
DATESOLD as calendar quarters. Define SALEPRICE2 as an alias for SALEPRICE and
nest SALEPRICE2 underneath DATESOLD. Underneath each of the four values
displayed for DATESOLD, display the sum of SALEPRICE2. These columns are the
totals of SALEPRICE for each quarter.

A FOOTNOTE statement displays information about the processing. It prints the name of
the macro program using automatic macro variable &SYSMACRONAME, and it lists the
value of parameter REPTYPE.

Program 7.3 calls macro program PUBLISHERREPORT three times, once for each of
the three valid values of REPTYPE. The first %LET statement in the macro program
converts the value of REPTYPE to uppercase, making coding of the %IF statement easier
so that only one possible value has to be examined.

The macro language statements that select SAS language code are in bold.

Chapter 7: Macro Expressions and Macro Programming Statements 173

Program 7.3
%macro publisherreport(reptype);
 %let reptype=%upcase(&reptype);

 title "Publisher Report";
 footnote
 "Macro Program: &sysmacroname Report Type: &reptype";

 proc report data=books.ytdsales nowd headline;
 column publisher saleprice cost profit
 %if &reptype=DETAIL %then %do;
 n
 %end;
 %else %if &reptype=QUARTER %then %do;
 datesold,(saleprice=saleprice2)
 %end;
 ;

 define publisher / group width=25;
 define saleprice / analysis sum format=dollar11.2;

 define cost / analysis sum format=dollar11.2
 %if &reptype=BASIC %then %do;
 noprint
 %end;
 ;
 define profit / computed format=dollar11.2 'Profit';

 %if &reptype=DETAIL %then %do;
 define n / 'Number of Titles Sold' width=6;
 %end;
 %else %if &reptype=QUARTER %then %do;
 define saleprice2 / 'Quarter Sale Price Total';
 define datesold / across ' ' format=qtr.;
 %end;

 compute profit;
 profit=saleprice.sum-cost.sum;
 endcomp;

 rbreak after / summarize dol;
 compute after;
 publisher='Total for All Publishers';
 endcomp;

 run;
%mend publisherreport;

174 SAS Macro Programming Made Easy, Second Edition

%* First call to PUBLISHERREPORT, do BASIC report;
%publisherreport(basic)

%* Second call to PUBLISHERREPORT, do DETAIL report;
%publisherreport(detail)

%* Third call to PUBLISHERREPORT, do QUARTER report;
%publisherreport(quarter)

First call to PUBLISHERREPORT: The PROC REPORT step that
PUBLISHERREPORT submits when REPTYPE=BASIC follows. The features unique to
the version specified by REPTYPE=BASIC are in bold.

title "Publisher Report";
footnote "Macro Program: PUBLISHERREPORT Report Type: BASIC";
proc report data=books.ytdsales nowd headline;
 column publisher saleprice cost profit;

 define publisher / group width=25;
 define saleprice / analysis sum format=dollar11.2;
 define cost / analysis sum format=dollar11.2 noprint;
 define profit / computed format=dollar11.2 'Profit';

 compute profit;
 profit=saleprice.sum-cost.sum;
 endcomp;

 rbreak after / summarize dol;
 compute after;
 publisher='Total for All Publishers';
 endcomp;
run;

Second call to PUBLISHERREPORT: The PROC REPORT step that
PUBLISHERREPORT submits when REPTYPE=DETAIL follows. The features unique
to the version specified by REPTYPE=DETAIL are in bold.

title "Publisher Report";
footnote
 "Macro Program: PUBLISHERREPORT Report Type: DETAIL";
proc report data=books.ytdsales nowd headline;
 column publisher saleprice cost profit n;

 define publisher / group width=25;
 define saleprice / analysis sum format=dollar11.2;
 define cost / analysis sum format=dollar11.2;

Chapter 7: Macro Expressions and Macro Programming Statements 175

 define profit / computed format=dollar11.2 'Profit';
 define n / 'Number of Titles Sold' width=6;

 compute profit;
 profit=saleprice.sum-cost.sum;
 endcomp;

 rbreak after / summarize dol;
 compute after;
 publisher='Total for All Publishers';
 endcomp;
run;

Third call to PUBLISHERREPORT: The PROC REPORT step that
PUBLISHERREPORT submits when REPTYPE=QUARTER follows. The features
unique to the version specified by REPTYPE=QUARTER are in bold.

title "Publisher Report";
footnote "Macro Program: PUBLISHERREPORT Report Type: QUARTER";
proc report data=books.ytdsales nowd headline;
 column publisher saleprice cost profit
 datesold,(saleprice=saleprice2);

 define publisher / group width=25;
 define saleprice / analysis sum format=dollar11.2;
 define cost / analysis sum format=dollar11.2 ;
 define profit / computed format=dollar11.2 'Profit';
 define saleprice2 / 'Quarter Sale Price Total';
 define datesold / across ' ' format=qtr.;

 compute profit;
 profit=saleprice.sum-cost.sum;
 endcomp;

 rbreak after / summarize dol;
 compute after;
 publisher='Total for All Publishers';
 endcomp;
run;

176 SAS Macro Programming Made Easy, Second Edition

Example 7.4: Writing %IF-%THEN/%ELSE Statements That Use
 the IN Operator

Macro program VENDORTITLES in Program 7.4 defines a TITLE2 statement based on
the value of the parameter PUBLISHER. Assume multiple publishers use the same
vendor. Rather than writing multiple logical expressions on the %IF statement and
connecting them with the OR operator, this example uses the IN operator, which is
available starting in SAS 9.2. The multiple publishers mapping to one vendor are listed
after the IN operator, and names of the publishers are separated by exclamation points.

The exclamation point delimiter is specified on the %MACRO statement for
VENDORTITLES with the MINDELIMITER= option. This specification overrides the
current setting of the MINDELIMITER= SAS option during execution of the macro
program.

If the MINDELIMITER= option was omitted in this example, the macro program would
not execute correctly unless the exclamation point delimiter had been previously
specified with the SAS OPTIONS statement.

Note that the MINOPERATOR SAS option must be in effect as well when Program 7.4
is submitted. This option available with SAS 9.2 controls whether the word "IN" (case
insensitive) or special symbol # is recognized by the SAS Macro Facility as an infix
operator when evaluating logical or integer expressions.

Program 7.4
%macro vendortitles(publisher) / mindelimiter='!';
 title "Vendor-Publisher Report";
 %if &publisher in
 AMZ Publishers!Eversons Books!IT Training Texts

%then %do;
 title2 "Vendor for &publisher is Baker";
 %end;
 %else %if &publisher in
 Northern Associates Titles!Professional House Titles
 %then %do;
 title2 "Vendor for &publisher is Mediasuppliers";
 %end;
 %else %do;
 title2 "Vendor for &publisher is Basic Distributor";
 %end;
%mend vendortitles;

%vendortitles(AMZ Publishers)

%vendortitles(Mainst Media)

Chapter 7: Macro Expressions and Macro Programming Statements 177

The first call to VENDORTITLES defines the following TITLE2 statement:

title2 "Vendor for AMZ Publishers is Baker";

The second call to VENDORTITLES defines the following TITLE2 statement:

title2 "Vendor for Mainst Media Publishers is Basic
 Distributor";

Iterative Processing with the Macro Language

The iterative processing statements in the macro language instruct the macro processor to
repetitively process sections of code. The macro language includes %DO loops, %DO
%UNTIL loops, and %DO %WHILE loops. With iterative processing, you can instruct
the macro processor to write many SAS language statements, DATA steps, and PROC
steps. The three types of iterative processing statements are described below. These
statements can be used only from within a macro program.

Writing Iterative %DO Loops in the Macro Language
The iterative %DO macro language statement instructs the macro processor to execute a
section of code repeatedly. The number of times the section executes is based on the
value of an index variable. The index variable is a macro variable. You define the start
value and stop value of this index variable. You can also control the increment of the
steps between the start value and the stop value; by default, the increment value is one.

The syntax of an iterative %DO loop is as follows.

%DO macro-variable=start %TO stop <%BY increment>;
 macro language statements and/or text
%END;

Do not put an ampersand in front of the index variable name in the %DO statement even
though the index variable is a macro variable. Any reference to it later within the loop,
however, requires an ampersand in front of the reference.

The start and stop values are integers or macro expressions that can be resolved to
integers. If you want to increment the index macro variable by something other than one,
follow the stop value with the %BY keyword and the increment value. The increment
value is either an integer or a macro expression that can be resolved to an integer.

178 SAS Macro Programming Made Easy, Second Edition

Example 7.5: Building PROC Steps with Iterative %DO Loops
Program 7.5 uses the iterative %DO to generate several PROC MEANS and PROC
GCHART steps. Macro program MULTREP generates statistics and a bar chart for each
year between the bounds on the %DO statement. In this example, PROC MEANS and
PROC GCHART are each executed three times: once for 2005, once for 2006, and once
for 2007.

Program 7.5
%macro multrep(startyear,stopyear);
 %do yrvalue=&startyear %to &stopyear;
 title "Sales Report for &yrvalue";
 proc means data=sales.year&yrvalue;
 class section;
 var cost listprice saleprice;
 run;

 proc gchart data=sales.year&yrvalue;
 hbar section / sumvar=saleprice type=sum;
 run;
 quit;
 %end;
%mend multrep;

*----Produce 3 sets of reports: one for 2005, one for 2006,
*----and one for 2007;
%multrep(2005,2007)

After the macro processor processes the macro language statements and resolves the
macro variables references, the following SAS program is submitted.

title "Sales Report for 2005";
proc means data=sales.year2005;
 class section;
 var cost listprice saleprice;
run;

proc gchart data=sales.year2005;
 hbar section / sumvar=saleprice type=sum;
run;

title "Sales Report for 2006";
proc means data=sales.year2006;
 class section;
 var cost listprice saleprice;
run;

Chapter 7: Macro Expressions and Macro Programming Statements 179

proc gchart data=sales.year2006;
 hbar section / sumvar=saleprice type=sum;
run;

title "Sales Report for 2007";
proc means data=sales.year2007;
 class section;
 var cost listprice saleprice;
run;

proc gchart data=sales.year2007;
 hbar section / sumvar=saleprice type=sum;
run;

Example 7.6: Building SAS Statements within a Step with
 Iterative %DO Loops
Iterative %DO statements can build SAS statements within a SAS DATA step or SAS
PROC step. Macro program SUMYEARS in Program 7.6 concatenates several data sets
in a DATA step. The first %DO loop constructs the names of the data sets that the DATA
step concatenates.

Note that a semicolon is not placed after the reference to the data set within the first
%DO loop. If a semicolon was placed after the data set reference, the semicolon would
terminate the SET statement on the first iteration. On each subsequent iteration, a
semicolon after the data set reference would make the data set reference look like a SAS
statement, which results in errors.

The second %DO loop creates the macro variable YEARSTRING that contains the
values of all the processing years. Each iteration of the second %DO loop concatenates
the current iteration’s value for YEARVALUE to the current value of YEARSTRING.

Program 7.6
%macro sumyears(startyear,stopyear);
 data manyyears;
 set
 %do yearvalue=&startyear %to &stopyear;
 sales.year&yearvalue
 %end;
 ;
 run;

 %let yearstring=;
 %do yearvalue=&startyear %to &stopyear;
 %let yearstring=&yearstring &yearvalue;
 %end;

180 SAS Macro Programming Made Easy, Second Edition

 proc gchart data=manyyears;
 title "Charts Analyze Data for: &yearstring";
 hbar section / sumvar=saleprice type=sum;
 run;
 quit;
%mend sumyears;

*----Concatenate three data sets: one from 2005, one from;
*----2006, and one from 2007;
%sumyears(2005,2007)

The macro processor resolves the call to YEARLYCHARTS as follows.

data manyyears;
 set sales.year2005 sales.year2006 sales.year2007;
run;

proc gchart data=manyyears;
 title "Charts Analyze Data for: 2005 2006 2007";
 hbar section / sumvar=saleprice type=sum;
run;
quit;

Conditional Iteration with %DO %UNTIL
With %DO %UNTIL, a section of code is executed until the condition on the %DO
%UNTIL statement is true. The syntax of %DO %UNTIL is

%DO %UNTIL (expression);
 macro language statements and/or text
%END;

The expression on the %DO %UNTIL statement is a macro expression that resolves to a
true-false value. The macro processor evaluates the expression at the bottom of each
iteration. Therefore, a %DO %UNTIL loop always executes at least once.

Example 7.7: Building SAS Steps with %DO %UNTIL Loops
This example demonstrates the use of %DO %UNTIL. Macro program MOSALES
defined in Program 7.7 computes statistics for each month in the list of values passed to
the program. When a list of month values is not specified, MOSALES computes statistics
for all observations in the analysis data set.

Program 7.7 defines macro program MOSALES with the PARMBUFF option. This
%MACRO statement option is described at the end of Chapter 4. The PARMBUFF
option allows you to specify a varying number of parameter values. The macro processor
assigns the list of values to the automatic macro variable SYSPBUFF. Macro program

Chapter 7: Macro Expressions and Macro Programming Statements 181

MOSALES parses SYSPBUFF and submits a PROC MEANS step for each month value
specified in the list of parameter values.

The %SCAN function selects each month value from SYSPBUFF. The macro variable
LISTINDEX determines which item in the list of months the %SCAN function should
select, and the program increments it by one at the bottom of the %DO %UNTIL loop.
Observations are selected for processing with a WHERE statement.

When a list of parameter values is not specified, as in the second call to MOSALES, the
macro program does an overall PROC MEANS step and does not apply a WHERE
statement to the step. This overall PROC MEANS is accomplished by taking advantage
of the features of %DO %UNTIL: a %DO %UNTIL loop executes at least once. When
parameter values are not specified, the following occurs:

The %SCAN function is not able to extract any text from SYSPBUFF so the
result of the evaluation of the %DO %UNTIL condition is true.

The value of REPMONTH is assigned a null value.

The code within the %DO %UNTIL loop executes once.

The first TITLE statement and the WHERE statement do not execute because
REPMONTH is null.

Program 7.7 calls MOSALES twice. The first call to MOSALES submits three PROC
MEANS steps: one for March, one for May, and one for October. The second call to
MOSALES submits one PROC MEANS step, a summarization of all the observations in
the data set.

Program 7.7
%macro mosales / parmbuff;
 %let listindex=1;
 %do %until (%scan(&syspbuff,&listindex) eq);
 %let repmonth=%scan(&syspbuff,&listindex);
 proc means data=books.ytdsales n sum;
 %if &repmonth ne %then %do;
 title "Sales during month &repmonth";
 where month(datesold)=&repmonth;
 %end;
 %else %do;
 title "Overall Sales";
 %end;
 class section;
 var saleprice;
 run;
 %let listindex=%eval(&listindex+1);
 %end;
%mend;

182 SAS Macro Programming Made Easy, Second Edition

*----First call to MOSALES: produce stats for March, May, and
*----October;
%mosales(3 5 10)

*----Second call to MOSALES: produce overall stats;
%mosales()

The first call to MOSALES requests statistics for March, May, and October. The macro
processor generates the following SAS program.

proc means data=books.ytdsales n sum;
 title "Sales during month 3";
 where month(datesold)=3;
 class section;
 var saleprice;
run;
proc means data=books.ytdsales n sum;
 title "Sales during month 5";
 where month(datesold)=5;
 class section;
 var saleprice;
run;
proc means data=books.ytdsales n sum;
 title "Sales during month 10";
 where month(datesold)=10;
 class section;
 var saleprice;
run;

The second call to MOSALES does not specify any months. Therefore, the %DO
%UNTIL loop executes once, generates overall statistics, and selects the second TITLE
statement. The SAS program that the macro processor creates from this call follows:

proc means data=books.ytdsales n sum;
 title "Overall Sales";
 class section;
 var saleprice;
run;

Conditional Iteration with %DO %WHILE
With %DO %WHILE, a section of code is executed while the condition on the %DO
%WHILE statement is true. The syntax of %DO %WHILE is:

%DO %WHILE (expression);
 macro language statements and/or text
%END;

Chapter 7: Macro Expressions and Macro Programming Statements 183

The expression on the %DO %WHILE statement is a macro expression that resolves to a
true-false value. The macro processor evaluates the expression at the top of the loop.
Therefore, it is possible that a %DO %WHILE loop does not execute. This occurs when
the condition starts out as false.

Example 7.8: Building SAS Steps with %DO %WHILE Loops
This example shows an application of %DO %WHILE. Macro program STAFFSALES
defined in Program 7.8 computes sales statistics for specific sales associates during a
specific month. It has two parameters: SALESREPS and REPMONTH.

The parameter SALESREPS is defined to be a list of the initials of the sales associates for
whom to compute sales statistics. The second parameter, REPMONTH, is the month for
which to compute the statistics. The program is written to expect only one value for
REPMONTH, and it is assumed that it will be a number between one and twelve.

This example’s call to STAFFSALES requests statistics for three sales associates for
May. The %DO %WHILE loop executes three times, once for each associate. The
%SCAN function selects each sales associate’s initials from SALESREPS. The macro
variable PERSONNUMBER determines which set of initials the %SCAN function
should select, and the program increments PERSONNUMBER by one at the bottom of
the %DO %WHILE loop.

The %DO %WHILE loop does not execute a fourth time. On the fourth iteration, the
%SCAN function does not find initials for a fourth sales associate. Therefore, the macro
expression on the %DO %WHILE statement resolves to false, and this causes the loop to
stop executing. The one call to STAFFSALES in Program 7.8 generates sales reports for
three sales associates during May.

Program 7.8
%macro staffsales(salesreps,repmonth);
 %let personnumber=1;
 %do %while (%scan(&salesreps,&personnumber) ne);
 %let salesinits=%scan(&salesreps,&personnumber);
 proc means data=books.ytdsales n sum;
 title "Sales for &salesinits during month &repmonth";
 where saleinit="&salesinits" and
 month(datesold)=&repmonth;
 class section;
 var saleprice;
 run;
 %let personnumber=%eval(&personnumber+1);
 %end;
%mend staffsales;

%staffsales(MJM BLT JMB,5)

184 SAS Macro Programming Made Easy, Second Edition

After resolution by the macro processor, the SAS code submitted for compilation and
execution is as follows. Three PROC MEANS steps are created: one for each of the three
sales associates.

proc means data=books.ytdsales n sum;
 title "Sales for MJM during month 5";
 where saleinit="MJM" and month(datesold)=5;
 class section;
 var saleprice;
run;

proc means data=books.ytdsales n sum;
 title "Sales for BLT during month 5";
 where saleinit="BLT" and month(datesold)=5;
 class section;
 var saleprice;
run;

proc means data=books.ytdsales n sum;
 title "Sales for JMB during month 5";
 where saleinit="JMB" and month(datesold)=5;
 class section;
 var saleprice;
run;

Since the %DO %WHILE loop executes only while the condition on the statement is
true, consider what happens if no sales initials are specified on the call to
%STAFFSALES as follows:

%staffsales(,5)

The %DO %WHILE loop in this situation does not execute because the condition on the
%DO %WHILE statement is never true. No processing is done and no messages are
written to the SAS log.

Branching in Macro Processing

When you want to branch to a different section of a macro program, label the text and use
a %GOTO statement. The %GOTO statement directs processing to that labeled text.
Labeled text and the %GOTO statement are allowed only in macro programs. Macro
language statements, macro expressions, and constant text can be labeled. Macro text is
labeled as follows:

Chapter 7: Macro Expressions and Macro Programming Statements 185

%label: macro-text

Place the label before the macro text that you want to identify. The label is any valid SAS
name. Precede the label with a percent sign (%) and follow the label name with a colon
(:). The colon tells SAS to treat %label as a statement label and not the invocation of a
macro program named %label.

The syntax of the %GOTO statement is

%GOTO label;

On the %GOTO statement, you can specify the label as text or as a macro expression that
resolves to the label name. Do not put a percent sign in front of the label on the %GOTO
statement. If you do specify a percent sign, the macro processor interprets that as a
request to execute a macro program that has the name of your label.

Example 7.9: Using %GOTO to Branch in a Macro Program
The following example shows how labels and %GOTO statements can be used. Macro
program DETAIL defined in Program 7.9 starts out by determining if the data set named
by its first parameter, DSNAME, exists. If it does, it executes a PROC PRINT step listing
the variables specified by the second parameter, VARLIST. When the step ends, the
program branches to the label %FINISHED.

If the data set specified by DSNAME does not exist, the program skips over the PROC
PRINT step and branches to the label %NODATASET. The program then writes a
message to the SAS log, determines the libref of the data set specified by DSNAME, and
executes a PROC DATASETS step that lists the data sets in the library specified by the
data set’s libref. The output from PROC DATASETS might help in figuring out the
problem in specifying a value for DSNAME.

This example calls DETAIL three times. The code that executes is described below.

Program 7.9
%macro detail(dsname,varlist);
 %* Does DSNAME exist?;
 %let foundit=%sysfunc(exist(&dsname));
 %if &foundit le 0 %then %goto nodataset;

 title "PROC PRINT of &dsname";
 proc print data=&dsname;
 var &varlist;
 run;
 %goto finished;

186 SAS Macro Programming Made Easy, Second Edition

 %nodataset:
 %put ERROR: **** Data set &dsname not found. ****;
 %put;
 %* Find the data set libref. If it is not;
 %* specified, assume a temporary data set;
 %* and assign WORK to DSLIBREF;
 %let period=%index(&dsname,.);
 %if &period gt 0 %then
 %let dslibref=%scan(&dsname,1,.);
 %else %let dslibref=work;
 proc datasets library=&dslibref details;
 run;
 quit;

 %finished:
%mend detail;

*----First call to DETAIL, data set exists;
%detail(books.ytdsales,datesold booktitle saleprice)

*----Second call to DETAIL, data set does not exist;
%detail(books.ytdsaless,datesold booktitle saleprice)

%*----Third call to DETAIL, look for data set in WORK library;
%detail(ytdsales,datesold booktitle saleprice)

First call to DETAIL: The first call to the macro program DETAIL executes a PROC
PRINT of the data set since the data set exists. The PROC PRINT step lists the variables
specified in VARLIST. After completion of the step, the program skips over the section
labeled as %NODATASET and branches to the section labeled %FINISHED. The macro
processor generates the following code:

title "PROC PRINT of books.ytdsales";
proc print data=books.ytdsales;
 var datesold booktitle saleprice;
run;

Second call to DETAIL: The data set name is misspelled in the second call to DETAIL.
Assume a data set with this misspelled name does not exist in the library specified by
BOOKS. The program skips the PROC PRINT section and executes the section labeled
with %NODATASET. The macro processor writes an error message in red to the SAS
log that data set BOOKS.YTDSALESS does not exist. The program determines that a
permanent data set was specified for DSNAME so it executes a PROC DATASETS step
on the library specified in DSNAME. The following PROC DATASETS code is
submitted.

Chapter 7: Macro Expressions and Macro Programming Statements 187

proc datasets library=books details;
run;
quit;

Third call to DETAIL: The value of DSNAME in the third call to DETAIL is
YTDSALES. A libref for this data set is not specified, which implies that the data set to
be processed is in the WORK directory. If YTDSALES exists in the WORK directory,
then the PROC PRINT step executes. If YTDSALES does not exist in the WORK
directory, the program skips over the PROC PRINT step and branches to the section
labeled as %NODATASET. The statements that immediately follow the %NODATASET
label examine the value of DSNAME and determine if it contains a libref. If it does not,
the program assigns a libref of WORK to the value of DSLIBREF. It then executes the
PROC DATASETS step and lists the SAS data files in the WORK directory.

For the third call, if YTDSALES exists in the WORK directory, the macro program
submits the following code:

title "PROC PRINT of ytdsales";
proc print data=ytdsales;
 var datesold booktitle saleprice;
run;

If YTDSALES does not exist in the WORK directory, the macro program submits the
following code:

proc datasets library=work details;
run;
quit;

188 SAS Macro Programming Made Easy, Second Edition

C h a p t e r 8
Masking Special Characters and Mnemonic
Operators

Introduction 190

Why Are Quoting Functions Called Quoting Functions? 191

Illustrating the Need for Macro Quoting Functions 191

Describing the Commonly Used Macro Quoting Functions 192

Understanding How Macro Quoting Functions Work 194

Applying Macro Quoting Functions 195
Specifying Macro Program Parameters That Contain Special Characters or
Mnemonic Operators 203

Unmasking Text and the %UNQUOTE Function 213
Using Quoting Versions of Macro Character Functions and Autocall Macro
Programs 214

190 SAS Macro Programming Made Easy, Second Edition

Introduction

The SAS macro language is a text-handling language that relies on specific syntax
structures to perform its tasks in constructing SAS code for you. It relies on triggers such
as ampersands and percent signs to understand when you’re requesting it to resolve a
macro variable and invoke a macro program. It relies on symbols such as parentheses and
plus signs, and on mnemonic operators like GT and EQ, to construct expressions and
determine how to evaluate them.

Occasionally, however, your applications might require that the macro processor interpret
special characters and operators simply as text and not as triggers or symbols. This
chapter addresses how to write your macro programming instructions so that the macro
processor interprets special characters and mnemonic operators as text.

The macro language contains several functions that you can apply to mask these special
characters and mnemonic operators from interpretation by the macro processor. This
chapter describes how to apply five commonly used quoting functions:

%STR and %NRSTR

%BQUOTE and %NRBQUOTE

%SUPERQ

This chapter also describes a sixth macro quoting function, %UNQUOTE, which
removes the mask from a value so that the special characters and mnemonic operators in
the value are interpreted as directions.

Additionally, several functions and autocall macro programs listed in Chapter 6 have a
quoting version, and a few examples of them are presented at the end of this chapter. This
set of quoting functions and autocall macro programs perform the same actions as their
nonquoting counterparts, and they also mask special characters and mnemonic operators.
These functions include:

%QSCAN

%QSUBSTR

%QSYSFUNC

%QUPCASE

Chapter 8: Masking Special Characters and Mnemonic Operators 191

The autocall macro programs include:

%QCMPRES

%QLEFT

%QLOWCASE

%QTRIM

Why Are Quoting Functions Called Quoting
Functions?

Macro functions that mask special characters and mnemonic operators are called quoting
functions because they behave like single quotation marks in the SAS language. Just as
characters that are enclosed in single quotation marks in a SAS language statement are
ignored, so too are the special characters and mnemonic operators that are in the
arguments to, or results of, a macro quoting function. The difference is that the macro
quoting functions offer much more flexibility in what characters to ignore and when to
ignore them.

Illustrating the Need for Macro Quoting
Functions

Consider how SAS processes the following code where the intention is to assign the three
statements in a PROC PRINT step as the value of a macro variable.

%let wontwork=proc print data=books.ytdsales;var saleprice;run;

After you submit the %LET statement, the macro processor assigns the underlined text to
the macro variable WONTWORK. The macro processor treats the first semicolon it
encounters as termination of the macro variable assignment. This semicolon terminating
the PROC PRINT statement is not stored in the macro variable WONTWORK. After the
macro processor assigns the underlined text to the macro variable WONTWORK,
processing returns to the input stack and the word scanner. The word scanner tokenizes
the next two statements and sends the tokens to the compiler. SAS cannot compile the
VAR statement since it is not submitted as part of a PROC step. An error condition is
generated as shown in the following SAS log.

192 SAS Macro Programming Made Easy, Second Edition

1122 %let wontwork=proc print data=books.ytdsales;var
saleprice;

 180
1122! run;
ERROR 180-322: Statement is not valid or it is used out of
 proper order.

This %LET statement demonstrates that SAS macro programmers need a way to mask
semicolons, other special characters, and mnemonic operators from the macro processor’s
interpretation of them. Sometimes, the task requires you specify that certain special
characters and mnemonic operators be treated simply as text.

The next %LET statement solves the problems with the above %LET statement. It
applies the macro quoting function %STR to the entire PROC step. This function blocks
the macro processor from interpreting the semicolons within the step as %LET statement
terminators when it compiles the %LET statement. Now all three PROC step statements,
including the semicolons, are assigned to WILLWORK.

%let willwork=%str(proc print data=books.ytdsales;var
saleprice;run;);

If you submit a %PUT statement to display the value of WILLWORK, the macro
processor writes the following to the SAS log:

1124 %put &willwork;
proc print data=books.ytdsales;var saleprice;run;

This %PUT statement does not cause the PROC PRINT step to execute. Instead, it just
displays the value of the macro variable WILLWORK. If you submit the following, the
PROC PRINT step does execute:

&willwork

Describing the Commonly Used Macro Quoting
Functions

This section presents a brief description of the five most commonly used macro quoting
functions: %STR, %NRSTR, %BQUOTE, %NRBQUOTE, and %SUPERQ.

Two lesser-used functions, %QUOTE and %NRQUOTE, are mentioned at the end of this
section. Use the %STR and %NRSTR functions to mask items during compilation. Use

Chapter 8: Masking Special Characters and Mnemonic Operators 193

the %BQUOTE and %NRBQUOTE functions to mask text or resolved values of text
expressions during execution.

The two “NR” functions, %NRSTR and %NRBQUOTE, do the same as their non-“NR”
counterparts, %STR and %BQUOTE, and these functions also mask the ampersand (&)
and percent sign (%) macro triggers.

The %SUPERQ function is also an execution function, but operates differently from
%BQUOTE and %NRBQUOTE. Use it to mask the value of a macro variable so that its
value is treated as text and any further macro references in the value are not resolved.

The special characters and mnemonic operators that macro quoting functions mask
include:

blank ; ¬ ^ ~
, ' ") (
+ - * / <
> = |

AND OR NOT EQ NE
LE LT GE GT IN
% & #

%STR and %NRSTR
These two functions mask special characters at the time of compilation. These functions
cause their arguments to be tokenized as text. For example, use these functions when you
want to assign special characters to a macro variable as was done in the preceding
example, or when a macro parameter contains special characters. %STR masks all special
characters and mnemonic operators except for ampersands and percent signs. %NRSTR
masks the same items as %STR and also masks ampersands and percent signs.When you
have an unmatched single quotation mark, an unmatched double quotation mark, or an
unmatched parenthesis, precede the unmatched character with a percent sign.

%BQUOTE and %NRBQUOTE
These two functions mask special characters and mnemonic operators contained in the
results from resolving macro expressions. The macro processor resolves macro
expressions during execution. Use these functions when the operands in your expressions
might contain special characters or mnemonic operators at resolution and you want those
resolved results to be treated as text. In contrast to %STR and %NRSTR, which mask
constant text, the functions %BQUOTE and %NRBQUOTE mask resolved values, and
resolution occurs at execution. %BQUOTE masks all special characters and mnemonic
operators except for ampersands and percent signs. %NRBQUOTE masks the same items
as %BQUOTE and additionally masks ampersands and percent signs. When you have an

194 SAS Macro Programming Made Easy, Second Edition

unmatched single quotation mark, an unmatched double quotation mark, or an unmatched
parenthesis, do not precede the unmatched character with a percent sign.

%SUPERQ
This function masks the value of a macro variable so that the value is treated solely as
text. Percent signs and ampersands in the value of a macro variable are not resolved. The
argument to %SUPERQ is the name of a macro variable without the ampersand in front
of the macro variable name. The %SUPERQ function operates similarly to the
%NRBQUOTE function, but is more complete in its masking. With %NRBQUOTE, the
macro processor masks the argument after it resolves macro variable references and
values. With %SUPERQ, the macro processor masks the argument before it resolves any
macro variable references or values.

%QUOTE and %NRQUOTE
Two other macro quoting functions, %QUOTE and %NRQUOTE, operate during
execution and are equivalent to %BQUOTE and %NRBQUOTE with one exception. The
exception is in how the two sets of functions process unmatched parentheses. Both
%BQUOTE and %NRBQUOTE do not require that quotation marks or parentheses
without a match be marked with a preceding percent sign, while %QUOTE and
%NRQUOTE do require a preceding percent sign.

Understanding How Macro Quoting Functions
Work

When the macro processor masks a value, it prefixes and suffixes the value with a
hexadecimal character called a delta character. The macro processor selects the delta
character at the time it processes the function instruction. To use macro quoting functions
productively, you do not need to know what this character is. It might be helpful though
to realize that the macro processor places this delta character at the beginning and end of
your text string. The macro processor selects the character based on the type of quoting
you specify, and it uses this character to preserve leading and trailing blanks in your
value. These characters are not included as part of the expression when the macro
processor evaluates comparisons. Think of them in these situations as acting like single
quotation marks in a SAS language statement.

Chapter 8: Masking Special Characters and Mnemonic Operators 195

When you have the SYMBOLGEN option in effect, the macro processor writes a
message in the SAS log informing you that it has unquoted the value before displaying it.
This message relates to the handling of the delta characters. The following statements
cause this SYMBOLGEN message to be displayed, and this message is in bold in the
SAS log:

options symbolgen;
%let monthstring=%str(Jan,Feb,Mar);
%let month=%substr(&monthstring,5,3);
%put **** Characters 5-7 in &monthstring = &month;

The SAS log for the preceding code follows.

8 options symbolgen;
9 %let monthstring=%str(Jan,Feb,Mar);
10 %let month=%substr(&monthstring,5,3);
SYMBOLGEN: Macro variable MONTHSTRING resolves to Jan,Feb,Mar
SYMBOLGEN: Some characters in the above value which were
 subject to macro quoting have been unquoted for
 printing.
11 %put **** Characters 5-7 in &monthstring = &month;
SYMBOLGEN: Macro variable MONTHSTRING resolves to Jan,Feb,Mar
SYMBOLGEN: Some characters in the above value which were
 subject to macro quoting have been unquoted for
 printing.
SYMBOLGEN: Macro variable MONTH resolves to Feb
**** Characters 5-7 in Jan,Feb,Mar = Feb

Applying Macro Quoting Functions

This section applies macro quoting functions to commonly encountered situations that
require masking of special characters or mnemonic operators. The open code examples
show results with and without a macro quoting function, and they use %PUT statements
to display the results in the SAS log.

Example 8.1: Using %STR to Prevent Interpretation of the
 Semicolon As a SAS Statement Terminator

This example demonstrates masking semicolons at compilation. The goal is to assign all
the code for a PROC SQL step to one macro variable, MYSQLSTEP. The underlined
portion in each %LET statement shows what does get assigned to the macro variable
MYSQLSTEP.

196 SAS Macro Programming Made Easy, Second Edition

The first %LET and %PUT statements show the results when you do not apply a quoting
function to the value assigned to MYSQLSTEP. The second %LET and %PUT
statements show the results of applying the %STR function to the value that is assigned
to MYSQLSTEP.

Program 8.1
%let mysqlstep=proc sql;title "SAS Files in Library
BOOKS";select memname, memtype from dictionary.members where
libname='BOOKS';quit;
%put WITHOUT Quoting Functions MYSQLSTEP=&mysqlstep;

%let mysqlstep=%str(proc sql;title "SAS Files in Library
BOOKS";select memname, memtype from dictionary.members where
libname='BOOKS';quit;);
%put WITH Quoting Functions MYSQLSTEP=&mysqlstep;

The SAS log for the preceding statements follows.

1173 %let mysqlstep=proc sql;title "SAS Files in Library
BOOKS"
1173! ;select memname, memtype from dictionary.members where
1173! libname='BOOKS';quit;
1173 %let mysqlstep=proc sql;title "SAS Files in Library
BOOKS"
1173! ;select memname, memtype from dictionary.members where

 180
1173! libname='BOOKS';quit;
ERROR 180-322: Statement is not valid or it is used out of
 proper order.

1174 %put WITHOUT Quoting Functions MYSQLSTEP=&mysqlstep;
WITHOUT Quoting Functions MYSQLSTEP=proc sql
1175
1176 %let mysqlstep=%str(proc sql;title "SAS Files in Library
1176! BOOKS";select memname, memtype from dictionary.members
1176! where libname='BOOKS';quit;);
1177 %put WITH Quoting Functions MYSQLSTEP=&mysqlstep;
WITH Quoting Functions MYSQLSTEP=proc sql;title "SAS Files in
Library BOOKS";select memname, memtype from dictionary.members
where libname='BOOKS';quit;

Chapter 8: Masking Special Characters and Mnemonic Operators 197

Example 8.2: Using %STR to Prevent Interpretation of the Comma
 As an Argument Delimiter

This example demonstrates masking commas from interpretation as delimiters between
arguments to the macro function %SUBSTR. The goal is to extract text from a string that
contains commas. Commas also serve as delimiters between the arguments to %SUBSTR.

The first argument to %SUBSTR is the string from which the text should be extracted. In
Program 8.2, this string contains the first three letters of the names of three months
separated by commas. The underlined portion in each %LET statement shows what the
macro processor decides to interpret as the first argument to %SUBSTR.

Demonstrated with the first %LET and %PUT statements, when the commas in the string
Jan,Feb,Mar, are not masked, the macro processor sees five arguments to %SUBSTR.
The syntax of %SUBSTR requires two or three arguments, and the presence of five
arguments generates errors. Additionally, %SUBSTR tries to convert the text Feb and
the text Mar to numbers to determine from which position it should begin to extract text
and how many characters it should extract.

The second %LET and %PUT statements show the results of applying the %STR
function to the first argument that is passed to %SUBSTR.

Program 8.2
%let month=%substr(Jan,Feb,Mar,5,3);
%put WITHOUT Quoting Functions MONTH=&month;
%let month=%substr(%str(Jan,Feb,Mar),5,3);
%put WITH Quoting Functions MONTH=&month;

The SAS log after submitting the four statements follows.

1178 %let month=%substr(Jan,Feb,Mar,5,3);
ERROR: Macro function %SUBSTR has too many arguments. The
 excess arguments will be ignored.
ERROR: A character operand was found in the %EVAL function or
 %IF condition where a numeric operand is required. The
 condition was: Feb
ERROR: Argument 2 to macro function %SUBSTR is not a number.
ERROR: A character operand was found in the %EVAL function or
 %IF condition where a numeric operand is required. The
 condition was: Mar
ERROR: Argument 3 to macro function %SUBSTR is not a number.
1179 %put WITHOUT Quoting Functions MONTH=&month;
WITHOUT Quoting Functions MONTH=
1180 %let month=%substr(%str(Jan,Feb,Mar),5,3);
1181 %put WITH Quoting Functions MONTH=&month;
WITH Quoting Functions MONTH=Feb

198 SAS Macro Programming Made Easy, Second Edition

Example 8.3: Using %STR to Preserve Leading and Trailing
 Blanks

This example shows how to preserve leading and trailing blanks in text assigned to a
macro variable at compilation. The two %LET statements assign text to a macro variable.
By default, the macro processor removes leading and trailing blanks from a text string
when assigning it to a macro variable. Applying the %STR function to the text string in
the second %LET statement prevents this action.

Both %PUT statements print asterisks adjacent to the start and end of the resolved value
assigned to TITLETEXT to make it easier to see that the %STR function preserves
leading and trailing blanks.

Program 8.3
%let titletext= B o o k S a l e s ;
%put WITHOUT Quoting TITLETEXT=*&titletext*;

%let titletext=%str(B o o k S a l e s_);
%put WITH Quoting TITLETEXT=*&titletext*;

The SAS log for the previous statements looks like this:

15 %let titletext= B o o k S a l e s ;
16 %put WITHOUT Quoting TITLETEXT=*&titletext*;
WITHOUT Quoting TITLETEXT=*B o o k S a l e s*
17
18 %let titletext=%str(B o o k S a l e s);
19 %put WITH Quoting TITLETEXT=*&titletext*;
WITH Quoting TITLETEXT=* B o o k S a l e s *

Example 8.4: Using %NRSTR to Mask Macro Triggers
This example shows how to prevent the two macro triggers, ampersands and percent
signs, from interpretation at compilation by masking the triggers with the %NRSTR
function. The goal is to assign text that contains an ampersand and a percent sign to the
macro variable, REPORTTITLE.

The previous examples in this section used the %STR function, which does not mask
macro triggers. The %NRSTR function masks all that %STR does, and it also masks
macro triggers.

Without masking the ampersand, the macro processor interprets the text following the
ampersand as a macro variable that should be resolved. The text following the ampersand
in this example is Feb. Assume when the statements execute in this example, the macro
variable named Feb does not exist in the global symbol table.

Chapter 8: Masking Special Characters and Mnemonic Operators 199

Without masking the percent sign, the macro processor interprets the text following the
percent sign as a macro program call that it should execute. The text following the
percent sign in this example is Sales. Assume when the statements execute in this
example, a macro program named SALES has not already been compiled.

Execution of the first %LET and first %PUT statements generate warnings, not errors.
The macro processor does assign a value to REPORTTITLE. Every time it attempts to
resolve REPORTTITLE, it also tries to resolve FEB as a macro variable and SALES as a
macro program invocation.

Program 8.4
%let reporttitle=Jan&Feb %Sales Report;
%put WITHOUT Quoting Functions REPORTTITLE=&reporttitle;
%let reporttitle=%nrstr(Jan&Feb %Sales Report);
%put WITH Quoting Functions REPORTTITLE=&reporttitle;

The SAS log for the four statements in Program 8.4 follows:

1188 %let reporttitle=Jan&Feb %Sales Report;
WARNING: Apparent symbolic reference FEB not resolved.
WARNING: Apparent invocation of macro SALES not resolved.
1189 %put WITHOUT Quoting Functions REPORTTITLE=&reporttitle;
WARNING: Apparent symbolic reference FEB not resolved.
WARNING: Apparent invocation of macro SALES not resolved.
WITHOUT Quoting Functions REPORTTITLE=Jan&Feb %Sales Report
1190 %let reporttitle=%nrstr(Jan&Feb %Sales Report);
1191 %put WITH Quoting Functions REPORTTITLE=&reporttitle;
WITH Quoting Functions REPORTTITLE=Jan&Feb %Sales Report

Example 8.5: Using %STR and %BQUOTE to Mask Unbalanced
 Quotation Marks and Preceding Percent Signs

This example shows how to mask an unbalanced quotation mark. The goal is first to
assign a string of three names to the macro variable NAMES and then to extract the third
name from the string and assign this value to another macro variable, NAME3. Each
name contains a single quotation mark.

A macro quoting function is needed in the first %LET statement to mask the quotation
marks. If you use %STR, then you also need to precede each of the three quotation marks
with a percent sign.

If you submit the first four statements in Program 8.5a without applying %STR and you
do not include the preceding percent signs in the first %LET statement, the next three
statements do not execute because of the unbalanced quotation marks. Because of this
cascade of errors, the SAS log for the first four statements is not shown.

200 SAS Macro Programming Made Easy, Second Edition

Note that the example selects the third name from NAMES with the %QSCAN macro
function instead of the %SCAN function. The %QSCAN function quotes the result of the
%SCAN function. The result contains an unmatched single quotation mark. If you used
%SCAN, this unmatched single quotation mark generates errors in the statements that
follow. Therefore, using %QSCAN masks the single quotation mark in NAME3, which
prevents these errors.

Program 8.5a
%let names=O'DONOVAN,O'HARA,O'MALLEY;
%let name3=%qscan(&names,3);
%put WITHOUT STR and Percent Signs NAMES=&names;
%put WITHOUT STR Quoting Function NAME3=&name3;
%let names=%str(O%'DONOVAN,O%'HARA,O%'MALLEY);
%let name3=%qscan(&names,3);
%put WITH STR and Percent Signs NAMES=&names;
%put WITH STR Quoting Function NAME3=&name3;

Because of the errors generated with the first group of statements, the SAS log for only
the second group is shown:

28 %let names=%str(O%'DONOVAN,O%'HARA,O%'MALLEY);
29 %let name3=%qscan(&names,3);
30 %put WITH STR and Percent Signs NAMES=&names;
WITH STR and Percent Signs NAMES=O'DONOVAN,O'HARA,O'MALLEY
31 %put WITH STR Quoting Function NAME3=&name3;
WITH STR Quoting Function NAME3=O'MALLEY

The value being assigned to NAMES could instead be masked with %BQUOTE. When
you use %BQUOTE, as in Program 8.5b, you would not need to precede the unmatched
quotation marks with percent signs. The first %LET statement below is modified from
that in Program 8.5a to use %BQUOTE.

Program 8.5b
%let names=%bquote(O'DONOVAN,O'HARA,O'MALLEY);
%let name3=%qscan(&names,3);
%put WITH BQUOTE Quoting Function NAMES=&names;
%put WITH BQUOTE Quoting Function NAME3=&name3;

The results of submitting these four statements follow.

32 %let names=%bquote(O'DONOVAN,O'HARA,O'MALLEY);
33 %let name3=%qscan(&names,3);
34 %put WITH BQUOTE Quoting Function NAMES=&names;
WITH BQUOTE Quoting Function NAMES=O'DONOVAN,O'HARA,O'MALLEY
35 %put WITH BQUOTE Quoting Function NAME3=&name3;
WITH BQUOTE Quoting Function NAME3=O'MALLEY

Chapter 8: Masking Special Characters and Mnemonic Operators 201

Example 8.6: Masking Macro Triggers and Unbalanced Quotation
 Marks with %NRSTR and Preceding Percent Signs

This example modifies the code in Example 8.5 by replacing the comma delimiter in the
string of names with an ampersand delimiter. Since the ampersand is a macro trigger,
%STR does not mask this character. It is necessary to use %NRSTR instead to mask the
two ampersands. This prevents attempted resolution of a macro variable named O. Since
the string of names contains unmatched single quotation marks, percent signs are added
preceding each quotation mark.

Program 8.6
%let names=%nrstr(O%'DONOVAN&O%'HARA&O%'MALLEY);
%let name3=%qscan(&names,3);
%put WITH NRSTR Quoting Function NAMES=&names;
%put WITH NRSTR Quoting Function NAME 3 is: &name3;

The SAS log from the preceding code follows.

36 %let names=%nrstr(O%'DONOVAN&O%'HARA&O%'MALLEY);
37 %let name3=%qscan(&names,3);
38 %put WITH NRSTR Quoting Function NAMES=&names;
WITH NRSTR Quoting Function NAMES=O'DONOVAN&O'HARA&O'MALLEY
39 %put WITH NRSTR Quoting Function NAME 3 is: &name3;
WITH NRSTR Quoting Function NAME 3 is: O'MALLEY

Example 8.7: Using %BQUOTE to Prevent Interpretation of
 Mnemonic Operators

The %SYSEVALF function in Program 8.7 does a Boolean evaluation of a logical
expression. It demonstrates why it might be necessary to mask elements of an expression
from the macro processor at the time of execution.

Program 8.7 starts by assigning the state abbreviation for Oregon, OR, to the macro
variable STATE. Next, it tests whether the value of STATE equals OR. The result of the
test is returned as a Boolean value: 0 means false and 1 means true.

You must tell the macro processor when you want a mnemonic operator treated as text. In
Program 8.7, you would use a quoting function to mask OR so that it is treated as text and
not as a mnemonic operator.

The third %LET statement masks the value of STATE with the %BQUOTE function.
The %STR function masks the text string to which the value of STATE is compared. The
macro processor is able to evaluate the condition and, in this situation, assigns a value of
1 to the macro variable VALUE because the condition it tested is true.

202 SAS Macro Programming Made Easy, Second Edition

Program 8.7
%let state=OR;
%let value=%sysevalf(&state eq OR, boolean);
%put WITHOUT Quoting Functions VALUE=&value;
%let value=%sysevalf(%bquote(&state) eq %str(OR), boolean);
%put WITH Quoting Functions VALUE=&value;

The SAS log for the previous statements looks like this:

1200 %let state=OR;
1201 %let value=%sysevalf(&state eq OR, boolean);
ERROR: A character operand was found in the %EVAL function or
 %IF condition where a numeric operand is required. The
 condition was: OR eq OR
1202 %put WITHOUT Quoting Functions VALUE=&value;
WITHOUT Quoting Functions VALUE=
1203 %let value=%sysevalf(%bquote(&state) eq %str(OR),
1203! boolean);
1204 %put WITH Quoting Functions VALUE=&value;
WITH Quoting Functions VALUE=1

Example 8.8: Using %SUPERQ to Prevent Resolution of Special
 Characters in a Macro Variable Value

The %SUPERQ macro function in this example masks from interpretation text that looks
like a macro variable reference. Program 8.8 starts with a PROC MEANS step that
analyzes variable SALEPRICE for the publisher Doe&Lee Ltd. The publisher name is
written such that the ampersand is adjacent to “Lee.” The program includes the publisher
name in a text string that is assigned to a macro variable. When the macro variable is
referenced, the usage of %SUPERQ prevents “&Lee” in the text string from being
interpreted as a macro variable reference.

The PROC MEANS step computes the total of SALEPRICE for this publisher and saves
the sum in the output data set SALESDL. A DATA step follows that creates the macro
variable TOTSALES_DL with CALL SYMPUTX. The text assigned to TOTSALES_DL
is inserted in the FOOTNOTE statement. The %SUPERQ function is applied to
TOTSALES_DL in the FOOTNOTE statement, and this prevents the macro processor
from attempting to resolve the “&Lee” as a macro variable reference. CALL SYMPUTX
is a SAS language function that assigns values to macro variables. Its features are
described in Chapter 9.

Chapter 8: Masking Special Characters and Mnemonic Operators 203

Program 8.8
proc means data=books.ytdsales
 (where=(publisher='Doe&Lee Ltd.')) noprint;
 var saleprice;
 output out=salesdl sum=;
run;

data _null_;
 set salesdl;
 call symputx('totsales_dl',
 cat('The total sales for Doe&Lee Ltd is ',
 put(saleprice,dollar10.2),'.'));
run;
footnote "%superq(totsales_dl)";

Program 8.8 executes without any warnings or errors. The footnote becomes:

The total sales for Doe&Lee Ltd is $22,688.46.

Without the %SUPERQ function, the macro processor writes a WARNING to the SAS
log. The FOOTNOTE statement without the %SUPERQ function is:

footnote "&totsales_dl";

Since macro variable LEE does not exist, the WARNING states that the macro processor
was unable to resolve the reference to macro variable LEE.

WARNING: Apparent symbolic reference LEE not resolved.

Specifying Macro Program Parameters That
Contain Special Characters or Mnemonic
Operators

The preceding discussion and examples describe the use of five quoting functions:
%STR, %NRSTR, %BQUOTE, %NRBQUOTE, and %SUPERQ. This section also
applies these functions and does so in the context of passing parameters to macro
programs where the parameter values could contain special characters or mnemonic
operators.

When writing your macro programs and defining parameters for these programs, you
need to consider the range of values your parameters could take. Sometimes the

204 SAS Macro Programming Made Easy, Second Edition

parameters passed to your macro program can contain special characters and mnemonic
operators that need to be masked to prevent the macro processor from interpreting them.

For example, consider what happens if the value of your parameter contains a comma.
The macro processor interprets commas in a macro program call to be separator
characters between parameters. When a parameter value contains a special character such
as a comma, you must mask that special character so that the macro processor ignores it.
Examples below demonstrate this application.

As another example, consider what happens if the value of a parameter contains a
mnemonic operator and the parameter is part of a macro expression inside the macro
program. As shown in the preceding examples, these elements of a macro expression
might need to be masked to prevent the macro processor from interpreting them as
operands of the macro expression. The following examples demonstrate this application.

Example 8.9: Masking Special Characters in Parameter Values
When your parameter values can contain special characters, you need to mask them so
that the macro processor does not interpret them as anything but text. To do this, you
would typically place either the %STR or %NRSTR function around the text that needs
to be masked. If the value contains any special character other than an ampersand or
percent sign adjacent to text, you can use %STR. If the value can contain an ampersand
or percent sign adjacent to text, use %NRSTR to prevent the macro processor from
interpreting either of those characters as macro triggers. When you mask a parameter
value, it stays masked within the macro program, unless you unmask it with
%UNQUOTE.

Macro program MOSECTDETAIL in Program 8.9 generates a PROC PRINT step that
lists books sold during specific months from a specific section. It has two parameters.
The first is the list of months with months specified numerically. The second is one
specific section. The list of months will be inserted as the object of the IN operator on the
WHERE statement. The program expects the list of months to be separated by commas.

Macro program MOSECTDETAIL is called twice. The first call does not surround the
list of months with the %STR function while the second call does. The first call does not
execute. The second call executes a PROC PRINT step that lists the books sold for March
and June in the Internet section. The underlined part of each call to MOSECTDETAIL
shows the value that the macro processor interprets as the first parameter, MONTHLIST.

Chapter 8: Masking Special Characters and Mnemonic Operators 205

Program 8.9
%macro mosectdetail(monthlist,section);
 proc print data=books.ytdsales;
 title "List of titles sold for months &monthlist";
 where month(datesold) in (&monthlist)
 and section="§ion";
 var booktitle saleprice;
 run;
%mend mosectdetail;

%mosectdetail(3,6,Internet)

%mosectdetail(%str(3,6),Internet)

After submitting the first call to MOSECTDETAIL, the macro processor writes the
following to the SAS log and does not execute the PROC PRINT step. It sees three
positional parameters in the call to MOSECTDETAIL. The comma that separates 3 and 6
is interpreted as the separator between two parameters.

ERROR: More positional parameters found than defined.

The second call to MOSECTDETAIL masks the comma between 3 and 6 from
interpretation as the separator between parameter values. After resolution by the macro
processor, the following PROC PRINT step is executed by the second call to
MOSECTDETAIL.

proc print data=books.ytdsales;
 title "List of titles sold for months 3,6";
 where month(datesold) in (3,6) and section="Internet";
 var booktitle saleprice;
run;

Note that if you wanted to run this report for only one month you would not need to mask
that value. For example, to request a report for only December for the Certification and
Training section, specify the call to MOSECTDETAIL as follows.

%mosectdetail(12,Certification and Training)

206 SAS Macro Programming Made Easy, Second Edition

Example 8.10: Masking Equal Signs in Parameter Values to
 Prevent Misinterpretation of Positional Parameters

 as Keyword Parameters
This example defines a macro program called PUBLISHERSALES that constructs a
PROC REPORT step and has three positional parameters. The first parameter,
DESTINATION, specifies the ODS destination of the report. The second and third
parameters, STYLEHEADER and STYLEREPORT, specify style attributes for two
report locations: the header and the body of the report.

ODS style attributes for these PROC REPORT locations are written in the format:

{style-element-name=style-attribute-specification(s)}

The macro program expects the parameters to be in this format as well since it inserts
these specifications as is in the PROC REPORT statement STYLE(HEADER) option and
the STYLE(REPORT) option.

Values for the second and third parameters passed to PUBLISHERSALES must be
masked to prevent interpretation of the equal sign as a signal to the macro processor to
process a keyword parameter. This example uses the %STR quoting function to mask the
values of the second and third parameters.

The call to PUBLISHER in Program 8.10 sends the report to the HTML destination and
specifies that the program write the headers in italics, insert row rules in the report, and
not insert spaces between the cells of the report.

Program 8.10
%macro publishersales(destination,styleheader,stylereport);
 ods listing close;
 ods &destination;

 title "Sales by Publisher";
 proc report data=books.ytdsales
 style(header)={&styleheader}
 style(report)={&stylereport}
 nowd;
 column publisher saleprice n;
 define publisher / group;
 define saleprice / format=dollar10.2;
 run;

 ods &destination close;
 ods listing;

Chapter 8: Masking Special Characters and Mnemonic Operators 207

%mend publishersales;

%publishersales(html,
 %str(font_style=italic),
 %str(rules=rows cellspacing=0))

After resolution by the macro processor, SAS submits the following code:

ods listing close;
ods html;

title "Sales by Publisher";
proc report data=books.ytdsales
 style(header)={font_style=italic}
 style(report)={rules=rows cellspacing=0}
 nowd;
 column publisher saleprice n;
 define publisher / group;
 define saleprice / format=dollar10.2;
run;

ods html close;
ods listing;

The following call to PUBLISHERSALES does not apply the %STR function to the
second and third parameters.

%publisher(html,font_style=italic,rules=rows cellspacing=0)

In this call, the macro processor sees three parameters being passed to
PUBLISHERSALES. The first is a positional parameter whose value is html. The
second is a keyword parameter, FONT_STYLE, with a value of italic. The third is a
keyword parameter, RULES with a value of rows cellspacing=0.

The PUBLISHER macro program in Program 8.10 defined three positional parameters
and did not define any keyword parameters. Submitting the preceding call to
PUBLISHERSALES causes the macro processor to write the following error messages to
the SAS log. No ODS statements are executed, and no report is produced.

ERROR: The keyword parameter FONT_STYLE was not defined with
 the macro.
ERROR: The keyword parameter RULES was not defined with the
 macro.

208 SAS Macro Programming Made Easy, Second Edition

Example 8.11: Masking Special Characters and Mnemonic
 Operators in Parameter Values

This example presents several variations in masking special characters and mnemonic
operators in parameters passed to a macro program. It shows ways of masking special
characters in the macro program call and masking mnemonic operators within the macro
program that might be part of a macro expression.

The purpose of the macro program MYPAGES is to specify text and attributes for a
TITLE and FOOTNOTE statement. The macro program has six keyword parameters,
three for the title and three for the footnote.

The three parameters for the TITLE statement specify the title text, the justification or
position (left, center, or right) of the title, and the color of the title. The parameters for the
FOOTNOTE statement are similar: one parameter specifies the footnote text, one
specifies the justification, and the third specifies the color of the footnote.

The justification and color parameters for both the TITLE and FOOTNOTE statements
have initial values. For the title, the default value for justification is center, and the
default color is black. For the footnote, the default value for justification is right, and the
default color is black.

The macro program checks to see if a value is specified for TITLETEXT, the text for the
title. If not, titles are cleared by submitting a TITLE1 statement with no text. Similarly,
the program checks the contents of FOOTNOTETEXT, the text for the footnote. When
no value is specified for FOOTNOTETEXT, footnotes are cleared by submitting a
FOOTNOTE1 statement with no text.

Problems might arise with this macro program if the values you specify for TITLETEXT
or FOOTNOTETEXT contain special characters or mnemonic operators. A macro
program call when one of these values contains special characters might not execute or it
might execute incorrectly if you do not mask the special characters in the macro program
call. When one of these values contains mnemonic operators, the %IF statement can fail
unless you mask the parameter value at execution time within the macro program.

Program 8.11 calls MYPAGES four times, each time demonstrating different applications
of macro quoting functions. An explanation of each of the four calls follows the code.

Chapter 8: Masking Special Characters and Mnemonic Operators 209

Program 8.11
%macro mypages(titletext=,jtitle=center,ctitle=black,
 footnotetext=,jfootnote=right,cfootnote=black);

 %if %superq(titletext)= %then %do;
 title1;
 %end;
 %else %do;
 title justify=&jtitle color=&ctitle
 "&titletext";
 %end;

 %if %superq(footnotetext)= %then %do;
 footnote1;
 %end;
 %else %do;
 footnote justify=&jfootnote color=&cfootnote
 "&footnotetext";
 %end;
%mend mypages;

options macrogen;

*----First call of MYPAGES;
%mypages(titletext=Sales Report,ctitle=blue,
 footnotetext=Last Review Date: Feb 1%str(,) 2008)

*----Second call of MYPAGES;
%mypages(titletext=2007+ Sales,
 footnotetext=Prepared with SAS &sysver)

*----Third call of MYPAGES;
%mypages(titletext=Sales Report,
 footnotetext=Last Reviewed by %str(O%'Malley))

*----Fourth call of MYPAGES;
%mypages(titletext=%nrstr(Audited&Approved),
 footnotetext=

%nrstr(%Increase in Sales for Year was 8%%),
 jfootnote=center)

First call to MYPAGES. The first call to MYPAGES specifies text for the title, the
color of the title, and text for the footnote. No special characters or mnemonic operators
are present in the text for the title so the value is not masked. The text for the footnote
does contain a special character, a comma. To prevent the macro processor from
interpreting the comma as anything but text, the comma must be masked. The macro

210 SAS Macro Programming Made Easy, Second Edition

quoting function %STR successfully masks the comma. The first call to MYPAGES
submits the following two SAS statements.

title justify=center color=blue "Sales Report";
footnote justify=right color=black
 "Last Review Date: Feb 1, 2008";

Without the %STR mask around the comma, the macro processor interprets the first call
to MYPAGES to have a positional parameter following the comma whose value is 2008.
SAS requires that positional parameters precede keyword parameters. The macro
processor stops executing the macro program when it detects this problem. It writes the
following message to the SAS log.

ERROR: All positional parameters must precede keyword
 parameters.

Note that the call to MYPAGES masks only the comma in the value for
FOOTNOTETEXT. The same footnote is produced if you mask the entire value of
FOOTNOTETEXT:

%mypages(titletext=Sales Report,ctitle=blue,
 footnotetext=%str(Last Review Date: Feb 1, 2008)

Select the text to mask that is easiest for you to specify. The best way to do this might be
to mask the entire value. It might be easier to “count” parentheses if you mask the entire
value rather than masking each of the individual special characters within the text value.

Second call to MYPAGES. The second call to MYPAGES specifies text for the title and
text for the footnote. The text for the title contains an operator, the plus sign (+). The text
for the footnote contains a reference to the automatic variable, SYSVER, whose value is
equal to the currently executing version of SAS. The second call to MYPAGES submits
the following two SAS statements.

title justify=center color=black "2007+ Sales";
footnote justify=right color=black "Prepared with SAS 9.1";

While it is not necessary to mask the plus sign in the macro program call, it is necessary
to mask the parameter in the %IF statement where it is referenced. The program applies
the %SUPERQ function to the TITLETEXT value. In case a similar situation arises with
the FOOTNOTETEXT value, the program applies the %SUPERQ function to
FOOTNOTETEXT on the %IF statement where it is referenced. The %BQUOTE
function would also work for this application, but to completely prevent resolution of
macro triggers that might occur in the value, the %SUPERQ function is used instead.

Chapter 8: Masking Special Characters and Mnemonic Operators 211

Note that the reference to SYSVER in the parameter specification for FOOTNOTETEXT
is not masked. In this situation, the goal is to display the resolved value of SYSVER in
the footnote. Consider what happens if you omit the %SUPERQ function from the
program and you rewrite the %IF statement as follows.

%if &titletext= %then %do;

The second call to MYPAGES would not execute without masking the value of
TITLETEXT at execution. The macro processor interprets the plus sign in the value for
TITLETEXT as an operator. With %SUPERQ removed, the same second call to
MYPAGES produces the following error messages in the SAS log.

ERROR: A character operand was found in the %EVAL function or
 %IF condition where a numeric operand is required. The
 condition was: &titletext=
ERROR: The macro MYPAGES will stop executing.

Third call to MYPAGES. The third call to MYPAGES specifies text for the title and
text for the footnote. The text for the title does not contain any operators or special
characters and it is not masked. The text for the footnote contains an unmatched
quotation mark, which must be masked. The third call to MYPAGES submits the
following two SAS statements.

title justify=center color=black "Sales Report";
footnote justify=right color=black
 "Last Reviewed by O'Malley";

Both the %STR function and the percent sign preceding the unmatched quotation mark
are required to mask the unmatched quotation mark. Without one of the two masking
items, SAS does not see a complete call to MYPAGES, and this results in processing
errors involving unmatched quotation marks and parentheses.

Fourth call to MYPAGES. The fourth call to MYPAGES specifies text for the title, text
for the footnote, and center justification of the footnote. The text for the title contains the
ampersand macro trigger followed by text. The text for the footnote contains the percent
sign macro trigger and concludes with a percent sign. The fourth call to MYPAGES
submits the following two SAS statements.

title justify=center color=black "Audited&Approved";
footnote justify=center color=black
 "%Increase in Sales for Year was 8%";

Since the parameter values for TITLETEXT and FOOTNOTETEXT contain macro
triggers, the %NRSTR function must be used instead of the %STR function as in the first
call to MYPAGES. Without masking the value for TITLETEXT, the macro processor
attempts to resolve a macro variable named APPROVED. Without masking the value for

212 SAS Macro Programming Made Easy, Second Edition

FOOTNOTETEXT, the macro processor attempts to execute a macro program named
INCREASE. The macro program MYPAGES does execute with the unmasked
parameters and produces the correct TITLE and FOOTNOTE statements. However, it
does write the following warnings to the SAS log.

WARNING: Apparent symbolic reference APPROVED not resolved.
WARNING: Apparent invocation of macro INCREASE not resolved.

There are several ways to specify the concluding percent sign in the value specified for
FOOTNOTETEXT. If you remember to leave a space after the percent sign, you do not
need to provide any additional instruction to prevent the macro processor from
interpreting the percent sign as anything but text.

%mypages(titletext=%nrstr(Audited&Approved),
 footnotetext=

%nrstr(%Increase in Sales for Year was 8%),
 jfootnote=center)

Since a percent sign can serve as a mask for an unmatched parenthesis, and if you put the
right parenthesis next to the percent sign, the macro processor interprets the right
parenthesis as text.

%mypages(titletext=%nrstr(Audited&Approved),
 footnotetext=

%nrstr(%Increase in Sales for Year was 8%),
jfootnote=center)

Submitting the preceding call to MYPAGES does not cause MYPAGES to execute
because it needs another right parenthesis to fully specify the call, as shown here:

%mypages(titletext=%nrstr(Audited&Approved),
 footnotetext=

%nrstr(%Increase in Sales for Year was 8%)),
jfootnote=center)

Specifying an additional parenthesis as in the immediately preceding call to MYPAGES
still does not produce the desired footnote. The concluding percent sign is not treated as
text and a right parenthesis becomes part of the footnote. Submitting the preceding call to
MYPAGES defines this footnote:

%Increase in Sales for Year was 8)

Chapter 8: Masking Special Characters and Mnemonic Operators 213

Another way to code the specification for FOOTNOTETEXT is to insert two concluding
percent signs.

%mypages(titletext=%nrstr(Audited&Approved),
 footnotetext=

%nrstr(%Increase in Sales for Year was 8%%),
jfootnote=center)

This executes as desired, producing the following footnote:

%Increase in Sales for Year was 8%

Unmasking Text and the %UNQUOTE Function

Occasionally you might need to restore the meaning of special characters and mnemonic
operators that have been masked. Applying the %UNQUOTE function to the masked
value tells the macro processor to remove the mask and resolve the special characters and
mnemonic operator.

Example 8.12: Using %UNQUOTE to Cause Interpretation of a
 Masked Character

In Program 8.12, the call to the macro program MAR has been masked and assigned to
the macro variable M. This text is placed in the first TITLE statement. To have the value
of M interpreted, the %UNQUOTE function must be used. The second TITLE statement
contains the results of applying %UNQUOTE to the value of M.

Program 8.12
%macro mar;
 This is March
%mend;

%let m=%nrstr(%mar);
title "Macro call &m generates the following text";
title2 "%unquote(&m)";

The TITLE statements after submission of the preceding code are as follows:

Macro call %mar generates the following text
This is March

214 SAS Macro Programming Made Easy, Second Edition

Using Quoting Versions of Macro Character
Functions and Autocall Macro Programs

The results of macro character functions and autocall macro programs are unmasked or
unquoted. The macro processor resolves special characters and mnemonic operators in
the results. If you want to mask these items in a result, use the quoting version of the
function or autocall macro program.

In Chapter 6, Table 6.1 included descriptions of the quoting versions of macro character
functions, and Table 6.7 included descriptions of the quoting versions of autocall macro
programs. The %QSCAN function was used in Example 8.5 with unbalanced quotation
marks. Two additional examples of using the quoting versions of macro functions follow
in Examples 8.13 and 8.14.

Example 8.13: Using %QSYSFUNC to Mask the Result from
 Applying a SAS Language Function

Described in Chapter 6, the %SYSFUNC function applies SAS language functions to
macro variables and text and returns results to the macro facility. When your result could
include special characters or mnemonic operators, you should use %QSYSFUNC, which
is the quoting version of %SYSFUNC. This function does the same tasks as
%SYSFUNC, and it also masks special characters and mnemonic operators.

The macro language statements in Program 8.13 demonstrate an application of
%QSYSFUNC. The first %LET statement assigns a value to macro variable
PUBLISHER. The next statements convert the text and to an ampersand and remove the
blanks. Two %PUT statements display the results.

The second %LET statement converts the text and to an ampersand using the SAS
language function TRANWRD and %SYSFUNC, and it stores the result in macro
variable PUBLISHER2.

The third %LET statement removes the blanks in PUBLISHER2 using the SAS language
function COMPRESS and %SYSFUNC, and it assigns the result to PUBLISHER3.
Execution of this %LET statement causes the macro processor to write warnings to the
SAS log since the result of the two functions is not quoted, and the macro processor tries
to resolve the macro variable reference &LEE in the result.

The fourth %LET statement uses COMPRESS and %QSYSFUNC, and it assigns the
result to PUBLISHER3. This time, the value assigned to PUBLISHER3 is quoted
through the use of %QSYSFUNC, and the macro processor does not interpret &LEE as a
macro variable reference.

Chapter 8: Masking Special Characters and Mnemonic Operators 215

Note that the %NRSTR function masks the macro function names in the two %PUT
statements. If you do not mask these items, the macro processor attempts to execute these
functions. In the %PUT statements, these two function names are meant to be displayed
as text and not to be interpreted as calls to the functions. Therefore, without the use of
%NRSTR, syntax errors are generated.

Program 8.13
%let publisher=Doe and Lee;
%let publisher2=%sysfunc(tranwrd(&publisher,and,&));
%let publisher3=%sysfunc(compress(&publisher2)) Ltd.;
%put PUBLISHER3 defined with %nrstr(%SYSFUNC): &publisher3;

%let publisher3=%qsysfunc(compress(&publisher2)) Ltd.;
%put PUBLISHER3 defined with %nrstr(%QSYSFUNC): &publisher3;

The SAS log from the preceding open code statements follow. Note that execution of the
last %LET statement and %PUT statement does not produce any warnings in the SAS
log.

230 %let publisher=Doe and Lee;
231 %let publisher2=%sysfunc(tranwrd(&publisher,and,&));
232 %let publisher3=%sysfunc(compress(&publisher2)) Ltd.;
WARNING: Apparent symbolic reference LEE not resolved.
233 %put PUBLISHER3 defined with %nrstr(%SYSFUNC):
&publisher3;
WARNING: Apparent symbolic reference LEE not resolved.
PUBLISHER3 defined with %SYSFUNC: Doe&Lee Ltd.
234
235 %let publisher3=%qsysfunc(compress(&publisher2,%str()))
Ltd.;
236 %put PUBLISHER3 defined with %nrstr(%QSYSFUNC):
&publisher3;
PUBLISHER3 defined with %QSYSFUNC: Doe&Lee Ltd.

Example 8.14: Using %QSUBSTR to Mask the Results of
 %SUBSTR

Program 8.14 uses the %QSUBSTR macro function to mask the results of the %SUBSTR
macro function. The macro variable MONTH3 is defined by extracting text from the
MONTHS macro variable using the %SUBSTR macro function. This action results in a
warning because the macro processor attempts to resolve what looks likes a macro
variable reference in the text extracted by %SUBSTR.

The macro variable QMONTH3 is defined by extracting text from the MONTHS macro
variable using the %QSUBSTR macro function. The %QSUBSTR macro function masks
the ampersand in the extraction. No warning messages are generated because the macro

216 SAS Macro Programming Made Easy, Second Edition

processor ignores the ampersand in the text extracted by the %QSUBSTR macro
function.

Program 8.14
%let months=%nrstr(Jan&Feb&Mar);
%let month3=%substr(&months,8);
%put Unquoted: &month3;

%let qmonth3=%qsubstr(&months,8);
%put Quoted: &qmonth3;

The SAS log from Program 8.14 follows. The warnings result from execution of the
%LET statement that defines MONTH3 and from execution of the first %PUT statement.
The value assigned to MONTH3 is not masked. Therefore, the macro processor interprets
&MAR as a macro variable reference. Since macro variable MAR does not exist in this
example, the macro processor issues the warnings.

40 %let months=%nrstr(Jan&Feb&Mar);
41 %let month3=%substr(&months,8);
WARNING: Apparent symbolic reference MAR not resolved.
42 %put Unquoted: &month3;
WARNING: Apparent symbolic reference MAR not resolved.
Unquoted: &Mar
43
44 %let qmonth3=%qsubstr(&months,8);
45 %put Quoted: &qmonth3;
Quoted: &Mar

C h a p t e r 9
Interfaces to the Macro Facility

Introduction 218

Understanding DATA Step Interfaces to the Macro Facility 218

Understanding the SYMGET and SYMGETN Functions 219

Understanding the SYMPUT and SYMPUTX Call Routines 226

Understanding the CALL EXECUTE Routine 234

Understanding the RESOLVE Function 245

Using Macro Facility Features in PROC SQL 251

Creating and Updating Macro Variables with PROC SQL 251

Using the Macro Variables Created by PROC SQL 258
Displaying Macro Option Settings with PROC SQL and Dictionary
Tables 260

Using Macro Facility Features in SAS Component Language 262
Using the Macro Facility to Pass Information between SCL
Programs 263

Referencing Macro Variables in SUBMIT Blocks 264

218 SAS Macro Programming Made Easy, Second Edition

Introduction

The interfaces described in this chapter provide you with a dynamic communication link
between the SAS language and the macro facility. Until now, the discussion of the macro
facility has emphasized the distinction between when macro language statements are
resolved and when SAS language statements are resolved, and how the macro language
can build SAS code and control SAS processing. With the interfaces described in this
chapter, your SAS language programs can direct the actions of the macro processor.

The interfaces described in this chapter include:

SAS language functions and routines

PROC SQL

SAS Component Language functions and routines

Additionally, two macro functions provide an interface with SAS/CONNECT:
%SYSLPUT and %SYSRPUT. Discussion of these functions is beyond the scope of this
book. Refer to SAS Macro Language: Reference for more information on these functions.

Understanding DATA Step Interfaces to the
Macro Facility

Three functions and three call routines in the SAS language can interact with the macro
processor during execution of a DATA step. Table 9.1 lists these six tools.

Chapter 9: Interfaces to the Macro Facility 219

Table 9.1 DATA step interface tools

Tool Description

SYMGET(argument) SAS language function that obtains the value of a macro
variable specified as argument and returns this as a
character value during DATA step execution.

SYMGETN(argument) SAS language function that obtains the value of a macro
variable specified as argument and returns this as a
numeric value. This function is available in SCL and is pre-
production in SAS®9.

CALL SYMPUT(macro-variable,
value);

SAS language routine that assigns value produced in a
DATA step to a macro-variable. This routine does not
trim leading and trailing blanks.

CALL SYMPUTX(macro-variable,
value <,symbol-
table>);

SAS language routine that assigns value produced in a
DATA step to a macro-variable. This routine
removes both leading and trailing blanks. Optionally, this
routine can direct the macro processor to store the macro
variable in a specific symbol table.

CALL EXECUTE(argument); SAS language routine that executes the resolved value of
argument. Arguments that resolve to a macro facility
reference execute immediately. Any SAS language
statements resulting from the resolution are executed at the
end of the step.

RESOLVE(argument) SAS language function that resolves argument during
DATA step execution where argument is a text
expression. Text expressions include macro variables and
macro program calls.

Understanding the SYMGET and SYMGETN Functions
The SYMGET and SYMGETN SAS language functions retrieve macro variable values
from the macro symbol tables during execution of a DATA step. The SYMGET function
returns a character value while SYMGETN returns a numeric variable. With these

220 SAS Macro Programming Made Easy, Second Edition

functions, you can create and update data set variables with information that the macro
processor retrieves from macro variables. Note that SYMGETN is pre-production in
SAS®9.

The macro variables that you reference with SYMGET and SYMGETN must exist
before you apply SYMGET or SYMGETN in a DATA step. If you create a macro
variable in the same DATA step with CALL SYMPUT or CALL SYMPUTX, you can
retrieve the macro variable value with SYMGET or SYMGETN if these functions follow
the CALL SYMPUT or CALL SYMPUTX calls.

By default, SYMGET creates a character variable with a length of 200 bytes. You can
specify a different length with either the LENGTH or ATTRIB statement. If the DATA
step variable is defined as numeric, SAS attempts to convert the value that SYMGET
retrieves to a number and writes a warning message to the SAS log. In those situations,
you might want to use SYMGETN since it returns a numeric value that does not require
conversion.

The SYMGET and SYMGETN functions accept three types of arguments:

the name of a macro variable that is enclosed in single quotation marks and
without the leading ampersand. In the following example, assume X is a macro
variable that was defined earlier in the program.

 y=symget('x');

the name of a DATA step character variable whose value is the name of a macro
variable. (See Example 9.1 for a discussion of this code.)

%let certific=CNT283817;

%let internet=INT3521P8;

%let networks=NET3UD697;

%let operatin=OPSI18375;

%let programm=PRG8361WQ;

%let webdesig=WBD188377;

data temp;

 set books.ytdsales;

 attrib compsect length=$8 label='Section'

 sectioncode length=$9 label='Section Code';

 *----Construct macro variable name by compressing

 section name and taking the first 8 characters.

 When section=Web Design, COMPSECT="WEBDESIG";

Chapter 9: Interfaces to the Macro Facility 221

 compsect=substr(compress(section),1,8);

 sectionid=symget(compsect);

run;

a DATA step character expression. The resolution of the character expression is
the name of a macro variable. (See Example 9.2 for a discussion of similar
code.)

%let factor1=1.10;

%let factor2=1.23;

%let factor3=1.29;

data projections;

 set books.ytdsales;

 array factor{3} factor1-factor3;

 array newprice{3} newprice1-newprice3;

 format newprice1-newprice3 dollar10.2;

 drop i;

 do i=1 to 3;

 factor{i}=symgetn(cats('factor',put(i,1.)));

 newprice{i}=factor{i}*saleprice;

 end;

run;

Following are several examples of the three types of arguments that SYMGET and
SYMGETN can receive.

Example 9.1: Using a Data Set Variable Name As the Argument to
 the SYMGET Function
Program 9.1 shows how the value of a data set variable can be used to specify the macro
variable whose value SYMGET obtains. The open code %LET statements and the
DATA step were presented earlier in this section.

Preceding the DATA step, six global macro variables are created, one for each of the six
sections in the BOOK.YTDSALES data set. As the DATA step processes each
observation in BOOK.YTDSALES, the SYMGET function extracts a value from one of
the six macro variables based on the current observation’s value of the data set variable
SECTION and stores the extracted value in the variable SECTIONID. The value that the

222 SAS Macro Programming Made Easy, Second Edition

SYMGET function returns is a character value. The ATTRIB statement assigns a length
of 9 bytes to SECTIONID, which overrides the default length of 200 bytes.

The data set variable COMPSECT that the data set creates stores the name of the macro
variable that contains the specific section’s identification code. COMPSECT equals the
first eight characters of the section name with blanks in those first eight characters
removed.

Program 9.1
%let certific=CNT283817;
%let internet=INT3521P8;
%let networks=NET3UD697;
%let operatin=OPSI18375;
%let programm=PRG8361WQ;
%let webdesig=WBD188377;

data temp;
 set books.ytdsales;

 attrib compsect length=$8 label='Section'
 sectionid length=$9 label='Section ID';

 *----Construct macro variable name by compressing
 section name and taking the first 8 characters.
 When section=Web Design, COMPSECT="WebDesig";

 compsect=substr(compress(section),1,8);
 sectionid=symget(compsect);
run;
proc print data=temp;
 title "Defining the Section Identification Code";
 var section compsect sectionid;
run;

A partial listing of the PROC PRINT output presented in Output 9.1 shows the values
assigned to SECTIONID by SYMGET.

Chapter 9: Interfaces to the Macro Facility 223

Output 9.1 Partial output from Program 9.1, which uses a data set variable
 as an argument to SYMGET

 Defining the Section Identification Code

 Obs section compsect sectionid

 1 Web Design WebDesig WBD188377

 2 Certification and Training Certific CNT283817

 3 Web Design WebDesig WBD188377

 4 Programming and Applications Programm PRG8361WQ

 5 Internet Internet INT3521P8

 6 Programming and Applications Programm PRG8361WQ

 7 Internet Internet INT3521P8

 8 Web Design WebDesig WBD188377

 9 Internet Internet INT3521P8

 10 Programming and Applications Programm PRG8361WQ

 11 Networks and Telecommunication Networks NET3UD697

 12 Certification and Training Certific CNT283817

 13 Programming and Applications Programm PRG8361WQ

 14 Certification and Training Certific CNT283817

 15 Internet Internet INT3521P8

. . .

Example 9.2: Retrieving Macro Variable Values and Creating
 Numeric Data Set Variables with SYMGETN

Program 9.2 directly references two macro variables with the SYMGETN function. The
two macro variables are defined in open code preceding the DATA step in which they
are referenced. On each iteration of the DATA step, it selects which macro variable value
to retrieve based on the current observation’s value for data set variable, SECTION. The
DATA step selects specific observations from the data set and then creates a new
numeric variable whose value is the product of a variable in the data set and the value of
a macro variable.

224 SAS Macro Programming Made Easy, Second Edition

Program 9.2
%let webfctr=1.20;
%let intfctr=1.35;

data temp;
 set books.ytdsales(where=(
 section in ('Web Design', 'Internet')));
 if section='Web Design' then costfctr=symgetn('webfctr');
 else if section='Internet' then costfctr=symgetn('intfctr');
 newprice=costfctr*cost;
run;
proc print data=temp;
 title "Prices based on COSTFCTR";
 var section cost costfctr newprice;
 format newprice dollar8.2;
run;

A partial listing of the PROC PRINT output presented in Output 9.2 shows that the
COSTFCTR variable was created for each observation in the data set. The value of
COSTFCTR depends on the value of SECTION.

Output 9.2 Partial output from Program 9.2, which specifies a direct
 reference to a macro variable in a call to function SYMGET

 Prices based on COSTFCTR

 Obs section cost costfctr newprice

 1 Web Design $18.48 1.20 $22.17
 2 Web Design $17.48 1.20 $20.97
 3 Internet $18.48 1.35 $24.94
 4 Internet $22.48 1.35 $30.34
 5 Web Design $22.48 1.20 $26.97
 6 Internet $17.48 1.35 $23.59
 7 Internet $25.48 1.35 $34.39
 8 Web Design $22.48 1.20 $26.97
 9 Web Design $22.98 1.20 $27.57
 10 Internet $22.98 1.35 $31.02
 11 Internet $24.57 1.35 $33.17
 12 Internet $22.98 1.35 $31.02
 13 Internet $22.48 1.35 $30.34
 14 Internet $22.48 1.35 $30.34
 15 Internet $22.98 1.35 $31.02
 ...

Chapter 9: Interfaces to the Macro Facility 225

Example 9.3: Using the Resolution of a Character Expression As
 an Argument to SYMGET
The DATA step in Program 9.3 resolves SAS language character expressions to obtain
the names and values of macro variables. The goal of the program is to obtain the
manager’s initials for the quarter in which a book was sold. Preceding the DATA step,
four %LET statements create four macro variables, one for the manager’s initials in each
quarter.

As the DATA step processes each observation in BOOK.YTDSALES, the SYMGET
function extracts a value from one of the four macro variables based on the current
observation’s value of the data set variable DATESOLD. This value is assigned to data
set variable MANAGERINITS. The quarter of the sale date is determined and the value
of quarter (1, 2, 3, or 4) determines from which macro variable the SYMGET function
retrieves a value.

The DATA step assigns a length of 3 bytes to MANAGERINITS and overrides the
default length of 200 bytes.

Program 9.3
%let managerquarter1=HCH;
%let managerquarter2=EMB;
%let managerquarter3=EMB;
%let managerquarter4=JBR;

data managers;
 set books.ytdsales;

 length managerinits $ 3;

 managerinits=
 symget(cats('managerquarter',put(qtr(datesold),1.)));
run;
proc print data=managers;
 title "Sale Dates and Managers";
 var datesold managerinits;
run;

A partial listing of the PROC PRINT output (Output 9.3) shows the values assigned to
MANAGERINITS by SYMGET.

226 SAS Macro Programming Made Easy, Second Edition

Output 9.3 Output from Program 9.3, which resolves character expressions
 as arguments to the SYMGET function

 Sale Dates and Managers

 Obs datesold managerinits

 1 01/18/2007 HCH
 2 01/07/2007 HCH
 3 01/24/2007 HCH
 4 01/20/2007 HCH
. . .
 2353 04/28/2007 EMB
 2354 04/15/2007 EMB
 2355 04/23/2007 EMB
 2356 04/06/2007 EMB
. . .
 3549 08/23/2007 EMB
 3550 08/29/2007 EMB
 3551 08/12/2007 EMB
 3552 08/15/2007 EMB
. . .
 4621 10/06/2007 JBR
 4622 10/08/2007 JBR
 4623 10/30/2007 JBR
 4624 10/27/2007 JBR
. . .

Understanding the SYMPUT and SYMPUTX Call Routines
The SYMPUT and SYMPUTX SAS language call routines create macro variables during
execution of a DATA step. If the macro variable already exists, these routines update the
value of the macro variable.

CALL SYMPUT. The syntax of the SYMPUT routine is:

 CALL SYMPUT(macro-variable,text)

CALL SYMPUT does not trim leading and trailing blanks from the value assigned to the
macro variable. The two arguments to CALL SYMPUT can each be specified in one of
three ways:

Chapter 9: Interfaces to the Macro Facility 227

as literal text. The following SAS language statement creates or updates the
macro variable BOOKSECT with the value Internet. Since CALL SYMPUT
is a SAS language routine, you must enclose literal text arguments in quotation
marks.

call symput('booksect','Internet');

as the name of a data set character variable whose value is a SAS variable
name. The current value of the data set variable NHIGH is assigned to the macro
variable N45. The name of the macro variable, N45, is saved in DATA step
character variable RESULTVAR.

resultvar='n45';

call symput(resultvar,nhigh);

as a character expression. The first argument to CALL SYMPUT below defines
a macro variable name where the first part of the name is equal to the text
AUTHORNAME. The second part of the macro variable name is equal to the
automatic variable _N_. The second argument resolves to a text string. The
literal text in the first part of the string and the current observation’s value for
AUTHOR are concatenated. During the fifth iteration of the DATA step that
contains this statement, CALL SYMPUT would define a macro variable named
AUTHORNAME5.

call symput(cats('authorname',put(_n_,4.)),

 cat('Author Name: ',author));

CALL SYMPUTX. The syntax of the CALL SYMPUTX routine is:

CALL SYMPUTX(macro-variable,text<,symbol-table>)

CALL SYMPUTX trims leading and trailing blanks from the value assigned to the macro
variable. The first two arguments to CALL SYMPUTX are specified the same way as for
CALL SYMPUT. The third argument is optional and it tells the macro processor the
symbol table where the macro variable should be stored. This argument can be specified
as a character constant, data set variable, or expression. The first non-blank letter in this
optional argument determines where the macro processor stores the macro variable.
Valid values for this optional argument can be one of three values:

G, which specifies that the macro processor store the macro variable in the
global symbol table even if the local symbol table exists.

L, which specifies that the macro processor store the macro variable in the most
local symbol table. If a macro program is not executing when this option is
specified, there will be no local symbol table. In such a situation, the most local

228 SAS Macro Programming Made Easy, Second Edition

symbol table is actually the global symbol table, and that is where the macro
processor stores the macro variable.

F, which specifies that if the macro variable exists in any symbol table, CALL
SYMPUTX should update the macro variable’s value in the most local symbol
table in which it exists. If it does not exist in any symbol table, CALL
SYMPUTX stores the macro variable in the most local symbol table.

Each of these two call routines updates the value of an existing macro variable. A macro
variable can only have one value. Even though your DATA step might cause the call
routine to be executed with each pass of the DATA step, the macro variable that the
routines reference can still have only one value. When the DATA step ends, the value of
the macro variable being updated has the last value that was assigned by SYMPUT or
SYMPUTX.

Example 9.4: Saving the Sum of a Variable in a Macro Variable by
 Executing CALL SYMPUT Once at the End of a
 DATA Step
In Program 9.4, CALL SYMPUT creates a macro variable N45 whose value is the total
number of books that sold for at least $45.00. The program then places this tally in the
title of a PROC MEANS report.

The program directs that CALL SYMPUT execute once when the DATA step reaches
the end of the data set and store the formatted value of data set variable NHIGH in macro
variable N45.

The PUT function formats the value assigned to N45 with the COMMA format. In
applying the format to NHIGH, the value is converted from numeric to character. With
the width of the format set at five characters, no leading blanks in the value pass to N45.

If the DATA step were written so that CALL SYMPUT executed with each pass of the
DATA step, the macro variable value would be updated with each observation. Since the
goal is to obtain the total number of books sold for more than $45.00, it is necessary to
execute CALL SYMPUT only once after the tally is complete. The second IF statement
directs that the CALL SYMPUT routine execute only when the DATA step reaches the
end of data set BOOKS.YTDSALES.

Program 9.4
data _null_;
 set books.ytdsales end=eof;
 if saleprice ge 45 then nhigh+1;
 if eof then call symput('n45',put(nhigh,comma5.));
run;

Chapter 9: Interfaces to the Macro Facility 229

proc means data=temp n mean min max;
 title "All Books Sold";
 title2 "Number of Books Sold for More Than $45: &n45";
 var saleprice;
run;

Output 9.4 presents the PROC MEANS report. The title includes the total number of
books sold for at least $45.00.

Output 9.4 Output from Program 9.4, which calls SYMPUT once at the end
 of a DATA step

 All Books Sold

 Number of Books Sold for More Than $45: 2,141

 The MEANS Procedure

 Analysis Variable : saleprice Sale Price

 N Mean Minimum Maximum

 --

 6096 43.2542897 24.7600000 86.9500000

 --

When you assign a numeric variable value to a macro variable with CALL SYMPUT, the
numeric value is converted to character by default, and then this character value is stored
in the macro variable. The default width of the character field passed to the macro
variable is 12 characters and a numeric value is right aligned. For example, consider
what happens when the CALL SYMPUT routine is modified and the PUT function is
removed.

 if eof then call symput('n45',nhigh);

The title now looks like the following and eight leading blanks precede the four-digit
numeric value.

 Number of Books Sold for More Than $45: 2141

Execution of this version of the CALL SYMPUT function causes the following note to
be written to the SAS log:

NOTE: Numeric values have been converted to character
 values at the places given by: (Line):(Column).

230 SAS Macro Programming Made Easy, Second Edition

You could also use the CALL SYMPUTX function. The note is not written to the SAS
log, and CALL SYMPUTX removes the leading blanks before the value is stored in
macro variable N45.

 if eof then call symputx('n45',nhigh);

The title now looks like the following.

Number of Books Sold for More Than $45: 2141

Example 9.5: Executing CALL SYMPUTX Multiple Times in a
 DATA Step
In Program 9.5, CALL SYMPUTX executes with each pass of the DATA step, which is
once for each record in the data lines. The value of the macro variable at the end of the
DATA step is the value from the last observation read from the raw data.

Program 9.5
data newbooks;
 input booktitle $ 1-40;
 call symputx('lasttitle',booktitle);
datalines;
Hello Java Programming
My Encyclopedia of Networks
Strategic Computer Programming
Everyday Email Etiquette
run;
%put The value of macro variable LASTTITLE is &lasttitle..;

The %PUT statement writes the following to the SAS log.

The value of macro variable LASTTITLE is Everyday Email
Etiquette.

Example 9.6: Creating Several Macro Variables with CALL
 SYMPUT and CALL SYMPUTX
This example creates multiple macro variables with CALL SYMPUT and CALL
SYMPUTX. This program creates two macro variables for each section in the output data
set produced by PROC FREQ. PROC FREQ saves six observations in the SECTNAME
output data set, one for each section in the BOOKS.YTDSALES data set. Therefore, the
DATA step creates 12 macro variables. Six macro variables hold the names of the six
sections. The other six macro variables hold the frequency counts for each of the
sections. A %PUT _USER_ following the DATA step lists the 12 macro variables
created in the DATA step.

Chapter 9: Interfaces to the Macro Facility 231

Program 9.6
proc freq data=books.ytdsales noprint;
 tables section / out=sectname;
run;
data _null_;
 set sectname;
 call symput('name' || put(_n_,1.),section);
 call symputx('n' || put(_n_,1.),count);
run;

%put _user_;

The following %PUT _USER_ output displays the values of the macro variables defined
in the DATA step. Note that CALL SYMPUTX trims the leading blanks from the values
assigned to macro variables N1 through N6.

GLOBAL N1 726
GLOBAL NAME1 Certification and Training
GLOBAL N2 1456
GLOBAL NAME2 Internet
GLOBAL N3 717
GLOBAL NAME3 Networks and Telecommunication
GLOBAL N4 922
GLOBAL NAME4 Operating Systems
GLOBAL N5 1429
GLOBAL NAME5 Programming and Applications
GLOBAL N6 846
GLOBAL NAME6 Web Design

Example 9.7: Creating a Macro Variable with CALL SYMPUTX and
 Specifying Its Symbol Table
This example computes statistics on a subset of a data set and assigns the values of the
statistics to global macro variables. The goal is to make these macro variables global so
that they are available for subsequent processing.

Macro program STATSECTION in Program 9.7 computes with PROC MEANS the
mean, minimum, and maximum sale price for a specific section in BOOKS.YTDSALES;
the program saves the statistics in output data set SECTIONRESULTS. The parameter
SECTION passes to STATSECTION the name of the section for which to compute the
statistics.

The PROC MEANS step does not print a report, but it does save the three statistics in an
output data set. A DATA step processes the output data set. It uses CALL SYMPUTX to
create three macro variables to hold the three statistics and to assign values to the macro

232 SAS Macro Programming Made Easy, Second Edition

variables. Additionally, CALL SYMPUTX specifies that the macro variables be stored in
the global symbol table.

The three global macro variables created by this program are AVERAGE, MIN, and
MAX. Three CALL SYMPUTX statements store the formatted values of the statistics in
these macro variables.

If you did not specify that the macro variables should be stored in the global symbol
table, they would be stored in the local symbol table defined by macro program
STATSECTION. Once STATSECTION completed processing, its local symbol table
would be deleted, and the values of the three macro variables would be lost.

A %PUT _LOCAL_ statement is included in the macro program to show that the only
macro variable stored in the STATSECTION local macro symbol table is SECTION.
(You could also use the %SYMGLOBL and %SYMLOCAL macro variable attribute
functions described in Chapter 6 to determine whether a macro variable was stored
globally or locally.)

Three TITLE statements follow the call to STATSECTION. These TITLE statements
include references to the three macro variables created in STATSECTION.

Program 9.7
%macro statsection(section);
 proc means data=books.ytdsales noprint;
 where section="§ion";
 var saleprice;
 output out=sectionresults mean=avgsaleprice
 min=minsaleprice max=maxsaleprice;
 run;

 data _null_;
 set sectionresults;

 call symputx('average',put(avgsaleprice,dollar8.2),'G');
 call symputx('min',put(minsaleprice,dollar8.2),'G');
 call symputx('max',put(maxsaleprice,dollar8.2),'G');
 run;

 %* Submit this statement to see the variables stored in the
 STATSECTION local symbol table;
 %put _local_;
%mend;

%statsection(Internet)

title "Section Results for Average Sale Price: &average";

Chapter 9: Interfaces to the Macro Facility 233

title2 "Minimum Sale Price: &min";
title3 "Maximum Sale Price: &max";

Execution of the %PUT _LOCAL_ statement writes the following to the SAS log. The
text "STATSECTION" refers to the name of the local symbol table.

STATSECTION SECTION Internet

After executing %STATSECTION and the subsequent TITLE statements, the titles
become:

Section Results for Average Sale Price: $42.79
Minimum Sale Price: $24.76
Maximum Sale Price: $86.95

If you dropped the third argument in the three CALL SYMPUTX calls, the three macro
variables would be stored in the STATSECTION local symbol table. When
STATSECTION ends, the macro processor deletes the STATSECTION local symbol
table; the values of the three macro variables are not available for insertion into the titles.

The three DATA step statements would be rewritten as follows.

call symputx('average',put(avgsaleprice,dollar8.2));
call symputx('min',put(minsaleprice,dollar8.2));
call symputx('max',put(maxsaleprice,dollar8.2));

The %PUT _LOCAL_ statement would now produce the following output in the SAS
log.

STATSECTION MIN $24.76
STATSECTION MAX $86.95
STATSECTION SECTION Internet
STATSECTION AVERAGE $42.79

The references to the three macro variables in the TITLE statements cannot be resolved
because the macro variables do not exist in the global symbol table. With the three macro
variables stored in the local macro symbol table, the three titles become:

Section Results for Average Sale Price: &average
Minimum Sale Price: &min
Maximum Sale Price: &max

234 SAS Macro Programming Made Easy, Second Edition

NOTE: If you want to try out the code that does not specify that the macro variables
should be saved in the global symbol table and want to see the unresolved macro variable
results in the titles, make sure you delete the three macro variables from the global
symbol table. You can delete the three macro variables with the %SYMDEL statement.

%symdel average min max;

Understanding the CALL EXECUTE Routine
The CALL EXECUTE SAS language routine is a tool that you can use to specify
execution of macro programs from within the DATA step. It takes as its argument a
character expression or constant text that it resolves to a macro program invocation or
SAS statement. This section describes how to use it to invoke macro programs. For
detailed information on generating SAS statements without referencing a macro program,
refer to SAS documentation.

When the argument to CALL EXECUTE is a macro program reference, that macro
program executes immediately during execution of the DATA step. If that macro
program generates SAS statements, however, those statements execute after the DATA
step finishes.

The syntax of the CALL EXECUTE routine is

call execute('argument')

The three types of arguments that can be supplied to the routine are:

a text string enclosed in quotation marks. Single quotation marks and double
quotation marks are handled differently. Single quotation marks cause the
argument to be resolved when the DATA step executes. Double quotation marks
cause the argument to be resolved by the macro processor during construction of
the DATA step, before compilation and execution of the DATA step.

the name of a data set character variable. This variable’s value can be a text
expression or a SAS language statement. Do not enclose the variable name in
quotation marks.

a text expression that the DATA step can resolve to a SAS language statement or
to a macro variable, macro language statement, or macro program reference.

Chapter 9: Interfaces to the Macro Facility 235

Example 9.8: Illustrating the Timing of CALL EXECUTE When It
 Invokes a Macro Program That Submits Macro
 Statements
This simple example in Program 9.8 demonstrates how a macro program invoked by
CALL EXECUTE executes immediately within the DATA step. A macro program
LISTAUTOMATIC issues a %PUT statement that lists the automatic variables. The
DATA step that follows contains a CALL EXECUTE statement that explicitly invokes
LISTAUTOMATIC.

Program 9.8
%macro listautomatic;
 %put **** Start list of automatic macro variables;
 %put _automatic_;
 %put **** End list of automatic macro variables;
%mend listautomatic;

data _null_;
 call execute("%listautomatic");
run;

The SAS log for this program shows that the macro program executes during execution
of the DATA step. The concluding DATA step processing notes follow the list of
automatic variables.

48 %macro listautomatic;
49 %put **** Start list of automatic macro variables;
50 %put _automatic_;
51 %put **** End list of automatic macro variables;
52 %mend listautomatic;
53
54 data _null_;
55 call execute("%listautomatic");
**** Start list of automatic macro variables
AUTOMATIC AFDSID 0
AUTOMATIC AFDSNAME
AUTOMATIC AFLIB
AUTOMATIC AFSTR1
AUTOMATIC AFSTR2
AUTOMATIC FSPBDV
AUTOMATIC SYSBUFFR
AUTOMATIC SYSCC 0
AUTOMATIC SYSCHARWIDTH 1
AUTOMATIC SYSCMD

236 SAS Macro Programming Made Easy, Second Edition

AUTOMATIC SYSDATE 15FEB06
AUTOMATIC SYSDATE9 15FEB2006
.
.
.
AUTOMATIC SYSTIME 08:20
AUTOMATIC SYSUSERID My Userid
AUTOMATIC SYSVER 9.1
AUTOMATIC SYSVLONG 9.01.01M3P061705
AUTOMATIC SYSVLONG4 9.01.01M3P06172005
**** End list of automatic macro variables
56 run;

NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

NOTE: CALL EXECUTE routine executed successfully, but no SAS
statements were generated.

Example 9.9: Illustrating the Timing of CALL EXECUTE When It
 Invokes a Macro Program That Submits Macro
 Statements and a PROC Step
Program 9.9 defines and invokes a macro program LISTLIBRARY that submits two
%PUT statements and a PROC DATASETS step. It demonstrates how a macro program
invoked by CALL EXECUTE executes immediately within the DATA step and that SAS
statements generated by the macro program execute after the DATA step.

The macro program LISTLIBRARY issues a PROC DATASETS for the BOOKS library.
Immediately preceding the PROC step, it submits a %PUT statement. Immediately after
the PROC step, it submits a second %PUT statement. The DATA step contains a CALL
EXECUTE statement that explicitly invokes LISTLIBRARY.

Program 9.9
%macro listlibrary;
 %put **** This statement precedes the PROC step;
 proc datasets library=books;
 run;
 quit;
 %put **** This statement follows the PROC step;
%mend listlibrary;
data _null_;
 call execute("%listlibrary");
run;

Chapter 9: Interfaces to the Macro Facility 237

The SAS log for this program shows that the macro program executes during execution
of the DATA step. The text written by the %PUT statements appears in the SAS log
during execution of the DATA step. The PROC DATASETS output, however, does not
appear until after the DATA step concludes.

During execution of the DATA step, the macro processor directs immediate execution of
the two %PUT statements while it places the PROC step on the input stack for execution
after the DATA step concludes.

91 %macro listlibrary;
92 %put **** This statement precedes the PROC step;
93 proc datasets library=books;
94 run;
95 quit;
96 %put **** This statement follows the PROC step;
97 %mend listlibrary;
98 data _null_;
99 call execute("%listlibrary");
**** This statement precedes the PROC step
**** This statement follows the PROC step
100 run;

NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

NOTE: CALL EXECUTE generated line.
1 + proc datasets library=books;
 Directory

 Libref BOOKS
 Engine V9
 Physical Name f:\books
 File Name f:\books

 Member File
 # Name Type Size Last Modified

 1 YTDSALES DATA 1393664 02Feb08:16:21:13
1 + run;

1 + quit;

238 SAS Macro Programming Made Easy, Second Edition

NOTE: PROCEDURE DATASETS used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

Example 9.10: Using CALL EXECUTE to Conditionally Call a
 Macro Program
Program 9.10 uses CALL EXECUTE to conditionally execute the macro program
REP60K. First, PROC MEANS computes the sales for each section in
BOOKS.YTDSALES and stores the results in an output data set. A DATA step processes
the output data set and examines the total sales per section. When the sales exceed
$60,000, the CALL EXECUTE statement in the DATA step calls macro program
REP60K.

The argument to CALL EXECUTE is the macro program name, REP60K. This macro
program has one parameter, SECTION. The argument to CALL EXECUTE is a text
expression that resolves to the call to REP60K with the parameter specified as the current
value of SECTION. The CATS function concatenates the parts of the macro program
call.

The SAS language statements in the macro program execute when the DATA step
finishes. In this example, the CALL EXECUTE routine executes as many times as there
are observations that satisfy the IF statement condition. Each time CALL EXECUTE
executes, it calls the macro program REP60K for the section value of the current
observation. Therefore, when the DATA step finishes, there can be several PROC
REPORT steps on the input stack ready to process.

In this example, there are two sections, “Internet” and “Programming and Applications”
where the total sales exceeded $60,000. Thus, two PROC REPORT steps execute after
the DATA step.

Program 9.10
%macro rep60k(section);
 proc report data=books.ytdsales headline center nowd;
 where section="§ion";
 title "Sales > $60,000 Summary for §ion";
 column publisher n saleprice;
 define publisher / group;
 define n / "Number of Books Sold" ;
 define saleprice / sum format=dollar10.2 "Sale Price" ;
 rbreak after / summarize dol;
 run;
%mend rep60k;

options mprint;

Chapter 9: Interfaces to the Macro Facility 239

proc means data=books.ytdsales nway noprint;
 class section;
 var saleprice;
 output out=sectsale sum=totlsale;
run;

data _null_;
 set sectsale;

 if totlsale > 60000 then
 call execute(cats('%rep60k(',section,')'));
run;

The SAS log for this program shows that two PROC REPORT steps execute after
completion of the DATA step. The option MPRINT is in effect and shows the code for
the two PROC REPORT steps. Note that the processing of CALL EXECUTE also lists
the code for the PROC REPORT steps.

28 %macro rep60k(section);
29 proc report data=books.ytdsales headline center nowd;
30 where section="§ion";
31 title "Sales > $60,000 Summary for §ion";
32 column publisher n saleprice;
33 define publisher / group;
34 define n / "Number of Books Sold" ;
35 define saleprice / sum format=dollar10.2
35 ! "Sale Price";
36 rbreak after / summarize dol;
37 run;
38 %mend rep60k;
39
40 proc means data=books.ytdsales nway noprint;
41 class section;
42 var saleprice;
43 output out=sectsale sum=totlsale;
44 run;

NOTE: There were 6096 observations read from the data set
 BOOKS.YTDSALES.
NOTE: The data set WORK.SECTSALE has 6 observations and 4
 variables.
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.23 seconds
 cpu time 0.03 seconds

45
46 data _null_;

240 SAS Macro Programming Made Easy, Second Edition

47 set sectsale;
48
49 if totlsale > 60000 then
50 call execute(cats('%rep60k(',section,')'));
51 run;

MPRINT(REP60K): proc report data=books.ytdsales headline
center nowd;
MPRINT(REP60K): where section="Internet";
MPRINT(REP60K): title "Sales > $60,000 Summary for Internet";
MPRINT(REP60K): column publisher n saleprice;
MPRINT(REP60K): define publisher / group;
MPRINT(REP60K): define n / "Number of Books Sold" ;
MPRINT(REP60K): define saleprice / sum format=dollar10.2
"Sale Price" ;
MPRINT(REP60K): rbreak after / summarize dol;
MPRINT(REP60K): run;
MPRINT(REP60K): proc report data=books.ytdsales headline
center nowd;
MPRINT(REP60K): where section="Programming and Applications";
MPRINT(REP60K): title "Sales > $60,000 Summary for
Programming and Applications";
MPRINT(REP60K): column publisher n saleprice;
MPRINT(REP60K): define publisher / group;
MPRINT(REP60K): define n / "Number of Books Sold" ;
MPRINT(REP60K): define saleprice / sum format=dollar10.2
"Sale Price" ;
MPRINT(REP60K): rbreak after / summarize dol;
MPRINT(REP60K): run;
NOTE: There were 6 observations read from the data set
 WORK.SECTSALE.
NOTE: DATA statement used (Total process time):
 real time 0.10 seconds
 cpu time 0.00 seconds

NOTE: CALL EXECUTE generated line.
1 + proc report data=books.ytdsales headline center nowd;
where section="Internet"; title "Sales > $60,000 Summary
for Internet"; column publisher n saleprice; define
publisher / group; define n / "Number of Books Sold" ;
define
2 + saleprice / sum format=dollar10.2 "Sale Price" ;
rbreak after / summarize dol; run;

NOTE: There were 1456 observations read from the data set
 BOOKS.YTDSALES.
 WHERE section='Internet';

Chapter 9: Interfaces to the Macro Facility 241

NOTE: PROCEDURE REPORT used (Total process time):
 real time 0.57 seconds
 cpu time 0.00 seconds

3 + proc report data=books.ytdsales headline center nowd;
where section="Programming and Applications"; title "Sales
> $60,000 Summary for Programming and Applications"; column
 publisher n saleprice; define publisher / group;
define n /
4 + "Number of Books Sold" ; define saleprice / sum
format=dollar10.2 "Sale Price" ; rbreak after / summarize
dol; run;

NOTE: There were 1429 observations read from the data set
 BOOKS.YTDSALES.
 WHERE section='Programming and Applications';
NOTE: PROCEDURE REPORT used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

Example 9.11: Using CALL EXECUTE to Call a Specific Macro
 Program
This example shows how you can conditionally call different macro programs during the
execution of a DATA step. The PROC steps constructed by the macro program execute
after the DATA step ends.

Program 9.11 defines two macro programs: LOWREPORT and HIGHREPORT. Each
macro program generates a different PROC REPORT step.

As in Example 9.10, PROC MEANS computes total sales by section and saves the results
in an output data set. A DATA step examines the results and, depending on the value of
the total sales, it determines whether one of the two macro programs should be executed.
If sales exceed $60,000, then CALL EXECUTE specifies a call to macro program
HIGHREPORT. If sales are less than $35,000, then CALL EXECUTE specifies a call to
macro program LOWREPORT. Neither macro program is called if sales are between
$35,000 and $60,000.

The argument to each of the two CALL EXECUTE references is a text expression that
resolves either to a call to HIGHREPORT or to a call to LOWREPORT. Both macro
programs have the same parameter, SECTION. The current observation’s value of
SECTION is specified as part of the text expression that resolves to the macro program
call. The CATS function concatenates the parts of the macro program call.

242 SAS Macro Programming Made Easy, Second Edition

In this example, two sections, “Internet” and “Programming and Applications,” exceed
total sales of $60,000. The DATA step calls macro program HIGHREPORT twice, once
for each of these sections.

Two sections, “Certification and Training” and “Networks and Telecommunications,”
have total sales less than $35,000. The DATA step calls macro program LOWREPORT
twice, once for each of these sections.

Program 9.11
%macro highreport(section);
 proc report data=books.ytdsales headline center nowd;
 where section="§ion";
 title "Sales > $60,000 Report for Section §ion";
 column publisher n saleprice;
 define publisher / group;
 define n / "Number of Books Sold" ;
 define saleprice / sum format=dollar10.2 "Sale Price" ;
 rbreak after / summarize dol;
 run;
%mend highreport;

%macro lowreport(section);
 proc report data=books.ytdsales nowd;
 where section="§ion";
 title "Sales < $35,000 Report for Section §ion";
 column datesold n saleprice;
 define datesold / group format=month. "Month Sold"
 width=6;
 define n / "Number of Books Sold";
 define saleprice / sum format=dollar10.2 "Sales Total";
 rbreak after / summarize dol;
 run;
%mend lowreport;

proc means data=books.ytdsales nway noprint;
 class section;
 var saleprice;
 output out=sectsale sum=totlsect;
run;

data _null_;
 set sectsale;
 if totlsect < 35000 then
 call execute(cats('%lowreport(',section,')'));

Chapter 9: Interfaces to the Macro Facility 243

 else if totlsect > 60000 then
 call execute(cats('%highreport(',section,')'));
run;

The SAS log for this program shows the four calls to the two macro programs. Compared
to Example 9.10, MPRINT is not in effect when Program 9.11 executes. The results of
the CALL EXECUTE call, however, are displayed.

847 %macro highreport(section);
848 proc report data=books.ytdsales headline center nowd;
849 where section="§ion";
850 title "Sales > $60,000 Report for Section §ion";
851 column publisher n saleprice;
852 define publisher / group;
853 define n / "Number of Books Sold" ;
854 define saleprice / sum format=dollar10.2 "Sale Price";
855 rbreak after / summarize dol;
856 run;
857 %mend highreport;
858
859 %macro lowreport(section);
860 proc report data=books.ytdsales nowd;
861 where section="§ion";
862 title "Sales < $35,000 Report for Section §ion";
863 column datesold n saleprice;
864 define datesold / group format=month. "Month Sold"
865 width=6;
866 define n / "Number of Books Sold";
867 define saleprice / sum format=dollar10.2 "Sales Total";
868 rbreak after / summarize dol;
869 run;
870 %mend lowreport;
871
872 proc means data=books.ytdsales nway noprint;
873 class section;
874 var saleprice;
875 output out=sectsale sum=totlsect;
876 run;

NOTE: There were 6096 observations read from the data set
BOOKS.YTDSALES.
NOTE: The data set WORK.SECTSALE has 6 observations and 4
variables.

244 SAS Macro Programming Made Easy, Second Edition

NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.03 seconds
 cpu time 0.01 seconds

877
878 data _null_;
879 set sectsale;
880 if totlsect < 35000 then
881 call execute(cats('%lowreport(',section,')'));
882 else if totlsect > 60000 then
883 call execute(cats('%highreport(',section,')'));
884 run;

NOTE: There were 6 observations read from the data set
WORK.SECTSALE.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

NOTE: CALL EXECUTE generated line.
1 + proc report data=books.ytdsales nowd; where
section="Certification and Training";

title "Sales < $35,000 Report for Section Certification and
Training"; column datesold
n saleprice; define datesold / group format=month. "Month
Sold"
2 + width=6; define n / "Number of
Books Sold"; define
saleprice / sum format=dollar10.2 "Sales Total"; rbreak
after / summarize dol; run;

NOTE: There were 726 observations read from the data set
BOOKS.YTDSALES.
 WHERE section='Certification and Training';
NOTE: PROCEDURE REPORT used (Total process time):
 real time 0.03 seconds
 cpu time 0.03 seconds

3 + proc report data=books.ytdsales headline center nowd;
where section="Internet";
title "Sales > $60,000 Report for Section Internet"; column
publisher n saleprice;
define publisher / group; define n / "Number of Books
Sold" ;
4 + define saleprice / sum format=dollar10.2 "Sale Price" ;
rbreak after / summarize
dol; run;

Chapter 9: Interfaces to the Macro Facility 245

NOTE: There were 1456 observations read from the data set
BOOKS.YTDSALES.
 WHERE section='Internet';
NOTE: PROCEDURE REPORT used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

5 + proc report data=books.ytdsales nowd; where
section="Networks and
Telecommunication"; title "Sales < $35,000 Report for
Section Networks and
Telecommunication"; column datesold n saleprice;
define datesold / group
format=month. "Month
6 + Sold" width=6; define n /
"Number of Books Sold";
define saleprice / sum format=dollar10.2 "Sales Total";
rbreak after / summarize dol;
run;

NOTE: There were 717 observations read from the data set
BOOKS.YTDSALES.

WHERE section='Networks and Telecommunication';
NOTE: PROCEDURE REPORT used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

7 + proc report data=books.ytdsales headline center nowd;
where section="Programming and
Applications"; title "Sales > $60,000 Report for Section
Programming and Applications";
 column publisher n saleprice; define publisher / group;
8 + define n / "Number of Books Sold" ; define
saleprice / sum format=dollar10.2 "Sale
Price" ; rbreak after / summarize dol; run;

NOTE: There were 1429 observations read from the data set
BOOKS.YTDSALES.
 WHERE section='Programming and Applications';
NOTE: PROCEDURE REPORT used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

Understanding the RESOLVE Function
The RESOLVE SAS language function can resolve a macro variable reference or macro
program call during execution of a DATA step. The result returned by RESOLVE is a

246 SAS Macro Programming Made Easy, Second Edition

character value whose length equals that of the data set character variable to which the
result is being assigned. It takes as its argument a text expression, a data set character
variable, or a character expression that produces a text expression that can be resolved by
the macro processor.

The RESOLVE function acts during execution of a DATA step. Therefore, a RESOLVE
function could be coded so that it executes with each pass of a DATA step, and at each
execution it could return a different value.

The RESOLVE function is similar to the SYMGET function in that both functions can
resolve macro variable references during execution of a DATA step. However, the
SYMGET function is more limited in its functionality and in the arguments it can accept.
The RESOLVE function can accept a variety of different types of arguments, including
macro variables and macro program calls, while SYMGET’s sole function is to resolve a
macro variable reference.

The SYMGET function can resolve macro variables only if they exist before execution
of the DATA step in which the function is included. An exception to this is if a statement
containing CALL SYMPUT or CALL SYMPUTX that defines the macro variable
executes before the SYMGET function. As stated above, the RESOLVE function acts
during execution, and a macro variable defined in a DATA step with CALL SYMPUT or
CALL SYMPUTX can be retrieved in the same DATA step with the RESOLVE
function.

The syntax of the RESOLVE function is

resolve('argument')

The three types of arguments that RESOLVE accepts are:

a text expression that is enclosed in single quotation marks. This text expression
can be a macro variable reference, an open code macro language statement, or a
macro program call. If you enclose the text expression in double quotation
marks, the macro processor will attempt to resolve it before the DATA step is
compiled, while the SAS program is being constructed. Enclosing the argument
in single quotation marks delays resolution until the DATA step executes.

dsvar=resolve('&macvar');

the name of a data set character variable. The value of this variable is a text
expression representing a macro variable reference, an open code macro
language statement, or a macro program call.

%let label1=All the Books Sold;

data temp;

 length textlabel $ 40;

Chapter 9: Interfaces to the Macro Facility 247

 macexp='&label1';

 textlabel=resolve(macexp);

run;

a character expression that can be resolved to a text expression. The text
expression represents a macro variable reference, an open code macro language
statement, or a macro program call.

%let quartersale1=Holiday Clearance;

%let quartersale2=2 for the Price of 1;

%let quartersale3=Back to School;

%let quartersale4=New Releases;

data temp;

 set books.ytdsales;

 length quartersalename $ 30;

 quarter=qtr(datesold);

 quartersalename=resolve(

 cats('&quartersale',put(quarter,1.)));

run;

By default, the length of the text value returned by RESOLVE is 200 bytes. If you want
the character variable that holds the result to be different than 200 bytes, you must
explicitly define the length for the variable. This can be done with the LENGTH
statement or with the ATTRIB statement.

Example 9.12: Obtaining Macro Variable Values with RESOLVE
 by Resolving Character Expressions
The code in Program 9.12 was presented above in the discussion on the types of
arguments that RESOLVE can accept. The goal of the program is to create a character
variable that contains the name of the sale in the quarter in which an item was sold. Sale
names are stored in macro variables. The RESOLVE function in the DATA step looks up
the correct sale name based on the quarter the item was sold. The argument to the
RESOLVE function is a character expression that resolves to a macro variable name.

248 SAS Macro Programming Made Easy, Second Edition

Program 9.12 defines four macro variables, QUARTERSALE1, QUARTERSALE2,
QUARTERSALE3, and QUARTERSALE4, which contain the name of each quarter’s
sale. The DATA step processes data set BOOKS.YTDSALES and determines the quarter
in which each item sold. A macro variable name is constructed by concatenating the text
part of the macro variable name, QUARTERSALE, to the quarter number. This
expression is the argument to RESOLVE. RESOLVE returns the value of the specific
macro variable and assigns this value to data set character variable
QUARTERSALENAME.

Note that the text &QUARTERSALE is enclosed in single quotation marks. The single
quotation marks prevent the macro processor from attempting to resolve a macro variable
with that name during compilation of the DATA step. Instead, no action is taken during
compilation of the DATA step to resolve the macro variable reference.

Output 9.5 shows the results of the PROC FREQ crosstabulation of QUARTER and
QUARTERSALENAME.

Program 9.12
%let quartersale1=Holiday Clearance;
%let quartersale2=2 for the Price of 1;
%let quartersale3=Back to School;
%let quartersale4=New Releases;

data temp;
 set books.ytdsales;
 length quartersalename $ 30;

 quarter=qtr(datesold);
 quartersalename=resolve(
 cats('&quartersale',put(quarter,1.)));
run;
proc freq data=temp;
 title 'Quarter by Quarter Sale Name';
 tables quarter*quartersalename / list nocum nopct;
run;

Output 9.5 presents the PROC FREQ results produced by Program 9.12.

Chapter 9: Interfaces to the Macro Facility 249

Output 9.5 PROC FREQ output produced by Program 9.12, which updates
 variables with the RESOLVE function

 Quarter by Quarter Sale Name

 The FREQ Procedure

 quarter quartersalename Frequency

 --

 1 Holiday Clearance 2042

 2 2 for the Price of 1 975

 3 Back to School 1355

 4 New Releases 1724

Example 9.13: Using RESOLVE to Call a Macro Program within a
 DATA Step That Assigns Text to a Data Set
 Variable
This example shows how you can call a macro program from within a DATA step with
the RESOLVE function. The macro program executes with each pass of the DATA step
returning text to the DATA step.

As in Example 9.12, Program 9.13 looks up a sale name based on the quarter. In this
example, PROC MEANS computes total sales by quarter for variable SALEPRICE and
saves the results in an output data set. A DATA step processes the output data set created
by PROC MEANS. The RESOLVE function executes the same macro program with
each pass of the DATA step. The value of quarter is passed as a parameter to the macro
program.

The definition for macro program GETSALENAME precedes the PROC MEANS step.
When called by the RESOLVE function, macro program GETSALENAME simply looks
up a text value based on the value of parameter QUARTER and returns this text to the
DATA step. The assignment statement in the DATA step assigns this text value to data
set variable QUARTERSALENAME.

As in Program 9.12, the argument to the RESOLVE function in Program 9.13 is
constructed during execution of the DATA step, and the argument is enclosed in single
quotation marks to prevent the macro processor from attempting to resolve the call to the
macro program during compilation of the DATA step.

250 SAS Macro Programming Made Easy, Second Edition

Program 9.13
%macro getsalename(quarter);
 %if &quarter=1 %then %do;
 Holiday Clearance
 %end;
 %else %if &quarter=2 %then %do;
 2 for the Price of 1
 %end;
 %else %if &quarter=3 %then %do;
 Back to School
 %end;
 %else %if &quarter=4 %then %do;
 New Releases
 %end;
%mend getsalename;

proc means data=books.ytdsales noprint nway;
 class datesold;
 var saleprice;
 output out=quarterly sum=;
 format datesold qtr.;
run;

data quarterly;
 set quarterly(keep=datesold saleprice);

 length quartersalename $ 30;

 quartersalename=resolve(
cats('%getsalename(',put(datesold,qtr.),')'));
run;
proc print data=quarterly label;
 title 'Quarter Sales with Quarter Sale Name';
 label datesold='Quarter'
 saleprice='Total Sales'
 quartersalename='Sale Name';
run;

Output 9.6 presents the PROC PRINT report produced by Program 9.13.

Chapter 9: Interfaces to the Macro Facility 251

Output 9.6 Output produced by Program 9.13, which uses the
 RESOLVE function to assign text to a variable

 Quarter Sales with Quarter Sale Name

 Total

 Obs Quarter Sales Sale Name

 1 1 $88,150.75 Holiday Clearance

 2 2 $42,446.50 2 for the Price of 1

 3 3 $58,905.70 Back to School

 4 4 $74,175.19 New Releases

Using Macro Facility Features in PROC SQL

Elements of PROC SQL can interface with the macro facility. During execution of a
PROC SQL step, you can create and update macro variables. Additionally, with each
execution of PROC SQL, the procedure creates and maintains three macro variables that
hold information about the processing of PROC SQL. This section describes only the
macro facility interface features of PROC SQL. For complete information on PROC
SQL, refer to PROC SQL documentation.

Creating and Updating Macro Variables with PROC SQL
The INTO clause on the SELECT statement creates and updates macro variables.
Calculations that are done with the SELECT statement, as well as entire data columns,
can be saved in the macro variables that you name with the INTO clause.

The INTO clause is analogous to the CALL SYMPUT and CALL SYMPUTX routines in
the DATA step. Like these routines, the INTO clause creates and updates macro
variables during execution of a step. In the case of the INTO clause, the step is a PROC
SQL statement.

The INTO clause provides a link to the macro variable symbol table during execution of
PROC SQL. Values that are assigned to the macro variables are considered to be text.

The macro variables that you create with PROC SQL are added to the most local macro
symbol table available when PROC SQL executes. If PROC SQL is not submitted from

252 SAS Macro Programming Made Easy, Second Edition

within a macro program, the macro processor stores the macro variables in the global
macro symbol table.

The basic syntax of the INTO clause on the PROC SQL SELECT statement follows:

SELECT col1,col2,...
 INTO :macvar1, :macvar2,...
 FROM table-expression
 WHERE where-expression
 other clauses;

Note the punctuation on the INTO clause: the macro variable names are preceded with
colons (:), not ampersands (&). Macro variables are named explicitly on the INTO
clause. Numbered lists of macro variables can also be specified on the INTO clause.
Examples of both follow.

PROC SQL preserves leading or trailing blanks when you specify a single macro
variable. Otherwise, when specifying a range of macro variables or when using the
SEPARATED BY option, PROC SQL trims leading and trailing blanks from the values
assigned to the macro variables, unless you follow the macro variable specifications with
the NOTRIM option.

The INTO clause cannot be used during creation of a table or view. It can be used only
on outer queries of the SELECT statement.

Example 9.14: Using the INTO Clause in PROC SQL to Save
 Summarizations in Macro Variables
A simple application of the INTO clause follows in Program 9.14. The PROC SQL
SELECT statement computes the total sales and the total number of books sold for a
specific publisher identified by macro variable FINDPUBLISHER. It stores the
computations in two macro variables, TOTSALES and NSOLD. A %PUT statement
following the step writes the values of these two global macro variables to the SAS log.

Program 9.14
%let findpublisher=Technology Smith;
proc sql noprint;
 select sum(saleprice) format=dollar10.2,
 count(saleprice)
 into :totsales, :nsold
 from books.ytdsales
 where publisher="&findpublisher";
quit;
%put &findpublisher Total Sales=&totsales, Total Number
Sold=&nsold;

Chapter 9: Interfaces to the Macro Facility 253

The SAS log for the preceding program follows.

27 %let findpublisher=Technology Smith;
28 proc sql noprint;
29 select sum(saleprice) format=dollar10.2,
30 count(saleprice)
31 into :totsales, :nsold
32 from books.ytdsales
33 where publisher="&findpublisher";
34 quit;

NOTE: PROCEDURE SQL used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

35 %put &findpublisher Total Sales=&totsales, Total Number
35 ! Sold=&nsold;
Technology Smith Total Sales=$21,766.46, Total Number Sold=
505

Example 9.15: Demonstrating the Default Action of the INTO
 Clause in Saving the First Row of a Table
The default action of the PROC SQL INTO clause stores the first row of a table in the
macro variables on the INTO clause. This example demonstrates that action.

Program 9.15 sorts the BOOKS.YTDSALES data set by DATESOLD and saves the
sorted observations in data set DATESORTED. The PROC SQL step creates three macro
variables DATE1, TITLE1, and PRICE1, and it sets their values to the values of data set
variables DATESOLD, BOOKTITLE, and SALEPRICE for the first observation in
DATESORTED. Three %PUT statements following the step write the values of these
three global macro variables to the SAS log. A PROC PRINT of the first five
observations of DATESORTED shows that the values assigned to the macro variables
were from the first observation in DATESORTED.

Program 9.15
proc sort data=books.ytdsales out=datesorted;
 by datesold;
run;
proc sql noprint;
 select datesold,booktitle,saleprice
 into :date1,:title1,:price1
 from datesorted;
quit;

%put One of the first books sold was on &date1;

254 SAS Macro Programming Made Easy, Second Edition

%put The title of this book is &title1;
%put The sale price was &price1;

proc print data=datesorted(obs=5);
 title
 'First Five Observations of Sorted by Date BOOKS.YTDSALES';
run;

The SAS log displays the values of the three macro variables. Note that the leading
blanks were preserved in the display of macro variable PRICE1.

6611 proc sql noprint;
6612 select datesold,booktitle,saleprice
6613 into :date1,:title1,:price1
6614 from datesorted;
6615 quit;
NOTE: PROCEDURE SQL used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

6616 %put One of the first books sold was on &date1;
One of the first books sold was on 01/01/2007
6617 %put The title of this book is &title1;
The title of this book is Operating Systems Title 301
6618 %put The sale price was &price1;
The sale price was $45.95
6619 proc print data=datesorted(obs=5);
6620 title 'First Five Observations of Sorted by Date
BOOKS.YTDSALES';
6621 run;

NOTE: There were 5 observations read from the data set
WORK.DATESORTED.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

The PROC PRINT output is displayed in Output 9.7.

Chapter 9: Interfaces to the Macro Facility 255

Output 9.7 PROC PRINT output from Program 9.15, which shows the first
 five observations of data set DATESORTED

 First Five Observations of Sorted by Date BOOKS.YTDSALES

 Obs section saleid saleinit datesold

 1 Operating Systems 10000152 BLT 01/01/2007

 2 Internet 10000184 BLT 01/01/2007

 3 Certification and Training 10000227 BLT 01/01/2007

 4 Networks and Telecommunication 10000275 BLT 01/01/2007

 5 Internet 10000280 BLT 01/01/2007

 Obs booktitle author

 1 Operating Systems Title 301 Torres, Emma

 2 Internet Title 107 Marshall, Jose

 3 Certification and Training Title 395 Martinez, Carol

 4 Networks and Telecommunication Title 188 Ross, Shirley

 5 Internet Title 247 Bryant, Jennifer

 Obs publisher cost listprice saleprice

 1 Wide-World Titles $22.98 $45.95 $45.95

 2 Eversons Books $25.48 $50.95 $50.95

 3 IT Training Texts $18.48 $36.95 $36.95

 4 AMZ Publishers $25.48 $50.95 $50.95

 5 Wide-World Titles $25.48 $50.95 $50.95

Example 9.16: Using the INTO Clause in PROC SQL to Create a
 Macro Variable for Each Row in a Table
Numbered lists on the INTO clause can store rows of a table in macro variables. The
PROC SQL step in Program 9.16 totals the sales for each of six sections in the bookstore,
producing an extract of six rows. The SELECT statement and the INTO clause save the
six section names and six formatted total sales values in twelve macro variables.

256 SAS Macro Programming Made Easy, Second Edition

Program 9.16
proc sql noprint;
 select section, sum(saleprice) format=dollar10.2
 into :section1 - :section6,

:sale1 - :sale6 from books.ytdsales
 group by section;
quit;
%put *** 1: §ion1 &sale1;
%put *** 2: §ion2 &sale2;
%put *** 3: §ion3 &sale3;
%put *** 4: §ion4 &sale4;
%put *** 5: §ion5 &sale5;
%put *** 6: §ion6 &sale6;

The SAS log showing the execution of the %PUT statements follows:

95 %put *** 1: §ion1 &sale1;
*** 1: Certification and Training $31,648.52
96 %put *** 2: §ion2 &sale2;
*** 2: Internet $62,295.78
97 %put *** 3: §ion3 &sale3;
*** 3: Networks and Telecommunication $30,803.81
98 %put *** 4: §ion4 &sale4;
*** 4: Operating Systems $39,779.11
99 %put *** 5: §ion5 &sale5;
*** 5: Programming and Applications $62,029.41
100 %put *** 6: §ion6 &sale6;
*** 6: Web Design $37,121.52

Example 9.17: Storing All Unique Values of a Table Column in
 One Macro Variable with PROC SQL
A feature of the INTO clause allows you to store all values of a column in one macro
variable. These values are stored side by side. To do this, add the SEPARATED BY
option to the INTO clause to define a character that delimits the string of values.

The PROC SQL SELECT statement in Program 9.17 stores all unique section names in
the macro variable ALLSECT. (If you did not use the UNIQUE function, PROC SQL
would attempt to concatenate the values of SECTION for all observations in the data
set.)

Chapter 9: Interfaces to the Macro Facility 257

Program 9.17
proc sql noprint;
 select unique(section)
 into :allsect separated by '/'
 from books.ytdsales
 order by section;
quit;
%put The value of macro variable ALLSECT is &allsect;

The SAS log showing the execution of the %PUT statement follows:

6681 %put The value of macro variable ALLSECT is &allsect;
The value of macro variable ALLSECT is Certification and
Training/Internet/Networks and Telecommunication/Operating
Systems/Programming and Applications/Web Design

Example 9.18: Storing All Values of a PROC SQL Dictionary Table
 Column in One Macro Variable
This example is similar to Example 9.17 in that it saves all values of a column in one
macro variable, but this example does not apply the UNIQUE function. Program 9.18
makes use of the DICTIONARY tables feature of PROC SQL. It saves the names of all
the SAS data sets in a library specified by the value of macro variable LISTLIB in one
macro variable, DATASETNAMES. A blank separates the data set names assigned to
DATASETNAMES. Assume there are three SAS data sets in library BOOKS:
YTDSALES, SALES2006, and SALES2005.

Program 9.18
%let listlib=BOOKS;
proc sql noprint;
 select memname
 into :datasetnames separated by ' '
 from dictionary.tables
 where libname="&listlib";
quit;
%put The datasets in library &listlib is(are) &datasetnames;

The SAS log showing the execution of the %PUT statement follows:

6720 %put The datasets in library BOOKS is(are) &datasetnames;
The datasets in library BOOKS is(are)
SALES2005 SALES2006 YTDSALES

258 SAS Macro Programming Made Easy, Second Edition

Using the Macro Variables Created by PROC SQL
PROC SQL creates and updates three macro variables after it executes each statement.
You can use these macro variables in your programs to control execution of your SAS
programs. These macro variables are stored in the global macro symbol table. Table 9.2
lists the three PROC SQL macro variables.

Table 9.2 Macro variables created by PROC SQL

Macro Variable Description
SQLOBS set to the number of rows produced with a SELECT statement
SQLRC set to the return code from an SQL statement
SQLOOPS set to the number of iterations of the inner loop of PROC SQL

The Pass-Through Facility of PROC SQL also creates two macro variables, SQLXRC
and SQLXMSG. These macro variables contain information about error conditions that
might have occurred in the processing of Pass-Through SQL statements. For complete
information on these macro variables, refer to SAS/ACCESS documentation. Table 9.3
describes the two macro variables.

Table 9.3 PROC SQL macro variables used with the Pass-Through Facility

Macro Variable Description
SQLXRC set to the return code generated by a Pass-Through Facility statement
SQLXMSG set to descriptive information about the error generated by a

Pass-Through SQL statement.

Example 9.19: Using the PROC SQL SQLOBS Automatic Macro
 Variable
Macro program LISTSQLPUB in Program 9.19 uses the SQLOBS macro variable to
define the number of macro variables needed in a SELECT statement. It then lists the
value of each of the macro variables created in the PROC SQL step.

After the first PROC SQL SELECT statement executes, PROC SQL updates the
SQLOBS macro variable. The second SELECT statement uses the value of SQLOBS set
by the first SELECT statement to determine the total number of macro variables that the
INTO clause should create.

Chapter 9: Interfaces to the Macro Facility 259

Each publisher name is stored in its own macro variable. Macro program LISTSQLPUB
sets up an iterative %DO loop with its upper index equal to the value assigned to
SQLOBS. A %PUT statement executes with each iteration of the DO loop and displays
the value of each variable.

The second SELECT statement in Program 9.19 produces the same value for SQLOBS.
This is the value used as the upper index of the iterative %DO loop. Depending on the
complexity of your programming, you might want to save the value of SQLOBS in
another macro variable after that PROC SQL step ends. This would prevent loss of the
SQLOBS value you need in case you submit other SELECT statements before executing
code that references that SQLOBS value.

The SYMBOLGEN option is in effect during execution of the PROC SQL step. This
option displays in the SAS log the resolved value of SQLOBS as the value is resolved in
the second SELECT statement.

Program 9.19
options mprint;

%macro listsqlpub;
 options symbolgen;
 proc sql;
 select unique(publisher)
 from books.ytdsales
 order by publisher;

 select unique(publisher)
 into :pub1 - :pub&sqlobs
 from books.ytdsales
 order by publisher;
 quit;
 options nosymbolgen;

 %put Total number of publishers: &sqlobs..;
 %do i=1 %to &sqlobs;
 %put Publisher &i: &&pub&i;
 %end;
%mend listsqlpub;

%listsqlpub

260 SAS Macro Programming Made Easy, Second Edition

The SAS log after LISTSQLPUB executes follows:

MPRINT(LISTSQLPUB): proc sql;
MPRINT(LISTSQLPUB): select unique(publisher) from
books.ytdsales order by publisher;
SYMBOLGEN: Macro variable SQLOBS resolves to 12
MPRINT(LISTSQLPUB): select unique(publisher) into :pub1 -
:pub12 from books.ytdsales order by publisher;
MPRINT(LISTSQLPUB): quit;
NOTE: PROCEDURE SQL used (Total process time):
 real time 0.04 seconds
 cpu time 0.04 seconds

MPRINT(LISTSQLPUB): options nosymbolgen;
Total number of publishers: 12.
Publisher 1: AMZ Publishers
Publisher 2: Bookstore Brand Titles
WARNING: Apparent symbolic reference LEE not resolved.
Publisher 3: Doe&Lee Ltd.
Publisher 4: Eversons Books
Publisher 5: IT Training Texts
Publisher 6: Mainst Media
Publisher 7: Nifty New Books
Publisher 8: Northern Associates Titles
Publisher 9: Popular Names Publishers
Publisher 10: Professional House Titles
Publisher 11: Technology Smith
Publisher 12: Wide-World Titles

Displaying Macro Option Settings with PROC SQL and
Dictionary Tables

Using PROC SQL, you can obtain information about your SAS session by accessing
dictionary tables. These read-only SAS data views contain such information as option
settings, librefs, member names and attributes in a library, and column names and
attributes in a table or data set. An earlier example in this section used a dictionary table
to capture the names of all the data sets in a specific library and saved that information in
one macro variable.

One dictionary table, OPTIONS, provides information about the current settings of SAS
system options including macro facility related options. Another dictionary table,
MACROS, provides information about macro variables including their scope and values.
With these dictionary tables, you can access information about your current SAS session
and programmatically use that in controlling execution of your SAS programs.

Chapter 9: Interfaces to the Macro Facility 261

Example 9.20: Accessing Macro Option Settings with PROC SQL
 and Dictionary Tables
The OPTIONS dictionary table contains current settings and descriptions for SAS system
options. A column in the table, GROUP, assigns a category to the setting. One group is
MACRO. To display the current settings of the options in the MACRO group, submit the
following code.

Program 9.20a
proc sql;
 select * from dictionary.options
 where group='MACRO';
quit;

The PROC SQL step in Program 9.20b saves the setting of the macro option
MINDELIMITER in a macro variable MYSETTING.

Program 9.20b
options mindelimiter='#';
proc sql noprint;
 select setting
 into :mysetting
 from dictionary.options
 where optname='MINDELIMITER';
quit;
%put My current MINDELIMITER setting is &mysetting;

The SAS log after submitting the preceding program follows.

62 %put My current MINDELIMITER setting is &mysetting;
My current MINDELIMITER setting is #

Program 9.20b illustrates a simple example in working with the MACRO group of the
dictionary tables. It might, however, be much easier to simply submit the following
%LET statement to define macro variable MYSETTING.

%let mysetting=%sysfunc(getoption(mindelimiter));

262 SAS Macro Programming Made Easy, Second Edition

Example 9.21: Accessing Macro Variable Characteristics with
 PROC SQL and Dictionary Tables
The dictionary table MACROS contains information about macro variables. Included in
this table are the macro variables that you create as well as automatic variables created
by SAS. To display the list of macro variables currently defined in your session, submit
the following PROC SQL step.

Program 9.21
proc sql;
 select * from dictionary.macros;
quit;

As seen earlier in this book, submitting the following statement would display much of
the same information.

%put _all_;

Using Macro Facility Features in SAS
Component Language

Macro facility features can be incorporated in your SAS Component Language (SCL)
programs. SCL programs are compiled and executed the same way as SAS language
programs. The word scanner tokenizes the SCL statements and passes the tokens on to
the SCL compiler for compilation. Macro variable references in SCL programs outside of
SUBMIT blocks are resolved during tokenization and compilation. SCL programs
execute when they are called.

Macro variable references and macro programs specified in SCL programs are processed
in much the same way as they are in SAS language programs. However, many SCL
features can accomplish the same tasks as the macro facility. Using SCL features instead
of macro facility features may be preferable in order to make your SCL programs easier
to follow and maintain.

This section briefly describes how you can use macro variables in your SCL SUBMIT
blocks and how these macro variables relate to SCL variables.

Chapter 9: Interfaces to the Macro Facility 263

Using the Macro Facility to Pass Information between
SCL Programs

The macro facility can pass information between SCL programs. A global macro variable
created in one SCL program can be referenced in another SCL program. The SYMGET
function and the SYMPUT and SYMPUTX routines can pass macro variable values
between SCL programs when the SCL programs execute. Otherwise, any other
references to macro variables resolve at compilation of the SCL program.

The SYMGET function and the SYMPUT and SYMPUTX routines operate the same in
SCL as they do in the SAS language DATA step. In SCL, these tools update and retrieve
information from the global macro symbol table during execution of the SCL program.
Refer to the previous sections for more information on the use of these tools.

In addition, SCL has the SYMPUTN routine and SYMGETN functions. The SYMPUTN
routine assigns a numeric value to a global macro variable while the SYMGETN
function returns the value of a global macro variable as a numeric value.

Even though the macro facility can pass information between SCL programs, it might be
easier to follow and maintain your programs if you use the SCL CALL statement with
parameters and the associated ENTRY statement in the called program.

Example 9.22: Creating a Macro Variable in an SCL Program
The following example shows part of an SCL program that processes the initials that the
user enters and then creates a macro variable containing those initials.

Program 9.22a
array okinits{*} $ 3 ('MJM' 'JMB' 'BLT');

init:
 control label;
return;

term:
return;

264 SAS Macro Programming Made Easy, Second Edition

inits:
 erroroff inits;
 if inits not in okinits then do;
 erroron inits;
 msg='NOTE: Please enter valid initials.';
 end;
 else do;
 call symput('USERINIT',inits);
 end;
return;

The program excerpt in Program 9.22b executes after the previous program. This
program obtains the user's initials at the time of execution by using the SYMGET
function.

Program 9.22b
length inits $ 3;

init:
 inits=symget('USERINIT');
return;

main:
.
.
.

Referencing Macro Variables in SUBMIT Blocks
Macro variable references in SCL programs are resolved at the time of tokenization and
compilation. The exception to this is when SAS programs in SUBMIT blocks contain
macro variable references.

Macro variable references in SUBMIT blocks do not resolve until the SAS program in
the SUBMIT block is tokenized. During tokenization, SAS first checks to see if the
macro variable reference corresponds to an SCL variable in the SCL program. If it does,
the value of the SCL variable is substituted for the reference in the SAS program. If it
does not, the macro processor then takes over and looks for the macro variable in the
global symbol table.

To force the resolution of a macro variable reference by the macro processor and skip
resolution by the SCL program, precede the macro variable reference with two
ampersands.

Chapter 9: Interfaces to the Macro Facility 265

Example 9.23: Using SUBMIT Blocks That Contain Macro
 Variables
Program 9.23 includes two SUBMIT blocks for two SAS programs; each program
references a macro variable. Assume that there is a field on the SCL program screen for
the user to enter a report date. When the user leaves this field blank and selects to run a
report, the program in the first SUBMIT block executes. When the user specifies a report
date, the program in the second SUBMIT block executes.

Both SUBMIT blocks reference a macro variable with the same name as the SCL
variable. In the first SUBMIT block, two ampersands precede the macro variable name.
Only the macro processor attempts to resolve the reference. In the second SUBMIT
block, one ampersand precedes the macro variable name. Therefore, the SCL program is
first to attempt resolution of the reference.

Program 9.23
init:
 control label;
 repdate=_blank_;
return;

term:
return;

runrep:
 if repdate=_blank_ then link reptoday;
 else link specrep;
 repdate=_blank_;
return;

reptoday:
 msg='NOTE: Today''s report is processing....';
 submit continue;
 %let repdate=&sysdate;
 proc print data=books.ytdsales;
 where saledate="&&repdate"D;
 title "Report for &&repdate";
 var section title saleprice;
 run;
 endsubmit;
return;

266 SAS Macro Programming Made Easy, Second Edition

specrep:
 msg='NOTE: Past date report is processing....';
 submit continue;
 proc means data=books.ytdsales n sum;
 title "Sales Report for past date: &repdate";
 where saledate="&repdate"D;
 class section;
 var saleprice;
 run;
 endsubmit;
 return;

P a r t 2
Applying Your Knowledge of Macro
Programming

Chapter 10 Storing and Reusing Macro Programs 269

Chapter 11 Building a Library of Utilities 285

Chapter 12 Debugging Macro Programming and Adding Error Checking
 to Macro Programs 297

Chapter 13 A Stepwise Method for Writing Macro Programs 335

268 SAS Macro Programming Made Easy, Second Edition

C h a p t e r 1 0
Storing and Reusing Macro Programs

Introduction 270

Saving Macro Programs with the Autocall Facility 270

Creating an Autocall Library 271

Making Autocall Libraries Available to Your Programs 273

Maintaining Access to the Autocall Macro Programs That Ship with
SAS 273

Using the Autocall Facility under Windows, MVS/TSO, and Other
Directory-Based Systems 275

Saving Macro Programs with the Stored Compiled Macro Facility 278

Setting SAS Options to Create Stored Compiled Macro Programs 279

Creating Stored Compiled Macro Programs 280

Saving and Retrieving the Source Code of a Stored Compiled Macro
Program 281

Encrypting a Stored Compiled Macro Program 282

Resolving Macro Program References When Using the Autocall Facility and
the Stored Compiled Macro Facility 283

270 SAS Macro Programming Made Easy, Second Edition

Introduction

As your macro programming skills develop, you will find uses for your macro programs
in several different applications. You might want to share these macro programs with
your coworkers and make these macro programs available to your batch jobs. You might
want to develop your own set of utilities. Since reusability is one of the great features of
macro programs, it makes sense that there would be a systematic way to store macro
programs in SAS. In fact, there are two ways to store your macro programs in SAS: the
autocall facility and the stored compiled macro facility. This chapter describes how to
use these two tools.

The autocall facility consists of external files or SOURCE entries in SAS catalogs that
contain your macro programs. When you specify certain SAS options, the macro
processor searches your autocall libraries when it is resolving a macro program
reference.

The stored compiled macro facility consists of SAS catalogs that contain compiled
macro programs. When you specify certain SAS options, the macro processor searches
your catalogs of compiled macro programs when it is resolving a macro program
reference.

Saving Macro Programs with the Autocall
Facility

When you store a macro program in an autocall library, you do not have to submit the
macro program for compilation before you reference the macro program. The macro
processor does that for you if it finds the macro program in the autocall library.

Several SAS products ship with libraries of macro programs that you can reference, or
that are referenced by the SAS products themselves.

The main disadvantage to the autocall facility is that the macro program must be
compiled the first time it is used in a SAS session. This takes resources. Also, resources
are used to search the autocall libraries for the macro program reference.

Chapter 10: Storing and Reusing Macro Programs 271

After the macro processor finds your macro program in your autocall library, it submits
the macro program for compilation. If there are any macro language statements in open
code, these statements are executed immediately. The macro program is compiled and
stored in the session compiled macro program catalog, SASMACR, just as if you
submitted it yourself. SASMACR is in the WORK directory.

The macro program can be reused within your SAS session. When it is, only the macro
program itself is executed. Any macro language statements in open code that might have
been stored with the macro program are not executed again. The compiled macro
program is deleted at the end of the session when the catalog WORK.SASMACR is
deleted. The code remains in the autocall library.

Creating an Autocall Library
The macro programs that you select for your autocall library can be stored as external
files or as SOURCE entries in SAS catalogs.

To store macro programs as external files in a directory-based system such as Windows,
UNIX, and OpenVMS, you define the directory and add the macro programs to the
directory. Each macro program is stored in an individual file with a file type or extension
of SAS. The name given to the file must be the same as the macro program name. (Note
that on UNIX platforms, the filename and macro program name must be in lowercase.)

Under MVS and TSO, macro programs that are stored as external files are saved as
members of a partitioned data set. The name of the member should be the same as the
name of the macro program.

When storing macro programs in a SAS catalog, make each macro program a separate
SOURCE entry. The name of the SOURCE entry should be the same as the macro
program name.

Display 10.1 shows an example of an autocall library where the four macro programs are
stored as separate files.

272 SAS Macro Programming Made Easy, Second Edition

Display 10.1 A Windows XP directory containing four autocall macro
 programs

Display 10.2 shows a SAS catalog that contains the four macro programs stored as
SOURCE entries.

Display 10.2 A SAS catalog containing four autocall macro programs stored
 as SOURCE entries

Chapter 10: Storing and Reusing Macro Programs 273

Making Autocall Libraries Available to Your Programs
When you want SAS to search for your macro programs in autocall libraries, you must
specify the two SAS options, MAUTOSOURCE and SASAUTOS. These options can be
specified three ways:

Add MAUTOSOURCE and SASAUTOS to the SAS command that starts the
SAS session.

Submit an OPTIONS statement with MAUTOSOURCE and SASAUTOS from
within a SAS program.

Submit an OPTIONS statement with MAUTOSOURCE and SASAUTOS from
within an interactive SAS session.

The MAUTOSOURCE option must be enabled to tell the macro processor to search
autocall libraries when resolving macro program references. By default, this option is
enabled. Specify NOMAUTOSOURCE to turn off this option. A reason someone might
disable MAUTOSOURCE is to save computing resources when not using autocall
libraries.

options mautosource;
options nomautosource;

The SASAUTOS= option identifies the location of the autocall libraries for the macro
processor. On the SASAUTOS= option, specify either the actual directory reference
enclosed in single quotation marks or the filerefs that point to the directories. A
FILENAME statement defines the fileref.

The syntax of the SASAUTOS= option follows. The first line shows how to specify one
library. The second line shows how to specify multiple libraries. The macro processor
searches the libraries in the order in which they are listed on the SASAUTOS= option.

options sasautos=library;
options sasautos=(library-1, library-2,..., library-n);

Maintaining Access to the Autocall Macro Programs That
Ship with SAS

Autocall libraries in macro programs come with many SAS products. Chapter 6 describes
many of these macro programs that ship with Base SAS. Your SAS session automatically
assigns a fileref of SASAUTOS to the macro programs described in Chapter 6. Some
applications of these macro programs include changing the case of a macro variable

274 SAS Macro Programming Made Easy, Second Edition

value to lowercase (%LOWCASE) and trimming trailing blanks from a macro variable
value (%TRIM).

With MAUTOSOURCE in effect and a typical installation of SAS that assigns the
SASAUTOS= option to SASAUTOS, your SAS session automatically has access to
these autocall macro programs.

To maintain access to the SASAUTOS autocall library, remember to include the
SASAUTOS fileref when specifying references to your own libraries with the
SASAUTOS= option. If you omit the SASAUTOS fileref when you issue your
SASAUTOS= option, and you have not previously accessed the macro program shipped
with SAS that you want to use, you will not have access to that macro program. If you
had previously accessed one of the macro programs in the SASAUTOS library before
removing SASAUTOS from the SASAUTOS= option, you will still be able to reference
that macro program. This is because, on the first reference to that autocall macro
program, the macro processor compiles the macro program and makes it available for the
duration of the SAS session.

Defining Filerefs under Windows XP and Using Them to
Identify Autocall Libraries
The next statements define two filerefs under Windows XP with SAS®9 and assigns them
to SASAUTOS=. The OPTIONS statement includes these two filerefs plus the
SASAUTOS fileref.

filename reports 'c:\mymacroprograms\repmacs';
filename graphs 'c:\mymacroprograms\graphmacs';
options sasautos=(reports graphs sasautos);

Explicitly Specifying the Directory Locations of Autocall
Libraries on the OPTIONS Statement
To specify the same libraries as above without using filerefs, submit the following
statement. Note the inclusion of the SASAUTOS fileref.

options sasautos=
('c:\mymacroprograms\repmacs' 'c:\mymacroprograms\graphmacs'

 sasautos);

Chapter 10: Storing and Reusing Macro Programs 275

Identifying Autocall Libraries That Are Stored in SAS
Catalogs
An autocall library stored in a SAS catalog requires that you specify the CATALOG
access method on the FILENAME statement that identifies the autocall library. The
syntax of the FILENAME statement is

filename fileref catalog 'library.catalog';

The next statements reference a user-defined autocall library stored in a SAS catalog
under Windows XP SAS®9. It also includes the SASAUTOS fileref.

filename mymacs catalog 'books.repmacs';
options sasautos=(mymacs sasautos);

Listing the Names of the Autocall Libraries That Are
Defined in the SAS Session
If you want to check what autocall libaries are defined in the current SAS session, submit
the following PROC step.

proc options option=sasautos;
run;

Using the Autocall Facility under Windows, MVS/TSO, and
Other Directory-Based Systems

Under a directory-based system, all macro programs are stored as individual files in a
directory. Each macro program should have a file extension of .sas and a filename
identical to the macro program name. Preceding examples use the autocall facility under
Windows XP.

Using the Autocall Facility under MVS Batch
Under the MVS operating system, autocall libraries are stored in partitioned data sets.
Each macro program is a member in the partitioned data set. The name of the member is
the same as the name of the macro program. A JCL DD statement assigns autocall
libraries. The following example shows the beginning of the JCL for a batch job that
specifies one autocall library. Note that the MAUTOSOURCE option is enabled.

//MYJOB JOB account....
// EXEC SAS,OPTIONS='MAUTOSOURCE'
//SASAUTOS DD DSN=MYAPPS.REPMACS,DISP=SHR

276 SAS Macro Programming Made Easy, Second Edition

The next example shows how multiple macro libraries can be specified.

//MYJOB JOB account....
// EXEC SAS,OPTIONS='MAUTOSOURCE'
//SASAUTOS DD DSN=MYAPPS.REPMACS,DISP=SHR
// DD DSN= MYAPPS.GRPHMACS,DISP=SHR

An OPTIONS statement can also be submitted from within the SAS program to specify
the use of autocall libraries. The following statement specifies one user-defined autocall
library plus the SASAUTOS fileref.

options mautosource sasautos=('myapps.repmacs' sasautos);

The following statement specifies two user-defined autocall libraries plus the
SASAUTOS fileref.

options mautosource sasautos= ('myapps.repmacs' 'myapps.grphmacs'
 sasautos);

Using the Autocall Facility under TSO
As with MVS batch jobs, autocall libraries under TSO are stored in partitioned data sets;
each macro program is a member.

The following example starts an interactive TSO session that assigns one user-defined
autocall library and includes the SASAUTOS reference.

sas options('mautosource sasautos=("myapps.repmacs" sasautos)')

The next example starts an interactive TSO session that assigns two user-defined autocall
libraries and includes the SASAUTOS reference.

sas options('mautosource sasautos=("myapps.repmacs"
 "myapps.grphmacs" sasautos)')

Autocall libraries can also be specified from within the SAS session by using the
OPTIONS statement. The OPTIONS statement is written as shown in the preceding
MVS Batch section.

Using the Autocall Facility under UNIX
As with other directory-based systems, autocall libraries under UNIX are made up of
separate files, each with .sas as the extension. Each macro program is in a separate file.
The name of the file is the same as the name of the macro program. Note that the
filename and macro program name must be in lowercase on UNIX platforms.

Chapter 10: Storing and Reusing Macro Programs 277

The following example specifies one user-defined autocall library and includes the
SASAUTOS reference.

sas -mautosource -sasautos '/mymacroprograms/repmacs'
 -append sasautos sasautos

The next example specifies two user-defined autocall libraries and includes the
SASAUTOS reference.

sas -mautosource -sasautos '/mymacroprograms/graphmacs'
 –append sasautos '/mymacroprograms/repmacs'
 -append sasautos sasautos

From within a UNIX SAS session, the following line specifies one user-defined autocall
library and includes the SASAUTOS reference.

options mautosource sasautos=('/mymacroprograms/repmacs',
 sasautos)

The next OPTIONS statement specifies two user-defined autocall libraries from within a
UNIX SAS session and includes the SASAUTOS reference.

options mautosource sasautos=
('/mymacroprograms/repmacs','/mymacroprograms/graphmacs',
 sasautos);

Using the Autocall Facility under OpenVMS
OpenVMS is a directory-based operating system. Macro programs in an autocall library
are stored in a directory as separate files. The name of the file is the same as the name of
the macro program. The extension of the macro program files should be .sas.

The following SAS command specifies one user-defined autocall library and includes the
SASAUTOS reference.

sas /mautosource/sasautos=('[myapps.programs.repmacs]',
 sasautos)

The next SAS command specifies two user-defined autocall libraries and includes the
SASAUTOS reference.

sas /mautosource/sasautos=
('[myapps.programs.repmacs]', '[myapps.programs.grphmacs]',
 sasautos)

278 SAS Macro Programming Made Easy, Second Edition

From within a SAS program or SAS interactive session, the following OPTIONS
statement specifies one user-defined autocall library and includes the SASAUTOS
reference.

options mautosource sasautos=('[myapps.programs.repmacs]',
 sasautos);

The next OPTIONS statement specifies two user-defined autocall libraries and includes
the SASAUTOS reference.

options mautosource sasautos=
('[myapps.programs.repmacs]', '[myapps.programs.grphmacs]',
 sasautos);

Saving Macro Programs with the Stored
Compiled Macro Facility

Macro programs that you want to save and do not expect to modify can be compiled and
saved in SAS catalogs using the stored compiled macro facility. When a compiled macro
program is referenced in a SAS program, the macro processor skips the compiling step,
retrieves the compiled macro program, and executes the compiled code. The main
advantage of this facility is that it prevents repeated compiling of macro programs that
you use frequently.

A disadvantage of this facility is that the compiled versions of macro programs cannot be
moved to other operating systems. The macro source code must be saved and recompiled
under the new operating system. Further, if you are moving the compiled macro
programs to a different release of SAS under the same operating system, you might also
have to recompile the macro programs.

Macro source code is not stored by default with the compiled macro program. You are
responsible for maintaining a copy of the macro source code. A convenient place to store
the code is an autocall library. Also, you can save the source code as a SOURCE entry in
a catalog if you specify the SOURCE option when compiling your macro program.
Another way of saving the macro program code for later retrieval is shown in a later
section where the SOURCE option is added to the %MACRO statement when creating a
stored compiled macro program. This option stores the macro program code in the same
entry as the compiled code, and you can retrieve this code later with the %COPY
statement.

Chapter 10: Storing and Reusing Macro Programs 279

Setting SAS Options to Create Stored Compiled Macro
Programs

You need to set two SAS options, MSTORED and SASMSTORE, before you can
compile and store your macro programs.

The MSTORED option instructs SAS that you want to make stored compiled macro
programs available to your SAS session.

options mstored;

To turn off the MSTORED option, submit the following OPTIONS statement.

options nomstored;

The value that you assign to the SASMSTORE option is the libref that points to the
location of the SAS catalog containing the compiled macro programs. Here is an
example of SASMSTORE under Windows XP in SAS®9:

libname myapps 'c:\mymacroprograms';
options mstored sasmstore=myapps;

SAS stores compiled macro programs in a catalog called SASMACR. The SASMACR
catalog is stored in the directory specified by the SASMSTORE option. In this example,
that directory has the libref of MYAPPS. Do not rename the SASMACR catalog. Use the
CATALOG command or PROC CATALOG to view the list of macro programs stored in
this catalog.

You can also tell the macro processor to search SASMACR catalogs in multiple
locations for a stored compiled macro program by listing the multiple paths on the
LIBNAME statement. The following code tells the macro processor to look in the
SASMACR catalog in the three locations that are specified within the parentheses.

The order in which you list the paths is the order in which SAS searches for a stored
compiled macro program. If you have a macro program with the same name in two
locations, the program found in the first of the two paths is the one that executes.

libname myapps ('c:\mymacroprograms',
 'z:\mymacroprograms',
 'c:\legacy\macros');
options mstored sasmstore=myapps;

280 SAS Macro Programming Made Easy, Second Edition

Creating Stored Compiled Macro Programs
Once the SAS options in the previous section are set, macro programs can be compiled
and stored in a catalog by adding options to the %MACRO statement. The syntax of
%MACRO when you want to compile and store a macro program follows:

%macro macro-name(parameters) / store <source secure
 des="description">;
 macro-program-code
%mend macro-name;

The STORE keyword is required. The SOURCE, SECURE, and DES= options are not
required.

The SOURCE option tells the macro processor to save a copy of the macro program’s
source code, along with the compiled macro program in the same SASMACR catalog. It
does not have a separate entry in the catalog and is instead stored in the same MACRO
entry as the compiled macro program.

Starting with SAS 9.2, you can use the SECURE option to encrypt the compiled macro
program and prevent someone from easily obtaining the source code. Without the
SECURE option, it is not easy, but it is possible to extract the code.

Use the DES= option to save up to 40 characters of text to describe your macro program.
SAS displays the descriptive text when you view the contents of the catalog that holds
the compiled stored macro programs.

Example 10.1: Creating a Stored Compiled Macro Program
An example of defining a macro program and storing it in a catalog under Windows XP
in SAS®9 follows:

Program 10.1
libname myapps 'c:\mymacroprograms';
options mstored sasmstore=myapps;

%macro reptitle(repprog) / store des='Standard Report Titles';
 title "Bookstore Report &repprog";
 title2 "Processing Date: &sysdate SAS Version: &sysver";
%mend reptitle;

Display 10.3 shows the DIR window for the MYAPPS.SASMACR catalog after
submitting this program.

Chapter 10: Storing and Reusing Macro Programs 281

Display 10.3 SAS DIR window for a catalog with one stored compiled
 macro program

Saving and Retrieving the Source Code of a Stored
Compiled Macro Program

As mentioned earlier, the SOURCE option on the %MACRO statement in conjunction
with the STORE option saves a copy of the source code of the compiled macro program.
It is not saved as a separate entry that you can retrieve; it is embedded in the same entry
as the compiled code. To retrieve a copy of the code, use the %COPY macro language
statement. This statement can list the code in the SAS log or save the code to a file. The
syntax of the %COPY statement follows. The three options are optional.

%COPY macro-program-name / <library= outfile= <fileref>
<’external file'> source >;

By default, if you do not specify a libref with the LIBRARY= option, the macro
processor will look in the library specified by the current setting of SASMSTORE.

Example 10.2: Saving the Source Code of a Stored Compiled
 Macro Program
Program 10.1 is modified in Program 10.2 to save the macro program code along with
the compiled macro program.

282 SAS Macro Programming Made Easy, Second Edition

Program 10.2
libname myapps 'c:\mymacroprograms';
options mstored sasmstore=myapps;

%macro reptitle(repprog) / store source
 des='Standard Report Titles';
 title "Bookstore Report &repprog";
 title2 "Processing Date: &sysdate SAS Version: &sysver";
%mend reptitle;

If you want to view the code in the SAS log, submit the following statement:

%copy reptitle / library=myapps source;

The SAS log shows the results of submitting the %COPY statement.

9 %copy reptitle / library=myapps source;
%macro reptitle(repprog) / store source des='Standard Report
Titles';
 title "Bookstore Report &repprog";
 title2 "Processing Date: &sysdate SAS Version: &sysver";
%mend reptitle;

If you want to save the code in a file called REPTITLE_SOURCE.SAS, submit the
following %COPY statement.

%copy reptitle / library=myapps source
outfile='c:\mymacroprograms\reptitle_source.sas';

Encrypting a Stored Compiled Macro Program
Starting with SAS 9.2, as mentioned earlier, the SECURE option on the %MACRO
statement in conjunction with the STORE option encrypts the compiled macro program.
The SECURE and SOURCE options are incompatible on the same %MACRO statement.
Therefore, you must save a copy of your macro program code separately from the stored
compiled macro program before you store and compile a macro program with the
SECURE option.

Example 10.3: Encrypting a Stored Compiled Macro Program
Program 10.2 is modified in Program 10.3 so that the stored compiled macro program is
secure and encrypted. Note that this program executes only in SAS 9.2 or later.

Chapter 10: Storing and Reusing Macro Programs 283

Program 10.3
libname myapps 'c:\mymacroprograms';
options mstored sasmstore=myapps;

%macro reptitle(repprog) / store secure
 des='Standard Report Titles';
 title "Bookstore Report &repprog";
 title2 "Processing Date: &sysdate SAS Version: &sysver";
%mend reptitle;

Resolving Macro Program References When
Using the Autocall Facility and the Stored
Compiled Macro Facility

The autocall facility and the stored compiled macro facility increase the scope of the
tasks that the macro processor can do for you. Now, instead of explicitly submitting a
macro program, you tell the macro processor where and how the macro program is
stored. The macro processor understands that it should check these sources after looking
within the SAS session for macro programs that were compiled during the session.

If the macro processor finds the macro program in your autocall library, it submits the
macro program for compilation. When the macro processor finds the macro program in
your SASMACR catalog, it submits for execution the compiled code that is stored in the
catalog.

When you make autocall libraries and stored compiled macro programs available to your
SAS session by enabling the options described above, the macro processor takes the
steps in Figure 10.1 to resolve a macro program reference.

284 SAS Macro Programming Made Easy, Second Edition

Figure 10.1 How the macro processor resolves calls to macro programs

C h a p t e r 1 1
Building a Library of Utilities

Introduction 285

Writing a Macro Program to Behave Like a Function 286

Programming Routine Tasks 290

Introduction

Chapter 10 showed ways of saving your macro program code and compiled macro
programs. With these tools, you can create and organize your own libraries of macro
programs that you and your coworkers frequently use. This chapter introduces the concept
of building your own library of macro programs that perform routine or frequent tasks.

Because your work requirements are very different from that of another reader, your
library of utility macro programs is likely to be different from his or hers. As you read
through the chapter, keep in mind the routine and commonly performed programming
tasks that you could include in your own library of utility routines. The SAS website,

286 SAS Macro Programming Made Easy, Second Edition

SAS conference proceedings, and SAS Press books are useful sources of code that you
can adapt and add to your own libraries of tools.

Writing a Macro Program to Behave Like a
Function

You can write a macro program to return a value as though it was a macro function.
These values can be used to test conditions in your macro program code. These types of
macro programs may be useful when you need to customize actions similar to those
produced by existing macro functions that you frequently use, as shown in Examples
11.1 and 11.2.

Example 11.1: Examining Specific Data Set Characteristics
The SAS language function EXIST determines if a data set exists and sets a return code
based on its determination. It returns 1 if the data set exists and 0 if the data set does not
exist. The following code shows how you could test for the existence of a data set with
this function. If the data set exists, PROC PRINT lists the first ten observations of the
data set specified in the parameter DSNAME. Otherwise, the macro program
LISTSAMPLE writes a message to the SAS log that the data set does not exist.

Program 11.1a
%macro listsample(dsname);
 %if %sysfunc(exist(&dsname)) %then %do;
 proc print data=&dsname(obs=10);
 title "First 10 Observations of &dsname";
 run;
 %end;
 %else %put ERROR: ***** Data set &dsname does not exist.;
%mend listsample;

%listsample(books.ytdsales)

Program 11.1a successfully checks for the existence of a data set.

If your needs require that multiple features of a data set hold in addition to existence of
the data set, you could extend the testing that LISTSAMPLE does. These tests could be
put in another macro program that you could reference similarly to the way you reference
the EXIST function. This macro program could return a value of 0 or 1 just as SAS
language function EXIST does.

Chapter 11: Building a Library of Utilities 287

Macro program MULTCOND in Program 11.1b checks four conditions of a data set,
including whether it exists. The macro program defines a macro variable RC whose
values can be 0 or 1 depending on the macro program’s evaluations of the data set. When
the returned value is 0, the data set should not be processed. When the returned value is
1, the data set can be processed.

Macro program MULTCOND returns a value by applying the PUTN SAS language
function to macro variable RC. The %SYSFUNC macro function is required to execute
the PUTN function.

Note that all the macro variables used in macro program MULTCOND are defined as
local macro variables on the %LOCAL statement. Since this macro program could be
accessed in different situations, declaring these macro variables as local prevents
conflicts in macro variable resolution if these macro variables had previously been
defined in open code or by a macro program that called MULTCOND.

The four conditions that macro program MULTCOND examines are:

1. Data set existence with the EXIST SAS language function

2. Data set can be opened for input with the OPEN SAS language function

3. Data set has at least one undeleted observation as determined by the ATTRN SAS
language function and NLOBS argument

4. Data set has a read access password as determined by the ATTRN SAS language
function and READPW argument.

The macro program branches to label SETRC when a test fails. The %LET statement that
follows this label sets the value of RC to zero. If a data set passes all tests, the value of
RC is 1.

Note that the only modification to LISTSAMPLE in Program 11.1a was to replace
%sysfunc(exist) with %multcond(&dsname).

Program 11.1b
%macro multcond(dsname);
 %local rc dsid exist nlobs readpw;

 %*----Initialize return code to 1;
 %let rc=1;
 %*----Initialize data set id;
 %let dsid=0;

 %*----Does data set exist (condition 1);
 %let exist=%sysfunc(exist(&dsname));

288 SAS Macro Programming Made Easy, Second Edition

 %*----Data set does not exist;
 %if &exist=0 %then %goto setrc;

 %let dsid=%sysfunc(open(&dsname,i));
 %*----Data set cannot be opened (condition 2);
 %if &dsid le 0 %then %goto setrc;
 %*----Any obs to list from this data set? (condition 3);
 %let nlobs=%sysfunc(attrn(&dsid,nlobs));
 %*----No obs to list;
 %if &nlobs le 0 %then %goto setrc;

 %*----Read password set on this data set? (condition 4);
 %let readpw=%sysfunc(attrn(&dsid,readpw));
 %*----READPW in effect, do not list;
 %if &readpw=1 %then %goto setrc;

 %*----Data set okay to list, skip over section
 that sets RC to 0;
 %goto exit;

 %*----Problems with data set, set RC to 0;
 %setrc:
 %let rc=0;

 %exit:
 %if &dsid ne %then %let closerc=%sysfunc(close(&dsid));

 %*----Return the value of macro variable RC;
 %sysfunc(putn(&rc,1.))
%mend;

%macro listsample(dsname);
 %if %multcond(&dsname)=1 %then %do;
 proc print data=&dsname(obs=10);
 title "First 10 Observations of &dsname";
 run;
 %end;
 %else %put ERROR: ***** Data set &dsname cannot be listed.;
%mend listsample;

*----First call to LISTSAMPLE;
%listsample(books.ytdsales)

*----Second call to LISTSAMPLE;
%listsample(books.ytdsaless)

Chapter 11: Building a Library of Utilities 289

In the first call to LISTSAMPLE, assume BOOKS.YTDSALES exists and passes the
four tests in MULTCOND. Therefore, the PROC PRINT step lists the first ten
observations.

In the second call to LISTSAMPLE, the data set name is misspelled in order to cause
MULTCOND to assign a value of 0 to macro variable RC. The value that
%MULTCOND returns is a 0 and the %ELSE statement in LISTSAMPLE executes.
Macro program LISTSAMPLE writes to the SAS log in red the following message after
submission of the second call.

ERROR: ***** Data set books.ytdsaless cannot be listed.

Example 11.2: Editing Character Data for Comparisons
Character data such as names, titles, and addresses can be stored various ways. When
you want to select observations from a data set based on a character data value, you may
have to edit the value so that you can find as many matching observations as possible in
the data set. From your text value, you may need to remove extra blanks and punctuation
and convert the value to a specific case. If you commonly edit a type of value the same
way, you may want to create a utility macro program that does this task for you, which
you can later reference when needed.

Program 11.2 submits a PROC REPORT step that lists all titles for an author. It defines a
macro program, TRIMNAME, that edits the author’s name to remove extra blanks and
all punctuation, except for commas, and converts the author’s name to uppercase. This
edited value is then supplied to the WHERE statement of the PROC REPORT step and is
inserted in the title.

Using multiple SAS language and macro functions, TRIMNAME edits the parameter value
it receives. Note there are no macro or SAS language statements in TRIMNAME. All that
TRIMNAME does is apply the series of functions to the parameter value that it receives.

Note the usage of the quoting functions %NRBQUOTE and %SUPERQ. In this example,
the author’s name can contain a comma and without using these functions, the comma is
interpreted as a separator between arguments to functions %CMPRES and COMPRESS,
respectively. Omitting the quoting functions generates errors.

Program 11.2
%macro trimname(namevalue);
 %cmpres(%nrbquote(%upcase(%sysfunc(
 compress(%superq(namevalue),%str(,),kA)))))
%mend trimname;

290 SAS Macro Programming Made Easy, Second Edition

proc report data=books.ytdsales
 (where=(upcase(author)=
 "%trimname(%str(wright, james.))"))
 nowd;
 title "Title list for %trimname(%str(Wright, james))";
 column booktitle n;
 define booktitle / group width=30;
run;

Output 11.1 shows the results of the PROC REPORT step, including the editing of the
author’s name for insertion in the title.

Output 11.1 Output from Program 11.2 that applies a macro program that
 behaves like a function

 Title list for WRIGHT, JAMES

 Title of Book n

 Internet Title 711 12

 Programming and Applications T 1

Programming Routine Tasks

In your SAS programming, you may need to program the same process in different
applications. For example, perhaps your company requires that all reports have the same
dimensions, a title written a certain way, and a footnote identifying program name and
programmer. It is often useful to save these routine, frequently used tasks as macro
programs in a library of utilities.

Example 11.3: Standardizing RTF Output
Program 11.3 defines two macro programs that manage production of reports sent to the
ODS RTF destination and applies these to the production of a report by PROC REPORT.
The tasks that these two macro programs accomplish are examples of the kinds of routine
tasks you might want to consider adding to your library of utility routines.

The first macro program, RTF_START, initializes settings when sending a report to the
ODS RTF destination. The second macro program, RTF_END, resets options and closes
the RTF destination after the report or reports are produced. Macro program
RTF_START does the following tasks:

Chapter 11: Building a Library of Utilities 291

closes the LISTING destination

changes the orientation to that specified by the value of the ORIENTATION
parameter

turns off the SAS option DATE

specifies an ODS style to use in producing the report

specifies TITLE1 and FOOTNOTE1 statements.

Macro program RTF_END does the following tasks:

closes the RTF destination

opens the LISTING destination

resets the orientation to PORTRAIT

turns on SAS option DATE

clears the TITLE1 and FOOTNOTE1 statements.

In Program 11.3, the two macro programs are first submitted and compiled. Then macro
program RTF_START executes, followed by a PROC REPORT step. Last, macro
program RTF_END executes.

The call to RTF_START specifies the ODS style MONEY that is shipped with SAS
software and found in SASUSER.TMPLMST.

Program 11.3
%macro rtf_start(style=,orientation=);
 %* This macro program initializes settings to send reports
 to ODS RTF destination;
 ods listing close;

 options orientation=&orientation nodate;
 ods rtf style=&style;

 title1 justify=center "Bookstore";
 footnote justify=right "Report Prepared &sysdate9";
%mend rtf_start;

%macro rtf_end;
 %* This macro program resets options and closes the RTF
 destination after sending a report to the ODS RTF
 destination;

292 SAS Macro Programming Made Easy, Second Edition

 Report Prepared 25FEB2008

 Bookstore

 ods rtf close;
 ods listing;

 options orientation=portrait date;
 title;
 footnote1;
%mend rtf_end;

%rtf_start(style=money,orientation=landscape)

proc report data=books.ytdsales nowd;
 column section saleprice;
 define section / group;
 define saleprice / sum analysis format=dollar11.2;
 rbreak after / summarize;
 compute after;
 section='** Totals **';
 endcomp;
run;

%rtf_end

The output report is in color. A gray-scale copy of the report follows in Output 11.2.

Output 11.2 Report produced by Program 11.3

Section Sale Price
Certification and Training $31,648.52

Internet $62,295.78

Networks and Telecommunication $30,803.81

Operating Systems $39,779.11

Programming and Applications $62,029.41

Web Design $37,121.52

** Totals ** $263,678.15

Chapter 11: Building a Library of Utilities 293

Example 11.4: Documenting Characteristics of a Data Set
As a programmer, you may frequently want to list specific information about a data set in
a specific order. You could submit multiple steps and review the output to do this.
Alternatively, you could write a macro program to accomplish all the steps and save the
macro program in your library of utilities to be referenced as needed.

Macro program FACTS in Program 11.4 determines specific information about a SAS
data set, lists this information, and lists the first five observations of the data set. It saves
the output in a PDF file. The information presented is available in several procedures.
The goal of this macro program is to list only specific pieces of information in a specific
order to produce customized documentation of the data set.

The only parameter to FACTS is DSNAME, which is the name of the data set that
FACTS should examine. Macro program FACTS saves the data set characteristics in a
data set and displays the information with PROC PRINT. Output from this program is
directed to the ODS PDF destination. Temporary data sets created by FACTS are deleted
at the conclusion of the macro program.

The program is long, but it does just a few tasks. Macro program FACTS creates several
macro variables with PROC SQL and accesses the data set descriptive information from
dictionary tables.

The data set that contains the information for the report has two variables, ATTRIBUTE
and VALUE. The information obtained by PROC SQL and saved in macro variables is
assigned to these two variables. The macro variables created by PROC SQL are in bold
and underlined in Program 11.4.

Macro program FACTS could be improved with error checking. For example, the first
task that could be done is to determine if the data set exists. If not, a different report
could be produced. Actions could also be specified based on the results obtained from
the dictionary tables. Different ODS destinations and further enhancements of the report
could be made.

Note that all the macro variables created in macro program FACTS are defined as local
macro variables on the %LOCAL statement, as was done in the definition for macro
program MULTCOND in Program 11.1b. This action prevents conflicts in macro
variable resolution if these macro variables had previously been defined in open code or
by a macro program that calls FACTS.

294 SAS Macro Programming Made Easy, Second Edition

Program 11.4
%macro facts(dsname);
 %local dslib dsmem varpos varalpha dslabel crdate modate
 nobs nvar;
 %let dsname=%upcase(&dsname);

 %*----Extract each part of data set name;
 %let dslib=%scan(&dsname,1,.);
 %let dsmem=%scan(&dsname,2,.);

 proc sql noprint;
 create table npos as
 select npos,name
 from dictionary.columns
 where libname="&dslib" and memname="&dsmem"
 order by npos;
 select name into :varpos separated by ', ' from npos;

 select name
 into :varalpha separated by ', '
 from dictionary.columns
 where libname="&dslib" and memname="&dsmem"
 order by name;

 select memlabel,crdate,modate,nobs,nvar
 into :dslabel,:crdate,:modate,:nobs,:nvar
 from dictionary.tables
 where libname="&dslib" and memname="&dsmem";
 quit;

 data temp;
 length attribute $ 35
 value $ 500;

 *----Create an observation for each characteristic of the
 data set;
 attribute='Creation Date and Time';
 value="&crdate";
 output;
 attribute='Last Modification Date and Time';
 value="&modate";
 output;
 attribute='Number of Observations';

Chapter 11: Building a Library of Utilities 295

 value="&nobs";
 output;
 attribute='Number of Variables';
 value="&nvar";
 output;
 attribute='Variables by Position';
 value="&varpos";
 output;
 attribute='Variables Alphabetically';
 value="&varalpha";
 output;
 run;

 ods listing close;
 ods pdf;
 title "Data Set Report for &dsname %trim(&dslabel)";
 proc print data=temp noobs label;
 var attribute value;
 label attribute='Attribute'
 value='Value';
 run;
 proc print data=&dsname(obs=5);
 title2 "First 5 Observations";
 run;
 ods pdf close;
 ods listing;

 proc datasets library=work nolist;
 delete temp npos;
 run;
 quit;
%mend facts;

%facts(books.ytdsales)

Output 11.3 presents the results of applying macro program FACTS to data set
BOOKS.YTDSALES as specified in the last statement in Program 11.4.

296 SAS Macro Programming Made Easy, Second Edition

Output 11.3 Report produced by Program 11.4

 Data Set Report for BOOKS.YTDSALES Sales for 2007

Attribute Value

Creation Date and Time 07JAN07:15:52:25
Last Modification Date and
Time 22FEB08:15:52:25

Number of Observations 6096

Number of Variables 10

Variables by Position saleid, cost, listprice, saleprice, datesold, section, saleinit, booktitle,
author, publisher

Variables Alphabetically author, booktitle, cost, datesold, listprice, publisher, saleid, saleinit,
saleprice, section

 Data Set Report for BOOKS.YTDSALES Sales for 2007

 First 5 Observations

Obs section saleid saleinit datesold booktitle author publisher cost listprice Sale
price

1 Web
Design

10000001 LPL 01/18/2007 Web
Design
Title 160

Allen,
Michael

IT Training
Texts

$18.48 $36.95 $33.26

2 Certificat
ion and
Training

10000002 MJM 01/07/2007 Certificati
on and
Training
Title 115

Martinez,
Robert

Popular
Names
Publishers

$22.48 $44.95 $44.95

3 Web
Design

10000003 JAJ 01/24/2007 Web
Design
Title 150

Flores,
Barbara

Technology
Smith

$17.48 $34.95 $34.95

4 Program
ming and
Applicati
ons

10000004 CAD 01/20/2007 Programm
ing and
Applicatio
ns Title
330

Williams,
Emma

Doe&Lee
Ltd.

$22.48 $44.95 $44.95

5 Internet 10000005 SMA 01/05/2007 Internet
Title 745 Harris,

Ashley
AMZ
Publishers

$18.48 $36.95 $36.95

C h a p t e r 1 2
Debugging Macro Programming and Adding
Error Checking to Macro Programs

Introduction 298
Understanding the Types of Errors That Can Occur in Macro
Programming 298

Minimizing Errors in Developing SAS Programs That Contain Macro
Language 299

Categorizing and Checking for Common Problems in Macro
Programming 299

Understanding the Tools That Can Debug Macro Programming 303

Using SAS System Options to Debug Macro Programming 304

Using Macro Language Statements to Debug Macro Programming 305

Using Macro Functions to Debug Macro Programming 306

Using Automatic Macro Variables to Debug Macro Programming 306

Examples of Solving Errors in Macro Programming 307

Improving Your Macro Programming by Including Error Checking 326

298 SAS Macro Programming Made Easy, Second Edition

Introduction

Despite your best efforts, your coding is going to include errors from time to time. To
prevent and correct errors in your programs, you need to rely on your knowledge of SAS
and macro processing concepts and features to help you track down the source of the
problems. This chapter shows you where some errors can occur in your macro programs,
and it describes tools and techniques that you can employ to help you prevent and correct
those errors.

Understanding the Types of Errors That Can
Occur in Macro Programming

Including macro language in your SAS programs can increase the complexity of
debugging your programs. Errors can originate in your SAS code, errors can originate in
your macro language code, and errors can originate in the SAS code generated by the
macro language. When debugging a program that did not execute as you expected, you
will need to determine the origin of the error.

Errors can also occur at the different stages of processing a program. A misspelled macro
function name is detected during compilation when the macro processor cannot resolve
the reference. An error that occurs during execution may not be detected by SAS or by
the macro processor. All of the statements may be specified correctly, but the outcome is
not what you intended. Most likely execution-time problems arise from logic errors in
your SAS or macro language programming statements.

A syntax error, which is detected during compilation, occurs when macro language code
does not follow macro language rules. Syntax errors are usually easy to fix. When your
program contains a syntax error, such as a misspelled keyword, it does not execute and
messages related to the syntax error are written to the SAS log.

An execution error, which usually results from problems in logic, may or may not be
easy to fix. This is where your knowledge of the concepts of macro processing and SAS
processing becomes more important. Messages related to the problem may or may not be
written to the SAS log. You may need to employ some of the techniques described in this
chapter and earlier in the book to find the source of your execution error.

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 299

Minimizing Errors in Developing SAS Programs
That Contain Macro Language

As you begin to incorporate macro language in your SAS programs, you will probably
find it most efficient to add this code in steps of increasing complexity and test each step
as you develop your application. Attempting to write the complete application without
testing its components could cause considerable difficulty in debugging your application.

A typical way to develop a macro application is to make sure that the SAS code, without
any macro language features, does what you expect and after completing that task, then
you add macro facility features. Chapter 13 breaks down this process into four steps and
applies the process to an example. A list of the four steps follows.

1. Write your SAS code without any macro features.

2. Assign any hard-coded programming constants in your SAS code to macro variables
defined in open code. Such constants could include data set name, time period in
which to analyze the data, and title text.

3. Write a macro program and convert the open code macro variables defined in Step 2
to parameters to your macro program.

4. Add error checking to your macro program and generalize the processing in your
macro program so that it can accommodate a wider range of processing tasks.

As you build and test your macro program in steps, you can use several macro facility
features such as system options and macro language statements to verify that your macro
program executes correctly. These are the same tools that can help you debug your macro
programs, and these tools are described and demonstrated later in this chapter. Examples
in previous chapters also apply these tools.

Categorizing and Checking for Common
Problems in Macro Programming

Table 12.1 categorizes areas in which common problems can occur in SAS programs that
contain macro language. Each category has a list of items that you can check as you
develop your macro applications.

300 SAS Macro Programming Made Easy, Second Edition

Table 12.1 Categories of common problems in macro programming and
 items to check in the code

Category Items to Check

Punctuation Do all statements end with a semicolon?

Did you terminate your macro program call with a semicolon? If so,
does the semicolon interfere with the resolution of the macro program
call?

Do you have any unmatched parentheses or quotation marks? If so, is
it necessary to mask them?

Are you using single quotation marks and double quotation marks
correctly? For example, is title text enclosed with double quotation
marks so that macro variable references in the text get resolved?

Have you terminated your macro statement labels with a colon(:)?

Does the statement label referenced on your %GOTO statement start
with a percent sign? If so, you may need to remove it if you are
explicitly referencing a statement label to prevent the label from being
interpreted as a macro program reference.

Macro
Variable
Resolution

Do your macro variable references start with an ampersand?

Do your macro variable references need a delimiter (the period) so that
the macro processor can tell where the reference ends?

If you are indirectly referencing a macro variable, do you have enough
ampersands so that the macro processor attempts to resolve the
references sufficiently to completely resolve your reference?

Are you referencing a local macro variable outside of the macro
program in which it has been defined?

Do you use the same name for different macro variables and are the
macro variables in different domains? If so, consider using unique
variable names so that it becomes easier to distinguish the domain of a
macro variable reference in your code.

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 301

Macro
Variable
Resolution
(continued)

Did you create a macro variable in a DATA step with CALL
SYMPUT or CALL SYMPUTX and then attempt to resolve it in the
same DATA step? If so, you will need to modify the code to define the
macro variable before the DATA step in which it is referenced or
modify the code to use the RESOLVE SAS language function.

Do any of your macro variables start with AF, DMS, or SYS? If so,
you should rename them to prevent conflicts in names with automatic
macro variables.

Macro
Program
Resolution

Have you submitted the macro program definition before calling the
macro program?

Do your macro program references start with a percent sign?

Is your macro program stored in an autocall library or as a stored
compiled macro program? If so, have you specified options correctly
so that the macro processor can find the macro program?

System
Options
Settings

Is SAS option MACRO in effect so that you can access the macro
facility?

Is option MERROR in effect so that the macro processor displays
warning messages when a macro program reference cannot be
resolved?

Is option SERROR in effect so that the macro processor displays
warning messages when a macro variable reference cannot be
resolved?

Have all appropriate options been set (SASAUTOS,
MAUTOSOURCE, MSTORED, SASMSTORE) when working with
autocall libraries or stored compiled macro programs?

Has MINDELIMITER been specified correctly if any of your macro
language statements use the IN operator?

%MACRO,
%MEND
Statements

Do the names on the %MACRO and %MEND statements agree?

Are your macro program definitions nested? If so, remove the nested
macro program definitions so that it may become easier to identify the
source of the problem.

302 SAS Macro Programming Made Easy, Second Edition

Macro
Parameters

If you’re using positional parameters, have you specified the correct
number of parameters in your macro program call, and have you
specified them in the correct order? For parameters for which you do
not want to specify a value, have you inserted a comma as placeholder
for that missing parameter value?

If you’re using keyword parameters and you’ve specified defaults for
them, have you specified the defaults correctly?

If your macro program definition contains both positional and
keyword parameters, have you placed the positional parameters ahead
of the keyword parameters in the macro program call?

Macro
Functions

Does your function call have the correct number of arguments?

Have you quoted the arguments to the macro function as you would
have with the SAS function counterpart? If so, remove the quotation
marks.

Does your function argument contain special characters such as
commas? If so, you may have to mask the argument with macro
quoting functions.

SAS Language
vs. Macro
Language

Have you mixed SAS language actions and macro language actions in
the same statement? For example, is the result of a SAS language IF
statement a macro language %LET statement? If so, you will have to
modify your code because the macro statements execute before the
SAS language statements.

Have you forgotten percent signs on macro language keywords so that
SAS interprets these as SAS language keywords instead?

%DO, %END
statements

Do you have a matching %END for each %DO statement?

On an iterative %DO statement, did you specify the index macro
variable reference with an ampersand? If so, this may be incorrect if
you are explicitly referencing a macro variable.

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 303

Processing
Special
Characters
and Mnemonic
Operators

Do your text strings contain special characters or mnemonic operators
that should be interpreted as text? If so, you may need to apply a
macro quoting function.

When you are masking an ampersand or percent sign, are you using
the “NR” version of the macro quoting function?

Calculations Are you using %EVAL for integer arithmetic and %SYSEVALF for
calculations that require floating-point arithmetic?

Logical
Expressions

Can the operands in your expressions contain special characters or
mnemonic operators? If so, you may need to mask the operands with
macro quoting functions.

Understanding the Tools That Can Debug
Macro Programming

As discussed previously and demonstrated in Chapter 13, you can minimize errors in
your SAS programs that contain macro features by developing your programs in steps.
When your programs do end up containing errors, you can use the tools described in this
section to find the sources of the errors. These tools include system options, macro
language statements, macro functions, and automatic macro variables. Using these tools
can provide you with detail about the processing of your programs, and many have been
applied in examples in previous chapters.

This section describes the use of these tools in the context of macro programming. Don’t
forget that macro programs can generate SAS programs. Those SAS programs may be in
error, but your macro language processing may be correct. In those situations, you will
need to employ your SAS language debugging skills. You may need to extract your SAS
code that’s in error and debug it. Then, if necessary, you would modify your macro
language code to handle your corrected SAS code. For more information on debugging
SAS language, refer to SAS documentation.

304 SAS Macro Programming Made Easy, Second Edition

Using SAS System Options to Debug Macro Programming
Several system options can provide detail about the processing of your SAS programs
that contain macro language and, thus, help you find the sources of errors in your
programs. Table 12.2 lists these options. Options with the “NO” prefix turn off the
associated system options.

Table 12.2 SAS system options useful in debugging macro programming

Option Purpose

MLOGIC |
NOMLOGIC

Traces the flow of execution of a macro program in the SAS log.
MLOGIC shows the resolved values of macro parameters, the
scope of macro variables (global or local), the true/false result of
%IF statements, and the start and end of a macro program.

MLOGICNEST |
NOMLOGICNEST

Displays the nesting level of macro programs in the SAS log. This
information is displayed in the MLOGIC output in the SAS log,
and MLOGIC must be enabled for this option to work.

MPRINT |
NOMPRINT

Displays the SAS code generated by the execution of a macro
program in the SAS log. Optionally, you can direct the output
from MPRINT to an external file by specifying the MFILE
system option.

MPRINTNEST |
NOMPRINTNEST

Aligns the nesting level of macro programs and the SAS code
generated by the execution of the macro programs in the SAS log.

SYMBOLGEN |
NOSYMBOLGEN

Displays the resolution of macro variable references in the SAS
log.

Chapter 3 presented several examples of showing resolution of macro variable references
by enabling the SYMBOLGEN option. Chapter 4 introduced displaying the SAS code
that a macro program generates by enabling the MPRINT option.

When processing and debugging macro language, it is important to verify that the three
system options listed in Table 12.3 are enabled. These options affect whether macro
processing is available and whether warnings and error messages related to the resolution
of macro variables and invocation of macro programs are displayed. Options with the
“NO” prefix turn off the associated system options.

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 305

Table 12.3 SAS system options that should be enabled when
 programming macro language

Option Purpose

MACRO |
NOMACRO

Controls whether the macro processor is available to recognize and
process macro language

MERROR |
NOMERROR

Controls whether the macro processor issues a warning message when
a macro program reference cannot be resolved

SERROR |
NOSERROR

Controls whether the macro processor issues a warning message when
a macro variable reference cannot be resolved

Using Macro Language Statements to Debug Macro
Programming

The primary macro language statement to use when you are debugging your macro
programming is the %PUT statement. Adding %PUT statements to your macro code can
help you determine the values of macro variables as your code processes. The %PUT
statement writes text and/or macro variable values to the SAS log.

As described in the previous section, the SYMBOLGEN option also displays the values
of macro variables. The difference between it and %PUT statements is that with the
%PUT statement you tell the macro processor when and what to write to the SAS log,
while the SYMBOLGEN option tells the macro processor to display the resolution of all
macro variables as their references are encountered. You can generate a lot of output in
the SAS log with SYMBOLGEN. The %PUT statement can reduce the amount of output
you need to review in the SAS log and can add explanatory text to the display.

Additionally, when you debug a macro program you may want to temporarily add
programming statements such as %IF and %GOTO to do specific actions, such as
skipping over sections of code in the macro program in order to check on the processing.

If you are having problems with resolving macro variable references, you may want to
delete the troublesome macro variables from the global symbol table using the
%SYMDEL statement and attempt to execute your code again.

306 SAS Macro Programming Made Easy, Second Edition

Using Macro Functions to Debug Macro Programming
The three macro functions, %SYMEXIST, %SYMGLOBL, and %SYMLOCAL, may be
useful if you are having problems with resolving macro variable references and you
suspect that the problem is with the scope (or domain) of the macro variables. You can
add statements that call these functions to determine whether a macro variable exists and
to determine the symbol table to which it belongs. See the section “Macro Variable
Attribute Functions” in Chapter 6 and Table 6.5 for more information on these functions
and an example of their usage.

Chapter 11 discussed building your library of utility macro programs and writing some of
them to behave like functions. You may find that you always debug your macro
programs a certain way and that you can create macro programs to do these actions. The
macro programs that you develop for debugging purposes could then be added to your
library of routines.

Accessing information using SAS language functions may also help you in finding
solutions to problems in your code. For example, the ATTRN and ATTRC functions
supply attribute information about SAS data files. The %SYSFUNC and %QSYSFUNC
macro functions make these SAS language functions, and others, available to your macro
programming, as described in Chapter 6 in the “Other Macro Functions” section.

Using Automatic Macro Variables to Debug Macro
Programming

Chapter 3 presented information about automatic macro variables, which are the global
macro variables that SAS defines that you can access with your macro programming
statements. The values assigned to some of these automatic macro variables may be
useful to you in debugging your macro programming. You may want to add statements to
check the values of specific automatic macro variables and then execute specific
statements based on these values.

Most of the automatic macro variables listed in Table 12.4 and shown in Table 3.2 could
be useful in debugging your macro programs; several could be applied in debugging your
SAS language programs as well. For example, starting in SAS 9.2, you could add %IF
statements to check the values of SYSERRORTEXT and SYSWARNINGTEXT and
then direct specific actions to take based on their values. Automatic macro variable
SYSERRORTEXT contains the text of the last error message generated in the SAS log,
and SYSWARNINGTEXT contains the text of the last warning message in the SAS log.
These macro variables contain the error or warning text generated either by your SAS
language statements or by your macro language statements. Use of these two macro
variables is demonstrated in Example 12.8.

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 307

Table 12.4 Automatic macro variables useful in debugging

SYSDATE SYSDATE9 SYSDAY SYSDSN

SYSERR SYSERRORTEXT SYSFILRC SYSLAST

SYSLIBRC SYSMACRONAME SYSPROCNAME SYSRC

SYSTIME SYSVER SYSWARNINGTEXT

Examples of Solving Errors in Macro
Programming

In explaining the processing concepts of the macro facility, many examples in previous
chapters included errors and showed how to resolve them. This section presents
additional examples of errors in macro programming and how they could be detected and
corrected.

Example 12.1: Reviewing System Options When Macro Facility
 Warnings and Error Messages Are Absent
There can be many possibilities to consider when your macro code does not execute and
the macro facility does not write any warnings or error messages to the SAS log. In this
situation, your first step might be to verify the values of system options MACRO,
MERROR, and SERROR. Table 12.3 described these options.

The purpose of the following macro program PRINT10 in Program 12.1 is to list with
PROC PRINT the first ten observations in the data set specified by the macro program’s
parameter DSNAME. Note that the reference to DSNAME in the title text is misspelled
as DSNAMEE. Assume that option SERROR is disabled when the following program
executes.

Program 12.1
options symbolgen;
%macro print10(dsname);
 proc print data=&dsname(obs=10);
 title "Listing First 10 Observations from &dsnamee";
 run;
%mend;
%print10(books.ytdsales)

308 SAS Macro Programming Made Easy, Second Edition

Submitting the program does list the first ten observations if the data set specified by
DSNAME exists. However, the TITLE statement resolves to the following:

Listing First 10 Observations from &dsnamee

The SAS log does not display any warnings or error messages, even with option
SYMBOLGEN enabled. Since DSNAME exists, SYMBOLGEN can display its value.

67 %macro print10(dsname);
68 proc print data=&dsname(obs=10);
69 title "Listing First 10 Observations from &dsnamee";
70 run;
71 %mend;
72 %print10(books.ytdsales)

SYMBOLGEN: Macro variable DSNAME resolves to books.ytdsales
NOTE: There were 10 observations read from the data set
BOOKS.YTDSALES.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

The easiest condition to check is to verify the setting for the SERROR option. If
SERROR was turned off, the macro processor would not inform you in the SAS log that
it was unable to resolve a macro variable reference. Enabling SERROR and then
submitting the macro program causes the following warning, which makes it easy to find
and correct the problem.

WARNING: Apparent symbolic reference DSNAMEE not resolved.

Similarly, if your submitted code attempts to invoke a macro program and this program
does not execute, nor do any warnings appear in the SAS log, you may want to verify the
setting of the MERROR option. For example, consider the result of submitting the
following macro program call with the MERROR option turned off. Assume that macro
program PRINT100 is not available in this SAS session and the intent was to call macro
program PRINT10.

%print100(books.ytdsales)

The SAS log looks like the following:

58 %print100(books.ytdsales)
 -
 180
ERROR 180-322: Statement is not valid or it is used out of
proper order.

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 309

An error message is generated, but it’s not very helpful. With MERROR enabled,
submitting the call to PRINT100 produces the following SAS log with a clear warning
about the source of the problem.

65 %print100(books.ytdsales)
 -
 180
WARNING: Apparent invocation of macro PRINT100 not resolved.
ERROR 180-322: Statement is not valid or it is used out of
proper order.

Example 12.2: Attempting to Process a Macro Program When the
 Macro Processor Does Not Detect a %MEND
 Statement
Program 12.2 illustrates how SAS processes a macro program definition and subsequent
SAS language code when the macro processor does not detect the end of the macro
program definition. This situation most likely arises when your macro program definition
is missing a semicolon or it contains unmatched quotation marks or parentheses.

Recall that the macro processor requires that a %MEND statement terminate a macro
program definition. When the macro processor does not detect a %MEND statement, a
cascade of problems can occur. All code submitted after your undetected %MEND
statement becomes part of the macro program definition. This continues until you submit
another %MEND statement that the macro processor detects.

All of the code that may get incorrectly added to your macro program definition can
cause problems in your attempts to correct the situation of the missing %MEND
statement. Your session may hang and any additional code you submit just adds to the
problem. In such a situation, you may be able to free your SAS session by submitting the
following string:

*’; *”; *); */; %mend; run;

Continue submitting this string until you see the message:

ERROR: No matching %MACRO statement for this %MEND statement.

This string can clear up the problems with unmatched quotation marks and parentheses
as well as missing semicolons and %MEND statements. If these attempts do not work,
you will have to close your SAS session and restart SAS.

The goal of macro program WHSTMT is to specify a WHERE statement based on the
values of the two parameters to WHSTMT. The two optional parameters are
GETSECTION and GETPUB. Macro parameter GETSECTION specifies the bookstore
section to select from BOOKS.YTDSALES while macro parameter GETPUB specifies

310 SAS Macro Programming Made Easy, Second Edition

the publisher. If you do not specify at least one of the parameters, the DATA step creates
a copy of BOOKS.YTDSALES.

The DATA step creates a temporary data set TEMP. It calls macro program WHSTMT
and directs that it specify a WHERE statement, which selects observations from the
Internet section and from the publisher Technology Smith. The error in the macro
program definition for WHSTMT is the missing semicolon on the last %END statement.

Program 12.2
%macro whstmt(getsection,getpub);
 %if &getsection ne or &getpub ne %then %do;
 (where=((
 %end;
 %if &getsection ne %then %do;
 section="&getsection"
 %if &getpub ne %then %do;
 and
 %end;
 %else %do;
)))
 %end;
 %end;
 %if &getpub ne %then %do;
 publisher="&getpub")))
 %end
%mend whstmt;
data temp;
 set books.ytdsales
 %whstmt(Internet,Technology Smith)
 ;
run;

When you submit the code, the DATA step does not execute as shown in the following
SAS log. The log does show that the macro processor has detected a possible problem in
the macro program and that the problem is extraneous information on the %END
statement. The extraneous information happens to be the %MEND statement.

Note that the log does not show any DATA step processing notes. The DATA step does
not execute. It has become part of the incomplete macro program definition.

623 %macro whstmt(getsection,getpub);
624 %if &getsection ne or &getpub ne %then %do;
625 (where=((
626 %end;
627 %if &getsection ne %then %do;
628 section="&getsection"

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 311

629 %if &getpub ne %then %do;
630 and
631 %end;
632 %else %do;
633)))
634 %end;
635 %end;
636 %if &getpub ne %then %do;
637 publisher="&getpub")))
638 %end
639 %mend whstmt;
NOTE: Extraneous information on %END statement ignored.
640 data temp;
641 set books.ytdsales
642 %whstmt(Internet,Technology Smith)
643 ;
644 run;

Submitting another %MEND statement does terminate the macro program definition, but
the definition is incorrect. At this point, you would need to add the semicolon to the
%END statement and then resubmit the entire program to replace the incorrect definition
of WHSTMT.

Example 12.3: Tracing Problems in Expression Evaluation with
 the %PUT Statement and the MLOGIC System
 Option
This example illustrates the importance of understanding how the macro processor
evaluates expressions, and it shows how you can determine the source of problems with
expression evaluation using the %PUT statement and the MLOGIC system option. It also
shows that debugging a program may be an iterative process: after resolving one
problem, you may find that you still have other problems in your program.

Chapter 6 presented information about the two SAS evaluation functions, %EVAL and
%SYSEVALF. Example 7.1 in Chapter 7 showed several usages of the two functions. In
general, when you’re working with integer values, you use %EVAL, and when you’re
working with floating-point numbers, you use %SYSEVALF.

Macro program MARKUP in Program 12.3a submits a DATA step that selects
observations from BOOKS.YTDSALES for the publisher specified by the macro
parameter PUBLISHER. The three other parameters to MARKUP are RATE1, RATE2,
and RATE3. These parameters specify three markup rates to be applied to the data set
variable COST. The DATA step creates four data set variables. Three of the variables,
COST1, COST2, and COST3 contain new cost values based on multiplying data set
variable COST by macro variables RATE1, RATE2, and RATE3 respectively. The

312 SAS Macro Programming Made Easy, Second Edition

fourth data set variable RATEPLUS is a character variable whose value depends on the
difference between macro variables RATE1 and RATE3.

The macro program definition in Program 12.3a compiles without error. The call to
MARKUP specified below, however, does not execute as expected.

Program 12.3a
%macro markup(publisher,rate1,rate2,rate3);
 %let diffrate=&rate3-&rate1;

 data pubmarkup;
 set books.ytdsales(where=(publisher="&publisher"));

 %if &diffrate ge 5.00 %then %do;
 retain rateplus '+++';
 %end;
 %else %if &diffrate lt 5.00 and &diffrate ge 0.00 %then %do;
 retain rateplus '+';
 %end;
 %else %do;
 retain rateplus '-';
 %end;

 %do i=1 %to 3;
cost&i=cost* (1+(&&rate&i/100));

 %end;
 run;
%mend markup;

%markup(Technology Smith,2.25,4,7.25)

The SAS log for Program 12.3a reports a problem in evaluating the expression on the
first %IF statement. The DATA step also has not stopped processing. Submitting a RUN;
statement terminates the DATA step.

854 %markup(Technology Smith,2.25,4,7.25)
ERROR: A character operand was found in the %EVAL function or
 %IF condition where a numeric operand is required. The
 condition was: &diffrate ge 5.00
ERROR: The macro MARKUP will stop executing.

The value of macro variable DIFFRATE should be a number, but the error states that a
character operand was found in the expression. A first step might be to include after the

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 313

first %LET statement a %PUT statement that displays the value of macro variable
DIFFRATE:

%put Value of DIFFRATE is &diffrate;

Submitting the edited macro program definition and the same macro program call writes
the following text to the SAS log.

Value of DIFFRATE is 7.25-2.25

This output shows that the expression on the %LET statement was not treated as an
arithmetic calculation. The value of DIFFRATE is equal to the expression that was supposed
to be evaluated. You must tell the macro processor when to evaluate the expression rather
than have it treat the expression simply as text. Placing the %SYSEVALF function around
the expression tells the macro processor to compute a numeric value:

 %let diffrate=%sysevalf(&rate3-&rate1);

If you used %EVAL instead of %SYSEVALF, you would see an error message similar to
the one shown above. The %EVAL function tells the macro processor to do integer
arithmetic. The %EVAL function interprets the decimal points as text and, thus, it cannot
calculate a numeric result in this situation.

The program executes without error when the %SYSEVALF function encloses the
expression on the %LET statement. Reviewing the parameters and the data in the output
data set shows, however, that the value of RATEPLUS is incorrect.

The difference between the first and third parameters is 5. Therefore, RATEPLUS should
equal +++. The value of RATEPLUS in the data set, however, is +. That means that the
%ELSE-%IF statement was executed. Submitting the program with the MLOGIC option
enabled verifies that the %ELSE-%IF statement executed.

1008 %markup(Technology smith,2.25,4,7.25)
MLOGIC(MARKUP): Beginning execution.
MLOGIC(MARKUP): Parameter PUBLISHER has value Technology Smith
MLOGIC(MARKUP): Parameter RATE1 has value 2.25
MLOGIC(MARKUP): Parameter RATE2 has value 4
MLOGIC(MARKUP): Parameter RATE3 has value 7.25
MLOGIC(MARKUP): %LET (variable name is DIFFRATE)
MLOGIC(MARKUP): %IF condition &diffrate ge 5.00 is FALSE
MLOGIC(MARKUP): %IF condition &diffrate lt 5.00 and &diffrate
 ge 0.00 is TRUE
MLOGIC(MARKUP): %DO loop beginning; index variable I; start
 value is
 1; stop value is 3; by value is 1.
MLOGIC(MARKUP): %DO loop index variable I is now 2; loop will
 iterate again.

314 SAS Macro Programming Made Easy, Second Edition

MLOGIC(MARKUP): %DO loop index variable I is now 3; loop will
 iterate again.
MLOGIC(MARKUP): %DO loop index variable I is now 4; loop will
 not iterate again.

NOTE: There were 505 observations read from the data set
 BOOKS.YTDSALES.
 WHERE publisher='Technology Smith';
NOTE: The data set WORK.PUBMARKUP has 505 observations and 14
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds
MLOGIC(MARKUP): Ending execution.

The %ELSE-%IF statement executed because there is an implied %EVAL around an
expression on a %IF statement. The decimal point in the expression makes this a text
evaluation, and the text value 5 is less than the text value 5.00.

The final correction is to apply the %SYSEVALF function to the expressions on the %IF
statement and on the %ELSE-%IF statement. The %SYSEVALF function executes first,
yielding a true/false (1/0) result. The macro processor next applies the implicit %EVAL
function to the true/false (1/0) result. The corrected program follows in Program 12.3b.

Program 12.3b
%macro markup(publisher,rate1,rate2,rate3);
 %let diffrate=%sysevalf(&rate3-&rate1);

 data pubmarkup;
 set books.ytdsales(where=(publisher="&publisher"));

 %if %sysevalf(&diffrate ge 5.00) %then %do;
 retain rateplus '+++';
 %end;
 %else %if %sysevalf(&diffrate lt 5.00) and
 %sysevalf(&diffrate ge 0.00) %then %do;
 retain rateplus '+';
 %end;
 %else %do;
 retain rateplus '-';
 %end;

 %do i=1 %to 3;
 cost&i=cost* (1+(&&rate&i/100));
 %end;
 run;

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 315

%mend markup;

%markup(Technology Smith,2.25,4,7.25)

The data in the PUBMARKUP data set is now correct with the value of RATEPLUS
equal to +++. The SAS log for the revised program with the MLOGIC option enabled
shows that the %IF statement executed.

1031 %markup(Technology Smith,2.25,4,7.25)
MLOGIC(MARKUP): Beginning execution.
MLOGIC(MARKUP): Parameter PUBLISHER has value Technology Smith
MLOGIC(MARKUP): Parameter RATE1 has value 2.25
MLOGIC(MARKUP): Parameter RATE2 has value 4
MLOGIC(MARKUP): Parameter RATE3 has value 7.25
MLOGIC(MARKUP): %LET (variable name is DIFFRATE)
MLOGIC(MARKUP): %IF condition %sysevalf(&diffrate ge 5.00) is
 TRUE
MLOGIC(MARKUP): %DO loop beginning; index variable I; start
 value is
 1; stop value is 3; by value is 1.
MLOGIC(MARKUP): %DO loop index variable I is now 2; loop will
 iterate again.
MLOGIC(MARKUP): %DO loop index variable I is now 3; loop will
 iterate again.
MLOGIC(MARKUP): %DO loop index variable I is now 4; loop will
 not iterate again.

NOTE: There were 505 observations read from the data set
 BOOKS.YTDSALES.
 WHERE publisher='Technology Smith';
NOTE: The data set WORK.PUBMARKUP has 505 observations and 14
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds
MLOGIC(MARKUP): Ending execution.

Example 12.4: Using %PUT to Trace a Problem at Execution
This example illustrates the importance of distinguishing between macro language syntax
and SAS language syntax. The macro program TABLES builds a PROC TABULATE
TABLE statement for each variable in the parameter CLASS_STRING. Each variable in
CLASS_STRING is a classification variable. The %SCAN function extracts each of the
variable names and saves the variable name in macro variable CLASSVAR. The %DO
%UNTIL loop should iterate for each variable name and stop when there are no more
variable names.

316 SAS Macro Programming Made Easy, Second Edition

The error in the macro program is the incorrect specification of the expression in the
%DO %UNTIL statement. The %DO %UNTIL statement is partially written in SAS
language syntax.

The macro program in Program 12.4a compiles without error, but the macro program’s
%DO %UNTIL loop executes indefinitely. This example uses a %PUT statement to
display macro variable values during each iteration of a %DO %UNTIL loop to
determine why it executes indefinitely.

Since %DO %UNTIL is a macro language statement, the expression should check
whether CLASSVAR is null, not whether it is equal to the text ‘ ‘. Specifying the value
of ‘ ‘ is the way to test for a missing character value in SAS language. Macro program
TABLES in Program 12.4a executes indefinitely because the value extracted by %SCAN
will never equal the text ‘ ‘.

Program 12.4a
%macro tables(class_string);
 class datesold &class_string;
 %let varnum=1;
 %let classvar=%scan(&class_string,&varnum);

 %do %until (&classvar=' ');
 tables datesold='Books Sold Quarter'
 all='Books Sold All Four Quarters',
 (&classvar all),
 (cost listprice saleprice)*sum=' '*f=dollar12.2 ;

 %let varnum=%eval(&varnum+1);
 %let classvar=%scan(&class_string,&varnum);
 %end;
%mend tables;

proc tabulate data=books.ytdsales;
 title "Quarterly Book Sales Summaries";
 var cost listprice saleprice;
 format datesold qtr.;
 keylabel all='Total';

 %tables(section publisher)
run;

A %DO %UNTIL loop evaluates the expression at the bottom of the loop. A first step in
finding the problem might be to display the values of macro variables VARNUM and
CLASSVAR in each iteration of the %DO %UNTIL loop. Add the following %PUT
statement just before the %END statement.

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 317

%put **** VARNUM=&varnum CLASSVAR=&classvar;

When the program with the %PUT statement included executes and is then canceled after
it becomes obvious that it is going to execute indefinitely, the partial SAS log that
follows is the result. The MPRINT option is set to show how the macro program builds
the TABLE statements.

The parameter CLASS_STRING contains the name of two variables. The %SCAN
function correctly extracts two variable names. When the value of VARNUM is 3, the
program should stop. The %PUT statement shows that VARNUM continues to increment
and that CLASSVAR has no value. The macro program continues to build TABLE
statements.

The %PUT statement output shows that VARNUM increments correctly and that the
%SCAN function extracts variable names correctly. That leaves the expression in the
%DO %UNTIL statement as the likely source of the problem.

252 options mprint;
253 %macro tables(class_string);
254 class datesold &class_string;
255 %let varnum=1;
256 %let classvar=%scan(&class_string,&varnum);
257
258 %do %until (&classvar=' ');
259 tables datesold='Books Sold Quarter' all='Books Sold
259! All Four Quarters',
260 (&classvar all),
261 (cost listprice saleprice)*sum=' '*f=dollar12.2
261! ;
262
263 %let varnum=%eval(&varnum+1);
264 %let classvar=%scan(&class_string,&varnum);
265 %put **** VARNUM=&varnum CLASSVAR=&classvar;
266 %end;
267 %mend tables;
268
269 proc tabulate data=books.ytdsales;
270 title "Quarterly Book Sales Summaries";
271 var cost listprice saleprice;
272 format datesold qtr.;
273 keylabel all='Total';
274
275 %tables(section publisher)
MPRINT(TABLES): class datesold section publisher;
MPRINT(TABLES): tables datesold='Books Sold Quarter'
all='Books Sold All Four Quarters', (section all), (cost
listprice saleprice)*sum=' '*f=dollar12.2 ;

318 SAS Macro Programming Made Easy, Second Edition

**** VARNUM=2 CLASSVAR=publisher
MPRINT(TABLES): tables datesold='Books Sold Quarter'
all='Books Sold All Four Quarters', (publisher all), (cost
listprice saleprice)*sum=' '*f=dollar12.2 ;
**** VARNUM=3 CLASSVAR=
MPRINT(TABLES): tables datesold='Books Sold Quarter'
all='Books Sold All Four Quarters', (all), (cost listprice
saleprice)*sum=' '*f=dollar12.2 ;
**** VARNUM=4 CLASSVAR=
MPRINT(TABLES): tables datesold='Books Sold Quarter'
all='Books Sold All Four Quarters', (all), (cost listprice
saleprice)*sum=' '*f=dollar12.2 ;
**** VARNUM=5 CLASSVAR=
MPRINT(TABLES): tables datesold='Books Sold Quarter'
all='Books Sold All Four Quarters', (all), (cost listprice
saleprice)*sum=' '*f=dollar12.2 ;

The program with the corrected %DO %UNTIL statement follows in Program 12.4b.

Program 12.4b
%macro tables(class_string);
 class datesold &class_string;
 %let varnum=1;

%do %until (&classvar=);
 %let classvar=%scan(&class_string,&varnum);
 tables datesold='Books Sold Quarter'
 all='Books Sold All Four Quarters',
 (&classvar all),
 (cost listprice saleprice)*sum=' '*f=dollar12.2 ;

 %let varnum=%eval(&varnum+1);
 %let classvar=%scan(&class_string,&varnum);
 %end;
%mend tables;

proc tabulate data=books.ytdsales;
 title "Quarterly Book Sales Summaries";
 var cost listprice saleprice;
 format datesold qtr.;
 keylabel all='Total';

 %tables(section publisher)
run;

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 319

Example 12.5: Finding a Logic Error in the Execution of a Macro
 Program with the MLOGIC Option
This example shows how the MLOGIC option can help you trace execution of a macro
program to identify the source of a logic error. When your macro program compiles
without error, yet the output you expect is not produced, you may want to enable the
MLOGIC option. The MLOGIC option lists in the SAS log the processing actions the
macro processor takes.

The goal of the program is to process records for a specific publisher and create an
HTML file and/or a Microsoft Excel spreadsheet of the selected records. To do this, the
program defines three macro programs: MAKEHTML, MAKEXLS, and EXTFILES.
Macro program MAKEHTML lists observations with PROC PRINT and creates an
HTML file of the report. Macro program MAKEXLS creates a Microsoft Excel
spreadsheet containing the selected observations. Macro program EXTFILES creates the
subset data set and calls the other two macro programs when specified to do so by its
parameter values.

Macro program EXTFILES has three parameters: PUBLISHER, HTML, and
SPREADSHEET. Positional parameter PUBLISHER specifies the publisher name whose
observations should be selected from BOOKS.YTDSALES. Keyword parameters HTML
and SPREADSHEET are defined to have one of two values: Y or N. Specify the value Y
for the parameter value when you want the specific output file produced; specify N when
you do not.

The problem with Program 12.5a program is the %ELSE statement in macro program
EXTFILES. The tests for producing the output should be independent of each other. That
is, it should be possible to produce one or both of the reports based on the values of the
parameters. The %ELSE statement prevents this. When the request is made to create an
HTML file (HTML=Y) and to create an Excel file (SPREADSHEET=Y), the %ELSE
statement prevents execution of %MAKEXLS.

The call to EXTFILES specifies that both an HTML and an Excel file should be created
for publisher Eversons Books.

Program 12.5a
%macro extfiles(publisher,html=,spreadsheet=);
 data temp;
 set books.ytdsales(where=(publisher="&publisher")
 drop=section saleid saleinit listprice);
 run;

 %if &html=Y %then %do;
 %makehtml
 %end;

320 SAS Macro Programming Made Easy, Second Edition

 %else %if &spreadsheet=Y %then %do;
 %makexls
 %end;
%mend extfiles;

%macro makehtml;
 ods listing close;
 ods html;
 proc print data=temp;
 title "Publisher: &publisher";
 run;
 ods html close;
 ods listing;
%mend makehtml;

%macro makexls;
 proc export data=temp
 file="pubreports.xls"
 replace;
 sheet="&publisher";
 run;
%mend makexls;

%extfiles(Eversons Books,html=Y,spreadsheet=Y)

Program 12.5a creates only an HTML file. The SAS log does not show any errors in
processing.

The next step is to submit the program again with the MLOGIC option enabled. The
MLOGIC option displays the results of the %IF and %ELSE statements. The SAS log
with MLOGIC enabled follows. It shows that the %ELSE statement did not execute and
that MAKEXLS was not called. The conclusion is that the error is in the specification of
the %ELSE statement.

185 %extfiles(Eversons Books,html=Y,spreadsheet=Y)
MLOGIC(EXTFILES): Beginning execution.
MLOGIC(EXTFILES): Parameter PUBLISHER has value Eversons Books
MLOGIC(EXTFILES): Parameter HTML has value Y
MLOGIC(EXTFILES): Parameter SPREADSHEET has value Y

NOTE: There were 542 observations read from the data set
BOOKS.YTDSALES.
 WHERE publisher='Eversons Books';
NOTE: The data set WORK.TEMP has 542 observations and 6
 variables.

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 321

NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

MLOGIC(EXTFILES): %IF condition &html=Y is TRUE
MLOGIC(MAKEHTML): Beginning execution.
NOTE: Writing HTML Body file: sashtml2.htm
NOTE: There were 542 observations read from the data set
 WORK.TEMP.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.31 seconds
 cpu time 0.20 seconds

MLOGIC(MAKEHTML): Ending execution.
MLOGIC(EXTFILES): Ending execution.

Replacing the %ELSE statement with %IF corrects the logic error in EXTFILES. The
revised EXTFILES macro program follows in Program 12.5b.

Program 12.5b
%macro extfiles(publisher,html=,spreadsheet=);
 data temp;
 set books.ytdsales(where=(publisher="&publisher")
 drop=section saleid saleinit listprice);
 run;

 %if &html=Y %then %do;
 %makehtml
 %end;
 %if &spreadsheet=Y %then %do;
 %makexls
 %end;
%mend extfiles;

Now the SAS log shows that both MAKEHTML and MAKEXLS execute and that both
the HTML file and the Excel file are created.

219 %extfiles(Eversons Books,html=Y,spreadsheet=Y)
MLOGIC(EXTFILES): Beginning execution.
MLOGIC(EXTFILES): Parameter PUBLISHER has value Eversons Books
MLOGIC(EXTFILES): Parameter HTML has value Y
MLOGIC(EXTFILES): Parameter SPREADSHEET has value Y

NOTE: There were 542 observations read from the data set
 BOOKS.YTDSALES.
 WHERE publisher='Eversons Books';

322 SAS Macro Programming Made Easy, Second Edition

NOTE: The data set WORK.TEMP has 542 observations and 6
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

MLOGIC(EXTFILES): %IF condition &html=Y is TRUE
MLOGIC(MAKEHTML): Beginning execution.
NOTE: Writing HTML Body file: sashtml3.htm
NOTE: There were 542 observations read from the data set
 WORK.TEMP.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.32 seconds
 cpu time 0.21 seconds

MLOGIC(MAKEHTML): Ending execution.
MLOGIC(EXTFILES): %IF condition &spreadsheet=Y is TRUE
MLOGIC(MAKEXLS): Beginning execution.
NOTE: "Everyday_Books" was successfully created.
NOTE: PROCEDURE EXPORT used (Total process time):
 real time 0.40 seconds
 cpu time 0.04 seconds

MLOGIC(MAKEXLS): Ending execution.
MLOGIC(EXTFILES): Ending execution.

Example 12.6: Using the MPRINT Option to Find Errors in SAS
 Language That Was Generated by Macro Language
This example demonstrates how the MPRINT system option can list SAS language
statements generated by a macro program. When the SAS language that your macro
program generates isn’t what you expect, enable MPRINT so that the macro processor
lists the SAS language statements in the SAS log for your review. This technique helps
you uncover both macro language and SAS language problems.

With NOMPRINT in effect, the macro processor does not list the SAS language
statements generated by your macro program; your SAS log contains only the standard
messages issued when a step ends.

This program generates a PROC TABULATE report that can summarize projected costs
for future years from 2008 to 2012. The DATA step that creates data set PROJCOST
computes projected costs using a different percentage increase for each of the five years
from 2008 to 2012.

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 323

The macro program PROJCOST has one parameter, ANALYSISVARS. This
parameter’s value is the list of analysis variables for the PROC TABULATE table. Both
the VAR statement and the TABLES statement in the PROC TABULATE step reference
ANALYSISVARS.

The report should summarize cost information for each section. The categorical variable,
SECTION, is specified on the CLASS statement. Each analysis variable should produce
two statistics: mean and sum.

The error in Program 12.6a is in the SAS code generated by the macro program.
Parentheses are missing around the macro variable reference to ANALYSISVARS in the
TABLES statement. When you specify one analysis variable, PROC TABULATE
computes the two statistics for the analysis variable. When you specify more than one
analysis variable, PROC TABULATE computes the two statistics only for the last
analysis variable in the list.

The three analysis variables specified in the call to PROJCOST are COST, PCOST2008,
and PCOST2010.

Program 12.6a
%macro projcost(analysisvars);
 proc tabulate data=projcost;
 title "Projected Costs Report";
 class section;
 var &analysisvars;
 tables section all='All Sections',
 &analysisvars*(mean*f=dollar7.2 sum*f=dollar12.2);
 run;
%mend projcost;

data projcost;
 set books.ytdsales;

 array increase{5} increase2008-increase2012
 (1.12,1.08,1.10,1.15,1.18);
 array pcost{5} pcost2008-pcost2012;
 drop i;

 attrib pcost2008 label="Projected Cost 2008" format=dollar10.2
 pcost2009 label="Projected Cost 2009" format=dollar10.2
 pcost2010 label="Projected Cost 2010" format=dollar10.2
 pcost2011 label="Projected Cost 2011" format=dollar10.2
 pcost2012 label="Projected Cost 2012" format=dollar10.2;

324 SAS Macro Programming Made Easy, Second Edition

 do i=1 to 5;
 pcost{i}=round(cost*increase{i},.01);
 end;
run;

%projcost(cost pcost2008 pcost2010)

Output 12.1 presents the output produced by the call to PROJCOST. It shows that PROC
TABULATE computed only the SUM statistic for the first and second analysis variables,
COST and PCOST2008. For the third analysis variable, PCOST2010, it computed both
the mean and the sum statistics and formatted the results with the DOLLAR format.

Output 12.1 Report produced by a call to macro program PROJCOST in
 Program 12.6a

 Projected Costs Report

	Wholesale	Projected		
	Cost	Cost 2008	Projected Cost 2010	
	------------+------------+--------------------			
	Sum	Sum	Mean	Sum
--------------+------------+------------+-------+------------				
Section				

Certification				
and Training	16503.31	18482.54	$25.00	$18,152.20
--------------+------------+------------+-------+------------				
Internet	32378.67	36261.72	$24.46	$35,613.59
--------------+------------+------------+-------+------------				
Networks and				
Telecommunica-				
tion	16033.41	17956.18	$24.60	$17,635.25
--------------+------------+------------+-------+------------				
Operating				
Systems	20669.25	23147.96	$24.66	$22,734.20
--------------+------------+------------+-------+------------				
Programming				
and				
Applications	32299.31	36172.81	$24.86	$35,526.29
--------------+------------+------------+-------+------------				
Web Design	19289.25	21602.49	$25.08	$21,216.39
--------------+------------+------------+-------+------------				
All Sections	137173.19	153623.70	$24.75	$150,877.92

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 325

With MPRINT enabled, the macro processor lists in the SAS log the PROC TABULATE
statements that macro program PROJCOST constructs. Examining the PROC
TABULATE step shows that the parentheses were omitted.

The SAS log for the above program follows, now with MPRINT enabled. The code for
PROC TABULATE shows statistics specified only for the last analysis variable specified
in parameter ANALYSISVARS. When you do not specify a statistic, PROC
TABULATE defaults to computing the sum, which it did for COST and PCOST2008, as
shown in Output 12.1.

637 %projcost(cost pcost2008 pcost2010)
MPRINT(PROJCOST): proc tabulate data=projcost;
MPRINT(PROJCOST): title "Projected Costs Report";
MPRINT(PROJCOST): class section;
MPRINT(PROJCOST): var cost pcost2008 pcost2010;
MPRINT(PROJCOST): tables section all='All Sections', cost
pcost2008 pcost2010*(mean*f=dollar7.2 sum*f=dollar12.2);
MPRINT(PROJCOST): run;

NOTE: There were 6096 observations read from the data set
 WORK.PROJCOST.
NOTE: PROCEDURE TABULATE used (Total process time):
 real time 0.04 seconds
 cpu time 0.04 seconds

The following modified PROJCOST macro program in Program 12.6b includes
parentheses around &ANALYSISVARS in the TABLE statement.

Program 12.6b
%macro projcost(analysisvars);
 proc tabulate data=projcost;
 title "Projected Costs Report";
 class section;
 var &analysisvars;
 tables section all='All Sections',

(&analysisvars)*(mean*f=dollar7.2 sum*f=dollar12.2);
 run;
%mend projcost;

If you resubmit the call to PROJCOST after revising it, the program computes the two
statistics for each of the three analysis variables and formats the results with the
DOLLAR format.

326 SAS Macro Programming Made Easy, Second Edition

Improving Your Macro Programming by
Including Error Checking

The previous topics in this chapter show ways of identifying the sources of problems that
exist in your macro programming. This section discusses how you can add statements to
your macro programs that look for and prevent errors in the processing of your macro
programs. When your code detects problems, you can program specific actions to occur
to prevent abnormal termination of the program and execution of incorrect SAS language
code.

Generally, the more use your macro program will have, the more time you should invest
in adding error checking to your code. If you are the only user of the macro program and
you only need to execute it a few times, you may not need to add many error checking
statements. On the other hand, if your macro program is more complicated and you plan
to distribute it to others, it becomes more important to extensively check for errors and
provide messages to assist your users. The remainder of this section presents examples
that include error checking in the macro program code.

Example 12.7: Evaluating Parameter Values
A common check to add to a macro program is to evaluate parameter values to determine
if values were specified and whether the values were specified correctly. This example
starts with code that evaluates the parameters before it processes the data set.

Macro program SELECTTITLES defines three keyword parameters, MONTHSOLD,
MINSALEPRICE, and PUBLISHER. The values of these three parameters specify a
subset of data set BOOKS.YTDSALES. PROC PRINT then lists the selected
observations. Macro program SELECTTITLES requires that all three parameters be
specified and that they should be specified as follows.

The value of MONTHSOLD must be an integer from 1 to 12.

The value of MINSALEPRICE must be numeric and positive. If the user
includes a dollar sign or commas in the value, include code to remove them so
that the WHERE statement applied on the PROC PRINT statement processes
correctly.

Quote the value of PUBLISHER so that special characters and mnemonic
operators included in the value are masked. Compress multiple blanks and
uppercase the value of PUBLISHER to minimize differences in the way the user
specifies the value and the way the value is stored in the data set.

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 327

Program 12.7
%macro selecttitles(monthsold=,minsaleprice=,publisher=);
 %* All three parameters must be specified.;
 %* Quote the value of PUBLISHER in case it contains special
 characters or mnemonic operators;
 %if &monthsold= or &minsaleprice= or %superq(publisher)= %then
 %do;
 %put **;
 %put * Macro program SELECTTITLES requires you to specify
all;
 %put * three parameters. At least one was not specified:;
 %put * MONTHSOLD=&monthsold;
 %put * MINSALEPRICE=&minsaleprice;
 %put * PUBLISHER=&publisher;
 %put * Please correct and resubmit.;
 %put ***;
 %goto exit;
 %end;

 %* Check if parameters are valid;
 %* MONTHSOLD must be numeric and 1 to 12;
 %if %sysfunc(notdigit(&monthsold)) gt 0 or
 &monthsold lt 1 or &monthsold gt 12 %then %do;
 %put ***;
 %put ERROR: MONTHSOLD was not specified correctly: &monthsold;
 %put Specify MONTHSOLD as an integer from 1 to 12;
 %put ***;
 %goto exit;
 %end;

 %* MINSALEPRICE must be numeric greater than 0 and if dollar
 signs and commas included, remove them;
 %let minsaleprice=%sysfunc(compress (&minsaleprice,%str(,)$));
 %if %sysfunc(notdigit(%sysfunc(compress(&minsaleprice,.))))
 gt 0
 %then %do;
 %put ***;
 %put ERROR: MINSALEPRICE was not specified correctly:
 &minsaleprice;
 %put ***;
 %goto exit;
 %end;

328 SAS Macro Programming Made Easy, Second Edition

 %* Uppercase value of PUBLISHER and remove multiple blanks.
 Use quoting functions since value might contain special
 characters or mnemonic operators;
 %let publisher=%qupcase(%superq(publisher));
 %let publisher=%qcmpres(%superq(publisher));

 proc print data=books.ytdsales(where=
 (month(datesold)=&monthsold and
 saleprice ge &minsaleprice and
 upcase(publisher)="&publisher"))
 noobs n="Number of Books Sold=";
 title "Titles Sold during Month
%sysfunc(putn(&monthsold,monname.))";
 title2 "Minimum Sale Price of $&minsaleprice";
 title3 "Publisher &publisher";
 run;

%exit:
%mend selecttitles;

%selecttitles(monthsold=2,minsaleprice=$50.95,
 publisher=%nrstr(Doe&Lee Ltd.))

Sections of the macro program that process the parameter values are identified by
number:

 All three parameters must have values.

 Quote the value of PUBLISHER for this test.

 The value of MONTHSOLD must be numeric and an integer from 1 to 12.

Remove dollar signs and commas from the value of MINSALEPRICE.

The value of MINSALEPRICE must be numeric and positive.

Uppercase and quote the value of PUBLISHER.

 Remove multiple blanks from the value of PUBLISHER and quote the value of
 PUBLISHER.

All three parameters to SELECTTITLES are specified correctly in the call to the macro
program, and a PROC PRINT report is produced. The value for PUBLISHER is quoted
in the call with %NRSTR since its value contains special characters. SELECTTITLES
removes the dollar sign in the value for MINSALEPRICE, and it removes the multiple
blanks from the value of PUBLISHER.

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 329

Example 12.8: Reviewing SAS Processing Messages
Starting in SAS 9.2, automatic macro variables SYSERRORTEXT and
SYSWARNINGTEXT, respectively, retain the text of the last error message and the last
warning message generated in the SAS log in the current SAS session. Macro program
LASTMSG in Program 12.8 checks whether any text has been stored in either of these
two automatic variables. It writes messages to the log indicating what it finds.

The steps preceding the call to %LASTMSG contain problems and errors that generate
warning and error messages. Macro program %LASTMSG, however, only lists the last
error message and the last warning message generated in the SAS log.

The problems and errors in Program 12.8 are in bold. In this example, assume ODS style
BOOKSTORE does not exist. In the PROC FREQ step, variable DATESOLD is
misspelled. The libref BOOOKS referenced in the DATA step has not been defined.
Assume that libref BOOKS was defined before Program 12.8 was submitted.

Program 12.8
%macro lastmsg;

 %* Check last warning message;
 %put;
 %if %bquote(&syswarningtext) eq %then
 %put No warnings generated so far in this SAS session;
 %else %do;
 %put Last warning message generated in this SAS session:;
 %put &syswarningtext;
 %end;

 %put;
 %* Check last error message;
 %if %bquote(&syserrortext) eq %then
 %put No error messages generated so far in this SAS session;
 %else %do;
 %put Last error message generated in this SAS session:;
 %put &syserrortext;
 %put;
 %end;
 %put;
%mend lastmsg;

ods rtf style=bookstore;

330 SAS Macro Programming Made Easy, Second Edition

proc freq data=books.ytdsales;
 tables datesoldd;
 format datesold monname.;
run;

data profit;
 set boooks.ytdsales;

 profit=saleprice-cost;
run;

ods rtf close;

%lastmsg

The SAS log for Program 12.8 follows, starting with submission of the first ODS RTF
statement. The error and warning messages are in bold. The last four lines shown in this
excerpt are the results of the %PUT statements in macro program %LASTMSG. Note
that the value of SYSWARNINGTEXT is equal to the second warning associated with
the DATA step. The value of SYSERRORTEXT is equal to the second of the two error
messages generated in the SAS log, the one that indicates that libref BOOOKS was not
assigned.

3256 ods rtf style=bookstore;
WARNING: Style BOOKSTORE not found; Rtf style will be used
 instead.
NOTE: Writing RTF Body file: sasrtf.rtf
3257
3258 proc freq data=books.ytdsales;
3259 tables datesoldd;
ERROR: Variable DATESOLDD not found.
3260 format datesold monname.;
3261 run;

NOTE: The SAS System stopped processing this step because of
 errors.
NOTE: PROCEDURE FREQ used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

3262
3263 data profit;
3264 set boooks.ytdsales;
ERROR: Libname BOOOKS is not assigned.
3265
3266 profit=saleprice-cost;

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 331

3267 run;

NOTE: The SAS System stopped processing this step because of
 errors.
WARNING: The data set WORK.PROFIT may be incomplete. When this
 step was stopped there were 0 observations and 3
 variables.
WARNING: Data set WORK.PROFIT was not replaced because this
 step was stopped.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds
3268
3269 ods rtf close;
3270
3271 %lastmsg

Last warning message generated in this SAS session:
Data set WORK.PROFIT was not replaced because this step was
stopped.

Last error message generated in this SAS session:
Libname BOOOKS is not assigned.

Example 12.9: Reviewing SAS Processing Results
Chapter 7 presented examples of macro programs that use %IF-%THEN statements to
execute specific SAS steps. When enhancing your macro programming code, you may
want to execute specific sections based on the results. For example, if an analysis
generates no results, you may not be able to produce a subsequent report. Your users may
not understand why the macro program did not produce the expected report. To assist
your users, your macro program could check the results of the analysis and then
determine the next step that executes. An analysis with no results may indicate an error,
and messages related to the situation could be written to the SAS log to inform your
users of the problem.

Macro program AUTHORREPORT lists titles sold by a specific author. Its one
parameter, AUTHOR, specifies the name of the author for whom a report is produced. A
DATA step creates a subset of the observations for the author. The macro program
examines the number of observations selected and determines the next step based on that
number.

332 SAS Macro Programming Made Easy, Second Edition

AUTHORREPORT can take three actions, as follows:

When the DATA step finds no titles for an author, the macro program writes text
to the SAS log indicating this condition and that no report will be produced.

When the DATA step finds only one title for the author, a simple PROC PRINT
step executes.

When more than one title is found, a PROC TABULATE summarizes the
author’s sales.

This program calls macro program AUTHORREPORT three times, once for each of the
three actions described above.

AUTHORREPORT starts out by converting the AUTHOR parameter value to uppercase
and quoting the result. It uppercases the value to minimize differences in the way the
user specifies the value and the way that the value is stored in the data set. It quotes the
value to mask any special characters or mnemonic operators that may be in the author’s
name.

Program 12.9
%macro authorreport(author);
 %* Quote the value of AUTHOR in case it contains special
 characters or mnemonic operators;
 %let author=%qupcase(&author);

 data author;
 set books.ytdsales(where=(upcase(author)="&author"));
 run;
 proc sql noprint;
 select count(booktitle)
 into :nbooks
 from author;
 quit;
 %if &nbooks=0 %then %do;
 %put ***;
 %put ERROR: Author &author not found in data set
 BOOKS.YTDSALES;
 %put No report produced.;
 %put ***;
 %end;
 %else %if &nbooks=1 %then %do;
 proc print data=author label noobs;
 title "Book Sold for Author &author";
 var booktitle datesold cost saleprice;
 format datesold monname.;

Chapter 12: Debugging Macro Programming and Adding Error Checking to Macro Programs 333

 run;
 %end;
 %if &nbooks gt 1 %then %do;
 proc tabulate data=author;
 title "Books Sold for Author &author";
 class section datesold booktitle;
 var cost saleprice;
 tables section*datesold*booktitle all='Total',
 n*f=4. (cost saleprice)*sum='Total'*f=dollar10.2;
 format datesold monname.;
 run;
 %end;
%mend authorreport;

/* This author is not in data set */
%authorreport(%str(Allan, Michael))

/* This author sold one book */
%authorreport(%str(Adams, Cynthia))

/* This author sold more than one book */
%authorreport(%str(Flores, Barbara))

The first call to AUTHORREPORT produces the following message in the SAS log with
the line starting with ERROR: in red.

ERROR: Author ALLAN, MICHAEL not found in data set BOOKS.YTDSALES
No report produced.

Output 12.2 shows the second call to AUTHORREPORT in Program 12.9.

Output 12.2 Report produced by a second call to macro program
 AUTHORREPORT in Program 12.9

 Book Sold for Author ADAMS, CYNTHIA

 Date

 Book Wholesale

 Title of Book Sold Cost Sale Price

 Internet Title 628 February $20.48 $40.95

334 SAS Macro Programming Made Easy, Second Edition

Output 12.3 shows the third call to AUTHORREPORT in Program 12.9.

Output 12.3 Report produced by a third call to macro program
 AUTHORREPORT in Program 12.9

 Books Sold for Author FLORES, BARBARA

 --

 | | |Wholesale | |

 | | | Cost |Sale Price|

 | | |----------+----------|

 | | N | Total | Total |

 |---------------------------------+----+----------+----------|

 |Section |Date Book |Title of | | | |

 |----------|Sold |Book | | | |

 |Web Design|----------+-----------| | | |

 | |January |Web Design | | | |

 | | |Title 150 | 1| $17.48| $34.95|

 | |----------+-----------+----+----------+----------|

 | |August |Web Design | | | |

 | | |Title 150 | 1| $17.48| $34.95|

 | |----------+-----------+----+----------+----------|

 | |September |Web Design | | | |

 | | |Title 150 | 2| $34.95| $69.90|

 | |----------+-----------+----+----------+----------|

 | |December |Web Design | | | |

 | | |Title 150 | 1| $17.48| $34.95|

 |---------------------------------+----+----------+----------|

 |Total | 5| $87.38| $174.75|

C h a p t e r 1 3
A Stepwise Method for Writing Macro
Programs

Introduction 336

Building a Macro Program in Four Steps 336

Applying the Four Steps to an Example 337
Step 1: Write, test, and debug the SAS program(s) that you want the
 macro program to build 338

Step 2: Remove hard-coded programming constants from the
 program(s) in Step 1 and replace these constants with macro
 variables 344

Step 3: Create macro program(s) from the program(s) in Step 2 348
Step 4: Refine and generalize the macro program(s) in Step 3 by adding
 macro language statements like %IF-%THEN and %DO
 groups 352

Executing the REPORT Macro Program 356

Enhancing the Macro Program REPORT 366

336 SAS Macro Programming Made Easy, Second Edition

Introduction

By now you've probably thought of at least one application that you could rewrite as a
macro program. You've written the DATA steps and the PROC steps and you'd like to
reuse this code. You've noticed ways that it can be generalized into a macro program.

After you decide that an application is appropriate to write as a macro program, build
your macro program in steps. Developing your macro program in steps of increasing
complexity ensures that your macro program ends up doing exactly what you want it to
do. It is also easier to debug a macro program as you develop it.

This chapter describes the steps in taking SAS programming requests and writing a
macro program to handle the requests. An example illustrates the process.

Building a Macro Program in Four Steps

The four basic steps in building a macro program are

Step 1. Write, test, and debug the SAS program(s) that you want the macro
 program to build.

Do not use any macro variables or macro language statements in this step.

Step 2. Remove hard-coded programming constants from the program(s) in Step 1
 and replace these constants with macro variables.
 Hard-coded programming constants are items like the values on a WHERE
 statement. Use %LET statements in open code to define the macro variables.
 Test and debug the program(s). Use the SYMBOLGEN option to verify the
 results of using the macro variables.

Step 3. Create macro program(s) from the program(s) in Step 2.
Add parameters to the macro program(s) if appropriate. Most likely, it would be

 appropriate to make the macro variables that you define in Step 2 parameters to
 the macro program(s) that you write in this step. Use SAS options MPRINT and
 SYMBOLGEN to review the results of processing this macro program.

Chapter 13: A Stepwise Method for Writing Macro Programs 337

Step 4. Refine and generalize the macro program(s) in Step 3 by adding macro
 language statements like %IF-%THEN and %DO groups.
 After several macro programs are tested in Step 3, write programming
 statements to combine the macro programs into one macro program. Test the
 macro programming logic. Use the SAS options MPRINT, SYMBOLGEN, and
 MLOGIC to verify that your macro program works correctly.

Applying the Four Steps to an Example

Suppose that you have the ongoing task of producing sales reports for the computer
books department of the bookstore using the year-to-date sales data set. These reports
vary, but several items in the reports are the same and the layout of the reports is the
same. To save yourself coding time each time a report is requested, you decide to
develop a macro program that contains the framework of the reports. You customize the
basic reports through the parameters that you specify to your macro program and the
macro language statements contained within the program.

Your macro program should be able to perform the following tasks:

Analyze any or all of the sales-related variables: COST, LISTPRICE,
SALEPRICE, and PROFIT. Note that PROFIT is not saved in
BOOKS.YTDALES and must be computed.

Present these analyses for specific classifications. For example, the program
should be able to compute overall sales; sales by section (variable SECTION);
sales by publisher (variable PUBLISHER); sales by sales associate (variable
SALEINIT); sales by combinations of the classification variables.

Present the analyses for a specific time period based on the date a book was sold
(variable DATESOLD). Set the default time period of analysis to be the
beginning of the year to the current date.

Direct the results to an output destination other than the output window, and
specify an ODS style when requesting this alternate destination.

338 SAS Macro Programming Made Easy, Second Edition

Some of the reports that this macro program could produce include:

Total of COST, LISTPRICE, SALEPRICE, and PROFIT for a specific time
period.

Total of SALEPRICE and PROFIT by section of the store for a specific time
period.

Pie chart of SALEPRICE and PROFIT by section of the store when the specific
time period is a quarter or full year.

Total PROFIT by section of the store and publisher of the books sold.

Send any of these reports to a destination other than the output window and
optionally specify an ODS style.

The rest of this chapter applies the four steps to build a macro program that can perform
the tasks listed above and generate the specific reports listed above and more. The
application uses PROC TABULATE and PROC GCHART.

Step 1: Write, test, and debug the SAS program(s) that
 you want the macro program to build

The goal of the first step is to write a few sample programs that do not contain macro
language code. This gives you the basic SAS coding framework that you can generalize
later as you incorporate macro facility features.

Many different reports could be requested based on the preceding list. It would not be
practical to write all possible programs. Instead, write a few representative sample
programs that generally encompass the basic list of program requirements.

In this application, three sample programs are written to complete this step. The three are
referred to as Report A, Report B, and Report C.

Report A presents overall totals for COST, LISTPRICE, SALEPRICE, and
PROFIT for a specific time period, July 1, 2007–August 31, 2007.

Report B presents totals and pie charts by SECTION for SALEPRICE and
PROFIT for the first quarter of 2007.

Report C presents totals by SECTION and PUBLISHER for COST and
PROFIT for the year-to-date. Report C is sent to an RTF destination using the
style GEARS that is distributed with SAS software and found in
SASUSER.TMPLMST.

Chapter 13: A Stepwise Method for Writing Macro Programs 339

Program for Report A with No Macro Facility Features
Report A presents overall totals for COST, LISTPRICE, SALEPRICE, and PROFIT for
July 1, 2007, through August 31, 2007.

*----REPORT A;
options pageno=1;
title "Sales Report";
title2 "July 1, 2007 - August 31, 2007";
data temp;
 set books.ytdsales(where=
 ('01jul2007'd le datesold le '31aug2007'd));
 profit=saleprice-cost;

 attrib profit label='Profit' format=dollar10.2;
run;

proc tabulate data=temp;
 var cost listprice saleprice profit;
 tables n*f=6.
 (cost listprice saleprice profit)*
 sum='Total'*f=dollar11.2;
 keylabel n='Titles Sold';
run;

Output 13.1 presents the report produced by the Report A program.

Output 13.1 Output produced by the Step 1 Report A program

 Sales Report 1

 July 1, 2007 - August 31, 2007

 --

 | | Wholesale | | | |

 | | Cost |List Price |Sale Price | Profit |

 |Titles|-----------+-----------+-----------+-----------|

 | Sold | Total | Total | Total | Total |

 |------+-----------+-----------+-----------+-----------|

 | 700| $15,792.78| $31,000.00| $30,380.81| $14,588.03|

 --

340 SAS Macro Programming Made Easy, Second Edition

Program for Report B with No Macro Facility Features
Report B analyzes SALEPRICE and PROFIT for first quarter 2007. It presents a tabular
report and two pie charts, one for each of the two analysis variables.

*----REPORT B;
options pageno=1;
title "Sales Report";
title2 "January 1, 2007 - March 31, 2007";
data temp;
 set books.ytdsales(where=
 ('01jan2007'd le datesold le '31mar2007'd));

 profit=saleprice-cost;

 attrib profit label='Profit' format=dollar10.2;
run;

proc tabulate data=temp;
 class section;
 var saleprice profit;
 tables section all,
 n*f=6. (saleprice profit)*sum='Total'*f=dollar11.2 /
 rts=30;
 keylabel all='Total Sales'
 n='Titles Sold';
run;

proc gchart data=temp;
 title3 "Sales for Quarter";
 pie section / type=sum sumvar=saleprice
 coutline=black percent=outside;
 run;
 pie section / type=sum sumvar=profit
 coutline=black percent=outside;
 run;
quit;

Output 13.2 presents the output produced by the Report B program.

Chapter 13: A Stepwise Method for Writing Macro Programs 341

Output 13.2 Output produced by the Step 1 Report B program

 Sales Report 1
 January 1, 2007 - March 31, 2007

 | | |Sale Price | Profit |
 | |Titles|-----------+-----------|
 | | Sold | Total | Total |
 |----------------------------+------+-----------+-----------|
 |Section | | | |
 |----------------------------| | | |
 |Certification and Training | 253| $10,942.09| $5,216.13|
 |----------------------------+------+-----------+-----------|
 |Internet | 477| $20,168.41| $9,655.75|
 |----------------------------+------+-----------+-----------|
 |Networks and | | | |
 |Telecommunication | 229| $9,866.57| $4,758.38|
 |----------------------------+------+-----------+-----------|
 |Operating Systems | 325| $13,941.16| $6,696.48|
 |----------------------------+------+-----------+-----------|
 |Programming and Applications| 478| $20,890.13| $9,970.25|
 |----------------------------+------+-----------+-----------|
 |Web Design | 280| $12,342.40| $5,952.90|
 |----------------------------+------+-----------+-----------|
 |Total Sales | 2042| $88,150.76| $42,249.87|

342 SAS Macro Programming Made Easy, Second Edition

Program for Report C with No Macro Facility Features
Report C summarizes COST and PROFIT from the beginning of the year to the current
date by section and publisher. Assume that the current date for the example is November
24, 2007. The output for this report is sent to the RTF output destination and uses style
GEARS found in SASUSER.TMPLMST, which contains SAS supplied templates.

*----REPORT C;
ods listing close;
ods rtf style=gears;

title "Sales Report";
title2 "January 1, 2007 – November 24, 2007";
data temp;
 set books.ytdsales(where=
 ('01jan2007'd le datesold le '24nov2007'd));

 profit=saleprice-cost;
 attrib profit label='Profit' format=dollar10.2;

run;

Chapter 13: A Stepwise Method for Writing Macro Programs 343

proc tabulate data=temp;
 class section publisher;
 var cost profit;
 tables section*(publisher all) all,
 n*f=6. (cost profit)*sum*f=dollar11.2 / rts=30;
 keylabel all='Total Sales'
 n='Titles Sold';
run;
ods rtf close;
ods listing;

Output 13.3 presents the output produced by the Report C program. The report covers six
pages. Output 13.3 shows the first and the sixth page of the report. The style selected
prints the output in color. When you submit the program, your RTF output will display in
the colors of the style. This book presents a grayscale copy of the output.

 Output 13.3 Output produced by the Step 1 Report C program

Sales Report
January 1, 2007 - November 24, 2007

Wholesale Cost Profit

Titles Sold Sum Sum

Section Publisher

AMZ Publishers 56 $1,311.38 $1,243.47

Bookstore Brand Titles 53 $1,208.56 $1,167.01

Doe&Lee Ltd. 56 $1,231.20 $1,198.34

Eversons Books 34 $815.22 $698.64

IT Training Texts 59 $1,316.12 $1,229.62

Mainst Media 102 $2,394.43 $2,070.97

Nifty New Books 58 $1,365.23 $1,197.32

Northern Associates Titles 35 $821.41 $747.99

Popular Names Publishers 54 $1,177.01 $1,025.90

Professional House Titles 42 $837.45 $834.16

Technology Smith 55 $1,241.71 $1,193.17

Wide-World Titles 53 $1,204.95 $1,100.27

Certification and
Training

Total Sales 657 $14,924.67 $13,706.83

(continued on the next page)

344 SAS Macro Programming Made Easy, Second Edition

Sales Report
January 1, 2007 - November 24, 2007

Wholesale Cost Profit

Titles Sold Sum Sum

Publisher

AMZ Publishers 58 $1,408.43 $1,333.22

Bookstore Brand Titles 50 $1,156.13 $1,022.96

Doe&Lee Ltd. 73 $1,660.16 $1,566.98

Eversons Books 90 $2,046.12 $1,863.22

IT Training Texts 49 $1,083.14 $1,008.83

Mainst Media 58 $1,240.74 $1,172.22

Nifty New Books 67 $1,522.82 $1,430.33

Northern Associates Titles 56 $1,277.66 $1,047.80

Popular Names Publishers 50 $1,161.75 $1,109.11

Professional House Titles 84 $1,925.74 $1,730.87

Technology Smith 64 $1,429.16 $1,323.17

Wide-World Titles 77 $1,824.07 $1,788.82

Web Design

Total Sales 776 $17,735.92 $16,397.52

Total Sales 5608 $126,228.60 $116,487.40

After running these three programs and verifying that they display the information
required, move on to Step 2.

Step 2: Remove hard-coded programming constants from
 the program(s) in Step 1 and replace these
 constants with macro variables

When you review the three programs created in Step 1, some patterns emerge:

Observations are selected within a certain range of dates. This range is specified
in the WHERE clause in the DATA step and in the titles.

Analysis variables are selected from a defined set of variables.

Classification variables are selected from a defined set of variables.

Chapter 13: A Stepwise Method for Writing Macro Programs 345

The values in the preceding list are hard-coded programming constants in the three
programs from Step 1. Macro variables can be created in open code to hold these values.

Program for Report A with Step 2 Modifications
A revised Report A program follows that includes open code macro language statements.
The %LET statements and macro variable references are in bold. The macro values
TITLESTART and TITLESTOP are assigned the formatted values of the reporting
period.

*----REPORT A;
%let repyear=2007;
%let start=01jul&repyear;
%let stop=31aug&repyear;
%let vars=cost listprice saleprice profit;

%let titlestart=%sysfunc(putn("&start"d,worddate.));
%let titlestop=%sysfunc(putn("&stop"d,worddate.));

options pageno=1 symbolgen;
title "Sales Report";
title2 "&titlestart - &titlestop";
data temp;
 set books.ytdsales(where=
 ("&start"d le datesold le "&stop"d));

 profit=saleprice-cost;

 attrib profit label='Profit' format=dollar10.2;
run;

proc tabulate data=temp;
 var &vars;
 tables n*f=6.
 (&vars)*
 sum='Total'*f=dollar11.2;
 keylabel n='Titles Sold';
run;

346 SAS Macro Programming Made Easy, Second Edition

Program for Report B with Step 2 Modifications
Report B is modified to define macro variables in open code. Some of the changes that
were made to this program were made to the Report A program.

*----Report B;
%let repyear=2007;
%let start=01jan&repyear;
%let stop=31mar&repyear;

%let classvar=section;
%let vars=saleprice profit;

%let titlestart=%sysfunc(putn("&start"d,worddate.));
%let titlestop=%sysfunc(putn("&stop"d,worddate.));

options pageno=1 symbolgen;

title "Sales Report";
title2 "&titlestart through &titlestop";
data temp;
 set books.ytdsales(where=
 ("&start"d le datesold le "&stop"d));

 profit=saleprice-cost;

 attrib profit label='Profit' format=dollar10.2;
run;

proc tabulate data=temp;
 class &classvar;
 var &vars;
 tables section all,
 n*f=6. (&vars)*sum='Total'*f=dollar11.2 /
 rts=30;
 keylabel all='Total Sales'
 n='Titles Sold';
run;

Chapter 13: A Stepwise Method for Writing Macro Programs 347

proc gchart data=temp;
 title3 "Sales for Quarter";
 pie &classvar / type=sum sumvar=%scan(&vars,1)
 coutline=black percent=outside;
 run;
 pie &classvar / type=sum sumvar=%scan(&vars,2)
 coutline=black percent=outside;
 run;
quit;

Program for Report C with Step 2 Modifications
The program for Report C is modified with the creation of macro variables in open code.
The features added to this program are similar to and include some of those added to the
programs for Report A and Report B.

*----REPORT C;
%let repyear=2007;
%let start=01jan&repyear;
%let stop=&sysdate;

%let classvar=section publisher;
%let vars=cost profit;

%let outputdest=rtf;
%let outputstyle=gears;

%let titlestart=%sysfunc(putn("&start"d,worddate.));
%let titlestop=%sysfunc(putn("&stop"d,worddate.));

options symbolgen;

ods listing close;
ods &outputdest style=&outputstyle;

title "Sales Report";
title2 "&titlestart – &titlestop";
data temp;
 set books.ytdsales(where=
 ("&start"d le datesold le "&stop"d));

 profit=saleprice-cost;
 attrib profit label='Profit' format=dollar10.2;

run;

348 SAS Macro Programming Made Easy, Second Edition

proc tabulate data=temp;
 class &classvar;
 var &vars;
 tables %scan(&classvar,1)*(%scan(&classvar,2) all) all,
 n*f=6. (&vars)*sum*f=dollar11.2 / rts=30;
 keylabel all='Total Sales'
 n='Titles Sold';
run;
ods &outputdest close;
ods listing;

Step 3: Create macro program(s) from the program(s) in
 Step 2

In Step 2, similar changes were made to each of the three programs:

Macro variables were defined for the range in dates that were selected from the
data set.

Macro variables were defined to hold the classification variables and analysis
variables.

It might be tempting to jump to writing %DO blocks and conditional processing
statements, but complete Step 3 first. In Step 3, define macro programs that use
parameters. The parameters to the macro programs will usually be the macro variables
that were defined in Step 2. By not including macro language statements in these macro
program definitions, you'll be sure that the parameters you define execute correctly.

Use the SYMBOLGEN and MPRINT options to verify that your programming changes
do what you intend.

Program for Report A with Step 3 Modifications
The program for Report A is converted to a macro program. It has four keyword
parameters, the same as the first four macro variables defined in open code in Step 2. The
macro program assigns default values to three parameters: the start date, the stop date,
and the analysis variables. The DATA and PROC steps in this program are the same as
those in the Report A program in Step 2.

*----REPORT A;
options symbolgen mprint;

%macro reporta(repyear=,start=01JAN,stop=31DEC,
 vars=cost listprice saleprice profit);

Chapter 13: A Stepwise Method for Writing Macro Programs 349

 %let start=&start&repyear;
 %let stop=&stop&repyear;

 %let titlestart=%sysfunc(putn("&start"d,worddate.));
 %let titlestop=%sysfunc(putn("&stop"d,worddate.));

 title "Sales Report";
 title2 "&titlestart – &titlestop";
 data temp;
 set books.ytdsales(where=
 ("&start"d le datesold le "&stop"d));

 profit=saleprice-cost;

 attrib profit label='Profit' format=dollar10.2;
 run;

 proc tabulate data=temp;
 var &vars;
 tables n*f=6.
 (&vars)*
 sum='Total'*f=dollar11.2;
 keylabel n='Titles Sold';
 run;
%mend reporta;

The code to call REPORTA becomes

%reporta(repyear=2007,start=01jul,stop=31aug)

The start and stop dates for the reporting period are different than the default dates of
January 1 and December 31. Therefore, you need to specify these two parameters. The
analysis variables are the same as the default set of variables that are listed in the macro
program definition for REPORTA. Therefore, the call to macro program REPORTA does
not specify the VARS parameter.

Program for Report B with Step 3 Modifications
The program for Report B in Step 2 is converted into the following macro program. This
macro program defines five keyword parameters. Two parameters, the start date and the
stop date, are defined with default values. The DATA and PROC steps in this program
are the same as those in the Report B program in Step 2. Note that the titles indicate that
the processing is done for a quarter. Therefore, to be accurate, specify the START= and
STOP= values to correspond to a quarter.

350 SAS Macro Programming Made Easy, Second Edition

options symbolgen mprint;

%macro reportb(repyear=,start=01JAN,stop=31DEC,
 classvar=,vars=);

 options pageno=1;

%let start=&start&repyear;
 %let stop=&stop&repyear;

 %let titlestart=%sysfunc(putn("&start"d,worddate.));
 %let titlestop=%sysfunc(putn("&stop"d,worddate.));

 title "Sales Report";
 title2 "&titlestart - &titlestop";
 data temp;
 set books.ytdsales(where=
 ("&start"d le datesold le "&stop"d));

 profit=saleprice-cost;

 attrib profit label='Profit' format=dollar10.2;
 run;

 proc tabulate data=temp;
 title3 "Sales for Quarter";
 class &classvar;
 var &vars;
 tables section all,
 n*f=6. (&vars)*sum='Total'*f=dollar11.2 /
 rts=30;
 keylabel all='Total Sales'
 n='Titles Sold';
 run;

 proc gchart data=temp;
 title3 "Sales for Quarter";
 pie &classvar / type=sum sumvar=%scan(&vars,1)
 coutline=black percent=outside;
 run;
 pie &classvar / type=sum sumvar=%scan(&vars,2)
 coutline=black percent=outside;
 run;
 quit;

%mend reportb;

Chapter 13: A Stepwise Method for Writing Macro Programs 351

The call to REPORTB is written as follows:

%reportb(repyear=2007,stop=31Mar,classvar=section,
 vars=saleprice profit)

The start date for the call to REPORTB is the same as the default value of January 1.
Therefore, the start date does not have to be specified in the call to REPORTB. The stop
date that is required to produce Report B is March 31. Since the default stop date is
December 31, the value 31Mar must be specified as the stop date parameter value. The
information in the report is summarized by the classification variable, SECTION. Two
analysis variables are specified: SALEPRICE and PROFIT.

Program for Report C with Step 3 Modifications
Next, the program for Report C in Step 2 is converted into a macro program. This macro
program defines seven keyword parameters. Two parameters, the start date and the stop
date, are defined with default values. The DATA and PROC steps in this program are the
same as those in the Report C program in Step 2.

This macro program differs from macro programs REPORTA and REPORTB because it
has two parameters that control the destination of the output. These previous two macro
programs sent output to whatever the current destination in the SAS session was when
they were called.

A problem with the following macro program is that the ODS statement with the
STYLE= option always executes. The STYLE= option is not valid when specifying the
LISTING destination. When you direct the output to the LISTING destination, the
program generates an error. This problem is fixed in Step 4.

options symbolgen mprint;

%macro reportc(repyear=,start=01JAN,stop=31DEC,
 classvar=,vars=,
 outputdest=,style=);

 options pageno=1;

%let start=&start&repyear;
 %let stop=&stop&repyear;

 %let titlestart=%sysfunc(putn("&start"d,worddate.));
 %let titlestop=%sysfunc(putn("&stop"d,worddate.));

 ods listing close;
 ods &outputdest style=&outputstyle;
 title "Sales Report";
 title2 "&titlestart – &titlestop";

352 SAS Macro Programming Made Easy, Second Edition

 data temp;
 set books.ytdsales(where=
 ("&start"d le datesold le "&stop"d));

 profit=saleprice-cost;

 attrib profit label='Profit' format=dollar10.2;
 run;

 proc tabulate data=temp;
 class &classvar;
 var &vars;
 tables %scan(&classvar,1)*(%scan(&classvar,2) all) all,
 n*f=6. (&vars)*sum*f=dollar11.2 / rts=30;
 keylabel all='Total Sales'
 n='Titles Sold';
 run;
 ods &outputdest close;
 ods listing;
%mend reportc;

The call to REPORTC is specified as follows:

%reportc(repyear=2007,stop=24NOV,classvar=section publisher,
vars=cost profit,outputdest=rtf,style=gears)

The start date for the call to REPORTC is the default value of January 1. The stop date
required to produce REPORTC is the current date of November 24 and must be specified
since the default stop date is December 31. The information in the report is summarized
by two classification variables, SECTION and PUBLISHER. Two analysis variables are
specified, COST and PROFIT. The program directs the output to the RTF destination
using the style GEARS.

Step 4: Refine and generalize the macro program(s) in
 Step 3 by adding macro language statements like
 %IF-%THEN and %DO groups

The goal in Step 4 for the example application is to consolidate the three macro programs
into one. The main similarity among the three programs is that they have most of the
same parameters. Macro language statements are required to handle the following
differences and to further generalize the programs:

Chapter 13: A Stepwise Method for Writing Macro Programs 353

No classification variable is specified in Report A. One classification variable is
specified in Report B. Two classification variables are specified in Report C.

Report A uses all the analysis variables. Reports B and C use some of the
analysis variables.

Report B is executed at the end of a quarter. Therefore, the third title is required
for the pie charts.

The number of PIE statements in Report B is equal to the number of analysis
variables.

Report C is sent to a destination other than the LISTING destination. The
STYLE option on the ODS statement when LISTING is the destination causes
an error and programming must eliminate this problem.

One enhancement that could be added to the macro program is to compute defaults for
the report year and the stop date of the reports. Write the macro program so that when no
report year is entered, use the current year. If stop date is specified as a null value, use
the current date as the stop date for the report. If a default value has been specified for
the stop date in the macro program definition, and the parameter is not included in the
call to the program, the stop date will be the default value assigned to the parameter
(31DEC).

The consolidated macro program incorporates conditional processing and iterative
processing. One way to write this macro program follows. The changes are in bold.
Comments are added to the macro program to describe the processing of the macro
program.

options mprint mlogic symbolgen;

%macro report(repyear=,start=01JAN,stop=31DEC,
 classvar=,vars=cost listprice saleprice profit,
 outputdest=listing,style=);

 options pageno=1;

 %*----Check if a value was specified for report year.
 If no value specified,use current year;
 %if &repyear= %then %let repyear=
 %sysfunc(year(%sysfunc(today())));
 %*----Check if stop date specified. If null, use
 current date as stop date;
 %if &stop= %then %let stop=%substr(&sysdate,1,5);

 %let start=&start&repyear;
 %let stop=&stop&repyear;

354 SAS Macro Programming Made Easy, Second Edition

 %let titlestart=%sysfunc(putn("&start"d,worddate.));
 %let titlestop=%sysfunc(putn("&stop"d,worddate.));

 %*----Check the output destination and style parameters;
 %*----Close LISTING, open alternate destination if
 specified;
 %*----Add STYLE if specified for the alternate
 destination;
 %if %upcase(&outputdest) ne LISTING %then %do;
 ods listing close;
 ods &outputdest
 %if &style ne %then %do;
 style=&style
 %end;
 ;
 %end;

 title "Sales Report";
 title2 "&titlestart - &titlestop";
 data temp;
 set books.ytdsales(where=
 ("&start"d le datesold le "&stop"d));

 profit=saleprice-cost;

 attrib profit label='Profit' format=dollar10.2;
 run;

 proc tabulate data=temp;
 %*----Only submit a CLASS statement if there is a
 classification variable;
 %if &classvar ne %then %do;
 class &classvar;
 %end;
 var &vars;
 tables
 %if &classvar ne %then %do;
 %*---Determine leftmost row dimension variable;
 %let mainclas=%scan(&classvar,1);
 &mainclas
 %if %length(&mainclas) < %length(&classvar) %then %do;
 %*----If more than one classification variable, nest
 remaining classification variables under the
 first;
 %*----Use the substring function to extract
 classification variables after the first;

Chapter 13: A Stepwise Method for Writing Macro Programs 355

 %let pos2=%index(&classvar,%scan(&classvar,2));
 %*----Add the rest of the classification vars;
 * (%substr(&classvar,&pos2) all)

 %end;
 all,
 %end;
 n*f=6. (&vars)*sum*f=dollar11.2;
 keylabel all='Total Sales'
 n='Titles Sold';
 run;

 %*----Check if date range is for a quarter or year;
 %let strtmdy=%upcase(%substr(&start,1,5));
 %let stopmdy=%upcase(%substr(&stop,1,5));
 %if (&strtmdy=01JAN and &stopmdy=31MAR) or
 (&strtmdy=01APR and &stopmdy=30JUN) or
 (&strtmdy=01JUL and &stopmdy=30SEP) or
 (&strtmdy=01OCT and &stopmdy=31DEC) or
 (&strtmdy=01JAN and &stopmdy=31DEC) %then %do;

 %*----Special titles for Quarter and for Year;
 %if not (&strtmdy eq 01JAN and &stopmdy eq 31DEC)
 %then %do;
 title3 "Sales for Quarter";
 %end;
 %else %do;
 title3 "&repyear Annual Sales";
 %end;

 proc gchart data=temp;
 %*----For each analysis variable, do a pie chart;
 %let setchrt=1;
 %let chrtvar=%scan(&vars,1);
 %do %while (&chrtvar ne);
 pie &classvar / type=sum sumvar=&chrtvar
 coutline=black percent=outside;
 run;

 %let setchrt=%eval(&setchrt+1);
 %let chrtvar=%scan(&vars,&setchrt);
 %end;
 quit;
 %end;

356 SAS Macro Programming Made Easy, Second Edition

 %*-----Close alternate destination if specified;
 %if %upcase(&outputdest) ne LISTING %then %do;
 ods &outputdest close;
 ods listing;
 %end;

%mend report;

In Step 4, the SYMBOLGEN, MPRINT, and MLOGIC options can verify that your
macro program works correctly. After you thoroughly check your macro program, turn
these options off to save computing time.

Executing the REPORT Macro Program
Many types of reports can now be generated by the REPORT macro program, including
Reports A, B, and C.

Obtaining the Contents of Report A Using the REPORT
Macro Program
The first request to sum sales information for July and August 2007 is as follows:

%report(repyear=2007,start=01jul,stop=31aug)

The SAS log for the above submission of the call to %REPORT follows. The SAS code
that macro program REPORT submits is in bold. Options MLOGIC and MPRINT are in
effect.

450 %report(repyear=2007,start=01jul,stop=31aug)
MLOGIC(REPORT): Beginning execution.
MLOGIC(REPORT): Parameter REPYEAR has value 2007
MLOGIC(REPORT): Parameter START has value 01jul
MLOGIC(REPORT): Parameter STOP has value 31aug
MLOGIC(REPORT): Parameter CLASSVAR has value
MLOGIC(REPORT): Parameter VARS has value cost listprice
 saleprice profit
MLOGIC(REPORT): Parameter OUTPUTDEST has value listing
MLOGIC(REPORT): Parameter STYLE has value
MPRINT(REPORT): options pageno=1;
MLOGIC(REPORT): %IF condition &repyear= is FALSE
MLOGIC(REPORT): %IF condition &stop= is FALSE
MLOGIC(REPORT): %LET (variable name is START)
MLOGIC(REPORT): %LET (variable name is STOP)
MLOGIC(REPORT): %LET (variable name is TITLESTART)
MLOGIC(REPORT): %LET (variable name is TITLESTOP)

Chapter 13: A Stepwise Method for Writing Macro Programs 357

MLOGIC(REPORT): %IF condition %upcase(&outputdest) ne LISTING
 is FALSE
MPRINT(REPORT): title "Sales Report";
MPRINT(REPORT): title2 "July 1, 2007 - August 31, 2007";
MPRINT(REPORT): data temp;
MPRINT(REPORT): set books.ytdsales(where= ("01jul2007"d le
datesold le "31aug2007"d));
MPRINT(REPORT): profit=saleprice-cost;
MPRINT(REPORT): attrib profit label='Profit'
format=dollar10.2;
MPRINT(REPORT): run;

NOTE: There were 700 observations read from the data set
 BOOKS.YTDSALES.
 WHERE (datesold>='01JUL2007'D and datesold<='31AUG2007'D);
NOTE: The data set WORK.TEMP has 700 observations and 11
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

MPRINT(REPORT): proc tabulate data=temp;
MLOGIC(REPORT): %IF condition &classvar ne is FALSE
MPRINT(REPORT): var cost listprice saleprice profit;
MLOGIC(REPORT): %IF condition &classvar ne is FALSE
MPRINT(REPORT): tables n*f=6. (cost listprice saleprice
profit)*sum*f=dollar11.2;
MPRINT(REPORT): keylabel all='Total Sales' n='Titles Sold';
MPRINT(REPORT): run;

NOTE: There were 700 observations read from the data set
 WORK.TEMP.
NOTE: PROCEDURE TABULATE used (Total process time):
 real time 0.06 seconds
 cpu time 0.03 seconds

MLOGIC(REPORT): %LET (variable name is STRTMDY)
MLOGIC(REPORT): %LET (variable name is STOPMDY)
MLOGIC(REPORT): %IF condition (&strtmdy=01JAN and
 &stopmdy=31MAR) or (&strtmdy=01APR and
 &stopmdy=30JUN) or (&strtmdy=01JUL and
 &stopmdy=30SEP) or (&strtmdy=01OCT and
 &stopmdy=31DEC) or (&strtmdy=01JAN and
 &stopmdy=31DEC) is FALSE

358 SAS Macro Programming Made Easy, Second Edition

MLOGIC(REPORT): %IF condition %upcase(&outputdest) ne LISTING
 is FALSE
MLOGIC(REPORT): Ending execution.

Output 13.4 presents the output for the first call to REPORT. This output is identical to
that in Output 13.1.

Output 13.4 Output for the first call to macro program REPORT, which
 generates the information that was specified for Report A

 Sales Report 1

 July 1, 2007 - August 31, 2007

 --

 | | Wholesale | | | |

 | | Cost |List Price |Sale Price | Profit |

 |Titles|-----------+-----------+-----------+-----------|

 | Sold | Sum | Sum | Sum | Sum |

 |------+-----------+-----------+-----------+-----------|

 | 700| $15,792.78| $31,000.00| $30,380.81| $14,588.03|

 --

Obtaining the Contents of Report B Using the REPORT
Macro Program
The second request to REPORT should generate statistics for sale price and profit by
section for first quarter 2007. Since the reporting time period is a quarter, pie charts are
also produced.

%report(repyear=2007,stop=31Mar,classvar=section,
 vars=saleprice profit)

The SAS log for the above submission of the call to %REPORT follows. The SAS code
that macro program REPORT submits is in bold. Options MLOGIC and MPRINT are in
effect.

451 %report(repyear=2007,stop=31Mar,classvar=section,
MLOGIC(REPORT): Beginning execution.
452 vars=saleprice profit)
MLOGIC(REPORT): Parameter REPYEAR has value 2007
MLOGIC(REPORT): Parameter STOP has value 31Mar
MLOGIC(REPORT): Parameter CLASSVAR has value section
MLOGIC(REPORT): Parameter VARS has value saleprice profit

Chapter 13: A Stepwise Method for Writing Macro Programs 359

MLOGIC(REPORT): Parameter START has value 01JAN
MLOGIC(REPORT): Parameter OUTPUTDEST has value listing
MLOGIC(REPORT): Parameter STYLE has value
MPRINT(REPORT): options pageno=1;
MLOGIC(REPORT): %IF condition &repyear= is FALSE
MLOGIC(REPORT): %IF condition &stop= is FALSE
MLOGIC(REPORT): %LET (variable name is START)
MLOGIC(REPORT): %LET (variable name is STOP)
MLOGIC(REPORT): %LET (variable name is TITLESTART)
MLOGIC(REPORT): %LET (variable name is TITLESTOP)
MLOGIC(REPORT): %IF condition %upcase(&outputdest) ne LISTING
 is FALSE
MPRINT(REPORT): title "Sales Report";
MPRINT(REPORT): title2 "January 1, 2007 - March 31, 2007";
MPRINT(REPORT): data temp;
MPRINT(REPORT): set books.ytdsales(where= ("01JAN2007"d le
datesold le "31Mar2007"d));
MPRINT(REPORT): profit=saleprice-cost;
MPRINT(REPORT): attrib profit label='Profit'
format=dollar10.2;
MPRINT(REPORT): run;

NOTE: There were 2042 observations read from the data set
 BOOKS.YTDSALES.
 WHERE (datesold>='01JAN2007'D and datesold<='31MAR2007'D);
NOTE: The data set WORK.TEMP has 2042 observations and 11
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

MPRINT(REPORT): proc tabulate data=temp;
MLOGIC(REPORT): %IF condition &classvar ne is TRUE
MPRINT(REPORT): class section;
MPRINT(REPORT): var saleprice profit;
MLOGIC(REPORT): %IF condition &classvar ne is TRUE
MLOGIC(REPORT): %LET (variable name is MAINCLAS)
MLOGIC(REPORT): %IF condition %length(&mainclas) <
 %length(&classvar) is FALSE
MPRINT(REPORT): tables section all, n*f=6. (saleprice
profit)*sum*f=dollar11.2;
MPRINT(REPORT): keylabel all='Total Sales' n='Titles Sold';
MPRINT(REPORT): run;

360 SAS Macro Programming Made Easy, Second Edition

NOTE: There were 2042 observations read from the data set
 WORK.TEMP.
NOTE: PROCEDURE TABULATE used (Total process time):
 real time 0.03 seconds
 cpu time 0.03 seconds

MLOGIC(REPORT): %LET (variable name is STRTMDY)
MLOGIC(REPORT): %LET (variable name is STOPMDY)
MLOGIC(REPORT): %IF condition (&strtmdy=01JAN and
 &stopmdy=31MAR) or (&strtmdy=01APR and
 &stopmdy=30JUN) or (&strtmdy=01JUL and
 &stopmdy=30SEP) or (&strtmdy=01OCT and
 &stopmdy=31DEC) or (&strtmdy=01JAN and
 &stopmdy=31DEC) is TRUE
MLOGIC(REPORT): %IF condition not (&strtmdy eq 01JAN and
 &stopmdy eq 31DEC) is TRUE
MPRINT(REPORT): title3 "Sales for Quarter";
MPRINT(REPORT): proc gchart data=temp;
MLOGIC(REPORT): %LET (variable name is SETCHRT)
MLOGIC(REPORT): %LET (variable name is CHRTVAR)
MLOGIC(REPORT): %DO %WHILE(&chrtvar ne) loop beginning;
 condition is TRUE.
MPRINT(REPORT): pie section / type=sum sumvar=saleprice
coutline=black percent=outside;
MPRINT(REPORT): run;

MLOGIC(REPORT): %LET (variable name is SETCHRT)
MLOGIC(REPORT): %LET (variable name is CHRTVAR)
MLOGIC(REPORT): %DO %WHILE(&chrtvar ne) condition is TRUE;
 loop will iterate again.
MPRINT(REPORT): pie section / type=sum sumvar=profit
coutline=black percent=outside;
MPRINT(REPORT): run;
MLOGIC(REPORT): %LET (variable name is SETCHRT)
MLOGIC(REPORT): %LET (variable name is CHRTVAR)
MLOGIC(REPORT): %DO %WHILE() condition is FALSE; loop will not
 iterate again.
MPRINT(REPORT): quit;

NOTE: There were 2042 observations read from the data set
 WORK.TEMP.
NOTE: PROCEDURE GCHART used (Total process time):
 real time 1.39 seconds
 cpu time 0.15 seconds

Chapter 13: A Stepwise Method for Writing Macro Programs 361

MLOGIC(REPORT): %IF condition %upcase(&outputdest) ne LISTING
 is FALSE
MLOGIC(REPORT): Ending execution.

Output 13.5 presents the output for the second call to REPORT. This output is identical
to that in Output 13.2.

Output 13.5 Output for the second call to macro program REPORT, which
 generates the information that was specified for Report B

 Sales Report 1

 January 1, 2007 - March 31, 2007

 | | |Sale Price | Profit |

 | |Titles|-----------+-----------|

 | | Sold | Sum | Sum |

 |--------------+------+-----------+-----------|

 |Section | | | |

 |--------------| | | |

 |Certification | | | |

 |and Training | 253| $10,942.09| $5,216.13|

 |--------------+------+-----------+-----------|

 |Internet | 477| $20,168.41| $9,655.75|

 |--------------+------+-----------+-----------|

 |Networks and | | | |

 |Telecommunica-| | | |

 |tion | 229| $9,866.57| $4,758.38|

 |--------------+------+-----------+-----------|

 |Operating | | | |

 |Systems | 325| $13,941.16| $6,696.48|

 |--------------+------+-----------+-----------|

 |Programming | | | |

 |and | | | |

 |Applications | 478| $20,890.13| $9,970.25|

 |--------------+------+-----------+-----------|

 |Web Design | 280| $12,342.40| $5,952.90|

 |--------------+------+-----------+-----------|

 |Total Sales | 2042| $88,150.76| $42,249.87|

362 SAS Macro Programming Made Easy, Second Edition

Output 13.5 (continued)

Chapter 13: A Stepwise Method for Writing Macro Programs 363

Obtaining the Contents of Report C Using the REPORT
Macro Program
The third report summarizes COST and PROFIT from the beginning of the current year
through the current date. The analysis is done by SECTION and PUBLISHER. Assume
that the program was submitted on November 24, 2007. The program sends output to the
RTF destination using the style GEARS. The third call to REPORT follows.

%report(stop=,
 classvar=section publisher,
 vars=cost profit,
 outputdest=rtf,style=gears)

The SAS log for the above submission of the call to %REPORT follows. The SAS code
that macro program REPORT submits is in bold. Options MLOGIC and MPRINT are in
effect.

453 %report(stop=,
MLOGIC(REPORT): Beginning execution.
454 classvar=section publisher,
455 vars=cost profit,
456 outputdest=rtf,style=gears)
MLOGIC(REPORT): Parameter STOP has value
MLOGIC(REPORT): Parameter CLASSVAR has value section publisher
MLOGIC(REPORT): Parameter VARS has value cost profit
MLOGIC(REPORT): Parameter OUTPUTDEST has value rtf
MLOGIC(REPORT): Parameter STYLE has value gears
MLOGIC(REPORT): Parameter REPYEAR has value
MLOGIC(REPORT): Parameter START has value 01JAN
MPRINT(REPORT): options pageno=1;
MLOGIC(REPORT): %IF condition &repyear= is TRUE
MLOGIC(REPORT): %LET (variable name is REPYEAR)
MLOGIC(REPORT): %IF condition &stop= is TRUE
MLOGIC(REPORT): %LET (variable name is STOP)
MLOGIC(REPORT): %LET (variable name is START)
MLOGIC(REPORT): %LET (variable name is STOP)
MLOGIC(REPORT): %LET (variable name is TITLESTART)
MLOGIC(REPORT): %LET (variable name is TITLESTOP)
MLOGIC(REPORT): %IF condition %upcase(&outputdest) ne LISTING
 is TRUE
MPRINT(REPORT): ods listing close;
MLOGIC(REPORT): %IF condition &style ne is TRUE
MPRINT(REPORT): ods rtf style=gears ;
NOTE: Writing RTF Body file: sasrtf.rtf
MPRINT(REPORT): title "Sales Report";
MPRINT(REPORT): title2 "January 1, 2007 - November 24, 2007";
MPRINT(REPORT): data temp;

364 SAS Macro Programming Made Easy, Second Edition

MPRINT(REPORT): set books.ytdsales(where= ("01JAN2007"d le
datesold le "24NOV2007"d));
MPRINT(REPORT): profit=saleprice-cost;
MPRINT(REPORT): attrib profit label='Profit'
format=dollar10.2;
MPRINT(REPORT): run;

NOTE: There were 5608 observations read from the data set
 BOOKS.YTDSALES.
 WHERE (datesold>='01JAN2007'D and datesold<='24NOV2007'D);
NOTE: The data set WORK.TEMP has 5608 observations and 11
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

MPRINT(REPORT): proc tabulate data=temp;
MLOGIC(REPORT): %IF condition &classvar ne is TRUE
MPRINT(REPORT): class section publisher;
MPRINT(REPORT): var cost profit;
MLOGIC(REPORT): %IF condition &classvar ne is TRUE
MLOGIC(REPORT): %LET (variable name is MAINCLAS)
MLOGIC(REPORT): %IF condition %length(&mainclas) <
 %length(&classvar) is TRUE
MLOGIC(REPORT): %LET (variable name is POS2)
MPRINT(REPORT): tables section * (publisher all) all, n*f=6.
(cost profit)*sum*f=dollar11.2;
MPRINT(REPORT): keylabel all='Total Sales' n='Titles Sold';
MPRINT(REPORT): run;

NOTE: There were 5608 observations read from the data set
 WORK.TEMP.
NOTE: PROCEDURE TABULATE used (Total process time):
 real time 0.07 seconds
 cpu time 0.04 seconds

MLOGIC(REPORT): %LET (variable name is STRTMDY)
MLOGIC(REPORT): %LET (variable name is STOPMDY)
MLOGIC(REPORT): %IF condition (&strtmdy=01JAN and
 &stopmdy=31MAR) or (&strtmdy=01APR and
 &stopmdy=30JUN) or (&strtmdy=01JUL and
 &stopmdy=30SEP) or (&strtmdy=01OCT and
 &stopmdy=31DEC) or (&strtmdy=01JAN and
 &stopmdy=31DEC) is FALSE

Chapter 13: A Stepwise Method for Writing Macro Programs 365

MLOGIC(REPORT): %IF condition %upcase(&outputdest) ne LISTING
 is TRUE
MPRINT(REPORT): ods rtf close;
MPRINT(REPORT): ods listing;
MLOGIC(REPORT): Ending execution.

Output 13.6 presents the output for the third call to REPORT. This output is identical to
that in Output 13.3.

Output 13.6 Output for the third call to macro program REPORT, which generates the
 information that was specified for Report C

Sales Report
January 1, 2007 - November 24, 2007

Wholesale Cost Profit

Titles Sold Sum Sum

Section Publisher

AMZ Publishers 56 $1,311.38 $1,243.47

Bookstore Brand Titles 53 $1,208.56 $1,167.01

Doe&Lee Ltd. 56 $1,231.20 $1,198.34

Eversons Books 34 $815.22 $698.64

IT Training Texts 59 $1,316.12 $1,229.62

Mainst Media 102 $2,394.43 $2,070.97

Nifty New Books 58 $1,365.23 $1,197.32

Northern Associates Titles 35 $821.41 $747.99

Popular Names Publishers 54 $1,177.01 $1,025.90

Professional House Titles 42 $837.45 $834.16

Technology Smith 55 $1,241.71 $1,193.17

Wide-World Titles 53 $1,204.95 $1,100.27

Certification and
Training

Total Sales 657 $14,924.67 $13,706.83

(continued on the next page)

366 SAS Macro Programming Made Easy, Second Edition

Sales Report
January 1, 2007 - November 24, 2007

Wholesale Cost Profit

Titles Sold Sum Sum

Publisher

AMZ Publishers 58 $1,408.43 $1,333.22

Bookstore Brand Titles 50 $1,156.13 $1,022.96

Doe&Lee Ltd. 73 $1,660.16 $1,566.98

Eversons Books 90 $2,046.12 $1,863.22

IT Training Texts 49 $1,083.14 $1,008.83

Mainst Media 58 $1,240.74 $1,172.22

Nifty New Books 67 $1,522.82 $1,430.33

Northern Associates Titles 56 $1,277.66 $1,047.80

Popular Names Publishers 50 $1,161.75 $1,109.11

Professional House Titles 84 $1,925.74 $1,730.87

Technology Smith 64 $1,429.16 $1,323.17

Wide-World Titles 77 $1,824.07 $1,788.82

Web Design

Total Sales 776 $17,735.92 $16,397.52

Total Sales 5608 $126,228.60 $116,487.40

Enhancing the Macro Program REPORT
Numerous enhancements can be added to a macro program after completing Step 4. A
balance needs to be made, however, between generalizing a macro program and hard-
coding features of a macro program. Each programming situation is different. For
example, a macro program that you intend to use repeatedly for years might be worth
your investment of time to enhance the macro program. A macro program that you might
use only once or twice, and was developed mainly as a timesaver in writing SAS code,
might not be worth enhancing.

Chapter 13: A Stepwise Method for Writing Macro Programs 367

Enhancements to consider adding to the macro program REPORT include the following:

Make the data set name a parameter so that the program can be applied to other
data sets.

Check that the data set exists and that it contains observations.

Do more error checking on the parameter values passed to the program. For
example, you might want to check that the start date is after the stop date. You
might also want to verify that the output destination parameter value is valid and
that the style exists.

Refine the layout of the PROC TABULATE report when there are more than
two classification variables.

Improve the readability of the titles and add information to the titles: include
number of observations, print the date the report was run in a different format,
print the name of the data set in the title.

Improve the PROC GCHART code. Specify options that are specific to the
output device. Add parameters to improve the graphics output.

Delete the temporary data set created by the macro program.

368 SAS Macro Programming Made Easy, Second Edition

P a r t 3
Appendixes

Appendix A Abridged Macro Language Reference 371

Appendix B Reserved Words in the Macro Facility 391

Appendix C Sample Data Set 393

Appendix D Reference to Programs in This Book 399

370 SAS Macro Programming Made Easy, Second Edition

A p p e n d i x A
Abridged Macro Language Reference

Selected SAS Options Used with the Macro Facility 372

Automatic Macro Variables 373

Macro Functions 377

Macro Language Statements 381

PROC SQL Interface to the Macro Facility 386

SAS Functions and Routines That Interface with the Macro Facility 387

Appendix A summarizes macro language elements. For complete information and usage
of these elements, refer to SAS Macro Language: Reference.

372 SAS Macro Programming Made Easy, Second Edition

Selected SAS Options Used with the Macro
Facility

Table A.1 lists selected SAS options that affect actions that SAS and the macro processor
take. Most of the options enable or disable features. For this set of options, the enabling
version of the option is in bold; this action is described in the second column of Table
A.1. The remaining options require that you specify information such as librefs and
filerefs. These specifications are italicized.

Table A.1 Selected SAS options used with the macro facility

Option Description

CMDMAC | NOCMDMAC Controls command-style macro program invocation.

IMPLMAC | NOIMPLMAC Controls statement-style macro program invocation.

MACRO | NOMACRO Controls whether the SAS macro facility is available in the
SAS session.

MAUTOSOURCE |
NOMAUTOSOURCE

Controls whether the macro processor searches autocall
libraries when resolving a macro program reference.

MERROR | NOMERROR Controls whether the macro processor issues warning
messages when it cannot resolve a macro program reference.

MFILE Determines whether MPRINT output is sent to an external file.

MINDELIMITER=<”option”> Specifies the character to be used as the delimiter for the
macro IN operator.

MLOGIC | NOMLOGIC Controls whether the macro processor traces execution of
macro programs in the SAS log.

MPRINT | NOMPRINT Controls whether the macro processor lists, in the SAS log, the
SAS language statements generated by macro program
execution.

 (continued)

Appendix A: Abridged Macro Language Reference 373

Table A.1 (continued)

Option Description

MSTORED | NOMSTORED Controls whether the macro processor searches stored compiled
macro programs when resolving a macro program reference.
(MSTORED must be used in conjunction with SASMSTORE.)

SASAUTOS=library | (library-
1, library2, ..., library-n)

Specifies one or more autocall libraries using either filerefs
defined by the FILENAME statement or by enclosing each of
the paths of the libraries in quotation marks.

SASMSTORE=libref Specifies the libref of a SAS library that contains a catalog of
stored compiled macro programs.

SERROR | NOSERROR Controls whether the macro processor issues warning messages
when it cannot resolve a macro variable reference.

SYMBOLGEN |
NOSYMBOLGEN

Controls whether the macro processor displays in the SAS log
the results of resolving macro variable references.

Automatic Macro Variables

Table A.2 lists the automatic macro variables. All automatic variables, except for
SYSPBUFF, are global macro variables and are initialized when your SAS session starts.
Host-specific automatic macro variables are described in SAS documentation for the host
operating environment.

You cannot modify the values of automatic macro variables whose type is read-only,
though you can modify the values of automatic macro variables whose type is read/write.

374 SAS Macro Programming Made Easy, Second Edition

Table A.2 Selected SAS automatic macro variables

Automatic Macro
Variable Type Description

SYSBUFFR read/write Contains text entered in response to a %INPUT macro
language statement when there is no corresponding macro
variable.

SYSCC read/write Contains current condition code that SAS returns to your
operating environment.

SYSCHARWIDTH read-only Contains the character width value.

SYSCMD read/write Contains last unrecognized command from the command
line of a macro window that is created with the
%WINDOW macro language statement.

SYSDATE read-only Contains the date in DATE7. format that the SAS session
or job started.

SYSDATE9 read-only Contains the date in DATE9. format that the SAS session
or job started.

SYSDAY read-only Contains the text value of the day of the week.

SYSDEVIC read/write Contains the name of the current graphics device.

SYSDMG read/write Contains a return code that reflects an action taken on a
damaged data set.

SYSDSN read/write Contains the two-part name (libref and data set name) of
the most recently created data set.

SYSENCODING read-only Contains the name of the current session encoding.

SYSENV read-only Contains the environment of the job: FORE for interactive
processing and BACK for noninteractive or batch
processing.

(continued)

Appendix A: Abridged Macro Language Reference 375

Table A.2 (continued)

Automatic Macro
Variable Type Description

SYSERR read-only Contains a return code set by some SAS procedures and the
DATA step.

SYSFILRC read/write Contains the return code from most recent execution of the
FILENAME statement.

SYSINDEX read-only Contains the number of macro programs that have started
execution during the current SAS session or job.

SYSINFO read-only Contains return codes provided by some SAS procedures.

SYSJOBID read-only Contains the name assigned to the current batch job or
userid.

SYSLAST read/write Contains the two-part name (libref and data set name) of
the most recently created data set.

SYSLCKRC read/write Contains the return code from most recent LOCK
statement; used with SAS/SHARE.

SYSLIBRC read/write Contains the return code from most recent execution of the
LIBNAME statement.

SYSMACRONAME read-only Contains the name of the currently executing macro
program.

SYSMENV read-only Contains the location where the currently executing macro
program was invoked: S for part of a SAS program; D for
invoked from command line of a SAS window.

SYSMSG read/write Contains text to display in the message area of a macro
window created with the %WINDOW and %DISPLAY
macro language statements.

SYSNCPU read-only Contains the current number of processors available to
SAS for computations.

(continued)

376 SAS Macro Programming Made Easy, Second Edition

Table A.2 (continued)

Automatic Macro
Variable Type Description

SYSPBUFF read/write Contains text supplied as macro parameter values. Used in
conjunction with macro programs defined with the
PARMBUFF option.

SYSPROCESSID read-only Contains the process ID of the current SAS process.

SYSPROCESSNAME read-only Contains the process name of the current SAS process.

SYSPROCNAME read-only Contains the name of the PROC (or DATASTEP for
DATA steps) currently being processed.

SYSRC read/write Contains the last return code generated by your operating
environment.

SYSSCP read-only Contains an identifier for the operating environment being
used.

SYSSCPL read-only Contains an identifier for the operating environment being
used, usually longer than SYSSCP.

SYSSITE read-only Contains the SAS site number.

SYSSTARTID read-only Contains the identification number that was generated by
the last STARTSAS statement.

SYSSTARTNAME read-only Contains the process name that was generated by the last
STARTSAS statement.

SYSTIME read-only Contains the time in TIME5. format that the SAS session
or job started.

SYSUSERID read-only Contains the userid or login of the current SAS process.

SYSVER read-only Contains the release number of SAS that is currently
executing.

SYSVLONG read-only Contains the release number and maintenance level of SAS
that is currently executing.

Appendix A: Abridged Macro Language Reference 377

Table A.3 lists the automatic macro variables that PROC SQL creates when you use
PROC SQL.

Table A.3 Automatic macro variables created by PROC SQL

SQL Automatic
Macro Variable Description

SQLOBS Contains the number of rows produced with a SELECT statement.

SQLOOPS Contains the number of iterations of the inner loop of PROC SQL.

SQLRC Contains the return code from an SQL statement.

SQLXMSG Contains the return code generated by a Pass-Through facility statement.

SQLXRC Contains the return code generated by a Pass-Through facility statement.

Macro Functions

Macro functions process arguments and return text values. Macro functions can be used
in open code and inside macro programs. This book describes five types of macro
functions:

character functions, which operate on strings of characters or on macro
variables.

evaluation functions, which evaluate arithmetic and logical expressions. They
temporarily convert their arguments to numbers to perform calculations and then
change the results back to text.

quoting functions, which mask special characters and mnemonic operators from
interpretation by the macro processor.

macro variable attribute functions, which supply information about the
existence and the domain (global vs. local) of macro variables.

other functions, which communicate between the macro facility and the rest of
SAS or the operating environment.

378 SAS Macro Programming Made Easy, Second Edition

Table A.4 lists macro functions, their categories, and their actions. Items that you specify
are italicized. Brackets (< >) enclose optional arguments. Vertical bars (|) separate
mutually exclusive items.

Additionally, SAS distributes several autocall macro programs that you can use like
macro functions. Table A.5 lists a selection of these autocall macro programs.

Table A.4 Macro functions

Macro Function Type Action

%BQUOTE(character-string |
text expression)

%NRBQUOTE(character-string |
text expression)

Quoting %BQUOTE masks from interpretation during
execution all special characters and mnemonic
operators, except for ampersands(&) and percent
signs(%), in the resolved value of the argument to
the function.

%NRBQUOTE does the same as %BQUOTE and
additionally masks ampersands and percent signs.

%EVAL(expression) Evaluation Evaluates arithmetic and logical expressions using
integer arithmetic.

%INDEX(source, string) Character Returns the position in source of the first
character of string.

%LENGTH(string | text
expression)

Character Returns the length of string or the length of the
results of the resolution of text expression.

%SCAN(argument, n
<,delimiters>)

%QSCAN(argument, n
<,delimiters>)

Character %SCAN returns the nth word in argument where
the words in argument are separated by
delimiters.

%QSCAN does the same as %SCAN and masks
special characters and mnemonic operators in
argument.

%STR(character-string)

%NRSTR(character-string)

Character %STR masks all special characters and mnemonic
operators except for ampersands (&) and percent
signs (%) in constant text at macro compilation.

%NRSTR does the same as %STR and
additionally masks ampersands and percent signs.

(continued)

Appendix A: Abridged Macro Language Reference 379

Table A.4 (continued)

Macro Function Type Action

%SUBSTR(argument,position
<,length>)

%QSUBSTR(argument,position<,le
ngth>)

Character %SUBSTR extracts a substring of length
characters from argument starting at position.

%QSUBSTR does the same as %SUBSTR and
masks special characters or mnemonic
operators in argument.

%SUPERQ(macro-variable-name) Quoting Masks all special characters including
ampersands (&) and percent signs (%) and
mnemonic operators at macro execution and
prevents further resolution of the value. Returns
the value of a macro variable and does not
resolve any macro references contained in that
macro variable’s value.

%SYMEXIST(macro-variable-
name)

Macro
Variable
Attribute

Returns a 0 or 1 depending on whether macro-
variable-name exists.

%SYMGLOBL(macro-variable-
name)

Macro
Variable
Attribute

Returns a 0 or 1 depending on whether macro-
variable-name is found in the global symbol
table.

%SYMLOCAL(macro-variable-
name)

Macro
variable
Attribute

Returns a 0 or 1 depending on whether macro-
variable-name is found in a local symbol table.

%SYSEVALF(expression
<,conversion-type>)

Evaluation Evaluates arithmetic and logical expressions
using floating-point arithmetic. Optionally
converts results to conversion-type, where
conversion-type is BOOLEAN, CEIL, FLOOR,
or INTEGER.

%SYSFUNC(function(argument(s))
<,format>)

%QSYSFUNC(function(argument(s
)) <,format>)

Character %SYSFUNC executes SAS language function
or user-written functions and returns the results
to the macro facility.

%QSYSFUNC does the same as %SYSFUNC
and masks special characters or mnemonic
operators in argument.

(continued)

380 SAS Macro Programming Made Easy, Second Edition

Table A.4 (continued)

Macro Function Type Action

%SYSGET(host-environment-
variable)

Other Returns the value of host-environment-variable
to the macro facility.

%SYSPROD(SAS-product) Other Returns a code to indicate whether SAS-product
is licensed at the site where SAS is currently
running.

%UNQUOTE(character-string |
text expression)

Quoting Unmasks all special characters and mnemonic
operators in a value at macro execution.

%UPCASE(string | text
expression)

%QUPCASE(string | text
expression)

Character %UPCASE converts character string or text
expression to uppercase.

%QUPCASE does the same as %UPCASE and
masks special characters or mnemonic operators
in the argument.

Table A.5 Autocall macro programs that act like macro functions

Autocall Macro Program Action

%CMPRES(text | text expression)

%QCMPRES(text | text
expression)

%CMPRES removes multiple, leading, and trailing blanks
from the argument.

 %QCMPRES does the same as %CMPRES and masks special
characters and mnemonic operators in the argument.

%DATATYP(text | text
expression)

Returns the data type (CHAR or NUMERIC) of a value.

%LEFT(text | text expression)

%QLEFT(text | text expression)

%LEFT aligns an argument to the left by removing leading
blanks.

%QLEFT does the same as %LEFT and masks special
characters and mnemonic operators in the argument.

(continued)

Appendix A: Abridged Macro Language Reference 381

Table A.5 (continued)

Autocall Macro Program Action

%LOWCASE(text | text
expression)

%QLOWCASE(text | text
expression)

%LOWCASE changes a value from uppercase characters to
lowercase.

%QLOWCASE does the same as %LOWCASE and masks
special characters and mnemonic operators in the argument.

%VERIFY(source | excerpt) Returns the position of the first character unique to an
expression where

source is text or a text expression that you want to
examine for characters that do not exist in excerpt

excerpt is text or a text expression that defines the set of
characters that %VERIFY uses to examine source

Macro Language Statements

Tables A.6 and A.7 list the macro language statements. The statements in Table A.6 are
those that can be used both in open code and in macro program definitions, while those
in Table A.7 can be used only in macro program definitions.

Items that you specify are italicized. Brackets (< >) enclose optional arguments. Vertical
bars (|) separate mutually exclusive items.

382 SAS Macro Programming Made Easy, Second Edition

Table A.6 Macro language statements allowed in open code and in macro
 programs

Statement Description

%* comment; Adds comment text to your macro programming.

%COPY macro-name < /
<LIBRARY=libref
OUTFILE=<fileref | ‘external file’>
SOURCE> >;

Copies macro programs from a SAS macro library specified
by the LIBRARY= option or by the SASMSTORE= system
option to the SAS log or to an output file specified by the
OUTFILE= option.

%DISPLAY window <.group>
<NOINPUT> <BLANK> <BELL>
<DELETE>;

Displays a macro window defined with %WINDOW that
can display fields and accept user input.

%GLOBAL macro-variable-1 macro-
variable-2 ... macro-variable-n;

Creates global macro variables, which are available until
the SAS session ends or the macro variables are deleted
with %SYMDEL.

%INPUT <macro-variable-1 macro-
variable-2 ... macro-variable-n>;

Accepts input as entered by the user or by the program and
updates macro variables with the values entered.

%LET macro-variable=<value>; Creates a macro variable and assigns it a value.

%MACRO name <(parameter-list)> <
/ <CMD> <DES='text'>
<PARMBUFF> <SECURE>
<SOURCE> <STMT> <STORE> >;

Begins the definition of a macro program where:

name is the name of the macro program.

parameter-list can contain positional parameter
names and keyword parameter names that can
optionally be initialized with values. Both types
can be specified on one %MACRO statement; if
they are, place the positional parameters first in the
list.

CMD specifies that the macro program can be
invoked with either a name-style or command-style
invocation.

DES='text' adds descriptive text to the macro
program when stored in a macro catalog.

PARMBUFF (or PBUFF) assigns the entire list of
parameter values in the call to the macro program
to an automatic macro variable named SYSPBUFF.

Appendix A: Abridged Macro Language Reference 383

%MACRO name <(parameter-list)> <
/ <CMD> <DES='text'>
<PARMBUFF> <SECURE>
<SOURCE> <STMT> <STORE> >;
 (continued)

SECURE causes the contents of a macro program
to be encrypted when stored in a stored compiled
macro library. The SECURE option can be used
only in conjunction with the STORE option.

SOURCE combines and stores the source of the
compiled macro program with the compiled macro
code as an entry in a SAS catalog.

STMT specifies that the macro program can be
invoked with either a name-style invocation or a
statement-style invocation.

STORE specifies that the compiled macro program
should be stored in a SAS catalog that is identified
with the SASMSTORE system option.

%PUT <text> <_ALL_>
<_AUTOMATIC_> <_GLOBAL_>
<_LOCAL_> <_USER_> <ERROR:>
<WARNING:> <NOTE:>;

Writes text or macro variable values to the SAS log, where:

text is text or a macro variable reference

ALL lists the values of all automatic and user-
defined macro variables

AUTOMATIC lists the values of all automatic
macro variables

GLOBAL lists the values of user-defined global
macro variables

LOCAL lists the values of user-defined macro
variables within the currently executing macro
program

USER lists the user-defined global and local
macro variables

ERROR: simulates a SAS error message by
displaying the text ERROR: and remaining
specifications on the %PUT statement in red

WARNING: simulates a SAS warning message by
displaying the text WARNING: and remaining
specifications on the %PUT statement in green

NOTE: simulates a SAS note message by
displaying the text NOTE: and remaining
specifications on the %PUT statement in blue

%SYMDEL macro-variable-1 < macro-
variable-2 ... macro-variable-n> </
NOWARN>;

Deletes the specified macro variables from the global
macro symbol table. The NOWARN option suppresses
the warning message when an attempt is made to
delete a nonexistent macro variable.

384 SAS Macro Programming Made Easy, Second Edition

%SYSCALL call-routine <(call-
routine-arguments)>;

Invokes a SAS or user-defined CALL routine.

%SYSEXEC <command>; Issues command to the operating environment. If you omit
command, you are placed in operating environment mode.
%SYSEXEC is operating system-dependent.

%SYSLPUT remote-macro-
variable=<value</ REMOTE=
remote-session-id>>;

Creates a new macro variable or modifies the value of an
existing macro variable on a remote host or server.

%SYSRPUT local-macro-variable=
remote-macro-variable;

Assigns the value of a macro variable on the remote host
to a local macro variable.

%WINDOW window-name <window-
options>group-definition-1 <...group-
definition-n>;

Defines a customized window to display text and accept
user input.

Table A.7 Macro language statements allowed only in macro programs

Statement Description

%ABORT <ABEND | RETURN>; Stops the macro program that is currently executing along
with the current DATA step, SAS job, or SAS session.

%DO; Signals the beginning of a %DO group. The statements
that follow form a block of code that is terminated with a
%END statement.

%DO macro-variable=start %TO stop
<%BY increment>;

The iterative %DO statement repetitively executes a
section of macro program code by using an index variable
and the keywords %TO and %BY. The section of macro
code is terminated with a %END statement.

start and stop are integers or macro expressions that
define the bounds of the iterative %DO.

increment is an integer or macro expression that defines
the increment to take from start to reach stop.

Appendix A: Abridged Macro Language Reference 385

%DO %UNTIL (expression); Repetitively executes a section of macro code until the
expression is true. The section of macro code is terminated
with a %END statement. Because expression is evaluated at
the bottom of the loop, a %DO %UNTIL loop always
executes at least once.

%DO %WHILE (expression); Repetitively executes a section of macro code while the
expression is true. The section of macro code is
terminated with a %END statement. Because expression
is evaluated at the top of the loop, a %DO %WHILE
might not execute.

%END; Terminates a %DO group.

%GOTO label; Branches macro processing to the specified macro label
within the macro program.

%IF expression %THEN action;
<%ELSE action;>

Conditionally processes a section of a macro program.

%label: macro-text Identifies a section of macro code where label is a valid
SAS name. This statement is typically used as the
destination of a %GOTO statement.

%LOCAL macro-variable-1 macro-
variable-2 ... macro-variable-n;

Defines macro variables that are available only to the
macro program in which the %LOCAL statement was
issued.

%MEND <name>; Terminates a macro program definition and optionally
repeats the name of the macro program.

%RETURN; Causes normal termination of the currently executing macro
program.

386 SAS Macro Programming Made Easy, Second Edition

PROC SQL Interface to the Macro Facility

The INTO clause on the SELECT statement creates and updates macro variables. See
Table A.3 for the automatic macro variables that PROC SQL creates.

The information on the INTO clause that you specify is italicized. Brackets (< >)
enclose optional information.

SELECT col1,col2,...
 INTO :macro-variable-specification-1

<,:macro-variable-specification-2,..., macro-variable-n>
 FROM table-expression
 WHERE where-expression

other clauses;
Create or update macro variables with values that are produced by PROC SQL, where:

macro variables can be listed

 :macro-variable-1, :macro-variable2, ..., :macro-variable-n

macro variables can be written in a numeric list

 :macro-variable-1-:macro-variable-n

values that are placed in a macro variable can be side-by-side and separated with
a character when the SEPARATED BY clause is added:

 SEPARATED BY 'character'

The NOTRIM option can be added to prevent leading and trailing blanks from being
removed when the macro variable is created.

 :macro-variable-1 notrim

Appendix A: Abridged Macro Language Reference 387

SAS Functions and Routines That Interface
with the Macro Facility

Table A.8 lists three functions and three routines in the SAS language that interface with
the macro facility. Items that you specify are italicized. Brackets (< >) enclose optional
arguments.

Table A.8 SAS language functions and routines that interface with the
 macro facility

Function or Routine Description

SYMGET(argument) SAS language function that retrieves a macro-variable
value for use in a DATA step, where argument can be
one of the following:

literal text that is enclosed in quotation marks

the name of a data set character variable whose values
are the names of macro variables

a character expression that resolves to a macro variable
name.

SYMGETN(argument) SAS language function that retrieves a macro-variable
value and stores it as a number, where argument can be
one of the following:

literal text that is enclosed in quotation marks

the name of a data set character variable whose values
are the names of macro variables

a character expression that resolves to a macro variable
name.

Note that SYMGETN is pre-production in SAS®9.

CALL SYMPUT(macro-variable-
name, value);

SAS language routine that creates or updates a macro
variable from within a DATA step, where macro-variable-
name can be specified one of the following ways:

literal text that is enclosed in quotation marks

the name of a DATA step character variable whose
values are the names of macro variables

388 SAS Macro Programming Made Easy, Second Edition

CALL SYMPUT(macro-variable-
name, value);
(continued)

a character expression that resolves to a macro variable
name.

and where value can be specified one of the following
ways:

literal text enclosed in quotation marks

the name of a DATA step variable (character or
numeric)

a DATA step expression.

CALL SYMPUT does not trim leading and trailing
blanks.

CALL SYMPUTX(macro-variable-
name, value <,symbol-table>);

SAS language routine that creates or updates a macro
variable from within a DATA step and optionally
designates the symbol table in which to store macro-
variable, where macro-variable-name can be specified
one of three ways:

literal text that is enclosed in quotation marks

the name of a DATA step character variable whose
values are the names of macro variables

a character expression that resolves to a macro variable
name

and where value can be specified one of the following
ways:

literal text enclosed in quotation marks

the name of a DATA step variable (character or
numeric)

a DATA step expression

and where symbol table can be one of three characters:

G for the global symbol table

L for the most local symbol table

F for the most local symbol in which the macro
variable exists and if it does not exist, store it in the
most local symbol table.

CALL SYMPUTX trims leading and trailing blanks.

Appendix A: Abridged Macro Language Reference 389

CALL EXECUTE(argument); SAS language routine that executes the resolved value of
argument from within a DATA step. Arguments that
resolve to a macro facility reference execute
immediately. Any SAS language statements resulting
from the resolution execute at the end of the step.
Resolved values are usually macro facility references,
where argument can be one of the following:

a character string enclosed in single or double
quotation marks. Single quotation marks direct
resolution to occur during execution of the DATA step.
Double quotation marks direct resolution to occur
before the DATA step is compiled.

the name of a DATA step variable.

a character expression that is resolved by the DATA
step to a text expression.

RESOLVE(argument) SAS language function that resolves argument during
DATA step execution. The argument is a text expression
that is resolved by the macro facility, where argument can
be one of the following:

a character string enclosed in single quotation marks

the name of a DATA step variable

a character expression that is resolved by the DATA
step to a text expression

390 SAS Macro Programming Made Easy, Second Edition

A p p e n d i x B
Reserved Words in the Macro Facility

Table B.1 lists words that are reserved for use by the macro facility.

Do not use a reserved word to name a macro program, a macro variable, or a macro label.
When you use a reserved word in macro language, the macro processor issues a warning
and does not compile or execute the macro program.

Do not start the name of a macro program, macro variable, or macro label with SYS, AF,
or DMS since this could conflict with names of automatic macro variables.

392 SAS Macro Programming Made Easy, Second Edition

Table B.1 Reserved words in the macro facility

ABEND DO LET QSYSFUNC SYSEXEC

ABORT EDIT LIST QUPCASE SYSFUNC

ACT ELSE LISTM RESOLVE SYSGET

ACTIVATE END LOCAL RETURN SYSRPUT

BQUOTE EVAL MACRO RUN THEN

BY FILE MEND SAVE TO

CLEAR GLOBAL METASYM SCAN TSO

CLOSE GO NRBQUOTE STOP UNQUOTE

CMS GOTO NRQUOTE STR UNSTR

COMANDR IF NRSTR SUBSTR UNTIL

COPY INC ON SUPERQ UPCASE

DEACT INCLUDE OPEN SYMDEL WHILE

DEL INDEX PAUSE SYMEXIST WINDOW

DELETE INFILE PUT SYMGLOBL

DISPLAY INPUT QSCAN SYMLOCAL

DMIDSPLY KEYDEF* QSUBSTR SYSCALL

DMISPLIT LENGTH QUOTE SYSEVALF

* Note that KEYDEF was made obsolete in SAS 8.2, but it is still recognized as a
reserved word.

A p p e n d i x C
Sample Data Set

The following DATA steps create the data set that is used in this book. Make sure you
define a libref for BOOKS before submitting the second DATA step.

data bookdb;

 attrib section length=$30 label='Section'
 booktitle length=$50 label='Title of Book'
 author length=$50 label='First Author'
 publisher length=$50 label='Publisher'
 cost length=8 label='Wholesale Cost'
 format=dollar10.2
 listprice length=8 label='List Price'
 format=dollar10.2
 saleprice length=8 label='Sale Price'
 format=dollar10.2;

 array sname{6} $ 30 ('Internet'
 'Networks and Telecommunication'
 'Operating Systems'
 'Programming and Applications'
 'Certification and Training'
 'Web Design');

394 SAS Macro Programming Made Easy, Second Edition

 array ln{125} $ 15 _temporary_ (
'Smith ' 'Johnson ' 'Williams ' 'Jones '
'Brown ' 'Davis ' 'Miller ' 'Wilson '
'Moore ' 'Taylor ' 'Anderson ' 'Thomas '
'Jackson ' 'White ' 'Harris ' 'Martin '
'Thompson ' 'Garcia ' 'Martinez ' 'Robinson '
'Clark ' 'Rodriguez ' 'Lewis ' 'Lee '
'Walker ' 'Hall ' 'Allen ' 'Young '
'Hernandez ' 'King ' 'Wright ' 'Lopez '
'Hill ' 'Scott ' 'Green ' 'Adams '
'Baker ' 'Gonzalez ' 'Nelson ' 'Carter '
'Mitchell ' 'Perez ' 'Roberts ' 'Turner '
'Phillips ' 'Campbell ' 'Parker ' 'Evans '
'Edwards ' 'Collins ' 'Stewart ' 'Sanchez '
'Morris ' 'Rogers ' 'Reed ' 'Cook '
'Morgan ' 'Bell ' 'Murphy ' 'Bailey '
'Rivera ' 'Cooper ' 'Richardson ' 'Cox '
'Howard ' 'Ward ' 'Torres ' 'Peterson '
'Gray ' 'Ramirez ' 'James ' 'Watson '
'Brooks ' 'Kelly ' 'Sanders ' 'Price '
'Bennett ' 'Wood ' 'Barnes ' 'Ross '
'Henderson ' 'Coleman ' 'Jenkins ' 'Perry '
'Powell ' 'Long ' 'Patterson ' 'Hughes '
'Flores ' 'Washington ' 'Butler ' 'Simmons '
'Foster ' 'Gonzales ' 'Bryant ' 'Alexander '
'Russell ' 'Griffin ' 'Diaz ' 'Hayes '
'Myers ' 'Ford ' 'Hamilton ' 'Graham '
'Sullivan ' 'Wallace ' 'Woods ' 'Cole '
'West ' 'Jordan ' 'Owens ' 'Reynolds '
'Fisher ' 'Ellis ' 'Harrison ' 'Gibson '
'Mcdonald ' 'Cruz ' 'Marshall ' 'Ortiz '
'Gomez ' 'Murray ' 'Freeman ' 'Wells '
'Webb ');

 array fn{70} $ 11 _temporary_ (
'James ' 'John ' 'Robert ' 'Michael '
'William ' 'David ' 'Richard ' 'Charles '
'Joseph ' 'Thomas ' 'Christopher' 'Daniel '
'Paul ' 'Mark ' 'Donald ' 'George '
'Kenneth ' 'Steven ' 'Edward ' 'Brian '
'Ronald ' 'Anthony ' 'Kevin ' 'Jason '
'Matthew ' 'Gary ' 'Timothy ' 'Jose '
'Larry ' 'Jeffrey ' 'Jacob ' 'Joshua '
'Ethan ' 'Andrew ' 'Nicholas '
'Mary ' 'Patricia ' 'Linda ' 'Barbara '
'Elizabeth ' 'Jennifer ' 'Maria ' 'Susan '
'Margaret ' 'Dorothy ' 'Lisa ' 'Nancy '

Appendix C: Sample Data Set 395

'Karen ' 'Betty ' 'Helen ' 'Sandra '
'Donna ' 'Carol ' 'Ruth ' 'Sharon '
'Michelle ' 'Laura ' 'Sarah ' 'Kimberly '
'Deborah ' 'Jessica ' 'Shirley ' 'Cynthia '
'Angela ' 'Melissa ' 'Emily ' 'Hannah '
'Emma ' 'Ashley ' 'Abigail ');

 array pubname{12} $ 30 ('AMZ Publishers' 'Technology Smith'
 'Mainst Media' 'Nifty New Books'
 'Wide-World Titles'
 'Popular Names Publishers' 'Eversons Books'
 'Professional House Titles'
 'IT Training Texts' 'Bookstore Brand Titles'
 'Northern Associates Titles'
 'Doe&Lee Ltd.');

 array prices{13} p1-p13
(27,30,32,34,36,40,44,45,50,54,56,60,86);
 array smax{6} (850,450,555,890,470,500);

 keep section booktitle author publisher listprice saleprice
cost;
 do i=1 to 6;
 section=sname{i};
 sectionmax=smax{i};
 do j=1 to sectionmax;
 booktitle=catx(' ',section,'Title',put(j,4.));

 lnptr=round(125*(uniform(54321)),1.);
 if lnptr=0 then lnptr=125;
 author=cats(ln{lnptr},',');
 fnptr=round(70*(uniform(12345)),1.);
 if fnptr=0 then fnptr=70;
 author=catx(' ',author,fn{fnptr});

 pubptr=round(12*(uniform(7890)),1.);
 if pubptr=0 then pubptr=12;
 publisher=pubname{pubptr};

 pval=round(2*normal(3),1) + 7;
 if pval > 13 then pval=13;
 else if pval < 1 then pval=1;
 listprice=prices{pval} + .95;
 saleprice=listprice;
 if mod(j,8)=0 then saleprice=listprice*.9;

396 SAS Macro Programming Made Easy, Second Edition

 if mod(j,17)=0 and mod(j,8) ne 0 then
saleprice=listprice*.8;
 cost=.5*listprice;
 if mod(j,12)=0 then cost=.6*listprice;

 ncopies=round(rangam(33,.5),1);
 do n=1 to ncopies;
 output;
 end;

 output;
 end;
 end;
run;

data books.ytdsales(label='Sales for 2007');

 keep section--saleprice;
 attrib section length=$30 label='Section'
 saleid length=8 label='Sale ID'
 format=8.
 saleinit length=$3 label='Sales Person Initials'
 datesold length=4 label='Date Book Sold'
 format=mmddyy10. informat=mmddyy10.
 booktitle length=$50 label='Title of Book'
 author length=$50 label='First Author'
 publisher length=$50 label='Publisher'
 cost length=8 label='Wholesale Cost'
 format=dollar10.2
 listprice length=8 label='List Price'
 format=dollar10.2
 saleprice length=8 label='Sale Price'
 format=dollar10.2;

 array mos{12} _temporary_
(555,809,678,477,300,198,200,500,655,719,649,356);

 array momax{12} momax1-momax12
 (30,27,30,29,30,29,30,30,29,30,29,30);

 array inits{7} $ 3 _temporary_
 ('MJM' 'BLT' 'JMB' 'JAJ' 'LPL' 'SMA' 'CAD');
 retain saleid 10000000;

Appendix C: Sample Data Set 397

 do m=1 to 12;
 do j=1 to mos{m};
 day=round(momax{m}*uniform(3),1)+1;
 datesold=mdy(m,day,2007);
 obsno=int(uniform(3929)*5366)+1;
 set bookdb point=obsno;

 person=mod(day,7)+1;
 saleinit=inits{person};

 saleid+1;
 output;
 end;
 if m=12 then stop;
 end;
run;

The PROC CONTENTS of the sample data set follows.

 The CONTENTS Procedure

Data Set Name BOOKS.YTDSALES Observations 6096

Member Type DATA Variables 10

Engine V9 Indexes 0

Created Friday, August Observation Length 224

 04, 2006

 03:52:25 PM

Last Modified Friday, August Deleted Observations 0

 04, 2006

 03:52:25 PM

Protection Compressed NO

Data Set Type Sorted NO

Label Sales for 2007

Data Representation WINDOWS_32

Encoding wlatin1

 Western

 (Windows)

 (continued)

398 SAS Macro Programming Made Easy, Second Edition

 Engine/Host Dependent Information

Data Set Page Size 16384

Number of Data Set Pages 85

First Data Page 1

Max Obs per Page 72

Obs in First Data Page 63

Number of Data Set Repairs 0

File Name c:\books\ytdsales.sas7bdat

Release Created 9.0101M3

Host Created XP_PRO

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat Label

 6 author Char 50 First Author

 5 booktitle Char 50 Title of Book

 8 cost Num 8 DOLLAR10.2 Wholesale Cost

 4 datesold Num 4 MMDDYY10. MMDDYY10. Date Book Sold

 9 listprice Num 8 DOLLAR10.2 List Price

 7 publisher Char 50 Publisher

 2 saleid Num 8 8. Sale ID

 3 saleinit Char 3 Sales Person Initials

10 saleprice Num 8 DOLLAR10.2 Sale Price

 1 section Char 30 Section

A p p e n d i x D
Reference to Programs in This Book

Table D.1 lists the programs that are used in the examples in this book. Macro program
names for programs defining macro programs are included.

400 SAS Macro Programming Made Easy, Second Edition

Table D.1 Macro programs used in the examples in this book

Chapter Program
Macro Program
Name Function

1.1 Define a macro variable in open code and reference its value in a WHERE
statement and TITLE statement

1.2 SALES Process an iterative %DO loop over 3 years and submit a PROC MEANS step
for each year

1.3a and
1.3b

 Define macro variables in open code and reference them in TITLE statements, a
PROC TABULATE step, and a PROC GCHART step

1.4 Reference automatic macro variables in TITLE statements
1.5 DAILY Process two PROC MEANS steps, one done only if automatic macro variable

SYSDAY=Friday
1.6 MAKESETS Process two iterative %DO loops, one to name multiple data sets on a DATA

statement and one to generate ELSE statements
1.7 Define a macro variable with CALL SYMPUTX in a DATA step and reference

the macro variable in a subsequent TITLE statement
1.8 DSREPORT Obtain data set attribute information with %SYSFUNC and SAS language

functions and insert results in TITLE statements

1

1.9 STANDARDOPTS Specify an OPTIONS, TITLE, and FOOTNOTE statement
3.1a and

3.1b
 Define macro variables in open code, reference them, and reference automatic

macro variables in TITLE statements, a PROC FREQ step, and a PROC
MEANS step

3.2 Define macro variables in open code and reference them and automatic macro
variables in TITLE statements, a PROC FREQ step, and a PROC MEANS step

3.3 List automatic macro variables
3.4 List global user-defined macro variables
3.5 List automatic and user-defined macro variable values with %PUT statements
3.6 Run Program 3.1b with the SYMBOLGEN option enabled
3.7 Reference automatic macro variables in IF, TITLE, and FOOTNOTE statements
3.8 Demonstrate macro language rules in defining macro variables with %LET

statements
3.9 Demonstrate resolution of macro variables when text is placed before a macro

variable reference. Used in DATA step and PROC FREQ step
3.10b Construct a PROC FREQ TABLES statement when a macro variable reference

precedes text. Demonstrate necessity of macro variable delimiters.
3.11b Construct a data set name where the libref is specified by a macro variable

value. Demonstrate necessity of macro variable delimiters.
3.12 Define a series of macro variables in open code and demonstrate referencing

them indirectly in a PROC MEANS step
3.13a Demonstrate resolution of concatenated macro variable references
3.13b Demonstrate resolution of indirect referencing of macro variables with

SYMBOLGEN enabled

3

3.14 Define two series of macro variables in open code and demonstrate resolution of
macro variable references when multiple ampersands precede a macro variable
reference

Appendix D: Reference to Programs in This Book 401

4.1 SALESCHART Specify one PROC GCHART step
4.2 Specify a PROC CATALOG step for the WORK.SASMACR catalog
4.3 Create a data set and call SALESCHART defined in Program 4.1

4.4a and
4.4b

 Compile macro program SALESCHART from Program 4.1 with different settings
for MCOMPILENOTE= option

4.5 LISTPARM Defined with three positional parameters that specify options for a PROC MEANS
step and range in dates for selection of observations to analyze

4.6 KEYPARM Defined with three keyword parameters that specify options for a PROC MEANS step
and range in dates for selection of observations to analyze. Same as 4.5 with positional
parameters replaced with keyword parameters.

4.7 MIXDPARM Defined with two positional parameters and two keyword parameters that specify
options for a PROC MEANS step and range in dates for selection of observations
to analyze. Similar to 4.5 and 4.6 with differences in types of parameters.

4

4.8 PBUFFPARMS Defined with PARMBUFF option. Contains two PROC GCHART steps, which
are conditionally executed based on parameter specifications. If parameters
specified, one PROC GCHART step submitted per value.

5.1 MAKEDS Create a subset of data set based on value of macro variable defined in open code
5.2 MAKEDS Modifies 5.1 MAKEDS with subset specified with positional parameter. Produces

a PROC TABULATE report.
5.3 MAKEDS Modifies 5.2 MAKEDS to include PROC TABULATE step as well as the DATA

step.
5.4 MAKEDS Modifies 5.1 MAKEDS to include a %GLOBAL statement so that macro variable

worked with in MAKEDS is available in open code.

5

5.5 LOCLMVAR Do one PROC MEANS step on a subset specified by local macro variable not
same-named global macro variable

6.1 Extract a substring of text from the value of an automatic macro variable and include
this value in a title and to specify a subset on a WHERE statement

6.2 Extract the nth word from a macro variable using the %SCAN function and insert
this word in a title

6.3 LISTTEXT Select a subset to process with PROC PRINT by specifying the text that should be
present in a variable’s value. Insert that text string in the title.

6.4 MAKEDS Modified version of Program 5.4 to demonstrate use of %SYMDEL,
%SYMGLOBL, and %SYMLOCAL

6.5 Format today’s date in a TITLE statement using %SYSFUNC and the DATE()
function

6.6 GETOPT Use macro statements to list SAS option info by applying %SYSFUNC and the
GETOPTION SAS language function

6.7 CHECKVARNAME Use %SYSFUNC and SAS language functions to determine if positional parameter
value is valid as a SAS name. Results listed by %PUT statements.

6.8a Compute the mean of four values stored in macro variables using %SYSFUNC
and the MEAN SAS language function

6.8b Compute the mean of four values stored in macro variables using %SYSEVALF
6.9 Obtain attributes of a data set with %SYSFUNC and ATTRN and insert this

information in a title. Format the information with %SYSFUNC and PUTN.

6

6.10a CHECKSURVEY Use SAS autocall macro programs %VERIFY and %UPCASE to verify if value of
positional parameter RESPONSE is in list of acceptable characters. Results listed
by %PUT statements.

6.10b CHECKSURVEY Use %SYSFUNC and SAS language functions VERIFY and UPCASE to do the
same as Example 6.10a.

402 SAS Macro Programming Made Easy, Second Edition

7.1 COMP2VALS Compare precedence of values of two positional parameters. Results listed with
%PUT.

7.2 REPORTS Specify two PROC TABULATE steps, one for detail report, one for summary
report. With two positional parameters, specify report type and month to analyze.
Use %IF-%THEN/%ELSE statements to select report step.

7.3 PUBLISHERREPORT Specify which statements and options to include in a PROC REPORT step based
on value of positional parameter

7.4 VENDORTITLES Look up vendor name based on parameter value specified for PUBLISHER. Insert
this value in a TITLE statement.

7.5 MULTREP Process an iterative %DO loop that executes for range of years specified by the
two positional parameters. Each iteration specifies a PROC MEANS step and a
PROC GCHART step.

7.6 SUMYEARS Process an iterative %DO loop that concatenates data sets within range of years
specified by the two positional parameters. Execute PROC GCHART on this
composite data set.

7.7 MOSALES Defined with PARMBUFF option in which %DO %UNTIL processes the
parameters to do a PROC MEANS for each parameter value. Also produces an
overall PROC MEANS when no parameters specified.

7.8 STAFFSALES Processes a %DO %WHILE loop to parse the value of one of the two positional
parameters. Specify a PROC MEANS for each item extracted from the parameter
value. Second positional parameter specifies additional subsetting.

7

7.9 DETAIL Defined with one positional parameter that specifies a data set. Check if data set
exists. If it does, specify a PROC PRINT step. If it doesn’t, branch with %GOTO
to section that specifies a PROC DATASETS step.

8.1 Use %STR quoting function to save the code for a PROC SQL step in a macro
variable

8.2 Quote the first argument to %SUBSTR with %STR because the argument contains
special characters

8.3 Quote a text string with %STR to preserve leading and trailing blanks in the text
string

8.4 Quote a text string with %NRSTR that is being assigned to a macro variable
because the text contains macro triggers

8.5a Use %STR and preceding percent signs to mask unbalanced quotation marks in a
value being assigned to a macro variable. Use %QSCAN to select one of the
words in the value.

8.5b Use %BQUOTE to mask unbalanced quotation marks in a value being assigned to
a macro variable value. Use %QSCAN to select one of the words in the value.

8.6 Use %NRSTR and preceding percent signs to mask unbalanced quotation marks
and macro triggers in a value being assigned to a macro variable. Use %QSCAN
to select one of the words in the value.

8.7 Use %BQUOTE and %STR to mask mnemonic operators in a Boolean
%SYSEVALF evaluation

8.8 Use %SUPERQ to prevent resolution of special characters in a macro variable value
8.9 MOSECTDETAIL Specify a PROC PRINT step on subset of data set defined by the values of two

positional parameters. Mask one of the parameters with quoting functions because
it can contain special characters.

8

8.10 PUBLISHERSALES Specify ODS characteristics for a PROC REPORT step through values of three
positional parameters. Mask two of the parameters with quoting functions because
they can contain special characters.

Appendix D: Reference to Programs in This Book 403

8.11 MYPAGES Format TITLE and FOOTNOTE statements based on values of six keyword
parameters, some of which are defined with default values. Mask elements of the
parameter values with quoting functions because they can contain special
characters and mnemonic operators.

8.12 MAR Only contains text to demonstrate use of %UNQUOTE
8.13 Quote the result of applying a SAS language function with %QSYSFUNC

8

(continued)

8.14 Quote the result of taking a substring of a macro variable value with %QSUBSTR
9.1 Use a data set variable name as the argument to the SYMGET function
9.2 Retrieve macro variable values in a DATA step with SYMGETN to create

numeric data set variables
9.3 Use the resolution of a character expression as an argument to SYMGET in a

DATA step
9.4 Execute CALL SYMPUT once in a DATA step when processing reaches the last

observation. Sum a variable in a DATA step and save the sum in a macro variable
by executing CALL SYMPUT once when processing reaches the last observation.

9.5 Execute CALL SYMPUTX multiple times in a DATA step
9.6 Save PROC FREQ results in a data set. Process the data set in a DATA step and

create several macro variables with CALL SYMPUT and CALL SYMPUTX
9.7 STATSECTION Save statistics computed with PROC MEANS in an output data set. Process this data

set in a DATA step and store the statistics in global macro variables with CALL
SYMPUTX that are later referenced in TITLE statements.

9.8 LISTAUTOMATIC Contains %PUT statements and lists automatic macro variables. Macro program is
called by CALL EXECUTE from a DATA step.

9.9 LISTLIBRARY Specifies a PROC DATASETS step on BOOKS library. Macro program is called
by CALL EXECUTE from a DATA step.

9.10 REP60K Specify a PROC REPORT step on a subset specified by the value of the single
positional parameter. Before REP60K is called, a PROC MEANS step executes,
saving results in an output data set. A DATA step evaluates each observation in
the output data set and executes a CALL EXECUTE depending on the evaluation.

HIGHREPORT Specify a PROC REPORT step on a subset specified by the value of the single
positional parameter. Before HIGHREPORT is called, a PROC MEANS step
saves results in an output data set. A DATA step evaluates each observation in the
output data set and executes a CALL EXECUTE depending on the evaluation. The
same DATA step calls LOWREPORT depending on the evaluation.

9.11

LOWREPORT Specify a PROC REPORT step on a subset specified by the value of the single
positional parameter. Before LOWREPORT is called, a PROC MEANS step saves
results in an output data set. A DATA step evaluates each observation in the
output data set and executes a CALL EXECUTE depending on the evaluation. The
same DATA step calls HIGHREPORT depending on the evaluation.

9.12 Obtain a macro variable value with RESOLVE by resolving a character expression
9.13 GETSALENAME Resolves to text string based on value of single positional parameter.

GETSALENAME is called from a DATA step by RESOLVE SAS language
function. The result of the call to GETSALENAME is saved in a data set character
variable.

9.14 Save PROC SQL summarizations in macro variables using the INTO clause
9.15 Save with PROC SQL the first row of a table in macro variables using the INTO

clause
9.16 Create a macro variable for each row in a table using the INTO Clause in PROC SQL

9

9.17 Store all unique values of a data set variable in one macro variable using the INTO
clause in PROC SQL. Separate the values with a specific character.

404 SAS Macro Programming Made Easy, Second Edition

9.18 Store all values of a PROC SQL dictionary table column in one macro variable
using the INTO clause in PROC SQL. Separate the values with a specific
character.

9.19 LISTSQLPUB Process an iterative %DO loop to demonstrate use of PROC SQL and SQL macro
variable SQLOBS. LISTSQLPUB lists values saved in macro variables by PROC
SQL step.

9.20a Display the value of SAS option MACRO by executing a PROC SQL step on
DICTIONARY.OPTIONS

9.20b Save a SAS option setting in a macro variable by using PROC SQL and
DICTIONARY.OPTIONS

9.21 Access macro variable characteristics with PROC SQL and dictionary tables
9.22a
and

9.22b

 Create a macro variable in an SCL program and reference it in another SCL
program

9

(continued)

9.23 Specify SCL SUBMIT blocks that reference macro variables
10.1 REPTITLE Demonstrates use of STORE option on %MACRO statement. Constructs two

TITLE statements using value of single positional parameter and automatic macro
variable SYSVER.

10.2 REPTITLE Modifies 10.1 by adding SOURCE to %MACRO statement.

10

10.3 REPTITLE Modifies 10.1 by adding SECURE to %MACRO statement.
11.1a LISTSAMPLE Check if data set specified by single positional parameter exists and, if so, specify

a PROC PRINT step to list the first 10 observations of the data set.
11.1b MULTCOND Checks multiple characteristics of a data set and returns a return code value. This

macro program is called by LISTSAMPLE in 11.1a from a %IF statement.
11.2 TRIMNAME Edits text passed to TRIMNAME by its single positional parameter and converts

the text to uppercase, removes extra blanks between words, and removes all
nonalphanumeric characters except for commas and a single blank between words.
Macro program TRIMNAME returns the converted text and is called from a
TITLE statement and a PROC REPORT step.

RTF_START Specify ODS characteristics, options, and TITLE and FOOTNOTE statements.
Close the LISTING destination and open the RTF destination. Specify a style and
page orientation with two keyword parameters. RTF_START precedes a PROC
REPORT step and RTF_END follows the PROC REPORT step.

11.3

RTF_END Specify ODS characteristics, options, and TITLE and FOOTNOTE statements.
Close the RTF destination and open the LISTING destination. Set the orientation
to portrait. Set option DATE. Clear TITLE1 and FOOTNOTE1 statements.
RTF_START precedes a PROC REPORT step and RTF_END follows the PROC
REPORT step.

11

11.4 FACTS Document in a PDF report various attributes of a data set specified by the single
positional parameter to FACTS and list the first five observations in the data set.

Appendix D: Reference to Programs in This Book 405

12.1 PRINT10 List the first ten observations of a data set specified by the single positional
parameter

12.2 WHSTMT Construct part of a WHERE statement based on the value of two keyword
parameters. The WHERE statement is used as an option on a SET statement.

12.3b MARKUP Include a specific RETAIN statement in a DATA step based on the values of three
of four of the positional parameters. Define assignment statements with values
from these three parameters. Subset the data set with the fourth parameter.

12.4b TABLES Construct a CLASS statement and TABLES statements for PROC TABULATE
based on the value specified for the single positional parameter. The parameter
contains the names of classification variables for the PROC TABULATE step.
Parse the parameter with %DO %UNTIL constructing a TABLES statement for
each value.

MAKEHTML Called by macro program EXTFILES. Close the LISTING destination, open the
HTML destination, run PROC PRINT, close the HTML destination, and open the
LISTING destination.

12.5a

MAKEXLS Called by EXTFILES. Submit a PROC EXPORT step to create a Microsoft Excel
worksheet.

12.5b EXTFILES Subset a data set by the value specified by one of the three positional parameters.
The other two parameters specify whether a PROC PRINT report sent to an
HTML destination should be produced for the subset and whether a Microsoft
Excel spreadsheet should be produced for the subset. Call MAKEHTML and/or
MAKEXLS based on these two parameter values.

12.6b PROJCOST For a data set created by a DATA step preceding the call to PROJCOST, run
PROJCOST to generate a PROC TABULATE report on the analysis variables
specified in the single positional parameter, ANALYSISVARS.

12.7 SELECTTITLES Submit a PROC PRINT step for a subset defined by the values of the three
keyword parameters. Includes macro language statements to check validity of
parameter values.

12.8 LASTMSG Check if automatic variables SYSWARNINGTEXT and SYSERRORTEXT are
nonnull. List contents of these automatic variables if nonnull.

12

12.9 AUTHORREPORT Based on the number of observations in a data set, as determined with PROC SQL,
write messages to the SAS log, specify a PROC PRINT step, or specify a PROC
TABULATE step.

406 SAS Macro Programming Made Easy, Second Edition

REPORTA Specify a PROC TABULATE step for a subset of a data set and on specific
analysis variables. Specify the subset with three of the four keyword
parameters. Specify the list of analysis variables on the fourth keyword
parameter.

REPORTB Specify a PROC TABULATE step and a PROC GCHART step for a subset
of a data set for specific classification variables on specific analysis
variables. Specify the subset with three of the five keyword parameters.
Specify the list of classification variables on the fourth keyword parameter.
Specify the list of analysis variables on the fifth keyword parameter.

REPORTC Specify a PROC TABULATE step for a subset of a data set for specific
classification variables on specific analysis variables. Specify the subset
with three of the seven keyword parameters. Specify the list of classification
variables on the fourth keyword parameter. Specify the list of analysis
variables on the fifth keyword parameter. Specify ODS output
characteristics on the sixth and seventh keyword parameters.

13 N/A

REPORT Combine functions of REPORTA, REPORTB, and REPORTC. Specify a
PROC TABULATE step and a PROC GCHART step for a subset of a data
set for specific classification variables on specific analysis variables.
Specify the subset with three of the seven keyword parameters. Specify the
list of classification variables on the fourth keyword parameter. Specify the
list of analysis variables on the fifth keyword parameter. Specify ODS
output characteristics on the sixth and seventh keyword parameters.
Conditionally execute steps based on values of the keyword parameters.

Index

A

%ABORT statement 162, 384
ALL option, %PUT statement 47, 383
ampersand (&)

as delimiter 201
as macro trigger 24, 28, 35, 59
common problems with 302
%DO statements and 177
INTO clause, SELECT statement 252
quoting functions and 193–194, 198
referencing macro variables 42
referencing macro variables indirectly

65–71
AND operator 164
arithmetic expressions 163–165

calculations and 164
infix operator 166, 176
macro expressions and 165
macro functions and 138

ASCII character set 136, 167
ATTRC function 306
ATTRIB statement 220, 222, 247
ATTRN function 19, 153

debugging with 306
utility routines and 287

autocall facility 270
catalogs and 270
resolving macro program references

283–284
saving macro programs with 270–278
under various systems 275–278

autocall libraries 21–22
common problems with 301
creating 271–272
identifying in catalogs 275
identifying in sessions 275
identifying with filerefs 274
macro functions and 134

macro programs and 77, 270–271,
273–275

making available to programs 273
searching 273
specifying locations of 274

autocall macro programs
listed 380–381
macro functions and 154–157
maintaining access to 273–275
quoting functions and 191, 214–216

automatic macro variables 40–41, 52–55
debugging with 306–307
displaying system information 14
%DO statement and 259
listed 373–377
macro symbol tables and 104
SQL procedure and 258–260, 377

AUTOMATIC option, %PUT statement
 47–49, 383

B

blanks
See leading blanks
See trailing blanks

BOOLEAN conversion type 139, 165
%BQUOTE function 142, 193–194, 378

mnemonic operators and 201–202
quotation marks and 199–200
special characters and 210

branching in macro processing 184–187
BYLINE option, OPTIONS statement 21–22

C

calculations
arithmetic expressions and 164
common problems with 303
macro functions and 138
with macro variables 41, 57, 59, 134
with SELECT statement 251

408 Index

CALL statement (SCL) 263
case sensitivity in UNIX environment 271, 276
CATALOG method, FILENAME statement

 275
CATALOG procedure 78, 279
catalogs

See also SASMACR catalog
autocall facility and 270
executing macro programs 79
identifying autocall libraries in 275
macro programs in 278
referencing with macro variables 63–65
searching 279
SOURCE entries in SAS catalogs

271–272, 278
stored compiled macro facility and 270
storing macro programs 77–78, 271–272,

280
CATS function 241
CEIL conversion type 139
character data, editing 289–290
character expressions

RESOLVE function and 246–249
SYMGET function and 225–226
SYMPUT routine and 227

character functions 134–138, 377
quoting functions and 214–216

CLOSE function 19, 153
CMD option, %MACRO statement 75, 382
CMDMAC system option 372
%CMPRES autocall program 155, 289, 380
colon (:) 185, 252
columns in tables 256–257
comma (,)

as delimiter 166, 197
keyword parameters in 89
macro program parameters and 204
positional parameters and 86
quoting functions example 197

COMMA format 228
comparison operators 164–165
Compile command (SCL) 25

compilers/compiling
defined 24
displaying notes about macro programs

80–82
errors during 298
macro programs 77, 122–126, 278
SAS processing and 25–26, 31, 34,

37–38
COMPRESS function 214, 289
concatenation

CATS function and 241
macro variables and 59, 63–65

conditional processing
calling macro programs 238–241
of DATA step 167
with %DO-%UNTIL statements

180–182
with macro statements 167–177

constants, removing hard-coded 336,
 344–348

conversion 137–139, 165
%COPY statement 161, 382

LIBRARY= option 281, 382
OUTFILE= option 382
stored compiled macro facility 278,

281–282

D

data set variables
EXECUTE routine and 234
macro variables and 42
RESOLVE function and 246–247,

249–251
SYMGET function and 221–223
SYMGETN function and 223–224
SYMPUT routine and 227

data sets
displaying information about 153–154
documenting characteristics of 293–296
enhancing macro programs 367
examining specific characteristics of

286–289
executing steps on multiple data sets 6

Index 409

permanent 63–65
sample 393–398

DATA step
conditional processing of 167
creating macro programs 348–352
EXECUTE routine and 234–245
iterative processing of 17–18, 177,

179–180
%LET statement in 56
macro facility interfaces 218–251
macro functions and 134
macro statements and 160
macro symbol tables and 104
macro variables in 40
passing information between 18–19
%PUT statement 46
RESOLVE function and 245–251
reviewing processing results 331–332
SAS macro facility support 13
SAS processing example 37
SCL and 263
solving errors example 310
SYMGET function and 219–226
SYMGETN function and 219–226
SYMPUT routine and 226–234
SYMPUTX routine and 226–234
tokenizing 28–29
WHERE clause 344

DATASETS procedure 185–187, 236–238
%DATATYP autocall program 155, 380
DATETIME format 153
DD statement (JCL) 275
debugging

ATTRN function 306
automatic macro variables and 306–307
%GOTO statement 305
macro programs 298, 303–307, 336,

338–344
minimizing errors 299
SYMBOLGEN option, OPTIONS

statement 51
delimiters

ampersand as 201

comma as 166, 197
macro variables and 59–60
period as 59, 61, 63
%SCAN function 136

DES= option, %MACRO statement 75, 280,
 382

dictionary tables 257, 260–262
DIR command 77, 280–281
%DISPLAY statement 163, 382
%DO statement 162, 384

ampersand and 177
automatic macro variables and 259
building macro programs 337, 352–356
common problems with 302
%EVAL function and 165
iterative processing of steps 17, 177–180

%DO-%TO-%BY statements 384
%DO-%UNTIL statements 162, 385

conditional iteration with 180–182
%EVAL function and 165
macro program example 96
tracing problems at execution 315–318

%DO-%WHILE statements 162, 385
conditional iteration with 182–184
%EVAL function and 165

documenting data set characteristics 293–
296

DOLLAR format 324–325
domain of macro variables 118–122,

 143–147, 306

E

EBCDIC character set 136, 167
Editor window 56, 77–78
ELSE statement 17–18
%ELSE statement

conditional processing and 167
logic errors during execution 319–322
tracing problems in expression evaluation

313–314
utility routines and 289

encryption 280, 282–283
%END statement 162, 302, 385

410 Index

solving errors with 310–311
enhancing macro programs 366–367
ENTRY statement (SCL) 263
EQ operator 164
equal sign (=) 206–207
ERROR: option, %PUT statement 47, 383
errors

checking in macro programs 326–334
examples of solving in macro programs

307–325
in macro programs 298
logic errors 298, 319–322
%MEND statement and 309–311
minimizing in macro programs 299
MLOGIC system option and 311–315,

319–322
MPRINT system option and 322–325
%PUT statement and 311–318
reviewing system options 307–309
solving with %END statement 310–311
syntax 298

%EVAL function 378
common problems with 303
conditional processing 167
converting macro variables 152
%DO statement and 165
%DO-%UNTIL statements and 165
%DO-%WHILE statements and 165
examples of 140
integer arithmetic and 139
macro expressions and 163–165
syntax 138
tracing problems in expression evaluation

311–315
evaluation functions 138–140, 163–164, 377
Excel spreadsheet 319, 321
EXECUTE routine 234–245, 388–389

conditionally call macro programs
238–241

data set variables and 234
invoking macro programs that submit

macro statements 235–236

invoking specific macro programs
241–245

PROC steps and 236–238
execution

errors during 298, 319–322
for multiple data sets 6
of macro programs 78–80, 127–132
of REPORT macro program 356–366
tracing problems at 314–318

EXIST function 286–287
expression evaluation, tracing problems in

 311–315

F

FILENAME statement
CATALOG method 275
defining filerefs 273

filerefs
defining 273–274
identifying autocall libraries with 274

FLOOR conversion type 139
FOOTNOTE statement

library of utility routines 21–22
masking special characters in 208–213
quoting functions example 203

FREQ procedure
macro variables example 42–44, 50
referencing permanent data set names 64
RESOLVE function example 248–249
reviewing processing messages 329
SYMPUT routine example 230–231

functions
See also macro functions
See also quoting functions
assigning results to macro variables

149–150
character functions 134–138, 214–216,

377
checking valid names 150–151
evaluation functions 138–140, 163–164,

377
interfacing functions 19–21
macro programs behaving like 286–290

Index 411

quoting results from 214–215
statistical 152–154

G

GCHART procedure
enhancing macro programs 367
iterative %DO loop 178
macro program example 96–99
passing information between steps 18

GE operator 164
GETOPTION function 149–150
GLOBAL option, %PUT statement 47, 49,

 383
%GLOBAL statement 161, 382

defining domain of macro variables
118–122

macro symbol tables and 104, 113
global symbol table 104–108

macro variables in 41, 116–118, 144–147
referencing permanent data set names 64
SCL and 263
SQL procedure and 252
SYMPUTX routine and 227, 232

%GOTO statement 162, 385
branching with 184–187
common problems with 300
debugging with 305

greater than (>) 138, 163
GT operator 164

H

HTML files 319–321

I

IF statement 302
%IF statement

debugging with 305–306
%EVAL function and 165
IN operator and 166
logic errors during execution 320
masking parameters and 210–211
mnemonic operators and 208
solving errors example 312–314

%IF-%THEN-%ELSE statements 162, 385
building macro programs 96, 337,

352–356
conditional processing with 167
IN operator and 176–177
modifying statements within steps

172–175
reviewing processing results 331–334

IMPLMAC system option 372
IN operator

%IF-%THEN-%ELSE statements and
176–177

macro statements and 166
precedence order of 164
WHERE statement 204

%INDEX function 135, 378
infix operator 166, 176
input stack

defined 24
SAS processing and 25–26, 31–36
tokenization and 28

%INPUT statement 163, 382
integer arithmetic 139
INTEGER conversion type 139
interfacing functions 19–21
INTO clause, SELECT statement (SQL) 386

ampersand and 252
automatic macro variables 258
creating and updating macro variables

251–256
default saving action 253–255
saving macro variable summarizations

252–253
iterative processing

iterative %DO loop 178
of DATA step 17–18, 177, 179–180
with macro statements 177–184

J

JCL DD statement 275

412 Index

K

keyword parameters
common problems with 302
in commas 89
masking special characters in 206–207
specifying in macro programs 88–95

L

LE operator 164
leading blanks

macro variable values and 59
NOTRIM option, SQL procedure 386
quoting functions and 198
SYMPUT routine and 226
SYMPUTX routine and 227

%LEFT autocall program 155, 380
%LENGTH function 135, 378
LENGTH statement 220, 247
less than (>) 138, 163
%LET statement 161, 382

common problems with 302
creating macro variables with 56–59
defining domain of macro variables

119–120
defining macro variables 42–44, 336
in DATA step 56
macro programs and 74, 287
macro quoting functions and 141
macro symbol tables and 113
masking characters 192
placing text after macro variable reference

61–63
placing text before macro variable

reference 60–61
quoting functions examples 195–201,

214–216
referencing macro variables 42–44
replacing constants with macro variables

345
SAS processing and 31, 33
solving errors example 313

library of utility routines 21–22

LIBRARY= option, %COPY statement 281,
 382

LISTING destination 351, 353
literal token 28, 37
LOCAL option, %PUT statement 47, 49,

 383
%LOCAL statement 162, 385

defining domain of macro variables
118–122

macro variables and 287, 293
local symbol table 108–115

macro variables in 41, 116–118,
144–147

SQL procedure and 251
SYMPUTX routine and 227–228, 232

logic errors
execution-time problems 298
MLOGIC option and 319–322

logical expressions 163, 165
common problems with 303
conditional processing with 167–169
infix operator 166, 176
macro expressions and 165
macro functions and 138
%SYSEVALF function 201

%LOWCASE autocall program 154–155,
 274, 381

LOWCASE function 155
LT operator 164

M

macro expressions
arithmetic expressions and 165
branching in 184–185
constructing 163–166
%EVAL function and 163–165

macro facility
See SAS macro facility

macro functions 133–134
See also quoting functions
arithmetic expressions and 138
autocall libraries and 134
autocall macro programs and 154–157

Index 413

calculations and 138
character 134–138, 214–216, 377
common problems with 302
DATA step and 134
evaluation 138–140, 163–164, 377
macro expressions and 165
masking names 215
miscellaneous 147–154, 377
text expressions and 163
variable attribute 143–147

macro parameters
common problems with 302
macro symbol tables and 109
passing values through 85–95

macro processor/processing
branching in 184–187
defined 24
defining domain of macro variables

118–122
detecting errors 298
displaying messages 82–85
iterative 17–18, 177–184
%LET statement and 56
macro functions and 141
macro programs and 77, 122–132
macro statements and 160
macro symbol tables and 104, 108,

116–118
macro triggers and 59
mechanics of 23–38
referencing macro variables indirectly

65–71
RESOLVE function and 246
SAS processing and 29–34
searching autocall libraries 273
selecting steps for 169–171
single quotation marks and 248

macro programs
See also autocall macro programs
accepting varying number of parameter

values 95–99
applying four steps 337–366

autocall libraries and 77, 270–271,
273–275

behaving like functions 286–290
branching in 184–187
building in four steps 336–357
building with %DO statement 337,

352–356
calling 108
calling conditionally 238–241
common problems in 299–303
compiling 77, 122–126, 278
conditional processing of steps 15–16
creating 74–78
creating stored compiled 280–281
creating with DATA step 348–352
debugging 298, 303–307, 336, 338–344
displaying compilation notes 80–82
displaying processing messages 82–85
encrypting 282–283
enhancing 366–367
error checking in 326–334
errors in 298
examples of 7
EXECUTE routine and 234–245
executing 78–80, 127–132
executing steps multiple times 6
in catalogs 278
invoking specific programs 241–245
logic errors in 319–322
macro functions and 134
macro statements and 160–163
macro symbol tables and 102
macro variables in 40–41
masking macro triggers in 198–199
minimizing errors in 299
mnemonic operator support 203–213
passing values through parameters

85–95
processing 77, 122–132
references in book 399–406
RESOLVE function and 245–251
resolving references 283–284
SAS macro facility support 13

414 Index

macro programs (continued)
saving with autocall facility 270–278
saving with stored compiled macro facility

278–283
solving errors in 307–325
special characters support 203–213
storing 271, 280
storing in catalogs 77–78, 271–272, 280
submitting macro statements 235–236
submitting macro variables 236–238
text expressions and 163
typical functionality 5
writing 336, 338–344

macro source code
retrieving 281–282
storing 278

%MACRO statement 161, 382–383
CMD option 75, 382
common problems with 301
creating macro programs 74–75
DES= option 75, 280, 382
macro parameter names 85–86, 88–89
PARMBUFF option 75, 95–99, 180, 382
PBUFF option 75, 382
processing macro programs 124
SECURE option 280, 282–283, 383
SOURCE option 76, 278, 280–282, 383
SRC option 76
START= option 349–350
STMT option 75, 383
STOP= option 349–350
STORE option 76, 280, 282–283, 383
storing macro programs 280

macro statements 160–163, 381–385
autocall facility and 271
branching in 184
conditional processing with 167–177
DATA step and 160
debugging with 305
EXECUTE routine and 235–236
IN operator in 166
iterative processing with 177–184
macro programs and 74

processing 30–38
macro symbol tables 102–103

See also global symbol table
See also local symbol table
automatic macro variables and 104
DATA step and 104
defined 24
%GLOBAL statement 104, 113
%LET statement 31
macro programs and 128
macro variables and 24, 32, 102,

108–109, 219–226
memory and 24
SAS processing and 32–34
SYMGET function 219–226
SYMGETN function 219–226
SYMPUTX routine example 231–234

MACRO system option 305, 372
common problems with 301
verifying value of 307

macro triggers
ampersand as 24, 28, 35, 59
defined 24
macro functions and 141
macro processor and 59, 128
masking 141, 198–199, 201
SAS processing and 31, 33, 35

macro variable attribute functions 143–147,
 306, 377

macro variables 40–42
See also automatic macro variables
applying statistical functions to 152–154
assigning results to 150–151
attribute functions 143–147, 306, 377
calculations with 41, 57, 59, 134
combining with text 59–65
common problems with 300–301
concatenation and 59, 63–65
conditional processing of steps 15–16
converting 152
creating for each row in tables 255–256
data set variables and 42
defining 7–12, 42–44

Index 415

delimiters and 59–60
displaying values 46–52
domain of 118–122, 143–147, 306
extracting nth item from 136–137
in DATA step 40
in global symbol table 41, 116–118,

144–147
%LET statement 31
macro expressions and 165
macro functions and 134, 141, 143–147
macro option settings in 260–262
macro programs and 74, 336, 348–352
macro statements and 163
macro symbol table and 24, 32, 102,

108–109, 219–226
masking macro triggers in 198–199
maximum text length 42
null values for 59
quoting functions and 194
referencing 40, 42–44, 60–65
referencing catalogs with 63–65
referencing indirectly 65–71
replacing constants with 336, 344–348
RESOLVE function and 245–251
SAS processing 31–32, 34–37
saving summarizations 252–253
SCL and 263–266
selecting observations for processing 5
special characters in 202–203
SQL Pass-Through Facility 258
SQL procedure and 251–260, 293
storing all column values 257
storing unique column values 256–257
SYMBOLGEN option and 82
SYMPUT routine and 226–234
SYMPUTX routine and 226–234
text expressions and 163
typical uses for 5
user-defined 104

MACROS dictionary table 260–262
masking

equal sign 206–207
%IF statement and 210–211

macro triggers 141, 198–199, 201
mnemonic operators 191–204
quoting functions and 303
results of %SUBSTR function 215–216
special characters 191–203
special characters in parameters

204–205, 208–213
text strings 201

MAUTOSOURCE system option 372
autocall libraries and 273–276, 284
common problems with 301

MAX operator 163
MCOMPILENOTE= option, OPTIONS

 statement 80–81
MEAN statistical function 152–154
MEANS procedure

conditional processing of steps 15–16,
180–181, 184

EXECUTE routine example 238–241
executing on multiple data sets 6
invoking specific macro programs 241
iterative %DO loop 178
MISSING option 93
quoting functions examples 202
referencing macro variables example 43
RESOLVE function example 249
resolving macro variables 45
%SUBSTR macro function 136
SYMPUTX routine example 231–232

memory, and macro symbol table 24
%MEND statement 162, 385

common problems with 301
creating macro programs 74, 76
executing macro programs 131
solving errors example 309–312

MERROR system option 305, 372
common problems with 301
solving errors example 307–309

messages, reviewing processing 329–331
MFILE system option 372
Microsoft Excel spreadsheet 319, 321
MIN operator 163

416 Index

MINDELIMITER system option 372
common problems with 301
overriding 176
setting 166, 261

MINOPERATOR system option 166
minus sign (-) 138, 163
MISSING option, MEANS procedure 93
MLOGIC system option 304, 372

building macro programs 337, 356, 358,
363

functionality 82, 84–85, 87
logic errors with 319–322
tracing problems in expression evaluation

311–315
MLOGICNEST system option 304
mnemonic operators

%BQUOTE function and 201–202
common problems with 303
interpreting as text 190
macro language and 190
macro program parameters with 203–213
macro quoting functions and 140–142
masking 191–203
percent signs in 163–164
preventing interruption of 201–202

modularity, and SAS macro facility 6
MPRINT system option 304, 372

building macro programs 336–337, 356,
358, 363

errors generated by 322–325
functionality 82–84, 98
tracing problems at execution 317

MPRINTNEST system option 304
MSTORED system option 373

common problems with 301
stored compiled macro programs and

279, 284
MVS environment

autocall facility in 275–276
storing macro programs 271

N

names token 28
naming conventions for macro variables 42
NE operator 163–164
nesting, common problems with 301
NOCMDMAC system option 372
NODATE option, OPTIONS statement

 21–22
NOIMPLMAC system option 372
NOMACRO system option 305, 372
NOMAUTOSOURCE system option 372
NOMERROR system option 305, 372
NOMINOPERATOR system option 166
NOMLOGIC system option 304, 372
NOMLOGICNEST system option 304
NOMPRINT system option 304, 322, 372
NOMPRINTNEST system option 304
NOMSTORED system option 373
NOSERROR system option 305, 373
NOSYMBOLGEN system option 304, 373
NOT operator 163–164
NOTE: option, %PUT statement 47, 383
NOTNAME function 150–151
NOTRIM option, SQL procedure 252, 386
NOWARN option, %SYMDEL statement

 383
%NRBQUOTE function 142, 193–194, 378

editing character data 289
%NRQUOTE function 142, 194
%NRSTR function 142, 192–193, 378

evaluating parameter values 328
masking macro function names 215
masking macro triggers 141, 198–199,

201
masking special characters in parameters

204–205, 211
null values

keyword parameters and 89
macro variables with 59
positional parameters and 86

Index 417

NUMBER option, OPTIONS statement
 21–22

numbers token 28
NVALID function 150–151

O

observations
enhancing macro programs 367
in WHERE statement 344
selecting for processing 5

ODS PDF destination 293
ODS RTF destination 290–292, 330, 342
ODS statement 351, 353

STYLE= option 351, 353
OPEN function 19, 153, 287
OpenVMS environment

autocall facility in 277–278
storing macro programs in 271

operators
See also mnemonic operators
See also specific operators
comparison 164–165
infix 166, 176
order of precedence for 163–164

OPTIONS dictionary table 260–262
OPTIONS statement

BYLINE option 21–22
displaying macro variables 50–52
library of utility routines 21–22
MCOMPILENOTE= option 80–81
NODATE option 21–22
NUMBER option 21–22
SYMBOLGEN option 51

OR operator 164, 166
order of precedence for operators 163–164
OUTFILE= option, %COPY statement 382

P

parameters
See also keyword parameters
See also positional parameters
enhancing macro programs 367
evaluation values 326–328

parentheses ()
keyword parameters in 89
macro expressions and 163
positional parameters in 86
quoting functions and 193–194

PARMBUFF option, %MACRO statement
 75, 382
accepting varying number of parameter

values 95–99
conditional iteration and 180

Pass-Through Facility (SQL) 258
PBUFF option, %MACRO statement 75,

 382
PDF destination 293
percent sign (%)

as macro trigger 24, 28, 33, 59
branching in macro processing 185
common problems with 302
executing macro programs 79
macro statements and 382
masking 199–200
mnemonic operators and 163–164
quoting functions and 193–194, 201

period (.) 59, 61, 63
permanent data sets 63–65
PIE statement 353
plus sign (+) 138, 163
positional parameters

commas and 86
common problems with 302
masking special characters in 206–207
specifying in macro programs 85–88,

92–95
pound sign (#) 166, 176
precedence (order of) for operators 163–164
PRINT procedure

default saving action for INTO clause
253–255

macro quoting functions and 191–192
PROC steps

conditional processing of 15–16, 167
creating macro programs 348–352
EXECUTE routine example 236–238

418 Index

PROC steps (continued)
executing on multiple data sets 6
identifying autocall libraries in sessions

275
invoking specific macro programs

241–245
iterative processing of 177–180
macro variables in 40
passing information between 18–19
%PUT statement 46
SAS macro facility support 13

processing
See conditional processing
See SAS processing

punctuation, common problems with 300
%PUT_LOCAL statement 233
%PUT statement 161, 383

ALL option 47, 383
assigning statistical functions to macro

variables 152
automatic macro variables and 259
AUTOMATIC option 47–49, 383
debugging with 305
default saving action for INTO clause

253–255
displaying macro variable values 46–50,

57
ERROR option 47, 383
errors and 311–318
EXECUTE routine example 235–238
GLOBAL option 47, 49, 383
LOCAL option 47, 49, 383
macro evaluation functions and 140
macro programs and 74
NOTE: option 47, 383
quoting functions examples 195–199,

215–216
reviewing processing messages 330
saving macro variable summarizations

252–253
storing unique column values 257
%SYSFUNC function example 149

tracing problems at execution 314–318
tracing problems in expression evaluation

311–315
USER_ option 47, 383
WARNING option 47, 383

PUTN function 19, 153, 287

Q

%QCMPRES autocall program 155, 380
%QLEFT autocall program 155, 380
%QLOWCASE autocall program 155, 381
%QSCAN function 378

%EVAL function and 165
masking and 200
special characters and 135

%QSUBSTR function 379
%EVAL macro function and 165
masking results of 215–216
special characters and 135

%QSYSFUNC function 147–148, 379
debugging with 306
quoting versions of 214–215

quotation marks (")
%BQUOTE function and 199–200
macro variable values and 59
quoting functions and 193–194, 199–

201
referencing macro variables example

42–45
text strings in 234
tokens and 27

%QUOTE function 142, 194
quoting functions 140–142, 191–194, 377

ampersand and 193–194, 198
applying 195–203
autocall macro programs and 191,

214–216
character functions and 214–216
common problems with 303
examples 197, 203
masking and 303

%QUPCASE function 135, 380

Index 419

R

referencing
macro programs 78–80
macro symbol tables 102, 104, 116–118
macro variables 40, 42–44, 60–65
macro variables indirectly 65–71
permanent data set names 63–65

repetition, and SAS macro facility 6
REPORT macro program 356–366
REPORT procedure

EXECUTE routine example 238–241
masking equal signs in parameters

206–207
reserved words in macro facility 391–392
RESOLVE function 245–251, 389

character expressions and 246–249
common problems with 301
data set variables and 246–247, 249–251
DATA step and 245–251
FREQ procedure example 248–249

resolving macro program references 283–284
%RETURN statement 162, 385
rows in tables 255–256
RTF destination 290–292, 330, 342
RTF output, standardizing 290–292
RUN statement 37–38

S

sample data sets 393–398
SAS/ACCESS 258
SAS Component Language

See SCL
SAS/CONNECT 13, 161
.sas file extension 276
SAS/GRAPH 13
SAS logs

displaying macro program compilation
notes 80–82

displaying macro program processing
messages 82–85

SAS macro facility 4–6, 30
symbol 166, 176
advantages of 6–12

building macro programs and 339–344
conditional processing of steps 15–16,

167
DATA step interfaces 218–251
DATA step support 13
displaying system information 14
examples of 13–22
EXECUTE routine and 234–245
interfacing functions 19–21
iterative processing of steps 17–18
library of utility routines 21–22
modularity and 6
options used with 372–373
passing information between steps

18–19
product compatibility 12–13
reserved words 391–392
RESOLVE function 245–251
reviewing system options 307–309
SAS processing 31–32
SQL procedure and 251–262, 386
SYMGET function 219–226
SYMGETN function 219–226
SYMPUT routine 226–234
SYMPUTX routine 226–234

SAS macro programs
See macro programs

SAS macro variables
See macro variables

SAS processing
compilers and 25–26, 31, 34, 37–38
DATA step example 37
macro processing and 29–30
reviewing messages 329–331
reviewing results 331–334
selecting steps for 169–171
SUBMIT blocks and 25, 262, 264–266
vocabulary of 24–25
without macro activity 25–26

SAS programs
%LET statement in 56
macro statements and 160
macro variables in 40–41

420 Index

SAS programs (continued)
processing with macro language 30–38
tokenizing 28–29

SAS statements
iterative %DO loops and 179–180
macro functions and 134
semicolon in 195–196

SAS/TOOLKIT 13, 134
SASAUTOS system option 22, 373

autocall facility support 275–278
autocall libraries and 273–274, 276
common problems with 301
defining filerefs 274–276
resolving macro program references 284

SASMACR catalog
location of 279
resolving macro program references

283–284
searching 279
storing macro programs 77–79, 271, 280

SASMSTORE system option 373
common problems with 301
%COPY statement and 382
%MACRO statement and 383
stored compiled macro programs 279,

284
saving macro programs 270–278
%SCAN function 96, 378

conditional processing of steps 181, 183
delimiters 136
%EVAL function and 165
extracting nth item from macro variables

136–137
special characters and 135
tracing problems at execution 317

SCL (SAS Component Language)
CALL statement 263
Compile command 25
DATA step and 263
ENTRY statement 263
global symbol table and 263
macro variables in 40
SAS macro facility and 13, 262–266

SAS processing and 25
SUBMIT blocks 25, 262, 264–266

searching
autocall libraries 273
catalogs 279
SASMACR catalogs 279

SECURE option, %MACRO statement 383
encryption and 282–283
stored compiled macro programs and

280
SELECT statement, SQL procedure

automatic macro variables and 258–260
calculations with 251
INTO clause 251–256, 258, 386

semicolon (;)
executing macro programs and 79
iterative %DO loops and 179
%LET statement and 56, 59
macro functions and 134
masking 192
SAS processing and 33
solving errors example 310
%STR function and 195–196

SERROR system option 305, 373
common problems with 301
solving errors with 307–308

sessions, identifying autocall libraries in 275
SET statement 179
single quotation marks (')

macro statements 166
quoting functions and 191, 193–194,

200
RESOLVE function and 248
resolving macro variables 44–45

source code 278, 281–282
SOURCE entries in SAS catalogs

macro programs as 271–272
macro source code in 278

SOURCE option, %MACRO statement 383
defining macro programs 76
stored compiled macro facility and 278,

280–282
special characters

Index 421

%BQUOTE function and 210
common problems with 303
interpreting as text 190
macro program parameters with

203–213
macro quoting functions and 140–142
macro variable values and 59
masking 191–205, 208–213
%SCAN function and 135

special token 28
SQL Pass-Through Facility 258
SQL procedure

automatic macro variables and 258–260,
377

displaying macro option settings
260–262

global symbol table and 252
macro variables and 251–260, 293
NOTRIM option 252, 386
quoting functions example 195–196
SAS macro facility and 251–262, 386
SELECT statement 251–256, 258–260,

386
SQLOBS automatic macro variable 258–260,

 377
SQLOOPS automatic macro variable 258,

 377
SQLRC automatic macro variable 258, 377
SQLXMSG automatic macro variable 258,

 377
SQLXRC automatic macro variable 258, 377
SRC option, %MACRO statement 76
standardizing RTF output 290–292
START= option, %MACRO statement

 349–350
statistical functions 152–154
STMT option, %MACRO statement 75, 383
STOP= option, %MACRO statement

 349–350
STORE option, %MACRO statement 383

defining macro programs 76
stored compiled macro programs 280,

282–283

stored compiled macro facility 270
catalogs and 270
resolving macro program references

283–284
saving macro programs with 278–283

storing
all column values in tables 257
column values in dictionary tables 257
macro programs 271, 280
macro programs in catalogs 77–78,

271–272, 280
macro source code 278
unique column values for macro variables

256–257
%STR function 142, 192–193, 378

comma and 197
leading/trailing blanks and 198
masking special characters in parameters

204–205, 210–211
masking text strings 201
quotation marks and 199–200
semicolon and 195–196

STYLE= option, ODS statement 351, 353
SUBMIT block (SCL) 25, 262, 264–266
%SUBSTR function 379

%EVAL function and 165
extracting text with 136
interpreting delimiters and 197
masking results of 215–216
special characters and 135

%SUPERQ function 142, 193–194, 379
editing character data example 289
special characters and 202–203, 210–

211
SYMBOLGEN option, OPTIONS statement

 51
SYMBOLGEN system option 304, 373

automatic macro variables and 259
building macro programs 336–337, 356
debugging with 305, 308
displaying macro variables 50–52,

68–69, 82
quoting functions and 195

422 Index

resolving multiple ampersands 70
%SYMDEL statement 161, 383

debugging with 305
%GLOBAL statement and 382
macro symbol tables and 109, 144
NOWARN option 383
SYMPUTX routine example 234

%SYMEXIST function 379
debugging with 306
determining existence of macro variables

145
macro attribute variable functions 143

SYMGET function 219–226, 387
character expressions and 225–226
data set variables and 221–223
macro variables and 263–264
RESOLVE function and 246

SYMGETN function 219–226, 387
data set variables and 223–224
SCL and 263

%SYMGLOBL function 379
debugging with 306
determining existence of macro variables

145
macro attribute variable functions 143

%SYMLOCAL function 379
debugging with 306
determining existence of macro variables

145
macro attribute variable functions 143

SYMPUT routine 226–234, 387–388
character expressions and 227
common problems with 301
creating macro variables 230–231
data set variables and 227
DATA step interfaces 220
executing once in DATA step 228–230
FREQ procedure example 230–231
INTO clause, SELECT statement and

251
macro symbol tables and 102, 104
macro variables and 246, 263

SYMPUTN routine 263

SYMPUTX routine 226–234, 388
common problems with 301
creating macro variables 230–234
DATA step interfaces 220
executing multiple times in DATA step

230
global symbol table and 227, 232
INTO clause, SELECT statement and

251
macro symbol tables and 102, 104
macro variables and 246, 263
passing information between steps 18–

19
quoting functions examples 202

syntax errors 298
SYSBUFFR automatic macro variable 374
%SYSCALL statement 161, 384
SYSCC automatic macro variable 374
SYSCHARWIDTH automatic macro variable

 374
SYSCMD automatic macro variable 374
SYSDATE automatic macro variable

debugging with 307
defined 14, 53, 374

SYSDATE9 automatic macro variable
debugging with 307
defined 53, 374
macro symbol tables and 104

SYSDAY automatic macro variable
debugging with 307
defined 14, 53, 374
macro symbol tables and 104
referencing macro variables example

42–43
SYSDEVIC automatic macro variable 374
SYSDMG automatic macro variable 374
SYSDSN automatic macro variable 54, 307
SYSENCODING automatic macro variable

 374
SYSENV automatic macro variable 374
SYSERR automatic macro variable

debugging with 307
defined 53, 375

Index 423

SYSERRORTEXT automatic macro variable
debugging with 306–307
defined 53
reviewing processing messages 329–331

%SYSEVALF function 379
arithmetic expressions and 138, 164
common problems with 303
conversion types supported 139
converting macro variables 152
logical expressions and 138, 165, 201
tracing problems in expression evaluation

311–315
%SYSEXEC statement 161, 384
SYSFILRC automatic macro variable

debugging with 307
defined 53, 375

%SYSFUNC function 147–148, 379
debugging with 306
examples 149–154
LOWCASE function and 155
PUTN function and 287
quoting versions of 214–215
%SYSCALL statement and 161
UPCASE function and 157
VERIFY function and 157

%SYSGET function 148, 380
SYSINDEX automatic macro variable 375
SYSINFO automatic macro variable 375
SYSJOBID automatic macro variable 375
SYSLAST automatic macro variable

debugging with 307
defined 54, 375

SYSLCKRC automatic macro variable 375
SYSLIBRC automatic macro variable

debugging with 307
defined 53, 375

%SYSLPUT statement 161, 218, 384
SYSMACRONAME automatic macro variable

debugging with 307
defined 54, 375
modifying statements with 172

SYSMENV automatic macro variable 375

SYSMSG automatic macro variable 375
SYSNCPU automatic macro variable 375
SYSPBUFF automatic macro variable 382

conditional iteration and 180–181
defining macro programs 75, 95–97
global support and 376

SYSPROCESSID automatic macro variable
 376

SYSPROCESSNAME automatic macro
 variable 376

SYSPROCNAME automatic macro variable
 307, 376

%SYSPROD function 148, 380
SYSRC automatic macro variable

debugging with 307
defined 54, 376

%SYSRPUT statement 161, 218, 384
SYSSCP automatic macro variable 376
SYSSCPL automatic macro variable 376
SYSSITE automatic macro variable 376
SYSSTARTID automatic macro variable

 376
SYSSTARTNAME automatic macro variable

 376
system information, displaying 14
system options

See also specific system options
debugging macro programs with

304–305
OPTIONS dictionary table 260–262
reviewing 307–309

SYSTIME automatic macro variable
debugging with 307
defined 14, 53, 376

SYSUSERID automatic macro variable 376
SYSVER automatic macro variable

debugging with 307
defined 14, 53, 376
macro symbol tables and 104
masking special characters example

210–211

424 Index

SYSVLONG automatic macro variable 376
SYSWARNINGTEXT automatic macro

variable
debugging with 306–307
defined 54
reviewing processing messages 329–331

T

TABLE statement, TABULATE procedure
 315, 317, 325

tables
creating macro variables for each row in

255–256
default saving action for INTO clause

253–255
displaying macro option settings

260–262
INTO clause, SELECT statement 252
storing all column values 257
storing unique column values 256–257

TABLES statement 42, 323
TABULATE procedure

enhancing macro programs 367
macro symbol tables and 111–113
MPRINT system option and 322–325
reviewing processing results 332
selecting steps for processing 169–170
TABLE statement 315, 317, 325
tracing problems at execution 315
VAR statement 323

templates, building macro programs 342
testing

macro programs 336, 338–344
minimizing errors 299

text expressions
defined 163
EXECUTE routine and 234
RESOLVE function and 246–247

text strings/values
automatic macro variables and 54
displaying 49–50
in quotation marks 234

macro variables and 41, 59–65
masking 201
substituting 4, 74

TITLE statement
conditional processing 181–182
library of utility routines 21–22
macro variables example 42–44
masking special characters in 208–213
passing information between steps 18–

19
resolving macro variables 44–45
solving errors example 308
SYMPUTX routine example 232–233
%SYSFUNC function example 149
unmasking text 213
%UPCASE function example 137–138

tokens (tokenization) 26–27
DATA step 28–29
defined 24
literal 28, 37
macro programs and 77, 124, 129–131
maximum length of 26
names 28
numbers 28
quoting functions and 193
SAS programs and 28–29, 32, 34, 37
SCL and 262, 264
special 28

trailing blanks
quoting functions and 198
SQL procedure and 252, 386
SYMPUT routine and 226
SYMPUTX routine and 227

triggers
See macro triggers

%TRIM autocall program 274
TSO environment

autocall facility in 276
storing macro programs 271

U

underscore (_) 24, 27
UNIQUE function 256–257

Index 425

UNIX environment
autocall facility in 276–277
case sensitivity in 271, 276
storing macro programs in 271

unmasking text 213
%UNQUOTE function 142, 380

masking special characters in parameters
204–205

unmasking text 213
UPCASE function 157
%UPCASE function 135, 380

converting macro variables values
137–138

special characters and 135, 156–157
user-defined macro variables 104
USER option, %PUT statement 47, 383
utility routines

building and saving 21–22, 285–296
library of 21–22
macro programs behaving like functions

286–290
programming routine tasks 290–296

V

VAR statement, TABULATE procedure 323
variables

See data set variables
See macro variables

%VERIFY autocall program 155–157, 381
VERIFY function 157
views 252

W

WARNING: option, %PUT statement 47,
 383

WHERE clause, DATA step 344
WHERE statement

conditional iteration and 181
editing character data example 289
evaluating parameter values 326
IN operator and 204
resolving multiple ampersands in 69–71
solving errors example 309–310

%SUBSTR function 135
%WINDOW statement 163, 382, 384
Windows environment

autocall facility in 275
defining filerefs 274
identifying autocall libraries in catalogs

275
setting SAS options 279
storing macro programs in 271–272

word scanner
defined 24
macro programs and 77, 124, 128–131
SAS processing and 25–26, 31–36
SCL statements and 262
tokens and 26, 28–29

WORK library
See SASMACR catalog

Symbols

& (ampersand)
See ampersand

: (colon) 185, 252
, (comma)

See comma
= (equal sign) 206–207
> (greater than) 138, 163
< (less than) 138, 163
- (minus sign) 138, 163
() parentheses

See parentheses
% (percent sign)

See percent sign
. (period) 59, 61, 63
+ (plus sign) 138, 163
(pound sign) 166, 176
" (quotation marks)

See quotation marks
; (semicolon)

See semicolon
' (single quotation marks)

See single quotation marks
_ (underscore) 24, 27

426 Index

Books Available from SAS Press

Advanced Log-Linear Models Using SAS®

by Daniel Zelterman

Analysis of Clinical Trials Using SAS®: A Practical
Guide
by Alex Dmitrienko, Geert Molenberghs, Walter Offen,
and Christy Chuang-Stein

Annotate: Simply the Basics
by Art Carpenter

Applied Multivariate Statistics with SAS® Software,
Second Edition
by Ravindra Khattree
and Dayanand N. Naik

Applied Statistics and the SAS® Programming
Language, Fifth Edition
by Ronald P. Cody
and Jeffrey K. Smith

An Array of Challenges — Test Your SAS® Skills
by Robert Virgile

Carpenter’s Complete Guide to the SAS® Macro
Language, Second Edition
by Art Carpenter

The Cartoon Guide to Statistics
by Larry Gonick
and Woollcott Smith

Categorical Data Analysis Using the SAS® System,
Second Edition
by Maura E. Stokes, Charles S. Davis,
and Gary G. Koch

Cody’s Data Cleaning Techniques Using
SAS® Software
by Ron Cody

Common Statistical Methods for Clinical Research
with SAS® Examples, Second Edition
by Glenn A. Walker

The Complete Guide to SAS® Indexes
by Michael A. Raithel

Data Management and Reporting Made Easy with
SAS® Learning Edition 2.0
by Sunil K. Gupta

Data Preparation for Analytics Using SAS®

by Gerhard Svolba

Debugging SAS® Programs: A Handbook of Tools
and Techniques
by Michele M. Burlew

Decision Trees for Business Intelligence and Data
Mining: Using SAS® Enterprise MinerTM

by Barry de Ville

Efficiency: Improving the Performance of Your
SAS® Applications
by Robert Virgile

The Essential Guide to SAS® Dates and Times
by Derek P. Morgan

Fixed Effects Regression Methods for Longitudinal
Data Using SAS®

by Paul D. Allison

support.sas.com/pubs

Genetic Analysis of Complex Traits
Using SAS®

by Arnold M. Saxton

A Handbook of Statistical Analyses Using SAS®,
Second Edition
by B.S. Everitt
and G. Der

Health Care Data and SAS®

by Marge Scerbo, Craig Dickstein,
and Alan Wilson

The How-To Book for SAS/GRAPH® Software
by Thomas Miron

In the Know... SAS® Tips and Techniques From Around
the Globe, Second Edition
by Phil Mason

Instant ODS: Style Templates for the Output
Delivery System
by Bernadette Johnson

Integrating Results through Meta-Analytic Review Using
SAS® Software
by Morgan C. Wang
and Brad J. Bushman

Introduction to Data Mining Using
SAS® Enterprise MinerTM

by Patricia B. Cerrito

Learning SAS® in the Computer Lab, Second Edition
by Rebecca J. Elliott

The Little SAS® Book: A Primer
by Lora D. Delwiche
and Susan J. Slaughter

The Little SAS® Book: A Primer, Second Edition
by Lora D. Delwiche
and Susan J. Slaughter
(updated to include SAS 7 features)

The Little SAS® Book: A Primer, Third Edition
by Lora D. Delwiche
and Susan J. Slaughter
(updated to include SAS 9.1 features)

The Little SAS® Book for Enterprise Guide® 3.0
by Susan J. Slaughter
and Lora D. Delwiche

The Little SAS® Book for Enterprise Guide® 4.1
by Susan J. Slaughter
and Lora D. Delwiche

Logistic Regression Using the SAS® System:
Theory and Application
by Paul D. Allison

Longitudinal Data and SAS®: A Programmer’s Guide
by Ron Cody

Maps Made Easy Using SAS®

by Mike Zdeb

Models for Discrete Date
by Daniel Zelterman

Multiple Comparisons and Multiple Tests Using
SAS® Text and Workbook Set
(books in this set also sold separately)
by Peter H. Westfall, Randall D. Tobias,
Dror Rom, Russell D. Wolfinger,
and Yosef Hochberg

Multiple-Plot Displays: Simplified with Macros
by Perry Watts

Multivariate Data Reduction and Discrimination with
SAS® Software
by Ravindra Khattree
and Dayanand N. Naik

Output Delivery System: The Basics
by Lauren E. Haworth

Painless Windows: A Handbook for SAS® Users,
Third Edition
by Jodie Gilmore
(updated to include SAS 8 and SAS 9.1 features)

Pharmaceutical Statistics Using SAS®:
A Practical Guide
Edited by Alex Dmitrienko, Christy Chuang-Stein,
and Ralph D’Agostino

support.sas.com/pubs

The Power of PROC FORMAT
by Jonas V. Bilenas

PROC SQL: Beyond the Basics Using SAS®

by Kirk Paul Lafler

PROC TABULATE by Example
by Lauren E. Haworth

Professional SAS® Programmer’s Pocket Reference,
Fifth Edition
by Rick Aster

Professional SAS® Programming Shortcuts,
Second Edition
by Rick Aster

Quick Results with SAS/GRAPH® Software
by Arthur L. Carpenter
and Charles E. Shipp

Quick Results with the Output Delivery System
by Sunil Gupta

Reading External Data Files Using SAS®: Examples
Handbook
by Michele M. Burlew

Regression and ANOVA: An Integrated Approach
Using SAS® Software
by Keith E. Muller
and Bethel A. Fetterman

SAS® for Forecasting Time Series, Second Edition
by John C. Brocklebank
and David A. Dickey

SAS® for Linear Models, Fourth Edition
by Ramon C. Littell, Walter W. Stroup,
and Rudolf Freund

SAS® for Mixed Models, Second Edition
by Ramon C. Littell, George A. Milliken, Walter
W. Stroup, Russell D. Wolfinger, and Oliver
Schabenberger

SAS® for Monte Carlo Studies: A Guide for
Quantitative Researchers
by Xitao Fan, Ákos Felsovályi, Stephen A. Sivo,
and Sean C. Keenan

SAS® Functions by Example
by Ron Cody

SAS® Guide to Report Writing, Second Edition
by Michele M. Burlew

SAS® Macro Programming Made Easy,
Second Edition
by Michele M. Burlew

SAS® Programming by Example
by Ron Cody
and Ray Pass

SAS® Programming for Researchers and
Social Scientists, Second Edition
by Paul E. Spector

SAS® Programming in the Pharmaceutical Industry
by Jack Shostak

SAS® Survival Analysis Techniques for Medical
Research, Second Edition
by Alan B. Cantor

SAS® System for Elementary Statistical Analysis,
Second Edition
by Sandra D. Schlotzhauer
and Ramon C. Littell

SAS® System for Regression, Third Edition
by Rudolf J. Freund
and Ramon C. Littell

SAS® System for Statistical Graphics, First Edition
by Michael Friendly

The SAS® Workbook and Solutions Set
(books in this set also sold separately)
by Ron Cody

Selecting Statistical Techniques for Social Science
Data: A Guide for SAS® Users
by Frank M. Andrews, Laura Klem, Patrick M. O’Malley,
Willard L. Rodgers, Kathleen B. Welch,
and Terrence N. Davidson

Statistical Quality Control Using the SAS® System
by Dennis W. King

support.sas.com/pubs

˝

A Step-by-Step Approach to Using the SAS® System
for Factor Analysis and Structural Equation Modeling
by Larry Hatcher

A Step-by-Step Approach to Using SAS®

for Univariate and Multivariate Statistics,
Second Edition
by Norm O’Rourke, Larry Hatcher,
and Edward J. Stepanski

Step-by-Step Basic Statistics Using SAS®: Student
Guide and Exercises
(books in this set also sold separately)
by Larry Hatcher

Survival Analysis Using SAS®:
A Practical Guide
by Paul D. Allison

Tuning SAS® Applications in the OS/390 and z/OS
Environments, Second Edition
by Michael A. Raithel

Univariate and Multivariate General Linear Models:
Theory and Applications Using SAS® Software
by Neil H. Timm
and Tammy A. Mieczkowski

Using SAS® in Financial Research
by Ekkehart Boehmer, John Paul Broussard,
and Juha-Pekka Kallunki

Using the SAS® Windowing Environment:
A Quick Tutorial
by Larry Hatcher

Visualizing Categorical Data
by Michael Friendly

support.sas.com/pubs

Web Development with SAS® by Example, Second
Edition
by Frederick E. Pratter

Your Guide to Survey Research Using the
SAS® System
by Archer Gravely

JMP® Books

JMP® for Basic Univariate and Multivariate Statistics:
A Step-by-Step Guide
by Ann Lehman, Norm O’Rourke, Larry Hatcher,
and Edward J. Stepanski

JMP® Start Statistics, Third Edition
by John Sall, Ann Lehman,
and Lee Creighton

Regression Using JMP®

by Rudolf J. Freund, Ramon C. Littell,
and Lee Creighton

