Class

Principles of Foundation Engineering CEE430/530

General Information

- Lecturer: Scott A. Barnhill, P.E.
- Lecture Time: Thursday, 7:10 pm to 9:50 pm
- Classroom: Kaufmann, Room 224
- Office Hour: I have no office. Contact me to meet before class.
- Email: <u>sabarnhill@geronline.com</u> (ODU email not working)
- Cell Phone: 621-6783

Text: Principles of Foundation Engineering, 7th Edition, Braja M. Das

NOT the SI Version

Class Web Site

http://www.geronline.com/odu.php

- Class Dates
- Information to Be Covered
- Homework Answers
- Any Handouts
- Other Reading Sources

Homework

Homework is to have an answer sheet as the first page.

- Problem Number
- Answers with any sub problems answers also shown.

Show data given at top of each problem. Show every calculation step. <u>No Excel or MathCad – Period!!!</u>.

Grading

- Homework 20%
- Mid Term Exam 30%
- Final Exam 30%
- Project 20%

Class Presentation – 10% Report – 10% Your Personal Calculations – 20% Peer Review – 50% My Opinion – 10%

Range		Letter Grade
0	54	F
55	57	D-
58	61	D
62	68	D+
69	71	C-
72	75	С
76	79	C+
80	83	B-
84	86	В
87	89	B+
90	94	A-
95	100	А

Purpose of the Class

- Familiarize you with soil properties
- Learn how subsurface soils are tested
- Learn how to apply soil properties to foundation design
- Learn about analyzing various foundation alternatives
- Learn about retaining walls
- Learn about how to improve the ground
- Apply what you have learned to actual projects

SEVENTH EDITION

PRINCIPLES OF

FOUNDATION ENGINEERING

BRAJA DAS

Chapter 1:

Geotechnical Properties of Soil

Your Knowledge

You are already suppose to know everything covered in this chapter.

Strength

- What is the strength of steel?
- What is the strength of concrete?
- What if their strengths varied wildly even with a single column or beam.
- How would you design?

Soil

• What is the strength of soil?

Strength of Soil

Lesner Bridge

Classification Schemes

Table 1.2 Soil-Separate Size Limits

Classification system	Grain size (mm)
Unified	Gravel: 75 mm to 4.75 mm Sand: 4.75 mm to 0.075 mm Silt and clay (fines): <0.075 mm
AASHTO	Gravel: 75 mm to 2 mm Sand: 2 mm to 0.05 mm Silt: 0.05 mm to 0.002 mm Clay: <0.002 mm

Weight-Volume

Figure 1.3 Weight-volume relationships

Unit Weight Relationships

Unit-weight relationship	Dry unit weight	Saturated unit weight	
$\gamma = \frac{(1+w)G_s\gamma_w}{1+e}$	$\gamma_d = \frac{\gamma}{1+w}$	$\gamma_{\rm sat} = \frac{(G_s + e)\gamma_w}{1 + e}$	
$\gamma = \frac{(G_s + Se)\gamma_w}{1 + e}$	$\gamma_d = \frac{G_s \gamma_w}{1+e}$	$\gamma_{\text{sat}} = [(1-n)G_s + n]\gamma_w$ $= \left(\frac{1+w}{2}\right)G_s \gamma_w$	
$\gamma = \frac{(1+w)G_s\gamma_w}{1+\frac{wG_s}{S}}$	$egin{aligned} &\gamma_d = G_s \gamma_w (1-n) \ &\gamma_d = rac{G_s}{1+rac{wG_s}{w}} \gamma_w \end{aligned}$	$\gamma_{\text{sat}} = \left(\frac{1}{1+wG_s}\right)G_s\gamma_w$ $\gamma_{\text{sat}} = \left(\frac{e}{w}\right)\left(\frac{1+w}{1+e}\right)\gamma_w$	
$\gamma = G_s \gamma_w (1 - n)(1 + w)$	$\gamma_d = \frac{eS\gamma_w}{(1+e)w}$	$\gamma_{\text{sat}} = \gamma_d + n\gamma_w$ $\gamma_{\text{sat}} = \gamma_d + \left(\frac{e}{1+e}\right)\gamma_w$	
	$egin{aligned} & egin{aligned} & egi$		

Table 1.3 Various Forms of Relationships for γ , γ_d , and γ_{sat}

Common Relationships

$W = W_{s}(1 + w)$	$e = \frac{n}{1 - n}$	W – Total Weight
$V = V_{s}(1 + e)$	$n = \frac{e}{1 + e}$	V – Total Volume w – water content Ws – Weight of Solids Vs – Volume of Solids e – void ratio
$\gamma_{d} = \frac{\gamma_{m}}{1 + w}$	$e = \frac{W \cdot G_s}{S}$	γd – Dry Unit Weight γm – Moist Unit Weight γw – Unit Weight of Water γ' – Bouyant Unit Weight Gs – Specific Gravity n – porosity
$\gamma' = \gamma_{sat} - \gamma_{W}$	$S = \frac{W}{W_{sat}}$	S – Saturation w _{sat} – Saturated Moisture Content
$\gamma_{\rm d} = \frac{G_{\rm s} \cdot \gamma_{\rm W}}{1 + \rm e}$	$w_{sat} = \frac{\gamma_W}{\gamma_d} - \frac{1}{G_s}$	
$\gamma_{sat} = \gamma d (1 + w_{sat})$		

Specific Gravity

Table 1.4 Specific Gravities of Some Soils			
Type of soil	Gs		
Quartz sand	2.64-2.66		
Silt	2.67-2.73		
Clay	2.70 - 2.9		
Chalk	2.60-2.75		
Loess	2.65-2.73		
Peat	1.30-1.9		

Atterberg Limits

Liquid Limit (LL), Plastic Limit (PL) & Plasticity Index (PI) = LL-PL

Atterberg Limit Relationships

- Soils with moisture content near or at the liquid limit are usually normally consolidated.
- As the moisture content moves towards the plastic limit, preconsolidation increases.
- Soils with moisture contents exceeding the liquid limit, the soils can be underconsolidated. Must know site history.
- Cohesive strength increases as moisture content moves towards the plastic limit.

Atterberg Limits Chart

Figure 1.5 Plasticity chart

Empirical Correlations

Atterberg Limits are used in numerous empirical correlations

- Preconsolidation
- Undrained Strength
- Constrained Modulus
- Permeability
- Moist Unit Weight
- Dry Unit Weight
- Submerged Unit Weight
- ¢'

- Cc & Cr
- Swell Pressure
- C_v
- Void ratio
- Critical State Soil Mechanics Parameters – Γ, λ, Ν, Λο

Use correlations to compare to more sophisticated tests. Look for how consistent the soil.

Unified Soils Classification

Table 1.8 Unified Soil Classification Chart (after ASTM, 2009) (ASTM D2487-98: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification). Copyright ASTM INTERNATIONAL. Reprinted with permission.)

eria for assigning group symt Gravels More than 50% of coarse fraction retained on No. 4	Clean Gravels	using laboratory tests" $C_u \ge 4 \text{ and } 1 \le C_c \le 3^c$	Group symbol	Group name ^b
Gravels More than 50% of coarse fraction retained on No. 4	Clean Gravels Less than 5% fines"	$C_u \ge 4$ and $1 \le C_c \le 3^r$	CW	
More than 50% of coarse fraction retained on No. 4	Less than 5% fines"		CIW	Well-graded gravel
fraction retained on No. 4	Less than 5% fines'	$C_{\rm sr} < 4$ and/or $1 > C_{\rm c} > 3^{\rm c}$	GP	Poorly graded gravel/
sieve	Gravels with Fines	Fines classify as ML or MH	GM	Silty gravel ^{f, g, h}
die te	More than 12% fines ^e	Fines classify as CL or CH	GC	Clayey gravel ^{f,g,h}
Sands 50% or more of coarse fraction passes No. 4 sieve	Clean Sands Less than 5% fines ^d	$C_{\mu} \ge 6$ and $1 \le C_{c} \le 3^{e}$	SW	Well-graded sand
		$C_{\mu} < 6 \text{ and/or } 1 > C_{c} > 3^{c}$	SP	Poorly graded sand
	Sand with Fines More than 12% fines ^d	Fines classify as ML or MH	SM	Silty sand ^{g, k, i}
		Fines classify as CL or CH	SC	Clayey sand ^{r, h, l}
Silts and Clays Liquid limit less than 50	Inorganic	PI > 7 and plots on or above "A" line1	CL	Lean clayk, i, m
		PI < 4 or plots below "A" line/	ML.	Silt ^{4,1,m}
	Organic	Liquid limit-oven dried		Organic clayk, I, m, n
		Liquid limit—not dried < 0.75	OL	Organic silt ^{k, l, m, o}
Silts and Clays	Inorganic	PI plots on or above "A" line	СН	Fat clay ^{k, l,m}
Liquid limit 50 or more		PI plots below "A" line	MH	Elastic silt ^{k,1,m}
	Organic	Liquid limit-oven dried	OH	Organic clay ^{k, l, m, p}
		Liquid limit-not dried < 0.75		Organic silt ^{k, t, m, q}
Pri	imarily organic matter, dark	in color, and organic odor	PT	Peat
	Sands 50% or more of coarse fraction passes No. 4 sieve Silts and Clays Liquid limit less than 50 Silts and Clays Liquid limit 50 or more Pri 5-mm. (3-in) sieve.	Sands Crean Sands 50% or more of coarse Less than 5% fines ^d fraction passes No. 4 sieve Sand with Fines Silts and Clays Inorganic Liquid limit less than 50 Organic Silts and Clays Inorganic Liquid limit 50 or more Organic Primarily organic matter, dark S-mm, (3-in) sieve. $(D_{yy})^2$	Sands Clean Sands Can and the construction of coarse fraction passes No. 4 sieve 50% or more of coarse fraction passes No. 4 sieve Less than 5% fines ^d $C_u < 6_{a}$ and $t = C_v < 2^{d}$ Sand with Fines Sand with Fines Silts and Clays Fines classify as ML or MH Silts and Clays Inorganic PI > 7 and plots on or above "A" line ¹ Organic Liquid limit—oven dried <0.75	Sands 50% or more of coarse fraction passes No. 4 sieveClean Sands Less than 5% finesd $C_a < 6$ and $i = C_c < 3^{-1}$ SwSilts and Clays Liquid limit less than 50Less than 5% finesd $C_a < 6$ and/or $1 > C_c > 3^{-1}$ SpSilts and Clays Liquid limit less than 50InorganicP1 > 7 and plots on or above "A" linedSCSilts and Clays Liquid limit less than 50InorganicP1 > 7 and plots on or above "A" linedMLOrganicLiquid limit—oven dried Liquid limit—not dried0.75OLSilts and Clays Liquid limit 50 or moreInorganicP1 plots on or above "A" lineCHOrganicLiquid limit—oven dried Liquid limit—not dried< 0.75

'Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt; GW-GC well-graded gravel with clay; GP-GM poorly graded gravel with silt; GP-GC poorly graded gravel with clay. "Sands with 5 to 12% fines require dual symbols: SW-

SM well-graded sand with silt; SW-SC well-graded sand with clay; SP-SM poorly graded sand with silt; SP-SC poorly graded sand with clay. name. "If fines classify as CL-ML, use dual symbol GC-GM or

SC-SM.

^hIf fines are organic, add "with organic fines" to group name.

'If soil contains $\ge 15\%$ gravel, add "with gravel" to group name.

⁷If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.

add "sandy" to group name.

"If soil contains ≥30% plus No. 200, predominantly

gravel, add "gravelly" to group name.

"PI ≥ 4 and plots on or above "A" line. "PI < 4 or plots below "A" line.

"PI plots on or above "A" line.

"PI plots below "A" line.

Coarse Grained Soils Group Symbol Group Name

Figure 1.6 Flowchart for classifying coarse-grained soils (more than 50% retained on No. 200 Sieve) (After ASTM, 2009) (ASTM D2487-98: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification). Copyright ASTM INTERNATIONAL. Reprinted with permission.)

1 - 23

Fine Grained Soils

Figure 1.7 Flowchart for classifying fine-grained soil (50% or more passes No. 200 Sieve) (After ASTM, 2009)(ASTM D2487-98: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification). Copyright ASTM INTERNATIONAL. Reprinted with permission.)

Organic Soils

Group Symbol

30% plus No. 200 < 15% plus No. 200 ➤ Organic clay \rightarrow % sand \geq % gravel ➤ Organic clay with sand 15–29% plus No. 200₅ $PI \ge 4$ and plots ▲% sand <% gravel → Organic clay with gravel < 15% grave % sand \geq % gravel → Sandy organic clay on or above "A"-line 30% plus No. 2 ≥ 15% grave → Sandy organic clay with gravel < 15% sand ➤ Gravelly organic clay sand < % gravel $\geq 15\%$ sand ➤ Gravelly organic clay with sand OL 30% plus No. 200 < 15% plus No. 200 → Organic silt \rightarrow % sand \geq % gravel 15–29% plus No. 200 ➤ Organic silt with sand PI < 4 and plots \checkmark % sand < % gravel → Organic silt with gravel < 15% grave ➤ Sandy organic silt below "A"-line 30% plus No. 20 $\geq 15\%$ grave → Sandy organic silt with gravel < 15% sand → Gravelly organic silt $\geq 15\%$ sand → Gravelly organic silt with sand ➤ Organic clay 30% plus No. 200 → < 15% plus No. 200</p> > Organic clay with sand 5-29% plus No. 20 >% sand ≥ % gravel Plots on or ▲ % sand < % gravel ➤ Organic clay with gravel above "A"-line < 15% gravel → Sandy organic clay ≥ 15% gravel 30% plus No. 20 → Sandy organic clay with gravel < 15% sand ➤ Gravelly organic clay < % gravel ≥ 15% sand Gravelly organic clay with sand OH plus No. 200 5 > < 15% plus No. 200</p> ➤ Organic silt 5-29% plus No. 200->% sand ≥ % gravel ➤ Organic silt with sand Plots below % sand < % gravel ➤ Organic silt with gravel "A"-line < 15% gravel → Sandy organic silt 30% plus No. 20 ≥ 15% grave ➤ Sandy organic silt with gravel < 15% sand ➤ Gravelly organic silt ≥ 15% sand ➤ Gravelly organic silt with sand

Figure 1.8 Flowchart for classifying organic fine-grained soil (50% or more passes No. 200 Sieve) (After ASTM, 2009) (ASTM D2487-98: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification). Copyright ASTM INTERNATIONAL. Reprinted with permission.)

Effective Stress

If you cannot master the concept of effective stress and cannot calculate it accurately, you will not get a good grade in this class. All foundation design requires it.

Figure 1.13 Calculation of effective stress

You must understand the concept of effective stress. It is so fundamental to foundation engineering that you will simply not be able to complete almost every design problem.

Effective Stress – No Seepage

In Figure , pore pressure at Point A is $u\!=\!h_2\!\bullet\!\gamma_w$

Where $\gamma_{\rm w}~$ is the unit weight of water (62.4 pcf)

$$\sigma' = \sigma - u = (h_1 \bullet \gamma_m + h_2 \bullet \gamma_{sat}) - h_2 \bullet \gamma_w$$

= $h_1 \bullet \gamma_m + h_2(\gamma_{sat} - \gamma_w) = h_1 \bullet \gamma_m + h_2 \bullet \gamma$

Where $\gamma' = effective$, or submerged, unit weight of soil

$$\gamma_{sat} = \frac{G_s \cdot \gamma_w + e \cdot \gamma_w}{1 + e}$$

$$\gamma' = \gamma_{sat} - \gamma_{w} = \frac{G_{s} \cdot \gamma_{w} + e \cdot \gamma_{w}}{1 + e} - \gamma_{w} = \frac{\gamma_{w} (G_{s} - 1)}{1 + e}$$

Effective Stress – Seepage

In this problem, there is upward seepage of water. For this case, the effective stress at Point A is

 $\sigma = h_1 \bullet \gamma_w + h_2 \bullet \gamma_{sat}$ $u = (h1 + h2 + h) \bullet \gamma_w$

$$\sigma' = \sigma - u = (h_1 \cdot \gamma_w + h_2 \cdot \gamma_{sat}) - (h_1 + h_2 + h) \cdot \gamma_w$$

= $h_2(\gamma_{sat} - \gamma_w) - h \cdot \gamma_w = h_2 \cdot \gamma' - h \cdot \gamma_w$
or
 $\sigma' = h_2\left(\gamma' - \frac{h}{h_2} \cdot \gamma_w\right) = h_2(\gamma' - i \cdot \gamma_w)$

"i" is the hydraulic gradient. If "i" is very high so that γ' -i• $\gamma_w = 0$, the effective stress = 0. There Will be no contact between soil particles. This is referred to as the quick condition (quick sand), or failure by heave. $\frac{\text{Critical Gradient}}{i=i_{cr}=\gamma'/\gamma_w}$ =(Gs-1)/(1+e_o)

Variation of effective stress in a soil profile

Effective Stress Solution

Point	Depth (m)	σ (kN/m3)	u (kN/m2)	σ' (kN/m2)
А	0	0	0	0
В	4	$(4)(\gamma d) = (4)(14.5) = 58$	0	58 - 0 = 58
С	9	$58 + (5)(\gamma sat) = (5)(17.2) = 144$	$(5)(\gamma w) = (5)(9.81) = 49.05$	144 - 49.5 = 94.95

Α Dry Sand $\gamma d = 14.5 \text{ kN/m}^3$ Dry Sand γ_{sat} = 15.2 kN/m³ 4 m Water Table В С Clay γ_{sat} = 17.2 kN/m³ 5 m D

Effective Stress #2

Effective Stress Solution #2

What happens of the groundwater changes in the future?

Preconsolidation Profile

Preconsolidation Profile - CPT

Consolidation

Consolidation is the movement of pore water out of the soil.

Initially the applied load is carried by the pore water. This creates an increase in pore water pressure.

As pore water moves out of the soil which is controlled by the permeability, pore pressure dissipates and the soil matrix begins to carry the load. The soil then compresses.
Principles of Consolidation

Figure 1.14 Principles of consolidation

Consolidation Testing

Normally Consolidated Clay

Figure 1.16 Construction of virgin compression curve for normally consolidated clay

Overconsolidated Clay

Figure 1.17 Construction of field consolidation curve for overconsolidated clay

Real World

NAVFAC LI Versus P'c

LI = (w-PL)/PI

Note: $p_a =$ atmospheric pressure [~100 KN/m2 (1 U.S. ton/ft2)]

One Dimensional Consolidation

Primary Consolidation Settlement

For normally consolidated soils $\sigma_c = \sigma'_o$ Therefore log(σ_c / σ'_o) =0 and the first quantity goes to zero as well.

Pore Pressure Dissipation

Drainage Conditions

Figure 1.20 Drainage condition for consolidation: (a) two-way drainage; (b) one-way drainage; (c) plot of $\Delta u/\Delta u_0$ with T_e and H/H_e

Field Data

Constant Cv Modeling

Range of *C_v* (after U.S. Dept. of Navy)

Tv Versus %U

Tv Versus %U

Table 1.11 Variation of T_v with U							
U (%)	T _v	U (%)	T _v	U (%)	T _v	U (%)	T _v
0	0	26	0.0531	52	0.212	78	0.529
1	0.00008	27	0.0572	53	0.221	79	0.547
2	0.0003	28	0.0615	54	0.230	80	0.567
3	0.00071	29	0.0660	55	0.239	81	0.588
4	0.00126	30	0.0707	56	0.248	82	0.610
5	0.00196	31	0.0754	57	0.257	83	0.633
6	0.00283	32	0.0803	58	0.267	84	0.658
7	0.00385	33	0.0855	59	0.276	85	0.684
8	0.00502	34	0.0907	60	0.286	86	0.712
9	0.00636	35	0.0962	61	0.297	87	0.742
10	0.00785	36	0.102	62	0.307	88	0.774

Tv Versus %U

U (%)	Tv	U (%)	T _v	U (%)	Tv	U (%)	Tv
11	0.0095	37	0.107	63	0.318	89	0.809
12	0.0113	38	0.113	64	0.329	90	0.848
13	0.0133	39	0.119	65	0.304	91	0.891
14	0.0154	40	0,126	66	0.352	92	0.938
15	0.0177	41	0.132	67	0.364	93	0.993
16	0.0201	42	0.138	68	0.377	94	1.055
17	0.0227	43	0.145	69	0.390	95	1.129
18	0.0254	44	0.152	70	0.403	96	1.219
19	0.0283	45	0.159	71	0.417	97	1.336
20	0.0314	46	0.166	72	0.431	98	1.500
21	0.0346	47	0.173	73	0.446	99	1.781
22	0.0380	48	0.181	74	0.461	100	00
23	0.0415	49	0.188	75	0.477		
24	0.0452	50	0.197	76	0.493		
25	0.0491	51	0.204	77	0.511		

Time for Compression

$$Tv := \frac{(Cv \cdot t)}{H^2}$$

Typical client wants to know how long he has to wait before starting construction.

For U% = 90% Tv = 0.849

With H = 10 feet & double drainage H/2 = 5 feet $Cv = 0.2 \text{ ft}^2/\text{day}$

 $t := \begin{pmatrix} H^2 \\ Tv \cdot \frac{H^2}{Cv} \\ K = 0.849(5)^2/0.2 = 106 \text{ days} \\ For single drainage H=10 \text{ feet} \\ t = 0.849(10)^2/0.2 = 424.5 \text{ days} \\ \end{pmatrix}$

Ramp or Construction Loading

A new layer of structural fill or building structure cannot be loaded instantaneously on the ground.

For this reason, the increase in loading gradually rises to the maximum load.

This gives time for excess pore water pressure to begin dissipating.

One-dimensional consolidation due to single ramp loading

Ramp Loading Parameters

Where do we get t_c ? Construction Schedule.

Olson's Ramp Loading

Figure 1.23 Olson's ramp-loading solution: plot of U versus T_v (Eqs. 1.78 and 1.79)

Ramp Loading Example

With H = 10 feet & double drainage H/2 = 5 feet $C_v = 0.2 \text{ ft}^2/\text{day}$ $t_c = 15 \text{ days}$, what %U at 50 days

 $T_c := C_v \cdot \frac{t_c}{H^2}$

 $T_c = 0.2(15/(5)^2) = 0.12$ $T_v = 0.2(50/(5)^2) = 0.4$

From chart U% = 70%.

Figure 1.24 Ramp loading

Shear Strength

 $S=c'+\sigma'$ •tan(ϕ')

Shear Strength Tests

Unconfined Compression Tests Direct Shear Tests Direct Simple Shear Triaxial Shear Tests

- Unconsolidated Undrained (UU) ∆u=0
- Consolidated Undrained w/PPM (CU)
- Consolidated Drained (CD)

Each test will yield a different value of Su Drained Strength <u>typically</u> > Undrained Strength

Direct Shear Test

Figure 1.25 Direct shear test in sand: (a) schematic diagram of test equipment; (b) plot of test results to obtain the friction angle ϕ'

Typical Values of φ

Table 1.12 Relationship between Relative Density and Angle of Friction of Cohesionless Soils

State of packing	Relative density (%)	Angle of friction, ϕ' (deg.)
Very loose	<20	<30
Loose	20-40	30-35
Compact	40-60	35-40
Dense	60-80	40-45
Very dense	>80	>45

Triaxial Shear Test

1 - 62

Sequence of Stress Application

Unconfined Shear Test

Figure 1.28 Unconfined compression test: (a) soil specimen; (b) Mohr's circle for the test; (c) variation of q_u with the degree of saturation

Triaxial Test in Progress

\ Versus Void Ratio

Figure 1.29 Variation of friction angle ϕ' with void ratio for Chattachoochee River sand (After Vesic, 1963) (From Vesic, A. B. Bearing Capacity of Deep Foundations in Sand. In Highway Research Record 39, Highway Research Board, National Research Council, Washington, D.C., 1963, Figure 11, p. 123. Reproduced with permission of the Transportation Research Board.)

Figure 1.30 Variation of sin ϕ' with plasticity index (PI) for several normally consolidated clays

$$\phi = 0.0011 \bullet PI^2 - 0.2603 \bullet PI + 35.975$$

Deviator stress vs. axial straindrained triaxial test

Strain Softening

Figure 1.31 Plot of deviator stress versus axial strain–drained triaxial test

Peak & Residual Strength Envelopes for Clays

Figure 1.32 Peak- and residual-strength envelopes for clay

Variation of ϕ'_r with CF

Figure 1.33 Variation of ϕ'_r with CF (*Note:* p_a = atmospheric pressure)

Empirical Correlations

Reference	Relationship	Remarks	
Skempton (1957)	$\frac{c_{\mu(\text{VST})}}{\sigma_0'} = 0.11 + 0.00037 \text{ (PI)}$	For normally consolidated clay	
	PI = plasticity index (%)		
	$c_{u(VST)} =$ undrained shear		
	strength from vane shear test		
Chandler (1988)	$\frac{c_{u(\text{VST})}}{\sigma_c'} = 0.11 + 0.0037 \text{ (PI)}$	Can be used in overconsolidated soil; accuracy ±25%; not valid	
	σ_c' = preconsolidation pressure	for sensitive and fissured clays	
Jamiolkowski, et al. (1985)	$\frac{c_n}{\sigma_c'} = 0.23 \pm 0.04$	For lightly overconsolidated clays	
Mesri (1989)	$\frac{c_u}{\sigma'_0} = 0.22$		
Bjerrum and Simons (1960)	$\frac{c_u}{\sigma'_0} = 0.45 \left(\frac{PI\%}{100}\right)^{0.5}$	Normally consolidated clay	
	for PI > 50%		
	$\frac{c_u}{\sigma'_0} = 0.118 \ (\text{LI})^{0.15}$	Normally consolidated clay	
	for $LI = liquidity$ index > 0.5		
Ind. at al. (1077)	$\left(\frac{c_u}{\sigma'_0}\right)_{\text{overconsolidated}} = OCD^{0.8}$		
Laud, et al. (1977)	$\left(\frac{c_{ii}}{\sigma'_{0}}\right)_{\text{normally consolidated}} = \text{OCR}$		
	OCR = overconsolidation ratio = σ'/σ'_0		

Table 1.13 Empirical Equations Related to c_u and σ'_0

Variation of ϕ'_r with liquid limit for some clays

(after Stark, 1995)
Variation With Depth - Clay Deposit

In normally consolidated clays undrained shear strength increases almost linearly with effective overburden pressure

 S_u/σ' ratio

S_u/σ' Relationships

Use consolidated-undrained triaxial tests at different levels of stress to determine Su/σ' ratio. Can be estimated by:

$$\begin{pmatrix} \frac{S}{u} \\ \sigma' \end{pmatrix}_{NC} = 0.11 + 0.0037 PI$$
Critical State
Pore Pressure Parameter Λo
Varies with Soil
$$\begin{pmatrix} \frac{S}{u} \\ \sigma' \end{pmatrix}_{OC} = \begin{pmatrix} \frac{S}{u} \\ \sigma' \end{pmatrix}_{NC} \cdot OCR^{0.8} \quad \Lambda_{o} := 1 - \frac{C_{s}}{C_{c}}$$

Variation of Cu with LI

(based on Bjerrum and Simons 1960)

LI = (w-PL)/PI

Homework

From Chapter 1 CE 420 CE 520 • 1.11 • All of CE 420 plus • 1.12 • 1.15

• 1.19

- 1.13
- 1.14

Read Chapter 2