HOMEWORK FOR CHAPTER 5 IN OUR BOOK

(Chapter 3 in this book)

HW 1-10,11,13 ANSWERS

- T3.1 E
- T3.2 D
- T3.3 E
- T3.4 A
- T3.5 C
- T3.6 B
- T3.7 E
- T3.8 B
- T3.9 E
- T3.10 D
- T3.11 (a) *make a scatterplot*
- (b) (predicted height in cm) = 71.95 + 0.3833(age in months)
- (c) Since y = 71.95 + 0.3833(48) = 90.348 cm, the residual for Sarah is
- $y-y=90-90.348=-0.348\,cm$. It means that Sarah is 0.348 cm below the height predicted by the regression line.
- (d) No. The linear trend will definitely not continue until she is 40 years old. The data is only based on the first five years of life, and making predictions beyond 0-5 years would be an extrapolation.
- T3.13 (a) Yes. There is no obvious pattern in the residual plot, a linear model is appropriate for describing the relationship between wildebeest abundance and percent of grass burned.
- (b) (predicted percent of grass burned) = 92.29 0.05762(number of wildebeest in thousands)
- (c) The slope is -0.05762. So the predicted percent of grassy area burned decreases by about 0.058% for each additional 1000 wildebeest. The y-intercept here of saying an average of 92.29% of the grass will be burned with 0 wildebeest really makes no sense.
- (d) s = 15.988%. The percentage of burned area is typically about 15.988% away from the percent predicted by the line of regression. $r^2 = 64.6\%$, so about 64.6% of the variation in the percentage of burned area can be explained or accounted for by the line of regression.