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Preface

This document is an instructor’s manual to accompany Introduction to Algorithms,

Third Edition, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein. It is intended for use in a course on algorithms. You might also find
some of the material herein to be useful for a CS 2-style course in data structures.

Unlike the instructor’s manual for the first edition of the text—which was organized

around the undergraduate algorithms course taught by Charles Leiserson at MIT
in Spring 1991—but like the instructor’s manual for the second edition, we have

chosen to organize the manual for the third edition according to chapters of the

text. That is, for most chapters we have provided a set of lecture notes and a set of

exercise and problem solutions pertaining to the chapter. This organization allows

you to decide how to best use the material in the manual in your own course.

We have not included lecture notes and solutions for every chapter, nor have we

included solutions for every exercise and problem within the chapters that we have

selected. We felt that Chapter 1 is too nontechnical to include here, and Chap-

ter 10 consists of background material that often falls outside algorithms and data-

structures courses. We have also omitted the chapters that are not covered in the

courses that we teach: Chapters 18–20 and 27–35, as well as Appendices A–D;

future editions of this manual may include some of these chapters. There are two

reasons that we have not included solutions to all exercises and problems in the

selected chapters. First, writing up all these solutions would take a long time, and

we felt it more important to release this manual in as timely a fashion as possible.

Second, if we were to include all solutions, this manual would be much longer than

the text itself.

We have numbered the pages in this manual using the format CC-PP, where CC

is a chapter number of the text and PP is the page number within that chapter’s
lecture notes and solutions. The PP numbers restart from 1 at the beginning of each

chapter’s lecture notes. We chose this form of page numbering so that if we add

or change solutions to exercises and problems, the only pages whose numbering is

affected are those for the solutions for that chapter. Moreover, if we add material

for currently uncovered chapters, the numbers of the existing pages will remain

unchanged.

The lecture notes

The lecture notes are based on three sources:



P-2 Preface

� Some are from the first-edition manual; they correspond to Charles Leiserson’s

lectures in MIT’s undergraduate algorithms course, 6.046.

� Some are from Tom Cormen’s lectures in Dartmouth College’s undergraduate

algorithms course, CS 25.

� Some are written just for this manual.

You will find that the lecture notes are more informal than the text, as is appro-

priate for a lecture situation. In some places, we have simplified the material for
lecture presentation or even omitted certain considerations. Some sections of the

text—usually starred—are omitted from the lecture notes. (We have included lec-

ture notes for one starred section: 12.4, on randomly built binary search trees,

which we cover in an optional CS 25 lecture.)

In several places in the lecture notes, we have included “asides” to the instruc-

tor. The asides are typeset in a slanted font and are enclosed in square brack-

ets. [Here is an aside.] Some of the asides suggest leaving certain material on the

board, since you will be coming back to it later. If you are projecting a presenta-

tion rather than writing on a blackboard or whiteboard, you might want to replicate

slides containing this material so that you can easily reprise them later in the lec-

ture.

We have chosen not to indicate how long it takes to cover material, as the time nec-

essary to cover a topic depends on the instructor, the students, the class schedule,

and other variables.

There are two differences in how we write pseudocode in the lecture notes and the

text:

� Lines are not numbered in the lecture notes. We find them inconvenient to

number when writing pseudocode on the board.

� We avoid using the length attribute of an array. Instead, we pass the array

length as a parameter to the procedure. This change makes the pseudocode

more concise, as well as matching better with the description of what it does.

We have also minimized the use of shading in figures within lecture notes, since

drawing a figure with shading on a blackboard or whiteboard is difficult.

The solutions

The solutions are based on the same sources as the lecture notes. They are written

a bit more formally than the lecture notes, though a bit less formally than the text.

We do not number lines of pseudocode, but we do use the length attribute (on the

assumption that you will want your students to write pseudocode as it appears in

the text).

As of the third edition, we have publicly posted a few solutions on the book’s web-

site. These solutions also appear in this manual, with the notation “This solution

is also posted publicly” after the exercise or problem number. The set of publicly

posted solutions might increase over time, so we encourage you to check whether

a particular solution is posted on the website before you assign an exercise or

problem to your students.
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The index lists all the exercises and problems for which this manual provides solu-

tions, along with the number of the page on which each solution starts.

Asides appear in a handful of places throughout the solutions. Also, we are less

reluctant to use shading in figures within solutions, since these figures are more

likely to be reproduced than to be drawn on a board.

Source files

For several reasons, we are unable to publish or transmit source files for this man-

ual. We apologize for this inconvenience.

You can use the clrscode3e package for LATEX 2" to typeset pseudocode in the same

way that we do. You can find this package at http://www.cs.dartmouth.edu/�thc/

clrscode/. That site also includes documentation. Make sure to use the clrscode3e

package, not the clrscode package; clrscode is for the second edition of the book.

Reporting errors and suggestions

Undoubtedly, instructors will find errors in this manual. Please report errors by

sending email to clrs-manual-bugs@mitpress.mit.edu.

If you have a suggestion for an improvement to this manual, please feel free to

submit it via email to clrs-manual-suggestions@mitpress.mit.edu.

As usual, if you find an error in the text itself, please verify that it has not already
been posted on the errata web page before you submit it. You can use the MIT

Press web site for the text, http://mitpress.mit.edu/algorithms/, to locate the errata

web page and to submit an error report.

We thank you in advance for your assistance in correcting errors in both this manual

and the text.

How we produced this manual

Like the third edition of Introduction to Algorithms, this manual was produced in

LATEX 2". We used the Times font with mathematics typeset using the MathTime

Pro 2 fonts. As in all three editions of the textbook, we compiled the index using

Windex, a C program that we wrote. We drew the illustrations using MacDraw

Pro,1 with some of the mathematical expressions in illustrations laid in with the
psfrag package for LATEX 2". We created the PDF files for this manual on a

MacBook Pro running OS 10.5.

Acknowledgments

This manual borrows heavily from the manuals for the first two editions. Julie
Sussman, P.P.A., wrote the first-edition manual. Julie did such a superb job on the

1See our plea in the preface for the third edition to Apple, asking that they update MacDraw Pro for

OS X.
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first-edition manual, finding numerous errors in the first-edition text in the process,
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and third editions of the book. Charles Leiserson also put in large amounts of time

working with Julie on the first-edition manual.

The manual for the second edition was written by Tom Cormen, Clara Lee, and

Erica Lin. Clara and Erica were undergraduate computer science majors at Dart-

mouth at the time, and they did a superb job.

The other three Introduction to Algorithms authors—Charles Leiserson, Ron

Rivest, and Cliff Stein—provided helpful comments and suggestions for solutions
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over the years by teaching assistants for algorithms courses at MIT and Dartmouth.

At this point, we do not know which TAs wrote which solutions, and so we simply

thank them collectively. Several of the solutions to new exercises and problems

in the third edition were written by Sharath Gururaj of Columbia University; we
thank Sharath for his fine work.

We also thank the MIT Press and our editor, Ada Brunstein, for moral and fi-

nancial support. Tim Tregubov and Wayne Cripps provided computer support at
Dartmouth.
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Lecture Notes for Chapter 2:

Getting Started

Chapter 2 overview

Goals

� Start using frameworks for describing and analyzing algorithms.

� Examine two algorithms for sorting: insertion sort and merge sort.

� See how to describe algorithms in pseudocode.

� Begin using asymptotic notation to express running-time analysis.

� Learn the technique of “divide and conquer” in the context of merge sort.

Insertion sort

The sorting problem

Input: A sequence of n numbers ha1; a2; : : : ; ani.
Output: A permutation (reordering) ha0

1; a0
2; : : : ; a0

ni of the input sequence such

that a0
1 � a0

2 � � � � � a0
n.

The sequences are typically stored in arrays.

We also refer to the numbers as keys. Along with each key may be additional

information, known as satellite data. [You might want to clarify that “satellite
data” does not necessarily come from a satellite.]

We will see several ways to solve the sorting problem. Each way will be expressed

as an algorithm: a well-defined computational procedure that takes some value, or

set of values, as input and produces some value, or set of values, as output.

Expressing algorithms

We express algorithms in whatever way is the clearest and most concise.

English is sometimes the best way.

When issues of control need to be made perfectly clear, we often use pseudocode.
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� Pseudocode is similar to C, C++, Pascal, and Java. If you know any of these

languages, you should be able to understand pseudocode.

� Pseudocode is designed for expressing algorithms to humans. Software en-

gineering issues of data abstraction, modularity, and error handling are often

ignored.

� We sometimes embed English statements into pseudocode. Therefore, unlike

for “real” programming languages, we cannot create a compiler that translates

pseudocode to machine code.

Insertion sort

A good algorithm for sorting a small number of elements.

It works the way you might sort a hand of playing cards:

� Start with an empty left hand and the cards face down on the table.

� Then remove one card at a time from the table, and insert it into the correct

position in the left hand.

� To find the correct position for a card, compare it with each of the cards already

in the hand, from right to left.

� At all times, the cards held in the left hand are sorted, and these cards were

originally the top cards of the pile on the table.

Pseudocode

We use a procedure INSERTION-SORT.

� Takes as parameters an array AŒ1 : : n� and the length n of the array.

� As in Pascal, we use “: :” to denote a range within an array.

� [We usually use 1-origin indexing, as we do here. There are a few places in
later chapters where we use 0-origin indexing instead. If you are translating
pseudocode to C, C++, or Java, which use 0-origin indexing, you need to be
careful to get the indices right. One option is to adjust all index calculations in
the C, C++, or Java code to compensate. An easier option is, when using an
array AŒ1 : : n�, to allocate the array to be one entry longer—AŒ0 : : n�—and just
don’t use the entry at index 0.]

� [In the lecture notes, we indicate array lengths by parameters rather than by
using the length attribute that is used in the book. That saves us a line of pseu-
docode each time. The solutions continue to use the length attribute.]

� The array A is sorted in place: the numbers are rearranged within the array,

with at most a constant number outside the array at any time.
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INSERTION-SORT.A; n/ cost times

for j D 2 to n c1 n

key D AŒj � c2 n � 1

// Insert AŒj � into the sorted sequence AŒ1 : : j � 1�. 0 n � 1

i D j � 1 c4 n � 1

while i > 0 and AŒi� > key c5

Pn

j D2 tj

AŒi C 1� D AŒi� c6

Pn

j D2.tj � 1/

i D i � 1 c7

Pn

j D2.tj � 1/

AŒi C 1� D key c8 n � 1

[Leave this on the board, but show only the pseudocode for now. We’ll put in the
“cost” and “times” columns later.]

Example

1 2 3 4 5 6

5 2 4 6 1 3

1 2 3 4 5 6

2 5 4 6 1 3

1 2 3 4 5 6

2 4 5 6 1 3

1 2 3 4 5 6

2 4 5 6 1 3

1 2 3 4 5 6

2 4 5 61 3

1 2 3 4 5 6

2 4 5 61 3

j j j

j j

[Read this figure row by row. Each part shows what happens for a particular itera-
tion with the value of j indicated. j indexes the “current card” being inserted into
the hand. Elements to the left of AŒj � that are greater than AŒj � move one position
to the right, and AŒj � moves into the evacuated position. The heavy vertical lines
separate the part of the array in which an iteration works—AŒ1 : : j �—from the part
of the array that is unaffected by this iteration—AŒj C 1 : : n�. The last part of the
figure shows the final sorted array.]

Correctness

We often use a loop invariant to help us understand why an algorithm gives the

correct answer. Here’s the loop invariant for INSERTION-SORT:

Loop invariant: At the start of each iteration of the “outer” for loop—the

loop indexed by j —the subarray AŒ1 : : j �1� consists of the elements orig-

inally in AŒ1 : : j � 1� but in sorted order.

To use a loop invariant to prove correctness, we must show three things about it:

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the

next iteration.

Termination: When the loop terminates, the invariant—usually along with the

reason that the loop terminated—gives us a useful property that helps show that

the algorithm is correct.
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Using loop invariants is like mathematical induction:

� To prove that a property holds, you prove a base case and an inductive step.
� Showing that the invariant holds before the first iteration is like the base case.
� Showing that the invariant holds from iteration to iteration is like the inductive

step.
� The termination part differs from the usual use of mathematical induction, in

which the inductive step is used infinitely. We stop the “induction” when the

loop terminates.
� We can show the three parts in any order.

For insertion sort

Initialization: Just before the first iteration, j D 2. The subarray AŒ1 : : j � 1�

is the single element AŒ1�, which is the element originally in AŒ1�, and it is

trivially sorted.

Maintenance: To be precise, we would need to state and prove a loop invariant

for the “inner” while loop. Rather than getting bogged down in another loop

invariant, we instead note that the body of the inner while loop works by moving

AŒj � 1�, AŒj � 2�, AŒj � 3�, and so on, by one position to the right until the
proper position for key (which has the value that started out in AŒj �) is found.

At that point, the value of key is placed into this position.

Termination: The outer for loop ends when j > n, which occurs when j D nC1.

Therefore, j � 1 D n. Plugging n in for j � 1 in the loop invariant, the

subarray AŒ1 : : n� consists of the elements originally in AŒ1 : : n� but in sorted

order. In other words, the entire array is sorted.

Pseudocode conventions

[Covering most, but not all, here. See book pages 20–22 for all conventions.]

� Indentation indicates block structure. Saves space and writing time.
� Looping constructs are like in C, C++, Pascal, and Java. We assume that the

loop variable in a for loop is still defined when the loop exits (unlike in Pascal).
� // indicates that the remainder of the line is a comment.
� Variables are local, unless otherwise specified.
� We often use objects, which have attributes. For an attribute attr of object x, we

write x:attr. (This notation matches x:attr in Java and is equivalent to x->attr

in C++.) Attributes can cascade, so that if x:y is an object and this object has

attribute attr, then x:y:attr indicates this object’s attribute. That is, x:y:attr is

implicitly parenthesized as .x:y/:attr.
� Objects are treated as references, like in Java. If x and y denote objects, then

the assignment y D x makes x and y reference the same object. It does not

cause attributes of one object to be copied to another.
� Parameters are passed by value, as in Java and C (and the default mechanism in

Pascal and C++). When an object is passed by value, it is actually a reference

(or pointer) that is passed; changes to the reference itself are not seen by the

caller, but changes to the object’s attributes are.
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� The boolean operators “and” and “or” are short-circuiting: if after evaluating

the left-hand operand, we know the result of the expression, then we don’t

evaluate the right-hand operand. (If x is FALSE in “x and y” then we don’t

evaluate y. If x is TRUE in “x or y” then we don’t evaluate y.)

Analyzing algorithms

We want to predict the resources that the algorithm requires. Usually, running time.

In order to predict resource requirements, we need a computational model.

Random-access machine (RAM) model

� Instructions are executed one after another. No concurrent operations.

� It’s too tedious to define each of the instructions and their associated time costs.

� Instead, we recognize that we’ll use instructions commonly found in real com-

puters:

� Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling). Also,

shift left/shift right (good for multiplying/dividing by 2k).
� Data movement: load, store, copy.
� Control: conditional/unconditional branch, subroutine call and return.

Each of these instructions takes a constant amount of time.

The RAM model uses integer and floating-point types.

� We don’t worry about precision, although it is crucial in certain numerical ap-

plications.

� There is a limit on the word size: when working with inputs of size n, assume

that integers are represented by c lg n bits for some constant c � 1. (lg n is a

very frequently used shorthand for log2 n.)

� c � 1)we can hold the value of n)we can index the individual elements.
� c is a constant) the word size cannot grow arbitrarily.

How do we analyze an algorithm’s running time?

The time taken by an algorithm depends on the input.

� Sorting 1000 numbers takes longer than sorting 3 numbers.

� A given sorting algorithm may even take differing amounts of time on two

inputs of the same size.

� For example, we’ll see that insertion sort takes less time to sort n elements when

they are already sorted than when they are in reverse sorted order.
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Input size

Depends on the problem being studied.

� Usually, the number of items in the input. Like the size n of the array being

sorted.

� But could be something else. If multiplying two integers, could be the total

number of bits in the two integers.

� Could be described by more than one number. For example, graph algorithm

running times are usually expressed in terms of the number of vertices and the

number of edges in the input graph.

Running time

On a particular input, it is the number of primitive operations (steps) executed.

� Want to define steps to be machine-independent.

� Figure that each line of pseudocode requires a constant amount of time.

� One line may take a different amount of time than another, but each execution

of line i takes the same amount of time ci .

� This is assuming that the line consists only of primitive operations.

� If the line is a subroutine call, then the actual call takes constant time, but the

execution of the subroutine being called might not.
� If the line specifies operations other than primitive ones, then it might take

more than constant time. Example: “sort the points by x-coordinate.”

Analysis of insertion sort

[Now add statement costs and number of times executed to INSERTION-SORT

pseudocode.]

� Assume that the i th line takes time ci , which is a constant. (Since the third line
is a comment, it takes no time.)

� For j D 2; 3; : : : ; n, let tj be the number of times that the while loop test is

executed for that value of j .

� Note that when a for or while loop exits in the usual way—due to the test in the

loop header—the test is executed one time more than the loop body.

The running time of the algorithm is
X

all statements

.cost of statement/ � .number of times statement is executed/ :

Let T .n/ D running time of INSERTION-SORT .

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5

n
X

j D2

tj C c6

n
X

j D2

.tj � 1/

C c7

n
X

j D2

.tj � 1/C c8.n � 1/ :

The running time depends on the values of tj . These vary according to the input.



Lecture Notes for Chapter 2: Getting Started 2-7

Best case

The array is already sorted.

� Always find that AŒi� � key upon the first time the while loop test is run (when

i D j � 1).

� All tj are 1.

� Running time is

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5.n � 1/C c8.n � 1/

D .c1 C c2 C c4 C c5 C c8/n � .c2 C c4 C c5 C c8/ :

� Can express T .n/ as anCb for constants a and b (that depend on the statement

costs ci )) T .n/ is a linear function of n.

Worst case

The array is in reverse sorted order.

� Always find that AŒi� > key in while loop test.

� Have to compare key with all elements to the left of the j th position) compare

with j � 1 elements.

� Since the while loop exits because i reaches 0, there’s one additional test after

the j � 1 tests) tj D j .

�

n
X

j D2

tj D
n
X

j D2

j and

n
X

j D2

.tj � 1/ D
n
X

j D2

.j � 1/.

�

n
X

j D1

j is known as an arithmetic series, and equation (A.1) shows that it equals

n.nC 1/

2
.

� Since

n
X

j D2

j D
 

n
X

j D1

j

!

� 1, it equals
n.nC 1/

2
� 1.

[The parentheses around the summation are not strictly necessary. They are
there for clarity, but it might be a good idea to remind the students that the
meaning of the expression would be the same even without the parentheses.]

� Letting k D j � 1, we see that

n
X

j D2

.j � 1/ D
n�1
X

kD1

k D n.n � 1/

2
.

� Running time is

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5

�
n.nC 1/

2
� 1

�

C c6

�
n.n � 1/

2

�

C c7

�
n.n � 1/

2

�

C c8.n � 1/

D
�c5

2
C c6

2
C c7

2

�

n2 C
�

c1 C c2 C c4 C
c5

2
� c6

2
� c7

2
C c8

�

n

� .c2 C c4 C c5 C c8/ :

� Can express T .n/ as an2 C bnC c for constants a; b; c (that again depend on

statement costs)) T .n/ is a quadratic function of n.
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Worst-case and average-case analysis

We usually concentrate on finding the worst-case running time: the longest run-

ning time for any input of size n.

Reasons

� The worst-case running time gives a guaranteed upper bound on the running

time for any input.

� For some algorithms, the worst case occurs often. For example, when search-

ing, the worst case often occurs when the item being searched for is not present,

and searches for absent items may be frequent.

� Why not analyze the average case? Because it’s often about as bad as the worst

case.

Example: Suppose that we randomly choose n numbers as the input to inser-

tion sort.

On average, the key in AŒj � is less than half the elements in AŒ1 : : j � 1� and

it’s greater than the other half.

) On average, the while loop has to look halfway through the sorted subarray

AŒ1 : : j � 1� to decide where to drop key.

) tj � j=2.

Although the average-case running time is approximately half of the worst-case

running time, it’s still a quadratic function of n.

Order of growth

Another abstraction to ease analysis and focus on the important features.

Look only at the leading term of the formula for running time.

� Drop lower-order terms.

� Ignore the constant coefficient in the leading term.

Example: For insertion sort, we already abstracted away the actual statement costs

to conclude that the worst-case running time is an2 C bnC c.
Drop lower-order terms) an2.

Ignore constant coefficient) n2.

But we cannot say that the worst-case running time T .n/ equals n2.

It grows like n2. But it doesn’t equal n2.

We say that the running time is ‚.n2/ to capture the notion that the order of growth

is n2.

We usually consider one algorithm to be more efficient than another if its worst-

case running time has a smaller order of growth.
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Designing algorithms

There are many ways to design algorithms.

For example, insertion sort is incremental: having sorted AŒ1 : : j � 1�, place AŒj �

correctly, so that AŒ1 : : j � is sorted.

Divide and conquer

Another common approach.

Divide the problem into a number of subproblems that are smaller instances of the

same problem.

Conquer the subproblems by solving them recursively.

Base case: If the subproblems are small enough, just solve them by brute force.

[It would be a good idea to make sure that your students are comfortable with
recursion. If they are not, then they will have a hard time understanding divide
and conquer.]

Combine the subproblem solutions to give a solution to the original problem.

Merge sort

A sorting algorithm based on divide and conquer. Its worst-case running time has

a lower order of growth than insertion sort.

Because we are dealing with subproblems, we state each subproblem as sorting a

subarray AŒp : : r�. Initially, p D 1 and r D n, but these values change as we

recurse through subproblems.

To sort AŒp : : r�:

Divide by splitting into two subarrays AŒp : : q� and AŒq C 1 : : r�, where q is the
halfway point of AŒp : : r�.

Conquer by recursively sorting the two subarrays AŒp : : q� and AŒq C 1 : : r�.

Combine by merging the two sorted subarrays AŒp : : q� and AŒq C 1 : : r� to pro-

duce a single sorted subarray AŒp : : r�. To accomplish this step, we’ll define a

procedure MERGE.A; p; q; r/.

The recursion bottoms out when the subarray has just 1 element, so that it’s trivially

sorted.

MERGE-SORT.A; p; r/

if p < r // check for base case

q D b.p C r/=2c // divide

MERGE-SORT.A; p; q/ // conquer

MERGE-SORT.A; q C 1; r/ // conquer

MERGE.A; p; q; r/ // combine
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Initial call: MERGE-SORT.A; 1; n/

[It is astounding how often students forget how easy it is to compute the halfway
point of p and r as their average .p C r/=2. We of course have to take the floor
to ensure that we get an integer index q. But it is common to see students perform
calculations like pC .r �p/=2, or even more elaborate expressions, forgetting the
easy way to compute an average.]

Example

Bottom-up view for n D 8: [Heavy lines demarcate subarrays used in subprob-
lems.]

1 2 3 4 5 6 7 8

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6

initial array

merge

2 4 5 7 1 2 3 6

merge

1 2 3 4 5 6 7

merge

sorted array

2
1 2 3 4 5 6 7 8

[Examples when n is a power of 2 are most straightforward, but students might
also want an example when n is not a power of 2.]

Bottom-up view for n D 11:

1 2 3 4 5 6 7 8

4 7 2 6 1 4 7 3

initial array

merge

merge

merge

sorted array

5 2 6

9 10 11

4 7 2 1 6 4 3 7 5 2 6

2 4 7 1 4 6 3 5 7 2 6

1 2 4 4 6 7 2 3 5 6 7

1 2 2 3 4 4 5 6 6 7 7
1 2 3 4 5 6 7 8 9 10 11

merge

[Here, at the next-to-last level of recursion, some of the subproblems have only 1

element. The recursion bottoms out on these single-element subproblems.]
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Merging

What remains is the MERGE procedure.

Input: Array A and indices p; q; r such that

� p � q < r .
� Subarray AŒp : : q� is sorted and subarray AŒq C 1 : : r� is sorted. By the

restrictions on p; q; r , neither subarray is empty.

Output: The two subarrays are merged into a single sorted subarray in AŒp : : r�.

We implement it so that it takes ‚.n/ time, where n D r �pC 1 D the number of

elements being merged.

What is n? Until now, n has stood for the size of the original problem. But now

we’re using it as the size of a subproblem. We will use this technique when we
analyze recursive algorithms. Although we may denote the original problem size

by n, in general n will be the size of a given subproblem.

Idea behind linear-time merging

Think of two piles of cards.

� Each pile is sorted and placed face-up on a table with the smallest cards on top.
� We will merge these into a single sorted pile, face-down on the table.
� A basic step:

� Choose the smaller of the two top cards.
� Remove it from its pile, thereby exposing a new top card.
� Place the chosen card face-down onto the output pile.

� Repeatedly perform basic steps until one input pile is empty.
� Once one input pile empties, just take the remaining input pile and place it

face-down onto the output pile.
� Each basic step should take constant time, since we check just the two top cards.
� There are � n basic steps, since each basic step removes one card from the

input piles, and we started with n cards in the input piles.
� Therefore, this procedure should take ‚.n/ time.

We don’t actually need to check whether a pile is empty before each basic step.

� Put on the bottom of each input pile a special sentinel card.
� It contains a special value that we use to simplify the code.
� We use1, since that’s guaranteed to “lose” to any other value.
� The only way that1 cannot lose is when both piles have1 exposed as their

top cards.
� But when that happens, all the nonsentinel cards have already been placed into

the output pile.
� We know in advance that there are exactly r � pC 1 nonsentinel cards) stop

once we have performed r � p C 1 basic steps. Never a need to check for

sentinels, since they’ll always lose.
� Rather than even counting basic steps, just fill up the output array from index p

up through and including index r .
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Pseudocode

MERGE.A; p; q; r/

n1 D q � p C 1

n2 D r � q

let LŒ1 : : n1 C 1� and RŒ1 : : n2 C 1� be new arrays

for i D 1 to n1

LŒi� D AŒp C i � 1�

for j D 1 to n2

RŒj � D AŒq C j �

LŒn1 C 1� D 1
RŒn2 C 1� D 1
i D 1

j D 1

for k D p to r

if LŒi� � RŒj �

AŒk� D LŒi�

i D i C 1

else AŒk� D RŒj �

j D j C 1

[The book uses a loop invariant to establish that MERGE works correctly. In a
lecture situation, it is probably better to use an example to show that the procedure
works correctly.]

Example

A call of MERGE.9; 12; 16/
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A

L R

1 2 3 4 1 2 3 4

i j

k

2 4 5 7 1 2 3 6

A

L R

1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

2 4 5 7 1 2 3 6 4 5 7 1 2 3 6

A

L R

9 10 11 12 13 14 15 16

1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

5 7 1 2 3 62 A

L R

1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

7 1 2 3 62 2

5

∞
5

∞
5

∞
5

∞

5

∞
5

∞
5

∞
5

∞

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 168

…
17

…

8

…
17

…

8

…
17

…

8

…
17

…

A

L R

1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

1 2 3 62 2 3 A

L R

1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

2 3 62 2 3 4

A

L R

1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

3 62 2 3 4 5 A

L R

1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

62 2 3 4 5

5

∞
5

∞
5

∞
5

∞

5

∞
5

∞
5

∞
5

∞

6

A

L R

1 2 3 4 1 2 3 4

i j

k

2 4 5 7

1

2 3 61

72 2 3 4 5

5

∞
5

∞

6

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

8

…
17

…

8

…
17

…

8

…
17

…

8

…
17

…

8

…
17

…

[Read this figure row by row. The first part shows the arrays at the start of the
“for k D p to r” loop, where AŒp : : q� is copied into LŒ1 : : n1� and AŒqC1 : : r� is
copied into RŒ1 : : n2�. Succeeding parts show the situation at the start of successive
iterations. Entries in A with slashes have had their values copied to either L or R

and have not had a value copied back in yet. Entries in L and R with slashes have
been copied back into A. The last part shows that the subarrays are merged back
into AŒp : : r�, which is now sorted, and that only the sentinels (1) are exposed in
the arrays L and R.]
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Running time

The first two for loops take ‚.n1 C n2/ D ‚.n/ time. The last for loop makes n

iterations, each taking constant time, for ‚.n/ time.

Total time: ‚.n/.

Analyzing divide-and-conquer algorithms

Use a recurrence equation (more commonly, a recurrence) to describe the running

time of a divide-and-conquer algorithm.

Let T .n/ D running time on a problem of size n.

� If the problem size is small enough (say, n � c for some constant c), we have a

base case. The brute-force solution takes constant time: ‚.1/.

� Otherwise, suppose that we divide into a subproblems, each 1=b the size of the

original. (In merge sort, a D b D 2.)

� Let the time to divide a size-n problem be D.n/.

� Have a subproblems to solve, each of size n=b ) each subproblem takes

T .n=b/ time to solve) we spend aT .n=b/ time solving subproblems.

� Let the time to combine solutions be C.n/.

� We get the recurrence

T .n/ D
(

‚.1/ if n � c ;

aT .n=b/CD.n/C C.n/ otherwise :

Analyzing merge sort

For simplicity, assume that n is a power of 2) each divide step yields two sub-

problems, both of size exactly n=2.

The base case occurs when n D 1.

When n � 2, time for merge sort steps:

Divide: Just compute q as the average of p and r )D.n/ D ‚.1/.

Conquer: Recursively solve 2 subproblems, each of size n=2) 2T .n=2/.

Combine: MERGE on an n-element subarray takes ‚.n/ time) C.n/ D ‚.n/.

Since D.n/ D ‚.1/ and C.n/ D ‚.n/, summed together they give a function that

is linear in n: ‚.n/) recurrence for merge sort running time is

T .n/ D
(

‚.1/ if n D 1 ;

2T .n=2/C‚.n/ if n > 1 :

Solving the merge-sort recurrence

By the master theorem in Chapter 4, we can show that this recurrence has the

solution T .n/ D ‚.n lg n/. [Reminder: lg n stands for log2 n.]

Compared to insertion sort (‚.n2/ worst-case time), merge sort is faster. Trading

a factor of n for a factor of lg n is a good deal.
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On small inputs, insertion sort may be faster. But for large enough inputs, merge

sort will always be faster, because its running time grows more slowly than inser-

tion sort’s.

We can understand how to solve the merge-sort recurrence without the master the-

orem.

� Let c be a constant that describes the running time for the base case and also

is the time per array element for the divide and conquer steps. [Of course, we
cannot necessarily use the same constant for both. It’s not worth going into this
detail at this point.]

� We rewrite the recurrence as

T .n/ D
(

c if n D 1 ;

2T .n=2/C cn if n > 1 :

� Draw a recursion tree, which shows successive expansions of the recurrence.

� For the original problem, we have a cost of cn, plus the two subproblems, each

costing T .n=2/:

cn

T(n/2) T(n/2)

� For each of the size-n=2 subproblems, we have a cost of cn=2, plus two sub-

problems, each costing T .n=4/:

cn

cn/2

T(n/4) T(n/4)

cn/2

T(n/4) T(n/4)

� Continue expanding until the problem sizes get down to 1:
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cn

cn

…

Total: cn lg n + cn

cn

lg n

cn

n

c c c c c c c

…

cn

cn/2

cn/4 cn/4

cn/2

cn/4 cn/4

� Each level has cost cn.

� The top level has cost cn.
� The next level down has 2 subproblems, each contributing cost cn=2.
� The next level has 4 subproblems, each contributing cost cn=4.
� Each time we go down one level, the number of subproblems doubles but the

cost per subproblem halves) cost per level stays the same.

� There are lg nC 1 levels (height is lg n).

� Use induction.
� Base case: n D 1) 1 level, and lg 1C 1 D 0C 1 D 1.
� Inductive hypothesis is that a tree for a problem size of 2i has lg 2iC1 D iC1

levels.
� Because we assume that the problem size is a power of 2, the next problem

size up after 2i is 2iC1.
� A tree for a problem size of 2iC1 has one more level than the size-2i tree)

i C 2 levels.
� Since lg 2iC1 C 1 D i C 2, we’re done with the inductive argument.

� Total cost is sum of costs at each level. Have lg n C 1 levels, each costing cn

) total cost is cn lg nC cn.

� Ignore low-order term of cn and constant coefficient c) ‚.n lg n/.



Solutions for Chapter 2:

Getting Started

Solution to Exercise 2.2-2

This solution is also posted publicly

SELECTION-SORT.A/

n D A: length

for j D 1 to n � 1

smallest D j

for i D j C 1 to n

if AŒi� < AŒsmallest�

smallest D i

exchange AŒj � with AŒsmallest�

The algorithm maintains the loop invariant that at the start of each iteration of the

outer for loop, the subarray AŒ1 : : j � 1� consists of the j � 1 smallest elements

in the array AŒ1 : : n�, and this subarray is in sorted order. After the first n � 1

elements, the subarray AŒ1 : : n � 1� contains the smallest n � 1 elements, sorted,

and therefore element AŒn� must be the largest element.

The running time of the algorithm is ‚.n2/ for all cases.

Solution to Exercise 2.2-4

This solution is also posted publicly

Modify the algorithm so it tests whether the input satisfies some special-case con-

dition and, if it does, output a pre-computed answer. The best-case running time is

generally not a good measure of an algorithm.

Solution to Exercise 2.3-3

The base case is when n D 2, and we have n lg n D 2 lg 2 D 2 � 1 D 2.
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For the inductive step, our inductive hypothesis is that T .n=2/ D .n=2/ lg.n=2/.

Then

T .n/ D 2T .n=2/C n

D 2.n=2/ lg.n=2/C n

D n.lg n � 1/C n

D n lg n � nC n

D n lg n ;

which completes the inductive proof for exact powers of 2.

Solution to Exercise 2.3-4

Since it takes ‚.n/ time in the worst case to insert AŒn� into the sorted array

AŒ1 : : n � 1�, we get the recurrence

T .n/ D
(

‚.1/ if n D 1 ;

T .n � 1/C‚.n/ if n > 1 :

Although the exercise does not ask you to solve this recurrence, its solution is

T .n/ D ‚.n2/.

Solution to Exercise 2.3-5

This solution is also posted publicly

Procedure BINARY-SEARCH takes a sorted array A, a value �, and a range

Œlow : : high� of the array, in which we search for the value �. The procedure com-

pares � to the array entry at the midpoint of the range and decides to eliminate half
the range from further consideration. We give both iterative and recursive versions,

each of which returns either an index i such that AŒi� D �, or NIL if no entry of

AŒlow : : high� contains the value �. The initial call to either version should have

the parameters A; �; 1; n.

ITERATIVE-BINARY-SEARCH.A; �; low; high/

while low � high

mid D b.lowC high/=2c
if � == AŒmid�

return mid

elseif � > AŒmid�

low D midC 1

else high D mid � 1

return NIL
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RECURSIVE-BINARY-SEARCH.A; �; low; high/

if low > high

return NIL

mid D b.lowC high/=2c
if � == AŒmid�

return mid

elseif � > AŒmid�

return RECURSIVE-BINARY-SEARCH.A; �; midC 1; high/

else return RECURSIVE-BINARY-SEARCH.A; �; low; mid � 1/

Both procedures terminate the search unsuccessfully when the range is empty (i.e.,

low > high) and terminate it successfully if the value � has been found. Based

on the comparison of � to the middle element in the searched range, the search

continues with the range halved. The recurrence for these procedures is therefore

T .n/ D T .n=2/C‚.1/, whose solution is T .n/ D ‚.lg n/.

Solution to Exercise 2.3-6

The while loop of lines 5–7 of procedure INSERTION-SORT scans backward

through the sorted array AŒ1 : : j � 1� to find the appropriate place for AŒj �. The

hitch is that the loop not only searches for the proper place for AŒj �, but that it also

moves each of the array elements that are bigger than AŒj � one position to the right

(line 6). These movements can take as much as ‚.j / time, which occurs when all

the j � 1 elements preceding AŒj � are larger than AŒj �. We can use binary search

to improve the running time of the search to ‚.lg j /, but binary search will have no

effect on the running time of moving the elements. Therefore, binary search alone

cannot improve the worst-case running time of INSERTION-SORT to ‚.n lg n/.

Solution to Exercise 2.3-7

The following algorithm solves the problem:

1. Sort the elements in S .

2. Form the set S 0 D f´ W ´ D x � y for some y 2 Sg.
3. Sort the elements in S 0.

4. If any value in S appears more than once, remove all but one instance. Do the

same for S 0.

5. Merge the two sorted sets S and S 0.

6. There exist two elements in S whose sum is exactly x if and only if the same

value appears in consecutive positions in the merged output.

To justify the claim in step 4, first observe that if any value appears twice in the

merged output, it must appear in consecutive positions. Thus, we can restate the

condition in step 5 as there exist two elements in S whose sum is exactly x if and

only if the same value appears twice in the merged output.
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Suppose that some value w appears twice. Then w appeared once in S and once

in S 0. Because w appeared in S 0, there exists some y 2 S such that w D x � y, or

x D w C y. Since w 2 S , the elements w and y are in S and sum to x.

Conversely, suppose that there are values w; y 2 S such that w C y D x. Then,

since x � y D w, the value w appears in S 0. Thus, w is in both S and S 0, and so it

will appear twice in the merged output.

Steps 1 and 3 require O.n lg n/ steps. Steps 2, 4, 5, and 6 require O.n/ steps. Thus

the overall running time is O.n lg n/.

Solution to Problem 2-1

[It may be better to assign this problem after covering asymptotic notation in Sec-
tion 3.1; otherwise part (c) may be too difficult.]

a. Insertion sort takes ‚.k2/ time per k-element list in the worst case. Therefore,

sorting n=k lists of k elements each takes ‚.k2n=k/ D ‚.nk/ worst-case

time.

b. Just extending the 2-list merge to merge all the lists at once would take

‚.n � .n=k// D ‚.n2=k/ time (n from copying each element once into the

result list, n=k from examining n=k lists at each step to select next item for

result list).

To achieve ‚.n lg.n=k//-time merging, we merge the lists pairwise, then merge

the resulting lists pairwise, and so on, until there’s just one list. The pairwise

merging requires ‚.n/ work at each level, since we are still working on n el-

ements, even if they are partitioned among sublists. The number of levels,

starting with n=k lists (with k elements each) and finishing with 1 list (with n

elements), is dlg.n=k/e. Therefore, the total running time for the merging is

‚.n lg.n=k//.

c. The modified algorithm has the same asymptotic running time as standard

merge sort when ‚.nk C n lg.n=k// D ‚.n lg n/. The largest asymptotic

value of k as a function of n that satisfies this condition is k D ‚.lg n/.

To see why, first observe that k cannot be more than ‚.lg n/ (i.e., it can’t have

a higher-order term than lg n), for otherwise the left-hand expression wouldn’t

be ‚.n lg n/ (because it would have a higher-order term than n lg n). So all we

need to do is verify that k D ‚.lg n/ works, which we can do by plugging

k D lg n into ‚.nk C n lg.n=k// D ‚.nk C n lg n � n lg k/ to get

‚.n lg nC n lg n � n lg lg n/ D ‚.2n lg n � n lg lg n/ ;

which, by taking just the high-order term and ignoring the constant coefficient,

equals ‚.n lg n/.

d. In practice, k should be the largest list length on which insertion sort is faster

than merge sort.
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Solution to Problem 2-2

a. We need to show that the elements of A0 form a permutation of the elements

of A.

b. Loop invariant: At the start of each iteration of the for loop of lines 2–4,

AŒj � D min fAŒk� W j � k � ng and the subarray AŒj : : n� is a permuta-

tion of the values that were in AŒj : : n� at the time that the loop started.

Initialization: Initially, j D n, and the subarray AŒj : : n� consists of single

element AŒn�. The loop invariant trivially holds.

Maintenance: Consider an iteration for a given value of j . By the loop in-

variant, AŒj � is the smallest value in AŒj : : n�. Lines 3–4 exchange AŒj �

and AŒj � 1� if AŒj � is less than AŒj � 1�, and so AŒj � 1� will be the

smallest value in AŒj � 1 : : n� afterward. Since the only change to the sub-

array AŒj � 1 : : n� is this possible exchange, and the subarray AŒj : : n� is

a permutation of the values that were in AŒj : : n� at the time that the loop

started, we see that AŒj � 1 : : n� is a permutation of the values that were in

AŒj � 1 : : n� at the time that the loop started. Decrementing j for the next
iteration maintains the invariant.

Termination: The loop terminates when j reaches i . By the statement of the

loop invariant, AŒi� D min fAŒk� W i � k � ng and AŒi : : n� is a permutation

of the values that were in AŒi : : n� at the time that the loop started.

c. Loop invariant: At the start of each iteration of the for loop of lines 1–4,

the subarray AŒ1 : : i �1� consists of the i �1 smallest values originally in

AŒ1 : : n�, in sorted order, and AŒi : : n� consists of the n� i C 1 remaining

values originally in AŒ1 : : n�.

Initialization: Before the first iteration of the loop, i D 1. The subarray

AŒ1 : : i � 1� is empty, and so the loop invariant vacuously holds.

Maintenance: Consider an iteration for a given value of i . By the loop invari-

ant, AŒ1 : : i � 1� consists of the i smallest values in AŒ1 : : n�, in sorted order.

Part (b) showed that after executing the for loop of lines 2–4, AŒi� is the

smallest value in AŒi : : n�, and so AŒ1 : : i � is now the i smallest values orig-

inally in AŒ1 : : n�, in sorted order. Moreover, since the for loop of lines 2–4

permutes AŒi : : n�, the subarray AŒi C 1 : : n� consists of the n� i remaining

values originally in AŒ1 : : n�.

Termination: The for loop of lines 1–4 terminates when i D n, so that i �1 D
n � 1. By the statement of the loop invariant, AŒ1 : : i � 1� is the subarray

AŒ1 : : n�1�, and it consists of the n�1 smallest values originally in AŒ1 : : n�,

in sorted order. The remaining element must be the largest value in AŒ1 : : n�,

and it is in AŒn�. Therefore, the entire array AŒ1 : : n� is sorted.

Note: Tn the second edition, the for loop of lines 1–4 had an upper bound

of A: length. The last iteration of the outer for loop would then result in no

iterations of the inner for loop of lines 1–4, but the termination argument would

simplify: AŒ1 : : i � 1� would be the entire array AŒ1 : : n�, which, by the loop

invariant, is sorted.
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d. The running time depends on the number of iterations of the for loop of

lines 2–4. For a given value of i , this loop makes n � i iterations, and i takes

on the values 1; 2; : : : ; n � 1. The total number of iterations, therefore, is
n�1
X

iD1

.n � i/ D
n�1
X

iD1

n �
n�1
X

iD1

i

D n.n� 1/ � n.n � 1/

2

D n.n� 1/

2

D n2

2
� n

2
:

Thus, the running time of bubblesort is ‚.n2/ in all cases. The worst-case

running time is the same as that of insertion sort.

Solution to Problem 2-4

This solution is also posted publicly

a. The inversions are .1; 5/; .2; 5/; .3; 4/; .3; 5/; .4; 5/. (Remember that inversions
are specified by indices rather than by the values in the array.)

b. The array with elements from f1; 2; : : : ; ng with the most inversions is
hn; n � 1; n � 2; : : : ; 2; 1i. For all 1 � i < j � n, there is an inversion .i; j /.

The number of such inversions is
�

n

2

�

D n.n � 1/=2.

c. Suppose that the array A starts out with an inversion .k; j /. Then k < j and

AŒk� > AŒj �. At the time that the outer for loop of lines 1–8 sets key D AŒj �,

the value that started in AŒk� is still somewhere to the left of AŒj �. That is,

it’s in AŒi�, where 1 � i < j , and so the inversion has become .i; j /. Some

iteration of the while loop of lines 5–7 moves AŒi� one position to the right.

Line 8 will eventually drop key to the left of this element, thus eliminating the

inversion. Because line 5 moves only elements that are less than key, it moves

only elements that correspond to inversions. In other words, each iteration of

the while loop of lines 5–7 corresponds to the elimination of one inversion.

d. We follow the hint and modify merge sort to count the number of inversions in

‚.n lg n/ time.

To start, let us define a merge-inversion as a situation within the execution of

merge sort in which the MERGE procedure, after copying AŒp : : q� to L and

AŒq C 1 : : r� to R, has values x in L and y in R such that x > y. Consider

an inversion .i; j /, and let x D AŒi� and y D AŒj �, so that i < j and x > y.

We claim that if we were to run merge sort, there would be exactly one merge-

inversion involving x and y. To see why, observe that the only way in which

array elements change their positions is within the MERGE procedure. More-
over, since MERGE keeps elements within L in the same relative order to each

other, and correspondingly for R, the only way in which two elements can

change their ordering relative to each other is for the greater one to appear in L
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and the lesser one to appear in R. Thus, there is at least one merge-inversion

involving x and y. To see that there is exactly one such merge-inversion, ob-

serve that after any call of MERGE that involves both x and y, they are in the

same sorted subarray and will therefore both appear in L or both appear in R

in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-inversion. In fact, the

correspondence between inversions and merge-inversions is one-to-one. Sup-

pose we have a merge-inversion involving values x and y, where x originally

was AŒi� and y was originally AŒj �. Since we have a merge-inversion, x > y.

And since x is in L and y is in R, x must be within a subarray preceding the

subarray containing y. Therefore x started out in a position i preceding y’s
original position j , and so .i; j / is an inversion.

Having shown a one-to-one correspondence between inversions and merge-

inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involving y in R. Let ´ be the smallest value in L

that is greater than y. At some point during the merging process, ´ and y will

be the “exposed” values in L and R, i.e., we will have ´ D LŒi� and y D RŒj �

in line 13 of MERGE. At that time, there will be merge-inversions involving y

and LŒi�; LŒi C 1�; LŒi C 2�; : : : ; LŒn1�, and these n1 � i C 1 merge-inversions

will be the only ones involving y. Therefore, we need to detect the first time

that ´ and y become exposed during the MERGE procedure and add the value

of n1 � i C 1 at that time to our total count of merge-inversions.

The following pseudocode, modeled on merge sort, works as we have just de-

scribed. It also sorts the array A.

COUNT-INVERSIONS.A; p; r/

in�ersions D 0

if p < r

q D b.p C r/=2c
in�ersions D in�ersionsC COUNT-INVERSIONS.A; p; q/

in�ersions D in�ersionsC COUNT-INVERSIONS.A; q C 1; r/

in�ersions D in�ersionsCMERGE-INVERSIONS.A; p; q; r/

return in�ersions
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MERGE-INVERSIONS.A; p; q; r/

n1 D q � p C 1

n2 D r � q

let LŒ1 : : n1 C 1� and RŒ1 : : n2 C 1� be new arrays

for i D 1 to n1

LŒi� D AŒp C i � 1�

for j D 1 to n2

RŒj � D AŒq C j �

LŒn1 C 1� D 1
RŒn2 C 1� D 1
i D 1

j D 1

in�ersions D 0

counted D FALSE

for k D p to r

if counted == FALSE and RŒj � < LŒi�

in�ersions D in�ersions C n1 � i C 1

counted D TRUE

if LŒi� � RŒj �

AŒk� D LŒi�

i D i C 1

else AŒk� D RŒj �

j D j C 1

counted D FALSE

return in�ersions

The initial call is COUNT-INVERSIONS.A; 1; n/.

In MERGE-INVERSIONS, the boolean variable counted indicates whether we
have counted the merge-inversions involving RŒj �. We count them the first time

that both RŒj � is exposed and a value greater than RŒj � becomes exposed in

the L array. We set counted to FALSE upon each time that a new value becomes

exposed in R. We don’t have to worry about merge-inversions involving the

sentinel1 in R, since no value in L will be greater than1.

Since we have added only a constant amount of additional work to each pro-

cedure call and to each iteration of the last for loop of the merging procedure,

the total running time of the above pseudocode is the same as for merge sort:

‚.n lg n/.



Lecture Notes for Chapter 3:

Growth of Functions

Chapter 3 overview

� A way to describe behavior of functions in the limit. We’re studying asymptotic

efficiency.
� Describe growth of functions.
� Focus on what’s important by abstracting away low-order terms and constant

factors.

� How we indicate running times of algorithms.
� A way to compare “sizes” of functions:

O � �
� � �
‚ � D
o � <

! � >

Asymptotic notation

O-notation

O.g.n// D ff .n/ W there exist positive constants c and n0 such that

0 � f .n/ � cg.n/ for all n � n0g :

n0

n

f(n)

cg(n)

g.n/ is an asymptotic upper bound for f .n/.

If f .n/ 2 O.g.n//, we write f .n/ D O.g.n// (will precisely explain this soon).
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Example

2n2 D O.n3/, with c D 1 and n0 D 2.

Examples of functions in O.n2/:

n2

n2 C n

n2 C 1000n

1000n2 C 1000n

Also,

n

n=1000

n1:99999

n2= lg lg lg n

�-notation

�.g.n// D ff .n/ W there exist positive constants c and n0 such that

0 � cg.n/ � f .n/ for all n � n0g :

n0

n

f(n)

cg(n)

g.n/ is an asymptotic lower bound for f .n/.

Example
p

n D �.lg n/, with c D 1 and n0 D 16.

Examples of functions in �.n2/:

n2

n2 C n

n2 � n

1000n2 C 1000n

1000n2 � 1000n

Also,

n3

n2:00001

n2 lg lg lg n

22n



Lecture Notes for Chapter 3: Growth of Functions 3-3

‚-notation

‚.g.n// D ff .n/ W there exist positive constants c1, c2, and n0 such that

0 � c1g.n/ � f .n/ � c2g.n/ for all n � n0g :

n0

n

f(n)

c1g(n)

c2g(n)

g.n/ is an asymptotically tight bound for f .n/.

Example

n2=2 � 2n D ‚.n2/, with c1 D 1=4, c2 D 1=2, and n0 D 8.

Theorem

f .n/ D ‚.g.n// if and only if f D O.g.n// and f D �.g.n// :

Leading constants and low-order terms don’t matter.

Asymptotic notation in equations

When on right-hand side

O.n2/ stands for some anonymous function in the set O.n2/.

2n2 C 3n C 1 D 2n2 C ‚.n/ means 2n2 C 3n C 1 D 2n2 C f .n/ for some

f .n/ 2 ‚.n/. In particular, f .n/ D 3nC 1.

By the way, we interpret # of anonymous functions asD # of times the asymptotic

notation appears:

n
X

iD1

O.i/ OK: 1 anonymous function

O.1/CO.2/C � � � CO.n/ not OK: n hidden constants

) no clean interpretation

When on left-hand side

No matter how the anonymous functions are chosen on the left-hand side, there

is a way to choose the anonymous functions on the right-hand side to make the

equation valid.

Interpret 2n2 C ‚.n/ D ‚.n2/ as meaning for all functions f .n/ 2 ‚.n/, there

exists a function g.n/ 2 ‚.n2/ such that 2n2 C f .n/ D g.n/.
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Can chain together:

2n2 C 3nC 1 D 2n2 C‚.n/

D ‚.n2/ :

Interpretation:

� First equation: There exists f .n/ 2 ‚.n/ such that 2n2C3nC1 D 2n2Cf .n/.

� Second equation: For all g.n/ 2 ‚.n/ (such as the f .n/ used to make the first

equation hold), there exists h.n/ 2 ‚.n2/ such that 2n2 C g.n/ D h.n/.

o-notation

o.g.n// D ff .n/ W for all constants c > 0, there exists a constant

n0 > 0 such that 0 � f .n/ < cg.n/ for all n � n0g :

Another view, probably easier to use: lim
n!1

f .n/

g.n/
D 0.

n1:9999 D o.n2/

n2= lg n D o.n2/

n2 ¤ o.n2/ (just like 2 6< 2)

n2=1000 ¤ o.n2/

!-notation

!.g.n// D ff .n/ W for all constants c > 0, there exists a constant

n0 > 0 such that 0 � cg.n/ < f .n/ for all n � n0g :

Another view, again, probably easier to use: lim
n!1

f .n/

g.n/
D 1.

n2:0001 D !.n2/

n2 lg n D !.n2/

n2 ¤ !.n2/

Comparisons of functions

Relational properties:

Transitivity:

f .n/ D ‚.g.n// and g.n/ D ‚.h.n//) f .n/ D ‚.h.n//.

Same for O; �; o; and !.

Reflexivity:

f .n/ D ‚.f .n//.

Same for O and �.

Symmetry:

f .n/ D ‚.g.n// if and only if g.n/ D ‚.f .n//.

Transpose symmetry:

f .n/ D O.g.n// if and only if g.n/ D �.f .n//.

f .n/ D o.g.n// if and only if g.n/ D !.f .n//.
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Comparisons:

� f .n/ is asymptotically smaller than g.n/ if f .n/ D o.g.n//.

� f .n/ is asymptotically larger than g.n/ if f .n/ D !.g.n//.

No trichotomy. Although intuitively, we can liken O to �, � to �, etc., unlike

real numbers, where a < b, a D b, or a > b, we might not be able to compare

functions.

Example: n1Csin n and n, since 1C sin n oscillates between 0 and 2.

Standard notations and common functions

[You probably do not want to use lecture time going over all the definitions and
properties given in Section 3.2, but it might be worth spending a few minutes of
lecture time on some of the following.]

Monotonicity

� f .n/ is monotonically increasing if m � n) f .m/ � f .n/.

� f .n/ is monotonically decreasing if m � n) f .m/ � f .n/.

� f .n/ is strictly increasing if m < n) f .m/ < f .n/.

� f .n/ is strictly decreasing if m > n) f .m/ > f .n/.

Exponentials

Useful identities:

a�1 D 1=a ;

.am/n D amn ;

aman D amCn :

Can relate rates of growth of polynomials and exponentials: for all real constants

a and b such that a > 1,

lim
n!1

nb

an
D 0 ;

which implies that nb D o.an/.

A suprisingly useful inequality: for all real x,

ex � 1C x :

As x gets closer to 0, ex gets closer to 1C x.
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Logarithms

Notations:

lg n D log2 n (binary logarithm) ,

ln n D loge n (natural logarithm) ,

lgk n D .lg n/k (exponentiation) ,

lg lg n D lg.lg n/ (composition) .

Logarithm functions apply only to the next term in the formula, so that lg n C k

means .lg n/C k, and not lg.nC k/.

In the expression logb a:

� If we hold b constant, then the expression is strictly increasing as a increases.

� If we hold a constant, then the expression is strictly decreasing as b increases.

Useful identities for all real a > 0, b > 0, c > 0, and n, and where logarithm bases

are not 1:

a D blogb a ;

logc.ab/ D logc aC logc b ;

logb an D n logb a ;

logb a D logc a

logc b
;

logb.1=a/ D � logb a ;

logb a D 1

loga b
;

alogb c D c logb a :

Changing the base of a logarithm from one constant to another only changes the

value by a constant factor, so we usually don’t worry about logarithm bases in

asymptotic notation. Convention is to use lg within asymptotic notation, unless the

base actually matters.

Just as polynomials grow more slowly than exponentials, logarithms grow more

slowly than polynomials. In lim
n!1

nb

an
D 0, substitute lg n for n and 2a for a:

lim
n!1

lgb n

.2a/lg n
D lim

n!1

lgb n

na
D 0 ;

implying that lgb n D o.na/.

Factorials

nŠ D 1 � 2 � 3 � n. Special case: 0Š D 1.

Can use Stirling’s approximation,

nŠ D
p

2�n
�n

e

�n
�

1C‚

�
1

n

��

;

to derive that lg.nŠ/ D ‚.n lg n/.
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Growth of Functions

Solution to Exercise 3.1-1

First, let’s clarify what the function max.f .n/; g.n// is. Let’s define the function

h.n/ D max.f .n/; g.n//. Then

h.n/ D
(

f .n/ if f .n/ � g.n/ ;

g.n/ if f .n/ < g.n/ :

Since f .n/ and g.n/ are asymptotically nonnegative, there exists n0 such that

f .n/ � 0 and g.n/ � 0 for all n � n0. Thus for n � n0, f .n/ C g.n/ �
f .n/ � 0 and f .n/ C g.n/ � g.n/ � 0. Since for any particular n, h.n/

is either f .n/ or g.n/, we have f .n/ C g.n/ � h.n/ � 0, which shows that

h.n/ D max.f .n/; g.n// � c2.f .n/C g.n// for all n � n0 (with c2 D 1 in the

definition of ‚).

Similarly, since for any particular n, h.n/ is the larger of f .n/ and g.n/, we have

for all n � n0, 0 � f .n/ � h.n/ and 0 � g.n/ � h.n/. Adding these two inequal-

ities yields 0 � f .n/ C g.n/ � 2h.n/, or equivalently 0 � .f .n/C g.n//=2 �
h.n/, which shows that h.n/ D max.f .n/; g.n// � c1.f .n/Cg.n// for all n � n0

(with c1 D 1=2 in the definition of ‚).

Solution to Exercise 3.1-2

This solution is also posted publicly

To show that .nC a/b D ‚.nb/, we want to find constants c1; c2; n0 > 0 such that

0 � c1nb � .nC a/b � c2nb for all n � n0.

Note that

nC a � nC jaj
� 2n when jaj � n ,

and

nC a � n � jaj

� 1

2
n when jaj � 1

2
n .

Thus, when n � 2 jaj,
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0 � 1

2
n � nC a � 2n :

Since b > 0, the inequality still holds when all parts are raised to the power b:

0 �
�

1

2
n

�b

� .nC a/b � .2n/b ;

0 �
�

1

2

�b

nb � .nC a/b � 2bnb :

Thus, c1 D .1=2/b , c2 D 2b, and n0 D 2 jaj satisfy the definition.

Solution to Exercise 3.1-3

This solution is also posted publicly

Let the running time be T .n/. T .n/ � O.n2/ means that T .n/ � f .n/ for some

function f .n/ in the set O.n2/. This statement holds for any running time T .n/,

since the function g.n/ D 0 for all n is in O.n2/, and running times are always

nonnegative. Thus, the statement tells us nothing about the running time.

Solution to Exercise 3.1-4

This solution is also posted publicly

2nC1 D O.2n/, but 22n ¤ O.2n/.

To show that 2nC1 D O.2n/, we must find constants c; n0 > 0 such that

0 � 2nC1 � c � 2n for all n � n0 :

Since 2nC1 D 2 � 2n for all n, we can satisfy the definition with c D 2 and n0 D 1.

To show that 22n 6D O.2n/, assume there exist constants c; n0 > 0 such that

0 � 22n � c � 2n for all n � n0 :

Then 22n D 2n � 2n � c � 2n ) 2n � c. But no constant is greater than all 2n, and

so the assumption leads to a contradiction.

Solution to Exercise 3.1-8

�.g.n; m// D ff .n; m/ W there exist positive constants c, n0, and m0

such that 0 � cg.n; m/ � f .n; m/

for all n � n0 or m � m0g :

‚.g.n; m// D ff .n; m/ W there exist positive constants c1, c2, n0, and m0

such that 0 � c1g.n; m/ � f .n; m/ � c2g.n; m/

for all n � n0 or m � m0g :



Solutions for Chapter 3: Growth of Functions 3-9

Solution to Exercise 3.2-4

This solution is also posted publicly

dlg neŠ is not polynomially bounded, but dlg lg neŠ is.

Proving that a function f .n/ is polynomially bounded is equivalent to proving that

lg.f .n// D O.lg n/ for the following reasons.

� If f is polynomially bounded, then there exist constants c, k, n0 such that for

all n � n0, f .n/ � cnk. Hence, lg.f .n// � kc lg n, which, since c and k are

constants, means that lg.f .n// D O.lg n/.

� Similarly, if lg.f .n// D O.lg n/, then f is polynomially bounded.

In the following proofs, we will make use of the following two facts:

1. lg.nŠ/ D ‚.n lg n/ (by equation (3.19)).

2. dlg ne D ‚.lg n/, because

� dlg ne � lg n
� dlg ne < lg nC 1 � 2 lg n for all n � 2

lg.dlg neŠ/ D ‚.dlg ne lg dlg ne/
D ‚.lg n lg lg n/

D !.lg n/ :

Therefore, lg.dlg neŠ/ ¤ O.lg n/, and so dlg neŠ is not polynomially bounded.

lg.dlg lg neŠ/ D ‚.dlg lg ne lg dlg lg ne/
D ‚.lg lg n lg lg lg n/

D o..lg lg n/2/

D o.lg2.lg n//

D o.lg n/ :

The last step above follows from the property that any polylogarithmic function

grows more slowly than any positive polynomial function, i.e., that for constants

a; b > 0, we have lgb n D o.na/. Substitute lg n for n, 2 for b, and 1 for a, giving

lg2.lg n/ D o.lg n/.

Therefore, lg.dlg lg neŠ/ D O.lg n/, and so dlg lg neŠ is polynomially bounded.

Solution to Exercise 3.2-5

lg�.lg n/ is asymptotically larger because lg�.lg n/ D lg� n � 1.
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Solution to Exercise 3.2-6

Both �2 and � C 1 equal .3C
p

5/=2, and both y�2 and y� C 1 equal .3�
p

5/=2.

Solution to Exercise 3.2-7

We have two base cases: i D 0 and i D 1. For i D 0, we have

�0 � y�0

p
5

D 1� 1p
5

D 0

D F0 ;

and for i D 1, we have

�1 � y�1

p
5

D .1C
p

5/ � .1 �
p

5/

2
p

5

D 2
p

5

2
p

5
D 1

D F1 :

For the inductive case, the inductive hypothesis is that Fi�1 D .�i�1 � y�i�1/=
p

5

and Fi�2 D .�i�2 � y�i�2/=
p

5. We have

Fi D Fi�1 C Fi�2 (equation (3.22))

D �i�1 � y�i�1

p
5

C �i�2 � y�i�2

p
5

(inductive hypothesis)

D �i�2.� C 1/ � y�i�2.y� C 1/p
5

D �i�2�2 � y�i�2 y�2

p
5

(Exercise 3.2-6)

D �i � y�i

p
5

:

Solution to Problem 3-3

a. Here is the ordering, where functions on the same line are in the same equiva-

lence class, and those higher on the page are � of those below them:
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22nC1

22n

.nC 1/Š

nŠ see justification 7

en see justification 1

n � 2n

2n

.3=2/n

.lg n/lg n D nlg lg n see identity 1

.lg n/Š see justifications 2, 8

n3

n2 D 4lg n see identity 2

n lg n and lg.nŠ/ see justification 6

n D 2lg n see identity 3

.
p

2/lg n.D
p

n/ see identity 6, justification 3

2
p

2 lg n see identity 5, justification 4

lg2 n

ln n
p

lg n

ln ln n see justification 5

2lg� n

lg� n and lg�.lg n/ see identity 7

lg.lg�/n

n1= lg n.D 2/ and 1 see identity 4

Much of the ranking is based on the following properties:

� Exponential functions grow faster than polynomial functions, which grow

faster than polylogarithmic functions.
� The base of a logarithm doesn’t matter asymptotically, but the base of an

exponential and the degree of a polynomial do matter.

We have the following identities:

1. .lg n/lg n D nlg lg n because alogb c D c logb a.

2. 4lg n D n2 because alogb c D c logb a.

3. 2lg n D n.

4. 2 D n1= lg n by raising identity 3 to the power 1= lg n.

5. 2
p

2 lg n D n
p

2= lg n by raising identity 4 to the power
p

2 lg n.

6.
�p

2
�lg n D pn because

�p
2
�lg n D 2.1=2/ lg n D 2lg

p
n D pn.

7. lg�.lg n/ D .lg� n/ � 1.

The following justifications explain some of the rankings:

1. en D 2n.e=2/n D !.n2n/, since .e=2/n D !.n/.

2. .lg n/Š D !.n3/ by taking logs: lg.lg n/Š D ‚.lg n lg lg n/ by Stirling’s

approximation, lg.n3/ D 3 lg n. lg lg n D !.3/.
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3. .
p

2/lg n D !
�

2
p

2 lg n
�

by taking logs: lg.
p

2/lg n D .1=2/ lg n, lg 2
p

2 lg n D
p

2 lg n. .1=2/ lg n D !.
p

2 lg n/.

4. 2
p

2 lg n D !.lg2 n/ by taking logs: lg 2
p

2 lg n D
p

2 lg n, lg lg2 n D 2 lg lg n.
p

2 lg n D !.2 lg lg n/.

5. ln ln n D !.2lg� n/ by taking logs: lg 2lg� n D lg� n. lg ln ln n D !.lg� n/.

6. lg.nŠ/ D ‚.n lg n/ (equation (3.19)).

7. nŠ D ‚.nnC1=2e�n/ by dropping constants and low-order terms in equa-

tion (3.18).

8. .lg n/Š D ‚..lg n/lg nC1=2e� lg n/ by substituting lg n for n in the previous

justification. .lg n/Š D ‚..lg n/lg nC1=2n� lg e/ because alogb c D c logb a.

b. The following f .n/ is nonnegative, and for all functions gi.n/ in part (a), f .n/

is neither O.gi .n// nor �.gi .n//.

f .n/ D
(

22nC2

if n is even ;

0 if n is odd :



Lecture Notes for Chapter 4:

Divide-and-Conquer

Chapter 4 overview

Recall the divide-and-conquer paradigm, which we used for merge sort:

Divide the problem into a number of subproblems that are smaller instances of the

same problem.

Conquer the subproblems by solving them recursively.

Base case: If the subproblems are small enough, just solve them by brute force.

Combine the subproblem solutions to give a solution to the original problem.

We look at two more algorithms based on divide-and-conquer.

Analyzing divide-and-conquer algorithms

Use a recurrence to characterize the running time of a divide-and-conquer algo-

rithm. Solving the recurrence gives us the asymptotic running time.

A recurrence is a function is defined in terms of

� one or more base cases, and

� itself, with smaller arguments.

Examples

� T .n/ D
(

1 if n D 1 ;

T .n � 1/C 1 if n > 1 :

Solution: T .n/ D n.

� T .n/ D
(

1 if n D 1 ;

2T .n=2/C n if n � 1 :

Solution: T .n/ D n lg nC n.

� T .n/ D
(

0 if n D 2 ;

T .
p

n/C 1 if n > 2 :

Solution: T .n/ D lg lg n.
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� T .n/ D
(

1 if n D 1 ;

T .n=3/C T .2n=3/C n if n > 1 :

Solution: T .n/ D ‚.n lg n/.

[The notes for this chapter are fairly brief because we teach recurrences in much
greater detail in a separate discrete math course.]

Many technical issues:

� Floors and ceilings

[Floors and ceilings can easily be removed and don’t affect the solution to the
recurrence. They are better left to a discrete math course.]

� Exact vs. asymptotic functions

� Boundary conditions

In algorithm analysis, we usually express both the recurrence and its solution using

asymptotic notation.

� Example: T .n/ D 2T .n=2/C‚.n/, with solution T .n/ D ‚.n lg n/.

� The boundary conditions are usually expressed as “T .n/ D O.1/ for suffi-

ciently small n.”

� When we desire an exact, rather than an asymptotic, solution, we need to deal
with boundary conditions.

� In practice, we just use asymptotics most of the time, and we ignore boundary

conditions.

[In my course, there are only two acceptable ways of solving recurrences: the
substitution method and the master method. Unless the recursion tree is carefully
accounted for, I do not accept it as a proof of a solution, though I certainly accept
a recursion tree as a way to generate a guess for substitution method. You may
choose to allow recursion trees as proofs in your course, in which case some of the
substitution proofs in the solutions for this chapter become recursion trees.

I also never use the iteration method, which had appeared in the first edition of
Introduction to Algorithms. I find that it is too easy to make an error in paren-
thesization, and that recursion trees give a better intuitive idea than iterating the
recurrence of how the recurrence progresses.]

Maximum-subarray problem

Input: An array AŒ1 : : n� of numbers. [Assume that some of the numbers are
negative, because this problem is trivial when all numbers are nonnegative.]

Output: Indices i and j such that AŒi : : j � has the greatest sum of any nonempty,

contiguous subarray of A, along with the sum of the values in AŒi : : j �.
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Scenario

� You have the prices that a stock traded at over a period of n consecutive days.

� When should you have bought the stock? When should you have sold the stock?

� Even though it’s in retrospect, you can yell at your stockbroker for not recom-

mending these buy and sell dates.

To convert to a maximum-subarray problem, let

AŒi� D (price after day i) � (price after day .i � 1/) :

[Assuming that we start with a price after day 0, i.e., just before day 1.] Then the

nonempty, contiguous subarray with the greatest sum brackets the days that you

should have held the stock.

If the maximum subarray is AŒi : : j �, then should have bought just before day i

(i.e., just after day .i � 1/) and sold just after day j .

Why do we need to find the maximum subarray? Why not just “buy low, sell high”?

� Lowest price might occur after the highest price.

� But wouldn’t the optimal strategy involve buying at the lowest price or selling

at the highest price?

� Not necessarily:

0 1 2 3 4

11

10

9

8

7

6

Maximum profit is $3 per share, from buying after day 2 and selling after day 3.

Yet lowest price occurs after day 4 and highest occurs after day 1.

Can solve by brute force: check all
�

n

2

�

D ‚.n2/ subarrays. Can organize the

computation so that each subarray AŒi : : j � takes O.1/ time, given that you’ve

computed AŒi : : j � 1�, so that the brute-force solution takes ‚.n2/ time.

Solving by divide-and-conquer

Use divide-and-conquer to solve in O.n lg n/ time.

[Maximum subarray might not be unique, though its value is, so we speak of a

maximum subarray, rather than the maximum subarray.]

Subproblem: Find a maximum subarray of AŒlow : : high�.

In original call, low D 1, high D n.
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Divide the subarray into two subarrays of as equal size as possible. Find the

midpoint mid of the subarrays, and consider the subarrays AŒlow : : mid� and

AŒmidC 1 : : high�.

Conquer by finding a maximum subarrays of AŒlow : : mid� and AŒmidC1 : : high�.

Combine by finding a maximum subarray that crosses the midpoint, and using the
best solution out of the three (the subarray crossing the midpoint and the two

solutions found in the conquer step).

This strategy works because any subarray must either lie entirely on one side of the

midpoint or cross the midpoint.

Finding the maximum subarray that crosses the midpoint

Not a smaller instance of the original problem: has the added restriction that the

subarray must cross the midpoint.

Again, could use brute force. If size of AŒlow : : high� is n, would have n=2 choices

for left endpoint and n=2 choices right endpoint, so would have ‚.n2/ combina-

tions altogether.

Can solve in linear time.

� Any subarray crossing the midpoint AŒmid� is made of two subarrays AŒi : : mid�

and AŒmidC 1 : : j �, where low � i � mid and mid < j � high.

� Find maximum subarrays of the form AŒi : : mid� and AŒmid C 1 : : j � and then
combine them.

Procedure to take array A and indices low, mid, high and return a tuple giving

indices of maximum subarray that crosses the midpoint, along with the sum in this

maximum subarray:

FIND-MAX-CROSSING-SUBARRAY.A; low; mid; high/

// Find a maximum subarray of the form AŒi : : mid�.

left-sum D �1
sum D 0

for i D mid downto low

sum D sumC AŒi�

if sum > left-sum

left-sum D sum

max-left D i

// Find a maximum subarray of the form AŒmidC 1 : : j �.
right-sum D �1
sum D 0

for j D midC 1 to high

sum D sumC AŒj �

if sum > right-sum

right-sum D sum

max-right D j

// Return the indices and the sum of the two subarrays.

return .max-left; max-right; left-sum C right-sum/
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Time: The two loops together consider each index in the range low; : : : ; high ex-

actly once, and each iteration takes ‚.1/ time) procedure takes ‚.n/ time.

Divide-and-conquer procedure for the maximum-subarray problem

FIND-MAXIMUM-SUBARRAY.A; low; high/

if high == low

return .low; high; AŒlow�/ // base case: only one element

else mid D b.lowC high/=2c
.left-low; left-high; left-sum/ D

FIND-MAXIMUM-SUBARRAY.A; low; mid/

.right-low; right-high; right-sum/ D
FIND-MAXIMUM-SUBARRAY.A; midC 1; high/

.cross-low; cross-high; cross-sum/ D
FIND-MAX-CROSSING-SUBARRAY.A; low; mid; high/

if left-sum � right-sum and left-sum � cross-sum

return .left-low; left-high; left-sum/

elseif right-sum � left-sum and right-sum � cross-sum

return .right-low; right-high; right-sum/

else return .cross-low; cross-high; cross-sum/

Initial call: FIND-MAXIMUM-SUBARRAY.A; 1; n/

� Divide by computing mid.

� Conquer by the two recursive calls to FIND-MAXIMUM-SUBARRAY.

� Combine by calling FIND-MAX-CROSSING-SUBARRAY and then determining

which of the three results gives the maximum sum.

� Base case is when the subarray has only 1 element.

Analysis

Simplifying assumption: Original problem size is a power of 2, so that all sub-

problem sizes are integer. [We made the same simplifying assumption when we
analyzed merge sort.]

Let T .n/ denote the running time of FIND-MAXIMUM-SUBARRAY on a subarray

of n elements.

Base case: Occurs when high equals low, so that n D 1. The procedure just

returns) T .n/ D ‚.1/.

Recursive case: Occurs when n > 1.

� Dividing takes ‚.1/ time.

� Conquering solves two subproblems, each on a subarray of n=2 elements. Takes

T .n=2/ time for each subproblem) 2T .n=2/ time for conquering.

� Combining consists of calling FIND-MAX-CROSSING-SUBARRAY, which
takes ‚.n/ time, and a constant number of constant-time tests)‚.n/C‚.1/

time for combining.
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Recurrence for recursive case becomes

T .n/ D ‚.1/C 2T .n=2/C‚.n/C‚.1/

D 2T .n=2/C‚.n/ (absorb ‚.1/ terms into ‚.n/) :

The recurrence for all cases:

T .n/ D
(

‚.1/ if n D 1 ;

2T .n=2/C‚.n/ if n > 1 :

Same recurrence as for merge sort. Can use the master method to show that it has

solution T .n/ D ‚.n lg n/.

Thus, with divide-and-conquer, we have developed a ‚.n lg n/-time solution.

Better than the ‚.n2/-time brute-force solution.

[Can actually solve this problem in ‚.n/ time. See Exercise 4.1-5.]

Strassen’s algorithm for matrix multiplication

Input: Two n � n (square) matrices, A D .aij / and B D .bij /.

Output: n � n matrix C D .cij /, where C D A � B , i.e.,

cij D
n
X

kD1

aikbkj

for i; j D 1; 2; : : : ; n.

Need to compute n2 entries of C . Each entry is the sum of n values.

Obvious method

[Using a shorter procedure name than in the book.]

SQUARE-MAT-MULT.A; B; n/

let C be a new n � n matrix

for i D 1 to n

for j D 1 to n

cij D 0

for k D 1 to n

cij D cij C aik � bkj

return C

Analysis: Three nested loops, each iterates n times, and innermost loop body takes
constant time) ‚.n3/.
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Is ‚.n3/ the best we can do? Can we multiply matrices in o.n3/ time?

Seems like any algorithm to multiply matrices must take �.n3/ time:

� Must compute n2 entries.

� Each entry is the sum of n terms.

But with Strassen’s method, we can multiply matrices in o.n3/ time.

� Strassen’s algorithm runs in ‚.nlg 7/ time.

� 2:80 � lg 7 � 2:81.

� Hence, runs in O.n2:81/ time.

Simple divide-and-conquer method

As with the other divide-and-conquer algorithms, assume that n is a power of 2.

Partition each of A; B; C into four n=2 � n=2 matrices:

A D
�

A11 A12

A21 A22

�

; B D
�

B11 B12

B21 B22

�

; C D
�

C11 C12

C21 C22

�

:

Rewrite C D A � B as
�

C11 C12

C21 C22

�

D
�

A11 A12

A21 A22

�

�
�

B11 B12

B21 B22

�

;

giving the four equations

C11 D A11 � B11 C A12 � B21 ;

C12 D A11 � B12 C A12 � B22 ;

C21 D A21 � B11 C A22 � B21 ;

C22 D A21 � B12 C A22 � B22 :

Each of these equations multiplies two n=2 � n=2 matrices and then adds their

n=2 � n=2 products.

Use these equations to get a divide-and-conquer algorithm: [Using a shorter pro-
cedure name than in the book.]

REC-MAT-MULT.A; B; n/

let C be a new n � n matrix

if n == 1

c11 D a11 � b11

else partition A, B , and C into n=2 � n=2 submatrices

C11 D REC-MAT-MULT.A11; B11/C REC-MAT-MULT.A12; B21/

C12 D REC-MAT-MULT.A11; B12/C REC-MAT-MULT.A12; B22/

C21 D REC-MAT-MULT.A21; B11/C REC-MAT-MULT.A22; B21/

C22 D REC-MAT-MULT.A21; B12/C REC-MAT-MULT.A22; B22/

return C

[The book briefly discusses the question of how to avoid copying entries when par-
titioning matrices. Can partition matrices without copying entries by instead using
index calculations. Identify a submatrix by ranges of row and column matrices
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from the original matrix. End up representing a submatrix differently from how
we represent the original matrix. The advantage of avoiding copying is that par-
titioning would take only constant time, instead of ‚.n2/ time. The result of the
asymptotic analysis won’t change, but using index calculations to avoid copying
gives better constant factors.]

Analysis

Let T .n/ be the time to multiply two n=2 � n=2 matrices.

Base case: n D 1. Perform one scalar multiplication: ‚.1/.

Recursive case: n > 1.

� Dividing takes ‚.1/ time, using index calculations. [Otherwise, ‚.n2/ time.]

� Conquering makes 8 recursive calls, each multiplying n=2 � n=2 matrices)
8T .n=2/.

� Combining takes ‚.n2/ time to add n=2 � n=2 matrices four times. [Doesn’t
even matter asymptotically whether we use index calculations or copy: would
be ‚.n2/ either way.]

Recurrence is

T .n/ D
(

‚.1/ if n D 1 ;

8T .n=2/C‚.n2/ if n > 1 :

Can use master method to show that it has solution T .n/ D ‚.n3/.

Asymptotically, no better than the obvious method.

Constant factors and recurrences: When setting up recurrences, can absorb con-
stant factors into asymptotic notation, but cannot absorb a constant number of sub-

probems. Although we absorb the 4 additions of n=2�n=2 matrices into the ‚.n2/

time, we cannot lose the 8 in front of the T .n=2/ term. If we absorb the constant

number of subproblems, then the recursion tree would not be “bushy” and would

instead just be a linear chain.

Strassen’s method

Idea: Make the recursion tree less bushy. Perform only 7 recursive multiplications

of n=2 � n=2 matrices, rather than 8. Will cost several additions of n=2 � n=2

matrices, but just a constant number more ) can still absorb the constant factor

for matrix additions into the ‚.n=2/ term.

The algorithm:

1. As in the recursive method, partition each of the matrices into four n=2 � n=2

submatrices. Time: ‚.1/.

2. Create 10 matrices S1; S2; : : : ; S10. Each is n=2 � n=2 and is the sum or dif-

ference of two matrices created in previous step. Time: ‚.n2/ to create all 10

matrices.

3. Recursively compute 7 matrix products P1; P2; : : : ; P7, each n=2 � n=2.

4. Compute n=2 � n=2 submatrices of C by adding and subtracting various com-

binations of the Pi . Time: ‚.n2/.
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Analysis

Recurrence will be

T .n/ D
(

‚.1/ if n D 1 ;

7T .n=2/C‚.n2/ if n > 1 :

By the master method, solution is T .n/ D ‚.nlg 7/.

Details

Step 2: Create the 10 matrices

S1 D B12 � B22 ;

S2 D A11 C A12 ;

S3 D A21 C A22 ;

S4 D B21 � B11 ;

S5 D A11 C A22 ;

S6 D B11 C B22 ;

S7 D A12 � A22 ;

S8 D B21 C B22 ;

S9 D A11 � A21 ;

S10 D B11 C B12 :

Add or subtract n=2 � n=2 matrices 10 times) time is ‚.n=2/.

Step 3: Create the 7 matrices

P1 D A11 � S1 D A11 � B12 � A11 � B22 ;

P2 D S2 � B22 D A11 � B22 C A12 � B22 ;

P3 D S3 � B11 D A21 � B11 C A22 � B11 ;

P4 D A22 � S4 D A22 � B21 � A22 � B11 ;

P5 D S5 � S6 D A11 � B11 C A11 � B22 C A22 � B11 C A22 � B22 ;

P6 D S7 � S8 D A12 � B21 C A12 � B22 � A22 � B21 � A22 � B22 ;

P7 D S9 � S10 D A11 � B11 C A11 � B12 � A21 � B11 � A21 � B12 :

The only multiplications needed are in the middle column; right-hand column just

shows the products in terms of the original submatrices of A and B .

Step 4: Add and subtract the Pi to construct submatrices of C :

C11 D P5 C P4 � P2 C P6 ;

C12 D P1 C P2 ;

C21 D P3 C P4 ;

C22 D P5 C P1 � P3 � P7 :

To see how these computations work, expand each right-hand side, replacing

each Pi with the submatrices of A and B that form it, and cancel terms: [We
expand out all four right-hand sides here. You might want to do just one or two of
them, to convince students that it works.]
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A11 �B11CA11 �B22CA22 �B11CA22 �B22

� A22 �B11 CA22 �B21

� A11 �B22 � A12 �B22

� A22 �B22� A22 �B21CA12 �B22CA12 �B21

A11 �B11 CA12 �B21

A11 �B12 � A11 �B22

CA11 �B22CA12 �B22

A11 �B12 CA12 �B22

A21 �B11CA22 �B11

� A22 �B11CA22 �B21

A21 �B11 CA22 �B21

A11 �B11CA11 �B22CA22 �B11CA22 �B22

� A11 �B22 CA11 �B12

� A22 �B11 � A21 �B11

�A11 �B11 � A11 �B12CA21 �B11CA21 �B12

A22 �B22 CA21 �B12

Theoretical and practical notes

Strassen’s algorithm was the first to beat ‚.n3/ time, but it’s not the asymptotically

fastest known. A method by Coppersmith and Winograd runs in O.n2:376/ time.

Practical issues against Strassen’s algorithm:

� Higher constant factor than the obvious ‚.n3/-time method.
� Not good for sparse matrices.
� Not numerically stable: larger errors accumulate than in the obvious method.
� Submatrices consume space, especially if copying.

Numerical stability problem is not as bad as previously thought. And can use index

calculations to reduce space requirement.

Various researchers have tried to find the crossover point, where Strassen’s algo-

rthm runs faster than the obvious ‚.n3/-time method. Analyses (that ignore caches

and hardware pipelines) have produced crossover points as low as n D 8, and ex-

periments have found crossover points as low as n D 400.

Substitution method

1. Guess the solution.

2. Use induction to find the constants and show that the solution works.



Lecture Notes for Chapter 4: Divide-and-Conquer 4-11

Example

T .n/ D
(

1 if n D 1 ;

2T .n=2/C n if n > 1 :

1. Guess: T .n/ D n lg n C n. [Here, we have a recurrence with an exact func-
tion, rather than asymptotic notation, and the solution is also exact rather than
asymptotic. We’ll have to check boundary conditions and the base case.]

2. Induction:

Basis: n D 1) n lg nC n D 1 D T .n/

Inductive step: Inductive hypothesis is that T .k/ D k lg k C k for all k < n.

We’ll use this inductive hypothesis for T .n=2/.

T .n/ D 2T
�n

2

�

C n

D 2
�n

2
lg

n

2
C n

2

�

C n (by inductive hypothesis)

D n lg
n

2
C nC n

D n.lg n � lg 2/C nC n

D n lg n � nC nC n

D n lg nC n :

Generally, we use asymptotic notation:

� We would write T .n/ D 2T .n=2/C‚.n/.

� We assume T .n/ D O.1/ for sufficiently small n.

� We express the solution by asymptotic notation: T .n/ D ‚.n lg n/.

� We don’t worry about boundary cases, nor do we show base cases in the substi-

tution proof.

� T .n/ is always constant for any constant n.
� Since we are ultimately interested in an asymptotic solution to a recurrence,

it will always be possible to choose base cases that work.
� When we want an asymptotic solution to a recurrence, we don’t worry about

the base cases in our proofs.
� When we want an exact solution, then we have to deal with base cases.

For the substitution method:

� Name the constant in the additive term.

� Show the upper (O) and lower (�) bounds separately. Might need to use dif-

ferent constants for each.

Example

T .n/ D 2T .n=2/ C ‚.n/. If we want to show an upper bound of T .n/ D
2T .n=2/CO.n/, we write T .n/ � 2T .n=2/C cn for some positive constant c.
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1. Upper bound:

Guess: T .n/ � dn lg n for some positive constant d . We are given c in the

recurrence, and we get to choose d as any positive constant. It’s OK for d to

depend on c.

Substitution:

T .n/ � 2T .n=2/C cn

D 2
�

d
n

2
lg

n

2

�

C cn

D dn lg
n

2
C cn

D dn lg n � dnC cn

� dn lg n if �dnC cn � 0 ;

d � c

Therefore, T .n/ D O.n lg n/.

2. Lower bound: Write T .n/ � 2T .n=2/C cn for some positive constant c.

Guess: T .n/ � dn lg n for some positive constant d .

Substitution:

T .n/ � 2T .n=2/C cn

D 2
�

d
n

2
lg

n

2

�

C cn

D dn lg
n

2
C cn

D dn lg n � dnC cn

� dn lg n if �dnC cn � 0 ;

d � c

Therefore, T .n/ D �.n lg n/.

Therefore, T .n/ D ‚.n lg n/. [For this particular recurrence, we can use d D c for
both the upper-bound and lower-bound proofs. That won’t always be the case.]

Make sure you show the same exact form when doing a substitution proof.

Consider the recurrence

T .n/ D 8T .n=2/C‚.n2/ :

For an upper bound:

T .n/ � 8T .n=2/C cn2 :

Guess: T .n/ � dn3.

T .n/ � 8d.n=2/3 C cn2

D 8d.n3=8/C cn2

D dn3 C cn2

6� dn3 doesn’t work!

Remedy: Subtract off a lower-order term.
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Guess: T .n/ � dn3 � d 0n2.

T .n/ � 8.d.n=2/3 � d 0.n=2/2/C cn2

D 8d.n3=8/ � 8d 0.n2=4/C cn2

D dn3 � 2d 0n2 C cn2

D dn3 � d 0n2 � d 0n2 C cn2

� dn3 � d 0n2 if �d 0n2 C cn2 � 0 ;

d 0 � c

Be careful when using asymptotic notation.

The false proof for the recurrence T .n/ D 4T .n=4/C n, that T .n/ D O.n/:

T .n/ � 4.c.n=4//C n

� cnC n

D O.n/ wrong!

Because we haven’t proven the exact form of our inductive hypothesis (which is

that T .n/ � cn), this proof is false.

Recursion trees

Use to generate a guess. Then verify by substitution method.

Example

T .n/ D T .n=3/C T .2n=3/C‚.n/.

For upper bound, rewrite as T .n/ � T .n=3/C T .2n=3/C cn; for lower bound, as

T .n/ � T .n=3/C T .2n=3/C cn.

By summing across each level, the recursion tree shows the cost at each level of

recursion (minus the costs of recursive calls, which appear in subtrees):

…

cncn

cn

cn

c(n/3) c(2n/3)

c(n/9) c(2n/9) c(2n/9) c(4n/9)

leftmost branch peters
out after log3 n levels

rightmost branch peters
out after log3/2 n levels

� There are log3 n full levels, and after log3=2 n levels, the problem size is down

to 1.

� Each level contributes � cn.

� Lower bound guess: � dn log3 n D �.n lg n/ for some positive constant d .
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� Upper bound guess: � dn log3=2 n D O.n lg n/ for some positive constant d .

� Then prove by substitution.

1. Upper bound:

Guess: T .n/ � dn lg n.

Substitution:

T .n/ � T .n=3/C T .2n=3/C cn

� d.n=3/ lg.n=3/C d.2n=3/ lg.2n=3/C cn

D .d.n=3/ lg n � d.n=3/ lg 3/

C .d.2n=3/ lg n � d.2n=3/ lg.3=2//C cn

D dn lg n � d..n=3/ lg 3C .2n=3/ lg.3=2//C cn

D dn lg n � d..n=3/ lg 3C .2n=3/ lg 3� .2n=3/ lg 2/C cn

D dn lg n � dn.lg 3� 2=3/C cn

� dn lg n if �dn.lg 3 � 2=3/C cn � 0 ;

d � c

lg 3 � 2=3
:

Therefore, T .n/ D O.n lg n/.

Note: Make sure that the symbolic constants used in the recurrence (e.g., c) and

the guess (e.g., d ) are different.

2. Lower bound:

Guess: T .n/ � dn lg n.

Substitution: Same as for the upper bound, but replacing � by �. End up

needing

0 < d � c

lg 3 � 2=3
:

Therefore, T .n/ D �.n lg n/.

Since T .n/ D O.n lg n/ and T .n/ D �.n lg n/, we conclude that T .n/ D
‚.n lg n/.

Master method

Used for many divide-and-conquer recurrences of the form

T .n/ D aT .n=b/C f .n/ ;

where a � 1, b > 1, and f .n/ > 0.

Based on the master theorem (Theorem 4.1).

Compare nlogb a vs. f .n/:

Case 1: f .n/ D O.nlogb a��/ for some constant � > 0.

(f .n/ is polynomially smaller than nlogb a.)
Solution: T .n/ D ‚.nlogb a/.

(Intuitively: cost is dominated by leaves.)
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Case 2: f .n/ D ‚.nlogb a lgk n/, where k � 0.

[This formulation of Case 2 is more general than in Theorem 4.1, and it is given
in Exercise 4.6-2.]
(f .n/ is within a polylog factor of nlogb a, but not smaller.)

Solution: T .n/ D ‚.nlogb a lgkC1 n/.

(Intuitively: cost is nlogb a lgk n at each level, and there are ‚.lg n/ levels.)

Simple case: k D 0) f .n/ D ‚.nlogb a/) T .n/ D ‚.nlogb a lg n/.

Case 3: f .n/ D �.nlogb aC�/ for some constant � > 0 and f .n/ satisfies the regu-

larity condition af .n=b/ � cf .n/ for some constant c < 1 and all sufficiently

large n.

(f .n/ is polynomially greater than nlogb a.)

Solution: T .n/ D ‚.f .n//.

(Intuitively: cost is dominated by root.)

What’s with the Case 3 regularity condition?

� Generally not a problem.

� It always holds whenever f .n/ D nk and f .n/ D �.nlogb aC�/ for constant

� > 0. [Proving this makes a nice homework exercise. See below.] So you

don’t need to check it when f .n/ is a polynomial.

[Here’s a proof that the regularity condition holds when f .n/ D nk and f .n/ D
�.nlogb aC�/ for constant � > 0.

Since f .n/ D �.nlogb aC�/ and f .n/ D nk , we have that k > logb a. Using a
base of b and treating both sides as exponents, we have bk > blogb a D a, and so
a=bk < 1. Since a, b, and k are constants, if we let c D a=bk, then c is a constant
strictly less than 1. We have that af .n=b/ D a.n=b/k D .a=bk/nk D cf .n/, and
so the regularity condition is satisfied.]

Examples

� T .n/ D 5T .n=2/C‚.n2/

nlog2 5 vs. n2

Since log2 5� � D 2 for some constant � > 0, use Case 1) T .n/ D ‚.nlg 5/

� T .n/ D 27T .n=3/C‚.n3 lg n/

nlog3 27 D n3 vs. n3 lg n

Use Case 2 with k D 1) T .n/ D ‚.n3 lg2 n/

� T .n/ D 5T .n=2/C‚.n3/

nlog2 5 vs. n3

Now lg 5C � D 3 for some constant � > 0

Check regularity condition (don’t really need to since f .n/ is a polynomial):

af .n=b/ D 5.n=2/3 D 5n3=8 � cn3 for c D 5=8 < 1

Use Case 3) T .n/ D ‚.n3/

� T .n/ D 27T .n=3/C‚.n3= lg n/

nlog3 27 D n3 vs. n3= lg n D n3 lg�1 n ¤ ‚.n3 lgk n/ for any k � 0.

Cannot use the master method.
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[We don’t prove the master theorem in our algorithms course. We sometimes prove
a simplified version for recurrences of the form T .n/ D aT .n=b/Cnc . Section 4.6
of the text has the full proof of the master theorem.]



Solutions for Chapter 4:

Divide-and-Conquer

Solution to Exercise 4.1-1

If the index of the greatest element of A is i , it returns .i; i; AŒi �/.

Solution to Exercise 4.1-2

MAX-SUBARRAY-BRUTE-FORCE.A/

n D A: length

max-so-far D �1
for l D 1 to n

sum D 0

for h D l to n

sum D sumC AŒh�

if sum > max-so-far

max-so-far D sum

low D l

high D h

return .low; high/

Solution to Exercise 4.1-4

If the algorithm returns a negative sum, toss out the answer and use an empty

subarray instead.
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Solution to Exercise 4.1-5

MAX-SUBARRAY-LINEAR.A/

n D A: length

max-sum D �1
ending-here-sum D �1
for j D 1 to n

ending-here-high D j

if ending-here-sum > 0

ending-here-sum D ending-here-sum C AŒj �

else ending-here-low D j

ending-here-sum D AŒj �

if ending-here-sum > max-sum

max-sum D ending-here-sum

low D ending-here-low

high D ending-here-high

return .low; high; max-sum/

The variables are intended as follows:

� low and high demarcate a maximum subarray found so far.

� max-sum gives the sum of the values in a maximum subarray found so far.

� ending-here-low and ending-here-high demarcate a maximum subarray ending

at index j . Since the high end of any subarray ending at index j must be j ,

every iteration of the for loop automatically sets ending-here-high D j .

� ending-here-sum gives the sum of the values in a maximum subarray ending at

index j .

The first test within the for loop determines whether a maximum subarray

ending at index j contains just AŒj �. As we enter an iteration of the loop,

ending-here-sum has the sum of the values in a maximum subarray ending at j �1.

If ending-here-sum C AŒj � > AŒj �, then we extend the maximum subarray end-

ing at index j � 1 to include index j . (The test in the if statement just subtracts

out AŒj � from both sides.) Otherwise, we start a new subarray at index j , so both

its low and high ends have the value j and its sum is AŒj �. Once we know the

maximum subarray ending at index j , we test to see whether it has a greater sum

than the maximum subarray found so far, ending at any position less than or equal

to j . If it does, then we update low, high, and max-sum appropriately.

Since each iteration of the for loop takes constant time, and the loop makes n

iterations, the running time of MAX-SUBARRAY-LINEAR is ‚.n/.



Solutions for Chapter 4: Divide-and-Conquer 4-19

Solution to Exercise 4.2-2

STRASSEN.A; B/

n D A:rows

let C be a new n � n matrix

if n == 1

c11 D a11 � b11

else partition A and B in equations (4.9)

let C11, C12, C21, and C22 be n=2 � n=2 matrices

create n=2 � n=2 matrices S1; S2; : : : ; S10 and P1; P2; : : : ; P7

S1 D B12 � B22

S2 D A11 C A12

S3 D A12 C A22

S4 D B21 � B11

S5 D A11 C A22

S6 D B11 C B22

S7 D A12 � A22

S8 D B21 C B22

S9 D A11 � A21

S10 D B11 C B12

P1 D STRASSEN.A11; S1/

P2 D STRASSEN.S2; B22/

P3 D STRASSEN.S3; B11/

P4 D STRASSEN.A22; S4/

P5 D STRASSEN.S5; S6/

P6 D STRASSEN.S7; S8/

P7 D STRASSEN.S9; S10/

C11 D P5 C P4 � P2 C P6

C12 D P1 C P2

C21 D P3 C P4

C22 D P5 C P1 � P3 � P7

combine C11, C12, C21, and C22 into C

return C

Solution to Exercise 4.2-4

This solution is also posted publicly

If you can multiply 3 � 3 matrices using k multiplications, then you can multiply

n � n matrices by recursively multiplying n=3 � n=3 matrices, in time T .n/ D
kT .n=3/C‚.n2/.

Using the master method to solve this recurrence, consider the ratio of nlog3 k

and n2:

� If log3 k D 2, case 2 applies and T .n/ D ‚.n2 lg n/. In this case, k D 9 and

T .n/ D o.nlg 7/.
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� If log3 k < 2, case 3 applies and T .n/ D ‚.n2/. In this case, k < 9 and

T .n/ D o.nlg 7/.

� If log3 k > 2, case 1 applies and T .n/ D ‚.nlog3 k/. In this case, k > 9.

T .n/ D o.nlg 7/ when log3 k < lg 7, i.e., when k < 3lg 7 � 21:85. The largest

such integer k is 21.

Thus, k D 21 and the running time is ‚.nlog3 k/ D ‚.nlog3 21/ D O.n2:80/ (since

log3 21 � 2:77).

Solution to Exercise 4.3-1

We guess that T .n/ � cn2 for some constant c > 0. We have

T .n/ D T .n � 1/C n

� c.n � 1/2 C n

D cn2 � 2cnC c C n

D cn2 C c.1 � 2n/C n :

This last quantity is less than or equal to cn2 if c.1� 2n/C n � 0 or, equivalently,

c � n=.2n � 1/. This last condition holds for all n � 1 and c � 1.

For the boundary condition, we set T .1/ D 1, and so T .1/ D 1 � c � 12. Thus, we

can choose n0 D 1 and c D 1.

Solution to Exercise 4.3-7

If we were to try a straight substitution proof, assuming that T .n/ � cnlog3 4, we
would get stuck:

T .n/ � 4.c.n=3/log3 4/C n

D 4c

�
nlog3 4

4

�

C n

D cnlog3 4 C n ;

which is greater than cnlog3 4. Instead, we subtract off a lower-order term and as-

sume that T .n/ � cnlog3 4 � dn. Now we have

T .n/ � 4.c.n=3/log3 4 � dn/C n

D 4

�
cnlog3 4

4
� dn

�

C n

D cnlog3 4 � 4dnC n ;

which is less than or equal to cnlog3 4 � dn if d � 1=3.
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Solution to Exercise 4.4-6

This solution is also posted publicly

The shortest path from the root to a leaf in the recursion tree is n ! .1=3/n !
.1=3/2n ! � � � ! 1. Since .1=3/kn D 1 when k D log3 n, the height of the part

of the tree in which every node has two children is log3 n. Since the values at each

of these levels of the tree add up to cn, the solution to the recurrence is at least

cn log3 n D �.n lg n/.

Solution to Exercise 4.4-9

This solution is also posted publicly

T .n/ D T .˛n/C T ..1 � ˛/n/C cn

We saw the solution to the recurrence T .n/ D T .n=3/CT .2n=3/C cn in the text.

This recurrence can be similarly solved.

Without loss of generality, let ˛ � 1�˛, so that 0 < 1�˛ � 1=2 and 1=2 � ˛ < 1.

…

…

log1=.1�˛/ n log1=˛ n

cn

cn

cn

cn

Total: O.n lg n/

c˛n c.1� ˛/n

c˛2n c˛.1� ˛/nc˛.1� ˛/n c.1� ˛/2n

The recursion tree is full for log1=.1�˛/ n levels, each contributing cn, so we guess

�.n log1=.1�˛/ n/ D �.n lg n/. It has log1=˛ n levels, each contributing � cn, so

we guess O.n log1=˛ n/ D O.n lg n/.

Now we show that T .n/ D ‚.n lg n/ by substitution. To prove the upper bound,

we need to show that T .n/ � dn lg n for a suitable constant d > 0.

T .n/ D T .˛n/C T ..1 � ˛/n/C cn

� d˛n lg.˛n/C d.1 � ˛/n lg..1� ˛/n/C cn

D d˛n lg ˛ C d˛n lg nC d.1 � ˛/n lg.1� ˛/C d.1 � ˛/n lg nC cn

D dn lg nC dn.˛ lg ˛ C .1 � ˛/ lg.1 � ˛//C cn

� dn lg n ;

if dn.˛ lg ˛ C .1 � ˛/ lg.1 � ˛//C cn � 0. This condition is equivalent to

d.˛ lg ˛ C .1� ˛/ lg.1� ˛// � �c :
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Since 1=2 � ˛ < 1 and 0 < 1�˛ � 1=2, we have that lg ˛ < 0 and lg.1�˛/ < 0.

Thus, ˛ lg ˛ C .1 � ˛/ lg.1 � ˛/ < 0, so that when we multiply both sides of the

inequality by this factor, we need to reverse the inequality:

d � �c

˛ lg ˛ C .1� ˛/ lg.1� ˛/

or

d � c

�˛ lg ˛ C�.1� ˛/ lg.1 � ˛/
:

The fraction on the right-hand side is a positive constant, and so it suffices to pick

any value of d that is greater than or equal to this fraction.

To prove the lower bound, we need to show that T .n/ � dn lg n for a suitable

constant d > 0. We can use the same proof as for the upper bound, substituting �
for �, and we get the requirement that

0 < d � c

�˛ lg ˛ � .1 � ˛/ lg.1� ˛/
:

Therefore, T .n/ D ‚.n lg n/.

Solution to Exercise 4.5-2

We need to find the largest integer a such that log4 a < lg 7. The answer is a D 48.

Solution to Problem 4-1

Note: In parts (a), (b), and (d) below, we are applying case 3 of the master theorem,

which requires the regularity condition that af .n=b/ � cf .n/ for some constant

c < 1. In each of these parts, f .n/ has the form nk . The regularity condition is

satisfied because af .n=b/ D ank=bk D .a=bk/nk D .a=bk/f .n/, and in each of

the cases below, a=bk is a constant strictly less than 1.

a. T .n/ D 2T .n=2/C n3 D ‚.n3/. This is a divide-and-conquer recurrence with

a D 2, b D 2, f .n/ D n3, and nlogb a D nlog2 2 D n. Since n3 D �.nlog2 2C2/

and a=bk D 2=23 D 1=4 < 1, case 3 of the master theorem applies, and

T .n/ D ‚.n3/.

b. T .n/ D T .9n=10/ C n D ‚.n/. This is a divide-and-conquer recurrence with

a D 1, b D 10=9, f .n/ D n, and nlogb a D nlog10=9 1 D n0 D 1. Since

n D �.nlog10=9 1C1/ and a=bk D 1=.10=9/1 D 9=10 < 1, case 3 of the master

theorem applies, and T .n/ D ‚.n/.

c. T .n/ D 16T .n=4/ C n2 D ‚.n2 lg n/. This is another divide-and-conquer

recurrence with a D 16, b D 4, f .n/ D n2, and nlogb a D nlog4 16 D n2. Since

n2 D ‚.nlog4 16/, case 2 of the master theorem applies, and T .n/ D ‚.n2 lg n/.
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d. T .n/ D 7T .n=3/C n2 D ‚.n2/. This is a divide-and-conquer recurrence with

a D 7, b D 3, f .n/ D n2, and nlogb a D nlog3 7. Since 1 < log3 7 < 2, we have

that n2 D �.nlog3 7C�/ for some constant � > 0. We also have a=bk D 7=32 D
7=9 < 1, so that case 3 of the master theorem applies, and T .n/ D ‚.n2/.

e. T .n/ D 7T .n=2/ C n2 D O.nlg 7/. This is a divide-and-conquer recurrence

with a D 7, b D 2, f .n/ D n2, and nlogb a D nlog2 7. Since 2 < lg 7 < 3, we

have that n2 D O.nlog2 7��/ for some constant � > 0. Thus, case 1 of the master

theorem applies, and T .n/ D ‚.nlg 7/.

f. T .n/ D 2T .n=4/ C pn D ‚.
p

n lg n/. This is another divide-and-conquer

recurrence with a D 2, b D 4, f .n/ D pn, and nlogb a D nlog4 2 D pn.

Since
p

n D ‚.nlog4 2/, case 2 of the master theorem applies, and T .n/ D
‚.
p

n lg n/.

g. T .n/ D T .n � 1/C n

Using the recursion tree shown below, we get a guess of T .n/ D ‚.n2/.

n-1

n-2

n

1

n

n-1

n-2

1

2

n

2

:::

‚.n2/

First, we prove the T .n/ D �.n2/ part by induction. The inductive hypothesis

is T .n/ � cn2 for some constant c > 0.

T .n/ D T .n � 1/C n

� c.n � 1/2 C n

D cn2 � 2cnC c C n

� cn2

if �2cnC nC c � 0 or, equivalently, n.1� 2c/C c � 0. This condition holds

when n � 0 and 0 < c � 1=2.

For the upper bound, T .n/ D O.n2/, we use the inductive hypothesis that

T .n/ � cn2 for some constant c > 0. By a similar derivation, we get that

T .n/ � cn2 if �2cnC n C c � 0 or, equivalently, n.1 � 2c/C c � 0. This

condition holds for c D 1 and n � 1.

Thus, T .n/ D �.n2/ and T .n/ D O.n2/, so we conclude that T .n/ D ‚.n2/.
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h. T .n/ D T .
p

n/C 1

The easy way to do this is with a change of variables, as on page 86 of

the text. Let m D lg n and S.m/ D T .2m/. T .2m/ D T .2m=2/ C 1, so

S.m/ D S.m=2/C 1. Using the master theorem, nlogb a D nlog2 1 D n0 D 1

and f .n/ D 1. Since 1 D ‚.1/, case 2 applies and S.m/ D ‚.lg m/. There-

fore, T .n/ D ‚.lg lg n/.

Solution to Problem 4-3

[This problem is solved only for parts a, c, e, f, g, h, and i.]

a. T .n/ D 3T .n=2/C n lg n

We have f .n/ D n lg n and nlogb a D nlg 3 � n1:585. Since n lg n D O.nlg 3��/

for any 0 < � � 0:58, by case 1 of the master theorem, we have T .n/ D
‚.nlg 3/.

c. T .n/ D 4T .n=2/C n2
p

n

We have f .n/ D n2
p

n D n5=2 and nlogb a D nlog2 4 D n2. Since n5=2 D
�.n2C�/ for � D 1=2, we look at the regularity condition in case 3 of the
master theorem. We have af .n=b/ D 4.n=2/2

p

n=2 D n5=2=
p

2 � cn5=2 for

1=
p

2 � c < 1. Case 3 applies, and we have T .n/ D ‚.n2
p

n/.

e. T .n/ D 2T .n=2/C n= lg n

We can get a guess by means of a recursion tree:

…

…

lg n

n

lg n

n

lg n

n=2

lg.n=2/

n=2

lg.n=2/

n=4

lg.n=4/

n=4

lg.n=4/

n=4

lg.n=4/

n=4

lg.n=4/

n

lg n � 1

n

lg n � 2

lg n�1
X

iD0

n

lg n � i
D ‚.n lg lg n/

We get the sum on each level by observing that at depth i , we have 2i nodes,

each with a numerator of n=2i and a denominator of lg.n=2i / D lg n � i , so

that the cost at depth i is

2i � n=2i

lg n � i
D n

lg n � i
:
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The sum for all levels is
lg n�1
X

iD0

n

lg n � i
D n

lg n
X

iD1

n

i

D n

lg n
X

iD1

1=i

D n �‚.lg lg n/ (by equation (A.7), the harmonic series)

D ‚.n lg lg n/ :

We can use this analysis as a guess that T .n/ D ‚.n lg lg n/. If we were to do

a straight substitution proof, it would be rather involved. Instead, we will show

by substitution that T .n/ � n.1 C Hblg nc/ and T .n/ � n � Hdlg ne, where Hk

is the kth harmonic number: Hk D 1=1 C 1=2 C 1=3 C � � � C 1=k. We also

define H0 D 0. Since Hk D ‚.lg k/, we have that Hblg nc D ‚.lg blg nc/ D
‚.lg lg n/ and Hdlg ne D ‚.lg dlg ne/ D ‚.lg lg n/. Thus, we will have that

T .n/ D ‚.n lg lg n/.

The base case for the proof is for n D 1, and we use T .1/ D 1. Here, lg n D 0,

so that lg n D blg nc D dlg ne. Since H0 D 0, we have T .1/ D 1 � 1.1CH0/

and T .1/ D 1 � 0 D 1 �H0.

For the upper bound of T .n/ � n.1CHblg nc/, we have

T .n/ D 2T .n=2/C n= lg n

� 2..n=2/.1CHblg.n=2/c//C n= lg n

D n.1CHblg n�1c/C n= lg n

D n.1CHblg nc�1 C 1= lg n/

� n.1CHblg nc�1 C 1= blg nc/
D n.1CHblg nc/ ;

where the last line follows from the identity Hk D Hk�1 C 1=k.

The upper bound of T .n/ � n �Hdlg ne is similar:

T .n/ D 2T .n=2/C n= lg n

� 2..n=2/ �Hdlg.n=2/e/C n= lg n

D n �Hdlg n�1e C n= lg n

D n � .Hdlg ne�1 C 1= lg n/

� n � .Hdlg ne�1 C 1= dlg ne/
D n �Hdlg ne :

Thus, T .n/ D ‚.n lg lg n/.

f. T .n/ D T .n=2/C T .n=4/C T .n=8/C n

Using the recursion tree shown below, we get a guess of T .n/ D ‚.n/.
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n n

log4 n

n
2

n
4

n
4

n
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n
8

n
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n
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n
16

n
16

n
32

n
32

n
64

log8 n

:::

n.4C2C1
8

/ D 7
8
n

n.1
4
C 2

8
C 3

16
C 2

32
C 1

64
/

D n16C16C12C4C1
64

D n49
64
D 7

8

2
n

log n
X

iD1

�
7

8

�i

n D ‚.n/

We use the substitution method to prove that T .n/ D O.n/. Our inductive

hypothesis is that T .n/ � cn for some constant c > 0. We have

T .n/ D T .n=2/C T .n=4/C T .n=8/C n

� cn=2C cn=4C cn=8C n

D 7cn=8C n

D .1C 7c=8/n

� cn if c � 8 :

Therefore, T .n/ D O.n/.

Showing that T .n/ D �.n/ is easy:

T .n/ D T .n=2/C T .n=4/C T .n=8/C n � n :

Since T .n/ D O.n/ and T .n/ D �.n/, we have that T .n/ D ‚.n/.

g. T .n/ D T .n � 1/C 1=n

This recurrence corresponds to the harmonic series, so that T .n/ D Hn, where

Hn D 1=1C1=2C1=3C� � �C1=n. For the base case, we have T .1/ D 1 D H1.

For the inductive step, we assume that T .n � 1/ D Hn�1, and we have

T .n/ D T .n � 1/C 1=n

D Hn�1 C 1=n

D Hn :

Since Hn D ‚.lg n/ by equation (A.7), we have that T .n/ D ‚.lg n/.

h. T .n/ D T .n � 1/C lg n

We guess that T .n/ D ‚.n lg n/. To prove the upper bound, we will show that

T .n/ D O.n lg n/. Our inductive hypothesis is that T .n/ � cn lg n for some

constant c. We have
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T .n/ D T .n � 1/C lg n

� c.n � 1/ lg.n � 1/C lg n

D cn lg.n � 1/ � c lg.n � 1/C lg n

� cn lg.n � 1/ � c lg.n=2/C lg n

(since lg.n � 1/ � lg.n=2/ for n � 2)

D cn lg.n � 1/ � c lg nC c C lg n

< cn lg n � c lg nC c C lg n

� cn lg n ;

if �c lg nC c C lg n � 0. Equivalently,

�c lg nC c C lg n � 0

c � .c � 1/ lg n

lg n � c=.c � 1/ :

This works for c D 2 and all n � 4.

To prove the lower bound, we will show that T .n/ D �.n lg n/. Our inductive

hypothesis is that T .n/ � cn lg nC dn for constants c and d . We have

T .n/ D T .n � 1/C lg n

� c.n � 1/ lg.n � 1/C d.n � 1/C lg n

D cn lg.n � 1/ � c lg.n � 1/C dn � d C lg n

� cn lg.n=2/ � c lg.n � 1/C dn � d C lg n

(since lg.n � 1/ � lg.n=2/ for n � 2)

D cn lg n � cn � c lg.n � 1/C dn � d C lg n

� cn lg n ;

if �cn� c lg.n � 1/C dn � d C lg n � 0. Since

�cn � c lg.n � 1/C dn � d C lg n >

�cn � c lg.n � 1/C dn � d C lg.n � 1/ ;

it suffices to find conditions in which�cn�c lg.n�1/Cdn�dClg.n�1/ � 0.

Equivalently,

�cn � c lg.n � 1/C dn � d C lg.n � 1/ � 0

.d � c/n � .c � 1/ lg.n � 1/C d :

This works for c D 1, d D 2, and all n � 2.

Since T .n/ D O.n lg n/ and T .n/ D �.n lg n/, we conclude that T .n/ D
‚.n lg n/.

i. T .n/ D T .n � 2/C 2 lg n

We guess that T .n/ D ‚.n lg n/. We show the upper bound of T .n/ D
O.n lg n/ by means of the inductive hypothesis T .n/ � cn lg n for some con-

stant c > 0. We have

T .n/ D T .n � 2/C 2 lg n

� c.n � 2/ lg.n � 2/C 2 lg n

� c.n � 2/ lg nC 2 lg n

D .cn � 2c C 2/ lg n
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D cn lg nC .2� 2c/ lg n

� cn lg n if c > 1 :

Therefore, T .n/ D O.n lg n/.

For the lower bound of T .n/ D �.n lg n/, we’ll show that T .n/ � cn lg nCdn,

for constants c; d > 0 to be chosen. We assume that n � 4, which implies that

1. lg.n � 2/ � lg.n=2/,

2. n=2 � lg n, and

3. n=2 � 2.

(We’ll use these inequalities as we go along.) We have

T .n/ � c.n � 2/ lg.n � 2/C d.n � 2/C 2 lg n

D cn lg.n � 2/ � 2c lg.n � 2/C dn � 2d C 2 lg n

> cn lg.n � 2/ � 2c lg nC dn � 2d C 2 lg n

(since � lg n < � lg.n � 2/)

D cn lg.n � 2/ � 2.c � 1/ lg nC dn � 2d

� cn lg.n=2/ � 2.c � 1/ lg nC dn � 2d (by inequality (1) above)

D cn lg n � cn� 2.c � 1/ lg nC dn � 2d

� cn lg n ;

if �cn � 2.c � 1/ lg n C dn � 2d � 0 or, equivalently, dn � cn C 2.c �
1/ lg n C 2d . Pick any constant c > 1=2, and then pick any constant d such

that

d � 2.2c � 1/ :

(The requirement that c > 1=2 means that d is positive.) Then

d=2 � 2c � 1 D c C .c � 1/ ;

and adding d=2 to both sides, we have

d � c C .c � 1/C d=2 :

Multiplying by n yields

dn � cnC .c � 1/nC dn=2 ;

and then both multiplying and dividing the middle term by 2 gives

dn � cnC 2.c � 1/n=2C dn=2 :

Using inequalities (2) and (3) above, we get

dn � cnC 2.c � 1/ lg nC 2d ;

which is what we needed to show. Thus T .n/ D �.n lg n/. Since T .n/ D
O.n lg n/ and T .n/ D �.n lg n/, we conclude that T .n/ D ‚.n lg n/.



Lecture Notes for Chapter 5:

Probabilistic Analysis and Randomized

Algorithms

[This chapter introduces probabilistic analysis and randomized algorithms. It as-
sumes that the student is familiar with the basic probability material in Appendix C.

The primary goals of these notes are to

� explain the difference between probabilistic analysis and randomized algo-
rithms,

� present the technique of indicator random variables, and

� give another example of the analysis of a randomized algorithm (permuting an
array in place).

These notes omit the technique of permuting an array by sorting, and they omit the
starred Section 5.4.]

The hiring problem

Scenario

� You are using an employment agency to hire a new office assistant.

� The agency sends you one candidate each day.

� You interview the candidate and must immediately decide whether or not to

hire that person. But if you hire, you must also fire your current office assis-

tant—even if it’s someone you have recently hired.

� Cost to interview is ci per candidate (interview fee paid to agency).

� Cost to hire is ch per candidate (includes cost to fire current office assistant +

hiring fee paid to agency).

� Assume that ch > ci .

� You are committed to having hired, at all times, the best candidate seen so

far. Meaning that whenever you interview a candidate who is better than your

current office assistant, you must fire the current office assistant and hire the

candidate. Since you must have someone hired at all times, you will always

hire the first candidate that you interview.

Goal

Determine what the price of this strategy will be.
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Pseudocode to model this scenario

Assumes that the candidates are numbered 1 to n and that after interviewing each

candidate, we can determine if it’s better than the current office assistant. Uses a

dummy candidate 0 that is worse than all others, so that the first candidate is always

hired.

HIRE-ASSISTANT.n/

best D 0 // candidate 0 is a least-qualified dummy candidate

for i D 1 to n

interview candidate i

if candidate i is better than candidate best

best D i

hire candidate i

Cost

If n candidates, and we hire m of them, the cost is O.nci Cmch/.

� Have to pay nci to interview, no matter how many we hire.

� So we focus on analyzing the hiring cost mch.

� mch varies with each run—it depends on the order in which we interview the

candidates.

� This is a model of a common paradigm: we need to find the maximum or

minimum in a sequence by examining each element and maintaining a current

“winner.” The variable m denotes how many times we change our notion of

which element is currently winning.

Worst-case analysis

In the worst case, we hire all n candidates.

This happens if each one is better than all who came before. In other words, if the

candidates appear in increasing order of quality.

If we hire all n, then the cost is O.nci C nch/ D O.nch/ (since ch > ci ).

Probabilistic analysis

In general, we have no control over the order in which candidates appear.

We could assume that they come in a random order:

� Assign a rank to each candidate: rank.i/ is a unique integer in the range 1 to n.

� The ordered list hrank.1/; rank.2/; : : : ; rank.n/i is a permutation of the candi-

date numbers h1; 2; : : : ; ni.
� The list of ranks is equally likely to be any one of the nŠ permutations.

� Equivalently, the ranks form a uniform random permutation: each of the pos-

sible nŠ permutations appears with equal probability.
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Essential idea of probabilistic analysis

We must use knowledge of, or make assumptions about, the distribution of inputs.

� The expectation is over this distribution.

� This technique requires that we can make a reasonable characterization of the

input distribution.

Randomized algorithms

We might not know the distribution of inputs, or we might not be able to model it

computationally.

Instead, we use randomization within the algorithm in order to impose a distribu-

tion on the inputs.

For the hiring problem

Change the scenario:

� The employment agency sends us a list of all n candidates in advance.

� On each day, we randomly choose a candidate from the list to interview (but

considering only those we have not yet interviewed).

� Instead of relying on the candidates being presented to us in a random order,

we take control of the process and enforce a random order.

What makes an algorithm randomized

An algorithm is randomized if its behavior is determined in part by values pro-

duced by a random-number generator.

� RANDOM.a; b/ returns an integer r , where a � r � b and each of the b�aC1

possible values of r is equally likely.

� In practice, RANDOM is implemented by a pseudorandom-number generator,

which is a deterministic method returning numbers that “look” random and pass

statistical tests.

Indicator random variables

A simple yet powerful technique for computing the expected value of a random

variable.

Helpful in situations in which there may be dependence.

Given a sample space and an event A, we define the indicator random variable

I fAg D
(

1 if A occurs ;

0 if A does not occur :

Lemma

For an event A, let XA D I fAg. Then E ŒXA� D Pr fAg.
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Proof Letting A be the complement of A, we have

E ŒXA� D E ŒI fAg�
D 1 � Pr fAg C 0 � Pr

˚

A
	

(definition of expected value)

D Pr fAg : (lemma)

Simple example

Determine the expected number of heads when we flip a fair coin one time.

� Sample space is fH; T g.
� Pr fH g D Pr fT g D 1=2.

� Define indicator random variable XH D I fH g. XH counts the number of heads

in one flip.

� Since Pr fH g D 1=2, lemma says that E ŒXH � D 1=2.

Slightly more complicated example

Determine the expected number of heads in n coin flips.

� Let X be a random variable for the number of heads in n flips.

� Could compute E ŒX� D Pn

kD0 k � Pr fX D kg. In fact, this is what the book

does in equation (C.37).

� Instead, we’ll use indicator random variables.

� For i D 1; 2; : : : ; n, define Xi D I fthe i th flip results in event H g.
� Then X D

Pn

iD1 Xi .

� Lemma says that E ŒXi � D Pr fH g D 1=2 for i D 1; 2; : : : ; n.

� Expected number of heads is E ŒX� D E Œ
Pn

iD1 Xi �.

� Problem: We want E Œ
Pn

iD1 Xi �. We have only the individual expectations

E ŒX1� ; E ŒX2� ; : : : ; E ŒXn�.

� Solution: Linearity of expectation says that the expectation of the sum equals

the sum of the expectations. Thus,

E ŒX� D E

"
n
X

iD1

Xi

#

D
n
X

iD1

E ŒXi �

D
n
X

iD1

1=2

D n=2 :

� Linearity of expectation applies even when there is dependence among the ran-

dom variables. [Not an issue in this example, but it can be a great help. The
hat-check problem of Exercise 5.2-4 is a problem with lots of dependence. See
the solution on page 5-11 of this manual.]
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Analysis of the hiring problem

Assume that the candidates arrive in a random order.

Let X be a random variable that equals the number of times we hire a new office

assistant.

Define indicator random variables X1; X2; : : : ; Xn, where

Xi D I fcandidate i is hiredg :

Useful properties:

� X D X1 C X2 C � � � CXn.

� Lemma) E ŒXi � D Pr fcandidate i is hiredg.
We need to compute Pr fcandidate i is hiredg.
� Candidate i is hired if and only if candidate i is better than each of candidates

1; 2; : : : ; i � 1.

� Assumption that the candidates arrive in random order) candidates 1; 2; : : : ; i

arrive in random order) any one of these first i candidates is equally likely to

be the best one so far.

� Thus, Pr fcandidate i is the best so farg D 1=i .

� Which implies E ŒXi � D 1=i .

Now compute E ŒX�:

E ŒX� D E

"
n
X

iD1

Xi

#

D
n
X

iD1

E ŒXi �

D
n
X

iD1

1=i

D ln nCO.1/ (equation (A.7): the sum is a harmonic series) .

Thus, the expected hiring cost is O.ch ln n/, which is much better than the worst-

case cost of O.nch/.

Randomized algorithms

Instead of assuming a distribution of the inputs, we impose a distribution.

The hiring problem

For the hiring problem, the algorithm is deterministic:

� For any given input, the number of times we hire a new office assistant will

always be the same.
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� The number of times we hire a new office assistant depends only on the input.

� In fact, it depends only on the ordering of the candidates’ ranks that it is given.

� Some rank orderings will always produce a high hiring cost. Example: h1; 2; 3;

4; 5; 6i, where each candidate is hired.

� Some will always produce a low hiring cost. Example: any ordering in which

the best candidate is the first one interviewed. Then only the best candidate is

hired.

� Some may be in between.

Instead of always interviewing the candidates in the order presented, what if we

first randomly permuted this order?

� The randomization is now in the algorithm, not in the input distribution.

� Given a particular input, we can no longer say what its hiring cost will be. Each

time we run the algorithm, we can get a different hiring cost.

� In other words, each time we run the algorithm, the execution depends on the

random choices made.

� No particular input always elicits worst-case behavior.

� Bad behavior occurs only if we get “unlucky” numbers from the random-

number generator.

Pseudocode for randomized hiring problem

RANDOMIZED-HIRE-ASSISTANT.n/

randomly permute the list of candidates

HIRE-ASSISTANT.n/

Lemma

The expected hiring cost of RANDOMIZED-HIRE-ASSISTANT is O.ch ln n/.

Proof After permuting the input array, we have a situation identical to the proba-

bilistic analysis of deterministic HIRE-ASSISTANT.

Randomly permuting an array

[The book considers two methods of randomly permuting an n-element array. The
first method assigns a random priority in the range 1 to n3 to each position and then
reorders the array elements into increasing priority order. We omit this method
from these notes. The second method is better: it works in place (unlike the
priority-based method), it runs in linear time without requiring sorting, and it needs
fewer random bits (n random numbers in the range 1 to n rather than the range 1
to n3). We present and analyze the second method in these notes.]

Goal

Produce a uniform random permutation (each of the nŠ permutations is equally

likely to be produced).
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Non-goal: Show that for each element AŒi�, the probability that AŒi� moves to

position j is 1=n. (See Exercise 5.3-4, whose solution is on page 5-14 of this

manual.)

The following procedure permutes the array AŒ1 : : n� in place (i.e., no auxiliary

array is required).

RANDOMIZE-IN-PLACE.A; n/

for i D 1 to n

swap AŒi� with AŒRANDOM.i; n/�

Idea

� In iteration i , choose AŒi� randomly from AŒi : : n�.

� Will never alter AŒi� after iteration i .

Time

O.1/ per iteration) O.n/ total.

Correctness

Given a set of n elements, a k-permutation is a sequence containing k of the n

elements. There are nŠ=.n � k/Š possible k-permutations.

Lemma

RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof Use a loop invariant:

Loop invariant: Just prior to the i th iteration of the for loop, for each

possible .i � 1/-permutation, subarray AŒ1 : : i � 1� contains this .i � 1/-

permutation with probability .n � i C 1/Š=nŠ.

Initialization: Just before first iteration, i D 1. Loop invariant says that for each
possible 0-permutation, subarray AŒ1 : : 0� contains this 0-permutation with

probability nŠ=nŠ D 1. AŒ1 : : 0� is an empty subarray, and a 0-permutation

has no elements. So, AŒ1 : : 0� contains any 0-permutation with probability 1.

Maintenance: Assume that just prior to the i th iteration, each possible .i � 1/-

permutation appears in AŒ1 : : i �1� with probability .n� iC1/Š=nŠ. Will show

that after the i th iteration, each possible i-permutation appears in AŒ1 : : i � with

probability .n� i/Š=nŠ. Incrementing i for the next iteration then maintains the

invariant.

Consider a particular i-permutation � D hx1; x2; : : : ; xii. It consists of an

.i � 1/-permutation � 0 D hx1; x2; : : : ; xi�1i, followed by xi .

Let E1 be the event that the algorithm actually puts � 0 into AŒ1 : : i � 1�. By the

loop invariant, Pr fE1g D .n � i C 1/Š=nŠ.

Let E2 be the event that the i th iteration puts xi into AŒi�.
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We get the i-permutation � in AŒ1 : : i � if and only if both E1 and E2 occur)
the probability that the algorithm produces � in AŒ1 : : i � is Pr fE2 \E1g.
Equation (C.14)) Pr fE2 \E1g D Pr fE2 j E1g Pr fE1g.
The algorithm chooses xi randomly from the n� i C 1 possibilities in AŒi : : n�

) Pr fE2 j E1g D 1=.n � i C 1/. Thus,

Pr fE2 \E1g D Pr fE2 j E1g Pr fE1g

D 1

n � i C 1
� .n � i C 1/Š

nŠ

D .n � i/Š

nŠ
:

Termination: At termination, i D nC 1, so we conclude that AŒ1 : : n� is a given

n-permutation with probability .n � n/Š=nŠ D 1=nŠ. (lemma)
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Probabilistic Analysis and Randomized

Algorithms

Solution to Exercise 5.1-3

To get an unbiased random bit, given only calls to BIASED-RANDOM, call
BIASED-RANDOM twice. Repeatedly do so until the two calls return different

values, and when this occurs, return the first of the two bits:

UNBIASED-RANDOM

while TRUE

x D BIASED-RANDOM

y D BIASED-RANDOM

if x ¤ y

return x

To see that UNBIASED-RANDOM returns 0 and 1 each with probability 1=2, ob-

serve that the probability that a given iteration returns 0 is

Pr fx D 0 and y D 1g D .1� p/p ;

and the probability that a given iteration returns 1 is

Pr fx D 1 and y D 0g D p.1� p/ :

(We rely on the bits returned by BIASED-RANDOM being independent.) Thus, the

probability that a given iteration returns 0 equals the probability that it returns 1.

Since there is no other way for UNBIASED-RANDOM to return a value, it returns 0

and 1 each with probability 1=2.

Assuming that each iteration takes O.1/ time, the expected running time of

UNBIASED-RANDOM is linear in the expected number of iterations. We can view

each iteration as a Bernoulli trial, where “success” means that the iteration returns

a value. The probability of success equals the probability that 0 is returned plus the

probability that 1 is returned, or 2p.1 � p/. The number of trials until a success

occurs is given by the geometric distribution, and by equation (C.32), the expected

number of trials for this scenario is 1=.2p.1 � p//. Thus, the expected running

time of UNBIASED-RANDOM is ‚.1=.2p.1 � p//.
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Solution to Exercise 5.2-1

This solution is also posted publicly

Since HIRE-ASSISTANT always hires candidate 1, it hires exactly once if and only

if no candidates other than candidate 1 are hired. This event occurs when candi-

date 1 is the best candidate of the n, which occurs with probability 1=n.

HIRE-ASSISTANT hires n times if each candidate is better than all those who were

interviewed (and hired) before. This event occurs precisely when the list of ranks

given to the algorithm is h1; 2; : : : ; ni, which occurs with probability 1=nŠ.

Solution to Exercise 5.2-2

We make three observations:

1. Candidate 1 is always hired.

2. The best candidate, i.e., the one whose rank is n, is always hired.

3. If the best candidate is candidate 1, then that is the only candidate hired.

Therefore, in order for HIRE-ASSISTANT to hire exactly twice, candidate 1 must
have rank i � n�1 and all candidates whose ranks are iC1; iC2; : : : ; n�1 must

be interviewed after the candidate whose rank is n. (When i D n � 1, this second

condition vacuously holds.)

Let Ei be the event in which candidate 1 has rank i ; clearly, Pr fEig D 1=n for any

given value of i .

Letting j denote the position in the interview order of the best candidate, let F be

the event in which candidates 2; 3; : : : ; j � 1 have ranks strictly less than the rank

of candidate 1. Given that event Ei has occurred, event F occurs when the best

candidate is the first one interviewed out of the n � i candidates whose ranks are

i C 1; i C 2; : : : ; n. Thus, Pr fF j Eig D 1=.n � i/.

Our final event is A, which occurs when HIRE-ASSISTANT hires exactly twice.

Noting that the events E1; E2; : : : ; En are disjoint, we have

A D F \ .E1 [E2 [ � � � [En�1/

D .F \E1/ [ .F \E2/ [ � � � [ .F \En�1/ :

and

Pr fAg D
n�1
X

iD1

Pr fF \Eig :

By equation (C.14),

Pr fF \Eig D Pr fF j Eig Pr fEig

D 1

n � i
� 1

n
;
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and so

Pr fAg D
n�1
X

iD1

1

n � i
� 1

n

D 1

n

n�1
X

iD1

1

n � i

D 1

n

�
1

n � 1
C 1

n � 2
C � � � C 1

1

�

D 1

n
�Hn�1 ;

where Hn�1 is the nth harmonic number.

Solution to Exercise 5.2-4

This solution is also posted publicly

Another way to think of the hat-check problem is that we want to determine the

expected number of fixed points in a random permutation. (A fixed point of a

permutation � is a value i for which �.i/ D i .) We could enumerate all nŠ per-
mutations, count the total number of fixed points, and divide by nŠ to determine

the average number of fixed points per permutation. This would be a painstak-

ing process, and the answer would turn out to be 1. We can use indicator random

variables, however, to arrive at the same answer much more easily.

Define a random variable X that equals the number of customers that get back their

own hat, so that we want to compute E ŒX�.

For i D 1; 2; : : : ; n, define the indicator random variable

Xi D I fcustomer i gets back his own hatg :

Then X D X1 C X2 C � � � C Xn.

Since the ordering of hats is random, each customer has a probability of 1=n of

getting back his or her own hat. In other words, Pr fXi D 1g D 1=n, which, by

Lemma 5.1, implies that E ŒXi � D 1=n.

Thus,

E ŒX� D E

"
n
X

iD1

Xi

#

D
n
X

iD1

E ŒXi � (linearity of expectation)

D
n
X

iD1

1=n

D 1 ;

and so we expect that exactly 1 customer gets back his own hat.
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Note that this is a situation in which the indicator random variables are not inde-

pendent. For example, if n D 2 and X1 D 1, then X2 must also equal 1. Con-

versely, if n D 2 and X1 D 0, then X2 must also equal 0. Despite the dependence,

Pr fXi D 1g D 1=n for all i , and linearity of expectation holds. Thus, we can use

the technique of indicator random variables even in the presence of dependence.

Solution to Exercise 5.2-5

This solution is also posted publicly

Let Xij be an indicator random variable for the event where the pair AŒi�; AŒj �

for i < j is inverted, i.e., AŒi� > AŒj �. More precisely, we define Xij D
I fAŒi� > AŒj �g for 1 � i < j � n. We have Pr fXij D 1g D 1=2, because

given two distinct random numbers, the probability that the first is bigger than the

second is 1=2. By Lemma 5.1, E ŒXij � D 1=2.

Let X be the the random variable denoting the total number of inverted pairs in the

array, so that

X D
n�1
X

iD1

n
X

j DiC1

Xij :

We want the expected number of inverted pairs, so we take the expectation of both

sides of the above equation to obtain

E ŒX� D E

"
n�1
X

iD1

n
X

j DiC1

Xij

#

:

We use linearity of expectation to get

E ŒX� D E

"
n�1
X

iD1

n
X

j DiC1

Xij

#

D
n�1
X

iD1

n
X

j DiC1

E ŒXij �

D
n�1
X

iD1

n
X

j DiC1

1=2

D
 

n

2

!

1

2

D n.n � 1/

2
� 1

2

D n.n � 1/

4
:

Thus the expected number of inverted pairs is n.n � 1/=4.
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Solution to Exercise 5.3-1

Here’s the rewritten procedure:

RANDOMIZE-IN-PLACE.A/

n D A: length

swap AŒ1� with AŒRANDOM.1; n/�

for i D 2 to n

swap AŒi� with AŒRANDOM.i; n/�

The loop invariant becomes

Loop invariant: Just prior to the iteration of the for loop for each value of

i D 2; : : : ; n, for each possible .i�1/-permutation, the subarray AŒ1 : : i�1�

contains this .i � 1/-permutation with probability .n � i C 1/Š=nŠ.

The maintenance and termination parts remain the same. The initialization part

is for the subarray AŒ1 : : 1�, which contains any 1-permutation with probability

.n � 1/Š=nŠ D 1=n.

Solution to Exercise 5.3-2

This solution is also posted publicly

Although PERMUTE-WITHOUT-IDENTITY will not produce the identity permuta-

tion, there are other permutations that it fails to produce. For example, consider

its operation when n D 3, when it should be able to produce the nŠ � 1 D 5 non-

identity permutations. The for loop iterates for i D 1 and i D 2. When i D 1,

the call to RANDOM returns one of two possible values (either 2 or 3), and when

i D 2, the call to RANDOM returns just one value (3). Thus, PERMUTE-WITHOUT-

IDENTITY can produce only 2 � 1 D 2 possible permutations, rather than the 5 that

are required.

Solution to Exercise 5.3-3

The PERMUTE-WITH-ALL procedure does not produce a uniform random per-

mutation. Consider the permutations it produces when n D 3. The procedure

makes 3 calls to RANDOM, each of which returns one of 3 values, and so calling

PERMUTE-WITH-ALL has 27 possible outcomes. Since there are 3Š D 6 permuta-

tions, if PERMUTE-WITH-ALL did produce a uniform random permutation, then

each permutation would occur 1=6 of the time. That would mean that each permu-
tation would have to occur an integer number m times, where m=27 D 1=6. No

integer m satisfies this condition.

In fact, if we were to work out the possible permutations of h1; 2; 3i and how often

they occur with PERMUTE-WITH-ALL, we would get the following probabilities:
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permutation probability

h1; 2; 3i 4=27

h1; 3; 2i 5=27

h2; 1; 3i 5=27

h2; 3; 1i 5=27

h3; 1; 2i 4=27

h3; 2; 1i 4=27

Although these probabilities sum to 1, none are equal to 1=6.

Solution to Exercise 5.3-4

This solution is also posted publicly

PERMUTE-BY-CYCLIC chooses offset as a random integer in the range 1 �
offset � n, and then it performs a cyclic rotation of the array. That is,

BŒ..i C offset � 1/ mod n/ C 1� D AŒi� for i D 1; 2; : : : ; n. (The subtraction

and addition of 1 in the index calculation is due to the 1-origin indexing. If we

had used 0-origin indexing instead, the index calculation would have simplied to

BŒ.i C offset/ mod n� D AŒi� for i D 0; 1; : : : ; n � 1.)

Thus, once offset is determined, so is the entire permutation. Since each value of

offset occurs with probability 1=n, each element AŒi� has a probability of ending

up in position BŒj � with probability 1=n.

This procedure does not produce a uniform random permutation, however, since

it can produce only n different permutations. Thus, n permutations occur with

probability 1=n, and the remaining nŠ � n permutations occur with probability 0.

Solution to Exercise 5.3-7

Since each recursive call reduces m by 1 and makes only one call to RANDOM,

it’s easy to see that there are a total of m calls to RANDOM. Moreover, since each
recursive call adds exactly one element to the set, it’s easy to see that the resulting

set S contains exactly m elements.

Because the elements of set S are chosen independently of each other, it suffices
to show that each of the n values appears in S with probability m=n. We use an

inductive proof. The inductive hypothesis is that a call to RANDOM-SUBSET.m; n/

returns a set S of m elements, each appearing with probability m=n. The base

cases are for m D 0 and m D 1. When m D 0, the returned set is empty, and so

it contains each element with probability 0. When m D 1, the returned set has one

element, and it is equally likely to be any number in f1; 2; 3; : : : ; ng.
For the inductive step, we assume that the call RANDOM-SUBSET.m � 1; n � 1/

returns a set S 0 of m�1 elements in which each value in f1; 2; 3; : : : ; n � 1g occurs

with probability .m � 1/=.n � 1/. After the line i D RANDOM.1; n/, i is equally

likely to be any value in f1; 2; 3; : : : ; ng. We consider separately the probabilities
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that S contains j < n and that S contains n. Let Rj be the event that the call

RANDOM.1; n/ returns j , so that Pr fRj g D 1=n.

For j < n, the event that j 2 S is the union of two disjoint events:

� j 2 S 0, and

� j 62 S 0 and Rj (these events are independent),

Thus,

Pr fj 2 Sg
D Pr fj 2 S 0g C Pr fj 62 S 0 and Rj g (the events are disjoint)

D m � 1

n � 1
C
�

1� m � 1

n � 1

�

� 1
n

(by the inductive hypothesis)

D m � 1

n � 1
C
�

n � 1

n � 1
� m � 1

n � 1

�

� 1
n

D m � 1

n � 1
� n

n
C n �m

n � 1
� 1

n

D .m� 1/nC .n �m/

.n � 1/n

D mn � nC n �m

.n � 1/n

D m.n� 1/

.n � 1/n

D m

n
:

The event that n 2 S is also the union of two disjoint events:

� Rn, and

� Rj and j 2 S 0 for some j < n (these events are independent).

Thus,

Pr fn 2 Sg
D Pr fRng C Pr fRj and j 2 S 0 for some j < ng (the events are disjoint)

D 1

n
C n � 1

n
� m � 1

n � 1
(by the inductive hypothesis)

D 1

n
� n � 1

n � 1
C n � 1

n
� m � 1

n � 1

D n � 1C nm � n �mC 1

n.n � 1/

D nm �m

n.n � 1/

D m.n � 1/

n.n � 1/

D m

n
:
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Solution to Exercise 5.4-6

First we determine the expected number of empty bins. We define a random vari-

able X to be the number of empty bins, so that we want to compute E ŒX�. Next, for

i D 1; 2; : : : ; n, we define the indicator random variable Yi D I fbin i is emptyg.
Thus,

X D
n
X

iD1

Yi ;

and so

E ŒX� D E

"
n
X

iD1

Yi

#

D
n
X

iD1

E ŒYi � (by linearity of expectation)

D
n
X

iD1

Pr fbin i is emptyg (by Lemma 5.1) .

Let us focus on a specific bin, say bin i . We view a toss as a success if it misses

bin i and as a failure if it lands in bin i . We have n independent Bernoulli trials,

each with probability of success 1 � 1=n. In order for bin i to be empty, we need

n successes in n trials. Using a binomial distribution, therefore, we have that

Pr fbin i is emptyg D
 

n

n

!
�

1� 1

n

�n �
1

n

�0

D
�

1 � 1

n

�n

:

Thus,

E ŒX� D
n
X

iD1

�

1 � 1

n

�n

D n

�

1� 1

n

�n

:

By equation (3.14), as n approaches 1, the quantity .1 � 1=n/n approaches 1=e,

and so E ŒX� approaches n=e.

Now we determine the expected number of bins with exactly one ball. We re-

define X to be number of bins with exactly one ball, and we redefine Yi to be

I fbin i gets exactly one ballg. As before, we find that

E ŒX� D
n
X

iD1

Pr fbin i gets exactly one ballg :

Again focusing on bin i , we need exactly n�1 successes in n independent Bernoulli

trials, and so
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Pr fbin i gets exactly one ballg D
 

n

n � 1

!
�

1 � 1

n

�n�1 �
1

n

�1

D n �
�

1 � 1

n

�n�1
1

n

D
�

1� 1

n

�n�1

;

and so

E ŒX� D
n
X

iD1

�

1� 1

n

�n�1

D n

�

1 � 1

n

�n�1

:

Because

n

�

1 � 1

n

�n�1

D
n
�

1 � 1
n

�n

1 � 1
n

;

as n approaches1, we find that E ŒX� approaches

n=e

1� 1=n
D n2

e.n� 1/
:

Solution to Problem 5-1

a. To determine the expected value represented by the counter after n INCREMENT

operations, we define some random variables:

� For j D 1; 2; : : : ; n, let Xj denote the increase in the value represented by

the counter due to the j th INCREMENT operation.
� Let Vn be the value represented by the counter after n INCREMENT opera-

tions.

Then Vn D X1 C X2 C � � � C Xn. We want to compute E ŒVn�. By linearity of

expectation,

E ŒVn� D E ŒX1 CX2 C � � � CXn� D E ŒX1�C E ŒX2�C � � � C E ŒXn� :

We shall show that E ŒXj � D 1 for j D 1; 2; : : : ; n, which will prove that

E ŒVn� D n.

We actually show that E ŒXj � D 1 in two ways, the second more rigorous than

the first:

1. Suppose that at the start of the j th INCREMENT operation, the counter holds

the value i , which represents ni . If the counter increases due to this INCRE-

MENT operation, then the value it represents increases by niC1 � ni . The

counter increases with probability 1=.niC1 � ni/, and so
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E ŒXj � D .0 � Pr fcounter does not increaseg/
C ..niC1 � ni / � Pr fcounter increasesg/

D
�

0 �
�

1� 1

niC1 � ni

��

C
�

.niC1 � ni / �
1

niC1 � ni

�

D 1 ;

and so E ŒXj � D 1 regardless of the value held by the counter.

2. Let Cj be the random variable denoting the value held in the counter at the

start of the j th INCREMENT operation. Since we can ignore values of Cj

greater than 2b � 1, we use a formula for conditional expectation:

E ŒXj � D E ŒE ŒXj j Cj ��

D
2b�1
X

iD0

E ŒXj j Cj D i � � Pr fCj D ig :

To compute E ŒXj j Cj D i �, we note that

� Pr fXj D 0 j Cj D ig D 1� 1=.niC1 � ni/,

� Pr fXj D niC1 � ni j Cj D ig D 1=.niC1 � ni /, and

� Pr fXj D k j Cj D ig D 0 for all other k.

Thus,

E ŒXj j Cj D i � D
X

k

k � Pr fXj D k j Cj D ig

D
�

0 �
�

1 � 1

niC1 � ni

��

C
�

.niC1 � ni/ �
1

niC1 � ni

�

D 1 :

Therefore, noting that

2b�1
X

iD0

Pr fCj D ig D 1 ;

we have

E ŒXj � D
2b�1
X

iD0

1 � Pr fCj D ig

D 1 :

Why is the second way more rigorous than the first? Both ways condition on the

value held in the counter, but only the second way incorporates the conditioning

into the expression for E ŒXj �.

b. Defining Vn and Xj as in part (a), we want to compute Var ŒVn�, where ni D
100i . The Xj are pairwise independent, and so by equation (C.29), Var ŒVn� D
Var ŒX1�C Var ŒX2�C � � � C Var ŒXn�.

Since ni D 100i , we see that niC1�ni D 100.iC1/�100i D 100. Therefore,

with probability 99=100, the increase in the value represented by the counter

due to the j th INCREMENT operation is 0, and with probability 1=100, the
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value represented increases by 100. Thus, by equation (C.27),

Var ŒXj � D E
�

X2
j

�

� E2 ŒXj �

D
��

02 � 99

100

�

C
�

1002 � 1

100

��

� 12

D 100 � 1

D 99 :

Summing up the variances of the Xj gives Var ŒVn� D 99n.



Lecture Notes for Chapter 6:

Heapsort

Chapter 6 overview

Heapsort

� O.n lg n/ worst case—like merge sort.

� Sorts in place—like insertion sort.

� Combines the best of both algorithms.

To understand heapsort, we’ll cover heaps and heap operations, and then we’ll take

a look at priority queues.

Heaps

Heap data structure

� Heap A (not garbage-collected storage) is a nearly complete binary tree.

� Height of node = # of edges on a longest simple path from the node down to

a leaf.
� Height of heap D height of root D ‚.lg n/.

� A heap can be stored as an array A.

� Root of tree is AŒ1�.
� Parent of AŒi� D AŒbi=2c�.
� Left child of AŒi� D AŒ2i�.
� Right child of AŒi� D AŒ2i C 1�.
� Computing is fast with binary representation implementation.

[In book, have length and heap-size attributes. Here, we bypass these attributes and
use parameter values instead.]
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Example

Of a max-heap. [Arcs above and below the array on the right go between parents
and children. There is no significance to whether an arc is drawn above or below
the array.]

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

Heap property

� For max-heaps (largest element at root), max-heap property: for all nodes i ,

excluding the root, AŒPARENT.i/� � AŒi�.

� For min-heaps (smallest element at root), min-heap property: for all nodes i ,

excluding the root, AŒPARENT.i/� � AŒi�.

By induction and transitivity of �, the max-heap property guarantees that the max-

imum element of a max-heap is at the root. Similar argument for min-heaps.

The heapsort algorithm we’ll show uses max-heaps.

Note: In general, heaps can be k-ary tree instead of binary.

Maintaining the heap property

MAX-HEAPIFY is important for manipulating max-heaps. It is used to maintain

the max-heap property.

� Before MAX-HEAPIFY, AŒi� may be smaller than its children.

� Assume left and right subtrees of i are max-heaps.

� After MAX-HEAPIFY, subtree rooted at i is a max-heap.

MAX-HEAPIFY.A; i; n/

l D LEFT.i/

r D RIGHT.i/

if l � n and AŒl� > AŒi�

largest D l

else largest D i

if r � n and AŒr� > AŒlargest�

largest D r

if largest ¤ i

exchange AŒi� with AŒlargest�

MAX-HEAPIFY.A; largest; n/
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[Parameter n replaces attribute A:heap-size.]

The way MAX-HEAPIFY works:

� Compare AŒi�, AŒLEFT.i/�, and AŒRIGHT.i/�.

� If necessary, swap AŒi� with the larger of the two children to preserve heap

property.

� Continue this process of comparing and swapping down the heap, until subtree

rooted at i is max-heap. If we hit a leaf, then the subtree rooted at the leaf is

trivially a max-heap.

Run MAX-HEAPIFY on the following heap example.

16

4 10

14 7 9

2 8 1

(a)

16

14 10

4 7 9 3

2 8 1

(b)

16

14 10

8 7 9 3

2 4 1

(c)

3

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

i

i

i

� Node 2 violates the max-heap property.

� Compare node 2 with its children, and then swap it with the larger of the two
children.

� Continue down the tree, swapping until the value is properly placed at the root

of a subtree that is a max-heap. In this case, the max-heap is a leaf.

Time

O.lg n/.

Analysis

[Instead of book’s formal analysis with recurrence, just come up with O.lg n/ intu-
itively.] Heap is almost-complete binary tree, hence must process O.lg n/ levels,

with constant work at each level (comparing 3 items and maybe swapping 2).
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Building a heap

The following procedure, given an unordered array, will produce a max-heap.

BUILD-MAX-HEAP.A; n/

for i D bn=2c downto 1

MAX-HEAPIFY.A; i; n/

[Parameter n replaces both attributes A: length and A:heap-size.]

Example

Building a max-heap from the following unsorted array results in the first heap

example.

� i starts off as 5.

� MAX-HEAPIFY is applied to subtrees rooted at nodes (in order): 16, 2, 3, 1, 4.

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

4

1 3

2 9 10

14 8 7

16

4 1 23 16 9 10 14 8 7

16

14 10

8 9 3

2 4 1

7

A

i

2 3 4 5 6 7 8 9 101

Correctness

Loop invariant: At start of every iteration of for loop, each node i C 1,

i C 2, . . . , n is root of a max-heap.

Initialization: By Exercise 6.1-7, we know that each node bn=2c C 1, bn=2c C 2,

. . . , n is a leaf, which is the root of a trivial max-heap. Since i D bn=2c before

the first iteration of the for loop, the invariant is initially true.

Maintenance: Children of node i are indexed higher than i , so by the loop invari-

ant, they are both roots of max-heaps. Correctly assuming that iC1; iC2; : : : ; n

are all roots of max-heaps, MAX-HEAPIFY makes node i a max-heap root.

Decrementing i reestablishes the loop invariant at each iteration.

Termination: When i D 0, the loop terminates. By the loop invariant, each node,
notably node 1, is the root of a max-heap.
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Analysis

� Simple bound: O.n/ calls to MAX-HEAPIFY, each of which takes O.lg n/

time) O.n lg n/. (Note: A good approach to analysis in general is to start by

proving easy bound, then try to tighten it.)

� Tighter analysis: Observation: Time to run MAX-HEAPIFY is linear in the

height of the node it’s run on, and most nodes have small heights. Have

�
˙

n=2hC1
�

nodes of height h (see Exercise 6.3-3), and height of heap is blg nc
(Exercise 6.1-2).

The time required by MAX-HEAPIFY when called on a node of height h

is O.h/, so the total cost of BUILD-MAX-HEAP is

blg nc
X

hD0

l n

2hC1

m

O.h/ D O

 

n

blg nc
X

hD0

h

2h

!

:

Evaluate the last summation by substituting x D 1=2 in the formula (A.8)
�P1

kD0 kxk
�

, which yields
1
X

hD0

h

2h
D 1=2

.1 � 1=2/2

D 2 :

Thus, the running time of BUILD-MAX-HEAP is O.n/.

Building a min-heap from an unordered array can be done by calling MIN-

HEAPIFY instead of MAX-HEAPIFY, also taking linear time.

The heapsort algorithm

Given an input array, the heapsort algorithm acts as follows:

� Builds a max-heap from the array.

� Starting with the root (the maximum element), the algorithm places the maxi-

mum element into the correct place in the array by swapping it with the element

in the last position in the array.

� “Discard” this last node (knowing that it is in its correct place) by decreasing the

heap size, and calling MAX-HEAPIFY on the new (possibly incorrectly-placed)

root.

� Repeat this “discarding” process until only one node (the smallest element)

remains, and therefore is in the correct place in the array.

HEAPSORT.A; n/

BUILD-MAX-HEAP.A; n/

for i D n downto 2

exchange AŒ1� with AŒi�

MAX-HEAPIFY.A; 1; i � 1/

[Parameter n replaces A: length, and parameter value i � 1 in MAX-HEAPIFY call
replaces decrementing of A:heap-size.]
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Example

Sort an example heap on the board. [Nodes with heavy outline are no longer in the
heap.]

(a) (b)

(c) (d)

(e)

1 2 3 4 7

2

1 3

4 7

1

2 3

4 7

3

2 1

74

4

2 3

71

7

4 3

21

A

i

i

i

i

Analysis

� BUILD-MAX-HEAP: O.n/

� for loop: n � 1 times

� exchange elements: O.1/

� MAX-HEAPIFY: O.lg n/

Total time: O.n lg n/.

Though heapsort is a great algorithm, a well-implemented quicksort usually beats

it in practice.

Heap implementation of priority queue

Heaps efficiently implement priority queues. These notes will deal with max-

priority queues implemented with max-heaps. Min-priority queues are imple-

mented with min-heaps similarly.

A heap gives a good compromise between fast insertion but slow extraction and
vice versa. Both operations take O.lg n/ time.

Priority queue

� Maintains a dynamic set S of elements.

� Each set element has a key—an associated value.
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� Max-priority queue supports dynamic-set operations:

� INSERT.S; x/: inserts element x into set S .
� MAXIMUM.S/: returns element of S with largest key.
� EXTRACT-MAX.S/: removes and returns element of S with largest key.
� INCREASE-KEY.S; x; k/: increases value of element x’s key to k. Assume

k � x’s current key value.

� Example max-priority queue application: schedule jobs on shared computer.

� Min-priority queue supports similar operations:

� INSERT.S; x/: inserts element x into set S .
� MINIMUM.S/: returns element of S with smallest key.
� EXTRACT-MIN.S/: removes and returns element of S with smallest key.
� DECREASE-KEY.S; x; k/: decreases value of element x’s key to k. Assume

k � x’s current key value.

� Example min-priority queue application: event-driven simulator.

Note: Actual implementations often have a handle in each heap element that allows

access to an object in the application, and objects in the application often have a

handle (likely an array index) to access the heap element.

Will examine how to implement max-priority queue operations.

Finding the maximum element

Getting the maximum element is easy: it’s the root.

HEAP-MAXIMUM.A/

return AŒ1�

Time

‚.1/.

Extracting max element

Given the array A:

� Make sure heap is not empty.

� Make a copy of the maximum element (the root).

� Make the last node in the tree the new root.

� Re-heapify the heap, with one fewer node.

� Return the copy of the maximum element.
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HEAP-EXTRACT-MAX.A; n/

if n < 1

error “heap underflow”

max D AŒ1�

AŒ1� D AŒn�

MAX-HEAPIFY.A; 1; n � 1/ // remakes heap

return max

[Parameter n replaces A:heap-size, and parameter value n � 1 in MAX-HEAPIFY

call replaces decrementing of A:heap-size.]

Analysis

Constant-time assignments plus time for MAX-HEAPIFY.

Time

O.lg n/.

Example

Run HEAP-EXTRACT-MAX on first heap example.

� Take 16 out of node 1.

� Move 1 from node 10 to node 1.

� Erase node 10.

� MAX-HEAPIFY from the root to preserve max-heap property.

� Note that successive extractions will remove items in reverse sorted order.

Increasing key value

Given set S , element x, and new key value k:

� Make sure k � x’s current key.

� Update x’s key value to k.

� Traverse the tree upward comparing x to its parent and swapping keys if neces-

sary, until x’s key is smaller than its parent’s key.

HEAP-INCREASE-KEY.A; i; key/

if key < AŒi�

error “new key is smaller than current key”

AŒi� D key

while i > 1 and AŒPARENT.i/� < AŒi�

exchange AŒi� with AŒPARENT.i/�

i D PARENT.i/

Analysis

Upward path from node i has length O.lg n/ in an n-element heap.
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Time

O.lg n/.

Example

Increase key of node 9 in first heap example to have value 15. Exchange keys of

nodes 4 and 9, then of nodes 2 and 4.

Inserting into the heap

Given a key k to insert into the heap:

� Insert a new node in the very last position in the tree with key �1.

� Increase the �1 key to k using the HEAP-INCREASE-KEY procedure defined

above.

MAX-HEAP-INSERT.A; key; n/

AŒnC 1� D �1
HEAP-INCREASE-KEY.A; nC 1; key/

[Parameter n replaces A:heap-size, and use of value n C 1 replaces incrementing
of A:heap-size.]

Analysis

Constant time assignments C time for HEAP-INCREASE-KEY .

Time

O.lg n/.

Min-priority queue operations are implemented similarly with min-heaps.



Solutions for Chapter 6:

Heapsort

Solution to Exercise 6.1-1

This solution is also posted publicly

Since a heap is an almost-complete binary tree (complete at all levels except pos-

sibly the lowest), it has at most 2hC1 � 1 elements (if it is complete) and at least

2h�1C1 D 2h elements (if the lowest level has just 1 element and the other levels

are complete).

Solution to Exercise 6.1-2

This solution is also posted publicly

Given an n-element heap of height h, we know from Exercise 6.1-1 that

2h � n � 2hC1 � 1 < 2hC1 :

Thus, h � lg n < hC 1. Since h is an integer, h D blg nc (by definition of b c).

Solution to Exercise 6.1-3

Assume the claim is false—i.e., that there is a subtree whose root is not the largest

element in the subtree. Then the maximum element is somewhere else in the sub-

tree, possibly even at more than one location. Let m be the index at which the

maximum appears (the lowest such index if the maximum appears more than once).

Since the maximum is not at the root of the subtree, node m has a parent. Since

the parent of a node has a lower index than the node, and m was chosen to be the

smallest index of the maximum value, AŒPARENT.m/� < AŒm�. But by the max-

heap property, we must have AŒPARENT.m/� � AŒm�. So our assumption is false,

and the claim is true.
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Solution to Exercise 6.2-6

This solution is also posted publicly

If you put a value at the root that is less than every value in the left and right

subtrees, then MAX-HEAPIFY will be called recursively until a leaf is reached. To

make the recursive calls traverse the longest path to a leaf, choose values that make

MAX-HEAPIFY always recurse on the left child. It follows the left branch when

the left child is greater than or equal to the right child, so putting 0 at the root

and 1 at all the other nodes, for example, will accomplish that. With such values,

MAX-HEAPIFY will be called h times (where h is the heap height, which is the

number of edges in the longest path from the root to a leaf), so its running time
will be ‚.h/ (since each call does ‚.1/ work), which is ‚.lg n/. Since we have

a case in which MAX-HEAPIFY’s running time is ‚.lg n/, its worst-case running

time is �.lg n/.

Solution to Exercise 6.3-3

Let H be the height of the heap.

Two subtleties to beware of:

� Be careful not to confuse the height of a node (longest distance from a leaf)

with its depth (distance from the root).

� If the heap is not a complete binary tree (bottom level is not full), then the nodes

at a given level (depth) don’t all have the same height. For example, although all

nodes at depth H have height 0, nodes at depth H � 1 can have either height 0

or height 1.

For a complete binary tree, it’s easy to show that there are
˙

n=2hC1
�

nodes of

height h. But the proof for an incomplete tree is tricky and is not derived from the

proof for a complete tree.

Proof By induction on h.

Basis: Show that it’s true for h D 0 (i.e., that # of leaves �
˙

n=2hC1
�

D dn=2e).
In fact, we’ll show that the # of leaves D dn=2e.
The tree leaves (nodes at height 0) are at depths H and H � 1. They consist of

� all nodes at depth H , and

� the nodes at depth H � 1 that are not parents of depth-H nodes.

Let x be the number of nodes at depth H—that is, the number of nodes in the

bottom (possibly incomplete) level.

Note that n � x is odd, because the n � x nodes above the bottom level form a

complete binary tree, and a complete binary tree has an odd number of nodes (1

less than a power of 2). Thus if n is odd, x is even, and if n is even, x is odd.
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To prove the base case, we must consider separately the case in which n is even

(x is odd) and the case in which n is odd (x is even). Here are two ways to do

this: The first requires more cleverness, and the second requires more algebraic

manipulation.

1. First method of proving the base case:

� If n is odd, then x is even, so all nodes have siblings—i.e., all internal

nodes have 2 children. Thus (see Exercise B.5-3), # of internal nodes D
# of leaves � 1.

So, n D # of nodes D # of leavesC# of internal nodes D 2 �# of leaves�1.

Thus, # of leaves D .nC1/=2 D dn=2e. (The latter equality holds because n

is odd.)
� If n is even, then x is odd, and some leaf doesn’t have a sibling. If we gave

it a sibling, we would have n C 1 nodes, where n C 1 is odd, so the case

we analyzed above would apply. Observe that we would also increase the

number of leaves by 1, since we added a node to a parent that already had

a child. By the odd-node case above, # of leaves C 1 D d.nC 1/=2e D
dn=2e C 1. (The latter equality holds because n is even.)

In either case, # of leaves D dn=2e.
2. Second method of proving the base case:

Note that at any depth d < H there are 2d nodes, because all such tree levels

are complete.

� If x is even, there are x=2 nodes at depth H � 1 that are parents of depth H

nodes, hence 2H�1�x=2 nodes at depth H �1 that are not parents of depth-

H nodes. Thus,

total # of height-0 nodes D x C 2H�1 � x=2

D 2H�1 C x=2

D .2H C x/=2

D
˙

.2H C x � 1/=2
�

(because x is even)

D dn=2e :

(n D 2H Cx�1 because the complete tree down to depth H �1 has 2H �1

nodes and depth H has x nodes.)
� If x is odd, by an argument similar to the even case, we see that

# of height-0 nodes D x C 2H�1 � .x C 1/=2

D 2H�1 C .x � 1/=2

D .2H C x � 1/=2

D n=2

D dn=2e (because x odd) n even) :

Inductive step: Show that if it’s true for height h � 1, it’s true for h.

Let nh be the number of nodes at height h in the n-node tree T .
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Consider the tree T 0 formed by removing the leaves of T . It has n0 D n�n0 nodes.

We know from the base case that n0 D dn=2e, so n0 D n � n0 D n � dn=2e D
bn=2c.
Note that the nodes at height h in T would be at height h � 1 if the leaves of the

tree were removed—that is, they are at height h� 1 in T 0. Letting n0
h�1

denote the

number of nodes at height h� 1 in T 0, we have

nh D n0
h�1 :

By induction, we can bound n0
h�1

:

nh D n0
h�1 �

˙

n0=2h
�

D
˙

bn=2c =2h
�

�
˙

.n=2/=2h
�

D
˙

n=2hC1
�

:

Alternative solution

An alternative solution relies on four facts:

1. Every node not on the unique simple path from the last leaf to the root is the

root of a complete binary subtree.

2. A node that is the root of a complete binary subtree and has height h is the

ancestor of 2h leaves.

3. By Exercise 6.1-7, an n-element heap has dn=2e leaves.

4. For nonnegative reals a and b, we have dae � b � dabe.
The proof is by contradiction. Assume that an n-element heap contains at least
˙

n=2hC1
�

C 1 nodes of height h. Exactly one node of height h is on the unique

simple path from the last leaf to the root, and the subtree rooted at this node has

at least one leaf (that being the last leaf). All other nodes of height h, of which

the heap contains at least
˙

n=2hC1
�

, are the roots of complete binary subtrees, and

each such node is the root of a subtree with 2h leaves. Moreover, each subtree

whose root is at height h is disjoint. Therefore, the number of leaves in the entire
heap is at least
l n

2hC1

m

� 2h C 1 �
l n

2hC1
� 2h

m

C 1

D
ln

2

m

C 1 ;

which contradicts the property that an n-element heap has dn=2e leaves.
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Solution to Exercise 6.4-1

This solution is also posted publicly

(b) (c)

(d) (e) (f)

(g) (h) (i)

2 4 5 7 8 13 17 20 25

20

4

2 5

7 8 13 17

25

2

4 5

7 8 13 17

2520

5

4 2

171387

20 25

7

4 5

171382

20 25

13

58

2 7 4 17

2520

8

7 5

171342

20 25

17

13 5

2478

2520

20

13 17

2478

255

A

i
i

i i i

i

i i

(a)

25

13 20

21778

45
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Solution to Exercise 6.5-2

This solution is also posted publicly

22

22

81 81

8

1 10

i

8

1 -∞

15

13 9

5 12 8 7

4 0 6

(a)

15

13 9

5 12 8 7

4 0 6

(b)

15

13 9

0

12 10 7

4

5

6

(c)

i

15

5

10

0

12 9 7

4

13

6

(d)

i

Solution to Exercise 6.5-6

Change the procedure to the following:

HEAP-INCREASE-KEY.A; i; key/

if key < AŒi�

error “new key is smaller than current key”

AŒi� D key

while i > 1 and AŒPARENT.i/� < AŒi�

AŒi � D AŒPARENT.i/�

i D PARENT.i/

AŒi � D key

Solution to Problem 6-1

This solution is also posted publicly

a. The procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP
0 do not always

create the same heap when run on the same input array. Consider the following

counterexample.



6-16 Solutions for Chapter 6: Heapsort

Input array A:

1 2 3A

BUILD-MAX-HEAP.A/:

1

32

3

12

3 2 1A

BUILD-MAX-HEAP
0.A/:

1

-∞

2

-∞1

3

21

3 1 2A

b. An upper bound of O.n lg n/ time follows immediately from there being n� 1

calls to MAX-HEAP-INSERT, each taking O.lg n/ time. For a lower bound

of �.n lg n/, consider the case in which the input array is given in strictly in-
creasing order. Each call to MAX-HEAP-INSERT causes HEAP-INCREASE-

KEY to go all the way up to the root. Since the depth of node i is blg ic, the

total time is
n
X

iD1

‚.blg ic/ �
n
X

iDdn=2e
‚.blg dn=2ec/

�
n
X

iDdn=2e
‚.blg.n=2/c/

D
n
X

iDdn=2e
‚.blg n � 1c/

� n=2 �‚.lg n/

D �.n lg n/ :

In the worst case, therefore, BUILD-MAX-HEAP
0 requires ‚.n lg n/ time to

build an n-element heap.

Solution to Problem 6-2

a. We can represent a d -ary heap in a 1-dimensional array as follows. The root

resides in AŒ1�, its d children reside in order in AŒ2� through AŒd C 1�, their

children reside in order in AŒd C 2� through AŒd 2 C d C 1�, and so on. The
following two procedures map a node with index i to its parent and to its j th

child (for 1 � j � d ), respectively.

D-ARY-PARENT.i/

return b.i � 2/=d C 1c

D-ARY-CHILD.i; j /

return d.i � 1/C j C 1
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To convince yourself that these procedures really work, verify that

D-ARY-PARENT.D-ARY-CHILD.i; j // D i ;

for any 1 � j � d . Notice that the binary heap procedures are a special case

of the above procedures when d D 2.

b. Since each node has d children, the height of a d -ary heap with n nodes is

‚.logd n/ D ‚.lg n= lg d/.

c. The procedure HEAP-EXTRACT-MAX given in the text for binary heaps works

fine for d -ary heaps too. The change needed to support d -ary heaps is in MAX-

HEAPIFY, which must compare the argument node to all d children instead of

just 2 children. The running time of HEAP-EXTRACT-MAX is still the running

time for MAX-HEAPIFY, but that now takes worst-case time proportional to the

product of the height of the heap by the number of children examined at each

node (at most d ), namely ‚.d logd n/ D ‚.d lg n= lg d/.

d. The procedure MAX-HEAP-INSERT given in the text for binary heaps works

fine for d -ary heaps too, assuming that HEAP-INCREASE-KEY works for d -ary

heaps. The worst-case running time is still ‚.h/, where h is the height of the
heap. (Since only parent pointers are followed, the number of children a node

has is irrelevant.) For a d -ary heap, this is ‚.logd n/ D ‚.lg n= lg d/.

e. The HEAP-INCREASE-KEY procedure with two small changes works for d -ary

heaps. First, because the problem specifies that the new key is given by the

parameter k, change instances of the variable key to k. Second, change calls of

PARENT to calls of D-ARY-PARENT from part (a).

In the worst case, the entire height of the tree must be traversed, so the worst-

case running time is ‚.h/ D ‚.logd n/ D ‚.lg n= lg d/.



Lecture Notes for Chapter 7:

Quicksort

Chapter 7 overview

[The treatment in the second and third editions differs from that of the first edition.
We use a different partitioning method—known as “Lomuto partitioning”—in the
second and third editions, rather than the “Hoare partitioning” used in the first edi-
tion. Using Lomuto partitioning helps simplify the analysis, which uses indicator
random variables in the second edition.]

Quicksort

� Worst-case running time: ‚.n2/.

� Expected running time: ‚.n lg n/.

� Constants hidden in ‚.n lg n/ are small.

� Sorts in place.

Description of quicksort

Quicksort is based on the three-step process of divide-and-conquer.

� To sort the subarray AŒp : : r�:

Divide: Partition AŒp : : r�, into two (possibly empty) subarrays AŒp : : q � 1�

and AŒqC 1 : : r�, such that each element in the first subarray AŒp : : q� 1� is

� AŒq� and AŒq� is � each element in the second subarray AŒq C 1 : : r�.

Conquer: Sort the two subarrays by recursive calls to QUICKSORT.

Combine: No work is needed to combine the subarrays, because they are sorted

in place.

� Perform the divide step by a procedure PARTITION, which returns the index q

that marks the position separating the subarrays.
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QUICKSORT.A; p; r/

if p < r

q D PARTITION.A; p; r/

QUICKSORT.A; p; q � 1/

QUICKSORT.A; q C 1; r/

Initial call is QUICKSORT.A; 1; n/.

Partitioning

Partition subarray AŒp : : r� by the following procedure:

PARTITION.A; p; r/

x D AŒr�

i D p � 1

for j D p to r � 1

if AŒj � � x

i D i C 1

exchange AŒi� with AŒj �

exchange AŒi C 1� with AŒr�

return i C 1

� PARTITION always selects the last element AŒr� in the subarray AŒp : : r� as the
pivot—the element around which to partition.

� As the procedure executes, the array is partitioned into four regions, some of

which may be empty:

Loop invariant:

1. All entries in AŒp : : i � are � pivot.

2. All entries in AŒi C 1 : : j � 1� are > pivot.

3. AŒr� D pivot.

It’s not needed as part of the loop invariant, but the fourth region is AŒj : : r�1�,

whose entries have not yet been examined, and so we don’t know how they

compare to the pivot.

Example

On an 8-element subarray.
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8 1 6 4 0 3 9 5

p,j ri

8 1 6 4 0 3 9 5

p rj

1 8 6 4 0 3 9 5

p,i rj

1 8 6 4 0 3 9 5

p,i rj

1 864 0 3 9 5

p rji

1 8 64 0 3 9 5

p rji

1 3 64 0 8 9 5

p rji

1 3 64 0 8 9 5

p ri

1 654 0 8 93

p ri

i

A[r]: pivot
A[j .. r–1]: not yet examined
A[i+1 .. j–1]: known to be > pivot
A[p .. i]: known to be ≤ pivot

[The index j disappears because it is no longer needed once the for loop is exited.]

Correctness

Use the loop invariant to prove correctness of PARTITION:

Initialization: Before the loop starts, all the conditions of the loop invariant are

satisfied, because r is the pivot and the subarrays AŒp : : i � and AŒiC 1 : : j � 1�

are empty.

Maintenance: While the loop is running, if AŒj � � pivot, then AŒj � and AŒi C 1�

are swapped and then i and j are incremented. If AŒj � > pivot, then increment

only j .

Termination: When the loop terminates, j D r , so all elements in A are parti-

tioned into one of the three cases: AŒp : : i � � pivot, AŒi C 1 : : r � 1� > pivot,

and AŒr� D pivot.

The last two lines of PARTITION move the pivot element from the end of the array

to between the two subarrays. This is done by swapping the pivot and the first

element of the second subarray, i.e., by swapping AŒi C 1� and AŒr�.

Time for partitioning

‚.n/ to partition an n-element subarray.
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Performance of quicksort

The running time of quicksort depends on the partitioning of the subarrays:

� If the subarrays are balanced, then quicksort can run as fast as mergesort.
� If they are unbalanced, then quicksort can run as slowly as insertion sort.

Worst case

� Occurs when the subarrays are completely unbalanced.
� Have 0 elements in one subarray and n � 1 elements in the other subarray.
� Get the recurrence

T .n/ D T .n � 1/C T .0/C‚.n/

D T .n � 1/C‚.n/

D ‚.n2/ :

� Same running time as insertion sort.
� In fact, the worst-case running time occurs when quicksort takes a sorted array

as input, but insertion sort runs in O.n/ time in this case.

Best case

� Occurs when the subarrays are completely balanced every time.
� Each subarray has � n=2 elements.
� Get the recurrence

T .n/ D 2T .n=2/C‚.n/

D ‚.n lg n/ :

Balanced partitioning

� Quicksort’s average running time is much closer to the best case than to the

worst case.
� Imagine that PARTITION always produces a 9-to-1 split.
� Get the recurrence

T .n/ � T .9n=10/C T .n=10/C‚.n/

D O.n lg n/ :

� Intuition: look at the recursion tree.

� It’s like the one for T .n/ D T .n=3/C T .2n=3/CO.n/ in Section 4.4.
� Except that here the constants are different; we get log10 n full levels and

log10=9 n levels that are nonempty.
� As long as it’s a constant, the base of the log doesn’t matter in asymptotic

notation.
� Any split of constant proportionality will yield a recursion tree of depth

‚.lg n/.
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Intuition for the average case

� Splits in the recursion tree will not always be constant.

� There will usually be a mix of good and bad splits throughout the recursion

tree.

� To see that this doesn’t affect the asymptotic running time of quicksort, assume

that levels alternate between best-case and worst-case splits.

n

0 n–1

n

(n–1)/2 (n–1)/2

Θ(n) Θ(n)

(n–1)/2(n–1)/2 – 1

� The extra level in the left-hand figure only adds to the constant hidden in the

‚-notation.

� There are still the same number of subarrays to sort, and only twice as much

work was done to get to that point.

� Both figures result in O.n lg n/ time, though the constant for the figure on the
left is higher than that of the figure on the right.

Randomized version of quicksort

� We have assumed that all input permutations are equally likely.

� This is not always true.

� To correct this, we add randomization to quicksort.

� We could randomly permute the input array.

� Instead, we use random sampling, or picking one element at random.

� Don’t always use AŒr� as the pivot. Instead, randomly pick an element from the

subarray that is being sorted.

RANDOMIZED-PARTITION.A; p; r/

i D RANDOM.p; r/

exchange AŒr� with AŒi�

return PARTITION.A; p; r/

Randomly selecting the pivot element will, on average, cause the split of the input

array to be reasonably well balanced.

RANDOMIZED-QUICKSORT.A; p; r/

if p < r

q D RANDOMIZED-PARTITION.A; p; r/

RANDOMIZED-QUICKSORT.A; p; q � 1/

RANDOMIZED-QUICKSORT.A; q C 1; r/
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Randomization of quicksort stops any specific type of array from causing worst-

case behavior. For example, an already-sorted array causes worst-case behavior in

non-randomized QUICKSORT, but not in RANDOMIZED-QUICKSORT.

Analysis of quicksort

We will analyze

� the worst-case running time of QUICKSORT and RANDOMIZED-QUICKSORT

(the same), and

� the expected (average-case) running time of RANDOMIZED-QUICKSORT.

Worst-case analysis

We will prove that a worst-case split at every level produces a worst-case running

time of O.n2/.

� Recurrence for the worst-case running time of QUICKSORT:

T .n/ D max
0�q�n�1

.T .q/C T .n � q � 1//C‚.n/ :

� Because PARTITION produces two subproblems, totaling size n � 1, q ranges

from 0 to n � 1.

� Guess: T .n/ � cn2, for some c.

� Substituting our guess into the above recurrence:

T .n/ � max
0�q�n�1

.cq2 C c.n � q � 1/2/C‚.n/

D c � max
0�q�n�1

.q2 C .n � q � 1/2/C‚.n/ :

� The maximum value of .q2C .n� q � 1/2/ occurs when q is either 0 or n� 1.

(Second derivative with respect to q is positive.) Therefore,

max
0�q�n�1

.q2 C .n � q � 1/2/ � .n � 1/2

D n2 � 2nC 1 :

� And thus,

T .n/ � cn2 � c.2n � 1/C‚.n/

� cn2 if c.2n � 1/ � ‚.n/ :

� Pick c so that c.2n � 1/ dominates ‚.n/.

� Therefore, the worst-case running time of quicksort is O.n2/.

� Can also show that the recurrence’s solution is �.n2/. Thus, the worst-case

running time is ‚.n2/.
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Average-case analysis

� The dominant cost of the algorithm is partitioning.

� PARTITION removes the pivot element from future consideration each time.

� Thus, PARTITION is called at most n times.

� QUICKSORT recurses on the partitions.

� The amount of work that each call to PARTITION does is a constant plus the

number of comparisons that are performed in its for loop.

� Let X D the total number of comparisons performed in all calls to PARTITION.

� Therefore, the total work done over the entire execution is O.nCX/.

We will now compute a bound on the overall number of comparisons.

For ease of analysis:

� Rename the elements of A as ´1; ´2; : : : ; ´n, with ´i being the i th smallest

element.

� Define the set Zij D f´i ; ´iC1; : : : ; j́ g to be the set of elements between ´i

and j́ , inclusive.

Each pair of elements is compared at most once, because elements are compared

only to the pivot element, and then the pivot element is never in any later call to

PARTITION.

Let Xij D I f´i is compared to j́ g.
(Considering whether ´i is compared to j́ at any time during the entire quicksort

algorithm, not just during one call of PARTITION.)

Since each pair is compared at most once, the total number of comparisons per-

formed by the algorithm is

X D
n�1
X

iD1

n
X

j DiC1

Xij :

Take expectations of both sides, use Lemma 5.1 and linearity of expectation:

E ŒX� D E

"
n�1
X

iD1

n
X

j DiC1

Xij

#

D
n�1
X

iD1

n
X

j DiC1

E ŒXij �

D
n�1
X

iD1

n
X

j DiC1

Pr f´i is compared to j́ g :

Now all we have to do is find the probability that two elements are compared.

� Think about when two elements are not compared.

� For example, numbers in separate partitions will not be compared.
� In the previous example, h8; 1; 6; 4; 0; 3; 9; 5i and the pivot is 5, so that none

of the set f1; 4; 0; 3g will ever be compared to any of the set f8; 6; 9g.
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� Once a pivot x is chosen such that ´i < x < j́ , then ´i and j́ will never be

compared at any later time.

� If either ´i or j́ is chosen before any other element of Zij , then it will be

compared to all the elements of Zij , except itself.

� The probability that ´i is compared to j́ is the probability that either ´i or j́

is the first element chosen.

� There are j�iC1 elements, and pivots are chosen randomly and independently.

Thus, the probability that any particular one of them is the first one chosen is

1=.j � i C 1/.

Therefore,

Pr f´i is compared to j́ g D Pr f´i or j́ is the first pivot chosen from Zij g
D Pr f´i is the first pivot chosen from Zij g

CPr f j́ is the first pivot chosen from Zij g

D 1

j � i C 1
C 1

j � i C 1

D 2

j � i C 1
:

[The second line follows because the two events are mutually exclusive.]

Substituting into the equation for E ŒX�:

E ŒX� D
n�1
X

iD1

n
X

j DiC1

2

j � i C 1
:

Evaluate by using a change in variables (k D j � i) and the bound on the harmonic

series in equation (A.7):

E ŒX� D
n�1
X

iD1

n
X

j DiC1

2

j � i C 1

D
n�1
X

iD1

n�i
X

kD1

2

k C 1

<

n�1
X

iD1

n
X

kD1

2

k

D
n�1
X

iD1

O.lg n/

D O.n lg n/ :

So the expected running time of quicksort, using RANDOMIZED-PARTITION, is

O.n lg n/.
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Quicksort

Solution to Exercise 7.2-3

This solution is also posted publicly

PARTITION does a “worst-case partitioning” when the elements are in decreasing

order. It reduces the size of the subarray under consideration by only 1 at each step,

which we’ve seen has running time ‚.n2/.

In particular, PARTITION, given a subarray AŒp : : r� of distinct elements in de-

creasing order, produces an empty partition in AŒp : : q � 1�, puts the pivot (orig-

inally in AŒr�) into AŒp�, and produces a partition AŒp C 1 : : r� with only one

fewer element than AŒp : : r�. The recurrence for QUICKSORT becomes T .n/ D
T .n � 1/C‚.n/, which has the solution T .n/ D ‚.n2/.

Solution to Exercise 7.2-5

This solution is also posted publicly

The minimum depth follows a path that always takes the smaller part of the parti-

tion—i.e., that multiplies the number of elements by ˛. One iteration reduces the

number of elements from n to ˛n, and i iterations reduces the number of elements

to ˛in. At a leaf, there is just one remaining element, and so at a minimum-depth

leaf of depth m, we have ˛mn D 1. Thus, ˛m D 1=n. Taking logs, we get

m lg ˛ D � lg n, or m D � lg n= lg ˛.

Similarly, maximum depth corresponds to always taking the larger part of the par-

tition, i.e., keeping a fraction 1 � ˛ of the elements each time. The maximum

depth M is reached when there is one element left, that is, when .1 � ˛/M n D 1.
Thus, M D � lg n= lg.1 � ˛/.

All these equations are approximate because we are ignoring floors and ceilings.
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Solution to Exercise 7.3-1

We may be interested in the worst-case performance, but in that case, the random-

ization is irrelevant: it won’t improve the worst case. What randomization can do

is make the chance of encountering a worst-case scenario small.

Solution to Exercise 7.4-2

To show that quicksort’s best-case running time is �.n lg n/, we use a technique

similar to the one used in Section 7.4.1 to show that its worst-case running time

is O.n2/.

Let T .n/ be the best-case time for the procedure QUICKSORT on an input of size n.

We have the recurrence

T .n/ D min
1�q�n�1

.T .q/C T .n � q � 1//C‚.n/ :

We guess that T .n/ � cn lg n for some constant c. Substituting this guess into the

recurrence, we obtain

T .n/ � min
1�q�n�1

.cq lg q C c.n � q � 1/ lg.n � q � 1//C‚.n/

D c � min
1�q�n�1

.q lg q C .n � q � 1/ lg.n � q � 1//C‚.n/ :

As we’ll show below, the expression q lg q C .n� q � 1/ lg.n� q � 1/ achieves a

minimum over the range 1 � q � n�1 when q D n�q�1, or q D .n�1/=2, since

the first derivative of the expression with respect to q is 0 when q D .n� 1/=2 and

the second derivative of the expression is positive. (It doesn’t matter that q is not

an integer when n is even, since we’re just trying to determine the minimum value

of a function, knowing that when we constrain q to integer values, the function’s

value will be no lower.)

Choosing q D .n � 1/=2 gives us the bound

min
1�q�n�1

.q lg q C .n � q � 1/ lg.n � q � 1/

� n � 1

2
lg

n � 1

2
C
�

n � n � 1

2
� 1

�

lg

�

n � n � 1

2
� 1

�

D .n � 1/ lg
n � 1

2
:

Continuing with our bounding of T .n/, we obtain, for n � 2,

T .n/ � c.n � 1/ lg
n � 1

2
C‚.n/

D c.n � 1/ lg.n � 1/ � c.n� 1/C‚.n/

D cn lg.n � 1/ � c lg.n � 1/ � c.n � 1/C‚.n/

� cn lg.n=2/ � c lg.n � 1/ � c.n � 1/C‚.n/ (since n � 2)

D cn lg n � cn � c lg.n � 1/ � cnC c C‚.n/

D cn lg n � .2cnC c lg.n � 1/ � c/C‚.n/

� cn lg n ;
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since we can pick the constant c small enough so that the ‚.n/ term dominates the

quantity 2cn C c lg.n � 1/ � c. Thus, the best-case running time of quicksort is

�.n lg n/.

Letting f .q/ D q lg q C .n � q � 1/ lg.n � q � 1/, we now show how to find the

minimum value of this function in the range 1 � q � n � 1. We need to find the

value of q for which the derivative of f with respect to q is 0. We rewrite this

function as

f .q/ D q ln q C .n � q � 1/ ln.n � q � 1/

ln 2
;

and so

f 0.q/ D d

dq

�
q ln q C .n � q � 1/ ln.n � q � 1/

ln 2

�

D ln q C 1 � ln.n � q � 1/ � 1

ln 2

D ln q � ln.n � q � 1/

ln 2
:

The derivative f 0.q/ is 0 when q D n � q � 1, or when q D .n � 1/=2. To verify

that q D .n � 1/=2 is indeed a minimum (not a maximum or an inflection point),

we need to check that the second derivative of f is positive at q D .n � 1/=2:

f 00.q/ D d

dq

�
ln q � ln.n � q � 1/

ln 2

�

D 1

ln 2

�
1

q
C 1

n � q � 1

�

f 00
�

n � 1

2

�

D 1

ln 2

�
2

n � 1
C 2

n � 1

�

D 1

ln 2
� 4

n � 1
> 0 (since n � 2) :

Solution to Problem 7-2

a. If all elements are equal, then when PARTITION returns, q D r and all elements

in AŒp : : q�1� are equal. We get the recurrence T .n/ D T .n�1/CT .0/C‚.n/

for the running time, and so T .n/ D ‚.n2/.
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b. The PARTITION
0 procedure:

PARTITION
0.A; p; r/

x D AŒp�

i D h D p

for j D p C 1 to r

// Invariant: AŒp : : i � 1� < x, AŒi : : h� D x,

AŒhC 1 : : j � 1� > x, AŒj : : r� unknown.
if AŒj � < x

y D AŒj �

AŒj � D AŒhC 1�

AŒhC 1� D AŒi�

AŒi � D y

i D i C 1

h D hC 1

elseif AŒj � == x

exchange AŒhC 1� with AŒj �

h D hC 1

return .i; h/

c. RANDOMIZED-PARTITION
0 is the same as RANDOMIZED-PARTITION, but

with the call to PARTITION replaced by a call to PARTITION
0.

QUICKSORT
0.A; p; r/

if p < r

.q; t/ D RANDOMIZED-PARTITION
0.A; p; r/

QUICKSORT
0.A; p; q � 1/

QUICKSORT
0.A; t C 1; r/

d. Putting elements equal to the pivot in the same partition as the pivot can only

help us, because we do not recurse on elements equal to the pivot. Thus, the

subproblem sizes with QUICKSORT
0, even with equal elements, are no larger

than the subproblem sizes with QUICKSORT when all elements are distinct.

Solution to Problem 7-4

a. QUICKSORT
0 does exactly what QUICKSORT does; hence it sorts correctly.

QUICKSORT and QUICKSORT
0 do the same partitioning, and then each calls

itself with arguments A; p; q � 1. QUICKSORT then calls itself again, with

arguments A; q C 1; r . QUICKSORT
0 instead sets p D q C 1 and performs

another iteration of its while loop. This executes the same operations as calling

itself with A; q C 1; r , because in both cases, the first and third arguments (A

and r) have the same values as before, and p has the old value of q C 1.

b. The stack depth of QUICKSORT
0 will be ‚.n/ on an n-element input array if

there are ‚.n/ recursive calls to QUICKSORT
0. This happens if every call to

PARTITION.A; p; r/ returns q D r . The sequence of recursive calls in this

scenario is
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QUICKSORT
0.A; 1; n/ ;

QUICKSORT
0.A; 1; n � 1/ ;

QUICKSORT
0.A; 1; n � 2/ ;
:::

QUICKSORT
0.A; 1; 1/ :

Any array that is already sorted in increasing order will cause QUICKSORT
0 to

behave this way.

c. The problem demonstrated by the scenario in part (b) is that each invocation of

QUICKSORT
0 calls QUICKSORT

0 again with almost the same range. To avoid

such behavior, we must change QUICKSORT
0 so that the recursive call is on a

smaller interval of the array. The following variation of QUICKSORT
0 checks

which of the two subarrays returned from PARTITION is smaller and recurses

on the smaller subarray, which is at most half the size of the current array. Since
the array size is reduced by at least half on each recursive call, the number of

recursive calls, and hence the stack depth, is ‚.lg n/ in the worst case. Note

that this method works no matter how partitioning is performed (as long as

the PARTITION procedure has the same functionality as the procedure given in

Section 7.1).

QUICKSORT
00.A; p; r/

while p < r

// Partition and sort the small subarray first.

q D PARTITION.A; p; r/

if q � p < r � q

QUICKSORT
00.A; p; q � 1/

p D q C 1

else QUICKSORT
00.A; q C 1; r/

r D q � 1

The expected running time is not affected, because exactly the same work is

done as before: the same partitions are produced, and the same subarrays are
sorted.
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Sorting in Linear Time

Chapter 8 overview

How fast can we sort?

We will prove a lower bound, then beat it by playing a different game.

Comparison sorting

� The only operation that may be used to gain order information about a sequence

is comparison of pairs of elements.

� All sorts seen so far are comparison sorts: insertion sort, selection sort, merge

sort, quicksort, heapsort, treesort.

Lower bounds for sorting

Lower bounds

� �.n/ to examine all the input.

� All sorts seen so far are �.n lg n/.

� We’ll show that �.n lg n/ is a lower bound for comparison sorts.

Decision tree

� Abstraction of any comparison sort.

� Represents comparisons made by

� a specific sorting algorithm
� on inputs of a given size.

� Abstracts away everything else: control and data movement.

� We’re counting only comparisons.
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For insertion sort on 3 elements:

≤ >

≤ >

1:2

2:3 1:3

〈1,2,3〉 1:3 〈2,1,3〉 2:3

〈1,3,2〉 〈3,1,2〉 〈3,2,1〉

≤ >

≤ >

≤ >

〈2,3,1〉

A[1] ≤ A[2] A[1] > A[2] (swap in array)

A[1] ≤ A[2]
A[2] > A[3]

A[1] > A[2]
A[1] > A[3]

A[1] ≤ A[2] ≤ A[3]

compare A[1] to A[2]

[Each internal node is labeled by indices of array elements from their original

positions. Each leaf is labeled by the permutation of orders that the algorithm
determines.]

How many leaves on the decision tree? There are � nŠ leaves, because every

permutation appears at least once.

For any comparison sort,

� 1 tree for each n.

� View the tree as if the algorithm splits in two at each node, based on the infor-

mation it has determined up to that point.

� The tree models all possible execution traces.

What is the length of the longest path from root to leaf?

� Depends on the algorithm

� Insertion sort: ‚.n2/

� Merge sort: ‚.n lg n/

Lemma

Any binary tree of height h has � 2h leaves.

In other words:

� l D # of leaves,

� h D height,

� Then l � 2h.

(We’ll prove this lemma later.)

Why is this useful?

Theorem

Any decision tree that sorts n elements has height �.n lg n/.
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Proof

� l � nŠ

� By lemma, nŠ � l � 2h or 2h � nŠ

� Take logs: h � lg.nŠ/

� Use Stirling’s approximation: nŠ > .n=e/n (by equation (3.17))

h � lg.n=e/n

D n lg.n=e/

D n lg n � n lg e

D �.n lg n/ : (theorem)

Now to prove the lemma:

Proof By induction on h.

Basis: h D 0. Tree is just one node, which is a leaf. 2h D 1.

Inductive step: Assume true for height D h � 1. Extend tree of height h � 1

by making as many new leaves as possible. Each leaf becomes parent to two new
leaves.

# of leaves for height h D 2 � (# of leaves for height h � 1)

D 2 � 2h�1 (ind. hypothesis)

D 2h : (lemma)

Corollary

Heapsort and merge sort are asymptotically optimal comparison sorts.

Sorting in linear time

Non-comparison sorts.

Counting sort

Depends on a key assumption: numbers to be sorted are integers in f0; 1; : : : ; kg.

Input: AŒ1 : : n�, where AŒj � 2 f0; 1; : : : ; kg for j D 1; 2; : : : ; n. Array A and
values n and k are given as parameters.

Output: BŒ1 : : n�, sorted. B is assumed to be already allocated and is given as a

parameter.

Auxiliary storage: C Œ0 : : k�
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COUNTING-SORT.A; B; n; k/

let C Œ0 : : k� be a new array

for i D 0 to k

C Œi � D 0

for j D 1 to n

C ŒAŒj �� D C ŒAŒj ��C 1

for i D 1 to k

C Œi � D C Œi�C C Œi � 1�

for j D n downto 1
BŒC ŒAŒj ��� D AŒj �

C ŒAŒj �� D C ŒAŒj ��� 1

Do an example for A D 21; 51; 31; 01; 22; 32; 02; 33

Counting sort is stable (keys with same value appear in same order in output as

they did in input) because of how the last loop works.

Analysis

‚.nC k/, which is ‚.n/ if k D O.n/.

How big a k is practical?

� Good for sorting 32-bit values? No.

� 16-bit? Probably not.

� 8-bit? Maybe, depending on n.

� 4-bit? Probably (unless n is really small).

Counting sort will be used in radix sort.

Radix sort

How IBM made its money. Punch card readers for census tabulation in early

1900’s. Card sorters, worked on one column at a time. It’s the algorithm for

using the machine that extends the technique to multi-column sorting. The human
operator was part of the algorithm!

Key idea: Sort least significant digits first.

To sort d digits:

RADIX-SORT.A; d/

for i D 1 to d

use a stable sort to sort array A on digit i
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Example

326
453
608
835
751
435
704
690

326

453

608

835

751

435

704

690

326

453

608

835

751
435

704

690

326

453
608

835
751

435

704
690

sorted

Correctness

� Induction on number of passes (i in pseudocode).

� Assume digits 1; 2; : : : ; i � 1 are sorted.

� Show that a stable sort on digit i leaves digits 1; : : : ; i sorted:

� If 2 digits in position i are different, ordering by position i is correct, and

positions 1; : : : ; i � 1 are irrelevant.
� If 2 digits in position i are equal, numbers are already in the right order

(by inductive hypothesis). The stable sort on digit i leaves them in the right

order.

This argument shows why it’s so important to use a stable sort for intermediate

sort.

Analysis

Assume that we use counting sort as the intermediate sort.

� ‚.nC k/ per pass (digits in range 0; : : : ; k)

� d passes

� ‚.d.nC k// total

� If k D O.n/, timeD ‚.dn/.

How to break each key into digits?

� n words.

� b bits/word.

� Break into r-bit digits. Have d D db=re.
� Use counting sort, k D 2r � 1.

Example: 32-bit words, 8-bit digits. b D 32, r D 8, d D d32=8e D 4,

k D 28 � 1 D 255.

� TimeD ‚( b
r

.nC 2r/).

How to choose r? Balance b=r and n C 2r . Choosing r � lg n gives us

‚
�

b
lg n

.nC n/
�

D ‚.bn= lg n/.
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� If we choose r < lg n, then b=r > b= lg n, and nC 2r term doesn’t improve.

� If we choose r > lg n, then n C 2r term gets big. Example: r D 2 lg n )
2r D 22 lg n D .2lg n/2 D n2.

So, to sort 216 32-bit numbers, use r D lg 216 D 16 bits. db=re D 2 passes.

Compare radix sort to merge sort and quicksort:

� 1 million .220/ 32-bit integers.

� Radix sort: d32=20e D 2 passes.

� Merge sort/quicksort: lg n D 20 passes.

� Remember, though, that each radix sort “pass” is really 2 passes—one to take

census, and one to move data.

How does radix sort violate the ground rules for a comparison sort?

� Using counting sort allows us to gain information about keys by means other

than directly comparing 2 keys.

� Used keys as array indices.

Bucket sort

Assumes the input is generated by a random process that distributes elements uni-

formly over Œ0; 1/.

Idea

� Divide Œ0; 1/ into n equal-sized buckets.

� Distribute the n input values into the buckets.

� Sort each bucket.

� Then go through buckets in order, listing elements in each one.

Input: AŒ1 : : n�, where 0 � AŒi� < 1 for all i .

Auxiliary array: BŒ0 : : n � 1� of linked lists, each list initially empty.

BUCKET-SORT.A; n/

let BŒ0 : : n � 1� be a new array
for i D 1 to n � 1

make BŒi� an empty list

for i D 1 to n

insert AŒi� into list BŒbn �AŒi�c�
for i D 0 to n � 1

sort list BŒi� with insertion sort

concatenate lists BŒ0�; BŒ1�; : : : ; BŒn � 1� together in order

return the concatenated lists
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Correctness

Consider AŒi�, AŒj �. Assume without loss of generality that AŒi� � AŒj �. Then

bn � AŒi�c � bn � AŒj �c. So AŒi� is placed into the same bucket as AŒj � or into a

bucket with a lower index.

� If same bucket, insertion sort fixes up.

� If earlier bucket, concatenation of lists fixes up.

Analysis

� Relies on no bucket getting too many values.

� All lines of algorithm except insertion sorting take ‚.n/ altogether.

� Intuitively, if each bucket gets a constant number of elements, it takes O.1/

time to sort each bucket) O.n/ sort time for all buckets.

� We “expect” each bucket to have few elements, since the average is 1 element

per bucket.

� But we need to do a careful analysis.

Define a random variable:

� ni D the number of elements placed in bucket BŒi�.

Because insertion sort runs in quadratic time, bucket sort time is

T .n/ D ‚.n/C
n�1
X

iD0

O.n2
i / :

Take expectations of both sides:

E ŒT .n/� D E

"

‚.n/C
n�1
X

iD0

O.n2
i /

#

D ‚.n/C
n�1
X

iD0

E
�

O.n2
i /
�

(linearity of expectation)

D ‚.n/C
n�1
X

iD0

O.E
�

n2
i

�

/ (E ŒaX� D aE ŒX�)

Claim

E Œn2
i � D 2 � .1=n/ for i D 0; : : : ; n � 1.

Proof of claim

Define indicator random variables:

� Xij D I fAŒj � falls in bucket ig
� Pr fAŒj � falls in bucket ig D 1=n

� ni D
n
X

j D1

Xij
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Then

E
�

n2
i

�

D E

" 
n
X

j D1

Xij

!2#

D E

"
n
X

j D1

X2
ij C 2

n�1
X

j D1

n
X

kDj C1

Xij Xik

#

D
n
X

j D1

E
�

X2
ij

�

C 2

n�1
X

j D1

n
X

kDj C1

E ŒXij Xik� (linearity of expectation)

E
�

X2
ij

�

D 02 � Pr fAŒj � doesn’t fall in bucket ig C 12 � Pr fAŒj � falls in bucket ig

D 0 �
�

1 � 1

n

�

C 1 � 1
n

D 1

n

E ŒXij Xik� for j ¤ k: Since j ¤ k, Xij and Xik are independent random variables

) E ŒXij Xik� D E ŒXij � E ŒXik�

D 1

n
� 1

n

D 1

n2

Therefore:

E
�

n2
i

�

D
n
X

j D1

1

n
C 2

n�1
X

j D1

n
X

kDj C1

1

n2

D n � 1
n
C 2

 

n

2

!

1

n2

D 1C 2 � n.n � 1/

2
� 1

n2

D 1C n � 1

n

D 1C 1� 1

n

D 2� 1

n
(claim)

Therefore:

E ŒT .n/� D ‚.n/C
n�1
X

iD0

O.2 � 1=n/

D ‚.n/CO.n/

D ‚.n/

� Again, not a comparison sort. Used a function of key values to index into an

array.
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� This is a probabilistic analysis—we used probability to analyze an algorithm

whose running time depends on the distribution of inputs.

� Different from a randomized algorithm, where we use randomization to impose

a distribution.

� With bucket sort, if the input isn’t drawn from a uniform distribution on Œ0; 1/,
all bets are off (performance-wise, but the algorithm is still correct).



Solutions for Chapter 8:

Sorting in Linear Time

Solution to Exercise 8.1-3

This solution is also posted publicly

If the sort runs in linear time for m input permutations, then the height h of the

portion of the decision tree consisting of the m corresponding leaves and their

ancestors is linear.

Use the same argument as in the proof of Theorem 8.1 to show that this is impos-

sible for m D nŠ=2, nŠ=n, or nŠ=2n.

We have 2h � m, which gives us h � lg m. For all the possible m’s given here,
lg m D �.n lg n/, hence h D �.n lg n/.

In particular,

lg
nŠ

2
D lg nŠ � 1 � n lg n � n lg e � 1 ;

lg
nŠ

n
D lg nŠ � lg n � n lg n � n lg e � lg n ;

lg
nŠ

2n
D lg nŠ � n � n lg n � n lg e � n :

Solution to Exercise 8.1-4

Let S be a sequence of n elements divided into n=k subsequences each of length k

where all of the elements in any subsequence are larger than all of the elements

of a preceding subsequence and smaller than all of the elements of a succeeding

subsequence.

Claim

Any comparison-based sorting algorithm to sort s must take �.n lg k/ time in the

worst case.

Proof First notice that, as pointed out in the hint, we cannot prove the lower

bound by multiplying together the lower bounds for sorting each subsequence.

That would only prove that there is no faster algorithm that sorts the subsequences
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independently. This was not what we are asked to prove; we cannot introduce any

extra assumptions.

Now, consider the decision tree of height h for any comparison sort for S . Since the

elements of each subsequence can be in any order, any of the kŠ permutations cor-

respond to the final sorted order of a subsequence. And, since there are n=k such

subsequences, each of which can be in any order, there are .kŠ/n=k permutations

of S that could correspond to the sorting of some input order. Thus, any decision

tree for sorting S must have at least .kŠ/n=k leaves. Since a binary tree of height h

has no more than 2h leaves, we must have 2h � .kŠ/n=k or h � lg..kŠ/n=k/. We

therefore obtain

h � lg..kŠ/n=k

D .n=k/ lg.kŠ/

� .n=k/ lg..k=2/k=2/

D .n=2/ lg.k=2/ :

The third line comes from kŠ having its k=2 largest terms being at least k=2 each.

(We implicitly assume here that k is even. We could adjust with floors and ceilings

if k were odd.)

Since there exists at least one path in any decision tree for sorting S that has length

at least .n=2/ lg.k=2/, the worst-case running time of any comparison-based sort-

ing algorithm for S is �.n lg k/.

Solution to Exercise 8.2-3

This solution is also posted publicly

[The following solution also answers Exercise 8.2-2.]

Notice that the correctness argument in the text does not depend on the order in
which A is processed. The algorithm is correct no matter what order is used!

But the modified algorithm is not stable. As before, in the final for loop an element

equal to one taken from A earlier is placed before the earlier one (i.e., at a lower
index position) in the output arrray B . The original algorithm was stable because

an element taken from A later started out with a lower index than one taken earlier.

But in the modified algorithm, an element taken from A later started out with a

higher index than one taken earlier.

In particular, the algorithm still places the elements with value k in positions

C Œk � 1�C 1 through C Œk�, but in the reverse order of their appearance in A.

Solution to Exercise 8.2-4

Compute the C array as is done in counting sort. The number of integers in the

range Œa : : b� is C Œb� � C Œa � 1�, where we interpret C Œ�1� as 0.
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Solution to Exercise 8.3-2

Insertion sort is stable. When inserting AŒj � into the sorted sequence AŒ1 : : : j �1�,

we do it the following way: compare AŒj � to AŒi�, starting with i D j � 1 and

going down to i D 1. Continue at long as AŒj � < AŒi�.

Merge sort as defined is stable, because when two elements compared are equal, the

tie is broken by taking the element from array L which keeps them in the original

order.

Heapsort and quicksort are not stable.

One scheme that makes a sorting algorithm stable is to store the index of each

element (the element’s place in the original ordering) with the element. When

comparing two elements, compare them by their values and break ties by their

indices.

Additional space requirements: For n elements, their indices are 1 : : : n. Each can

be written in lg n bits, so together they take O.n lg n/ additional space.

Additional time requirements: The worst case is when all elements are equal. The

asymptotic time does not change because we add a constant amount of work to

each comparison.

Solution to Exercise 8.3-3

This solution is also posted publicly

Basis: If d D 1, there’s only one digit, so sorting on that digit sorts the array.

Inductive step: Assuming that radix sort works for d � 1 digits, we’ll show that it

works for d digits.

Radix sort sorts separately on each digit, starting from digit 1. Thus, radix sort of

d digits, which sorts on digits 1; : : : ; d is equivalent to radix sort of the low-order

d � 1 digits followed by a sort on digit d . By our induction hypothesis, the sort of

the low-order d � 1 digits works, so just before the sort on digit d , the elements

are in order according to their low-order d � 1 digits.

The sort on digit d will order the elements by their d th digit. Consider two ele-

ments, a and b, with d th digits ad and bd respectively.

� If ad < bd , the sort will put a before b, which is correct, since a < b regardless

of the low-order digits.
� If ad > bd , the sort will put a after b, which is correct, since a > b regardless

of the low-order digits.
� If ad D bd , the sort will leave a and b in the same order they were in, because

it is stable. But that order is already correct, since the correct order of a and b

is determined by the low-order d � 1 digits when their d th digits are equal, and

the elements are already sorted by their low-order d � 1 digits.

If the intermediate sort were not stable, it might rearrange elements whose d th

digits were equal—elements that were in the right order after the sort on their

lower-order digits.
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Solution to Exercise 8.3-4

This solution is also posted publicly

Treat the numbers as 3-digit numbers in radix n. Each digit ranges from 0 to n� 1.

Sort these 3-digit numbers with radix sort.

There are 3 calls to counting sort, each taking ‚.nC n/ D ‚.n/ time, so that the

total time is ‚.n/.

Solution to Exercise 8.4-2

The worst-case running time for the bucket-sort algorithm occurs when the assump-

tion of uniformly distributed input does not hold. If, for example, all the input ends

up in the first bucket, then in the insertion sort phase it needs to sort all the input,

which takes O.n2/ time.

A simple change that will preserve the linear expected running time and make the

worst-case running time O.n lg n/ is to use a worst-case O.n lg n/-time algorithm,

such as merge sort, instead of insertion sort when sorting the buckets.

Solution to Problem 8-1

This solution is also posted publicly

a. For a comparison algorithm A to sort, no two input permutations can reach the

same leaf of the decision tree, so there must be at least nŠ leaves reached in TA,

one for each possible input permutation. Since A is a deterministic algorithm, it

must always reach the same leaf when given a particular permutation as input,

so at most nŠ leaves are reached (one for each permutation). Therefore exactly

nŠ leaves are reached, one for each input permutation.

These nŠ leaves will each have probability 1=nŠ, since each of the nŠ possible

permutations is the input with the probability 1=nŠ. Any remaining leaves will

have probability 0, since they are not reached for any input.

Without loss of generality, we can assume for the rest of this problem that paths

leading only to 0-probability leaves aren’t in the tree, since they cannot affect

the running time of the sort. That is, we can assume that TA consists of only the

nŠ leaves labeled 1=nŠ and their ancestors.

b. If k > 1, then the root of T is not a leaf. This implies that all of T ’s leaves

are leaves in LT and RT . Since every leaf at depth h in LT or RT has depth

hC 1 in T , D.T / must be the sum of D.LT /, D.RT /, and k, the total number

of leaves. To prove this last assertion, let dT .x/ D depth of node x in tree T .

Then,
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D.T / D
X

x2leaves.T /

dT .x/

D
X

x2leaves.LT /

dT .x/C
X

x2leaves.RT /

dT .x/

D
X

x2leaves.LT /

.dLT .x/C 1/C
X

x2leaves.RT /

.dRT .x/C 1/

D
X

x2leaves.LT /

dLT .x/C
X

x2leaves.RT /

dRT .x/C
X

x2leaves.T /

1

D D.LT /CD.RT /C k :

c. To show that d.k/ D min1�i�k�1 fd.i/C d.k � i/C kg we will show sepa-

rately that

d.k/ � min
1�i�k�1

fd.i/C d.k � i/C kg

and

d.k/ � min
1�i�k�1

fd.i/C d.k � i/C kg :

� To show that d.k/ � min1�i�k�1 fd.i/C d.k � i/C kg, we need only show

that d.k/ � d.i/C d.k � i/C k, for i D 1; 2; : : : ; k � 1. For any i from 1

to k � 1 we can find trees RT with i leaves and LT with k � i leaves such

that D.RT / D d.i/ and D.LT / D d.k� i/. Construct T such that RT and

LT are the right and left subtrees of T ’s root respectively. Then

d.k/ � D.T / (by definition of d as min D.T / value)

D D.RT /CD.LT /C k (by part (b))

D d.i/C d.k � i/C k (by choice of RT and LT ) .

� To show that d.k/ � min1�i�k�1 fd.i/C d.k � i/C kg, we need only show

that d.k/ � d.i/C d.k � i/C k, for some i in f1; 2; : : : ; k � 1g. Take the

tree T with k leaves such that D.T / D d.k/, let RT and LT be T ’s right
and left subtree, respecitvely, and let i be the number of leaves in RT . Then

k � i is the number of leaves in LT and

d.k/ D D.T / (by choice of T )

D D.RT /CD.LT /C k (by part (b))

� d.i/C d.k � i/C k (by defintion of d as min D.T / value) .

Neither i nor k � i can be 0 (and hence 1 � i � k � 1), since if one of these

were 0, either RT or LT would contain all k leaves of T , and that k-leaf

subtree would have a D equal to D.T / � k (by part (b)), contradicting the

choice of T as the k-leaf tree with the minimum D.

d. Let fk.i/ D i lg i C .k � i/ lg.k � i/. To find the value of i that minimizes fk,

find the i for which the derivative of fk with respect to i is 0:

f 0
k.i/ D d

di

�
i ln i C .k � i/ ln.k � i/

ln 2

�

D ln i C 1 � ln.k � i/ � 1

ln 2

D ln i � ln.k � i/

ln 2
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is 0 at i D k=2. To verify this is indeed a minimum (not a maximum), check

that the second derivative of fk is positive at i D k=2:

f 00
k .i/ D d

di

�
ln i � ln.k � i/

ln 2

�

D 1

ln 2

�
1

i
C 1

k � i

�

:

f 00
k .k=2/ D 1

ln 2

�
2

k
C 2

k

�

D 1

ln 2
� 4

k
> 0 since k > 1 .

Now we use substitution to prove d.k/ D �.k lg k/. The base case of the

induction is satisfied because d.1/ � 0 D c � 1 � lg 1 for any constant c. For

the inductive step we assume that d.i/ � ci lg i for 1 � i � k � 1, where c is
some constant to be determined.

d.k/ D min
1�i�k�1

fd.i/C d.k � i/C kg

� min
1�i�k�1

fc.i lg i C .k � i/ lg.k � i//C kg

D min
1�i�k�1

fcfk.i/C kg

D c

�
k

2
lg

k

2

�

k � k

2

�

lg

�

k � k

2

��

C k

D ck lg

�
k

2

�

C k

D c.k lg k � k/C k

D ck lg k C .k � ck/

� ck lg k if c � 1 ;

and so d.k/ D �.k lg k/.

e. Using the result of part (d) and the fact that TA (as modified in our solution to

part (a)) has nŠ leaves, we can conclude that

D.TA/ � d.nŠ/ D �.nŠ lg.nŠ// :

D.TA/ is the sum of the decision-tree path lengths for sorting all input per-

mutations, and the path lengths are proportional to the run time. Since the nŠ

permutations have equal probability 1=nŠ, the expected time to sort n random

elements (1 input permutation) is the total time for all permutations divided

by nŠ:

�.nŠ lg.nŠ//

nŠ
D �.lg.nŠ// D �.n lg n/ :

f. We will show how to modify a randomized decision tree (algorithm) to define a

deterministic decision tree (algorithm) that is at least as good as the randomized

one in terms of the average number of comparisons.

At each randomized node, pick the child with the smallest subtree (the subtree

with the smallest average number of comparisons on a path to a leaf). Delete all
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the other children of the randomized node and splice out the randomized node

itself.

The deterministic algorithm corresponding to this modified tree still works, be-

cause the randomized algorithm worked no matter which path was taken from

each randomized node.

The average number of comparisons for the modified algorithm is no larger

than the average number for the original randomized tree, since we discarded

the higher-average subtrees in each case. In particular, each time we splice out

a randomized node, we leave the overall average less than or equal to what it

was, because

� the same set of input permutations reaches the modified subtree as before, but

those inputs are handled in less than or equal to average time than before, and
� the rest of the tree is unmodified.

The randomized algorithm thus takes at least as much time on average as the

corresponding deterministic one. (We’ve shown that the expected running time

for a deterministic comparison sort is �.n lg n/, hence the expected time for a
randomized comparison sort is also �.n lg n/.)

Solution to Problem 8-3

a. The usual, unadorned radix sort algorithm will not solve this problem in the

required time bound. The number of passes, d , would have to be the number

of digits in the largest integer. Suppose that there are m integers; we always

have m � n. In the worst case, we would have one integer with n=2 digits and

n=2 integers with one digit each. We assume that the range of a single digit is

constant. Therefore, we would have d D n=2 and m D n=2 C 1, and so the
running time would be ‚.dm/ D ‚.n2/.

Let us assume without loss of generality that all the integers are positive and

have no leading zeros. (If there are negative integers or 0, deal with the positive

numbers, negative numbers, and 0 separately.) Under this assumption, we can

observe that integers with more digits are always greater than integers with

fewer digits. Thus, we can first sort the integers by number of digits (using

counting sort), and then use radix sort to sort each group of integers with the

same length. Noting that each integer has between 1 and n digits, let mi be the
number of integers with i digits, for i D 1; 2; : : : ; n. Since there are n digits

altogether, we have
Pn

iD1 i �mi D n.

It takes O.n/ time to compute how many digits all the integers have and, once

the numbers of digits have been computed, it takes O.m C n/ D O.n/ time

to group the integers by number of digits. To sort the group with mi digits by

radix sort takes ‚.i �mi/ time. The time to sort all groups, therefore, is
n
X

iD1

‚.i �mi / D ‚

 
n
X

iD1

i �mi

!

D ‚.n/ :
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b. One way to solve this problem is by a radix sort from right to left. Since the

strings have varying lengths, however, we have to pad out all strings that are

shorter than the longest string. The padding is on the right end of the string,

and it’s with a special character that is lexicographically less than any other

character (e.g., in C, the character ’\0’ with ASCII value 0). Of course, we

don’t have to actually change any string; if we want to know the j th character of

a string whose length is k, then if j > k, the j th character is the pad character.

Unfortunately, this scheme does not always run in the required time bound.

Suppose that there are m strings and that the longest string has d characters.

In the worst case, one string has n=2 characters and, before padding, n=2

strings have one character each. As in part (a), we would have d D n=2 and
m D n=2C 1. We still have to examine the pad characters in each pass of radix

sort, even if we don’t actually create them in the strings. Assuming that the

range of a single character is constant, the running time of radix sort would be

‚.dm/ D ‚.n2/.

To solve the problem in O.n/ time, we use the property that, if the first letter

of string x is lexicographically less that the first letter of string y, then x is

lexicographically less than y, regardless of the lengths of the two strings. We

take advantage of this property by sorting the strings on the first letter, using

counting sort. We take an empty string as a special case and put it first. We

gather together all strings with the same first letter as a group. Then we recurse,

within each group, based on each string with the first letter removed.

The correctness of this algorithm is straightforward. Analyzing the running

time is a bit trickier. Let us count the number of times that each string is sorted

by a call of counting sort. Suppose that the i th string, si , has length li . Then

si is sorted by at most li C 1 counting sorts. (The “C1” is because it may have

to be sorted as an empty string at some point; for example, ab and a end up in

the same group in the first pass and are then ordered based on b and the empty

string in the second pass. The string a is sorted its length, 1, time plus one more

time.) A call of counting sort on t strings takes ‚.t/ time (remembering that

the number of different characters on which we are sorting is a constant.) Thus,
the total time for all calls of counting sort is

O

 
m
X

iD1

.li C 1/

!

D O

 
m
X

iD1

li Cm

!

D O.nCm/

D O.n/ ;

where the second line follows from
Pm

iD1 li D n, and the last line is because

m � n.

Solution to Problem 8-4

a. Compare each red jug with each blue jug. Since there are n red jugs and n blue
jugs, that will take ‚.n2/ comparisons in the worst case.
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b. To solve the problem, an algorithm has to perform a series of comparisons

until it has enough information to determine the matching. We can view the

computation of the algorithm in terms of a decision tree. Every internal node

is labeled with two jugs (one red, one blue) which we compare, and has three

outgoing edges (red jug smaller, same size, or larger than the blue jug). The

leaves are labeled with a unique matching of jugs.

The height of the decision tree is equal to the worst-case number of comparisons

the algorithm has to make to determine the matching. To bound that size, let us

first compute the number of possible matchings for n red and n blue jugs.

If we label the red jugs from 1 to n and we also label the blue jugs from 1

to n before starting the comparisons, every outcome of the algorithm can be

represented as a set

f.i; �.i// W 1 � i � n and � is a permutation on f1; : : : ; ngg ;

which contains the pairs of red jugs (first component) and blue jugs (second

component) that are matched up. Since every permutation � corresponds to a

different outcome, there must be exactly nŠ different results.

Now we can bound the height h of our decision tree. Every tree with a branch-

ing factor of 3 (every inner node has at most three children) has at most 3h

leaves. Since the decison tree must have at least nŠ children, it follows that

3h � nŠ � .n=e/n ) h � n log3 n � n log3 e D �.n lg n/ :

So any algorithm solving the problem must use �.n lg n/ comparisons.

c. Assume that the red jugs are labeled with numbers 1; 2; : : : ; n and so are the

blue jugs. The numbers are arbitrary and do not correspond to the volumes of

jugs, but are just used to refer to the jugs in the algorithm description. Moreover,

the output of the algorithm will consist of n distinct pairs .i; j /, where the red
jug i and the blue jug j have the same volume.

The procedure MATCH-JUGS takes as input two sets representing jugs to be

matched: R � f1; : : : ; ng, representing red jugs, and B � f1; : : : ; ng, rep-
resenting blue jugs. We will call the procedure only with inputs that can be

matched; one necessary condition is that jRj D jBj.
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MATCH-JUGS.R; B/

if jRj == 0 // sets are empty

return

if jRj == 1 // sets contain just one jug each

let R D frg and B D fbg
output “.r; b/”

return

else r D a randomly chosen jug in R

compare r to every jug of B

B< D the set of jugs in B that are smaller than r

B> D the set of jugs in B that are larger than r

b D the one jug in B with the same size as r

compare b to every jug of R � frg
R< D the set of jugs in R that are smaller than b

R> D the set of jugs in R that are larger than b

output “.r; b/”

MATCH-JUGS.R<; B</

MATCH-JUGS.R>; B>/

Correctness can be seen as follows (remember that jRj D jBj in each call).

Once we pick r randomly from R, there will be a matching among the jugs in

volume smaller than r (which are in the sets R< and B<), and likewise between
the jugs larger than r (which are in R> and B>). Termination is also easy to see:

since jR<j C jR>j < jRj in every recursive step, the size of the first parameter

reduces with every recursive call. It eventually must reach 0 or 1, in which case

the recursion terminates.

What about the running time? The analysis of the expected number of com-

parisons is similar to that of the quicksort algorithm in Section 7.4.2. Let us

order the jugs as r1; : : : ; rn and b1; : : : ; bn where ri < riC1 and bi < biC1 for

i D 1; : : : ; n, and ri D bi . Our analysis uses indicator random variables

Xij D I fred jug ri is compared to blue jug bj g :

As in quicksort, a given pair ri and bj is compared at most once. When we

compare ri to every jug in B , jug ri will not be put in either R< or R>. When

we compare bi to every jug in R � frig, jug bi is not put into either B< or B>.

The total number of comparisons is

X D
n�1
X

iD1

n
X

j DiC1

Xij :

To calculate the expected value of X , we follow the quicksort analysis to arrive

at

E ŒX� D
n�1
X

iD1

n
X

j DiC1

Pr fri is compared to bj g :

As in the quicksort analysis, once we choose a jug rk such that ri < rk < bj ,

we will put ri in R< and bj in R>, and so ri and bj will never be compared
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again. Let us denote Rij D fri ; : : : ; rj g. Then jugs ri and bj will be compared

if and only if the first jug in Rij to be chosen is either ri or rj .

Still following the quicksort analysis, until a jug from Rij is chosen, the entire

set Rij is together. Any jug in Rij is equally likely to be first one chosen. Since

jRij j D j � i C 1, the probability of any given jug being the first one chosen

in Rij is 1=.j�iC1/. The remainder of the analysis is the same as the quicksort

analysis, and we arrive at the solution of O.n lg n/ comparisons.

Just like in quicksort, in the worst case we always choose the largest (or small-

est) jug to partition the sets, which reduces the set sizes by only 1. The running

time then obeys the recurrence T .n/ D T .n � 1/ C ‚.n/, and the number of

comparisons we make in the worst case is T .n/ D ‚.n2/.

Solution to Problem 8-7

a. AŒq� must go the wrong place, because it goes where AŒp� should go. Since

AŒp� is the smallest value in array A that goes to the wrong array location, AŒp�

must be smaller than AŒq�.

b. From how we have defined the array B , we have that if AŒi� � AŒj � then
BŒi� � BŒj �. Therefore, algorithm X performs the same sequence of exchanges

on array B as it does on array A. The output produced on array A is of the

form : : : AŒq� : : : AŒp� : : :, and so the output produced on array B is of the form

: : : BŒq� : : : BŒp� : : :, or : : : 1 : : : 0 : : :. Hence algorithm X fails to sort array B

correctly.

c. The even steps perform fixed permutations. The odd steps sort each column

by some sorting algorithm, which might not be an oblivious compare-exchange

algorithm. But the result of sorting each column would be the same as if we did

use an oblivious compare-exchange algorithm.

d. After step 1, each column has 0s on top and 1s on the bottom, with at most one

transition between 0s and 1s, and it is a 0! 1 transition. (As we read the array

in column-major order, all 1! 0 transitions occur between adjacent columns.)

After step 2, therefore, each consecutive group of r=s rows, read in row-major

order, has at most one transition, and again it is a 0! 1 transition. All 1 ! 0

transitions occur at the end of a group of r=s rows. Since there are s groups

of r=s rows, there are at most s dirty rows, and the rest of the rows are clean.

Step 3 moves the 0s to the top rows and the 1s to the bottom rows. The s dirty
rows are somewhere in the middle.

e. The dirty area after step 3 is at most s rows high and s columns wide, and so its

area is at most s2. Step 4 turns the clean 0s in the top rows into a clean area on

the left, the clean 1s in the bottom rows into a clean area on the right, and the

dirty area of size s2 is between the two clean areas.

f. First, we argue that if the dirty area after step 4 has size at most r=2, then

steps 5–8 complete the sorting. If the dirty area has size at most r=2 (half a

column), then it either resides entirely in one column or it resides in the bottom
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half of one column and the top half of the next column. In the former case,

step 5 sorts the column containing the dirty area, and steps 6–8 maintain that

the array is sorted. In the latter case, step 5 cannot increase the size of the dirty

area, step 6 moves the entire dirty area into the same column, step 7 sorts it, and

step 8 moves it back.

Second, we argue that the dirty area after step 4 has size at most r=2. But that

follows immediately from the requirement that r � 2s2 and the property that

after step 4, the dirty area has size at most s2.

g. If s does not divide r , then after step 2, we can see up to s 0! 1 transitions and

s � 1 1 ! 0 transitions in the rows. After step 3, we would have up to 2s � 1

dirty rows, for a dirty area size of at most 2s2�s. To push the correctness proof

through, we need 2s2 � s � r=2, or r � 4s2 � 2s.

h. We can reduce the number of transitions in the rows after step 2 back down to

at most s by sorting every other column in reverse order in step 1. Now if we
have a transition (either 1 ! 0 or 0 ! 1) between columns after step 1, then

either one of the columns had all 1s or the other had all 0s, in which case we

would not have a transition within one of the columns.



Lecture Notes for Chapter 9:

Medians and Order Statistics

Chapter 9 overview

� i th order statistic is the i th smallest element of a set of n elements.

� The minimum is the first order statistic (i D 1).

� The maximum is the nth order statistic (i D n).

� A median is the “halfway point” of the set.

� When n is odd, the median is unique, at i D .nC 1/=2.

� When n is even, there are two medians:

� The lower median, at i D n=2, and
� The upper median, at i D n=2C 1.
� We mean lower median when we use the phrase “the median.”

The selection problem:

Input: A set A of n distinct numbers and a number i , with 1 � i � n.

Output: The element x 2 A that is larger than exactly i � 1 other elements in A.

In other words, the i th smallest element of A.

We can easily solve the selection problem in O.n lg n/ time:

� Sort the numbers using an O.n lg n/-time algorithm, such as heapsort or merge

sort.

� Then return the i th element in the sorted array.

There are faster algorithms, however.

� First, we’ll look at the problem of selecting the minimum and maximum of a

set of elements.

� Then, we’ll look at a simple general selection algorithm with a time bound of

O.n/ in the average case.

� Finally, we’ll look at a more complicated general selection algorithm with a

time bound of O.n/ in the worst case.
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Minimum and maximum

We can easily obtain an upper bound of n�1 comparisons for finding the minimum

of a set of n elements.

� Examine each element in turn and keep track of the smallest one.

� This is the best we can do, because each element, except the minimum, must be

compared to a smaller element at least once.

The following pseudocode finds the minimum element in array AŒ1 : : n�:

MINIMUM.A; n/

min D AŒ1�

for i D 2 to n

if min > AŒi�

min D AŒi�

return min

The maximum can be found in exactly the same way by replacing the > with < in

the above algorithm.

Simultaneous minimum and maximum

Some applications need both the minimum and maximum of a set of elements.

� For example, a graphics program may need to scale a set of .x; y/ data to fit

onto a rectangular display. To do so, the program must first find the minimum

and maximum of each coordinate.

A simple algorithm to find the minimum and maximum is to find each one indepen-

dently. There will be n � 1 comparisons for the minimum and n � 1 comparisons

for the maximum, for a total of 2n� 2 comparisons. This will result in ‚.n/ time.

In fact, at most 3 bn=2c comparisons suffice to find both the minimum and maxi-

mum:

� Maintain the minimum and maximum of elements seen so far.
� Don’t compare each element to the minimum and maximum separately.
� Process elements in pairs.
� Compare the elements of a pair to each other.
� Then compare the larger element to the maximum so far, and compare the

smaller element to the minimum so far.

This leads to only 3 comparisons for every 2 elements.

Setting up the initial values for the min and max depends on whether n is odd or

even.

� If n is even, compare the first two elements and assign the larger to max and the

smaller to min. Then process the rest of the elements in pairs.
� If n is odd, set both min and max to the first element. Then process the rest of

the elements in pairs.
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Analysis of the total number of comparisons

� If n is even, we do 1 initial comparison and then 3.n�2/=2 more comparisons.

# of comparisons D 3.n � 2/

2
C 1

D 3n � 6

2
C 1

D 3n

2
� 3C 1

D 3n

2
� 2 :

� If n is odd, we do 3.n � 1/=2 D 3 bn=2c comparisons.

In either case, the maximum number of comparisons is � 3 bn=2c.

Selection in expected linear time

Selection of the i th smallest element of the array A can be done in ‚.n/ time.

The function RANDOMIZED-SELECT uses RANDOMIZED-PARTITION from the
quicksort algorithm in Chapter 7. RANDOMIZED-SELECT differs from quicksort

because it recurses on one side of the partition only.

RANDOMIZED-SELECT.A; p; r; i/

if p == r

return AŒp�

q D RANDOMIZED-PARTITION.A; p; r/

k D q � p C 1

if i == k // pivot value is the answer

return AŒq�

elseif i < k

return RANDOMIZED-SELECT.A; p; q � 1; i/

else return RANDOMIZED-SELECT.A; q C 1; r; i � k/

After the call to RANDOMIZED-PARTITION, the array is partitioned into two sub-

arrays AŒp : : q � 1� and AŒq C 1 : : r�, along with a pivot element AŒq�.

� The elements of subarray AŒp : : q � 1� are all � AŒq�.

� The elements of subarray AŒq C 1 : : r� are all > AŒq�.

� The pivot element is the kth element of the subarray AŒp : : r�, where k D
q � p C 1.

� If the pivot element is the i th smallest element (i.e., i D k), return AŒq�.

� Otherwise, recurse on the subarray containing the i th smallest element.

� If i < k, this subarray is AŒp : : q�1�, and we want the i th smallest element.
� If i > k, this subarray is AŒq C 1 : : r� and, since there are k elements in

AŒp : : r� that precede AŒq C 1 : : r�, we want the .i � k/th smallest element

of this subarray.
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Analysis

Worst-case running time

‚.n2/, because we could be extremely unlucky and always recurse on a subarray

that is only 1 element smaller than the previous subarray.

Expected running time

RANDOMIZED-SELECT works well on average. Because it is randomized, no par-

ticular input brings out the worst-case behavior consistently.

The running time of RANDOMIZED-SELECT is a random variable that we denote

by T .n/. We obtain an upper bound on E ŒT .n/� as follows:

� RANDOMIZED-PARTITION is equally likely to return any element of A as the

pivot.

� For each k such that 1 � k � n, the subarray AŒp : : q� has k elements (all �
pivot) with probability 1=n. [Note that we’re now considering a subarray that
includes the pivot, along with elements less than the pivot.]

� For k D 1; 2; : : : ; n, define indicator random variable

Xk D I fsubarray AŒp : : q� has exactly k elementsg :

� Since Pr fsubarray AŒp : : q� has exactly k elementsg D 1=n, Lemma 5.1 says

that E ŒXk� D 1=n.

� When we call RANDOMIZED-SELECT, we don’t know if it will terminate im-

mediately with the correct answer, recurse on AŒp : : q � 1�, or recurse on
AŒqC 1 : : r�. It depends on whether the i th smallest element is less than, equal

to, or greater than the pivot element AŒq�.

� To obtain an upper bound, we assume that T .n/ is monotonically increasing

and that the i th smallest element is always in the larger subarray.

� For a given call of RANDOMIZED-SELECT, Xk D 1 for exactly one value of k,

and Xk D 0 for all other k.

� When Xk D 1, the two subarrays have sizes k � 1 and n � k.

� For a subproblem of size n, RANDOMIZED-PARTITION takes O.n/ time. [Ac-
tually, it takes ‚.n/ time, but O.n/ suffices, since we’re obtaining only an upper
bound on the expected running time.]

� Therefore, we have the recurrence

T .n/ �
n
X

kD1

Xk � .T .max.k � 1; n � k//CO.n//

D
n
X

kD1

Xk � T .max.k � 1; n � k//CO.n/ :

� Taking expected values gives

E ŒT .n/�

� E

"
n
X

kD1

Xk � T .max.k � 1; n � k//CO.n/

#



Lecture Notes for Chapter 9: Medians and Order Statistics 9-5

D
n
X

kD1

E ŒXk � T .max.k � 1; n � k//�CO.n/ (linearity of expectation)

D
n
X

kD1

E ŒXk� � E ŒT .max.k � 1; n � k//�CO.n/ (equation (C.24))

D
n
X

kD1

1

n
� E ŒT .max.k � 1; n � k//�CO.n/ :

� We rely on Xk and T .max.k � 1; n � k// being independent random variables

in order to apply equation (C.24).

� Looking at the expression max.k � 1; n � k/, we have

max.k � 1; n � k/ D
(

k � 1 if k > dn=2e ;

n � k if k � dn=2e :

� If n is even, each term from T .dn=2e/ up to T .n � 1/ appears exactly twice

in the summation.
� If n is odd, these terms appear twice and T .bn=2c/ appears once.

� Either way,

E ŒT .n/� � 2

n

n�1
X

kDbn=2c
E ŒT .k/�CO.n/ :

� Solve this recurrence by substitution:

� Guess that T .n/ � cn for some constant c that satisfies the initial conditions

of the recurrence.
� Assume that T .n/ D O.1/ for n < some constant. We’ll pick this constant

later.
� Also pick a constant a such that the function described by the O.n/ term is

bounded from above by an for all n > 0.
� Using this guess and constants c and a, we have

E ŒT .n/� � 2

n

n�1
X

kDbn=2c
ck C an

D 2c

n

 
n�1
X

kD1

k �
bn=2c�1
X

kD1

k

!

C an

D 2c

n

�
.n � 1/n

2
� .bn=2c � 1/ bn=2c

2

�

C an

� 2c

n

�
.n � 1/n

2
� .n=2� 2/.n=2 � 1/

2

�

C an

D 2c

n

�
n2 � n

2
� n2=4 � 3n=2C 2

2

�

C an

D c

n

�
3n2

4
C n

2
� 2

�

C an
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D c

�
3n

4
C 1

2
� 2

n

�

C an

� 3cn

4
C c

2
C an

D cn�
�cn

4
� c

2
� an

�

:

� To complete this proof, we choose c such that

cn=4 � c=2 � an � 0

cn=4 � an � c=2

n.c=4� a/ � c=2

n � c=2

c=4 � a

n � 2c

c � 4a
:

� Thus, as long as we assume that T .n/ D O.1/ for n < 2c=.c�4a/, we have

E ŒT .n/� D O.n/.

Therefore, we can determine any order statistic in linear time on average.

Selection in worst-case linear time

We can find the i th smallest element in O.n/ time in the worst case. We’ll describe

a procedure SELECT that does so.

SELECT recursively partitions the input array.

� Idea: Guarantee a good split when the array is partitioned.

� Will use the deterministic procedure PARTITION, but with a small modifica-

tion. Instead of assuming that the last element of the subarray is the pivot, the

modified PARTITION procedure is told which element to use as the pivot.

SELECT works on an array of n > 1 elements. It executes the following steps:

1. Divide the n elements into groups of 5. Get dn=5e groups: bn=5c groups with

exactly 5 elements and, if 5 does not divide n, one group with the remaining

n mod 5 elements.

2. Find the median of each of the dn=5e groups:

� Run insertion sort on each group. Takes O.1/ time per group since each

group has � 5 elements.
� Then just pick the median from each group, in O.1/ time.

3. Find the median x of the dn=5e medians by a recursive call to SELECT. (If

dn=5e is even, then follow our convention and find the lower median.)

4. Using the modified version of PARTITION that takes the pivot element as input,

partition the input array around x. Let x be the kth element of the array after

partitioning, so that there are k�1 elements on the low side of the partition and

n � k elements on the high side.
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5. Now there are three possibilities:

� If i D k, just return x.
� If i < k, return the i th smallest element on the low side of the partition by

making a recursive call to SELECT.
� If i > k, return the .i�k/th smallest element on the high side of the partition

by making a recursive call to SELECT.

Analysis

Start by getting a lower bound on the number of elements that are greater than the

partitioning element x:

x

[Each group is a column. Each white circle is the median of a group, as found
in step 2. Arrows go from larger elements to smaller elements, based on what we
know after step 4. Elements in the region on the lower right are known to be greater
than x.]

� At least half of the medians found in step 2 are � x.

� Look at the groups containing these medians that are � x. All of them con-

tribute 3 elements that are > x (the median of the group and the 2 elements

in the group greater than the group’s median), except for 2 of the groups: the

group containing x (which has only 2 elements > x) and the group with < 5

elements.

� Forget about these 2 groups. That leaves �
�

1

2

ln

5

m�

� 2 groups with 3 ele-

ments known to be > x.

� Thus, we know that at least

3

��
1

2

ln

5

m�

� 2

�

� 3n

10
� 6

elements are > x.

Symmetrically, the number of elements that are < x is at least 3n=10 � 6.

Therefore, when we call SELECT recursively in step 5, it’s on � 7n=10 C 6 ele-
ments.

Develop a recurrence for the worst-case running time of SELECT:

� Steps 1, 2, and 4 each take O.n/ time:
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� Step 1: making groups of 5 elements takes O.n/ time.
� Step 2: sorting dn=5e groups in O.1/ time each.
� Step 4: partitioning the n-element array around x takes O.n/ time.

� Step 3 takes time T .dn=5e/.
� Step 5 takes time � T .7n=10 C 6/, assuming that T .n/ is monotonically in-

creasing.

� Assume that T .n/ D O.1/ for small enough n. We’ll use n < 140 as “small

enough.” Why 140? We’ll see why later.

� Thus, we get the recurrence

T .n/ �
(

O.1/ if n < 140 ;

T .dn=5e/C T .7n=10C 6/CO.n/ if n � 140 :

Solve this recurrence by substitution:

� Inductive hypothesis: T .n/ � cn for some constant c and all n > 0.

� Assume that c is large enough that T .n/ � cn for all n < 140. So we are

concerned only with the case n � 140.

� Pick a constant a such that the function described by the O.n/ term in the

recurrence is � an for all n > 0.

� Substitute the inductive hypothesis in the right-hand side of the recurrence:

T .n/ � c dn=5e C c.7n=10C 6/C an

� cn=5C c C 7cn=10C 6c C an

D 9cn=10C 7c C an

D cnC .�cn=10C 7c C an/ :

� This last quantity is � cn if

�cn=10C 7c C an � 0

cn=10 � 7c � an

cn � 70c � 10an

c.n � 70/ � 10an

c � 10a.n=.n � 70// :

� Because we assumed that n � 140, we have n=.n � 70/ � 2.

� Thus, 20a � 10a.n=.n�70//, so choosing c � 20a gives c � 10a.n=.n�70//,

which in turn gives us the condition we need to show that T .n/ � cn.

� We conclude that T .n/ D O.n/, so that SELECT runs in linear time in all cases.

� Why 140? We could have used any integer strictly greater than 70.

� Observe that for n > 70, the fraction n=.n � 70/ decreases as n increases.
� We picked n � 140 so that the fraction would be � 2, which is an easy

constant to work with.
� We could have picked, say, n � 71, so that for all n � 71, the fraction would

be � 71=.71 � 70/ D 71. Then we would have had 20a � 710a, so we’d

have needed to choose c � 710a.
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Notice that SELECT and RANDOMIZED-SELECT determine information about the

relative order of elements only by comparing elements.

� Sorting requires �.n lg n/ time in the comparison model.

� Sorting algorithms that run in linear time need to make assumptions about their

input.

� Linear-time selection algorithms do not require any assumptions about their

input.

� Linear-time selection algorithms solve the selection problem without sorting

and therefore are not subject to the �.n lg n/ lower bound.



Solutions for Chapter 9:

Medians and Order Statistics

Solution to Exercise 9.1-1

The smallest of n numbers can be found with n � 1 comparisons by conducting a

tournament as follows: Compare all the numbers in pairs. Only the smaller of each

pair could possibly be the smallest of all n, so the problem has been reduced to that

of finding the smallest of dn=2e numbers. Compare those numbers in pairs, and so

on, until there’s just one number left, which is the answer.

To see that this algorithm does exactly n� 1 comparisons, notice that each number
except the smallest loses exactly once. To show this more formally, draw a binary

tree of the comparisons the algorithm does. The n numbers are the leaves, and each

number that came out smaller in a comparison is the parent of the two numbers that

were compared. Each non-leaf node of the tree represents a comparison, and there

are n � 1 internal nodes in an n-leaf full binary tree (see Exercise (B.5-3)), so

exactly n � 1 comparisons are made.

In the search for the smallest number, the second smallest number must have come

out smallest in every comparison made with it until it was eventually compared

with the smallest. So the second smallest is among the elements that were com-

pared with the smallest during the tournament. To find it, conduct another tourna-

ment (as above) to find the smallest of these numbers. At most dlg ne (the height

of the tree of comparisons) elements were compared with the smallest, so finding

the smallest of these takes dlg ne � 1 comparisons in the worst case.

The total number of comparisons made in the two tournaments was

n � 1C dlg ne � 1 D nC dlg ne � 2

in the worst case.

Solution to Exercise 9.3-1

This solution is also posted publicly

For groups of 7, the algorithm still works in linear time. The number of elements
greater than x (and similarly, the number less than x) is at least

4

��
1

2

ln

7

m�

� 2

�

� 2n

7
� 8 ;
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and the recurrence becomes

T .n/ � T .dn=7e/C T .5n=7C 8/CO.n/ ;

which can be shown to be O.n/ by substitution, as for the groups of 5 case in the

text.

For groups of 3, however, the algorithm no longer works in linear time. The number

of elements greater than x, and the number of elements less than x, is at least

2

��
1

2

ln

3

m�

� 2

�

� n

3
� 4 ;

and the recurrence becomes

T .n/ � T .dn=3e/C T .2n=3C 4/CO.n/ ;

which does not have a linear solution.

We can prove that the worst-case time for groups of 3 is �.n lg n/. We do so by

deriving a recurrence for a particular case that takes �.n lg n/ time.

In counting up the number of elements greater than x (and similarly, the num-

ber less than x), consider the particular case in which there are exactly
l

1
2

l
n
3

mm

groups with medians � x and in which the “leftover” group does contribute 2
elements greater than x. Then the number of elements greater than x is exactly

2
�l

1
2

l
n
3

mm

� 1
�

C 1 (the �1 discounts x’s group, as usual, and the C1 is con-

tributed by x’s group) D 2 dn=6e � 1, and the recursive step for elements � x has

n � .2 dn=6e � 1/ � n � .2.n=6 C 1/ � 1/ D 2n=3 � 1 elements. Observe also

that the O.n/ term in the recurrence is really ‚.n/, since the partitioning in step 4

takes ‚.n/ (not just O.n/) time. Thus, we get the recurrence

T .n/ � T .dn=3e/C T .2n=3 � 1/C‚.n/ � T .n=3/C T .2n=3 � 1/C‚.n/ ;

from which you can show that T .n/ � cn lg n by substitution. You can also see

that T .n/ is nonlinear by noticing that each level of the recursion tree sums to n.

[In fact, any odd group size � 5 works in linear time.]

Solution to Exercise 9.3-3

This solution is also posted publicly

A modification to quicksort that allows it to run in O.n lg n/ time in the worst case

uses the deterministic PARTITION algorithm that was modified to take an element

to partition around as an input parameter.

SELECT takes an array A, the bounds p and r of the subarray in A, and the rank i

of an order statistic, and in time linear in the size of the subarray AŒp : : r� it returns

the i th smallest element in AŒp : : r�.
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BEST-CASE-QUICKSORT.A; p; r/

if p < r

i D b.r � p C 1/=2c
x D SELECT.A; p; r; i/

q D PARTITION.x/

BEST-CASE-QUICKSORT.A; p; q � 1/

BEST-CASE-QUICKSORT.A; q C 1; r/

For an n-element array, the largest subarray that BEST-CASE-QUICKSORT re-
curses on has n=2 elements. This situation occurs when n D r � p C 1 is even;

then the subarray AŒq C 1 : : r� has n=2 elements, and the subarray AŒp : : q � 1�

has n=2 � 1 elements.

Because BEST-CASE-QUICKSORT always recurses on subarrays that are at most

half the size of the original array, the recurrence for the worst-case running time is

T .n/ � 2T .n=2/C‚.n/ D O.n lg n/.

Solution to Exercise 9.3-5

This solution is also posted publicly

We assume that are given a procedure MEDIAN that takes as parameters an ar-

ray A and subarray indices p and r , and returns the value of the median element of

AŒp : : r� in O.n/ time in the worst case.

Given MEDIAN, here is a linear-time algorithm SELECT
0 for finding the i th small-

est element in AŒp : : r�. This algorithm uses the deterministic PARTITION algo-

rithm that was modified to take an element to partition around as an input parame-

ter.

SELECT
0.A; p; r; i/

if p == r

return AŒp�

x D MEDIAN.A; p; r/

q D PARTITION.x/

k D q � p C 1

if i == k

return AŒq�

elseif i < k

return SELECT
0.A; p; q � 1; i/

else return SELECT
0.A; q C 1; r; i � k/

Because x is the median of AŒp : : r�, each of the subarrays AŒp : : q � 1� and

AŒq C 1 : : r� has at most half the number of elements of AŒp : : r�. The recurrence

for the worst-case running time of SELECT
0 is T .n/ � T .n=2/CO.n/ D O.n/.
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Solution to Exercise 9.3-8

Let’s start out by supposing that the median (the lower median, since we know we

have an even number of elements) is in X . Let’s call the median value m, and let’s

suppose that it’s in XŒk�. Then k elements of X are less than or equal to m and

n�k elements of X are greater than or equal to m. We know that in the two arrays

combined, there must be n elements less than or equal to m and n elements greater

than or equal to m, and so there must be n � k elements of Y that are less than or

equal to m and n � .n � k/ D k elements of Y that are greater than or equal to m.

Thus, we can check that XŒk� is the lower median by checking whether Y Œn�k� �
XŒk� � Y Œn � k C 1�. A boundary case occurs for k D n. Then n � k D 0, and

there is no array entry Y Œ0�; we only need to check that XŒn� � Y Œ1�.

Now, if the median is in X but is not in XŒk�, then the above condition will not

hold. If the median is in XŒk0�, where k0 < k, then XŒk� is above the median, and

Y Œn � k C 1� < XŒk�. Conversely, if the median is in XŒk00�, where k00 > k, then

XŒk� is below the median, and XŒk� < Y Œn � k�.

Thus, we can use a binary search to determine whether there is an XŒk� such that

either k < n and Y Œn�k� � XŒk� � Y Œn�kC1� or k D n and XŒk� � Y Œn�kC1�;

if we find such an XŒk�, then it is the median. Otherwise, we know that the median

is in Y , and we use a binary search to find a Y Œk� such that either k < n and
XŒn � k� � Y Œk� � XŒn � k C 1� or k D n and Y Œk� � XŒn � k C 1�; such a

Y Œk� is the median. Since each binary search takes O.lg n/ time, we spend a total

of O.lg n/ time.

Here’s how we write the algorithm in pseudocode:

TWO-ARRAY-MEDIAN.X; Y /

n D X: length // n also equals Y: length

median D FIND-MEDIAN.X; Y; n; 1; n/

if median == NOT-FOUND

median D FIND-MEDIAN.Y; X; n; 1; n/

return median

FIND-MEDIAN.A; B; n; low; high/

if low > high

return NOT-FOUND

else k D b.lowC high/=2c
if k == n and AŒn� � BŒ1�

return AŒn�

elseif k < n and BŒn � k� � AŒk� � BŒn � k C 1�

return AŒk�

elseif AŒk� > BŒn � k C 1�

return FIND-MEDIAN.A; B; n; low; k � 1/

else return FIND-MEDIAN.A; B; n; k C 1; high/
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Solution to Exercise 9.3-9

In order to find the optimal placement for Professor Olay’s pipeline, we need only

find the median(s) of the y-coordinates of his oil wells, as the following proof

explains.

Claim

The optimal y-coordinate for Professor Olay’s east-west oil pipeline is as follows:

� If n is even, then on either the oil well whose y-coordinate is the lower median

or the one whose y-coordinate is the upper median, or anywhere between them.

� If n is odd, then on the oil well whose y-coordinate is the median.

Proof We examine various cases. In each case, we will start out with the pipeline

at a particular y-coordinate and see what happens when we move it. We’ll denote

by s the sum of the north-south spurs with the pipeline at the starting location,
and s0 will denote the sum after moving the pipeline.

We start with the case in which n is even. Let us start with the pipeline somewhere

on or between the two oil wells whose y-coordinates are the lower and upper me-

dians. If we move the pipeline by a vertical distance d without crossing either of
the median wells, then n=2 of the wells become d farther from the pipeline and

n=2 become d closer, and so s0 D s C dn=2� dn=2 D s; thus, all locations on or

between the two medians are equally good.

Now suppose that the pipeline goes through the oil well whose y-coordinate is the
upper median. What happens when we increase the y-coordinate of the pipeline

by d > 0 units, so that it moves above the oil well that achieves the upper median?

All oil wells whose y-coordinates are at or below the upper median become d units

farther from the pipeline, and there are at least n=2 C 1 such oil wells (the upper

median, and every well at or below the lower median). There are at most n=2 � 1

oil wells whose y-coordinates are above the upper median, and each of these oil

wells becomes at most d units closer to the pipeline when it moves up. Thus, we

have a lower bound on s0 of s0 � s C d.n=2 C 1/ � d.n=2 � 1/ D s C 2d > s.

We conclude that moving the pipeline up from the oil well at the upper median

increases the total spur length. A symmetric argument shows that if we start with

the pipeline going through the oil well whose y-coordinate is the lower median and

move it down, then the total spur length increases.

We see, therefore, that when n is even, an optimal placement of the pipeline is

anywhere on or between the two medians.

Now we consider the case when n is odd. We start with the pipeline going through

the oil well whose y-coordinate is the median, and we consider what happens when

we move it up by d > 0 units. All oil wells at or below the median become d units

farther from the pipeline, and there are at least .nC 1/=2 such wells (the one at the

median and the .n � 1/=2 at or below the median. There are at most .n � 1/=2 oil

wells above the median, and each of these becomes at most d units closer to the

pipeline. We get a lower bound on s0 of s0 � s C d.n C 1/=2 � d.n � 1/=2 D
s C d > s, and we conclude that moving the pipeline up from the oil well at the
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median increases the total spur length. A symmetric argument shows that moving

the pipeline down from the median also increases the total spur length, and so the

optimal placement of the pipeline is on the median. (claim)

Since we know we are looking for the median, we can use the linear-time median-

finding algorithm.

Solution to Problem 9-1

This solution is also posted publicly

We assume that the numbers start out in an array.

a. Sort the numbers using merge sort or heapsort, which take ‚.n lg n/ worst-case

time. (Don’t use quicksort or insertion sort, which can take ‚.n2/ time.) Put

the i largest elements (directly accessible in the sorted array) into the output
array, taking ‚.i/ time.

Total worst-case running time: ‚.n lg nC i/ D ‚.n lg n/ (because i � n).

b. Implement the priority queue as a heap. Build the heap using BUILD-HEAP,

which takes ‚.n/ time, then call HEAP-EXTRACT-MAX i times to get the i

largest elements, in ‚.i lg n/ worst-case time, and store them in reverse order
of extraction in the output array. The worst-case extraction time is ‚.i lg n/

because

� i extractions from a heap with O.n/ elements takes i � O.lg n/ D O.i lg n/

time, and
� half of the i extractions are from a heap with � n=2 elements, so those i=2

extractions take .i=2/�.lg.n=2// D �.i lg n/ time in the worst case.

Total worst-case running time: ‚.nC i lg n/.

c. Use the SELECT algorithm of Section 9.3 to find the i th largest number in ‚.n/

time. Partition around that number in ‚.n/ time. Sort the i largest numbers in

‚.i lg i/ worst-case time (with merge sort or heapsort).

Total worst-case running time: ‚.nC i lg i/.

Note that method (c) is always asymptotically at least as good as the other two
methods, and that method (b) is asymptotically at least as good as (a). (Com-

paring (c) to (b) is easy, but it is less obvious how to compare (c) and (b) to (a).

(c) and (b) are asymptotically at least as good as (a) because n, i lg i , and i lg n are

all O.n lg n/. The sum of two things that are O.n lg n/ is also O.n lg n/.)
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Solution to Problem 9-2

a. The median x of the elements x1; x2; : : : ; xn, is an element x D xk satisfy-

ing jfxi W 1 � i � n and xi < xgj � n=2 and jfxi W 1 � i � n and xi > xgj �
n=2. If each element xi is assigned a weight wi D 1=n, then we get
X

xi <x

wi D
X

xi <x

1

n

D 1

n
�
X

xi <x

1

D 1

n
� jfxi W 1 � i � n and xi < xgj

� 1

n
� n

2

D 1

2
;

and
X

xi >x

wi D
X

xi >x

1

n

D 1

n
�
X

xi >x

1

D 1

n
� jfxi W 1 � i � n and xi > xgj

� 1

n
� n

2

D 1

2
;

which proves that x is also the weighted median of x1; x2; : : : ; xn with weights

wi D 1=n, for i D 1; 2; : : : ; n.

b. We first sort the n elements into increasing order by xi values. Then we scan

the array of sorted xi ’s, starting with the smallest element and accumulating

weights as we scan, until the total exceeds 1=2. The last element, say xk, whose

weight caused the total to exceed 1=2, is the weighted median. Notice that the

total weight of all elements smaller than xk is less than 1=2, because xk was

the first element that caused the total weight to exceed 1=2. Similarly, the total
weight of all elements larger than xk is also less than 1=2, because the total

weight of all the other elements exceeds 1=2.

The sorting phase can be done in O.n lg n/ worst-case time (using merge sort
or heapsort), and the scanning phase takes O.n/ time. The total running time

in the worst case, therefore, is O.n lg n/.

c. We find the weighted median in ‚.n/ worst-case time using the ‚.n/ worst-

case median algorithm in Section 9.3. (Although the first paragraph of the

section only claims an O.n/ upper bound, it is easy to see that the more precise
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running time of ‚.n/ applies as well, since steps 1, 2, and 4 of SELECT actually

take ‚.n/ time.)

The weighted-median algorithm works as follows. If n � 2, we just return

the brute-force solution. Otherwise, we proceed as follows. We find the actual

median xk of the n elements and then partition around it. We then compute the

total weights of the two halves. If the weights of the two halves are each strictly

less than 1=2, then the weighted median is xk. Otherwise, the weighted median

should be in the half with total weight exceeding 1=2. The total weight of the

“light” half is lumped into the weight of xk, and the search continues within the

half that weighs more than 1=2. Here’s pseudocode, which takes as input a set

X D fx1; x2; : : : ; xng:

WEIGHTED-MEDIAN.X/

if n == 1

return x1

elseif n == 2

if w1 � w2

return x1

else return x2

else find the median xk of X D fx1; x2; : : : ; xng
partition the set X around xk

compute WL D
P

xi <xk
wi and WG D

P

xi >xk
wi

if WL < 1=2 and WG < 1=2

return xk

elseif WL > 1=2

wk D wk CWG

X 0 D fxi 2 X W xi � xkg
return WEIGHTED-MEDIAN.X 0/

else wk D wk CWL

X 0 D fxi 2 X W xi � xkg
return WEIGHTED-MEDIAN.X 0/

The recurrence for the worst-case running time of WEIGHTED-MEDIAN is

T .n/ D T .n=2C1/C‚.n/, since there is at most one recursive call on half the

number of elements, plus the median element xk, and all the work preceding the

recursive call takes ‚.n/ time. The solution of the recurrence is T .n/ D ‚.n/.

d. Let the n points be denoted by their coordinates x1; x2; : : : ; xn, let the corre-

sponding weights be w1; w2; : : : ; wn, and let x D xk be the weighted median.

For any point p, let f .p/ DPn

iD1 wi jp � xi j; we want to find a point p such

that f .p/ is minimum. Let y be any point (real number) other than x. We show

the optimality of the weighted median x by showing that f .y/�f .x/ � 0. We

examine separately the cases in which y > x and x > y. For any x and y, we

have
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f .y/� f .x/ D
n
X

iD1

wi jy � xi j �
n
X

iD1

wi jx � xi j

D
n
X

iD1

wi.jy � xi j � jx � xi j/ :

When y > x, we bound the quantity jy � xi j � jx � xi j from below by exam-

ining three cases:

1. x < y � xi : Here, jx � yj C jy � xi j D jx � xi j and jx � yj D y � x,

which imply that jy � xi j � jx � xi j D � jx � yj D x � y.

2. x < xi � y: Here, jy � xi j � 0 and jxi � xj � y � x, which imply that

jy � xi j � jx � xi j � �.y � x/ D x � y.

3. xi � x < y: Here, jx � xi j C jy � xj D jy � xi j and jy � xj D y � x,

which imply that jy � xi j � jx � xi j D jy � xj D y � x.

Separating out the first two cases, in which x < xi , from the third case, in

which x � xi , we get

f .y/� f .x/ D
n
X

iD1

wi.jy � xi j � jx � xi j/

�
X

x<xi

wi.x � y/C
X

x�xi

wi.y � x/

D .y � x/

 
X

x�xi

wi �
X

x<xi

wi

!

:

The property that
P

xi <x wi < 1=2 implies that
P

x�xi
wi � 1=2. This fact,

combined with y � x > 0 and
P

x<xi
wi � 1=2, yields that f .y/� f .x/ � 0.

When x > y, we again bound the quantity jy � xi j � jx � xi j from below by

examining three cases:

1. xi � y < x: Here, jy � xi j C jx � yj D jx � xi j and jx � yj D x � y,

which imply that jy � xi j � jx � xi j D � jx � yj D y � x.

2. y � xi < x: Here, jy � xi j � 0 and jx � xi j � x � y, which imply that

jy � xi j � jx � xi j � �.x � y/ D y � x.

3. y < x � xi . Here, jx � yj C jx � xi j D jy � xi j and jx � yj D x � y,

which imply that jy � xi j � jx � xi j D jx � yj D x � y.

Separating out the first two cases, in which x > xi , from the third case, in

which x � xi , we get

f .y/� f .x/ D
n
X

iD1

wi.jy � xi j � jx � xi j/

�
X

x>xi

wi.y � x/C
X

x�xi

wi.x � y/

D .x � y/

 
X

x�xi

wi �
X

x>xi

wi

!

:

The property that
P

xi >x wi � 1=2 implies that
P

x�xi
wi > 1=2. This fact,

combined with x � y > 0 and
P

x>xi
wi < 1=2, yields that f .y/� f .x/ > 0.
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e. We are given n 2-dimensional points p1; p2; : : : ; pn, where each pi is a pair of

real numbers pi D .xi ; yi /, and positive weights w1; w2; : : : ; wn. The goal is

to find a point p D .x; y/ that minimizes the sum

f .x; y/ D
n
X

iD1

wi .jx � xi j C jy � yi j/ :

We can express the cost function of the two variables, f .x; y/, as the sum of

two functions of one variable each: f .x; y/ D g.x/ C h.y/, where g.x/ D
Pn

iD1 wi jx � xi j, and h.y/ D Pn

iD1 wi jy � yi j. The goal of finding a point

p D .x; y/ that minimizes the value of f .x; y/ can be achieved by treating

each dimension independently, because g does not depend on y and h does not

depend on x. Thus,

min
x;y

f .x; y/ D min
x;y

.g.x/C h.y//

D min
x

�

min
y

.g.x/C h.y//
�

D min
x

�

g.x/Cmin
y

h.y/
�

D min
x

g.x/Cmin
y

h.y/ :

Consequently, finding the best location in 2 dimensions can be done by finding

the weighted median xk of the x-coordinates and then finding the weighted

median yj of the y-coordinates. The point .xk; yj / is an optimal solution for

the 2-dimensional post-office location problem.

Solution to Problem 9-3

a. Our algorithm relies on a particular property of SELECT: that not only does it

return the i th smallest element, but that it also partitions the input array so that

the first i positions contain the i smallest elements (though not necessarily in

sorted order). To see that SELECT has this property, observe that there are only
two ways in which returns a value: when n D 1, and when immediately after

partitioning in step 4, it finds that there are exactly i elements on the low side

of the partition.

Taking the hint from the book, here is our modified algorithm to select the i th

smallest element of n elements. Whenever it is called with i � n=2, it just calls

SELECT and returns its result; in this case, Ui .n/ D T .n/.

When i < n=2, our modified algorithm works as follows. Assume that the

input is in a subarray AŒp C 1 : : p C n�, and let m D bn=2c. In the initial call,

p D 1.

1. Divide the input as follows. If n is even, divide the input into two parts:

AŒp C 1 : : p Cm� and AŒp CmC 1 : : p C n�. If n is odd, divide the input

into three parts: AŒpC1 : : pCm�, AŒpCmC1 : : pCn�1�, and AŒpCn�

as a leftover piece.

2. Compare AŒpC i � and AŒpC iCm� for i D 1; 2; : : : ; m, putting the smaller

of the the two elements into AŒp C i Cm� and the larger into AŒp C i �.
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3. Recursively find the i th smallest element in AŒp C m C 1 : : p C n�, but

with an additional action performed by the partitioning procedure: whenever

it exchanges AŒj � and AŒk� (where p C m C 1 � j; k � p C 2m), it

also exchanges AŒj � m� and AŒk � m�. The idea is that after recursively

finding the i th smallest element in AŒp C m C 1 : : p C n�, the subarray

AŒp CmC 1 : : pCmC i � contains the i smallest elements that had been in

AŒpCmC1 : : pCn� and the subarray AŒpC1 : : pC i � contains their larger

counterparts, as found in step 1. The i th smallest element of AŒpC1 : : pCn�

must be either one of the i smallest, as placed into AŒpCmC1 : : pCmCi �,

or it must be one of the larger counterparts, as placed into AŒpC 1 : : pC i �.

4. Collect the subarrays AŒpC 1 : : pC i � and AŒpCmC 1 : : pCmC i � into
a single array BŒ1 : : 2i �, call SELECT to find the i th smallest element of B ,

and return the result of this call to SELECT.

The number of comparisons in each step is as follows:

1. No comparisons.

2. m D bn=2c comparisons.

3. Since we recurse on AŒp CmC 1 : : p C n�, which has dn=2e elements, the

number of comparisons is Ui .dn=2e/.
4. Since we call SELECT on an array with 2i elements, the number of compar-

isons is T .2i/.

Thus, when i < n=2, the total number of comparisons is bn=2cCUi .dn=2e/C
T .2i/.

b. We show by substitution that if i < n=2, then Ui.n/ D nCO.T .2i/ lg.n=i//.

In particular, we show that Ui.n/ � n C cT .2i/ lg.n=i/ � d.lg lg n/T .2i/ D
nC cT .2i/ lg n � cT .2i/ lg i � d.lg lg n/T .2i/ for some positive constant c,

some positive constant d to be chosen later, and n � 4. We have

Ui.n/ D bn=2c C Ui .dn=2e/C T .2i/

� bn=2c C dn=2e C cT .2i/ lg dn=2e � cT .2i/ lg i

� d.lg lg dn=2e/T .2i/

D nC cT .2i/ lg dn=2e � cT .2i/ lg i � d.lg lg dn=2e/T .2i/

� nC cT .2i/ lg.n=2C 1/ � cT .2i/ lg i � d.lg lg.n=2//T .2i/

D nC cT .2i/ lg.n=2C 1/ � cT .2i/ lg i � d.lg.lg n � 1//T .2i/

� nC cT .2i/ lg n � cT .2i/ lg i � d.lg lg n/T .2i/

if cT .2i/ lg.n=2C 1/�d.lg.lg n� 1//T .2i/ � cT .2i/ lg n�d.lg lg n/T .2i/.

Simple algebraic manipulations gives the following sequence of equivalent con-

ditions:

cT .2i/ lg.n=2C 1/ � d.lg.lg n � 1//T .2i/ � cT .2i/ lg n � d.lg lg n/T .2i/

c lg.n=2C 1/ � d.lg.lg n � 1// � c lg n � d.lg lg n/

c.lg.n=2C 1/ � lg n/ � d.lg.lg n � 1/ � lg lg n/

c

�

lg
n=2C 1

n

�

� d lg
lg n � 1

lg n

c

�

lg

�
1

2
C 1

n

��

� d lg
lg n � 1

lg n
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Observe that 1=2C1=n decreases as n increases, but .lg n�1/= lg n increases as

n increases. When n D 4, we have 1=2C1=n D 3=4 and .lg n�1/= lg n D 1=2.

Thus, we just need to choose d such that c lg.3=4/ � d lg.1=2/ or, equivalently,

c lg.3=4/ � �d . Multiplying both sides by �1, we get d � �c lg.3=4/ D
c lg.4=3/. Thus, any value of d that is at most c lg.4=3/ suffices.

c. When i is a constant, T .2i/ D O.1/ and lg.n=i/ D lg n � lg i D O.lg n/.

Thus, when i is a constant less than n=2, we have that

Ui .n/ D nCO.T .2i/ lg.n=i//

D nCO.O.1/ �O.lg n//

D nCO.lg n/ :

d. Suppose that i D n=k for k � 2. Then i � n=2. If k > 2, then i < n=2, and

we have

Ui .n/ D nCO.T .2i/ lg.n=i//

D nCO.T .2n=k/ lg.n=.n=k//

D nCO.T .2n=k/ lg k/ :

If k D 2, then n D 2i and lg k D 1. We have

Ui .n/ D T .n/

D nC .T .n/ � n/

� nC .T .2i/ � n/

D nC .T .2n=k/ � n/

D nC .T .2n=k/ lg k � n/

D nCO.T .2n=k/ lg k/ :

Solution to Problem 9-4

a. As in the quicksort analysis, elements ´i and j́ will not be compared with

each other if any element in f´iC1; ´iC2; : : : ; j́ �1g is chosen as a pivot element

before either ´i or j́ , because ´i and j́ would then lie in separate partitions.

There can be another reason that ´i and j́ might not be compared, however.

Suppose that k < i , so that ´k < ´i , and suppose further that the element
chosen as the pivot is ´l , where k � l < i . In this case, because k � l ,

the recursion won’t consider elements indexed higher than l . Therefore, the

recursion will never look at ´i or j́ , and they will never be compared with each

other. Similarly, if j < k and the pivot element ´l is such that j < l � k, then

the recursion won’t consider elements indexed less than l , and again ´i and j́

will never be compared with each other. The final case is when i � k � j

(but disallowing i D j ), so that ´i � ´k � j́ ; in this case, we have the same

analysis as for quicksort: ´i and j́ are compared with each other only if one of

them is chosen as the pivot element.

Getting back to the case in which k < i , it is again true that ´i and j́ are

compared with each other only if one of them is chosen as the pivot element.

As we know, they won’t be compared with each other if the pivot element is
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between them, and we argued above that they won’t be compared with each

other if the pivot element is ´l for l < i . Similarly, when j < k, elements ´i

and j́ are compared with each other only if one of them is chosen as the pivot

element.

Now we need to compute the probability that ´i and j́ are compared with

each other. Let Zijk be the set of elements that includes ´i ; : : : ; j́ , along with

´k; : : : ; ´i�1 if k < i or j́ C1; : : : ; ´k if j < k. In other words,

Zijk D

�
f´i ; ´iC1; : : : ; j́ g if i � k � j ;

f´k ; ´kC1; : : : ; j́ g if k < i ;

f´i ; ´iC1; : : : ; ´kg if j < k :

With this definition of Zijk , we have that

jZijkj D max.j � i C 1; j � k C 1; k � i C 1/ :

As in the quicksort analysis, we observe that until an element from Zijk is

chosen as the pivot, the whole set Zijk is together in the same partition, and so

each element of Zijk is equally likely to be the first one chosen as the pivot.

Letting C be the event that ´i is compared with j́ when finding ´k sometime

during the execution of the algorithm, we have that

E ŒXijk � D Pr fC g
D Pr f´i or j́ is the first pivot chosen from Zijkg
D Pr f´i is the first pivot chosen from Zijkg

C Pr f j́ is the first pivot chosen from Zijkg

D 1

jZijk j
C 1

jZijk j

D 2

max.j � i C 1; j � k C 1; k � i C 1/
:

b. Adding up all the possible pairs that might be compared gives

Xk D
n�1
X

iD1

n
X

j DiC1

Xijk ;

and so, by linearity of expectation, we have

E ŒXk� D E

"
n�1
X

iD1

n
X

j DiC1

Xijk

#

D
n�1
X

iD1

n
X

j DiC1

E ŒXijk�

D
n�1
X

iD1

n
X

j DiC1

2

max.j � i C 1; j � k C 1; k � i C 1/
:

We break this sum into the same three cases as before: i � k � j , k < i , and

j < k. With k fixed, we vary i and j . We get an inequality because we cannot
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have i D k D j , but our summation will allow it:

E ŒXk� � 2

 
k
X

iD1

n
X

j Dk

1

j � i C 1
C

n
X

j DkC1

j �1
X

iDkC1

1

j � k C 1

C
k�2
X

iD1

k�1
X

j DiC1

1

k � i C 1

!

D 2

 
k
X

iD1

n
X

j Dk

1

j � i C 1
C

n
X

j DkC1

j � k � 1

j � k C 1
C

k�2
X

iD1

k � i � 1

k � i C 1

!

:

c. First, let’s focus on the latter two summations. Each one sums fractions that are

strictly less than 1. The middle summation has n � k terms, and the right-hand

summation has k�2 terms, and so the latter two summations sum to less than n.

Now we look at the first summation. Let m D j � i . There is only one way

for m to equal 0: if i D k D j . There are only two ways for m to equal 1: if

i D k�1 and j D k, or if i D k and j D kC1. There are only three ways for

m to equal 2: if i D k � 2 and j D k, if i D k � 1 and j D k C 1, or if i D k

and j D k C 2. Continuing on, we see that there are at most mC 1 ways for

j � i to equal m. Since j � i � n � 1, we can rewrite the first summation as

n�1
X

mD0

mC 1

mC 1
D n :

Thus, we have

E ŒXk� < 2.nC n/

D 4n :

d. To show that RANDOMIZED-SELECT runs in expected time O.n/, we adapt

Lemma 7.1 for RANDOMIZED-SELECT. The adaptation is trivial: just re-

place the variable X in the lemma statement by the random variable Xk that

we just analyzed. Thus, the expected running time of RANDOMIZED-SELECT

is O.nCXk/ D O.n/.



Lecture Notes for Chapter 11:

Hash Tables

Chapter 11 overview

Many applications require a dynamic set that supports only the dictionary opera-

tions INSERT, SEARCH, and DELETE. Example: a symbol table in a compiler.

A hash table is effective for implementing a dictionary.

� The expected time to search for an element in a hash table is O.1/, under some

reasonable assumptions.

� Worst-case search time is ‚.n/, however.

A hash table is a generalization of an ordinary array.

� With an ordinary array, we store the element whose key is k in position k of the
array.

� Given a key k, we find the element whose key is k by just looking in the kth

position of the array. This is called direct addressing.

� Direct addressing is applicable when we can afford to allocate an array with

one position for every possible key.

We use a hash table when we do not want to (or cannot) allocate an array with one

position per possible key.

� Use a hash table when the number of keys actually stored is small relative to

the number of possible keys.

� A hash table is an array, but it typically uses a size proportional to the number

of keys to be stored (rather than the number of possible keys).

� Given a key k, don’t just use k as the index into the array.

� Instead, compute a function of k, and use that value to index into the array. We

call this function a hash function.

Issues that we’ll explore in hash tables:

� How to compute hash functions. We’ll look at the multiplication and division

methods.

� What to do when the hash function maps multiple keys to the same table entry.

We’ll look at chaining and open addressing.
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Direct-address tables

Scenario

� Maintain a dynamic set.

� Each element has a key drawn from a universe U D f0; 1; : : : ; m � 1g where m

isn’t too large.

� No two elements have the same key.

Represent by a direct-address table, or array, T Œ0 : : : m � 1�:

� Each slot, or position, corresponds to a key in U .

� If there’s an element x with key k, then T Œk� contains a pointer to x.

� Otherwise, T Œk� is empty, represented by NIL.

T

U
(universe of keys)

K
(actual
keys)

  2
3

5
8

1

9
4

0
7

6 2

3

5

8

key satellite data

2

0

1

3

4

5

6

7

8

9

Dictionary operations are trivial and take O.1/ time each:

DIRECT-ADDRESS-SEARCH.T; k/

return T Œk�

DIRECT-ADDRESS-INSERT.T; x/

T ŒkeyŒx�� D x

DIRECT-ADDRESS-DELETE.T; x/

T ŒkeyŒx�� D NIL

Hash tables

The problem with direct addressing is if the universe U is large, storing a table of

size jU j may be impractical or impossible.

Often, the set K of keys actually stored is small, compared to U , so that most of

the space allocated for T is wasted.
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� When K is much smaller than U , a hash table requires much less space than a

direct-address table.

� Can reduce storage requirements to ‚.jKj/.
� Can still get O.1/ search time, but in the average case, not the worst case.

Idea

Instead of storing an element with key k in slot k, use a function h and store the

element in slot h.k/.

� We call h a hash function.

� h W U ! f0; 1; : : : ; m � 1g, so that h.k/ is a legal slot number in T .

� We say that k hashes to slot h.k/.

Collisions

When two or more keys hash to the same slot.

� Can happen when there are more possible keys than slots (jU j > m).

� For a given set K of keys with jKj � m, may or may not happen. Definitely

happens if jKj > m.

� Therefore, must be prepared to handle collisions in all cases.

� Use two methods: chaining and open addressing.

� Chaining is usually better than open addressing. We’ll examine both.

Collision resolution by chaining

Put all elements that hash to the same slot into a linked list.

T

U
(universe of keys)

K
(actual
keys)

  
 

 

k1

k2 k3

k4 k5

k6

k7

k8

k1

k2

k3

k4

k5

k6

k7

k8

[This figure shows singly linked lists. If we want to delete elements, it’s better to
use doubly linked lists.]

� Slot j contains a pointer to the head of the list of all stored elements that hash

to j [or to the sentinel if using a circular, doubly linked list with a sentinel] ,

� If there are no such elements, slot j contains NIL.
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How to implement dictionary operations with chaining:

� Insertion:

CHAINED-HASH-INSERT.T; x/

insert x at the head of list T Œh.keyŒx�/�

� Worst-case running time is O.1/.
� Assumes that the element being inserted isn’t already in the list.
� It would take an additional search to check if it was already inserted.

� Search:

CHAINED-HASH-SEARCH.T; k/

search for an element with key k in list T Œh.k/�

Running time is proportional to the length of the list of elements in slot h.k/.

� Deletion:

CHAINED-HASH-DELETE.T; x/

delete x from the list T Œh.keyŒx�/�

� Given pointer x to the element to delete, so no search is needed to find this

element.
� Worst-case running time is O.1/ time if the lists are doubly linked.
� If the lists are singly linked, then deletion takes as long as searching, be-

cause we must find x’s predecessor in its list in order to correctly update

next pointers.

Analysis of hashing with chaining

Given a key, how long does it take to find an element with that key, or to determine

that there is no element with that key?

� Analysis is in terms of the load factor ˛ D n=m:

� n D # of elements in the table.
� m D # of slots in the table D # of (possibly empty) linked lists.
� Load factor is average number of elements per linked list.
� Can have ˛ < 1, ˛ D 1, or ˛ > 1.

� Worst case is when all n keys hash to the same slot) get a single list of length n

) worst-case time to search is ‚.n/, plus time to compute hash function.

� Average case depends on how well the hash function distributes the keys among

the slots.

We focus on average-case performance of hashing with chaining.

� Assume simple uniform hashing: any given element is equally likely to hash

into any of the m slots.
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� For j D 0; 1; : : : ; m � 1, denote the length of list T Œj � by nj . Then

n D n0 C n1 C � � � C nm�1.

� Average value of nj is E Œnj � D ˛ D n=m.

� Assume that we can compute the hash function in O.1/ time, so that the time

required to search for the element with key k depends on the length nh.k/ of the

list T Œh.k/�.

We consider two cases:

� If the hash table contains no element with key k, then the search is unsuccessful.

� If the hash table does contain an element with key k, then the search is success-

ful.

[In the theorem statements that follow, we omit the assumptions that we’re resolv-
ing collisions by chaining and that simple uniform hashing applies.]

Unsuccessful search

Theorem

An unsuccessful search takes expected time ‚.1C ˛/.

Proof Simple uniform hashing) any key not already in the table is equally likely

to hash to any of the m slots.

To search unsuccessfully for any key k, need to search to the end of the list T Œh.k/�.

This list has expected length E Œnh.k/� D ˛. Therefore, the expected number of
elements examined in an unsuccessful search is ˛.

Adding in the time to compute the hash function, the total time required is

‚.1C ˛/.

Successful search

� The expected time for a successful search is also ‚.1C ˛/.

� The circumstances are slightly different from an unsuccessful search.

� The probability that each list is searched is proportional to the number of ele-

ments it contains.

Theorem

A successful search takes expected time ‚.1C ˛/.

Proof Assume that the element x being searched for is equally likely to be any of
the n elements stored in the table.

The number of elements examined during a successful search for x is 1 more than

the number of elements that appear before x in x’s list. These are the elements

inserted after x was inserted (because we insert at the head of the list).

So we need to find the average, over the n elements x in the table, of how many

elements were inserted into x’s list after x was inserted.

For i D 1; 2; : : : ; n, let xi be the i th element inserted into the table, and let

ki D keyŒxi �.
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For all i and j , define indicator random variable Xij D I fh.ki / D h.kj /g.
Simple uniform hashing ) Pr fh.ki / D h.kj /g D 1=m ) E ŒXij � D 1=m (by

Lemma 5.1).

Expected number of elements examined in a successful search is

E

"

1

n

n
X

iD1

 

1C
n
X

j DiC1

Xij

!#

D 1

n

n
X

iD1

 

1C
n
X

j DiC1

E ŒXij �

!

(linearity of expectation)

D 1

n

n
X

iD1

 

1C
n
X

j DiC1

1

m

!

D 1C 1

nm

n
X

iD1

.n � i/

D 1C 1

nm

 
n
X

iD1

n �
n
X

iD1

i

!

D 1C 1

nm

�

n2 � n.nC 1/

2

�

(equation (A.1))

D 1C n � 1

2m

D 1C ˛

2
� ˛

2n
:

Adding in the time for computing the hash function, we get that the expected total

time for a successful search is ‚.2C ˛=2� ˛=2n/ D ‚.1C ˛/.

Alternative analysis, using indicator random variables even more

For each slot l and for each pair of keys ki and kj , define the indicator random

variable Xijl D I fthe search is for xi , h.ki / D l , and h.kj / D lg. Xijl D 1 when

keys ki and kj collide at slot l and when we are searching for xi .

Simple uniform hashing ) Pr fh.ki / D lg D 1=m and Pr fh.kj / D lg D 1=m.

Also have Pr fthe search is for xig D 1=n. These events are all independent )
Pr fXijl D 1g D 1=nm2 ) E ŒXijl � D 1=nm2 (by Lemma 5.1).

Define, for each element xj , the indicator random variable

Yj D I fxj appears in a list prior to the element being searched forg :

Yj D 1 if and only if there is some slot l that has both elements xi and xj in its list,

and also i < j (so that xi appears after xj in the list). Therefore,

Yj D
j �1
X

iD1

m�1
X

lD0

Xijl :
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One final random variable: Z, which counts how many elements appear in the list

prior to the element being searched for: Z DPn

j D1 Yj . We must count the element

being searched for as well as all those preceding it in its list) compute E ŒZ C 1�:

E ŒZ C 1� D E

"

1C
n
X

j D1

Yj

#

D 1C E

"
n
X

j D1

j �1
X

iD1

m�1
X

lD0

Xijl

#

(linearity of expectation)

D 1C
n
X

j D1

j �1
X

iD1

m�1
X

lD0

E ŒXijl � (linearity of expectation)

D 1C
n
X

j D1

j �1
X

iD1

m�1
X

lD0

1

nm2

D 1C
 

n

2

!

�m � 1

nm2

D 1C n.n � 1/

2
� 1

nm

D 1C n � 1

2m

D 1C n

2m
� 1

2m

D 1C ˛

2
� ˛

2n
:

Adding in the time for computing the hash function, we get that the expected total

time for a successful search is ‚.2C ˛=2 � ˛=2n/ D ‚.1C ˛/.

Interpretation

If n D O.m/, then ˛ D n=m D O.m/=m D O.1/, which means that searching

takes constant time on average.

Since insertion takes O.1/ worst-case time and deletion takes O.1/ worst-case
time when the lists are doubly linked, all dictionary operations take O.1/ time on

average.

Hash functions

We discuss some issues regarding hash-function design and present schemes for

hash function creation.

What makes a good hash function?

� Ideally, the hash function satisfies the assumption of simple uniform hashing.
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� In practice, it’s not possible to satisfy this assumption, since we don’t know in

advance the probability distribution that keys are drawn from, and the keys may

not be drawn independently.

� Often use heuristics, based on the domain of the keys, to create a hash function
that performs well.

Keys as natural numbers

� Hash functions assume that the keys are natural numbers.

� When they’re not, have to interpret them as natural numbers.

� Example: Interpret a character string as an integer expressed in some radix

notation. Suppose the string is CLRS:

� ASCII values: C D 67, L D 76, R D 82, S D 83.
� There are 128 basic ASCII values.
� So interpret CLRS as .67 � 1283/C .76 � 1282/C .82 � 1281/C .83 � 1280/ D

141,764,947.

Division method

h.k/ D k mod m :

Example: m D 20 and k D 91) h.k/ D 11.

Advantage: Fast, since requires just one division operation.

Disadvantage: Have to avoid certain values of m:

� Powers of 2 are bad. If m D 2p for integer p, then h.k/ is just the least

significant p bits of k.

� If k is a character string interpreted in radix 2p (as in CLRS example), then

m D 2p � 1 is bad: permuting characters in a string does not change its hash

value (Exercise 11.3-3).

Good choice for m: A prime not too close to an exact power of 2.

Multiplication method

1. Choose constant A in the range 0 < A < 1.

2. Multiply key k by A.

3. Extract the fractional part of kA.

4. Multiply the fractional part by m.

5. Take the floor of the result.

Put another way, h.k/ D bm .k A mod 1/c, where k A mod 1 D kA � bkAc D
fractional part of kA.

Disadvantage: Slower than division method.

Advantage: Value of m is not critical.
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(Relatively) easy implementation:

� Choose m D 2p for some integer p.

� Let the word size of the machine be w bits.

� Assume that k fits into a single word. (k takes w bits.)

� Let s be an integer in the range 0 < s < 2w . (s takes w bits.)

� Restrict A to be of the form s=2w .

×

binary point

s D A � 2w

w bits

k

r0r1

h.k/

extract p bits

� Multiply k by s.

� Since we’re multiplying two w-bit words, the result is 2w bits, r12wCr0, where

r1 is the high-order word of the product and r0 is the low-order word.

� r1 holds the integer part of kA (bkAc) and r0 holds the fractional part of kA

(k A mod 1 D kA � bkAc). Think of the “binary point” (analog of decimal

point, but for binary representation) as being between r1 and r0. Since we don’t

care about the integer part of kA, we can forget about r1 and just use r0.

� Since we want bm .k A mod 1/c, we could get that value by shifting r0 to the

left by p D lg m bits and then taking the p bits that were shifted to the left of

the binary point.

� We don’t need to shift. The p bits that would have been shifted to the left of

the binary point are the p most significant bits of r0. So we can just take these

bits after having formed r0 by multiplying k by s.

� Example: m D 8 (implies p D 3), w D 5, k D 21. Must have 0 < s < 25;

choose s D 13) A D 13=32.

� Using just the formula to compute h.k/: kA D 21 � 13=32 D 273=32 D 817
32

) k A mod 1 D 17=32) m .k A mod 1/ D 8 � 17=32 D 17=4 D 41
4
)

bm .k A mod 1/c D 4, so that h.k/ D 4.
� Using the implementation: ks D 21 � 13 D 273 D 8 � 25 C 17) r1 D 8,

r0 D 17. Written in w D 5 bits, r0 D 10001. Take the p D 3 most signifi-

cant bits of r0, get 100 in binary, or 4 in decimal, so that h.k/ D 4.

How to choose A:

� The multiplication method works with any legal value of A.

� But it works better with some values than with others, depending on the keys

being hashed.

� Knuth suggests using A � .
p

5 � 1/=2.
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Universal hashing

[We just touch on universal hashing in these notes. See the book for a full treat-
ment.]

Suppose that a malicious adversary, who gets to choose the keys to be hashed, has

seen your hashing program and knows the hash function in advance. Then he could

choose keys that all hash to the same slot, giving worst-case behavior.

One way to defeat the adversary is to use a different hash function each time. You

choose one at random at the beginning of your program. Unless the adversary
knows how you’ll be randomly choosing which hash function to use, he cannot

intentionally defeat you.

Just because we choose a hash function randomly, that doesn’t mean it’s a good
hash function. What we want is to randomly choose a single hash function from a

set of good candidates.

Consider a finite collection H of hash functions that map a universe U of keys into
the range f0; 1; : : : ; m � 1g. H is universal if for each pair of keys k; l 2 U , where

k ¤ l , the number of hash functions h 2 H for which h.k/ D h.l/ is � jH j =m.

Put another way, H is universal if, with a hash function h chosen randomly
from H , the probability of a collision between two different keys is no more than

than 1=m chance of just choosing two slots randomly and independently.

Why are universal hash functions good?

� They give good hashing behavior:

Theorem

Using chaining and universal hashing on key k:

� If k is not in the table, the expected length E Œnh.k/� of the list that k hashes

to is � ˛.
� If k is in the table, the expected length E Œnh.k/� of the list that holds k is

� 1C ˛.

Corollary

Using chaining and universal hashing, the expected time for each SEARCH op-

eration is O.1/.

� They are easy to design.

[See book for details of behavior and design of a universal class of hash functions.]

Open addressing

An alternative to chaining for handling collisions.
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Idea

� Store all keys in the hash table itself.

� Each slot contains either a key or NIL.

� To search for key k:

� Compute h.k/ and examine slot h.k/. Examining a slot is known as a probe.
� If slot h.k/ contains key k, the search is successful. If this slot contains NIL,

the search is unsuccessful.
� There’s a third possibility: slot h.k/ contains a key that is not k. We compute

the index of some other slot, based on k and on which probe (count from 0:

0th, 1st, 2nd, etc.) we’re on.
� Keep probing until we either find key k (successful search) or we find a slot

holding NIL (unsuccessful search).

� We need the sequence of slots probed to be a permutation of the slot numbers

h0; 1; : : : ; m � 1i (so that we examine all slots if we have to, and so that we

don’t examine any slot more than once).

� Thus, the hash function is h W U � f0; 1; : : : ; m � 1g
„ ƒ‚ …

probe number

! f0; 1; : : : ; m � 1g
„ ƒ‚ …

slot number

.

� The requirement that the sequence of slots be a permutation of h0; 1; : : : ;

m � 1i is equivalent to requiring that the probe sequence hh.k; 0/; h.k; 1/;

: : : ; h.k; m � 1/i be a permutation of h0; 1; : : : ; m � 1i.
� To insert, act as though we’re searching, and insert at the first NIL slot we find.

Pseudocode for searching

HASH-SEARCH.T; k/

i D 0

repeat

j D h.k; i/

if T Œj � == k

return j

i D i C 1

until T Œj � == NIL or i D m

return NIL

HASH-SEARCH returns the index of a slot containing key k, or NIL if the search is

unsuccessful.
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Pseudocode for insertion

HASH-INSERT.T; k/

i D 0

repeat

j D h.k; i/

if T Œj � == NIL

T Œj � D k

return j

else i D i C 1

until i == m

error “hash table overflow”

HASH-INSERT returns the number of the slot that gets key k, or it flags a “hash

table overflow” error if there is no empty slot in which to put key k.

Deletion

Cannot just put NIL into the slot containing the key we want to delete.

� Suppose we want to delete key k in slot j .

� And suppose that sometime after inserting key k, we were inserting key k0, and

during this insertion we had probed slot j (which contained key k).

� And suppose we then deleted key k by storing NIL into slot j .

� And then we search for key k0.
� During the search, we would probe slot j before probing the slot into which

key k0 was eventually stored.

� Thus, the search would be unsuccessful, even though key k0 is in the table.

Solution: Use a special value DELETED instead of NIL when marking a slot as

empty during deletion.

� Search should treat DELETED as though the slot holds a key that does not match

the one being searched for.

� Insertion should treat DELETED as though the slot were empty, so that it can be

reused.

The disadvantage of using DELETED is that now search time is no longer dependent

on the load factor ˛.

How to compute probe sequences

The ideal situation is uniform hashing: each key is equally likely to have any of

the mŠ permutations of h0; 1; : : : ; m � 1i as its probe sequence. (This generalizes

simple uniform hashing for a hash function that produces a whole probe sequence

rather than just a single number.)

It’s hard to implement true uniform hashing, so we approximate it with techniques

that at least guarantee that the probe sequence is a permutation of h0; 1; : : : ;m�1i.
None of these techniques can produce all mŠ probe sequences. They will make use

of auxiliary hash functions, which map U ! f0; 1; : : : ; m � 1g.
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Linear probing

Given auxiliary hash function h0, the probe sequence starts at slot h0.k/ and con-

tinues sequentially through the table, wrapping after slot m � 1 to slot 0.

Given key k and probe number i (0 � i < m), h.k; i/ D .h0.k/C i/ mod m.

The initial probe determines the entire sequence) only m possible sequences.

Linear probing suffers from primary clustering: long runs of occupied sequences
build up. And long runs tend to get longer, since an empty slot preceded by i full

slots gets filled next with probability .i C 1/=m. Result is that the average search

and insertion times increase.

Quadratic probing

As in linear probing, the probe sequence starts at h0.k/. Unlike linear probing, it

jumps around in the table according to a quadratic function of the probe number:

h.k; i/ D .h0.k/C c1i C c2i2/ mod m, where c1; c2 ¤ 0 are constants.

Must constrain c1, c2, and m in order to ensure that we get a full permutation of

h0;1; : : : ;m�1i. (Problem 11-3 explores one way to implement quadratic probing.)

Can get secondary clustering: if two distinct keys have the same h0 value, then

they have the same probe sequence.

Double hashing

Use two auxiliary hash functions, h1 and h2. h1 gives the initial probe, and h2

gives the remaining probes: h.k; i/ D .h1.k/C ih2.k// mod m.

Must have h2.k/ be relatively prime to m (no factors in common other than 1) in
order to guarantee that the probe sequence is a full permutation of h0;1; : : : ;m�1i.
� Could choose m to be a power of 2 and h2 to always produce an odd number

> 1.

� Could let m be prime and have 1 < h2.k/ < m.

‚.m2/ different probe sequences, since each possible combination of h1.k/

and h2.k/ gives a different probe sequence.

Analysis of open-address hashing

Assumptions

� Analysis is in terms of load factor ˛. We will assume that the table never

completely fills, so we always have 0 � n < m) 0 � ˛ < 1.

� Assume uniform hashing.

� No deletion.

� In a successful search, each key is equally likely to be searched for.

Theorem

The expected number of probes in an unsuccessful search is at most 1=.1 � ˛/.
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Proof Since the search is unsuccessful, every probe is to an occupied slot, except

for the last probe, which is to an empty slot.

Define random variable X D # of probes made in an unsuccessful search.

Define events Ai , for i D 1; 2; : : :, to be the event that there is an i th probe and

that it’s to an occupied slot.

X � i if and only if probes 1; 2; : : : ; i � 1 are made and are to occupied slots)
Pr fX � ig D Pr fA1 \ A2 \ � � � \ Ai�1g.
By Exercise C.2-5,

Pr fA1 \ A2 \ � � � \ Ai�1g D Pr fA1g � Pr fA2 j A1g � Pr fA3 j A1 \ A2g � � �
Pr fAi�1 j A1 \ A2 \ � � � \ Ai�2g :

Claim

Pr fAj j A1 \ A2 \ � � � \ Aj �1g D .n�jC1/=.m�jC1/. Boundary case: j D 1

) Pr fA1g D n=m.

Proof For the boundary case j D 1, there are n stored keys and m slots, so the

probability that the first probe is to an occupied slot is n=m.

Given that j�1 probes were made, all to occupied slots, the assumption of uniform

hashing says that the probe sequence is a permutation of h0;1; : : : ;m�1i, which in

turn implies that the next probe is to a slot that we have not yet probed. There are

m� j C 1 slots remaining, n� j C 1 of which are occupied. Thus, the probability

that the j th probe is to an occupied slot is .n � j C 1/=.m � j C 1/. (claim)

Using this claim,

Pr fX � ig D n

m
� n � 1

m � 1
� n � 2

m � 2
� � � n � i C 2

m � i C 2
„ ƒ‚ …

i � 1 factors

:

n < m) .n � j /=.m � j / � n=m for j � 0, which implies

Pr fX � ig �
� n

m

�i�1

D ˛i�1 :

By equation (C.25),

E ŒX� D
1
X

iD1

Pr fX � ig

�
1
X

iD1

˛i�1

D
1
X

iD0

˛i

D 1

1 � ˛
(equation (A.6)) . (theorem)
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Interpretation

If ˛ is constant, an unsuccessful search takes O.1/ time.

� If ˛ D 0:5, then an unsuccessful search takes an average of 1=.1 � 0:5/ D 2

probes.

� If ˛ D 0:9, takes an average of 1=.1 � 0:9/ D 10 probes.

Corollary

The expected number of probes to insert is at most 1=.1 � ˛/.

Proof Since there is no deletion, insertion uses the same probe sequence as an

unsuccessful search.

Theorem

The expected number of probes in a successful search is at most
1

˛
ln

1

1� ˛
.

Proof A successful search for key k follows the same probe sequence as when

key k was inserted.

By the previous corollary, if k was the .i C 1/st key inserted, then ˛ equaled i=m

at the time. Thus, the expected number of probes made in a search for k is at most

1=.1 � i=m/ D m=.m � i/.

That was assuming that k was the .i C 1/st key inserted. We need to average over

all n keys:

1

n

n�1
X

iD0

m

m � i
D m

n

n�1
X

iD0

1

m � i

D 1

˛

m
X

kDm�nC1

1

k

� 1

˛

Z m

m�n

.1=x/ dx (by inequality (A.12))

D 1

˛
ln

m

m � n

D 1

˛
ln

1

1 � ˛
(theorem)



Solutions for Chapter 11:

Hash Tables

Solution to Exercise 11.1-4

We denote the huge array by T and, taking the hint from the book, we also have a
stack implemented by an array S . The size of S equals the number of keys actually

stored, so that S should be allocated at the dictionary’s maximum size. The stack

has an attribute S: top, so that only entries SŒ1 : : S: top� are valid.

The idea of this scheme is that entries of T and S validate each other. If key k is

actually stored in T , then T Œk� contains the index, say j , of a valid entry in S , and

SŒj � contains the value k. Let us call this situation, in which 1 � T Œk� � S: top,

SŒT Œk�� D k, and T ŒSŒj �� D j , a validating cycle.

Assuming that we also need to store pointers to objects in our direct-address table,

we can store them in an array that is parallel to either T or S . Since S is smaller

than T , we’ll use an array S 0, allocated to be the same size as S , for these pointers.

Thus, if the dictionary contains an object x with key k, then there is a validating

cycle and S 0ŒT Œk�� points to x.

The operations on the dictionary work as follows:

� Initialization: Simply set S: top D 0, so that there are no valid entries in the

stack.

� SEARCH: Given key k, we check whether we have a validating cycle, i.e.,

whether 1 � T Œk� � S: top and SŒT Œk�� D k. If so, we return S 0ŒT Œk��, and

otherwise we return NIL.

� INSERT: To insert object x with key k, assuming that this object is not already

in the dictionary, we increment S: top, set SŒS: top� D k, set S 0ŒS: top� D x,

and set T Œk� D S: top.

� DELETE: To delete object x with key k, assuming that this object is in the

dictionary, we need to break the validating cycle. The trick is to also ensure

that we don’t leave a “hole” in the stack, and we solve this problem by moving

the top entry of the stack into the position that we are vacating—and then fixing

up that entry’s validating cycle. That is, we execute the following sequence of

assignments:
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SŒT Œk�� D SŒS: top�

S 0ŒT Œk�� D S 0ŒS: top�

T ŒSŒT Œk��� D T Œk�

T Œk� D 0

S: top D S: top � 1

Each of these operations—initialization, SEARCH, INSERT, and DELETE—takes

O.1/ time.

Solution to Exercise 11.2-1

This solution is also posted publicly

For each pair of keys k; l , where k ¤ l , define the indicator random variable

Xkl D I fh.k/ D h.l/g. Since we assume simple uniform hashing, Pr fXkl D 1g D
Pr fh.k/ D h.l/g D 1=m, and so E ŒXkl � D 1=m.

Now define the random variable Y to be the total number of collisions, so that

Y D
P

k¤l Xkl . The expected number of collisions is

E ŒY � D E
�X

k¤l

Xkl

�

D
X

k¤l

E ŒXkl � (linearity of expectation)

D
 

n

2

!

1

m

D n.n � 1/

2
� 1

m

D n.n � 1/

2m
:

Solution to Exercise 11.2-4

This solution is also posted publicly

The flag in each slot will indicate whether the slot is free.

� A free slot is in the free list, a doubly linked list of all free slots in the table.

The slot thus contains two pointers.

� A used slot contains an element and a pointer (possibly NIL) to the next element

that hashes to this slot. (Of course, that pointer points to another slot in the
table.)
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Operations

� Insertion:

� If the element hashes to a free slot, just remove the slot from the free list and

store the element there (with a NIL pointer). The free list must be doubly

linked in order for this deletion to run in O.1/ time.
� If the element hashes to a used slot j , check whether the element x already

there “belongs” there (its key also hashes to slot j ).

� If so, add the new element to the chain of elements in this slot. To do

so, allocate a free slot (e.g., take the head of the free list) for the new

element and put this new slot at the head of the list pointed to by the

hashed-to slot (j ).
� If not, E is part of another slot’s chain. Move it to a new slot by allo-

cating one from the free list, copying the old slot’s (j ’s) contents (ele-

ment x and pointer) to the new slot, and updating the pointer in the slot

that pointed to j to point to the new slot. Then insert the new element in

the now-empty slot as usual.

To update the pointer to j , it is necessary to find it by searching the chain

of elements starting in the slot x hashes to.

� Deletion: Let j be the slot the element x to be deleted hashes to.

� If x is the only element in j (j doesn’t point to any other entries), just free

the slot, returning it to the head of the free list.
� If x is in j but there’s a pointer to a chain of other elements, move the first

pointed-to entry to slot j and free the slot it was in.
� If x is found by following a pointer from j , just free x’s slot and splice it out

of the chain (i.e., update the slot that pointed to x to point to x’s successor).

� Searching: Check the slot the key hashes to, and if that is not the desired

element, follow the chain of pointers from the slot.

All the operations take expected O.1/ times for the same reason they do with

the version in the book: The expected time to search the chains is O.1 C ˛/

regardless of where the chains are stored, and the fact that all the elements are

stored in the table means that ˛ � 1. If the free list were singly linked, then

operations that involved removing an arbitrary slot from the free list would not

run in O.1/ time.

Solution to Exercise 11.2-6

We can view the hash table as if it had m rows and L columns; each row stores

one chain. The array has mL entries storing n keys, and mL � n empty values.

The procedure picks array positions at random until it finds a key, which it returns.

The probability of success on one draw is n=mL, so mL=n D L=˛ trials are

needed. Each trial takes time O.1/, since the individual chain sizes are known. The

chain for the last draw needs to be scanned to find the desired element, however,

costing O.L/.
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Solution to Exercise 11.3-3

First, we observe that we can generate any permutation by a sequence of inter-

changes of pairs of characters. One can prove this property formally, but infor-

mally, consider that both heapsort and quicksort work by interchanging pairs of

elements and that they have to be able to produce any permutation of their input

array. Thus, it suffices to show that if string x can be derived from string y by

interchanging a single pair of characters, then x and y hash to the same value.

Let us denote the i th character in x by xi , and similarly for y. The interpreta-

tion of x in radix 2p is
Pn�1

iD0 xi2
ip, and so h.x/ D

�Pn�1

iD0 xi2
ip
�

mod .2p � 1/.

Similarly, h.y/ D
�Pn�1

iD0 yi2
ip
�

mod .2p � 1/.

Suppose that x and y are identical strings of n characters except that the characters

in positions a and b are interchanged: xa D yb and ya D xb. Without loss of

generality, let a > b. We have

h.x/� h.y/ D
 

n�1
X

iD0

xi2
ip

!

mod .2p � 1/ �
 

n�1
X

iD0

yi2
ip

!

mod .2p � 1/ :

Since 0 � h.x/; h.y/ < 2p � 1, we have that �.2p � 1/ < h.x/� h.y/ < 2p � 1.

If we show that .h.x/ � h.y// mod .2p � 1/ D 0, then h.x/ D h.y/.

Since the sums in the hash functions are the same except for indices a and b, we

have

.h.x/� h.y// mod .2p � 1/

D ..xa2ap C xb2bp/ � .ya2ap C yb2bp// mod .2p � 1/

D ..xa2ap C xb2bp/ � .xb2ap C xa2bp// mod .2p � 1/

D ..xa � xb/2ap � .xa � xb/2bp/ mod .2p � 1/

D ..xa � xb/.2ap � 2bp// mod .2p � 1/

D ..xa � xb/2bp.2.a�b/p � 1// mod .2p � 1/ :

By equation (A.5),

a�b�1
X

iD0

2pi D 2.a�b/p � 1

2p � 1
;

and multiplying both sides by 2p �1, we get 2.a�b/p �1 D
�Pa�b�1

iD0 2pi
�

.2p �1/.

Thus,

.h.x/� h.y// mod .2p � 1/

D
 

.xa � xb/2bp

 
a�b�1
X

iD0

2pi

!

.2p � 1/

!

mod .2p � 1/

D 0 ;

since one of the factors is 2p � 1.

We have shown that .h.x/ � h.y// mod .2p � 1/ D 0, and so h.x/ D h.y/.
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Solution to Exercise 11.3-5

Let b D jBj and u D jU j. We start by showing that the total number of collisions

is minimized by a hash function that maps u=b elements of U to each of the b

values in B . For a given hash function, let uj be the number of elements that map

to j 2 B . We have u D P

j 2B uj . We also have that the number of collisions for

a given value of j 2 B is
�

uj

2

�

D uj .uj � 1/=2.

Lemma

The total number of collisions is minimized when uj D u=b for each j 2 B .

Proof If uj � u=b, let us call j underloaded, and if uj � u=b, let us call j

overloaded. Consider an unbalanced situation in which uj ¤ u=b for at least

one value j 2 B . We can think of converting a balanced situation in which all

uj equal u=b into the unbalanced situation by repeatedly moving an element that

maps to an underloaded value to map instead to an overloaded value. (If you think

of the values of B as representing buckets, we are repeatedly moving elements

from buckets containing at most u=b elements to buckets containing at least u=b

elements.)

We now show that each such move increases the number of collisions, so that

all the moves together must increase the number of collisions. Suppose that
we move an element from an underloaded value j to an overloaded value k,

and we leave all other elements alone. Because j is underloaded and k is

overloaded, uj � u=b � uk. Considering just the collisions for values j

and k, we have uj .uj � 1/=2 C uk.uk � 1/=2 collisions before the move and

.uj � 1/.uj � 2/=2 C .uk C 1/uk=2 collisions afterward. We wish to show that

uj .uj � 1/=2 C uk.uk � 1/=2 < .uj � 1/.uj � 2/=2 C .uk C 1/uk=2. We have

the following sequence of equivalent inequalities:

uj < uk C 1

2uj < 2uk C 2

�uk < uk � 2uj C 2

u2
j � uj C u2

k � uk < u2
j � 3uj C 2C u2

k C uk

uj .uj � 1/C uk.uk � 1/ < .uj � 1/.uj � 2/C .uk C 1/uk

uj .uj � 1/=2C uk.uk � 1/=2 < .uj � 1/.uj � 2/=2C .uk C 1/uk=2 :

Thus, each move increases the number of collisions. We conclude that the number

of collisions is minimized when uj D u=b for each j 2 B .

By the above lemma, for any hash function, the total number of collisions must

be at least b.u=b/.u=b � 1/=2. The number of pairs of distinct elements is
�

u

2

�

D
u.u� 1/=2. Thus, the number of collisions per pair of distinct elements must be at

least
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b.u=b/.u=b � 1/=2

u.u � 1/=2
D u=b � 1

u � 1

>
u=b � 1

u

D 1

b
� 1

u
:

Thus, the bound � on the probability of a collision for any pair of distinct elements

can be no less than 1=b � 1=u D 1= jBj � 1= jU j.

Solution to Problem 11-1

a. Since we assume uniform hashing, we can use the same observation as is used

in Corollary 11.7: that inserting a key entails an unsuccessful search followed
by placing the key into the first empty slot found. As in the proof of Theo-

rem 11.6, if we let X be the random variable denoting the number of probes

in an unsuccessful search, then Pr fX � ig � ˛i�1. Since n � m=2, we have

˛ � 1=2. Letting i D k C 1, we have Pr fX > kg D Pr fX � k C 1g �
.1=2/.kC1/�1 D 2�k .

b. Substituting k D 2 lg n into the statement of part (a) yields that the probability

that the i th insertion requires more than k D 2 lg n probes is at most 2�2 lg n D
.2lg n/�2 D n�2 D 1=n2.

We must deal with the possibility that 2 lg n is not an integer, however. Then

the event that the i th insertion requires more than 2 lg n probes is the same

as the event that the i th insertion requires more than b2 lg nc probes. Since

b2 lg nc > 2 lg n � 1, we have that the probability of this event is at most

2�b2 lg nc < 2�.2 lg n�1/ D 2=n2 D O.1=n2/.

c. Let the event A be X > 2 lg n, and for i D 1; 2; : : : ; n, let the event Ai be Xi >

2 lg n. In part (b), we showed that Pr fAig D O.1=n2/ for i D 1; 2; : : : ; n.

From how we defined these events, A D A1 [ A2 [ � � � [ An. Using Boole’s

inequality, (C.19), we have

Pr fAg � Pr fA1g C Pr fA2g C � � � C Pr fAng
� n �O.1=n2/

D O.1=n/ :

d. We use the definition of expectation and break the sum into two parts:
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E ŒX� D
n
X

kD1

k � Pr fX D kg

D
d2 lg ne
X

kD1

k � Pr fX D kg C
n
X

kDd2 lg neC1

k � Pr fX D kg

�
d2 lg ne
X

kD1

d2 lg ne � Pr fX D kg C
n
X

kDd2 lg neC1

n � Pr fX D kg

D d2 lg ne
d2 lg ne
X

kD1

Pr fX D kg C n

n
X

kDd2 lg neC1

Pr fX D kg :

Since X takes on exactly one value, we have that
Pd2 lg ne

kD1
Pr fX D kg D

Pr fX � d2 lg neg � 1 and
Pn

kDd2 lg neC1 Pr fX D kg � Pr fX > 2 lg ng D
O.1=n/, by part (c). Therefore,

E ŒX� � d2 lg ne � 1C n �O.1=n/

D d2 lg ne CO.1/

D O.lg n/ :

Solution to Problem 11-2

This solution is also posted publicly

a. A particular key is hashed to a particular slot with probability 1=n. Suppose

we select a specific set of k keys. The probability that these k keys are inserted

into the slot in question and that all other keys are inserted elsewhere is

�
1

n

�k �

1 � 1

n

�n�k

:

Since there are
�

n

k

�

ways to choose our k keys, we get

Qk D
�

1

n

�k �

1� 1

n

�n�k
 

n

k

!

:

b. For i D 1; 2; : : : ; n, let Xi be a random variable denoting the number of keys

that hash to slot i , and let Ai be the event that Xi D k, i.e., that exactly k keys

hash to slot i . From part (a), we have Pr fAg D Qk . Then,

Pk D Pr fM D kg
D Pr

n�

max
1�i�n

Xi

�

D k
o

D Pr fthere exists i such that Xi D k and that Xi � k for i D 1; 2; : : : ; ng
� Pr fthere exists i such that Xi D kg
D Pr fA1 [ A2 [ � � � [ Ang
� Pr fA1g C Pr fA2g C � � � C Pr fAng (by inequality (C.19))

D nQk :
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c. We start by showing two facts. First, 1 � 1=n < 1, which implies

.1 � 1=n/n�k < 1. Second, nŠ=.n�k/Š D n�.n�1/�.n�2/ � � � .n�kC1/ < nk.

Using these facts, along with the simplification kŠ > .k=e/k of equation (3.18),

we have

Qk D
�

1

n

�k �

1 � 1

n

�n�k
nŠ

kŠ.n � k/Š

<
nŠ

nkkŠ.n � k/Š
(.1� 1=n/n�k < 1)

<
1

kŠ
(nŠ=.n � k/Š < nk)

<
ek

kk
(kŠ > .k=e/k) .

d. Notice that when n D 2, lg lg n D 0, so to be precise, we need to assume that

n � 3.

In part (c), we showed that Qk < ek=kk for any k; in particular, this inequality
holds for k0. Thus, it suffices to show that ek0=k0

k0 < 1=n3 or, equivalently,

that n3 < k0
k0=ek0 .

Taking logarithms of both sides gives an equivalent condition:

3 lg n < k0.lg k0 � lg e/

D c lg n

lg lg n
.lg c C lg lg n � lg lg lg n � lg e/ :

Dividing both sides by lg n gives the condition

3 <
c

lg lg n
.lg c C lg lg n � lg lg lg n � lg e/

D c

�

1C lg c � lg e

lg lg n
� lg lg lg n

lg lg n

�

:

Let x be the last expression in parentheses:

x D
�

1C lg c � lg e

lg lg n
� lg lg lg n

lg lg n

�

:

We need to show that there exists a constant c > 1 such that 3 < cx.

Noting that limn!1 x D 1, we see that there exists n0 such that x � 1=2 for all

n � n0. Thus, any constant c > 6 works for n � n0.

We handle smaller values of n—in particular, 3 � n < n0—as follows. Since

n is constrained to be an integer, there are a finite number of n in the range

3 � n < n0. We can evaluate the expression x for each such value of n and

determine a value of c for which 3 < cx for all values of n. The final value of c

that we use is the larger of

� 6, which works for all n � n0, and
� max3�n<n0

fc W 3 < cxg, i.e., the largest value of c that we chose for the

range 3 � n < n0.

Thus, we have shown that Qk0
< 1=n3, as desired.

To see that Pk < 1=n2 for k � k0, we observe that by part (b), Pk � nQk

for all k. Choosing k D k0 gives Pk0
� nQk0

< n � .1=n3/ D 1=n2. For



11-24 Solutions for Chapter 11: Hash Tables

k > k0, we will show that we can pick the constant c such that Qk < 1=n3 for

all k � k0, and thus conclude that Pk < 1=n2 for all k � k0.

To pick c as required, we let c be large enough that k0 > 3 > e. Then e=k < 1

for all k � k0, and so ek=kk decreases as k increases. Thus,

Qk < ek=kk

� ek0=kk0

< 1=n3

for k � k0.

e. The expectation of M is

E ŒM � D
n
X

kD0

k � Pr fM D kg

D
k0X

kD0

k � Pr fM D kg C
n
X

kDk0C1

k � Pr fM D kg

�
k0X

kD0

k0 � Pr fM D kg C
n
X

kDk0C1

n � Pr fM D kg

� k0

k0X

kD0

Pr fM D kg C n

n
X

kDk0C1

Pr fM D kg

D k0 � Pr fM � k0g C n � Pr fM > k0g ;

which is what we needed to show, since k0 D c lg n= lg lg n.

To show that E ŒM � D O.lg n= lg lg n/, note that Pr fM � k0g � 1 and

Pr fM > k0g D
n
X

kDk0C1

Pr fM D kg

D
n
X

kDk0C1

Pk

<

n
X

kDk0C1

1=n2 (by part (d))

< n � .1=n2/

D 1=n :

We conclude that

E ŒM � � k0 � 1C n � .1=n/

D k0 C 1

D O.lg n= lg lg n/ :

Solution to Problem 11-3

a. From how the probe-sequence computation is specified, it is easy to see that

the probe sequence is hh.k/; h.k/ C 1; h.k/ C 1 C 2; h.k/ C 1 C 2 C 3;
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: : : ; h.k/C 1C 2C 3C � � � C i ; : : :i, where all the arithmetic is modulo m.

Starting the probe numbers from 0, the i th probe is offset (modulo m) from h.k/

by

i
X

j D0

j D i.i C 1/

2
D 1

2
i2 C 1

2
i :

Thus, we can write the probe sequence as

h0.k; i/ D
�

h.k/C 1

2
i C 1

2
i2

�

mod m ;

which demonstrates that this scheme is a special case of quadratic probing.

b. Let h0.k; i/ denote the i th probe of our scheme. We saw in part (a) that

h0.k; i/ D .h.k/ C i.i C 1/=2/ mod m. To show that our algorithm exam-
ines every table position in the worst case, we show that for a given key, each of

the first m probes hashes to a distinct value. That is, for any key k and for any

probe numbers i and j such that 0 � i < j < m, we have h0.k; i/ ¤ h0.k; j /.

We do so by showing that h0.k; i/ D h0.k; j / yields a contradiction.

Let us assume that there exists a key k and probe numbers i and j satsifying

0 � i < j < m for which h0.k; i/ D h0.k; j /. Then

h.k/C i.i C 1/=2 � h.k/C j.j C 1/=2 .mod m/ ;

which in turn implies that

i.i C 1/=2 � j.j C 1/=2 .mod m/ ;

or

j.j C 1/=2 � i.i C 1/=2 � 0 .mod m/ :

Since j.j C 1/=2 � i.i C 1/=2 D .j � i/.j C i C 1/=2, we have

.j � i/.j C i C 1/=2 � 0 .mod m/ :

The factors j � i and j C i C 1 must have different parities, i.e., j � i is

even if and only if j C i C 1 is odd. (Work out the various cases in which

i and j are even and odd.) Since .j � i/.j C i C 1/=2 � 0 .mod m/,
we have .j � i/.j C i C 1/=2 D rm for some integer r or, equivalently,

.j � i/.j C i C 1/ D r � 2m. Using the assumption that m is a power

of 2, let m D 2p for some nonnegative integer p, so that now we have

.j � i/.j C i C 1/ D r � 2pC1. Because exactly one of the factors j � i

and j C i C 1 is even, 2pC1 must divide one of the factors. It cannot be

j � i , since j � i < m < 2pC1. But it also cannot be j C i C 1, since

j C i C 1 � .m� 1/C .m� 2/C 1 D 2m� 2 < 2pC1. Thus we have derived

the contradiction that 2pC1 divides neither of the factors j � i and j C i C 1.

We conclude that h0.k; i/ ¤ h0.k; j /.



Lecture Notes for Chapter 12:

Binary Search Trees

Chapter 12 overview

Search trees

� Data structures that support many dynamic-set operations.

� Can be used as both a dictionary and as a priority queue.

� Basic operations take time proportional to the height of the tree.

� For complete binary tree with n nodes: worst case ‚.lg n/.
� For linear chain of n nodes: worst case ‚.n/.

� Different types of search trees include binary search trees, red-black trees (cov-

ered in Chapter 13), and B-trees (covered in Chapter 18).

We will cover binary search trees, tree walks, and operations on binary search trees.

Binary search trees

Binary search trees are an important data structure for dynamic sets.

� Accomplish many dynamic-set operations in O.h/ time, where h D height of

tree.

� As in Section 10.4, we represent a binary tree by a linked data structure in which

each node is an object.

� T:root points to the root of tree T .

� Each node contains the attributes

� key (and possibly other satellite data).
� left: points to left child.
� right: points to right child.
� p: points to parent. T:root:p D NIL.
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� Stored keys must satisfy the binary-search-tree property.

� If y is in left subtree of x, then y:key � x:key.
� If y is in right subtree of x, then y:key � x:key.

Draw sample tree.

[This is Figure 12.1(a) from the text, using A, B , D, F , H , K in place of 2, 3, 5,
5, 7, 8, with alphabetic comparisons. It’s OK to have duplicate keys, though there
are none in this example. Show that the binary-search-tree property holds.]

A D

B

K

H

F

The binary-search-tree property allows us to print keys in a binary search tree in

order, recursively, using an algorithm called an inorder tree walk. Elements are

printed in monotonically increasing order.

How INORDER-TREE-WALK works:

� Check to make sure that x is not NIL.

� Recursively, print the keys of the nodes in x’s left subtree.

� Print x’s key.

� Recursively, print the keys of the nodes in x’s right subtree.

INORDER-TREE-WALK.x/

if x ¤ NIL

INORDER-TREE-WALK.x: left/

print keyŒx�

INORDER-TREE-WALK.x:right/

Example

Do the inorder tree walk on the example above, getting the output ABDFHK.

Correctness

Follows by induction directly from the binary-search-tree property.

Time

Intuitively, the walk takes ‚.n/ time for a tree with n nodes, because we visit and
print each node once. [Book has formal proof.]
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Querying a binary search tree

Searching

TREE-SEARCH.x; k/

if x == NIL or k == keyŒx�

return x

if k < x:key

return TREE-SEARCH.x: left; k/

else return TREE-SEARCH.x:right; k/

Initial call is TREE-SEARCH.T:root; k/.

Example

Search for values D and C in the example tree from above.

Time

The algorithm recurses, visiting nodes on a downward path from the root. Thus,

running time is O.h/, where h is the height of the tree.

[The text also gives an iterative version of TREE-SEARCH, which is more effi-
cient on most computers. The above recursive procedure is more straightforward,
however.]

Minimum and maximum

The binary-search-tree property guarantees that

� the minimum key of a binary search tree is located at the leftmost node, and

� the maximum key of a binary search tree is located at the rightmost node.

Traverse the appropriate pointers (left or right) until NIL is reached.

TREE-MINIMUM.x/

while x: left ¤ NIL

x D x: left

return x

TREE-MAXIMUM.x/

while x:right ¤ NIL

x D x:right

return x

Time

Both procedures visit nodes that form a downward path from the root to a leaf.

Both procedures run in O.h/ time, where h is the height of the tree.
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Successor and predecessor

Assuming that all keys are distinct, the successor of a node x is the node y such

that y:key is the smallest key > x:key. (We can find x’s successor based entirely

on the tree structure. No key comparisons are necessary.) If x has the largest key

in the binary search tree, then we say that x’s successor is NIL.

There are two cases:

1. If node x has a non-empty right subtree, then x’s successor is the minimum in

x’s right subtree.

2. If node x has an empty right subtree, notice that:

� As long as we move to the left up the tree (move up through right children),

we’re visiting smaller keys.
� x’s successor y is the node that x is the predecessor of (x is the maximum

in y’s left subtree).

TREE-SUCCESSOR.x/

if x:right ¤ NIL

return TREE-MINIMUM.x:right/

y D x:p

while y ¤ NIL and x == y:right

x D y

y D y:p

return y

TREE-PREDECESSOR is symmetric to TREE-SUCCESSOR.

Example

2 4

3

13

7

6

17 20

18

15

9

� Find the successor of the node with key value 15. (Answer: Key value 17)

� Find the successor of the node with key value 6. (Answer: Key value 7)

� Find the successor of the node with key value 4. (Answer: Key value 6)

� Find the predecessor of the node with key value 6. (Answer: Key value 4)

Time

For both the TREE-SUCCESSOR and TREE-PREDECESSOR procedures, in both

cases, we visit nodes on a path down the tree or up the tree. Thus, running time is

O.h/, where h is the height of the tree.
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Insertion and deletion

Insertion and deletion allows the dynamic set represented by a binary search tree

to change. The binary-search-tree property must hold after the change. Insertion is
more straightforward than deletion.

Insertion

TREE-INSERT.T; ´/

y D NIL

x D T:root

while x ¤ NIL

y D x

if ´:key < x:key

x D x: left

else x D x:right

´:p D y

if y == NIL

T:root D ´ // tree T was empty

elseif ´:key < y:key

y: left D ´

else y:right D ´

� To insert value � into the binary search tree, the procedure is given node ´, with

´:key D �, ´: left D NIL, and ´:right D NIL.

� Beginning at root of the tree, trace a downward path, maintaining two pointers.

� Pointer x: traces the downward path.
� Pointer y: “trailing pointer” to keep track of parent of x.

� Traverse the tree downward by comparing the value of node at x with �, and

move to the left or right child accordingly.

� When x is NIL, it is at the correct position for node ´.

� Compare ´’s value with y’s value, and insert ´ at either y’s left or right, appro-

priately.

Example

Run TREE-INSERT.T; C / on the first sample binary search tree. Result:

A D

B

K

H

F

C
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Time

Same as TREE-SEARCH. On a tree of height h, procedure takes O.h/ time.

TREE-INSERT can be used with INORDER-TREE-WALK to sort a given set of num-

bers. (See Exercise 12.3-3.)

Deletion

[Deletion from a binary search tree changed in the third edition. In the first two
editions, when the node ´ passed to TREE-DELETE had two children, ´’s succes-
sor y was the node actually removed, with y’s contents copied into ´. The problem
with that approach is that if there are external pointers into the binary search tree,
then a pointer to y from outside the binary search tree becomes stale. In the third
edition, the node ´ passed to TREE-DELETE is always the node actually removed,
so that all external pointers to nodes other than ´ remain valid.]

Conceptually, deleting node ´ from binary search tree T has three cases:

1. If ´ has no children, just remove it.

2. If ´ has just one child, then make that child take ´’s position in the tree, drag-

ging the child’s subtree along.

3. If ´ has two children, then find ´’s successor y and replace ´ by y in the tree.

y must be in ´’s right subtree and have no left child. The rest of ´’s original

right subtree becomes y’s new right subtree, and ´’s left subtree becomes y’s

new left subtree.

This case is a little tricky because the exact sequence of steps taken depends on
whether y is ´’s right child.

The code organizes the cases a bit differently. Since it will move subtrees around

within the binary search tree, it uses a subroutine, TRANSPLANT, to replace one

subtree as the child of its parent by another subtree.

TRANSPLANT.T; u; �/

if u:p == NIL

T:root D �

elseif u == u:p: left

u:p: left D �

else u:p:right D �

if � ¤ NIL

�:p D u:p

TRANSPLANT.T; u; �/ replaces the subtree rooted at u by the subtree rooted at �:

� Makes u’s parent become �’s parent (unless u is the root, in which case it makes

� the root).

� u’s parent gets � as either its left or right child, depending on whether u was a

left or right child.

� Doesn’t update �: left or �:right, leaving that up to TRANSPLANT’s caller.

TREE-DELETE.T; ´/ has four cases when deleting node ´ from binary search

tree T :
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� If ´ has no left child, replace ´ by its right child. The right child may or may not

be NIL. (If ´’s right child is NIL, then this case handles the situation in which ´

has no children.)

qq

z

NIL

r

r

� If ´ has just one child, and that child is its left child, then replace ´ by its left

child.

qq

z

l NIL

l

� Otherwise, ´ has two children. Find ´’s successor y. y must lie in ´’s right

subtree and have no left child (the solution to Exercise 12.2-5 on page 12-15 of

this manual shows why).

Goal is to replace ´ by y, splicing y out of its current location.

� If y is ´’s right child, replace ´ by y and leave y’s right child alone.

q

z

l

NIL

q

y

ly x

x

� Otherwise, y lies within ´’s right subtree but is not the root of this subtree.

Replace y by its own right child. Then replace ´ by y.

q

z

l r

q

z

l NIL r

y

q

l r

y

x

NIL

y

x

x
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TREE-DELETE.T; ´/

if ´: left == NIL

TRANSPLANT.T; ´; ´:right/ // ´ has no left child

elseif ´:right == NIL

TRANSPLANT.T; ´; ´: left/ // ´ has just a left child

else // ´ has two children.

y D TREE-MINIMUM.´:right/ // y is ´’s successor

if y:p ¤ ´

// y lies within ´’s right subtree but is not the root of this subtree.
TRANSPLANT.T; y; y:right/

y:right D ´:right

y:right:p D y

// Replace ´ by y.

TRANSPLANT.T; ´; y/

y: left D ´: left

y: left:p D y

Note that the last three lines execute when ´ has two children, regardless of whether

y is ´’s right child.

Example

On this binary search tree T ,

H

B

A

E

FC

I

K

L

N

OM

J

G

D

run the following. [You can either start with the original tree each time or start with
the result of the previous call. The tree is designed so that either way will elicit all
four cases.]

� TREE-DELETE.T; I / shows the case in which the node deleted has no left child.

� TREE-DELETE.T; G/ shows the case in which the node deleted has a left child

but no right child.

� TREE-DELETE.T; K/ shows the case in which the node deleted has both chil-

dren and its successor is its right child.

� TREE-DELETE.T; B/ shows the case in which the node deleted has both chil-
dren and its successor is not its right child.
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Time

O.h/, on a tree of height h. Everything is O.1/ except for the call to TREE-

MINIMUM.

Minimizing running time

We’ve been analyzing running time in terms of h (the height of the binary search

tree), instead of n (the number of nodes in the tree).

� Problem: Worst case for binary search tree is ‚.n/—no better than linked list.

� Solution: Guarantee small height (balanced tree)—h D O.lg n/.

In later chapters, by varying the properties of binary search trees, we will be able

to analyze running time in terms of n.

� Method: Restructure the tree if necessary. Nothing special is required for

querying, but there may be extra work when changing the structure of the tree

(inserting or deleting).

Red-black trees are a special class of binary trees that avoids the worst-case be-

havior of O.n/ that we can see in “plain” binary search trees. Red-black trees are

covered in detail in Chapter 13.

Expected height of a randomly built binary search tree

[These are notes on a starred section in the book. I covered this material in an
optional lecture.]

Given a set of n distinct keys. Insert them in random order into an initially empty

binary search tree.

� Each of the nŠ permutations is equally likely.

� Different from assuming that every binary search tree on n keys is equally

likely.

Try it for n D 3. Will get 5 different binary search trees. When we look at the

binary search trees resulting from each of the 3Š input permutations, 4 trees will

appear once and 1 tree will appear twice. [This gives the idea for the solution
to Exercise 12.4-3.]

� Forget about deleting keys.

We will show that the expected height of a randomly built binary search tree is

O.lg n/.

Random variables

Define the following random variables:

� Xn D height of a randomly built binary search tree on n keys.
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� Yn D 2Xn D exponential height.

� Rn D rank of the root within the set of n keys used to build the binary search

tree.

� Equally likely to be any element of f1; 2; : : : ; ng.
� If Rn D i , then

� Left subtree is a randomly-built binary search tree on i � 1 keys.

� Right subtree is a randomly-built binary search tree on n � i keys.

Foreshadowing

We will need to relate E ŒYn� to E ŒXn�.

We’ll use Jensen’s inequality:

E Œf .X/� � f .E ŒX�/ ; [leave on board]

provided

� the expectations exist and are finite, and

� f .x/ is convex: for all x; y and all 0 � � � 1

f .�x C .1 � �/y/ � �f .x/C .1 � �/f .y/ :

x yλx + (1–λ)y

f(x)

f(y)

f(λx + (1–λ)y)

λf(x) + (1–λ)f(y)

Convex � “curves upward”

We’ll use Jensen’s inequality for f .x/ D 2x .

Since 2x curves upward, it’s convex.
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Formula for Yn

Think about Yn, if we know that Rn D i :

i–1
nodes n–i

nodes

Height of root is 1 more than the maximum height of its children:

Yn D 2 �max.Yi�1; Yn�i / :

Base cases:

� Y1 D 1 (expected height of a 1-node tree is 20 D 1).

� Define Y0 D 0.

Define indicator random variables Zn;1; Zn;2; : : : ; Zn;n:

Zn;i D I fRn D ig :

Rn is equally likely to be any element of f1; 2; : : : ; ng
) Pr fRn D ig D 1=n

) E ŒZn;i � D 1=n [leave on board]
(since E ŒI fAg� D Pr fAg)

Consider a given n-node binary search tree (which could be a subtree). Exactly

one Zn;i is 1, and all others are 0. Hence,

Yn D
n
X

iD1

Zn;i � .2 �max.Yi�1; Yn�i // : [leave on board]

[Recall: Yn D 2 �max.Yi�1; Yn�i / was assuming that Rn D i .]

Bounding E ŒYn�

We will show that E ŒYn� is polynomial in n, which will imply that E ŒXn� D
O.lg n/.

Claim

Zn;i is independent of Yi�1 and Yn�i .

Justification If we choose the root such that Rn D i , the left subtree contains i�1

nodes, and it’s like any other randomly built binary search tree with i � 1 nodes.

Other than the number of nodes, the left subtree’s structure has nothing to do with

it being the left subtree of the root. Hence, Yi�1 and Zn;i are independent.

Similarly, Yn�i and Zn;i are independent. (claim)
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Fact

If X and Y are nonnegative random variables, then E Œmax.X; Y /� � E ŒX�CE ŒY �.

[Leave on board. This is Exercise C.3-4 from the text.]

Thus,

E ŒYn� D E

"
n
X

iD1

Zn;i .2 �max.Yi�1; Yn�i //

#

D
n
X

iD1

E ŒZn;i � .2 �max.Yi�1; Yn�i //� (linearity of expectation)

D
n
X

iD1

E ŒZn;i � � E Œ2 �max.Yi�1; Yn�i /� (independence)

D
n
X

iD1

1

n
� E Œ2 �max.Yi�1; Yn�i /� (E ŒZn;i � D 1=n)

D 2

n

n
X

iD1

E Œmax.Yi�1; Yn�i /� (E ŒaX� D a E ŒX�)

� 2

n

n
X

iD1

.E ŒYi�1�C E ŒYn�i �/ (earlier fact) .

Observe that the last summation is

.E ŒY0�C E ŒYn�1�/C .E ŒY1�C E ŒYn�2�/C .E ŒY2�C E ŒYn�3�/

C � � � C .E ŒYn�1�C E ŒY0�/ D 2

n�1
X

iD0

E ŒYi � ;

and so we get the recurrence

E ŒYn� � 4

n

n�1
X

iD0

E ŒYi � : [leave on board]

Solving the recurrence

We will show that for all integers n > 0, this recurrence has the solution

E ŒYn� � 1

4

 

nC 3

3

!

:

Lemma
n�1
X

iD0

 

i C 3

3

!

D
 

nC 3

4

!

:

[This lemma solves Exercise 12.4-1.]
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Proof Use Pascal’s identity (Exercise C.1-7):

 

n

k

!

D
 

n � 1

k � 1

!

C
 

n � 1

k

!

.

Also using the simple identity

 

4

4

!

D 1 D
 

3

3

!

, we have

 

nC 3

4

!

D
 

nC 2

3

!

C
 

nC 2

4

!

D
 

nC 2

3

!

C
 

nC 1

3

!

C
 

nC 1

4

!

D
 

nC 2

3

!

C
 

nC 1

3

!

C
 

n

3

!

C
 

n

4

!

:::

D
 

nC 2

3

!

C
 

nC 1

3

!

C
 

n

3

!

C � � � C
 

4

3

!

C
 

4

4

!

D
 

nC 2

3

!

C
 

nC 1

3

!

C
 

n

3

!

C � � � C
 

4

3

!

C
 

3

3

!

D
n�1
X

iD0

 

i C 3

3

!

: (lemma)

We solve the recurrence by induction on n.

Basis: n D 1.

1 D Y1 D E ŒY1� � 1

4

 

1C 3

3

!

D 1

4
� 4 D 1 :

Inductive step: Assume that E ŒYi � �
1

4

 

i C 3

3

!

for all i < n. Then

E ŒYn� � 4

n

n�1
X

iD0

E ŒYi � (from before)

� 4

n

n�1
X

iD0

1

4

 

i C 3

3

!

(inductive hypothesis)

D 1

n

n�1
X

iD0

 

i C 3

3

!

D 1

n

 

nC 3

4

!

(lemma)

D 1

n
� .nC 3/Š

4Š .n � 1/Š

D 1

4
� .nC 3/Š

3Š nŠ
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D 1

4

 

nC 3

3

!

:

Thus, we’ve proven that E ŒYn� � 1

4

 

nC 3

3

!

.

Bounding E ŒXn�

With our bound on E ŒYn�, we use Jensen’s inequality to bound E ŒXn�:

2EŒXn� � E
�

2Xn
�

D E ŒYn� :

Thus,

2EŒXn� � 1

4

 

nC 3

3

!

D 1

4
� .nC 3/.nC 2/.nC 1/

6

D O.n3/ :

Taking logs of both sides gives E ŒXn� D O.lg n/.

Done!



Solutions for Chapter 12:

Binary Search Trees

Solution to Exercise 12.1-2

This solution is also posted publicly

In a heap, a node’s key is � both of its children’s keys. In a binary search tree, a

node’s key is � its left child’s key, but � its right child’s key.

The heap property, unlike the binary-searth-tree property, doesn’t help print the
nodes in sorted order because it doesn’t tell which subtree of a node contains the

element to print before that node. In a heap, the largest element smaller than the

node could be in either subtree.

Note that if the heap property could be used to print the keys in sorted order in

O.n/ time, we would have an O.n/-time algorithm for sorting, because building

the heap takes only O.n/ time. But we know (Chapter 8) that a comparison sort

must take �.n lg n/ time.

Solution to Exercise 12.2-5

Let x be a node with two children. In an inorder tree walk, the nodes in x’s left

subtree immediately precede x and the nodes in x’s right subtree immediately fol-

low x. Thus, x’s predecessor is in its left subtree, and its successor is in its right

subtree.

Let s be x’s successor. Then s cannot have a left child, for a left child of s would

come between x and s in the inorder walk. (It’s after x because it’s in x’s right

subtree, and it’s before s because it’s in s’s left subtree.) If any node were to come

between x and s in an inorder walk, then s would not be x’s successor, as we had

supposed.

Symmetrically, x’s predecessor has no right child.
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Solution to Exercise 12.2-7

This solution is also posted publicly

Note that a call to TREE-MINIMUM followed by n� 1 calls to TREE-SUCCESSOR

performs exactly the same inorder walk of the tree as does the procedure INORDER-

TREE-WALK. INORDER-TREE-WALK prints the TREE-MINIMUM first, and by

definition, the TREE-SUCCESSOR of a node is the next node in the sorted order

determined by an inorder tree walk.

This algorithm runs in ‚.n/ time because:

� It requires �.n/ time to do the n procedure calls.

� It traverses each of the n � 1 tree edges at most twice, which takes O.n/ time.

To see that each edge is traversed at most twice (once going down the tree and once

going up), consider the edge between any node u and either of its children, node �.

By starting at the root, we must traverse .u; �/ downward from u to �, before

traversing it upward from � to u. The only time the tree is traversed downward is

in code of TREE-MINIMUM, and the only time the tree is traversed upward is in
code of TREE-SUCCESSOR when we look for the successor of a node that has no

right subtree.

Suppose that � is u’s left child.

� Before printing u, we must print all the nodes in its left subtree, which is rooted
at �, guaranteeing the downward traversal of edge .u; �/.

� After all nodes in u’s left subtree are printed, u must be printed next. Procedure

TREE-SUCCESSOR traverses an upward path to u from the maximum element

(which has no right subtree) in the subtree rooted at �. This path clearly includes

edge .u; �/, and since all nodes in u’s left subtree are printed, edge .u; �/ is

never traversed again.

Now suppose that � is u’s right child.

� After u is printed, TREE-SUCCESSOR.u/ is called. To get to the minimum

element in u’s right subtree (whose root is �), the edge .u; �/ must be traversed

downward.

� After all values in u’s right subtree are printed, TREE-SUCCESSOR is called on

the maximum element (again, which has no right subtree) in the subtree rooted

at �. TREE-SUCCESSOR traverses a path up the tree to an element after u,

since u was already printed. Edge .u; �/ must be traversed upward on this path,

and since all nodes in u’s right subtree have been printed, edge .u; �/ is never
traversed again.

Hence, no edge is traversed twice in the same direction.

Therefore, this algorithm runs in ‚.n/ time.
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Solution to Exercise 12.3-3

This solution is also posted publicly

Here’s the algorithm:

TREE-SORT.A/

let T be an empty binary search tree
for i D 1 to n

TREE-INSERT.T; AŒi �/

INORDER-TREE-WALK.T:root/

Worst case: ‚.n2/—occurs when a linear chain of nodes results from the repeated

TREE-INSERT operations.

Best case: ‚.n lg n/—occurs when a binary tree of height ‚.lg n/ results from the

repeated TREE-INSERT operations.

Solution to Exercise 12.4-2

We will answer the second part first. We shall show that if the average depth of a

node is ‚.lg n/, then the height of the tree is O.
p

n lg n/. Then we will answer
the first part by exhibiting that this bound is tight: there is a binary search tree with

average node depth ‚.lg n/ and height ‚.
p

n lg n/ D !.lg n/.

Lemma

If the average depth of a node in an n-node binary search tree is ‚.lg n/, then the

height of the tree is O.
p

n lg n/.

Proof Suppose that an n-node binary search tree has average depth ‚.lg n/ and

height h. Then there exists a path from the root to a node at depth h, and the depths

of the nodes on this path are 0; 1; : : : ; h. Let P be the set of nodes on this path and

Q be all other nodes. Then the average depth of a node is

1

n

 
X

x2P

depth.x/C
X

y2Q

depth.y/

!

� 1

n

X

x2P

depth.x/

D 1

n

h
X

dD0

d

D 1

n
�‚.h2/ :

For the purpose of contradiction, suppose that h is not O.
p

n lg n/, so that h D
!.
p

n lg n/. Then we have

1

n
�‚.h2/ D 1

n
� !.n lg n/

D !.lg n/ ;
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which contradicts the assumption that the average depth is ‚.lg n/. Thus, the

height is O.
p

n lg n/.

Here is an example of an n-node binary search tree with average node depth

‚.lg n/ but height !.lg n/:

n �
p

n lg n

nodes

p

n lg n nodes

In this tree, n �
p

n lg n nodes are a complete binary tree, and the other
p

n lg n

nodes protrude from below as a single chain. This tree has height

‚.lg.n �
p

n lg n//C
p

n lg n D ‚.
p

n lg n/

D !.lg n/ :

To compute an upper bound on the average depth of a node, we use O.lg n/ as

an upper bound on the depth of each of the n �
p

n lg n nodes in the complete

binary tree part and O.lg nC
p

n lg n/ as an upper bound on the depth of each of

the
p

n lg n nodes in the protruding chain. Thus, the average depth of a node is

bounded from above by

1

n
�O.

p

n lg n .lg nC
p

n lg n/C .n �
p

n lg n/ lg n/ D 1

n
�O.n lg n/

D O.lg n/ :

To bound the average depth of a node from below, observe that the bottommost

level of the complete binary tree part has ‚.n�
p

n lg n/ nodes, and each of these

nodes has depth ‚.lg n/. Thus, the average node depth is at least

1

n
�‚..n �

p

n lg n/ lg n/ D 1

n
��.n lg n/

D �.lg n/ :

Because the average node depth is both O.lg n/ and �.lg n/, it is ‚.lg n/.

Solution to Exercise 12.4-4

We’ll go one better than showing that the function 2x is convex. Instead, we’ll

show that the function cx is convex, for any positive constant c. According to

the definition of convexity on page 1199 of the text, a function f .x/ is con-

vex if for all x and y and for all 0 � � � 1, we have f .�x C .1 � �/y/ �
�f .x/C .1 � �/f .y/. Thus, we need to show that for all 0 � � � 1, we have

c�xC.1��/y � �cx C .1 � �/cy.

We start by proving the following lemma.
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Lemma

For any real numbers a and b and any positive real number c,

ca � cb C .a � b/cb ln c :

Proof We first show that for all real r , we have cr � 1Cr ln c. By equation (3.12)

from the text, we have ex � 1 C x for all real x. Let x D r ln c, so that ex D
er ln c D .eln c/r D cr . Then we have cr D er ln c � 1C r ln c.

Substituting a � b for r in the above inequality, we have ca�b � 1C .a � b/ ln c.

Multiplying both sides by cb gives ca � cb C .a � b/cb ln c. (lemma)

Now we can show that c�xC.1��/y � �cx C .1 � �/cy for all 0 � � � 1. For

convenience, let ´ D �x C .1 � �/y.

In the inequality given by the lemma, substitute x for a and ´ for b, giving

cx � c´ C .x � ´/c´ ln c :

Also substitute y for a and ´ for b, giving

cy � c´ C .y � ´/c´ ln c :

If we multiply the first inequality by � and the second by 1 � � and then add the

resulting inequalities, we get

�cx C .1 � �/cy

� �.c´C .x � ´/c´ ln c/C .1 � �/.c´C .y � ´/c´ ln c/

D �c´ C �xc´ ln c � �´c´ ln c C .1 � �/c´ C .1� �/yc´ ln c

� .1� �/´c´ ln c

D .�C .1� �//c´ C .�x C .1 � �/y/c´ ln c � .�C .1 � �//´c´ ln c

D c´ C ´c´ ln c � ´c´ ln c

D c´

D c�xC.1��/y ;

as we wished to show.

Solution to Problem 12-2

This solution is also posted publicly

To sort the strings of S , we first insert them into a radix tree, and then use a preorder

tree walk to extract them in lexicographically sorted order. The tree walk outputs

strings only for nodes that indicate the existence of a string (i.e., those that are

lightly shaded in Figure 12.5 of the text).

Correctness

The preorder ordering is the correct order because:

� Any node’s string is a prefix of all its descendants’ strings and hence belongs

before them in the sorted order (rule 2).
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� A node’s left descendants belong before its right descendants because the corre-

sponding strings are identical up to that parent node, and in the next position the

left subtree’s strings have 0 whereas the right subtree’s strings have 1 (rule 1).

Time

‚.n/.

� Insertion takes ‚.n/ time, since the insertion of each string takes time propor-

tional to its length (traversing a path through the tree whose length is the length

of the string), and the sum of all the string lengths is n.

� The preorder tree walk takes O.n/ time. It is just like INORDER-TREE-WALK

(it prints the current node and calls itself recursively on the left and right sub-

trees), so it takes time proportional to the number of nodes in the tree. The

number of nodes is at most 1 plus the sum (n) of the lengths of the binary
strings in the tree, because a length-i string corresponds to a path through the

root and i other nodes, but a single node may be shared among many string

paths.

Solution to Problem 12-3

a. The total path length P.T / is defined as
P

x2T d.x; T /. Dividing both quanti-

ties by n gives the desired equation.

b. For any node x in TL, we have d.x; TL/ D d.x; T / � 1, since the distance to

the root of TL is one less than the distance to the root of T . Similarly, for any

node x in TR, we have d.x; TR/ D d.x; T / � 1. Thus, if T has n nodes, we
have

P.T / D P.TL/C P.TR/C n � 1 ;

since each of the n nodes of T (except the root) is in either TL or TR.

c. If T is a randomly built binary search tree, then the root is equally likely to

be any of the n elements in the tree, since the root is the first element inserted.

It follows that the number of nodes in subtree TL is equally likely to be any

integer in the set f0; 1; : : : ; n � 1g. The definition of P.n/ as the average total

path length of a randomly built binary search tree, along with part (b), gives us
the recurrence

P.n/ D 1

n

n�1
X

iD0

.P.i/C P.n � i � 1/C n � 1/ :

d. Since P.0/ D 0, and since for k D 1; 2; : : : ; n � 1, each term P.k/ in the

summation appears once as P.i/ and once as P.n� i � 1/, we can rewrite the

equation from part (c) as

P.n/ D 2

n

n�1
X

kD1

P.k/C‚.n/ :
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e. Observe that if, in the recurrence (7.6) in part (c) of Problem 7-3, we replace

E ŒT .�/� by P.�/ and we replace q by k, we get almost the same recurrence as in

part (d) of Problem 12-3. The remaining difference is that in Problem 12-3(d),

the summation starts at 1 rather than 2. Observe, however, that a binary tree

with just one node has a total path length of 0, so that P.1/ D 0. Thus, we can

rewrite the recurrence in Problem 12-3(d) as

P.n/ D 2

n

n�1
X

kD2

P.k/C‚.n/

and use the same technique as was used in Problem 7-3 to solve it.

We start by solving part (d) of Problem 7-3: showing that

n�1
X

kD2

k lg k � 1

2
n2 lg n � 1

8
n2 :

Following the hint in Problem 7-3(d), we split the summation into two parts:

n�1
X

kD2

k lg k D
dn=2e�1
X

kD2

k lg k C
n�1
X

kDdn=2e
k lg k :

The lg k in the first summation on the right is less than lg.n=2/ D lg n� 1, and

the lg k in the second summation is less than lg n. Thus,

n�1
X

kD2

k lg k < .lg n � 1/

dn=2e�1
X

kD2

k C lg n

n�1
X

kDdn=2e
k

D lg n

n�1
X

kD2

k �
dn=2e�1
X

kD2

k

� 1

2
n.n � 1/ lg n � 1

2

�n

2
� 1

� n

2

� 1

2
n2 lg n � 1

8
n2

if n � 2.

Now we show that the recurrence

P.n/ D 2

n

n�1
X

kD2

P.k/C‚.n/

has the solution P.n/ D O.n lg n/. We use the substitution method. Assume

inductively that P.n/ � an lg nC b for some positive constants a and b to be

determined. We can pick a and b sufficiently large so that an lg nC b � P.1/.

Then, for n > 1, we have by substitution

P.n/ D 2

n

n�1
X

kD2

P.k/C‚.n/

� 2

n

n�1
X

kD2

.ak lg k C b/C‚.n/
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D 2a

n

n�1
X

kD2

k lg k C 2b

n
.n � 2/C‚.n/

� 2a

n

�
1

2
n2 lg n � 1

8
n2

�

C 2b

n
.n � 2/C‚.n/

� an lg n � a

4
nC 2b C‚.n/

D an lg nC b C
�

‚.n/C b � a

4
n
�

� an lg nC b ;

since we can choose a large enough so that a
4
n dominates ‚.n/ C b. Thus,

P.n/ D O.n lg n/.

f. We draw an analogy between inserting an element into a subtree of a binary

search tree and sorting a subarray in quicksort. Observe that once an element x

is chosen as the root of a subtree T , all elements that will be inserted after x

into T will be compared to x. Similarly, observe that once an element y is

chosen as the pivot in a subarray S , all other elements in S will be compared

to y. Therefore, the quicksort implementation in which the comparisons are

the same as those made when inserting into a binary search tree is simply to
consider the pivots in the same order as the order in which the elements are

inserted into the tree.



Lecture Notes for Chapter 13:

Red-Black Trees

Chapter 13 overview

Red-black trees

� A variation of binary search trees.

� Balanced: height is O.lg n/, where n is the number of nodes.

� Operations will take O.lg n/ time in the worst case.

[These notes are a bit simpler than the treatment in the book, to make them more
amenable to a lecture situation. Our students first see red-black trees in a course
that precedes our algorithms course. This set of lecture notes is intended as a
refresher for the students, bearing in mind that some time may have passed since
they last saw red-black trees.

The procedures in this chapter are rather long sequences of pseudocode. You might
want to make arrangements to project them rather than spending time writing them
on a board.]

Red-black trees

A red-black tree is a binary search tree + 1 bit per node: an attribute color, which

is either red or black.

All leaves are empty (nil) and colored black.

� We use a single sentinel, T:nil, for all the leaves of red-black tree T .

� T:nil:color is black.

� The root’s parent is also T:nil.

All other attributes of binary search trees are inherited by red-black trees (key, left,

right, and p). We don’t care about the key in T:nil.

Red-black properties

[Leave these up on the board.]
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1. Every node is either red or black.

2. The root is black.

3. Every leaf (T:nil) is black.

4. If a node is red, then both its children are black. (Hence no two reds in a row
on a simple path from the root to a leaf.)

5. For each node, all paths from the node to descendant leaves contain the same

number of black nodes.

Example:

26

17 41

30

38

47

50

T.nil

h = 4
bh = 2

h = 1
bh = 1

h = 3
bh = 2

h = 2
bh = 1

h = 2
bh = 1

h = 1
bh = 1

h = 1
bh = 1

[Nodes with bold outline indicate black nodes. Don’t add heights and black-heights
yet. We won’t bother with drawing T:nil any more.]

Height of a red-black tree

� Height of a node is the number of edges in a longest path to a leaf.

� Black-height of a node x: bh.x/ is the number of black nodes (including T:nil)

on the path from x to leaf, not counting x. By property 5, black-height is well
defined.

[Now label the example tree with height h and bh values.]

Claim

Any node with height h has black-height � h=2.

Proof By property 4, � h=2 nodes on the path from the node to a leaf are red.

Hence � h=2 are black. (claim)

Claim

The subtree rooted at any node x contains � 2bh.x/ � 1 internal nodes.
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Proof By induction on height of x.

Basis: Height of x D 0) x is a leaf) bh.x/ D 0. The subtree rooted at x has 0

internal nodes. 20 � 1 D 0.

Inductive step: Let the height of x be h and bh.x/ D b. Any child of x has

height h � 1 and black-height either b (if the child is red) or b � 1 (if the child is

black). By the inductive hypothesis, each child has � 2bh.x/�1 � 1 internal nodes.

Thus, the subtree rooted at x contains � 2 � .2bh.x/�1 � 1/C 1 D 2bh.x/ � 1 internal

nodes. (TheC1 is for x itself.) (claim)

Lemma

A red-black tree with n internal nodes has height � 2 lg.nC 1/.

Proof Let h and b be the height and black-height of the root, respectively. By the

above two claims,

n � 2b � 1 � 2h=2 � 1 :

Adding 1 to both sides and then taking logs gives lg.nC 1/ � h=2, which implies

that h � 2 lg.nC 1/. (theorem)

Operations on red-black trees

The non-modifying binary-search-tree operations MINIMUM, MAXIMUM, SUC-

CESSOR, PREDECESSOR, and SEARCH run in O.height/ time. Thus, they take

O.lg n/ time on red-black trees.

Insertion and deletion are not so easy.

If we insert, what color to make the new node?

� Red? Might violate property 4.

� Black? Might violate property 5.

If we delete, thus removing a node, what color was the node that was removed?

� Red? OK, since we won’t have changed any black-heights, nor will we have

created two red nodes in a row. Also, cannot cause a violation of property 2,

since if the removed node was red, it could not have been the root.

� Black? Could cause there to be two reds in a row (violating property 4), and

can also cause a violation of property 5. Could also cause a violation of prop-

erty 2, if the removed node was the root and its child—which becomes the new

root—was red.

Rotations

� The basic tree-restructuring operation.

� Needed to maintain red-black trees as balanced binary search trees.

� Changes the local pointer structure. (Only pointers are changed.)



13-4 Lecture Notes for Chapter 13: Red-Black Trees

� Won’t upset the binary-search-tree property.

� Have both left rotation and right rotation. They are inverses of each other.

� A rotation takes a red-black-tree and a node within the tree.

y

x

α β

γ

x

yα

β γ

LEFT-ROTATE(T, x)

RIGHT-ROTATE(T, y)

LEFT-ROTATE.T; x/

y D x:right // set y

x:right D y: left // turn y’s left subtree into x’s right subtree

if y: left ¤ T:nil

y: left:p D x

y:p D x:p // link x’s parent to y

if x:p == T:nil

T:root D y

elseif x == x:p: left

x:p: left D y

else x:p:right D y

y: left D x // put x on y’s left

x:p D y

The pseudocode for LEFT-ROTATE assumes that

� x:right ¤ T:nil, and

� root’s parent is T:nil.

Pseudocode for RIGHT-ROTATE is symmetric: exchange left and right everywhere.

Example

[Use to demonstrate that rotation maintains inorder ordering of keys. Node colors
omitted.]

4

7

11

9 18

14

17

19

22

x

y

4

7

18

19

14

17

22

x

y

11

9

LEFT-ROTATE(T, x)
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� Before rotation: keys of x’s left subtree � 11 � keys of y’s left subtree � 18 �
keys of y’s right subtree.

� Rotation makes y’s left subtree into x’s right subtree.

� After rotation: keys of x’s left subtree � 11 � keys of x’s right subtree � 18 �
keys of y’s right subtree.

Time

O.1/ for both LEFT-ROTATE and RIGHT-ROTATE, since a constant number of

pointers are modified.

Notes

� Rotation is a very basic operation, also used in AVL trees and splay trees.

� Some books talk of rotating on an edge rather than on a node.

Insertion

Start by doing regular binary-search-tree insertion:

RB-INSERT.T; ´/

y D T:nil

x D T:root

while x ¤ T:nil

y D x

if ´:key < x:key

x D x: left

else x D x:right

´:p D y

if y == T:nil

T:root D ´

elseif ´:key < y:key

y: left D ´

else y:right D ´

´: left D T:nil

´:right D T:nil

´:color D RED

RB-INSERT-FIXUP.T; ´/

� RB-INSERT ends by coloring the new node ´ red.

� Then it calls RB-INSERT-FIXUP because we could have violated a red-black

property.

Which property might be violated?

1. OK.
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2. If ´ is the root, then there’s a violation. Otherwise, OK.

3. OK.

4. If ´:p is red, there’s a violation: both ´ and ´:p are red.

5. OK.

Remove the violation by calling RB-INSERT-FIXUP:

RB-INSERT-FIXUP.T; ´/

while ´:p:color == RED

if ´:p == ´:p:p: left

y D ´:p:p:right

if y:color == RED

´:p:color D BLACK // case 1

y:color D BLACK // case 1

´:p:p:color D RED // case 1

´ D ´:p:p // case 1

else if ´ == ´:p:right

´ D ´:p // case 2

LEFT-ROTATE.T; ´/ // case 2

´:p:color D BLACK // case 3

´:p:p:color D RED // case 3

RIGHT-ROTATE.T; ´:p:p/ // case 3

else (same as then clause with “right” and “left” exchanged)

T:root:color D BLACK

Loop invariant:

At the start of each iteration of the while loop,

a. ´ is red.

b. There is at most one red-black violation:

� Property 2: ´ is a red root, or

� Property 4: ´ and ´:p are both red.

[The book has a third part of the loop invariant, but we omit it for lecture.]

Initialization: We’ve already seen why the loop invariant holds initially.

Termination: The loop terminates because ´:p is black. Hence, property 4 is OK.

Only property 2 might be violated, and the last line fixes it.

Maintenance: We drop out when ´ is the root (since then ´:p is the sentinel T:nil,

which is black). When we start the loop body, the only violation is of property 4.

There are 6 cases, 3 of which are symmetric to the other 3. The cases are not

mutually exclusive. We’ll consider cases in which ´:p is a left child.

Let y be ´’s uncle (´:p’s sibling).
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Case 1: y is red

z

y

C

DA

Bα

β γ

δ ε

C

DA

Bα

β γ

δ ε

new z

y

C

DB

δ ε

C

DB

A

α β

γ δ ε

new z

A

α β

γz

If z is a right child

If z is a left child

� ´:p:p (´’s grandparent) must be black, since ´ and ´:p are both red and
there are no other violations of property 4.

� Make ´:p and y black) now ´ and ´:p are not both red. But property 5

might now be violated.

� Make ´:p:p red) restores property 5.

� The next iteration has ´:p:p as the new ´ (i.e., ´ moves up 2 levels).

Case 2: y is black, ´ is a right child

C

A

Bα

β γ

δ

Case 2

z

y B

A

α β

γ

δ

Case 3

z

y z A

B

C

α β γ δ

C

� Left rotate around ´:p) now ´ is a left child, and both ´ and ´:p are

red.

� Takes us immediately to case 3.

Case 3: y is black, ´ is a left child

� Make ´:p black and ´:p:p red.

� Then right rotate on ´:p:p.

� No longer have 2 reds in a row.

� ´:p is now black) no more iterations.

Analysis

O.lg n/ time to get through RB-INSERT up to the call of RB-INSERT-FIXUP.
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Within RB-INSERT-FIXUP:

� Each iteration takes O.1/ time.

� Each iteration is either the last one or it moves ´ up 2 levels.

� O.lg n/ levels) O.lg n/ time.

� Also note that there are at most 2 rotations overall.

Thus, insertion into a red-black tree takes O.lg n/ time.

Deletion

[Because deletion from a binary search tree changed in the third edition, so did
deletion from a red-black tree. As with deletion from a binary search tree, the
node ´ deleted from a red-black tree is always the node ´ passed to the deletion
procedure.]

Based on the TREE-DELETE procedure for binary search trees:

RB-DELETE.T; ´/

y D ´

y-original-color D y:color

if ´: left == T:nil

x D ´:right

RB-TRANSPLANT.T; ´; ´:right/

elseif ´:right == T:nil

x D ´: left

RB-TRANSPLANT.T; ´; ´: left/

else y D TREE-MINIMUM.´:right/

y-original-color D y:color

x D y:right

if y:p == ´

x:p D y

else RB-TRANSPLANT.T; y; y:right/

y:right D ´:right

y:right:p D y

RB-TRANSPLANT.T; ´; y/

y: left D ´: left

y: left:p D y

y:color D ´:color

if y-original-color == BLACK

RB-DELETE-FIXUP.T; x/

RB-DELETE calls a special version of TRANSPLANT (used in deletion from binary

search trees), customized for red-black trees:
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RB-TRANSPLANT.T; u; �/

if u:p == T:nil

T:root D �

elseif u == u:p: left

u:p: left D �

else u:p:right D �

�:p D u:p

Differences between RB-TRANSPLANT and TRANSPLANT:

� RB-TRANSPLANT references the sentinel T:nil instead of NIL.

� Assignment to �:p occurs even if � points to the sentinel. In fact, we exploit the

ability to assign to �:p when � points to the sentinel.

RB-DELETE has almost twice as many lines as TREE-DELETE, but you can find

each line of TREE-DELETE within RB-DELETE (with NIL replaced by T:nil and

calls to TRANSPLANT replaced by calls to RB-TRANSPLANT).

Differences between RB-DELETE and TREE-DELETE:

� y is the node either removed from the tree (when ´ has fewer than 2 children)

or moved within the tree (when ´ has 2 children).

� Need to save y’s original color (in y-original-color) to test it at the end, because

if it’s black, then removing or moving y could cause red-black properties to be

violated.

� x is the node that moves into y’s original position. It’s either y’s only child, or

T:nil if y has no children.

� Sets x:p to point to the original position of y’s parent, even if x D T:nil. x:p

is set in one of two ways:

� If ´ is not y’s original parent, x:p is set in the last line of RB-TRANSPLANT.
� If ´ is y’s original parent, then y will move up to take ´’s position in the

tree. The assignment x:p D y makes x:p point to the original position of

y’s parent, even if x is T:nil.

� If y’s original color was black, the changes to the tree structure might cause

red-black properties to be violated, and we call RB-DELETE-FIXUP at the end

to resolve the violations.

If y was originally black, what violations of red-black properties could arise?

1. No violation.

2. If y is the root and x is red, then the root has become red.

3. No violation.

4. Violation if x:p and x are both red.

5. Any simple path containing y now has 1 fewer black node.

� Correct by giving x an “extra black.”
� Add 1 to count of black nodes on paths containing x.
� Now property 5 is OK, but property 1 is not.
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� x is either doubly black (if x:color D BLACK) or red & black (if x:color D
RED).

� The attribute x:color is still either RED or BLACK. No new values for color

attribute.
� In other words, the extra blackness on a node is by virtue of x pointing to the

node.

Remove the violations by calling RB-DELETE-FIXUP:

RB-DELETE-FIXUP.T; x/

while x ¤ T:root and x:color == BLACK

if x == x:p: left

w D x:p:right

if w:color == RED

w:color D BLACK // case 1
x:p:color D RED // case 1

LEFT-ROTATE.T; x:p/ // case 1

w D x:p:right // case 1

if w: left:color == BLACK and w:right:color == BLACK

w:color D RED // case 2

x D x:p // case 2

else if w:right:color == BLACK

w: left:color D BLACK // case 3

w:color D RED // case 3

RIGHT-ROTATE.T; w/ // case 3

w D x:p:right // case 3

w:color D x:p:color // case 4

x:p:color D BLACK // case 4

w:right:color D BLACK // case 4
LEFT-ROTATE.T; x:p/ // case 4

x D T:root // case 4

else (same as then clause with “right” and “left” exchanged)

x:color D BLACK

Idea

Move the extra black up the tree until

� x points to a red & black node) turn it into a black node,

� x points to the root) just remove the extra black, or

� we can do certain rotations and recolorings and finish.

Within the while loop:

� x always points to a nonroot doubly black node.

� w is x’s sibling.

� w cannot be T:nil, since that would violate property 5 at x:p.

There are 8 cases, 4 of which are symmetric to the other 4. As with insertion, the

cases are not mutually exclusive. We’ll look at cases in which x is a left child.
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Case 1: w is red

A

B

D

C Eα β

γ δ ε ζ

x w

A

B

C

D

E

x new w

α β γ δ

ε ζ

Case 1

� w must have black children.
� Make w black and x:p red.
� Then left rotate on x:p.
� New sibling of x was a child of w before rotation) must be black.
� Go immediately to case 2, 3, or 4.

Case 2: w is black and both of w’s children are black

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

D

C Eα β

γ δ ε ζ

cnew x
Case 2

[Node with gray outline is of unknown color, denoted by c.]

� Take 1 black off x () singly black) and off w () red).
� Move that black to x:p.
� Do the next iteration with x:p as the new x.
� If entered this case from case 1, then x:p was red) new x is red & black

) color attribute of new x is RED) loop terminates. Then new x is made

black in the last line.

Case 3: w is black, w’s left child is red, and w’s right child is black

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

C

Dα β γ

δ

ε ζ

x

c

new w

Case 3

E

� Make w red and w’s left child black.
� Then right rotate on w.
� New sibling w of x is black with a red right child) case 4.
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Case 4: w is black, w’s left child is black, and w’s right child is red

A

B

D

C Eα β

γ δ

ε ζ

x w

c c

α β

A

B

C

D

E

new x = T.rootγ δ ε ζ

Case 4

c′ c′

[Now there are two nodes of unknown colors, denoted by c and c 0.]

� Make w be x:p’s color (c).
� Make x:p black and w’s right child black.
� Then left rotate on x:p.
� Remove the extra black on x () x is now singly black) without violating

any red-black properties.
� All done. Setting x to root causes the loop to terminate.

Analysis

O.lg n/ time to get through RB-DELETE up to the call of RB-DELETE-FIXUP.

Within RB-DELETE-FIXUP:

� Case 2 is the only case in which more iterations occur.

� x moves up 1 level.
� Hence, O.lg n/ iterations.

� Each of cases 1, 3, and 4 has 1 rotation)� 3 rotations in all.

� Hence, O.lg n/ time.

[In Chapter 14, we’ll see a theorem that relies on red-black tree operations causing
at most a constant number of rotations. This is where red-black trees enjoy an
advantage over AVL trees: in the worst case, an operation on an n-node AVL tree
causes �.lg n/ rotations.]



Solutions for Chapter 13:

Red-Black Trees

Solution to Exercise 13.1-3

If we color the root of a relaxed red-black tree black but make no other changes,
the resulting tree is a red-black tree. Not even any black-heights change.

Solution to Exercise 13.1-4

This solution is also posted publicly

After absorbing each red node into its black parent, the degree of each node black

node is

� 2, if both children were already black,

� 3, if one child was black and one was red, or

� 4, if both children were red.

All leaves of the resulting tree have the same depth.

Solution to Exercise 13.1-5

This solution is also posted publicly

In the longest path, at least every other node is black. In the shortest path, at most

every node is black. Since the two paths contain equal numbers of black nodes, the

length of the longest path is at most twice the length of the shortest path.

We can say this more precisely, as follows:

Since every path contains bh.x/ black nodes, even the shortest path from x to a

descendant leaf has length at least bh.x/. By definition, the longest path from x

to a descendant leaf has length height.x/. Since the longest path has bh.x/ black

nodes and at least half the nodes on the longest path are black (by property 4),

bh.x/ � height.x/=2, so

length of longest path D height.x/ � 2 � bh.x/ � twice length of shortest path :
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Solution to Exercise 13.2-4

Since the exercise asks about binary search trees rather than the more specific red-

black trees, we assume here that leaves are full-fledged nodes, and we ignore the

sentinels.

Taking the book’s hint, we start by showing that with at most n� 1 right rotations,
we can convert any binary search tree into one that is just a right-going chain.

The idea is simple. Let us define the right spine as the root and all descendants of

the root that are reachable by following only right pointers from the root. A binary

search tree that is just a right-going chain has all n nodes in the right spine.

As long as the tree is not just a right spine, repeatedly find some node y on the

right spine that has a non-leaf left child x and then perform a right rotation on y:

γ

y

x

α β

RIGHT-ROTATE(T, y)

y

x

α

β γ

(In the above figure, note that any of ˛, ˇ, and  can be an empty subtree.)

Observe that this right rotation adds x to the right spine, and no other nodes leave

the right spine. Thus, this right rotation increases the number of nodes in the right

spine by 1. Any binary search tree starts out with at least one node—the root—in

the right spine. Moreover, if there are any nodes not on the right spine, then at least

one such node has a parent on the right spine. Thus, at most n � 1 right rotations

are needed to put all nodes in the right spine, so that the tree consists of a single

right-going chain.

If we knew the sequence of right rotations that transforms an arbitrary binary search

tree T to a single right-going chain T 0, then we could perform this sequence in

reverse—turning each right rotation into its inverse left rotation—to transform T 0

back into T .

Therefore, here is how we can transform any binary search tree T1 into any

other binary search tree T2. Let T 0 be the unique right-going chain consist-

ing of the nodes of T1 (which is the same as the nodes of T2). Let r D
hr1; r2; : : : ; rki be a sequence of right rotations that transforms T1 to T 0, and let

r 0 D hr 0
1; r 0

2; : : : ; r 0
k0i be a sequence of right rotations that transforms T2 to T 0.

We know that there exist sequences r and r 0 with k; k0 � n � 1. For each right

rotation r 0
i , let l 0

i be the corresponding inverse left rotation. Then the sequence

hr1; r2; : : : ; rk ; l 0
k0 ; l 0

k0�1
; : : : ; l 0

2; l 0
1i transforms T1 to T2 in at most 2n� 2 rotations.

Solution to Exercise 13.3-3

This solution is also posted publicly

In Figure 13.5, nodes A, B , and D have black-height k C 1 in all cases, because

each of their subtrees has black-height k and a black root. Node C has black-
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height k C 1 on the left (because its red children have black-height k C 1) and

black-height kC2 on the right (because its black children have black-height kC1).

C

DA

Bα

β γ

δ ε

(a)

C

DA

Bα

β γ

δ ε

C

DB

δ ε

C

DB

A

α β

γ δ ε

(b)

A

α β

γ

k+1

k+1

k+1

k+1 k+1

k+2

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+2

k+1z

y

z

y

In Figure 13.6, nodes A, B , and C have black-height kC 1 in all cases. At left and

in the middle, each of A’s and B’s subtrees has black-height k and a black root,

while C has one such subtree and a red child with black-height kC 1. At the right,

each of A’s and C ’s subtrees has black-height k and a black root, while B’s red

children each have black-height k C 1.

C

A

Bα

β γ

δ

Case 2

B

A

α β

γ

δ

Case 3

A

B

C

α β γ δ

C

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+1

z

y

z

y

Property 5 is preserved by the transformations. We have shown above that the

black-height is well-defined within the subtrees pictured, so property 5 is preserved

within those subtrees. Property 5 is preserved for the tree containing the subtrees

pictured, because every path through these subtrees to a leaf contributes kC2 black

nodes.

Solution to Exercise 13.3-4

Colors are set to red only in cases 1 and 3, and in both situations, it is ´:p:p that

is reddened. If ´:p:p is the sentinel, then ´:p is the root. By part (b) of the loop

invariant and line 1 of RB-INSERT-FIXUP, if ´:p is the root, then we have dropped

out of the loop. The only subtlety is in case 2, where we set ´ D ´:p before

coloring ´:p:p red. Because we rotate before the recoloring, the identity of ´:p:p

is the same before and after case 2, so there’s no problem.
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Solution to Exercise 13.4-6

Case 1 occurs only if x’s sibling w is red. If x:p were red, then there would be two

reds in a row, namely x:p (which is also w:p) and w, and we would have had these

two reds in a row even before calling RB-DELETE.

Solution to Exercise 13.4-7

No, the red-black tree will not necessarily be the same. Here are two examples:

one in which the tree’s shape changes, and one in which the shape remains the

same but the node colors change.

3

2

2

1 3

2

3

3

2 4

3

2 4

3

2 4

1

insert 1 delete 1

insert 1 delete 1

Solution to Problem 13-1

This solution is also posted publicly

a. When inserting key k, all nodes on the path from the root to the added node

(a new leaf) must change, since the need for a new child pointer propagates up

from the new node to all of its ancestors.

When deleting a node, let y be the node actually removed and ´ be the node

given to the delete procedure.

� If ´ has at most one child, it will be spliced out, so that all ancestors of ´ will

be changed. (As with insertion, the need for a new child pointer propagates

up from the removed node.)
� If ´ has two children, then its successor y will be spliced out and moved

to ´’s position. Therefore all ancestors of both ´ and y must be changed.

Because ´ is an ancestor of y, we can just say that all ancestors of y must be

changed.

In either case, y’s children (if any) are unchanged, because we have assumed

that there is no parent attribute.
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b. We assume that we can call two procedures:

� MAKE-NEW-NODE.k/ creates a new node whose key attribute has value k

and with left and right attributes NIL, and it returns a pointer to the new node.
� COPY-NODE.x/ creates a new node whose key, left, and right attributes have

the same values as those of node x, and it returns a pointer to the new node.

Here are two ways to write PERSISTENT-TREE-INSERT. The first is a version
of TREE-INSERT, modified to create new nodes along the path to where the

new node will go, and to not use parent attributes. It returns the root of the new

tree.

PERSISTENT-TREE-INSERT.T; k/

´ D MAKE-NEW-NODE.k/

new-root D COPY-NODE.T:root/

y D NIL

x D new-root

while x ¤ NIL

y D x

if ´:key < x:key

x D COPY-NODE.x: left/

y: left D x

else x D COPY-NODE.x:right/

y:right D x

if y == NIL

new-root D ´

elseif ´:key < y:key

y: left D ´

else y:right D ´

return new-root

The second is a rather elegant recursive procedure. The initial call should have

T:root as its first argument. It returns the root of the new tree.

PERSISTENT-TREE-INSERT.r; k/

if r == NIL

x D MAKE-NEW-NODE.k/

else x D COPY-NODE.r/

if k < r:key

x: left D PERSISTENT-TREE-INSERT.r: left; k/

else x:right D PERSISTENT-TREE-INSERT.r:right; k/

return x

c. Like TREE-INSERT, PERSISTENT-TREE-INSERT does a constant amount of
work at each node along the path from the root to the new node. Since the

length of the path is at most h, it takes O.h/ time.

Since it allocates a new node (a constant amount of space) for each ancestor of
the inserted node, it also needs O.h/ space.
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d. If there were parent attributes, then because of the new root, every node of the

tree would have to be copied when a new node is inserted. To see why, observe

that the children of the root would change to point to the new root, then their

children would change to point to them, and so on. Since there are n nodes, this

change would cause insertion to create �.n/ new nodes and to take �.n/ time.

e. From parts (a) and (c), we know that insertion into a persistent binary search

tree of height h, like insertion into an ordinary binary search tree, takes worst-

case time O.h/. A red-black tree has h D O.lg n/, so insertion into an ordinary

red-black tree takes O.lg n/ time. We need to show that if the red-black tree is
persistent, insertion can still be done in O.lg n/ time. To do this, we will need

to show two things:

� How to still find the parent pointers we need in O.1/ time without using a

parent attribute. We cannot use a parent attribute because a persistent tree

with parent attributes uses �.n/ time for insertion (by part (d)).
� That the additional node changes made during red-black tree operations (by

rotation and recoloring) don’t cause more than O.lg n/ additional nodes to

change.

Each parent pointer needed during insertion can be found in O.1/ time without

having a parent attribute as follows:

To insert into a red-black tree, we call RB-INSERT, which in turn calls RB-

INSERT-FIXUP. Make the same changes to RB-INSERT as we made to TREE-

INSERT for persistence. Additionally, as RB-INSERT walks down the tree to

find the place to insert the new node, have it build a stack of the nodes it tra-

verses and pass this stack to RB-INSERT-FIXUP. RB-INSERT-FIXUP needs
parent pointers to walk back up the same path, and at any given time it needs

parent pointers only to find the parent and grandparent of the node it is working

on. As RB-INSERT-FIXUP moves up the stack of parents, it needs only parent

pointers that are at known locations a constant distance away in the stack. Thus,

the parent information can be found in O.1/ time, just as if it were stored in a

parent attribute.

Rotation and recoloring change nodes as follows:

� RB-INSERT-FIXUP performs at most 2 rotations, and each rotation changes

the child pointers in 3 nodes (the node around which we rotate, that node’s

parent, and one of the children of the node around which we rotate). Thus, at

most 6 nodes are directly modified by rotation during RB-INSERT-FIXUP. In

a persistent tree, all ancestors of a changed node are copied, so RB-INSERT-

FIXUP’s rotations take O.lg n/ time to change nodes due to rotation. (Ac-

tually, the changed nodes in this case share a single O.lg n/-length path of

ancestors.)
� RB-INSERT-FIXUP recolors some of the inserted node’s ancestors, which

are being changed anyway in persistent insertion, and some children of an-

cestors (the “uncles” referred to in the algorithm description). There are

at most O.lg n/ ancestors, hence at most O.lg n/ color changes of uncles.

Recoloring uncles doesn’t cause any additional node changes due to persis-

tence, because the ancestors of the uncles are the same nodes (ancestors of
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the inserted node) that are being changed anyway due to persistence. Thus,

recoloring does not affect the O.lg n/ running time, even with persistence.

We could show similarly that deletion in a persistent tree also takes worst-case

time O.h/.

� We already saw in part (a) that O.h/ nodes change.
� We could write a persistent RB-DELETE procedure that runs in O.h/ time,

analogous to the changes we made for persistence in insertion. But to do so

without using parent pointers we need to walk down the tree to the node to be

deleted, to build up a stack of parents as discussed above for insertion. This

is a little tricky if the set’s keys are not distinct, because in order to find the

path to the node to delete—a particular node with a given key—we have to

make some changes to how we store things in the tree, so that duplicate keys

can be distinguished. The easiest way is to have each key take a second part

that is unique, and to use this second part as a tiebreaker when comparing

keys.

Then the problem of showing that deletion needs only O.lg n/ time in a persis-

tent red-black tree is the same as for insertion.

� As for insertion, we can show that the parents needed by RB-DELETE-

FIXUP can be found in O.1/ time (using the same technique as for insertion).
� Also, RB-DELETE-FIXUP performs at most 3 rotations, which as discussed

above for insertion requires O.lg n/ time to change nodes due to persistence.

It also does O.lg n/ color changes, which (as for insertion) take only O.lg n/

time to change ancestors due to persistence, because the number of copied

nodes is O.lg n/.



Lecture Notes for Chapter 14:

Augmenting Data Structures

Chapter 14 overview

We’ll be looking at methods for designing algorithms. In some cases, the design

will be intermixed with analysis. In other cases, the analysis is easy, and it’s the
design that’s harder.

Augmenting data structures

� It’s unusual to have to design an all-new data structure from scratch.

� It’s more common to take a data structure that you know and store additional

information in it.

� With the new information, the data structure can support new operations.

� But you have to figure out how to correctly maintain the new information with-

out loss of efficiency.

We’ll look at a couple of situations in which we augment red-black trees.

Dynamic order statistics

We want to support the usual dynamic-set operations from R-B trees, plus:

� OS-SELECT.x; i/: return pointer to node containing the i th smallest key of the

subtree rooted at x.

� OS-RANK.T; x/: return the rank of x in the linear order determined by an

inorder walk of T .

Augment by storing in each node x:

x:size D # of nodes in subtree rooted at x :

� Includes x itself.

� Does not include leaves (sentinels).

Define for sentinel T:nil:size D 0.

Then x:size D x: left:sizeC x:right:sizeC 1.
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r=6
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F

3

M

8

D

1

M

8

H

1

[Example above: Ignore colors, but legal coloring shown with “R” and “B” nota-
tions. Values of i and r are for the example below.]

Note: OK for keys to not be distinct. Rank is defined with respect to position in

inorder walk. So if we changed D to C, rank of original C is 2, rank of D changed

to C is 3.

OS-SELECT.x; i/

r D x: left:sizeC 1

if i == r

return x

elseif i < r

return OS-SELECT.x: left; i/

else return OS-SELECT.x:right; i � r/

Initial call: OS-SELECT.T:root; i/

Try OS-SELECT.T:root; 5/. [Values shown in figure above. Returns node whose
key is H.]

Correctness

r D rank of x within subtree rooted at x.

� If i D r , then we want x.

� If i < r , then i th smallest element is in x’s left subtree, and we want the i th

smallest element in the subtree.

� If i > r , then i th smallest element is in x’s right subtree, but subtract off the r

elements in x’s subtree that precede those in x’s right subtree.

� Like the randomized SELECT algorithm.

Analysis

Each recursive call goes down one level. Since R-B tree has O.lg n/ levels, have

O.lg n/ calls) O.lg n/ time.
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OS-RANK.T; x/

r D x: left:sizeC 1

y D x

while y ¤ T:root

if y == y:p:right

r D r C y:p: left:sizeC 1

y D y:p

return r

Demo: Node D.

Why does this work?

Loop invariant: At start of each iteration of while loop, r D rank of x:key

in subtree rooted at y.

Initialization: Initially, r D rank of x:key in subtree rooted at x, and y D x.

Termination: Loop terminates when y D T:root) subtree rooted at y is entire

tree. Therefore, r D rank of x:key in entire tree.

Maintenance: At end of each iteration, set y D y:p. So, show that if r D rank

of x:key in subtree rooted at y at start of loop body, then r D rank of x:key in

subtree rooted at y:p at end of loop body.

x

y

[r D # of nodes in subtree rooted at y preceding x in inorder walk]

Must add nodes in y’s sibling’s subtree.

� If y is a left child, its sibling’s subtree follows all nodes in y’s subtree )
don’t change r .

� If y is a right child, all nodes in y’s sibling’s subtree precede all nodes in y’s

subtree) add size of y’s sibling’s subtree, plus 1 for y:p, into r .

yy.p.left

y.p

Analysis

y goes up one level in each iteration) O.lg n/ time.
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Maintaining subtree sizes

� Need to maintain size attributes during insert and delete operations.

� Need to maintain them efficiently. Otherwise, might have to recompute them

all, at a cost of �.n/.

Will see how to maintain without increasing O.lg n/ time for insert and delete.

Insert

� During pass downward, we know that the new node will be a descendant of

each node we visit, and only of these nodes. Therefore, increment size attribute

of each node visited.

� Then there’s the fixup pass:

� Goes up the tree.
� Changes colors O.lg n/ times.
� Performs � 2 rotations.

� Color changes don’t affect subtree sizes.

� Rotations do!

� But we can determine new sizes based on old sizes and sizes of children.

LEFT-ROTATE(T, x)

x

y x

y
M

8

C

5

M

8

A

1

M

8

F

3

M

8

D

1

M

8

H

1

M

8

D

1

M

8

C

3

M

8

F

5

M

8

A

1

M

8

H

1

y:size D x:size

x:size D x: left:sizeC x:right:sizeC 1

� Similar for right rotation.

� Therefore, can update in O.1/ time per rotation ) O.1/ time spent updating

size attributes during fixup.

� Therefore, O.lg n/ to insert.

Delete

Also 2 phases:

1. Splice out some node y.

2. Fixup.
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After splicing out y, traverse a path y ! root, decrementing size in each node on

path. O.lg n/ time.

During fixup, like insertion, only color changes and rotations.

� � 3 rotations) O.1/ time spent updating size attributes during fixup.

� Therefore, O.lg n/ to delete.

Done!

Methodology for augmenting a data structure

1. Choose an underlying data structure.

2. Determine additional information to maintain.

3. Verify that we can maintain additional information for existing data structure
operations.

4. Develop new operations.

Don’t need to do these steps in strict order! Usually do a little of each, in parallel.

How did we do them for OS trees?

1. R-B tree.

2. x:size.

3. Showed how to maintain size during insert and delete.

4. Developed OS-SELECT and OS-RANK.

Red-black trees are particularly amenable to augmentation.

Theorem

Augment a R-B tree with attribute f , where x: f depends only on information in

x, x: left, and x:right (including x: left: f and x:right: f ). Then can maintain values

of f in all nodes during insert and delete without affecting O.lg n/ performance.

Proof Since x: f depends only on x and its children, when we alter information

in x, changes propagate only upward (to x:p; x:p:p; x:p:p:p; : : : ; root).

Height = O.lg n/) O.lg n/ updates, at O.1/ each.

Insertion

Insert a node as child of existing node. Even if can’t update f on way down, can
go up from inserted node to update f . During fixup, only changes come from color

changes (no effect on f ) and rotations. Each rotation affects f of � 3 nodes (x,y,

and parent), and can recompute each in O.1/ time. Then, if necessary, propagate

changes up the tree. Therefore, O.lg n/ time per rotation. Since � 2 rotations,

O.lg n/ time to update f during fixup.
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Delete

Same idea. After splicing out a node, go up from there to update f . Fixup has � 3

rotations. O.lg n/ per rotation) O.lg n/ to update f during fixup. (theorem)

For some attributes, can get away with O.1/ per rotation. Example: size attribute.

Interval trees

Maintain a set of intervals. For instance, time intervals.

4

5

7

15

17

21 23

19

18

10

11

8

i=[7,10]
low[i] = 7 high[i] = 10

[leave on board]

Operations

� INTERVAL-INSERT.T; x/: x: int already filled in.

� INTERVAL-DELETE.T; x/

� INTERVAL-SEARCH.T; i/: return pointer to a node x in T such that x: int over-

laps interval i . Any overlapping node in T is OK. Return pointer to sen-

tinel T:nil if no overlapping node in T .

Interval i has i: low, i:high.

i and j overlap if and only if

i: low � j:high and j: low � i:high.

(Go through examples of proper inclusion, overlap without proper inclusion, no

overlap.)

Another way: i and j don’t overlap if and only if
i: low > j:high or j: low > i:high.

[leave this on board]

Recall the 4-part methodology.

For interval trees

1. Use R-B trees.

� Each node x contains interval x: int.
� Key is low endpoint (x: int: low).
� Inorder walk would list intervals sorted by low endpoint.
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2. Each node x contains

x:max D max endpoint value in subtree rooted at x :

int

max

M

8

[17,19]

23

M

8

[21,23]

23

M

8

[5,11]

18

M

8

[15,18]

18

M

8

[4,8]

8

M

8

[7,10]

10

[leave on board]

x:max D max

8

<

:

x: int:high ;

x: left:max ;

x:right:max

Could x: left:max > x:right:max? Sure. Position in tree is determined only by

low endpoints, not high endpoints.

3. Maintaining the information.

� This is easy—x:max depends only on:

� information in x: x: int:high

� information in x: left: x: left:max

� information in x:right: x:right:max

� Apply the theorem.
� In fact, can update max on way down during insertion, and in O.1/ time per

rotation.

4. Developing new operations.

INTERVAL-SEARCH.T; i/

x D T:root

while x ¤ T:nil and i does not overlap x: int

if x: left ¤ T:nil and x: left:max � i: low

x D x: left

else x D x:right

return x

Examples

Search for Œ14; 16� and Œ12; 14�.

Time

O.lg n/.
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Correctness

Key idea: need check only 1 of node’s 2 children.

Theorem

If search goes right, then either:

� There is an overlap in right subtree, or

� There is no overlap in either subtree.

If search goes left, then either:

� There is an overlap in left subtree, or

� There is no overlap in either subtree.

Proof If search goes right:

� If there is an overlap in right subtree, done.

� If there is no overlap in right, show there is no overlap in left. Went right

because

� x: left D T:nil) no overlap in left.

OR
� x: left:max < i: low) no overlap in left.

i

x.left.max = highest endpoint in left

If search goes left:

� If there is an overlap in left subtree, done.

� If there is no overlap in left, show there is no overlap in right.

� Went left because:

i: low � x: left:max

D j:high for some j in left subtree :

� Since there is no overlap in left, i and j don’t overlap.
� Refer back to: no overlap if

i: low > j:high or j: low > i:high :

� Since i: low � j:high, must have j: low > i:high.
� Now consider any interval k in right subtree.
� Because keys are low endpoint,

j: low
„ƒ‚…

in left

� k: low
„ƒ‚…

in right

:

� Therefore, i:high < j: low � k: low.
� Therefore, i:high < k: low.
� Therefore, i and k do not overlap. (theorem)
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Augmenting Data Structures

Solution to Exercise 14.1-5

Given an element x in an n-node order-statistic tree T and a natural number i , the

following procedure retrieves the i th successor of x in the linear order of T :

OS-SUCCESSOR.T; x; i/

r D OS-RANK.T; x/

s D r C i

return OS-SELECT.T:root; s/

Since OS-RANK and OS-SELECT each take O.lg n/ time, so does the procedure

OS-SUCCESSOR.

Solution to Exercise 14.1-6

When inserting node ´, we search down the tree for the proper place for ´. For
each node x on this path, add 1 to x:rank if ´ is inserted within x’s left subtree,

and leave x:rank unchanged if ´ is inserted within x’s right subtree. Similarly

when deleting, subtract 1 from x:rank whenever the spliced-out node had been in

x’s left subtree.

We also need to handle the rotations that occur during the fixup procedures for in-
sertion and deletion. Consider a left rotation on node x, where the pre-rotation

right child of x is y (so that x becomes y’s left child after the left rotation).

We leave x:rank unchanged, and letting r D y:rank before the rotation, we set

y:rank D r C x:rank. Right rotations are handled in an analogous manner.

Solution to Exercise 14.1-7

This solution is also posted publicly

Let AŒ1 : : n� be the array of n distinct numbers.

One way to count the inversions is to add up, for each element, the number of larger

elements that precede it in the array:
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# of inversions D
n
X

j D1

jIn�.j /j ;

where In�.j / D fi W i < j and AŒi� > AŒj �g.
Note that jIn�.j /j is related to AŒj �’s rank in the subarray AŒ1 : : j � because the

elements in In�.j / are the reason that AŒj � is not positioned according to its rank.

Let r.j / be the rank of AŒj � in AŒ1 : : j �. Then j D r.j / C jIn�.j /j, so we can

compute

jIn�.j /j D j � r.j /

by inserting AŒ1�; : : : ; AŒn� into an order-statistic tree and using OS-RANK to find

the rank of each AŒj � in the tree immediately after it is inserted into the tree. (This

OS-RANK value is r.j /.)

Insertion and OS-RANK each take O.lg n/ time, and so the total time for n ele-

ments is O.n lg n/.

Solution to Exercise 14.2-2

This solution is also posted publicly

Yes, we can maintain black-heights as attributes in the nodes of a red-black tree

without affecting the asymptotic performance of the red-black tree operations. We
appeal to Theorem 14.1, because the black-height of a node can be computed from

the information at the node and its two children. Actually, the black-height can

be computed from just one child’s information: the black-height of a node is the

black-height of a red child, or the black height of a black child plus one. The

second child does not need to be checked because of property 5 of red-black trees.

Within the RB-INSERT-FIXUP and RB-DELETE-FIXUP procedures are color

changes, each of which potentially cause O.lg n/ black-height changes. Let us

show that the color changes of the fixup procedures cause only local black-height

changes and thus are constant-time operations. Assume that the black-height of

each node x is kept in the attribute x:bh.

For RB-INSERT-FIXUP, there are 3 cases to examine.
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Case 1: ´’s uncle is red.

C

DA

Bα

β γ

δ ε

(a)

C

DA

Bα

β γ

δ ε

C

DB

δ ε

C

DB

A

α β

γ δ ε

(b)

A

α β

γ

k+1

k+1

k+1

k+1 k+1

k+2

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+2

k+1z

y

z

y

� Before color changes, suppose that all subtrees ˛; ˇ; ; ı; � have the same

black-height k with a black root, so that nodes A, B , C , and D have black-

heights of k C 1.
� After color changes, the only node whose black-height changed is node C .

To fix that, add ´:p:p:bh D ´:p:p:bhC 1 after line 7 in RB-INSERT-FIXUP.
� Since the number of black nodes between ´:p:p and ´ remains the same,

nodes above ´:p:p are not affected by the color change.

Case 2: ´’s uncle y is black, and ´ is a right child.

Case 3: ´0’s uncle y is black, and ´ is a left child.

C

A

Bα

β γ

δ

Case 2

B

A

α β

γ

δ

Case 3

A

B

C

α β γ δ

C

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+1

z

y

z

y

� With subtrees ˛; ˇ; ; ı; � of black-height k, we see that even with color

changes and rotations, the black-heights of nodes A, B , and C remain the

same (k C 1).

Thus, RB-INSERT-FIXUP maintains its original O.lg n/ time.

For RB-DELETE-FIXUP, there are 4 cases to examine.
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Case 1: x’s sibling w is red.

A

B

D

C Eα β

γ δ ε ζ

x w

A

B

C

D

E

x new w

α β γ δ

ε ζ

Case 1

� Even though case 1 changes colors of nodes and does a rotation, black-

heights are not changed.
� Case 1 changes the structure of the tree, but waits for cases 2, 3, and 4 to

deal with the “extra black” on x.

Case 2: x’s sibling w is black, and both of w’s children are black.

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

D

C Eα β

γ δ ε ζ

cnew x
Case 2

� w is colored red, and x’s “extra” black is moved up to x:p.
� Now we can add x:p:bh D x:bh after line 10 in RB-DELETE-FIXUP.
� This is a constant-time update. Then, keep looping to deal with the extra

black on x:p.

Case 3: x’s sibling w is black, w’s left child is red, and w’s right child is black.

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

C

Dα β γ

δ

ε ζ

x

c

new w

Case 3

E

� Regardless of the color changes and rotation of this case, the black-heights

don’t change.
� Case 3 just sets up the structure of the tree, so it can fall correctly into case 4.

Case 4: x’s sibling w is black, and w’s right child is red.

A

B

D

C Eα β

γ δ

ε ζ

x w

c c

α β

A

B

C

D

E

new x = root[T]γ δ ε ζ

Case 4

c′ c′
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� Nodes A, C , and E keep the same subtrees, so their black-heights don’t

change.
� Add these two constant-time assignments in RB-DELETE-FIXUP after

line 20:

x:p:bh D x:bhC 1

x:p:p:bh D x:p:bhC 1

� The extra black is taken care of. Loop terminates.

Thus, RB-DELETE-FIXUP maintains its original O.lg n/ time.

Therefore, we conclude that black-heights of nodes can be maintained as attributes

in red-black trees without affecting the asymptotic performance of red-black tree

operations.

For the second part of the question, no, we cannot maintain node depths without

affecting the asymptotic performance of red-black tree operations. The depth of a

node depends on the depth of its parent. When the depth of a node changes, the

depths of all nodes below it in the tree must be updated. Updating the root node

causes n � 1 other nodes to be updated, which would mean that operations on the

tree that change node depths might not run in O.n lg n/ time.

Solution to Exercise 14.3-3

As it travels down the tree, INTERVAL-SEARCH first checks whether current node x

overlaps the query interval i and, if it does not, goes down to either the left or right

child. If node x overlaps i , and some node in the right subtree overlaps i , but

no node in the left subtree overlaps i , then because the keys are low endpoints,

this order of checking (first x, then one child) will return the overlapping interval

with the minimum low endpoint. On the other hand, if there is an interval that

overlaps i in the left subtree of x, then checking x before the left subtree might

cause the procedure to return an interval whose low endpoint is not the minimum

of those that overlap i . Therefore, if there is a possibility that the left subtree might

contain an interval that overlaps i , we need to check the left subtree first. If there is

no overlap in the left subtree but node x overlaps i , then we return x. We check the

right subtree under the same conditions as in INTERVAL-SEARCH: the left subtree

cannot contain an interval that overlaps i , and node x does not overlap i , either.

Because we might search the left subtree first, it is easier to write the pseudocode to

use a recursive procedure MIN-INTERVAL-SEARCH-FROM.T; x; i/, which returns

the node overlapping i with the minimum low endpoint in the subtree rooted at x,
or T:nil if there is no such node.

MIN-INTERVAL-SEARCH.T; i/

return MIN-INTERVAL-SEARCH-FROM.T; T:root; i/
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MIN-INTERVAL-SEARCH-FROM.T; x; i/

if x: left ¤ T:nil and x: left:max � i: low

y D MIN-INTERVAL-SEARCH-FROM.T; x: left; i/

if y ¤ T:nil

return y

elseif i overlaps x: int

return x

else return T:nil

elseif i overlaps x: int

return x

else return MIN-INTERVAL-SEARCH-FROM.T; x:right; i/

The call MIN-INTERVAL-SEARCH.T; i/ takes O.lg n/ time, since each recursive
call of MIN-INTERVAL-SEARCH-FROM goes one node lower in the tree, and the

height of the tree is O.lg n/.

Solution to Exercise 14.3-6

1. Underlying data structure:

A red-black tree in which the numbers in the set are stored simply as the keys

of the nodes.

SEARCH is then just the ordinary TREE-SEARCH for binary search trees, which

runs in O.lg n/ time on red-black trees.

2. Additional information:

The red-black tree is augmented by the following attributes in each node x:

� x:min-gap contains the minimum gap in the subtree rooted at x. It has the

magnitude of the difference of the two closest numbers in the subtree rooted
at x. If x is a leaf (its children are all T:nil), let x:min-gap D1.

� x:min-�al contains the minimum value (key) in the subtree rooted at x.
� x:max-�al contains the maximum value (key) in the subtree rooted at x.

3. Maintaining the information:

The three attributes added to the tree can each be computed from information

in the node and its children. Hence by Theorem 14.1, they can be maintained

during insertion and deletion without affecting the O.lg n/ running time:

x:min-�al D
(

x: left:min-�al if there is a left subtree ;

x:key otherwise ;

x:max-�al D
(

x:right:max-�al if there is a right subtree ;

x:key otherwise ;

x:min-gap D min

„
x: left:min-gap (1 if no left subtree) ;

x:right:min-gap (1 if no right subtree) ;

x:key � x: left:max-�al (1 if no left subtree) ;

x:right:min-�al � x:key (1 if no right subtree) :
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In fact, the reason for defining the min-�al and max-�al attributes is to make it

possible to compute min-gap from information at the node and its children.

4. New operation:

MIN-GAP simply returns the min-gap stored at the tree root. Thus, its running

time is O.1/.

Note that in addition (not asked for in the exercise), it is possible to find the

two closest numbers in O.lg n/ time. Starting from the root, look for where the

minimum gap (the one stored at the root) came from. At each node x, simulate

the computation of x:min-gap to figure out where x:min-gap came from. If it

came from a subtree’s min-gap attribute, continue the search in that subtree. If

it came from a computation with x’s key, then x and that other number are the
closest numbers.

Solution to Exercise 14.3-7

This solution is also posted publicly

General idea: Move a sweep line from left to right, while maintaining the set of

rectangles currently intersected by the line in an interval tree. The interval tree

will organize all rectangles whose x interval includes the current position of the

sweep line, and it will be based on the y intervals of the rectangles, so that any

overlapping y intervals in the interval tree correspond to overlapping rectangles.

Details:

1. Sort the rectangles by their x-coordinates. (Actually, each rectangle must ap-

pear twice in the sorted list—once for its left x-coordinate and once for its right

x-coordinate.)

2. Scan the sorted list (from lowest to highest x-coordinate).

� When an x-coordinate of a left edge is found, check whether the rectangle’s

y-coordinate interval overlaps an interval in the tree, and insert the rectangle
(keyed on its y-coordinate interval) into the tree.

� When an x-coordinate of a right edge is found, delete the rectangle from the

interval tree.

The interval tree always contains the set of “open” rectangles intersected by the

sweep line. If an overlap is ever found in the interval tree, there are overlapping

rectangles.

Time: O.n lg n/

� O.n lg n/ to sort the rectangles (we can use merge sort or heap sort).
� O.n lg n/ for interval-tree operations (insert, delete, and check for overlap).

Solution to Problem 14-1

a. Assume for the purpose of contradiction that there is no point of maximum

overlap in an endpoint of a segment. The maximum overlap point p is in the
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interior of m segments. Actually, p is in the interior of the intersection of those

m segments. Now look at one of the endpoints p0 of the intersection of the m

segments. Point p0 has the same overlap as p because it is in the same intersec-

tion of m segments, and so p0 is also a point of maximum overlap. Moreover, p0

is in the endpoint of a segment (otherwise the intersection would not end there),

which contradicts our assumption that there is no point of maximum overlap in

an endpoint of a segment. Thus, there is always a point of maximum overlap

which is an endpoint of one of the segments.

b. Keep a balanced binary search tree of the endpoints. That is, to insert an in-
terval, we insert its endpoints separately. With each left endpoint e, associate

a value p.e/ D C1 (increasing the overlap by 1). With each right endpoint e

associate a value p.e/ D �1 (decreasing the overlap by 1). When multiple end-

points have the same value, insert all the left endpoints with that value before

inserting any of the right endpoints with that value.

Here’s some intuition. Let e1, e2, . . . , en be the sorted sequence of endpoints

corresponding to our intervals. Let s.i; j / denote the sum p.ei/ C p.eiC1/ C
� � � C p.ej / for 1 � i � j � n. We wish to find an i maximizing s.1; i/.

For each node x in the tree, let l.x/ and r.x/ be the indices in the sorted order

of the leftmost and rightmost endpoints, respectively, in the subtree rooted at x.

Then the subtree rooted at x contains the endpoints el.x/; el.x/C1; : : : ; er.x/.

Each node x stores three new attributes. We store x:� D s.l.x/; r.x//, the

sum of the values of all nodes in the subtree rooted at x. We also store

x:m, the maximum value obtained by the expression s.l.x/; i/ for any i in

fl.x/; l.x/C 1; : : : ; r.x/g. Finally, we store x:o as the value of i for which

x:m achieves its maximum. For the sentinel, we define T:nil:� D T:nil:m D 0.

We can compute these attributes in a bottom-up fashion to satisfy the require-

ments of Theorem 14.1:

x:� D x: left:� C p.x/C x:right:� ;

x:m D max

�
x: left:m (max is in x’s left subtree) ;

x: left:� C p.x/ (max is at x) ;

x: left:� C p.x/C x:right:m (max is in x’s right subtree) :

Computing x:� is straightforward. Computing x:m bears further explanation.

Recall that it is the maximum value of the sum of the p values for the nodes

in the subtree rooted at x, starting at the node for el.x/, which is the leftmost

endpoint in x’s subtree, and ending at any node for ei in x’s subtree. The

endpoint ei that maximizes this sum—let’s call it ei�—corresponds to either a

node in x’s left subtree, x itself, or a node in x’s right subtree. If ei� corresponds

to a node in x’s left subtree, then x: left:m represents a sum starting at the node

for el.x/ and ending at a node in x’s left subtree, and hence x:m D x: left:m.

If ei� corresponds to x itself, then x:m represents the sum of all p values in

x’s left subtree, plus p.x/, so that x:m D x: left:� C p.x/. Finally, if ei�

corresponds to a node in x’s right subtree, then x:m represents the sum of all p

values in x’s left subtree, plus p.x/, plus the sum of some subset of p values in

x’s right subtree. Moreover, the values taken from x’s right subtree must start

from the leftmost endpoint stored in the right subtree. To maximize this sum,
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we need to maximize the sum from the right subtree, and that value is precisely

x:right:m. Hence, in this case, x:m D x: left:� C p.x/C x:right:m.

Once we understand how to compute x:m, it is straightforward to compute x:o

from the information in x and its two children. Thus, we can implement the

operations as follows:

� INTERVAL-INSERT: insert two nodes, one for each endpoint of the interval.
� FIND-POM: return the interval whose endpoint is represented by T:root:o.

(Note that because we are building a binary search tree of all the endpoints and
then determining T:root:o, we have no need to delete any nodes from the tree.)

Because of how we have defined the new attributes, Theorem 14.1 says that

each operation runs in O.lg n/ time. In fact, FIND-POM takes only O.1/ time.

Solution to Problem 14-2

a. We use a circular list in which each element has two attributes, key and next. At

the beginning, we initialize the list to contain the keys 1; 2; : : : ; n in that order.

This initialization takes O.n/ time, since there is only a constant amount of

work per element (i.e., setting its key and its next attributes). We make the list

circular by letting the next attribute of the last element point to the first element.

We then start scanning the list from the beginning. We output and then delete

every mth element, until the list becomes empty. The output sequence is the

.n; m/-Josephus permutation. This process takes O.m/ time per element, for a

total time of O.mn/. Since m is a constant, we get O.mn/ D O.n/ time, as

required.

b. We can use an order-statistic tree, straight out of Section 14.1. Why? Suppose

that we are at a particular spot in the permutation, and let’s say that it’s the j th

largest remaining person. Suppose that there are k � n people remaining. Then

we will remove person j , decrement k to reflect having removed this person,

and then go on to the .jCm�1/th largest remaining person (subtract 1 because

we have just removed the j th largest). But that assumes that j Cm � k. If not,

then we use a little modular arithmetic, as shown below.

In detail, we use an order-statistic tree T , and we call the procedures OS-

INSERT, OS-DELETE, OS-RANK, and OS-SELECT:
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JOSEPHUS.n; m/

initialize T to be empty

for j D 1 to n

create a node x with x:key == j

OS-INSERT.T; x/

k D n

j D m

while k > 2

x D OS-SELECT.T:root; j /

print x:key

OS-DELETE.T; x/

k D k � 1

j D ..j Cm � 2/ mod k/C 1

print OS-SELECT.T:root; 1/:key

The above procedure is easier to understand. Here’s a streamlined version:

JOSEPHUS.n; m/

initialize T to be empty

for j D 1 to n

create a node x with x:key == j

OS-INSERT.T; x/

j D 1

for k D n downto 1

j D ..j Cm � 2/ mod k/C 1

x D OS-SELECT.T:root; j /

print x:key

OS-DELETE.T; x/

Either way, it takes O.n lg n/ time to build up the order-statistic tree T , and

then we make O.n/ calls to the order-statistic-tree procedures, each of which

takes O.lg n/ time. Thus, the total time is O.n lg n/.
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Dynamic Programming

Dynamic Programming

� Not a specific algorithm, but a technique (like divide-and-conquer).

� Developed back in the day when “programming” meant “tabular method” (like

linear programming). Doesn’t really refer to computer programming.

� Used for optimization problems:

� Find a solution with the optimal value.
� Minimization or maximization. (We’ll see both.)

Four-step method

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Rod cutting

[New in the third edition of the book.]

How to cut steel rods into pieces in order to maximize the revenue you can get?

Each cut is free. Rod lengths are always an integral number of inches.

Input: A length n and table of prices pi , for i D 1; 2; : : : ; n.

Output: The maximum revenue obtainable for rods whose lengths sum to n, com-

puted as the sum of the prices for the individual rods.

If pn is large enough, an optimal solution might require no cuts, i.e., just leave the

rod as n inches long.
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Example: [Using the first 8 values from the example in the book.]

length i 1 2 3 4 5 6 7 8

price pi 1 5 8 9 10 17 17 20

Can cut up a rod in 2n�1 different ways, because can choose to cut or not cut after

each of the first n � 1 inches.

Here are all 8 ways to cut a rod of length 4, with the costs from the example:

9 1 8

1 1 1 1

5 5 18

511 5 11 5 11

The best way is to cut it into two 2-inch pieces, getting a revenue of p2 C p2 D
5C 5 D 10.

Let ri be the maximum revenue for a rod of length i . Can express a solution as a

sum of individual rod lengths.

Can determine optimal revenues ri for the example, by inspection:

i ri optimal solution

1 1 1 (no cuts)

2 5 2 (no cuts)

3 8 3 (no cuts)

4 10 2C 2

5 13 2C 3

6 17 6 (no cuts)

7 18 1C 6 or 2C 2C 3

8 22 2C 6

Can determine optimal revenue rn by taking the maximum of

� pn: the price we get by not making a cut,
� r1C rn�1: the maximum revenue from a rod of 1 inch and a rod of n�1 inches,
� r2 C rn�2: the maximum revenue from a rod of 2 inches and a rod of n � 2

inches, . . .
� rn�1 C r1.

That is,

rn D max.pn; r1 C rn�1; r2 C rn�2; : : : ; rn�1 C r1/ :

Optimal substructure: To solve the original problem of size n, solve subproblems

on smaller sizes. After making a cut, we have two subproblems. The optimal

solution to the original problem incorporates optimal solutions to the subproblems.

We may solve the subproblems independently.

Example: For n D 7, one of the optimal solutions makes a cut at 3 inches, giving

two subproblems, of lengths 3 and 4. We need to solve both of them optimally. The

optimal solution for the problem of length 4, cutting into 2 pieces, each of length 2,

is used in the optimal solution to the original problem with length 7.
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A simpler way to decompose the problem: Every optimal solution has a leftmost

cut. In other words, there’s some cut that gives a first piece of length i cut off the

left end, and a remaining piece of length n � i on the right.

� Need to divide only the remainder, not the first piece.

� Leaves only one subproblem to solve, rather than two subproblems.

� Say that the solution with no cuts has first piece size i D n with revenue pn,

and remainder size 0 with revenue r0 D 0.

� Gives a simpler version of the equation for rn:

rn D max
1�i�n

.pi C rn�i / :

Recursive top-down solution

Direct implementation of the simpler equation for rn.

The call CUT-ROD.p; n/ returns the optimal revenue rn:

CUT-ROD.p; n/

if n == 0

return 0

q D �1
for i D 1 to n

q D max.q; pŒi �C CUT-ROD.p; n � i//

return q

This procedure works, but it is terribly inefficient. If you code it up and run it, it

could take more than an hour for n D 40. Running time almost doubles each time

n increases by 1.

Why so inefficient?: CUT-ROD calls itself repeatedly, even on subproblems it has

already solved. Here’s a tree of recursive calls for n D 4. Inside each node is the

value of n for the call represented by the node:

3

1 0

0

0

01

2 0

0

1

2

0

1 0

4

Lots of repeated subproblems. Solve the subproblem for size 2 twice, for size 1

four times, and for size 0 eight times.

Exponential growth: Let T .n/ equal the number of calls to CUT-ROD with second

parameter equal to n. Then
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T .n/ D

�
1 if n D 0 ;

1C
n�1
X

j D0

T .j / if n > 1 :

Summation counts calls where second parameter is j D n � i .

Solution to recurrence is T .n/ D 2n.

Dynamic-programming solution

Instead of solving the same subproblems repeatedly, arrange to solve each sub-

problem just once.
Save the solution to a subproblem in a table, and refer back to the table whenever

we revisit the subproblem.

“Store, don’t recompute”) time-memory trade-off.

Can turn an exponential-time solution into a polynomial-time solution.

Two basic approaches: top-down with memoization, and bottom-up.

Top-down with memoization

Solve recursively, but store each result in a table.

To find the solution to a subproblem, first look in the table. If the answer is there,

use it. Otherwise, compute the solution to the subproblem and then store the solu-

tion in the table for future use.

Memoizing is remembering what we have computed previously.

Memoized version of the recursive solution, storing the solution to the subproblem
of length i in array entry rŒi �:

MEMOIZED-CUT-ROD.p; n/

let rŒ0 : : n� be a new array
for i D 0 to n

rŒi � D �1
return MEMOIZED-CUT-ROD-AUX.p; n; r/

MEMOIZED-CUT-ROD-AUX.p; n; r/

if rŒn� � 0

return rŒn�

if n == 0

q D 0

else q D �1
for i D 1 to n

q D max.q; pŒi �CMEMOIZED-CUT-ROD-AUX.p; n � i; r//

rŒn� D q

return q
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Bottom-up

Sort the subproblems by size and solve the smaller ones first. That way, when

solving a subproblem, have already solved the smaller subproblems we need.

BOTTOM-UP-CUT-ROD.p; n/

let rŒ0 : : n� be a new array

rŒ0� D 0

for j D 1 to n

q D �1
for i D 1 to j

q D max.q; pŒi �C rŒj � i �/

rŒj � D q

return rŒn�

Running time

Both the top-down and bottom-up versions run in ‚.n2/ time.

� Bottom-up: Doubly nested loops. Number of iterations of inner for loop forms

an arithmetic series.

� Top-down: MEMOIZED-CUT-ROD solves each subproblem just once, and it

solves subproblems for sizes 0; 1; : : : ; n. To solve a subproblem of size n, the

for loop iterates n times) over all recursive calls, total number of iterations

forms an arithmetic series. [Actually using aggregate analysis, which Chap-
ter 17 covers.]

Subproblem graphs

How to understand the subproblems involved and how they depend on each other.

Directed graph:

� One vertex for each distinct subproblem.

� Has a directed edge .x; y/ if computing an optimal solution to subproblem x

directly requires knowing an optimal solution to subproblem y.

Example: For rod-cutting problem with n D 4:

3

0

1

2

4
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Can think of the subproblem graph as a collapsed version of the tree of recursive

calls, where all nodes for the same subproblem are collapsed into a single vertex,

and all edges go from parent to child.

Subproblem graph can help determine running time. Because we solve each sub-

problem just once, running time is sum of times needed to solve each subproblem.

� Time to compute solution to a subproblem is typically linear in the out-degree

(number of outgoing edges) of its vertex.

� Number of subproblems equals number of vertices.

When these conditions hold, running time is linear in number of vertices and edges.

Reconstructing a solution

So far, have focused on computing the value of an optimal solution, rather than the

choices that produced an optimal solution.

Extend the bottom-up approach to record not just optimal values, but optimal

choices. Save the optimal choices in a separate table. Then use a separate pro-

cedure to print the optimal choices.

EXTENDED-BOTTOM-UP-CUT-ROD.p; n/

let rŒ0 : : n� and sŒ0 : : n� be new arrays

rŒ0� D 0

for j D 1 to n

q D �1
for i D 1 to j

if q < pŒi�C rŒj � i �

q D pŒi�C rŒj � i �

sŒj � D i

rŒj � D q

return r and s

Saves the first cut made in an optimal solution for a problem of size i in sŒi �.

To print out the cuts made in an optimal solution:

PRINT-CUT-ROD-SOLUTION.p; n/

.r; s/ D EXTENDED-BOTTOM-UP-CUT-ROD.p; n/

while n > 0

print sŒn�

n D n � sŒn�

Example: For the example, EXTENDED-BOTTOM-UP-CUT-ROD returns

i 0 1 2 3 4 5 6 7 8

rŒi � 0 1 5 8 10 13 17 18 22

sŒi � 0 1 2 3 2 2 6 1 2

A call to PRINT-CUT-ROD-SOLUTION.p; 8/ calls EXTENDED-BOTTOM-UP-

CUT-ROD to compute the above r and s tables. Then it prints 2, sets n to 6,

prints 6, and finishes (because n becomes 0).
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Longest common subsequence

Problem: Given 2 sequences, X D hx1; : : : ; xmi and Y D hy1; : : : ; yni. Find

a subsequence common to both whose length is longest. A subsequence doesn’t

have to be consecutive, but it has to be in order.

[To come up with examples of longest common subsequences, search the dictio-
nary for all words that contain the word you are looking for as a subsequence. On
a UNIX system, for example, to find all the words with pine as a subsequence,
use the command grep ’.*p.*i.*n.*e.*’ dict, where dict is your lo-
cal dictionary. Then check if that word is actually a longest common subsequence.
Working C code for finding a longest commmon subsequence of two strings ap-
pears at http://www.cs.dartmouth.edu/˜thc/code/lcs.c]

Examples

[The examples are of different types of trees.]

h e r o i c a l l y

s p r i n g t i m e

p i o n e e r

h o r s e b a c k

s n o w f l a k e

m a e l s t r o m

b e c a l m s c h o l a r l y

Brute-force algorithm:

For every subsequence of X , check whether it’s a subsequence of Y .

Time: ‚.n2m/.

� 2m subsequences of X to check.
� Each subsequence takes ‚.n/ time to check: scan Y for first letter, from there

scan for second, and so on.

Optimal substructure

Notation:

Xi D prefix hx1; : : : ; xi i
Yi D prefix hy1; : : : ; yi i

Theorem

Let Z D h´1; : : : ; ´ki be any LCS of X and Y .

1. If xm D yn, then ´k D xm D yn and Zk�1 is an LCS of Xm�1 and Yn�1.

2. If xm ¤ yn, then ´k ¤ xm) Z is an LCS of Xm�1 and Y .

3. If xm ¤ yn, then ´k ¤ yn) Z is an LCS of X and Yn�1.
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Proof

1. First show that ´k D xm D yn. Suppose not. Then make a subsequence

Z0 D h´1; : : : ; ´k ; xmi. It’s a common subsequence of X and Y and has

length k C 1) Z0 is a longer common subsequence than Z) contradicts Z

being an LCS.

Now show Zk�1 is an LCS of Xm�1 and Yn�1. Clearly, it’s a common subse-

quence. Now suppose there exists a common subsequence W of Xm�1 and Yn�1

that’s longer than Zk�1 ) length of W � k. Make subsequence W 0 by ap-

pending xm to W . W 0 is common subsequence of X and Y , has length � kC 1

) contradicts Z being an LCS.

2. If ´k ¤ xm, then Z is a common subsequence of Xm�1 and Y . Suppose there
exists a subsequence W of Xm�1 and Y with length > k. Then W is a common

subsequence of X and Y ) contradicts Z being an LCS.

3. Symmetric to 2. (theorem)

Therefore, an LCS of two sequences contains as a prefix an LCS of prefixes of the

sequences.

Recursive formulation

Define cŒi; j � D length of LCS of Xi and Yj . We want cŒm; n�.

cŒi; j � D

�
0 if i D 0 or j D 0 ;

cŒi � 1; j � 1�C 1 if i; j > 0 and xi D yj ;

max.cŒi � 1; j �; cŒi; j � 1�/ if i; j > 0 and xi ¤ yj :

Again, we could write a recursive algorithm based on this formulation.

Try with bozo, bat.

0,3 1,2 1,2 2,1 1,2 2,1 2,1 3,0

1,3 2,2 2,2 3,1 2,2 3,1 3,1 4,0

2,3 3,2 3,2 4,1

3,3 3,3

4,3

� Lots of repeated subproblems.

� Instead of recomputing, store in a table.



Lecture Notes for Chapter 15: Dynamic Programming 15-9

Compute length of optimal solution

LCS-LENGTH.X; Y; m; n/

let bŒ1 : : m; 1 : : n� and cŒ0 : : m; o : : n� be new tables
for i D 1 to m

cŒi; 0� D 0

for j D 0 to n

cŒ0; j � D 0

for i D 1 to m

for j D 1 to n

if xi == yj

cŒi; j � D cŒi � 1; j � 1�C 1

bŒi; j � D “-”

else if cŒi � 1; j � � cŒi; j � 1�

cŒi; j � D cŒi � 1; j �

bŒi; j � D “"”

else cŒi; j � D cŒi; j � 1�

bŒi; j � D “ ”
return c and b

PRINT-LCS.b; X; i; j /

if i == 0 or j D 0

return

if bŒi; j � == “-”

PRINT-LCS.b; X; i � 1; j � 1/

print xi

elseif bŒi; j � == “"”

PRINT-LCS.b; X; i � 1; j /

else PRINT-LCS.b; X; i; j � 1/

� Initial call is PRINT-LCS.b; X; m; n/.

� bŒi; j � points to table entry whose subproblem we used in solving LCS of Xi

and Yj .

� When bŒi; j � D-, we have extended LCS by one character. So longest com-

mon subsequence D entries with- in them.

Demonstration

What do spanking and amputation have in common? [Show only cŒi; j �.]
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43322111110

43322111110

33322111110

32222111110

32222111110

22222111110

11111111000

00000000000

00000000000

g

n

i

k

n

a

p

s

noitatupma

niap

Answer: pain.

Time

‚.mn/

Optimal binary search trees

[Added in the second edition.]

� Given sequence K D hk1; k2; : : : ; kni of n distinct keys, sorted (k1 < k2 <

� � � < kn).

� Want to build a binary search tree from the keys.

� For ki , have probability pi that a search is for ki .

� Want BST with minimum expected search cost.

� Actual cost D # of items examined.

For key ki , cost D depthT .ki /C 1, where depthT .ki / D depth of ki in BST T .

E Œsearch cost in T �

D
n
X

iD1

.depthT .ki /C 1/ � pi

D
n
X

iD1

depthT .ki / � pi C
n
X

iD1

pi

D 1C
n
X

iD1

depthT .ki / � pi (since probabilities sum to 1) (�)

[Keep equation (*) on board.]
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[Similar to optimal BST problem in the book, but simplified here: we assume that
all searches are successful. Book has probabilities of searches between keys in
tree.]

Example

i 1 2 3 4 5

pi .25 .2 .05 .2 .3

k2

k1 k4

k3 k5

i depthT .ki / depthT .ki / � pi

1 1 .25

2 0 0

3 2 .1

4 1 .2

5 2 .6

1.15

Therefore, E Œsearch cost� D 2:15.

k2

k1 k5

k4

k3

i depthT .ki / depthT .ki / � pi

1 1 .25

2 0 0

3 3 .15

4 2 .4

5 1 .3

1.10

Therefore, E Œsearch cost� D 2:10, which turns out to be optimal.

Observations

� Optimal BST might not have smallest height.

� Optimal BST might not have highest-probability key at root.

Build by exhaustive checking?
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� Construct each n-node BST.

� For each, put in keys.

� Then compute expected search cost.

� But there are �.4n=n3=2/ different BSTs with n nodes.

Optimal substructure

Consider any subtree of a BST. It contains keys in a contiguous range ki ; : : : ; kj

for some 1 � i � j � n.

T

T'

If T is an optimal BST and T contains subtree T 0 with keys ki ; : : : ; kj , then T 0

must be an optimal BST for keys ki ; : : : ; kj .

Proof Cut and paste.

Use optimal substructure to construct an optimal solution to the problem from op-

timal solutions to subproblems:

� Given keys ki ; : : : ; kj (the problem).

� One of them, kr , where i � r � j , must be the root.

� Left subtree of kr contains ki ; : : : ; kr�1.

� Right subtree of kr contains krC1; : : : ; kj .

kr

ki kr–1 kr+1 kj

� If

� we examine all candidate roots kr , for i � r � j , and
� we determine all optimal BSTs containing ki ; : : : ; kr�1 and containing

krC1; : : : ; kj ,

then we’re guaranteed to find an optimal BST for ki ; : : : ; kj .
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Recursive solution

Subproblem domain:

� Find optimal BST for ki ; : : : ; kj , where i � 1; j � n; j � i � 1.

� When j D i � 1, the tree is empty.

Define eŒi; j � D expected search cost of optimal BST for ki ; : : : ; kj .

If j D i � 1, then eŒi; j � D 0.

If j � i ,

� Select a root kr , for some i � r � j .

� Make an optimal BST with ki ; : : : ; kr�1 as the left subtree.

� Make an optimal BST with krC1; : : : ; kj as the right subtree.

� Note: when r D i , left subtree is ki ; : : : ; ki�1; when r D j , right subtree is

kj C1; : : : ; kj .

When a subtree becomes a subtree of a node:

� Depth of every node in subtree goes up by 1.

� Expected search cost increases by

w.i; j / D
j
X

lDi

pl (refer to equation (�)) .

If kr is the root of an optimal BST for ki ; : : : ; kj :

eŒi; j � D pr C .eŒi; r � 1�Cw.i; r � 1//C .eŒr C 1; j �C w.r C 1; j // :

But w.i; j / D w.i; r � 1/C pr Cw.r C 1; j /.

Therefore, eŒi; j � D eŒi; r � 1�C eŒr C 1; j �Cw.i; j /.

This equation assumes that we already know which key is kr .

We don’t.

Try all candidates, and pick the best one:

eŒi; j � D
(

0 if j D i � 1 ;

min
i�r�j

feŒi; r � 1�C eŒr C 1; j �C w.i; j /g if i � j :

Could write a recursive algorithm. . .

Computing an optimal solution

As “usual,” we’ll store the values in a table:

eŒ 1 : : nC 1
„ ƒ‚ …

can store
eŒnC 1; n�

; 0 : : n
„ƒ‚…

can store
eŒ1; 0�

�

� Will use only entries eŒi; j �, where j � i � 1.
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� Will also compute

rootŒi; j � D root of subtree with keys ki ; : : : ; kj , for 1 � i � j � n :

One other table: don’t recompute w.i; j / from scratch every time we need it.

(Would take ‚.j � i/ additions.)

Instead:

� Table wŒ1 : : nC 1; 0 : : n�

� wŒi; i � 1� D 0 for 1 � i � n

� wŒi; j � D wŒi; j � 1�C pj for 1 � i � j � n

Can compute all ‚.n2/ values in O.1/ time each.

OPTIMAL-BST.p; q; n/

let eŒ1 : : nC 1; 0 : : n�, wŒ1 : : nC 1; 0 : : n�, and rootŒ1 : : n; 1 : : n� be new tables

for i D 1 to nC 1

eŒi; i � 1� D 0

wŒi; i � 1� D 0

for l D 1 to n

for i D 1 to n � l C 1

j D i C l � 1

eŒi; j � D 1
wŒi; j � D wŒi; j � 1�C pj

for r D i to j

t D eŒi; r � 1�C eŒr C 1; j �CwŒi; j �

if t < eŒi; j �

eŒi; j � D t

rootŒi; j � D r

return e and root

First for loop initializes e; w entries for subtrees with 0 keys.

Main for loop:

� Iteration for l works on subtrees with l keys.

� Idea: compute in order of subtree sizes, smaller (1 key) to larger (n keys).

For example at beginning:

e

1

2

3

4

5

6

0 1 2 3 4 5

i

j

0

0

0

0

0

0

.25 .65 .8 1.25 2.10

.2 .3 .75 1.35

.3

.2

.05 .3 .85

.7pi
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w

1

2

3

4

5

6

0 1 2 3 4 5

i

j

0

0

0

0

0

0

.25 .45 .5 .7 1.0

.2 .25 .45 .75

.3

.2

.05 .25 .55

.5

root

1

2

3

4

5

1 2 3 4 5

i

j

1

2

3

4

5

1 1 2 2

2 2 4

5

4 5

Time

O.n3/: for loops nested 3 deep, each loop index takes on � n values. Can also

show �.n3/. Therefore, ‚.n3/.

Construct an optimal solution

CONSTRUCT-OPTIMAL-BST.root/

r D rootŒ1; n�

print “k”r “is the root”

CONSTRUCT-OPT-SUBTREE.1; r � 1; r; “left”; root/

CONSTRUCT-OPT-SUBTREE.r C 1; n; r; “right”; root/

CONSTRUCT-OPT-SUBTREE.i; j; r; dir; root/

if i � j

t D rootŒi; j �

print “k”t “is” dir “child of k”r

CONSTRUCT-OPT-SUBTREE.i; t � 1; t; “left”; root/

CONSTRUCT-OPT-SUBTREE.t C 1; j; t; “right”; root/

Elements of dynamic programming

Mentioned already:

� optimal substructure
� overlapping subproblems

Optimal substructure

� Show that a solution to a problem consists of making a choice, which leaves

one or subproblems to solve.
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� Suppose that you are given this last choice that leads to an optimal solution.

[We find that students often have trouble understanding the relationship be-
tween optimal substructure and determining which choice is made in an opti-
mal solution. One way that helps them understand optimal substructure is to
imagine that the dynamic-programming gods tell you what was the last choice
made in an optimal solution.]

� Given this choice, determine which subproblems arise and how to characterize

the resulting space of subproblems.

� Show that the solutions to the subproblems used within the optimal solution

must themselves be optimal. Usually use cut-and-paste:

� Suppose that one of the subproblem solutions is not optimal.
� Cut it out.
� Paste in an optimal solution.
� Get a better solution to the original problem. Contradicts optimality of prob-

lem solution.

That was optimal substructure.

Need to ensure that you consider a wide enough range of choices and subprob-

lems that you get them all. [The dynamic-programming gods are too busy to tell
you what that last choice really was.] Try all the choices, solve all the subprob-

lems resulting from each choice, and pick the choice whose solution, along with
subproblem solutions, is best.

How to characterize the space of subproblems?

� Keep the space as simple as possible.

� Expand it as necessary.

Examples

Rod cutting

� Space of subproblems was rods of length n � i , for 1 � i � n.
� No need to try a more general space of subproblems.

Optimal binary search trees

� Suppose we had tried to constrain space of subproblems to subtrees with

keys k1; k2; : : : ; kj .
� An optimal BST would have root kr , for some 1 � r � j .
� Get subproblems k1; : : : ; kr�1 and krC1; : : : ; kj .
� Unless we could guarantee that r D j , so that subproblem with krC1; : : : ; kj

is empty, then this subproblem is not of the form k1; k2; : : : ; kj .
� Thus, needed to allow the subproblems to vary at “both ends,” i.e., allow

both i and j to vary.

Optimal substructure varies across problem domains:

1. How many subproblems are used in an optimal solution.

2. How many choices in determining which subproblem(s) to use.
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� Rod cutting:

� 1 subproblem (of size n � i)
� n choices

� Longest common subsequence:

� 1 subproblem
� Either

� 1 choice (if xi D yj , LCS of Xi�1 and Yj �1), or

� 2 choices (if xi ¤ yj , LCS of Xi�1 and Y , and LCS of X and Yj �1)

� Optimal binary search tree:

� 2 subproblems (ki ; : : : ; kr�1 and krC1; : : : ; kj )
� j � i C 1 choices for kr in ki ; : : : ; kj . Once we determine optimal solutions

to subproblems, we choose from among the j � i C 1 candidates for kr .

Informally, running time depends on (# of subproblems overall) � (# of choices).

� Rod cutting: ‚.n/ subproblems, � n choices for each

) O.n2/ running time.

� Longest common subsequence: ‚.mn/ subproblems, � 2 choices for each

) ‚.mn/ running time.

� Optimal binary search tree: ‚.n2/ subproblems, O.n/ choices for each

) O.n3/ running time.

Can use the subproblem graph to get the same analysis: count the number of edges.

� Each vertex corresponds to a subproblem.

� Choices for a subproblem are vertices that the subproblem has edges going to.

� For rod cutting, subproblem graph has n vertices and � n edges per vertex

) O.n2/ running time.

In fact, can get an exact count of the edges: for i D 0; 1; : : : ; n, vertex for

subproblem size i has out-degree i ) # of edges DPn

iD0 i D n.nC 1/=2.

� Subproblem graph for matrix-chain multiplication would have ‚.n2/ vertices,

each with degree � n � 1

) O.n3/ running time.

Dynamic programming uses optimal substructure bottom up.

� First find optimal solutions to subproblems.

� Then choose which to use in optimal solution to the problem.

When we look at greedy algorithms, we’ll see that they work top down: first make

a choice that looks best, then solve the resulting subproblem.

Don’t be fooled into thinking optimal substructure applies to all optimization prob-

lems. It doesn’t.

Here are two problems that look similar. In both, we’re given an unweighted,

directed graph G D .V; E/.
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� V is a set of vertices.

� E is a set of edges.

And we ask about finding a path (sequence of connected edges) from vertex u to

vertex �.

� Shortest path: find path u ; � with fewest edges. Must be simple (no cycles),

since removing a cycle from a path gives a path with fewer edges.

� Longest simple path: find simple path u ; � with most edges. If didn’t require

simple, could repeatedly traverse a cycle to make an arbitrarily long path.

Shortest path has optimal substructure.

u vw

p1
p2

p

� Suppose p is shortest path u ; �.

� Let w be any vertex on p.

� Let p1 be the portion of p going u ; w.

� Then p1 is a shortest path u ; w.

Proof Suppose there exists a shorter path p0
1 going u ; w. Cut out p1, replace it

with p0
1, get path u

p0
1

; w
p2
; � with fewer edges than p.

Therefore, can find shortest path u ; � by considering all intermediate vertices w,

then finding shortest paths u ; w and w ; �.

Same argument applies to p2.

Does longest path have optimal substructure?

� It seems like it should.

� It does not.

q r

s t

Consider q ! r ! t D longest path q ; t . Are its subpaths longest paths?

No!

� Subpath q ; r is q ! r .

� Longest simple path q ; r is q ! s ! t ! r .

� Subpath r ; t is r ! t .

� Longest simple path r ; t is r ! q ! s ! t .
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Not only isn’t there optimal substructure, but we can’t even assemble a legal solu-

tion from solutions to subproblems.

Combine longest simple paths:

q ! s ! t ! r ! q ! s ! t

Not simple!

In fact, this problem is NP-complete (so it probably has no optimal substructure to

find.)

What’s the big difference between shortest path and longest path?

� Shortest path has independent subproblems.

� Solution to one subproblem does not affect solution to another subproblem of

the same problem.

� Longest simple path: subproblems are not independent.

� Consider subproblems of longest simple paths q ; r and r ; t .

� Longest simple path q ; r uses s and t .

� Cannot use s and t to solve longest simple path r ; t , since if we do, the path
isn’t simple.

� But we have to use t to find longest simple path r ; t!

� Using resources (vertices) to solve one subproblem renders them unavailable to

solve the other subproblem.

[For shortest paths, if we look at a shortest path u
p1
; w

p2
; �, no vertex other

than w can appear in p1 and p2. Otherwise, we have a cycle.]

Independent subproblems in our examples:

� Rod cutting and longest common subsequence

� 1 subproblem) automatically independent.

� Optimal binary search tree

� ki ; : : : ; kr�1 and krC1; : : : ; kj ) independent.

Overlapping subproblems

These occur when a recursive algorithm revisits the same problem over and over.

Good divide-and-conquer algorithms usually generate a brand new problem at each

stage of recursion.

Example: merge sort

1..8

1..4 5..8

1..2 3..4 5..6 7..8

1..1 2..2 3..3 4..4 5..5 6..6 7..7 8..8
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Won’t go through exercise of showing repeated subproblems.

Book has a good example for matrix-chain multiplication.

Alternative approach to dynamic programming: memoization

� “Store, don’t recompute.”

� Make a table indexed by subproblem.

� When solving a subproblem:

� Lookup in table.
� If answer is there, use it.
� Else, compute answer, then store it.

� In bottom-up dynamic programming, we go one step further. We determine in

what order we’d want to access the table, and fill it in that way.



Solutions for Chapter 15:

Dynamic Programming

Solution to Exercise 15.1-1

We can verify that T .n/ D 2n is a solution to the given recurrence by the substitu-
tion method. We note that for n D 0, the formula is true since 20 D 1. For n > 0,

substituting into the recurrence and using the formula for summing a geometric

series yields

T .n/ D 1C
n�1
X

j D0

2j

D 1C .2n � 1/

D 2n :

Solution to Exercise 15.1-2

Here is a counterexample for the “greedy” strategy:

length i 1 2 3 4

price pi 1 20 33 36

pi=i 1 10 11 1

Let the given rod length be 4. According to a greedy strategy, we first cut out a rod

of length 3 for a price of 33, which leaves us with a rod of length 1 of price 1. The

total price for the rod is 34. The optimal way is to cut it into two rods of length 2
each fetching us 40 dollars.
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Solution to Exercise 15.1-3

MODIFIED-CUT-ROD.p; n; c/

let rŒ0 : : n� be a new array

rŒ0� D 0

for j D 1 to n

q D pŒj �

for i D 1 to j � 1

q D max.q; pŒi �C rŒj � i � � c/

rŒj � D q

return rŒn�

The major modification required is in the body of the inner for loop, which now

reads q D max.q; pŒi � C rŒj � i � � c/. This change reflects the fixed cost of

making the cut, which is deducted from the revenue. We also have to handle the

case in which we make no cuts (when i equals j ); the total revenue in this case is

simply pŒj �. Thus, we modify the inner for loop to run from i to j � 1 instead of

to j . The assignment q D pŒj � takes care of the case of no cuts. If we did not make

these modifications, then even in the case of no cuts, we would be deducting c from

the total revenue.

Solution to Exercise 15.1-4

MEMOIZED-CUT-ROD.p; n/

let rŒ0 : : n� and sŒ0 : : n� be new arrays

for i D 0 to n

rŒi � D �1
.�al; s/ D MEMOIZED-CUT-ROD-AUX.p; n; r; s/

print “The optimal value is ” �al “ and the cuts are at ”

j D n

while j > 0

print sŒj �

j D j � sŒj �
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MEMOIZED-CUT-ROD-AUX.p; n; r; s/

if rŒn� � 0

return rŒn�

if n == 0

q D 0

else q D �1
for i D 1 to n

.�al; s/ D MEMOIZED-CUT-ROD-AUX.p; n � i; r; s/

if q < pŒi�C �al

q D pŒi�C �al

sŒn� D i

rŒn� D q

return .q; s/

PRINT-CUT-ROD-SOLUTION constructs the actual lengths where a cut should hap-

pen. Array entry sŒi � contains the value j indicating that an optimal cut for a rod

of length i is j inches. The next cut is given by sŒi � j �, and so on.

Solution to Exercise 15.1-5

FIBONACCI.n/

let fibŒ0 : : n� be a new array

fibŒ0� D fibŒ1� D 1

for i D 2 to n

fibŒi � D fibŒi � 1�C fibŒi � 2�

return fibŒn�

FIBONACCI directly implements the recurrence relation of the Fibonacci sequence.

Each number in the sequence is the sum of the two previous numbers in the se-

quence. The running time is clearly O.n/.

The subproblem graph consists of n C 1 vertices, �0; �1; : : : ; �n. For i D
2; 3; : : : ; n, vertex �i has two leaving edges: to vertex �i�1 and to vertex �i�2.

No edges leave vertices �0 or �1. Thus, the subproblem graph has 2n � 2 edges.

Solution to Exercise 15.2-4

The vertices of the subproblem graph are the ordered pairs �ij , where i � j . If

i D j , then there are no edges out of �ij . If i < j , then for every k such that

i � k < j , the subproblem graph contains edges .�ij ; �ik/ and .�ij ; �kC1;j /. These

edges indicate that to solve the subproblem of optimally parenthesizing the product

Ai � � �Aj , we need to solve subproblems of optimally parenthesizing the products

Ai � � �Ak and AkC1 � � �Aj . The number of vertices is
n
X

iD1

n
X

j Di

1 D n.nC 1/

2
;
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and the number of edges is
n
X

iD1

n
X

j Di

.j � i/ D
n
X

iD1

n�i
X

tD0

t (substituting t D j � i)

D
n
X

iD1

.n � i/.n � i C 1/

2
:

Substituting r D n � i and reversing the order of summation, we obtain
n
X

iD1

.n � i/.n � i C 1/

2

D 1

2

n�1
X

rD0

.r2 C r/

D 1

2

�
.n � 1/n.2n � 1/

6
C .n � 1/n

2

�

(by equations (A.3) and (A.1))

D .n � 1/n.nC 1/

6
:

Thus, the subproblem graph has ‚.n2/ vertices and ‚.n3/ edges.

Solution to Exercise 15.2-5

This solution is also posted publicly

Each time the l-loop executes, the i-loop executes n � l C 1 times. Each time the

i-loop executes, the k-loop executes j � i D l � 1 times, each time referencing

m twice. Thus the total number of times that an entry of m is referenced while
computing other entries is

Pn

lD2.n � l C 1/.l � 1/2. Thus,
n
X

iD1

n
X

j Di

R.i; j / D
n
X

lD2

.n � l C 1/.l � 1/2

D 2

n�1
X

lD1

.n � l/l

D 2

n�1
X

lD1

nl � 2

n�1
X

lD1

l2

D 2
n.n � 1/n

2
� 2

.n � 1/n.2n � 1/

6

D n3 � n2 � 2n3 � 3n2 C n

3

D n3 � n

3
:
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Solution to Exercise 15.3-1

This solution is also posted publicly

Running RECURSIVE-MATRIX-CHAIN is asymptotically more efficient than enu-

merating all the ways of parenthesizing the product and computing the number of

multiplications for each.

Consider the treatment of subproblems by the two approaches.

� For each possible place to split the matrix chain, the enumeration approach

finds all ways to parenthesize the left half, finds all ways to parenthesize the

right half, and looks at all possible combinations of the left half with the right

half. The amount of work to look at each combination of left- and right-half

subproblem results is thus the product of the number of ways to do the left half

and the number of ways to do the right half.

� For each possible place to split the matrix chain, RECURSIVE-MATRIX-CHAIN

finds the best way to parenthesize the left half, finds the best way to parenthesize

the right half, and combines just those two results. Thus the amount of work to

combine the left- and right-half subproblem results is O.1/.

Section 15.2 argued that the running time for enumeration is �.4n=n3=2/. We will

show that the running time for RECURSIVE-MATRIX-CHAIN is O.n3n�1/.

To get an upper bound on the running time of RECURSIVE-MATRIX-CHAIN, we’ll

use the same approach used in Section 15.2 to get a lower bound: Derive a recur-

rence of the form T .n/ � : : : and solve it by substitution. For the lower-bound

recurrence, the book assumed that the execution of lines 1–2 and 6–7 each take at

least unit time. For the upper-bound recurrence, we’ll assume those pairs of lines

each take at most constant time c. Thus, we have the recurrence

T .n/ �

�
c if n D 1 ;

c C
n�1
X

kD1

.T .k/C T .n � k/C c/ if n � 2 :

This is just like the book’s � recurrence except that it has c instead of 1, and so we

can be rewrite it as

T .n/ � 2

n�1
X

iD1

T .i/C cn :

We shall prove that T .n/ D O.n3n�1/ using the substitution method. (Note: Any

upper bound on T .n/ that is o.4n=n3=2/ will suffice. You might prefer to prove one

that is easier to think up, such as T .n/ D O.3:5n/.) Specifically, we shall show
that T .n/ � cn3n�1 for all n � 1. The basis is easy, since T .1/ � c D c � 1 � 31�1.

Inductively, for n � 2 we have
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T .n/ � 2

n�1
X

iD1

T .i/C cn

� 2

n�1
X

iD1

ci3i�1 C cn

� c �
 

2

n�1
X

iD1

i3i�1 C n

!

D c �
�

2 �
�

n3n�1

3 � 1
C 1 � 3n

.3� 1/2

�

C n

�

(see below)

D cn3n�1 C c �
�

1� 3n

2
C n

�

D cn3n�1 C c

2
.2nC 1� 3n/

� cn3n�1 for all c > 0, n � 1 .

Running RECURSIVE-MATRIX-CHAIN takes O.n3n�1/ time, and enumerating all

parenthesizations takes �.4n=n3=2/ time, and so RECURSIVE-MATRIX-CHAIN is

more efficient than enumeration.

Note: The above substitution uses the following fact:

n�1
X

iD1

ixi�1 D nxn�1

x � 1
C 1 � xn

.x � 1/2
:

This equation can be derived from equation (A.5) by taking the derivative. Let

f .x/ D
n�1
X

iD1

xi D xn � 1

x � 1
� 1 :

Then
n�1
X

iD1

ixi�1 D f 0.x/ D nxn�1

x � 1
C 1� xn

.x � 1/2
:

Solution to Exercise 15.3-5

We say that a problem exhibits the optimal substructure property when optimal
solutions to a problem incorporate optimal solutions to related subproblems, which

we may solve independently (i.e., they do not share resources). When we impose

a limit li on the number of pieces of size i that we are permitted to produce, the

subproblems can no longer be solved independently. For example, consider a rod

of length 4 with the following prices and limits:

length i 1 2 3 4

price pi 15 20 33 36

limit li 2 1 1 1

This instance has only three solutions that do not violate the limits: length 4 with

price 36; lengths 1 and 3 with price 48; and lengths 1, 1, and 2 with price 50. The
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optimal solution, therefore is to cut into lengths 1, 1, and 2. When we look at the

subproblem for length 2, it has two solutions that do not violate the limits: length 2

with price 20, and lengths 1 and 1 with price 30. The optimal solution for length 2,

therefore, is to cut into lengths 1 and 1. But we cannot use this optimal solution for

the subproblem in the optimal solution for the original problem, because it would

result in using four rods of length 1 to solve the original problem, violating the

limit of two length-1 rods.

Solution to Exercise 15.3-6

Any solution must add the additional assumption that no currency can be repeated

in a sequence of trades. Without this assumption, if rij > 1=rj i for some currencies

i and j , we could repeatedly exchange i ! j ! i ! j ! � � � and make an

unbounded profit.

To see that this problem has optimal substructure when ck D 0 for all k, observe

that the problem of exchanging currency a for currency b is equivalent to finding a

sequence of currencies k1; k2; : : : ; km such that k1 D a, km D b, and the product

rk1k2
rk2k3

� � � rkm�1km
is maximized.

We use the usual cut-and-paste argument. Suppose that an optimal solution con-

tains a sequence hki ; kiC1; : : : ; kj i of currencies, and suppose that there exists a

sequence hk0
i ; k0

iC1; : : : ; k0
j i, such that k0

i D ki , k0
j D kj , and rk0

i
k0

iC1
� � � rk0

j �1
k0

j
>

rki kiC1
� � � rkj �1kj

. Then we could substitute the sequence hk0
i ; k0

iC1; : : : ; k0
j i for the

sequence hki ; kiC1; : : : ; kj i in the optimal solution to create an even better solution.

We show that optimal substructure does not hold when the ck are arbitrary values

by means of an example. Suppose we have four currencies, with the following

exchange rates:

j

rij 1 2 3 4
1 1 2 5/2 6

2 1/2 1 3/2 3

i 3 2/5 2/3 1 3

4 1/6 1/3 1/3 1

Let c1 D 2 and c2 D c3 D 3. Note that this example is not too badly contrived, in

that rj i D 1=rij for all i and j .

To see how this example does not exhibit optimal substructure, let’s examine an

optimal solution for exchanging currency 1 for currency 4. There are five possible

exchange sequences, with the following costs:

h1; 4i W 6� 2 D 4 ;

h1; 2; 4i W 2 � 3 � 3 D 3 ;

h1; 3; 4i W 5=2 � 3� 3 D 9=2 ;

h1; 2; 3; 4i W 2 � 3=2 � 3 � 3 D 6

h1; 3; 2; 4i W 5=2 � 2=3 � 3 � 3 D 2

The optimal exchange sequence, h1; 2; 3; 4i, appears in boldface.
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Let’s examine the subproblem of exchanging currency 1 for currency 3. Allow-

ing currency 4 to be part of the exchange sequence, there are again five possible

exchange sequences with the following costs and the optimal one in boldface:

h1; 3i W 5=2 � 2 D 1=2

h1; 2; 3i W 2 � 3=2 � 3 D 0

h1; 4; 3i W 6 � 1=3 � 3 D �1

h1; 2; 4; 3i W 2 � 3 � 1=3 � 3 D �1

h1; 4; 2; 3i W 6 � 1=3 � 3=2 D 3 D 0

We see that the solution to the original problem includes the subproblem of ex-

changing currency 1 for currency 3, yet the solution h1; 2; 3i to the subproblem

used in the optimal solution to the original problem is not the optimal solution h1;3i
to the subproblem on its own.

Solution to Exercise 15.4-4

This solution is also posted publicly

When computing a particular row of the c table, no rows before the previous row

are needed. Thus only two rows—2 � Y: length entries—need to be kept in memory

at a time. (Note: Each row of c actually has Y: lengthC1 entries, but we don’t need
to store the column of 0’s—instead we can make the program “know” that those

entries are 0.) With this idea, we need only 2 �min.m; n/ entries if we always call

LCS-LENGTH with the shorter sequence as the Y argument.

We can thus do away with the c table as follows:

� Use two arrays of length min.m; n/, pre�ious-row and current-row, to hold the

appropriate rows of c.

� Initialize pre�ious-row to all 0 and compute current-row from left to right.

� When current-row is filled, if there are still more rows to compute, copy

current-row into pre�ious-row and compute the new current-row.

Actually only a little more than one row’s worth of c entries—min.m; n/C 1 en-

tries—are needed during the computation. The only entries needed in the table

when it is time to compute cŒi; j � are cŒi; k� for k � j � 1 (i.e., earlier entries in

the current row, which will be needed to compute the next row); and cŒi � 1; k� for

k � j � 1 (i.e., entries in the previous row that are still needed to compute the rest

of the current row). This is one entry for each k from 1 to min.m; n/ except that

there are two entries with k D j �1, hence the additional entry needed besides the

one row’s worth of entries.

We can thus do away with the c table as follows:

� Use an array a of length min.m; n/C 1 to hold the appropriate entries of c. At

the time cŒi; j � is to be computed, a will hold the following entries:

� aŒk� D cŒi; k� for 1 � k < j � 1 (i.e., earlier entries in the current “row”),
� aŒk� D cŒi � 1; k� for k � j � 1 (i.e., entries in the previous “row”),
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� aŒ0� D cŒi; j � 1� (i.e., the previous entry computed, which couldn’t be put

into the “right” place in a without erasing the still-needed cŒi � 1; j � 1�).

� Initialize a to all 0 and compute the entries from left to right.

� Note that the 3 values needed to compute cŒi; j � for j > 1 are in aŒ0� D
cŒi; j � 1�, aŒj � 1� D cŒi � 1; j � 1�, and aŒj � D cŒi � 1; j �.

� When cŒi; j � has been computed, move aŒ0� (cŒi; j � 1�) to its “correct”

place, aŒj � 1�, and put cŒi; j � in aŒ0�.

Solution to Problem 15-1

We will make use of the optimal substructure property of longest paths in acyclic

graphs. Let u be some vertex of the graph. If u D t , then the longest path from u

to t has zero weight. If u ¤ t , let p be a longest path from u to t . Path p has at

least two vertices. Let � be the second vertex on the path. Let p0 be the subpath

of p from � to t (p0 might be a zero-length path). That is, the path p looks like

u! �
p0

; t .

We claim that p0 is a longest path from � to t .

To prove the claim, we use a cut-and-paste argument. If p0 were not a longest
path, then there exists a longer path p00 from � to t . We could cut out p0 and paste

in p00 to produce a path u! �
p00

; t which is longer than p, thus contradicting the

assumption that p is a longest path from u to t .

It is important to note that the graph is acyclic. Because the graph is acyclic,

path p00 cannot include the vertex u, for otherwise there would be a cycle of the

form u! � ; u in the graph. Thus, we can indeed use p00 to construct a longer

path. The acyclicity requirement ensures that by pasting in path p00, the overall

path is still a simple path (there is no cycle in the path). This difference between

the cyclic and the acyclic case allows us to use dynamic programming to solve the

acyclic case.

Let distŒu� denote the weight of a longest path from u to t . The optimal substructure

property allows us to write a recurrence for distŒu� as

distŒu� D
(

0 if u D t ;

max
.u;�/2E

˚

w.u; �/C distŒ��
	

otherwise :

This recurrence allows us to construct the following procedure:
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LONGEST-PATH-AUX.G; u; t; dist; next/

if u == t

distŒu� D 0

return .dist; next/

elseif nextŒu� � 0

return .dist; next/

else nextŒu� D 0

for each vertex � 2 G:AdjŒu�

.dist; next/ D LONGEST-PATH-AUX.G; �; t; dist; next/

if w.u; �/C distŒ�� > distŒu�

distŒu� D w.u; �/C distŒ��

nextŒu� D �

return .dist; next/

(See Section 22.1 for an explanation of the notation G:AdjŒu�.)

LONGEST-PATH-AUX is a memoized, recursive procedure, which returns the tuple

.dist; next/. The array dist is the memoized array that holds the solution to sub-

problems. That is, after the procedure returns, distŒu� will hold the weight of a

longest path from u to t . The array next serves two purposes:

� It holds information necessary for printing out an actual path. Specifically, if u

is a vertex on the longest path that the procedure found, then nextŒu� is the next

vertex on the path.

� The value in nextŒu� is used to check whether the current subproblem has been

solved earlier. A value of at least zero indicates that this subproblem has been

solved earlier.

The first if condition checks for the base case u D t . The second if condition

checks whether the current subproblem has already been solved. The for loop

iterates over each adjacent edge .u; �/ and updates the longest distance in distŒu�.

What is the running time of LONGEST-PATH-AUX? Each subproblem represented

by a vertex u is solved at most once due to the memoization. For each vertex, we

examine its adjacent edges. Thus, each edge is examined at most once, and the

overall running time is O.E/. (Section 22.1 discusses how we achieve O.E/ time

by representing the graph with adjacency lists.)

The PRINT-PATH procedure prints out the path using information stored in the next

array:

PRINT-PATH.s; t; next/

u D s

print u

while u ¤ t

print “!” next[u]

u D nextŒu�

The LONGEST-PATH-MAIN procedure is the main driver. It creates and initializes

the dist and the next arrays. It then calls LONGEST-PATH-AUX to find a path and

PRINT-PATH to print out the actual path.
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LONGEST-PATH-MAIN.G; s; t/

n D jG:Vj
let distŒ1 : : n� and nextŒ1 : : n� be new arrays

for i D 1 to n

distŒi � D �1
nextŒi � D �1

.dist; next/ D LONGEST-PATH-AUX.G; s; t; dist; next/

if distŒs� == �1
print “No path exists”

else print “The weight of the longest path is ” distŒs�

PRINT-PATH.s; t; next/

Initializating the dist and next arrays takes O.V / time. Thus the overall running

time of LONGEST-PATH-MAIN is O.V CE/.

Alternative solution

We can also solve the problem using a bottom-up aproach. To do so, we need

to ensure that we solve “smaller” subproblems before we solve “larger” ones. In

our case, we can use a topological sort (see Section 22.4) to obtain a bottom-up

procedure, imposing the required ordering on the vertices in ‚.V CE/ time.

LONGEST-PATH2.G; s; t/

let distŒ1 : : n� and nextŒ1 : : n� be new arrays

topologically sort the vertices of G

for i D 1 to jG:Vj
distŒi � D �1

distŒs� D 0

for each u in topological order, starting from s

for each edge .u; �/ 2 G:AdjŒu�

if distŒu�Cw.u; �/ > distŒ��

distŒ�� D distŒu�Cw.u; �/

nextŒu� D �

print “The longest distance is ” distŒt �

PRINT-PATH.s; t; next/

The running time of LONGEST-PATH2 is ‚.V CE/.

Solution to Problem 15-2

We solve the longest palindrome subsequence (LPS) problem in a manner similar

to how we compute the longest common subsequence in Section 15.4.

Step 1: Characterizing a longest palindrome subsequence

The LPS problem has an optimal-substructure property, where the subproblems

correspond to pairs of indices, starting and ending, of the input sequence.
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For a sequence X D hx1; x2; : : : ; xni, we denote the subsequence starting at xi and

ending at xj by Xij D hxi ; xiC1; : : : ; xj i.

Theorem (Optimal substructure of an LPS)

Let X D hx1; x2; : : : ; xni be the input sequence, and let Z D h´1; ´2; : : : ; ´mi be

any LPS of X .

1. If n D 1, then m D 1 and ´1 D x1.

2. If n D 2 and x1 D x2, then m D 2 and ´1 D ´2 D x1 D x2.

3. If n D 2 and x1 ¤ x2, then m D 1 and ´1 is equal to either x1 or xn.

4. If n > 2 and x1 D xn, then m > 2, ´1 D ´m D x1 D xn, and Z2;m�1 is an LPS

of X2;n�1.

5. If n > 2 and x1 ¤ xn, then ´1 ¤ x1 implies that Z1;m is an LPS of X2;n.

6. If n > 2 and x1 ¤ xn, then ´m ¤ xn implies that Z1;m is an LPS of X1;n�1.

Proof Properties (1), (2), and (3) follow trivially from the definition of LPS.

(4) If n > 2 and x1 D xn, then we can choose x1 and xn as the ends of Z and

at least one more element of X as part of Z. Thus, it follows that m > 2. If

´1 ¤ x1, then we could append x1 D xn to the ends of Z to obtain a palindrome

subsequence of X with length m C 2, contradicting the supposition that Z is a

longest palindrome subsequence of X . Thus, we must have ´1 D x1 .D xn D ´m/.

Now, Z2;m�1 is a length-.m � 2/ palindrome subsequence of X2;n�1. We wish to
show that it is an LPS. Suppose for the purpose of contradiction that there exists

a palindrome subsequence W of X2;n�1 with length greater than m � 2. Then,

appending x1 D xn to the ends of W produces a palindrome subsequence of X

whose length is greater than m, which is a contradiction.

(5) If ´1 ¤ x1, then Z is a palindrome subsequence of X2;n. If there were a

palindrome subsequence W of X2;n with length greater than m, then W would also

be a palindrome subsequence of X , contradicting the assumption that Z is an LPS

of X .

(6) The proof is symmetric to (2).

The way that the theorem characterizes longest palindrome subsequences tells us

that an LPS of a sequence contains within it an LPS of a subsequence of the se-

quence. Thus, the LPS problem has an optimal-substructure property.

Step 2: A recursive solution

The theorem implies that we should examine either one or two subproblems when

finding an LPS of X D hx1; x2; : : : ; xni, depending on whether x1 D xn.

Let us define pŒi; j � to be the length of an LPS of the subsequence Xij . If i D j ,

the LPS has length 1. If j D iC1, then the LPS has length either 1 or 2, depending

on whether xi D xj . The optimal substructure of the LPS problem gives the

following recursive formula:
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pŒi; j � D

˚
1 if i D j ;

2 if j D i C 1 and xi D xj ;

1 if j D i C 1 and xi ¤ xj ;

pŒi C 1; j � 1�C 2 if j > i C 1 and xi D xj ;

max.pŒi; j � 1�; pŒi C 1; j �/ if j > i C 1 and xi ¤ xj :

Step 3: Computing the length of an LPS

Procedure LONGEST-PALINDROME takes a sequence X D hx1; x2; : : : ; xni as

input. The procedure fills cells pŒi; i �, where 1 � i � n, and pŒi; i C 1�, where

1 � i � n�1, as the base cases. It then starts filling cells pŒi; j �, where j > i C 1.

The procedure fills the p table row by row, starting with row n� 2 and moving to-

ward row 1. (Rows n� 1 and n are already filled as part of the base cases.) Within

each row, the procedure fills the entries from left to right. The procedure also main-
tains the table bŒ1 : : n; 1 : : n� to help us construct an optimal solution. Intuitively,

bŒi; j � points to the table entry corresponding to the optimal subproblem solution

chosen when computing pŒi; j �. The procedure returns the b and p tables; pŒ1; n�

contains the length of an LPS of X . The running time of LONGEST-PALINDROME

is clearly ‚.n2/.

LONGEST-PALINDROME.X/

n D X: length

let bŒ1 : : n; 1 : : n� and pŒ0 : : n; 0 : : n� be new tables

for i D 1 to n � 1

pŒi; i � D 1

j D i C 1

if xi == xj

pŒi; j � D 2

bŒi; j � D “.”

else pŒi; j � D 1

bŒi; j � D “#”

pŒn; n� D 1

for i D n � 2 downto 1

for j D i C 2 to n

if xi == xj

pŒi; j � D pŒi C 1; j � 1�C 2

bŒi; j � D “.”

elseif pŒi C 1; j � � pŒi; j � 1�

pŒi; j � D pŒi C 1; j �

bŒi; j � D “#”

else pŒi; j � D pŒi; j � 1�

bŒi; j � D “ ”

return p and b
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Step 4: Constructing an LPS

The b table returned by LONGEST-PALINDROME enables us to quickly construct

an LPS of X D hx1; x2; : : : ; xmi. We simply begin at bŒ1; n� and trace through

the table by following the arrows. Whenever we encounter a “.” in entry bŒi; j �,

it implies that xi D yj are the first and last elements of the LPS that LONGEST-

PALINDROME found. The following recursive procedure returns a sequence S that

contains an LPS of X . The initial call is GENERATE-LPS.b; X; 1; X: length; hi/,
where hi denotes an empty sequence. Within the procedure, the symbol jj denotes

concatenation of a symbol and a sequence.

GENERATE-LPS.b; X; i; j; S/

if i > j

return S

elseif i == j

return S jj xi

elseif bŒi; j � == “.”

return xi jjGENERATE-LPS.b; X; i C 1; j � 1; S/ jj xi

elseif bŒi; j � == “#”

return GENERATE-LPS.b; X; i C 1; j; S/

else return GENERATE-LPS.b; X; i; j � 1; S/

Solution to Problem 15-3

Taking the book’s hint, we sort the points by x-coordinate, left to right, in O.n lg n/

time. Let the sorted points be, left to right, hp1; p2; p3; : : : ; pni. Therefore, p1 is

the leftmost point, and pn is the rightmost.

We define as our subproblems paths of the following form, which we call bitonic

paths. A bitonic path Pi;j , where i � j , includes all points p1; p2; : : : ; pj ; it
starts at some point pi , goes strictly left to point p1, and then goes strictly right to

point pj . By “going strictly left,” we mean that each point in the path has a lower x-

coordinate than the previous point. Looked at another way, the indices of the sorted

points form a strictly decreasing sequence. Likewise, “going strictly right” means

that the indices of the sorted points form a strictly increasing sequence. Moreover,

Pi;j contains all the points p1; p2; p3; : : : ; pj . Note that pj is the rightmost point

in Pi;j and is on the rightgoing subpath. The leftgoing subpath may be degenerate,

consisting of just p1.

Let us denote the euclidean distance between any two points pi and pj by jpipj j.
And let us denote by bŒi; j �, for 1 � i � j � n, the length of the shortest bitonic

path Pi;j . Since the leftgoing subpath may be degenerate, we can easily compute

all values bŒ1; j �. The only value of bŒi; i � that we will need is bŒn; n�, which is the

length of the shortest bitonic tour. We have the following formulation of bŒi; j � for

1 � i � j � n:

bŒ1; 2� D jp1p2j ;

bŒi; j � D bŒi; j � 1�C jpj �1pj j for i < j � 1 ;

bŒj � 1; j � D min
1�k<j �1

fbŒk; j � 1�C jpkpj jg :
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Why are these formulas correct? Any bitonic path ending at p2 has p2 as its right-

most point, so it consists only of p1 and p2. Its length, therefore, is jp1p2j.
Now consider a shortest bitonic path Pi;j . The point pj �1 is somewhere on this

path. If it is on the rightgoing subpath, then it immediately preceeds pj on this

subpath. Otherwise, it is on the leftgoing subpath, and it must be the rightmost

point on this subpath, so i D j � 1. In the first case, the subpath from pi to pj �1

must be a shortest bitonic path Pi;j �1, for otherwise we could use a cut-and-paste

argument to come up with a shorter bitonic path than Pi;j . (This is part of our opti-

mal substructure.) The length of Pi;j , therefore, is given by bŒi; j � 1�C jpj �1pj j.
In the second case, pj has an immediate predecessor pk, where k < j � 1, on

the rightgoing subpath. Optimal substructure again applies: the subpath from pk

to pj �1 must be a shortest bitonic path Pk;j �1, for otherwise we could use cut-and-

paste to come up with a shorter bitonic path than Pi;j . (We have implicitly relied

on paths having the same length regardless of which direction we traverse them.)

The length of Pi;j , therefore, is given by min1�k�j �1 fbŒk; j � 1�C jpkpj jg.
We need to compute bŒn; n�. In an optimal bitonic tour, one of the points adjacent

to pn must be pn�1, and so we have

bŒn; n� D bŒn� 1; n�C jpn�1pnj :

To reconstruct the points on the shortest bitonic tour, we define rŒi; j � to be the

index of the immediate predecessor of pj on the shortest bitonic path Pi;j . Because

the immediate predecessor of p2 on P1;2 is p1, we know that rŒ1; 2� must be 1.

The pseudocode below shows how we compute bŒi; j � and rŒi; j �. It fills in only

entries bŒi; j � where 1 � i � n � 1 and i C 1 � j � n, or where i D j D n, and

only entries rŒi; j � where 1 � i � n � 2 and i C 2 � j � n.

EUCLIDEAN-TSP.p/

sort the points so that hp1; p2; p3; : : : ; pni are in order of increasing x-coordinate

let bŒ1 : : n; 2 : : n� and rŒ1 : : n � 2; 3 : : n� be new arrays

bŒ1; 2� D jp1p2j
for j D 3 to n

for i D 1 to j � 2

bŒi; j � D bŒi; j � 1�C jpj �1pj j
rŒi; j � D j � 1

bŒj � 1; j � D 1
for k D 1 to j � 2

q D bŒk; j � 1�C jpkpj j
if q < bŒj � 1; j �

bŒj � 1; j � D q

rŒj � 1; j � D k

bŒn; n� D bŒn � 1; n�C jpn�1pnj
return b and r

We print out the tour we found by starting at pn, then a leftgoing subpath that

includes pn�1, from right to left, until we hit p1. Then we print right-to-left the re-

maining subpath, which does not include pn�1. For the example in Figure 15.11(b)

on page 405, we wish to print the sequence p7; p6; p4; p3; p1; p2; p5. Our code is

recursive. The right-to-left subpath is printed as we go deeper into the recursion,

and the left-to-right subpath is printed as we back out.



15-36 Solutions for Chapter 15: Dynamic Programming

PRINT-TOUR.r; n/

print pn

print pn�1

k D rŒn � 1; n�

PRINT-PATH(r; k; n � 1)

print pk

PRINT-PATH.r; i; j /

if i < j

k D rŒi; j �

if k ¤ i

print pk

if k > 1

PRINT-PATH(r; i; k)

else k D rŒj; i �

if k > 1

PRINT-PATH(r; k; j )

print pk

The relative values of the parameters i and j in each call of PRINT-PATH indicate

which subpath we’re working on. If i < j , we’re on the right-to-left subpath, and

if i > j , we’re on the left-to-right subpath. The test for k ¤ i prevents us from

printing p1 an extra time, which could occur when we call PRINT-PATH.r; 1; 2/.

The time to run EUCLIDEAN-TSP is O.n2/ since the outer loop on j iterates n�2

times and the inner loops on i and k each run at most n� 2 times. The sorting step

at the beginning takes O.n lg n/ time, which the loop times dominate. The time to
run PRINT-TOUR is O.n/, since each point is printed just once.

Solution to Problem 15-4

This solution is also posted publicly

Note: We assume that no word is longer than will fit into a line, i.e., li � M for

all i .

First, we’ll make some definitions so that we can state the problem more uniformly.

Special cases about the last line and worries about whether a sequence of words fits

in a line will be handled in these definitions, so that we can forget about them when

framing our overall strategy.

� Define extrasŒi; j � D M � j C i �Pj

kDi lk to be the number of extra spaces

at the end of a line containing words i through j . Note that extras may be

negative.

� Now define the cost of including a line containing words i through j in the sum

we want to minimize:

lcŒi; j � D

�
1 if extrasŒi; j � < 0 (i.e., words i; : : : ; j don’t fit) ;

0 if j D n and extrasŒi; j � � 0 (last line costs 0) ;

.extrasŒi; j �/3 otherwise :
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By making the line cost infinite when the words don’t fit on it, we prevent such

an arrangement from being part of a minimal sum, and by making the cost 0 for

the last line (if the words fit), we prevent the arrangement of the last line from

influencing the sum being minimized.

We want to minimize the sum of lc over all lines of the paragraph.

Our subproblems are how to optimally arrange words 1; : : : ; j , where j D
1; : : : ; n.

Consider an optimal arrangement of words 1; : : : ; j . Suppose we know that the

last line, which ends in word j , begins with word i . The preceding lines, therefore,

contain words 1; : : : ; i � 1. In fact, they must contain an optimal arrangement of

words 1; : : : ; i � 1. (The usual type of cut-and-paste argument applies.)

Let cŒj � be the cost of an optimal arrangement of words 1; : : : ; j . If we know that

the last line contains words i; : : : ; j , then cŒj � D cŒi�1�C lcŒi; j �. As a base case,

when we’re computing cŒ1�, we need cŒ0�. If we set cŒ0� D 0, then cŒ1� D lcŒ1; 1�,

which is what we want.

But of course we have to figure out which word begins the last line for the sub-

problem of words 1; : : : ; j . So we try all possibilities for word i , and we pick the

one that gives the lowest cost. Here, i ranges from 1 to j . Thus, we can define cŒj �

recursively by

cŒj � D
(

0 if j D 0 ;

min
1�i�j

.cŒi � 1�C lcŒi; j �/ if j > 0 :

Note that the way we defined lc ensures that

� all choices made will fit on the line (since an arrangement with lc D 1 cannot

be chosen as the minimum), and

� the cost of putting words i; : : : ; j on the last line will not be 0 unless this really

is the last line of the paragraph (j D n) or words i : : : j fill the entire line.

We can compute a table of c values from left to right, since each value depends

only on earlier values.

To keep track of what words go on what lines, we can keep a parallel p table that

points to where each c value came from. When cŒj � is computed, if cŒj � is based

on the value of cŒk � 1�, set pŒj � D k. Then after cŒn� is computed, we can trace

the pointers to see where to break the lines. The last line starts at word pŒn� and

goes through word n. The previous line starts at word pŒpŒn�� and goes through

word pŒn�� 1, etc.

In pseudocode, here’s how we construct the tables:
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PRINT-NEATLY.l; n; M /

let extrasŒ1 : : n; 1 : : n�, lcŒ1 : : n; 1 : : n�, and cŒ0 : : n� be new arrays

// Compute extrasŒi; j � for 1 � i � j � n.

for i D 1 to n

extrasŒi; i � D M � li

for j D i C 1 to n

extrasŒi; j � D extrasŒi; j � 1� � lj � 1

// Compute lcŒi; j � for 1 � i � j � n.

for i D 1 to n

for j D i to n

if extrasŒi; j � < 0

lcŒi; j � D 1
elseif j == n and extrasŒi; j � � 0

lcŒi; j � D 0

else lcŒi; j � D .extrasŒi; j �/3

// Compute cŒj � and pŒj � for 1 � j � n.

cŒ0� D 0

for j D 1 to n

cŒj � D 1
for i D 1 to j

if cŒi � 1�C lcŒi; j � < cŒj �

cŒj � D cŒi � 1�C lcŒi; j �

pŒj � D i

return c and p

Quite clearly, both the time and space are ‚.n2/.

In fact, we can do a bit better: we can get both the time and space down to ‚.nM /.

The key observation is that at most dM=2e words can fit on a line. (Each word is

at least one character long, and there’s a space between words.) Since a line with
words i; : : : ; j contains j � i C 1 words, if j � i C 1 > dM=2e then we know

that lcŒi; j � D 1. We need only compute and store extrasŒi; j � and lcŒi; j � for

j � i C 1 � dM=2e. And the inner for loop header in the computation of cŒj �

and pŒj � can run from max.1; j � dM=2e C 1/ to j .

We can reduce the space even further to ‚.n/. We do so by not storing the lc

and extras tables, and instead computing the value of lcŒi; j � as needed in the last

loop. The idea is that we could compute lcŒi; j � in O.1/ time if we knew the

value of extrasŒi; j �. And if we scan for the minimum value in descending order

of i , we can compute that as extrasŒi; j � D extrasŒi C 1; j � � li � 1. (Initially,

extrasŒj; j � D M � lj .) This improvement reduces the space to ‚.n/, since now

the only tables we store are c and p.

Here’s how we print which words are on which line. The printed output of

GIVE-LINES.p; j / is a sequence of triples .k; i; j /, indicating that words i; : : : ; j

are printed on line k. The return value is the line number k.
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GIVE-LINES.p; j /

i D pŒj �

if i == 1

k D 1

else k D GIVE-LINES.p; i � 1/C 1

print .k; i; j /

return k

The initial call is GIVE-LINES.p; n/. Since the value of j decreases in each recur-

sive call, GIVE-LINES takes a total of O.n/ time.

Solution to Problem 15-5

a. Dynamic programming is the ticket. This problem is slightly similar to the

longest-common-subsequence problem. In fact, we’ll define the notational con-

veniences Xi and Yj in the similar manner as we did for the LCS problem:

Xi D xŒ1 : : i � and Yj D yŒ1 : : j �.

Our subproblems will be determining an optimal sequence of operations that

converts Xi to Yj , for 0 � i � m and 0 � j � n. We’ll call this the “Xi ! Yj

problem.” The original problem is the Xm ! Yn problem.

Let’s suppose for the moment that we know what was the last operation used to

convert Xi to Yj . There are six possibilities. We denote by cŒi; j � the cost of an

optimal solution to the Xi ! Yj problem.

� If the last operation was a copy, then we must have had xŒi � D yŒj �. The sub-

problem that remains is converting Xi�1 to Yj �1. And an optimal solution to

the Xi ! Yj problem must include an optimal solution to the Xi�1 ! Yj �1

problem. The cut-and-paste argument applies. Thus, assuming that the last

operation was a copy, we have cŒi; j � D cŒi � 1; j � 1�C cost.copy/.
� If it was a replace, then we must have had xŒi � ¤ yŒj �. (Here, we assume

that we cannot replace a character with itself. It is a straightforward mod-

ification if we allow replacement of a character with itself.) We have the

same optimal substructure argument as for copy, and assuming that the last

operation was a replace, we have cŒi; j � D cŒi � 1; j � 1�C cost.replace/.
� If it was a twiddle, then we must have had both xŒi � D yŒj � 1� and

xŒi � 1� D yŒj �, along with the implicit assumption that i; j � 2. Now

our subproblem is Xi�2 ! Yj �2 and, assuming that the last operation was a

twiddle, we have cŒi; j � D cŒi � 2; j � 2�C cost.twiddle/.
� If it was a delete, then we have no restrictions on x or y. Since we can view

delete as removing a character from Xi and leaving Yj alone, our subprob-

lem is Xi�1 ! Yj . Assuming that the last operation was a delete, we have

cŒi; j � D cŒi � 1; j �C cost.delete/.
� If it was an insert, then we have no restrictions on x or y. Our subproblem

is Xi ! Yj �1. Assuming that the last operation was an insert, we have

cŒi; j � D cŒi; j � 1�C cost.insert/.
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� If it was a kill, then we had to have completed converting Xm to Yn, so that

the current problem must be the Xm ! Yn problem. In other words, we must

have i D m and j D n. If we think of a kill as a multiple delete, we can get

any Xi ! Yn, where 0 � i < m, as a subproblem. We pick the best one,

and so assuming that the last operation was a kill, we have

cŒm; n� D min
0�i<m

fcŒi; n�g C cost.kill/ :

We have not handled the base cases, in which i D 0 or j D 0. These are

easy. X0 and Y0 are the empty strings. We convert an empty string into Yj by

a sequence of j inserts, so that cŒ0; j � D j � cost.insert/. Similarly, we convert
Xi into Y0 by a sequence of i deletes, so that cŒi; 0� D i � cost.delete/. When

i D j D 0, either formula gives us cŒ0; 0� D 0, which makes sense, since

there’s no cost to convert the empty string to the empty string.

For i; j > 0, our recursive formulation for cŒi; j � applies the above formulas in

the situations in which they hold:

cŒi; j � D min

†
cŒi � 1; j � 1�C cost.copy/ if xŒi � D yŒj � ;

cŒi � 1; j � 1�C cost.replace/ if xŒi � ¤ yŒj � ;

cŒi � 2; j � 2�C cost.twiddle/ if i; j � 2;

xŒi � D yŒj � 1�;

and xŒi � 1� D yŒj � ;

cŒi � 1; j �C cost.delete/ always ;

cŒi; j � D cŒi; j � 1�C cost.insert/ always ;

min
0�i<m

fcŒi; n�g C cost.kill/ if i D m and j D n :

Like we did for LCS, our pseudocode fills in the table in row-major order, i.e.,

row-by-row from top to bottom, and left to right within each row. Column-

major order (column-by-column from left to right, and top to bottom within

each column) would also work. Along with the cŒi; j � table, we fill in the table

opŒi; j �, holding which operation was used.
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EDIT-DISTANCE.x; y; m; n/

let cŒ0 : : m; 0 : : n� and opŒ0 : : m; 0 : : n� be new arrays

for i D 0 to m

cŒi; 0� D i � cost.delete/

opŒi; 0� D DELETE

for j D 0 to n

cŒ0; j � D j � cost.insert/

opŒ0; j � D INSERT

for i D 1 to m

for j D 1 to n

cŒi; j � D 1
if xŒi � == yŒj �

cŒi; j � D cŒi � 1; j � 1�C cost.copy/

opŒi; j � D COPY

if xŒi � ¤ yŒj � and cŒi � 1; j � 1�C cost.replace/ < cŒi; j �

cŒi; j � D cŒi � 1; j � 1�C cost.replace/

opŒi; j � D REPLACE(by yŒj �)

if i � 2 and j � 2 and xŒi � == yŒj � 1� and

xŒi � 1� == yŒj � and

cŒi � 2; j � 2�C cost.twiddle/ < cŒi; j �

cŒi; j � D cŒi � 2; j � 2�C cost.twiddle/

opŒi; j � D TWIDDLE

if cŒi � 1; j �C cost.delete/ < cŒi; j �

cŒi; j � D cŒi � 1; j �C cost.delete/

opŒi; j � D DELETE

if cŒi; j � 1�C cost.insert/ < cŒi; j �

cŒi; j � D cŒi; j � 1�C cost.insert/

opŒi; j � D INSERT(yŒj �)

for i D 0 to m � 1

if cŒi; n�C cost.kill/ < cŒm; n�

cŒm; n� D cŒi; n�C cost.kill/

opŒm; n� D KILL i

return c and op

The time and space are both ‚.mn/. If we store a KILL operation in opŒm; n�,

we also include the index i after which we killed, to help us reconstruct the

optimal sequence of operations. (We don’t need to store yŒi � in the op table for

replace or insert operations.)

To reconstruct this sequence, we use the op table returned by EDIT-DISTANCE.

The procedure OP-SEQUENCE.op; i; j / reconstructs the optimal operation se-

quence that we found to transform Xi into Yj . The base case is when

i D j D 0. The first call is OP-SEQUENCE.op; m; n/.
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OP-SEQUENCE.op; i; j /

if i == 0 and j D 0

return

if opŒi; j � == COPY or opŒi; j � D REPLACE

i 0 D i � 1

j 0 D j � 1

elseif opŒi; j � == TWIDDLE

i 0 D i � 2

j 0 D j � 2

elseif opŒi; j � == DELETE

i 0 D i � 1

j 0 D j

elseif opŒi; j � == INSERT // don’t care yet what character is inserted

i 0 D i

j 0 D j � 1

else // must be KILL, and must have i D m and j D n

let opŒi; j � == KILL k

i 0 D k

j 0 D j

OP-SEQUENCE.op; i 0; j 0/
print opŒi; j �

This procedure determines which subproblem we used, recurses on it, and then
prints its own last operation.

b. The DNA-alignment problem is just the edit-distance problem, with

cost.copy/ D �1 ;

cost.replace/ D C1 ;

cost.delete/ D C2 ;

cost.insert/ D C2 ;

and the twiddle and kill operations are not permitted.

The score that we are trying to maximize in the DNA-alignment problem is

precisely the negative of the cost we are trying to minimize in the edit-distance

problem. The negative cost of copy is not an impediment, since we can only

apply the copy operation when the characters are equal.

Solution to Problem 15-8

a. Let us set up a recurrence for the number of valid seams as a function of m.

Suppose we are in the process of carving out a seam row by row, starting from

the first row. Let the last pixel carved out be AŒi; j �. How many choices do we

have for the pixel in row iC1 such that the pixel continues the seam? If the last

pixel AŒi; j � were on the column boundary (i D 1 or i D n), then there would

be two choices for the next pixel. For example, when i D 1, the two choices

for the next pixel are AŒi C 1; j � and AŒi C 1; j C 1�. Otherwise, there would
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be three choices for the next pixel: AŒiC 1; j � 1�; AŒi C 1; j �; AŒi C 1; j C 1�.

Thus, for a general pixel AŒi; j �, there are at least two possible choices for a

pixel p in the next row such that p continues a seam ending in AŒi; j �. Let T .i/

denote the number of possible seams from row 1 to row i . Then, for i D 1, we

have T .i/ D n, and for i > 1,

T .i/ � 2T .i � 1/ :

It is easy to guess that T .i/ � n2i�1, which we verify by direct substitution.

For i D 1, we have T .1/ D n � n � 20. For i > 1, we have

T .i/ � 2T .i � 1/

� 2 � n2i�2

D n2i�1 :

Thus, the total number T .m/ of seams is at least n2m�1. We conclude that the

number of seams grows at least exponentially in m.

b. As proved in the previous part, it is infeasible to systematically check every

seam, since the number of possible seams grows exponentially.

The structure of the problem allows us to build the solution row by row. Con-

sider a pixel AŒi; j �. We ask the question: “If i were the first row of the

picture, what is the minimum disruptive measure of seams that start with the

pixel AŒi; j �?”

Let S� be a seam of minimum disruptive measure among all seams that start

with pixel AŒi; j �. Let AŒi C 1; p�, where p 2 fj � 1; j; j C 1g, be the pixel

of S� in the next row. Let S 0 be the sub-seam of S� that starts with AŒi C 1; p�.

We claim that S 0 has the minimum disruptive measure among seams that start

with AŒi C 1; p�. Why? Suppose there exists another seam S 00 that starts

with AŒiC1; p� and has disruptive measure less than that of S 0. By using S 00 as

the sub-seam instead of S 0, we can obtain another seam that starts with AŒi; j �

and has a disruptive measure which is less than that of S�. Thus, we obtain a
contradiction to our assumption that S� is a seam of minimum disruptive mea-

sure.

Let disrŒi; j � be the value of the minimum disruptive measure among all seams
that start with pixel AŒi; j �. For row m, the seam with the minimum disruptive

measure consists of just one point. We can now state a recurrence for disrŒi; j �

as follows. In the base case, disrŒm; j � D dŒm; j � for j D 1; 2; : : : ; n. In the

recursive case, for j D 1; 2; : : : ; n,

disrŒi; j � D dŒi; j �Cmin
k2K
fdisrŒi C i; j C k�g ;

where the set K of index offsets is

K D

�
f0; 1g if j D 1 ;

f�1; 0; 1g if 1 < j < m ;

f�1; 0g if j D n :

Since every seam has to start with a pixel of the first row, we simply find the

minimum disrŒ1; j � for pixels in the first row to obtain the minimum disruptive

measure.
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COMPRESS-IMAGE.d/

m D d:rows

n D d:columns

let disrŒ1 : : m; 1 : : n� and nextŒ1 : : m; 1 : : n� be new tables

for j D 1 to n

disrŒm; j � D dŒm; j �

for i D m � 1 downto 1

for j D 1 to n

low D max.�1; 1 � j /

high D min.1; n � j /

disrŒi; j � D 1
for k D low to high

if disrŒi C 1; j C k� < disrŒi; j �

disrŒi; j � D disrŒi C 1; j C k�

nextŒi; j � D j C k

disrŒi; j � D disrŒi; j �C dŒi; j �

�al D 1
start D 1

for j D 1 to n

if disrŒ1; j � < �al

�al D disrŒ1; j �

start D j

print “The minimum value of the disruptive measure is ” �al

for i D 1 to m

print “cut point at ” .i; start/

start D nextŒi; start�

The procedure COMPRESS-IMAGE is simply an implementation of this recur-

rence in a bottom-up fashion.

We first carry out the initialization of the base cases, which are the cases when

row i D m. The minimum disruptive measure for the base cases is sim-

ply dŒm; j �.

The next for loop runs down from m � 1 to 1. Thus, disrŒi C 1; j � is already

available before computing disrŒi; j � for pixels of row i .

The assignments to low and high allow the index offset k to range over the

correct set K from above. We set low to 0 when j D 1 and to �1 when j > 1,

and we set high to 0 when j D n and to 1 when j < n. The innermost for loop

sets disrŒi; j � to the minimum value of disrŒi C 1; j C k� for all k 2 K, and the

line that follows this loop adds in dŒi; j �.

We use the next table to reconstruct the actual seam. For a given pixel, it records

which pixel was used as the next pixel. Specifically, for a pixel AŒi; j �, if

nextŒi; j � D p, where p 2 fj � 1; j; j C 1g, then the next pixel of the seam

is AŒi C 1; p�.

The last line of the for loop adds the disruptive measure of the current pixel to

the disruptive measure of the seam.

The next for loop finds the minimum disruptive measure of pixels in the first

row. We print the minimum disruptive measure as the answer.
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The rest of the code reconstructs the actual seam, using the information stored

in the next array.

Noting that the innermost for loop runs over at most three values of k, we see

that the running time of COMPRESS-IMAGE is O.mn/. The space requirement

is also O.mn/. We can improve upon the space requirement by observing that

row i of the disr table depends on only row i C 1. Therefore, we can store

just two rows at any time. Thus, we can improve the space requirement of

COMPRESS-IMAGE to O.n/.

Solution to Problem 15-9

Our first step will be to identify the subproblems that satisfy the optimal-

substructure property. Before we frame the subproblem, we make two simplifying

modifications to the input:

� We sort L so that the indices in L are in ascending order.

� We prepend the index 0 to the beginning of L and append n to the end of L.

Let LŒi : : j � denote a subarray of L that starts from index i and ends at index j .

Define the subproblem denoted by .i; j / as “What is the cheapest sequence of

breaks to break the substring SŒLŒi � C 1 : : LŒj � �?” Note that the first and last
elements of the subarray LŒi : : j � define the ends of the substring, and we have to

worry about only the indices of the subarray LŒi C 1 : : j � 1�.

For example, let L D h20; 17; 14; 11; 25i and n D 30. First, we sort L. Then, we

prepend 0 and append n as explained to get L D h0; 11; 14; 17; 20; 25; 30i. Now,

what is the subproblem .2; 6/? We obtain a substring by breaking S after character

LŒ2� D 11 and character LŒ6� D 25. We ask “What is the cheapest sequence of

breaks to break the substring SŒ12 : : 25�?” We have to worry about only indices in
the subarray LŒ3 : : 5� D h14; 17; 20i, since the other indices are not present in the

substring.

At this point, the problem looks similar to matrix-chain multiplication (see Sec-

tion 15.2). We can make the first break at any element of LŒi C 1 : : j � 1�.

Suppose that an optimal sequence of breaks � for subproblem .i; j / makes the first

break at LŒk�, where i < k < j . This break gives rise to two subproblems:

� The “prefix” subproblem .i; k/, covering the subarray LŒi C 1 : : k � 1�,

� The “suffix” subproblem .k; j /, covering the subarray LŒk C 1 : : j � 1�.

The overall cost can be expressed as the sum of the length of the substring, the
prefix cost, and the suffix cost.

We show optimal substructure by claiming that the sequence of breaks in � for the

prefix subproblem .i; k/ must be an optimal one. Why? If there were a less costly

way to break the substring SŒLŒi �C1 : : LŒk� � represented by the subproblem .i; k/,

then substituting that sequence of breaks in � would produce another sequence of

breaks whose cost is lower than that of � , which would be a contradiction. A sim-

ilar observation holds for the sequence of breaks for the suffix subproblem .k; j /:

it must be an optimal sequence of breaks.
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Let costŒi; j � denote the cost of the cheapest solution to subproblem .i; j /. We

write the recurrence relation for cost as

costŒi; j � D

˚
0 if j � i � 1 ;

min
i<k<j

n

costŒi; k�C costŒk; j �C .LŒj � � LŒi�/
o

if j � i > 1 :

Thus, our approach to solving the subproblem .i; j / will be to try to split the re-

spective substring at all possible values of k and then choosing a break that results

in the minimum cost. We need to be careful to solve smaller subproblems before

we solve larger subproblems. In particular, we solve subproblems in increasing
order of the length j � i .

BREAK-STRING.n; L/

prepend 0 to the start of L and append n to the end of L

m D L: length

sort L into increasing order

let costŒ1 : : m; 1 : : m� and breakŒ1 : : m; 1 : : m� be new tables

for i D 1 to m � 1

costŒi; i � D costŒi; i C 1� D 0

costŒm; m� D 0

for len D 3 to m

for i D 1 to m � lenC 1

j D i C len � 1

costŒi; j � D 1
for k D i C 1 to j � 1

if costŒi; k�C costŒk; j � < costŒi; j �

costŒi; j � D costŒi; k�C costŒk; j �

breakŒi; j � D k

costŒi; j � D costŒi; j �C LŒj � � LŒi�

print “The minimum cost of breaking the string is ” costŒ1; m�

PRINT-BREAKS.L; break ; 1; m/

After sorting L, we initialize the base cases, in which i D j or j D i C 1.

The nested for loops represent the main computation. The outermost for loop runs

for len D 3 to m, which means that we need to consider subarrays of L with length

at least 3, since the first and the last element define the substring, and we need at
least one more element to specify a break. The increasing values of len also ensures

that we solve subproblems with smaller length before we solve subproblems with

greater length.

The inner for loop on i runs from 1 to m� lenC1. The upper bound of m� lenC1

is the largest value that the start index i can take such that i C len � 1 � m.

In the innermost for loop, we try each possible location k as the place to make the

first break for subproblem .i; j /. The first such place is LŒiC1�, and not LŒi�, since

LŒi� represents the start of the substring (and thus not a valid place for a break).
Similarly, the last valid place is LŒj � 1�, because LŒj � represents the end of the

substring.

The if condition tests whether k is the best place for a break found so far, and

it updates the best value in costŒi; j � if so. We use breakŒi; j � to record that the
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best place for the first break is k. Specifically, if breakŒi; j � D k, then an optimal

sequence of breaks for .i; j / makes the first break at LŒk�.

Finally, we add the length of the substring LŒj � � LŒi� to costŒi; j � because, irre-

spective of what we choose as the first break, it costs us a price equal to the length

of the substring to make a break.

The lowest cost for the original problem ends up in costŒ1; m�. By our initialization,

LŒ1� D 0 and LŒm� D n. Thus, costŒ1; m� will hold the optimum price of cutting

the substring from LŒ1�C 1 D 1 to LŒm� D n, which is the entire string.

The running time is ‚.m3/, and it is dictated by the three nested for loops. They

fill in the entries above the main diagonal of the two tables, except for entries in

which j D i C 1. That is, they fill in rows i D 1; 2; : : : ; m � 2, entries j D
i C 2; i C 3; : : : ; m. When filling in entry Œi; j �, we check values of k running
from i C 1 to j � 1, or j � i � 1 entries. Thus, the total number of iterations of the

innermost for loop is
m�2
X

iD1

m
X

j DiC2

.j � i � 1/ D
m�2
X

iD1

m�i�1
X

dD1

d (d D j � i � 1)

D
m�2
X

iD1

‚..m � i/2/ (equation (A.2))

D
m�1
X

hD2

‚.h2/ (h D m � i)

D ‚.m3/ (equation (A.3)) .

Since each iteration of the innermost for loop takes constant time, the total running

time is ‚.m3/. Note in particular that the running time is independent of the length
of the string n.

PRINT-BREAKS.L; break; i; j /

if j � i � 2

k D breakŒi; j �

print “Break at ” LŒk�

PRINT-BREAKS.L; break; i; k/

PRINT-BREAKS.L; break; k; j /

PRINT-BREAKS uses the information stored in break to print out the actual se-

quence of breaks.

Solution to Problem 15-11

We state the subproblem .k; s/ as “What is the cheapest way to satisfy all the de-

mands of months k; : : : ; n when we start with a surplus of s before the kth month?”

A plan for the subproblem .k; s/ would specify the number of machines to manu-

facture for each month k; : : : ; n such that demands are satisfied.

In some optimal plan P to .k; s/, let f � machines be maufactured in month k.

Thus, the surplus s0 in month k C 1 is s C f � � dk. Let P 0 be the part of the
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plan P for months k C 1; : : : ; n. We claim that P 0 is an optimal plan for the

subproblem .k C 1; s0/. Why? Suppose P 0 were not an optimal plan and let P 00

be an optimal plan for .k C 1; s0/. If we modify plan P by cutting out P 0 and

pasting in P 00 (i.e., by using plan P 00 for months k C 1; : : : ; n), we obtain another

plan for .k; s/ which is cheaper than plan P . Thus, we obtain a contradiction to

the assumption that plan P was optimal.

Let costŒk; s� denote the cost of an optimal plan for .k; s/, and let f denote the

number of machines that can be manufactured in month k. The bounds for f are

as follows:

� At least the number of machines so that (along with surplus s) there are enough

machines to satisfy the current month’s demand. Let us denote this lower bound

by L.k; s/. We have

L.k; s/ D max.dk � s; 0/ :

� At most the number of machines such that there are enough machines to sat-

isfy the demands of all the following months. Let us denote this upper bound

by U.k; s/. We have

U.k; s/ D
 

n
X

iDk

di

!

� s :

For the last month, we need only manufacture the minimum required number of

machines, given by L.n; s/. For other months, we examine the costs of manufac-
turing all feasible numbers of machines and see which choice gives us the cheapest

plan. We can now write the recurrence for cost as the following:

costŒk; s� D

‚
c �max.L.n; s/ �m; 0/

C h.s C L.n; s/ � dn/ if k D n ;

min
L.k;s/�f �U.k;s/

n

costŒk C 1; s C f � dk �

C c �max.f �m; 0/

C h.s C f � dk/
o

if 0 < k < n :

The recurrence suggests how to build an optimal plan in a bottom-up fashion. We

now present the algorithm for constructing an optimal plan.
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INVENTORY-PLANNING.n; m; c; D; d; h/

let costŒ1 : : n; 0 : : D� and makeŒ1 : : n; 0 : : D� be new tables

// Compute costŒn; 0 : : D� and makeŒn; 0 : : D�.

for s D 0 to D

f D max.dn � s; 0/

costŒn; s� D c �max.f �m; 0/C h.s C f � dn/

makeŒn; s� D f

// Compute costŒ1 : : n � 1; 0 : : D� and makeŒ1 : : n � 1; 0 : : D�.

U D dn

for k D n � 1 downto 1

U D U C dk

for s D 0 to D

costŒk; s� D 1
for f D max.dk � s; 0/ to U � s

�al D costŒk C 1; s C f � dk�

C c �max.f �m; 0/C h.s C f � dk/

if �al < costŒk; s�

costŒk; s� D �al

makeŒk; s� D f

print cost[1,0]

PRINT-PLAN.make; n; d/

PRINT-PLAN.make; n; d/

s D 0

for k D 1 to n

print “For month ” k “ manufacture ” makeŒk; s� “ machines”
s D s C makeŒk; s� � dk

In INVENTORY-PLANNING, we build the solution month by month, starting from

month n, moving backward toward month 1. First, we solve the subproblem for the

last month, for all surpluses. Then, for each month and for each surplus entering

that month, we calculate the cheapest way to satisfy demand for that month based

on the solved subproblems of the next month.

� f is the number of machines that we try to manufacture in month k.

� costŒk; s� holds the cheapest way to satisfy demands of months k; : : : ; n, with a

net surplus of s left over at the beginning of month k.

� makeŒk; s� holds the number of machines to manufacture in month k and the

surplus s of an optimal plan. We will use this table to reconstruct the optimal

plan.

We first initialize the base cases, which are the cases for month n starting with

surplus s, for s D 0; : : : ; D. If dn > s, it suffices to manufacture dn � s ma-
chines, since we need not keep any surplus after month n. If dn � s, we need not

manufacture any machines at all.

We then calculate the total cost for month n as the sum of hiring extra labor
c �max.f �m; 0/ and the inventory costs for leftover surplus h.sCf �dn/, which

can be nonzero if we had started out with a large surplus.
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The outer for loop of the next block of code runs down from month n�1 to 1, thus

ensuring that when we consider month k, we have already solved the subproblems

of month k C 1.

The next inner for loop iterates through all possible values of f as described.

For every choice of f for a given month k, the total cost of .k; s/ is given by the

cost of extra labor (if any) plus the cost of inventory (if there is a surplus) plus the

cost of the subproblem .k C 1; s C f � dk/. This value is checked and updated.

Finally, the required answer is the answer to the subproblem .1; 0/, which ap-

pears in costŒ1; 0�. That is, it is the cheapest way to satisfy all the demands of

months 1; : : : ; n when we start with a surplus of 0.

The running time of INVENTORY-PLANNING is clearly O.nD2/. The space re-

quirement is O.nD/. We can improve upon the space requirement by noting that

we need only store the solution to subproblems of the next month. With this obser-

vation, we can construct an algorithm that uses O.nCD/ space.

Solution to Problem 15-12

Let p:cost denote the cost and p:�orp denote the VORP of player p. We shall

assume that all dollar amounts are expressed in units of $100,000.

Since the order of choosing players for the positions does not matter, we may

assume that we make our decisions starting from position 1, moving toward posi-

tion N . For each position, we decide to either sign one player or sign no players.

Suppose we decide to sign player p, who plays position 1. Then, we are left with

an amount of X � p:cost dollars to sign players at positions 2; : : : ; N . This obser-

vation guides us in how to frame the subproblems.

We define the cost and VORP of a set of players as the sum of costs and the sum

of VORPs of all players in that set. Let .i; x/ denote the following subproblem:

“Suppose we consider only positions i; i C 1; : : : ; N and we can spend at most x

dollars. What set of players (with at most one player for each position under con-

sideration) has the maximum VORP?” A valid set of players for .i; x/ is one in

which each player in the set plays one of the positions i; iC1; : : : ; n, each position

has at most one player, and the cost of the players in the set is at most x dollars.

An optimal set of players for .i; x/ is a valid set with the maximum VORP. We

now show that the problem exhibits optimal substructure.

Theorem (Optimal substructure of the VORP maximization problem)

Let L D fp1; p2; : : : ; pkg be a set of players, possibly empty, with maximum

VORP for the subproblem .i; x/.

1. If i D N , then L has at most one player. If all players in position N have cost
more than x, then L has no players. Otherwise, L D fp1g, where p1 has the

maximum VORP among players for position N with cost at most x.

2. If i < N and L includes player p for position i , then L0 D L � fpg is an

optimal set for the subproblem .i C 1; x � p:cost/.

3. If i < N and L does not include a player for position i , then L is an optimal

set for the subproblem .i C 1; x/.
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Proof Property (1) follows trivially from the problem statement.

(2) Suppose that L0 is not an optimal set for the subproblem .i C 1; x � p:cost/.

Then, there exists another valid set L00 for .i C 1; x � p:cost/ that has VORP

more than L0. Let L000 D L00 [ fpg. The cost of L000 is at most x, since L00 has a

cost at most x � p:cost. Moreover, L000 has at most one player for each position

i; i C 1; : : : ; N . Thus, L000 is a valid set for .i; x/. But L000 has VORP more than L,

thus contradicting the assumption that L had the maximum VORP for .i; x/.

(3) Clearly, any valid set for .i C 1; x/ is also a valid set for .i; x/. If L were not

an optimal set for .i C 1; x/, then there exists another valid set L0 for .i C 1; x/

with VORP more than L. The set L0 would also be a valid set for .i; x/, which

contradicts the assumption that L had the maximum VORP for .i; x/.

The theorem suggests that when i < N , we examine two subproblems and choose

the better of the two. Let �Œi; x� denote the maximum VORP for .i; x/. Let S.i; x/

be the set of players who play position i and cost at most x. In the following

recurrence for �Œi; x�, we assume that the max function returns �1 when invoked

over an empty set:

�Œi; x� D

˚
max

p2S.N;x/

˚

p:�orp
	

if i D N ;

max

�

�Œi C 1; x�;

max
p2S.i;x/

˚

p:�orpC �Œi C 1; x � p:cost�
	
�

if i < N :

This recurrence lends itself to implementation in a straightforward way. Let pij

denote the j th player who plays position i .
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FREE-AGENT-VORP.p; N; P; X/

let �Œ1 : : N �Œ0 : : X� and whoŒ1 : : N �Œ0 : : X� be new tables

for x D 0 to X

�ŒN; x� D �1
whoŒN; x� D 0

for k D 1 to P

if pN k:cost � x and pN k:�orp > �ŒN; x�

�ŒN; x� D pN k:�orp

whoŒN; x� D k

for i D N � 1 downto 1

for x D 0 to X

�Œi; x� D �Œi C 1; x�

whoŒi; x� D 0

for k D 1 to P

if pik:cost � x and �Œi C 1; x � pik:cost�C pik:�orp > �Œi; x�

�Œi; x� D �Œi C 1; x � pik:cost�C pik:�orp

whoŒi; x� D k

print “The maximum value of VORP is ” �Œ1; X�

amt D X

for i D 1 to N

k D whoŒi; amt�

if k ¤ 0

print “sign player ” pik

amt D amt � pik:cost

print “The total money spent is ” X � amt

The input to FREE-AGENT-VORP is the list of players p and N , P , and X , as

given in the problem. The table �Œi; x� holds the maximum VORP for the sub-

problem .i; x/. The table whoŒi; x� holds information necessary to reconstruct the

actual solution. Specifically, whoŒi; x� holds the index of player to sign for posi-

tion i , or 0 if no player should be signed for position i . The first set of nested for

loops initializes the base cases, in which i D N . For every amount x, the inner

loop simply picks the player with the highest VORP who plays position N and

whose cost is at most x.

The next set of three nested for loops represents the main computation. The outer-

most for loop runs down from position N � 1 to 1. This order ensures that smaller

subproblems are solved before larger ones. We initialize �Œi; x� as �ŒiC1; x�. This

way, we already take care of the case in which we decide not to sign any player

who plays position i . The innermost for loop tries to sign each player (if we have

enough money) in turn, and it keeps track of the maximum VORP possible.

The maximum VORP for the entire problem ends up in �Œ1; X�. The final for loop

uses the information in who table to print out which players to sign. The running
time of FREE-AGENT-VORP is clearly ‚.NPX/, and it uses ‚.NX/ space.
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Greedy Algorithms

Chapter 16 Introduction

Similar to dynamic programming.

Used for optimization problems.

Idea

When we have a choice to make, make the one that looks best right now. Make a
locally optimal choice in hope of getting a globally optimal solution.

Greedy algorithms don’t always yield an optimal solution. But sometimes they
do. We’ll see a problem for which they do. Then we’ll look at some general

characteristics of when greedy algorithms give optimal solutions.

[We do not cover Huffman codes or matroids in these notes.]

Activity selection

n activities require exclusive use of a common resource. For example, scheduling

the use of a classroom.

Set of activities S D fa1; : : : ; ang.
ai needs resource during period Œsi ; fi/, which is a half-open interval, where si D
start time and fi D finish time.

Goal

Select the largest possible set of nonoverlapping (mutually compatible) activities.

Note

Could have many other objectives:

� Schedule room for longest time.

� Maximize income rental fees.

Assume that activities are sorted by finish time: f1 � f2 � f3 � � � � � fn�1 � fn.
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Example

S sorted by finish time: [Leave on board]

i 1 2 3 4 5 6 7 8 9

si 1 2 4 1 5 8 9 11 13

fi 3 5 7 8 9 10 11 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a1

a4

a5

a6

a7

a8

a9a2

a3

1615

Maximum-size mutually compatible set: fa1; a3; a6; a8g.
Not unique: also fa2; a5; a7; a9g.

Optimal substructure of activity selection

Sij D fak 2 S W fi � sk < fk � sj g [Leave on board]

D activities that start after ai finishes and finish before aj starts :

ai ak aj

fi sk fk sj
. . . . . .

Activities in Sij are compatible with

� all activities that finish by fi , and

� all activities that start no earlier than sj .

Let Aij be a maximum-size set of mutually compatible activities in Sij .

Let ak 2 Aij be some activity in Aij . Then we have two subproblems:

� Find mutually compatible activities in Sik (activities that start after ai finishes

and that finish before ak starts).

� Find mutually compatible activities in Skj (activities that start after ak finishes

and that finish before aj starts).

Let

Aik D Aij \ Sik D activities in Aij that finish before ak starts ;

Akj D Aij \ Skj D activities in Aij that start afer ak finishes :

Then Aij D Aik [ fakg [ Akj

) jAij j D jAikj C jAkj j C 1.

Claim

Optimal solution Aij must include optimal solutions for the two subproblems for

Sik and Skj .
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Proof Use the usual cut-and-paste argument. Will show the claim for Skj ; proof

for Sik is symmetric.

Suppose we could find a set A0
kj

of mutually compatible activities in Skj , where
ˇ
ˇA0

kj

ˇ
ˇ > jAkj j. Then use A0

kj
instead of Akj when solving the subproblem for Sij .

Size of resulting set of mutually compatible activities would be jAikjC
ˇ
ˇA0

kj

ˇ
ˇC1 >

jAikj C jAkj j C 1 D jAj. Contradicts assumption that Aij is optimal. (claim)

One recursive solution

Since optimal solution Aij must include optimal solutions to the subproblems for

Sik and Skj , could solve by dynamic programming.

Let cŒi; j � D size of optimal solution for Sij . Then

cŒi; j � D cŒi; k�C cŒk; j �C 1 :

But we don’t know which activity ak to choose, so we have to try them all:

cŒi; j � D
(

0 if Sij D ; ;

max
ak2Sij

fcŒi; k�C cŒk; j �C 1g if Sij ¤ ; :

Could then develop a recursive algorithm and memoize it. Or could develop a

bottom-up algorithm and fill in table entries.

Instead, we will look at a greedy approach.

Making the greedy choice

Choose an activity to add to optimal solution before solving subproblems. For

activity-selection problem, we can get away with considering only the greedy

choice: the activity that leaves the resource available for as many other activities

as possible.

Question: Which activity leaves the resource available for the most other activities?

Answer: The first activity to finish. (If more than one activity has earliest finish

time, can choose any such activity.)

Since activities are sorted by finish time, just choose activity a1.

That leaves only one subproblem to solve: finding a maximum size set of mutually

compatible activities that start after a1 finishes. (Don’t have to worry about activ-

ities that finish before a1 starts, because s1 < f1 and no activity ai has finish time

fi < f1) no activity ai has fi � s1.)

Since have only subproblem to solve, simplify notation:

Sk D fai 2 S W si � fkg D activities that start after ak finishes :

Making greedy choice of a1 ) S1 remains as only subproblem to solve. [Slight
abuse of notation: referring to Sk not only as a set of activities but as a subproblem
consisting of these activities.]

By optimal substructure, if a1 is in an optimal solution, then an optimal solution to

the original problem consists of a1 plus all activities in an optimal solution to S1.

But need to prove that a1 is always part of some optimal solution.
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Theorem

If Sk is nonempty and am has the earliest finish time in Sk , then am is included in

some optimal solution.

Proof Let Ak be an optimal solution to Sk, and let aj have the earliest finish time

of any activity in Ak. If aj D am, done. Otherwise, let A0
k
D Ak � faj g [ famg

be Ak but with am substituted for aj .

Claim

Activities in A0
k

are disjoint.

Proof Activities in Ak are disjoint, aj is first activity in Ak to finish, and

fm � fj . (claim)

Since jA0
kj D jAkj, conclude that A0

k
is an optimal solution to Sk, and it in-

cludes am. (theorem)

So, don’t need full power of dynamic programming. Don’t need to work bottom-

up.

Instead, can just repeatedly choose the activity that finishes first, keep only the

activities that are compatible with that one, and repeat until no activities remain.

Can work top-down: make a choice, then solve a subproblem. Don’t have to solve
subproblems before making a choice.

Recursive greedy algorithm

Start and finish times are represented by arrays s and f , where f is assumed to be

already sorted in monotonically increasing order.

To start, add fictitious activity a0 with f0 D 0, so that S0 D S , the entire set of

activities.

Procedure REC-ACTIVITY-SELECTOR takes as parameters the arrays s and f , in-

dex k of current subproblem, and number n of activities in the original problem.

REC-ACTIVITY-SELECTOR.s; f; k; n/

m D k C 1

while m � n and sŒm� < f Œk� // find the first activity in Sk to finish

m D mC 1

if m � n

return famg [ REC-ACTIVITY-SELECTOR.s; f; m; n/

else return ;

Initial call

REC-ACTIVITY-SELECTOR.s; f; 0; n/.
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Idea

The while loop checks akC1; akC2; : : : ; an until it finds an activity am that is com-

patible with ak (need sm � fk).

� If the loop terminates because am is found (m � n), then recursively solve Sm,

and return this solution, along with am.

� If the loop never finds a compatible am (m > n), then just return empty set.

Go through example given earlier. Should get fa1; a3; a6; a8g.

Time

‚.n/—each activity examined exactly once, assuming that activities are already

sorted by finish times.

Iterative greedy algorithm

Can convert the recursive algorithm to an iterative one. It’s already almost tail
recursive.

GREEDY-ACTIVITY-SELECTOR.s; f /

n D s: length

A D fa1g
k D 1

for m D 2 to n

if sŒm� � f Œk�

A D A [ famg
k D m

return A

Go through example given earlier. Should again get fa1; a3; a6; a8g.

Time

‚.n/, if activities are already sorted by finish times.

For both the recursive and iterative algorithms, add O.n lg n/ time if activities need

to be sorted.

Greedy strategy

The choice that seems best at the moment is the one we go with.

What did we do for activity selection?

1. Determine the optimal substructure.

2. Develop a recursive solution.

3. Show that if we make the greedy choice, only one subproblem remains.
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4. Prove that it’s always safe to make the greedy choice.

5. Develop a recursive greedy algorithm.

6. Convert it to an iterative algorithm.

At first, it looked like dynamic programming. In the activity-selection problem, we

started out by defining subproblems Sij , where both i and j varied. But then found
that making the greedy choice allowed us to restrict the subproblems to be of the

form Sk.

Could instead have gone straight for the greedy approach: in our first crack at

defining subproblems, use the Sk form. Could then have proven that the greedy

choice am (the first activity to finish), combined with optimal solution to the re-

maining compatible activities Sm, gives an optimal solution to Sk.

Typically, we streamline these steps:

1. Cast the optimization problem as one in which we make a choice and are left

with one subproblem to solve.

2. Prove that there’s always an optimal solution that makes the greedy choice, so

that the greedy choice is always safe.

3. Demonstrate optimal substructure by showing that, having made the greedy

choice, combining an optimal solution to the remaining subproblem with the

greedy choice gives an optimal solution to the original problem.

No general way to tell whether a greedy algorithm is optimal, but two key ingredi-

ents are

1. greedy-choice property and

2. optimal substructure.

Greedy-choice property

Can assemble a globally optimal solution by making locally optimal (greedy)

choices.

Dynamic programming

� Make a choice at each step.

� Choice depends on knowing optimal solutions to subproblems. Solve subprob-

lems first.

� Solve bottom-up.

Greedy

� Make a choice at each step.

� Make the choice before solving the subproblems.

� Solve top-down.

Typically show the greedy-choice property by what we did for activity selection:

� Look at an optimal solution.
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� If it includes the greedy choice, done.

� Otherwise, modify the optimal solution to include the greedy choice, yielding

another solution that’s just as good.

Can get efficiency gains from greedy-choice property.

� Preprocess input to put it into greedy order.

� Or, if dynamic data, use a priority queue.

Optimal substructure

Just show that optimal solution to subproblem and greedy choice) optimal solu-

tion to problem.

Greedy vs. dynamic programming

The knapsack problem is a good example of the difference.

0-1 knapsack problem

� n items.

� Item i is worth $�i , weighs wi pounds.

� Find a most valuable subset of items with total weight � W .

� Have to either take an item or not take it—can’t take part of it.

Fractional knapsack problem

Like the 0-1 knapsack problem, but can take fraction of an item.

Both have optimal substructure.

But the fractional knapsack problem has the greedy-choice property, and the 0-1

knapsack problem does not.

To solve the fractional problem, rank items by value/weight: �i=wi . Let

�i=wi � �iC1=wiC1 for all i . Take items in decreasing order of value/weight. Will

take all of the items with the greatest value/weight, and possibly a fraction of the

next item.

FRACTIONAL-KNAPSACK.�; w; W /

load D 0

i D 1

while load < W and i � n

if wi � W � load

take all of item i

else take .W � load/=wi of item i

add what was taken to load

i D i C 1
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Time: O.n lg n/ to sort, O.n/ thereafter.

Greedy doesn’t work for the 0-1 knapsack problem. Might get empty space, which

lowers the average value per pound of the items taken.

i 1 2 3

�i 60 100 120

wi 10 20 30

�i=wi 6 5 4

W D 50.

Greedy solution:

� Take items 1 and 2.

� value D 160, weight D 30.

Have 20 pounds of capacity left over.

Optimal solution:

� Take items 2 and 3.

� value D 220, weight D 50.

No leftover capacity.
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Greedy Algorithms

Solution to Exercise 16.1-1

The tricky part is determining which activities are in the set Sij . If activity k is
in Sij , then we must have i < k < j , which means that j � i � 2, but we must

also have that fi � sk and fk � sj . If we start k at j � 1 and decrement k, we can

stop once k reaches i , but we can also stop once we find that fk � fi , since then

activities i C 1 through k cannot be compatible with activity i .

We create two fictitious activities, a0 with f0 D 0 and anC1 with snC1 D 1.

We are interested in a maximum-size set A0;nC1 of mutually compatible activities

in S0;nC1. We’ll use tables cŒ0 : : nC 1; 0 : : nC 1�, as in recurrence (16.2) (so that

cŒi; j � D jAij j), and actŒ0 : : nC 1; 0 : : nC 1�, where actŒi; j � is the activity k that

we choose to put into Aij .

We fill the tables in according to increasing difference j � i , which we denote by l

in the pseudocode. Since Sij D ; if j � i < 2, we initialize cŒi; i � D 0 for all i

and cŒi; i C 1� D 0 for 0 � i � n. As in RECURSIVE-ACTIVITY-SELECTOR and

GREEDY-ACTIVITY-SELECTOR, the start and finish times are given as arrays s

and f , where we assume that the arrays already include the two fictitious activities

and that the activities are sorted by monotonically increasing finish time.
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DYNAMIC-ACTIVITY-SELECTOR.s; f; n/

let cŒ0 : : nC 1; 0 : : nC 1� and actŒ0 : : nC 1; 0 : : nC 1� be new tables

for i D 0 to n

cŒi; i � D 0

cŒi; i C 1� D 0

cŒnC 1; nC 1� D 0

for l D 2 to nC 1

for i D 0 to n � l C 1

j D i C l

cŒi; j � D 0

k D j � 1

while f Œi � < f Œk�

if f Œi � � sŒk� and f Œk� � sŒj � and cŒi; k�C cŒk; j �C 1 > cŒi; j �

cŒi; j � D cŒi; k�C cŒk; j �C 1

actŒi; j � D k

k D k � 1

print “A maximum size set of mutually compatible activities has size ” cŒ0; nC 1�

print “The set contains ”

PRINT-ACTIVITIES.c; act; 0; nC 1/

PRINT-ACTIVITIES.c; act; i; j /

if cŒi; j � > 0

k D actŒi; j �

print k

PRINT-ACTIVITIES.c; act; i; k/

PRINT-ACTIVITIES.c; act; k; j /

The PRINT-ACTIVITIES procedure recursively prints the set of activities placed

into the optimal solution Aij . It first prints the activity k that achieved the maxi-

mum value of cŒi; j �, and then it recurses to print the activities in Aik and Akj . The

recursion bottoms out when cŒi; j � D 0, so that Aij D ;.
Whereas GREEDY-ACTIVITY-SELECTOR runs in ‚.n/ time, the DYNAMIC-

ACTIVITY-SELECTOR procedure runs in O.n3/ time.

Solution to Exercise 16.1-2

The proposed approach—selecting the last activity to start that is compatible with

all previously selected activities—is really the greedy algorithm but starting from

the end rather than the beginning.

Another way to look at it is as follows. We are given a set S D fa1; a2; : : : ; ang
of activities, where ai D Œsi ; fi /, and we propose to find an optimal solution by

selecting the last activity to start that is compatible with all previously selected

activities. Instead, let us create a set S 0 D fa0
1; a0

2; : : : ; a0
ng, where a0

i D Œfi ; si /.

That is, a0
i is ai in reverse. Clearly, a subset of fai1; ai2 ; : : : ; aik g � S is mutually

compatible if and only if the corresponding subset
˚

a0
i1

; a0
i2

; : : : ; a0
ik

	

� S 0 is also
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mutually compatible. Thus, an optimal solution for S maps directly to an optimal

solution for S 0 and vice versa.

The proposed approach of selecting the last activity to start that is compatible with

all previously selected activities, when run on S , gives the same answer as the

greedy algorithm from the text—selecting the first activity to finish that is compat-

ible with all previously selected activities—when run on S 0. The solution that the

proposed approach finds for S corresponds to the solution that the text’s greedy

algorithm finds for S 0, and so it is optimal.

Solution to Exercise 16.1-3

� For the approach of selecting the activity of least duration from those that are

compatible with previously selected activities:

i 1 2 3

si 0 2 3

fi 3 4 6

duration 3 2 3

This approach selects just fa2g, but the optimal solution selects fa1; a3g.
� For the approach of always selecting the compatible activity that overlaps the

fewest other remaining activities:

i 1 2 3 4 5 6 7 8 9 10 11

si 0 1 1 1 2 3 4 5 5 5 6

fi 2 3 3 3 4 5 6 7 7 7 8

# of overlapping activities 3 4 4 4 4 2 4 4 4 4 3

This approach first selects a6, and after that choice it can select only two other

activities (one of a1; a2; a3; a4 and one of a8; a9; a10; a11). An optimal solution

is fa1; a5; a7; a11g.
� For the approach of always selecting the compatible remaining activity with

the earliest start time, just add one more activity with the interval Œ0; 14/ to

the example in Section 16.1. It will be the first activity selected, and no other

activities are compatible with it.

Solution to Exercise 16.1-4

This solution is also posted publicly

Let S be the set of n activities.

The “obvious” solution of using GREEDY-ACTIVITY-SELECTOR to find a maxi-

mum-size set S1 of compatible activities from S for the first lecture hall, then using

it again to find a maximum-size set S2 of compatible activities from S �S1 for the

second hall, (and so on until all the activities are assigned), requires ‚.n2/ time

in the worst case. Moreover, it can produce a result that uses more lecture halls
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than necessary. Consider activities with the intervals fŒ1; 4/; Œ2; 5/; Œ6; 7/; Œ4; 8/g.
GREEDY-ACTIVITY-SELECTOR would choose the activities with intervals Œ1; 4/

and Œ6; 7/ for the first lecture hall, and then each of the activities with intervals

Œ2; 5/ and Œ4; 8/ would have to go into its own hall, for a total of three halls used.

An optimal solution would put the activities with intervals Œ1; 4/ and Œ4; 8/ into one

hall and the activities with intervals Œ2; 5/ and Œ6; 7/ into another hall, for only two

halls used.

There is a correct algorithm, however, whose asymptotic time is just the time

needed to sort the activities by time—O.n lg n/ time for arbitrary times, or pos-

sibly as fast as O.n/ if the times are small integers.

The general idea is to go through the activities in order of start time, assigning

each to any hall that is available at that time. To do this, move through the set

of events consisting of activities starting and activities finishing, in order of event

time. Maintain two lists of lecture halls: Halls that are busy at the current event-
time t (because they have been assigned an activity i that started at si � t but

won’t finish until fi > t) and halls that are free at time t . (As in the activity-

selection problem in Section 16.1, we are assuming that activity time intervals are

half open—i.e., that if si � fj , then activities i and j are compatible.) When t

is the start time of some activity, assign that activity to a free hall and move the

hall from the free list to the busy list. When t is the finish time of some activity,

move the activity’s hall from the busy list to the free list. (The activity is certainly

in some hall, because the event times are processed in order and the activity must

have started before its finish time t , hence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick a hall that has already had

an activity assigned to it, if possible, before picking a never-used hall. (This can be

done by always working at the front of the free-halls list—putting freed halls onto

the front of the list and taking halls from the front of the list—so that a new hall

doesn’t come to the front and get chosen if there are previously-used halls.)

This guarantees that the algorithm uses as few lecture halls as possible: The algo-

rithm will terminate with a schedule requiring m � n lecture halls. Let activity i

be the first activity scheduled in lecture hall m. The reason that i was put in the

mth lecture hall is that the first m � 1 lecture halls were busy at time si . So at this

time there are m activities occurring simultaneously. Therefore any schedule must

use at least m lecture halls, so the schedule returned by the algorithm is optimal.

Run time:

� Sort the 2n activity-starts/activity-ends events. (In the sorted order, an activity-

ending event should precede an activity-starting event that is at the same time.)

O.n lg n/ time for arbitrary times, possibly O.n/ if the times are restricted (e.g.,

to small integers).

� Process the events in O.n/ time: Scan the 2n events, doing O.1/ work for each

(moving a hall from one list to the other and possibly associating an activity

with it).

Total: O.nC time to sort/

[The idea of this algorithm is related to the rectangle-overlap algorithm in Exer-
cise 14.3-7.]
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Solution to Exercise 16.1-5

We can no longer use the greedy algorithm to solve this problem. However, as we

show, the problem still has an optimal substructure which allows us to formulate a
dynamic programming solution. The analysis here follows closely the analysis of

Section 16.1 in the book. We define the value of a set of compatible events as the

sum of values of events in that set. Let Sij be defined as in Section 16.1. An optimal

solution to Sij is a subset of mutually compatible events of Sij that has maximum

value. Let Aij be an optimal solution to Sij . Suppose Aij includes an event ak. Let

Aik and Akj be defined as in Section 16.1. Thus, we have Aij D Aik[fakg[Akj ,

and so the value of maximum-value set Aij is equal to the value of Aik plus the

value of Akj plus �k.

The usual cut-and-paste argument shows that the optimal solution Aij must also

include optimal solutions to the two subproblems for Sik and Skj . If we could find

a set A0
kj

of mutually compatible activities in Skj where the value of A0
kj

is greater

than the value of Akj , then we could use A0
kj

, rather than Akj , in a solution to

the subproblem for Sij . We would have constructed a set of mutually compatible

activities with greater value than that of Aij , which contradicts the assumption that

Aij is an optimal solution. A symmetric argument applies to the activities in Sik.

Let us denote the value of an optimal solution for the set Sij by �alŒi; j �. Then, we

would have the recurrence

�alŒi; j � D �alŒi; k�C �alŒk; j �C �k :

Of course, since we do not know that an optimal solution for the set Sij includes

activity ak, we would have to examine all activities in Sij to find which one to

choose, so that

�alŒi; j � D
(

0 if Sij D ; ;

max
ak2Sij

f�alŒi; k�C �alŒk; j �C �kg if Sij ¤ ; :

While implementing the recurrence, the tricky part is determining which activities

are in the set Sij . If activity k is in Sij , then we must have i < k < j , which means

that j � i � 2, but we must also have that fi � sk and fk � sj . If we start k at
j � 1 and decrement k, we can stop once k reaches i , but we can also stop once

we find that fk � fi , since then activities i C 1 through k cannot be compatible

with activity i .

We create two fictitious activities, a0 with f0 D 0 and anC1 with snC1 D 1.

We are interested in a maximum-size set A0;nC1 of mutually compatible activities

in S0;nC1. We’ll use tables �alŒ0 : : n C 1; 0 : : n C 1�, as in the recurrence, and
actŒ0 : : n C 1; 0 : : n C 1�, where actŒi; j � is the activity k that we choose to put

into Aij .

We fill the tables in according to increasing difference j � i , which we denote by l

in the pseudocode. Since Sij D ; if j � i < 2, we initialize �alŒi; i � D 0 for all i

and �alŒi; i C 1� D 0 for 0 � i � n. As in RECURSIVE-ACTIVITY-SELECTOR

and GREEDY-ACTIVITY-SELECTOR, the start and finish times are given as arrays s

and f , where we assume that the arrays already include the two fictitious activities
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and that the activities are sorted by monotonically increasing finish time. The

array � specifies the value of each activity.

MAX-VALUE-ACTIVITY-SELECTOR.s; f; �; n/

let �alŒ0 : : nC 1; 0 : : nC 1� and actŒ0 : : nC 1; 0 : : nC 1� be new tables

for i D 0 to n

�alŒi; i � D 0

�alŒi; i C 1� D 0

�alŒnC 1; nC 1� D 0

for l D 2 to nC 1

for i D 0 to n � l C 1

j D i C l

�alŒi; j � D 0

k D j � 1

while f Œi � < f Œk�

if f Œi � � sŒk� and f Œk� � sŒj � and

�alŒi; k�C �alŒk; j �C �k > �alŒi; j �

�alŒi; j � D �alŒi; k�C �alŒk; j �C �k

actŒi; j � D k

k D k � 1

print “A maximum-value set of mutually compatible activities has value ”

�alŒ0; nC 1�

print “The set contains ”

PRINT-ACTIVITIES.�al; act; 0; nC 1/

PRINT-ACTIVITIES.�al; act; i; j /

if �alŒi; j � > 0

k D actŒi; j �

print k

PRINT-ACTIVITIES.�al; act; i; k/

PRINT-ACTIVITIES.�al; act; k; j /

The PRINT-ACTIVITIES procedure recursively prints the set of activities placed

into the optimal solution Aij . It first prints the activity k that achieved the maxi-

mum value of �alŒi; j �, and then it recurses to print the activities in Aik and Akj .

The recursion bottoms out when �alŒi; j � D 0, so that Aij D ;.
Whereas GREEDY-ACTIVITY-SELECTOR runs in ‚.n/ time, the MAX-VALUE-

ACTIVITY-SELECTOR procedure runs in O.n3/ time.

Solution to Exercise 16.2-2

This solution is also posted publicly

The solution is based on the optimal-substructure observation in the text: Let i

be the highest-numbered item in an optimal solution S for W pounds and items

1; : : : ; n. Then S 0 D S � fig must be an optimal solution for W � wi pounds

and items 1; : : : ; i � 1, and the value of the solution S is �i plus the value of the

subproblem solution S 0.
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We can express this relationship in the following formula: Define cŒi; w� to be the

value of the solution for items 1; : : : ; i and maximum weight w. Then

cŒi; w� D

�
0 if i D 0 or w D 0 ;

cŒi � 1; w� if wi > w ;

max.�i C cŒi � 1; w � wi �; cŒi � 1; w�/ if i > 0 and w � wi :

The last case says that the value of a solution for i items either includes item i ,

in which case it is �i plus a subproblem solution for i � 1 items and the weight

excluding wi , or doesn’t include item i , in which case it is a subproblem solution

for i � 1 items and the same weight. That is, if the thief picks item i , he takes �i

value, and he can choose from items 1; : : : ; i � 1 up to the weight limit w � wi ,

and get cŒi � 1; w � wi � additional value. On the other hand, if he decides not to

take item i , he can choose from items 1; : : : ; i �1 up to the weight limit w, and get

cŒi � 1; w� value. The better of these two choices should be made.

The algorithm takes as inputs the maximum weight W , the number of items n, and

the two sequences � D h�1; �2; : : : ; �ni and w D hw1; w2; : : : ; wni. It stores the

cŒi; j � values in a table cŒ0 : : n; 0 : : W � whose entries are computed in row-major

order. (That is, the first row of c is filled in from left to right, then the second row,

and so on.) At the end of the computation, cŒn; W � contains the maximum value
the thief can take.

DYNAMIC-0-1-KNAPSACK.�; w; n; W /

let cŒ0 : : n; 0 : : W � be a new array

for w D 0 to W

cŒ0; w� D 0

for i D 1 to n

cŒi; 0� D 0

for w D 1 to W

if wi � w

if �i C cŒi � 1; w � wi � > cŒi � 1; w�

cŒi; w� D �i C cŒi � 1; w � wi �

else cŒi; w� D cŒi � 1; w�

else cŒi; w� D cŒi � 1; w�

We can use the c table to deduce the set of items to take by starting at cŒn; W � and

tracing where the optimal values came from. If cŒi; w� D cŒi �1; w�, then item i is

not part of the solution, and we continue tracing with cŒi � 1; w�. Otherwise item i

is part of the solution, and we continue tracing with cŒi � 1; w � wi �.

The above algorithm takes ‚.nW / time total:

� ‚.nW / to fill in the c table: .nC1/ � .W C1/ entries, each requiring ‚.1/ time

to compute.

� O.n/ time to trace the solution (since it starts in row n of the table and moves

up one row at each step).
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Solution to Exercise 16.2-4

The optimal strategy is the obvious greedy one. Starting with both bottles full,

Professor Gekko should go to the westernmost place that he can refill his bottles

within m miles of Grand Forks. Fill up there. Then go to the westernmost refilling

location he can get to within m miles of where he filled up, fill up there, and so on.

Looked at another way, at each refilling location, Professor Gekko should check

whether he can make it to the next refilling location without stopping at this one.

If he can, skip this one. If he cannot, then fill up. Professor Gekko doesn’t need to

know how much water he has or how far the next refilling location is to implement

this approach, since at each fillup, he can determine which is the next location at

which he’ll need to stop.

This problem has optimal substructure. Suppose there are n possible refilling loca-

tions. Consider an optimal solution with s refilling locations and whose first stop
is at the kth location. Then the rest of the optimal solution must be an optimal

solution to the subproblem of the remaining n � k stations. Otherwise, if there

were a better solution to the subproblem, i.e., one with fewer than s � 1 stops, we

could use it to come up with a solution with fewer than s stops for the full problem,

contradicting our supposition of optimality.

This problem also has the greedy-choice property. Suppose there are k refilling

locations beyond the start that are within m miles of the start. The greedy solution

chooses the kth location as its first stop. No station beyond the kth works as a first

stop, since Professor Gekko would run out of water first. If a solution chooses a

location j < k as its first stop, then Professor Gekko could choose the kth location

instead, having at least as much water when he leaves the kth location as if he’d

chosen the j th location. Therefore, he would get at least as far without filling up

again if he had chosen the kth location.

If there are n refilling locations on the map, Professor Gekko needs to inspect each

one just once. The running time is O.n/.

Solution to Exercise 16.2-6

Use a linear-time median algorithm to calculate the median m of the �i=wi ra-

tios. Next, partition the items into three sets: G D fi W �i=wi > mg, E D
fi W �i=wi D mg, and L D fi W �i=wi < mg; this step takes linear time. Com-

pute WG D
P

i2G wi and WE D
P

i2E wi , the total weight of the items in sets G

and E, respectively.

� If WG > W , then do not yet take any items in set G, and instead recurse on the

set of items G and knapsack capacity W .
� Otherwise (WG � W ), take all items in set G, and take as much of the items in

set E as will fit in the remaining capacity W �WG .
� If WG C WE � W (i.e., there is no capacity left after taking all the items in

set G and all the items in set E that fit in the remaining capacity W �WG), then

we are done.
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� Otherwise (WG C WE < W ), then after taking all the items in sets G and E,

recurse on the set of items L and knapsack capacity W �WG �WE .

To analyze this algorithm, note that each recursive call takes linear time, exclusive

of the time for a recursive call that it may make. When there is a recursive call, there

is just one, and it’s for a problem of at most half the size. Thus, the running time is

given by the recurrence T .n/ � T .n=2/C‚.n/, whose solution is T .n/ D O.n/.

Solution to Exercise 16.2-7

This solution is also posted publicly

Sort A and B into monotonically decreasing order.

Here’s a proof that this method yields an optimal solution. Consider any indices i

and j such that i < j , and consider the terms ai
bi and aj

bj . We want to show that

it is no worse to include these terms in the payoff than to include ai
bj and aj

bi , i.e.,

that ai
bi aj

bj � ai
bj aj

bi . Since A and B are sorted into monotonically decreasing

order and i < j , we have ai � aj and bi � bj . Since ai and aj are positive
and bi � bj is nonnegative, we have ai

bi �bj � aj
bi �bj . Multiplying both sides by

ai
bj aj

bj yields ai
bi aj

bj � ai
bj aj

bi .

Since the order of multiplication doesn’t matter, sorting A and B into monotoni-

cally increasing order works as well.

Solution to Exercise 16.3-1

We are given that x: freq � y: freq are the two lowest frequencies in order, and that

a: freq � b: freq. Now,

b: freq D x: freq

) a: freq � x: freq

) a: freq D x: freq (since x: freq is the lowest frequency) ,

and since y: freq � b: freq,

b: freq D x: freq

) y: freq � x: freq

) y: freq D x: freq (since x: freq is the lowest frequency) .

Thus, if we assume that x: freq D b: freq, then we have that each of a: freq, b: freq,

and y: freq equals x: freq, and so a: freq D b: freq D x: freq D y: freq.

Solution to Exercise 16.4-2

We need to show three things to prove that .S; 	 / is a matroid:

1. S is finite. That’s because S is the set of of m columns of matrix T .
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2. 	 is hereditary. That’s because if B 2 	 , then the columns in B are linearly in-

dependent. If A � B , then the columns of A must also be linearly independent,

and so A 2 	 .

3. .S; 	 / satisfies the exchange property. To see why, let us suppose that A; B 2 	

and jAj < jBj.
We will use the following properties of matrices:

� The rank of a matrix is the number of columns in a maximal set of linearly

independent columns (see page 1223 of the text). The rank is also equal to

the dimension of the column space of the matrix.
� If the column space of matrix B is a subspace of the column space of ma-

trix A, then rank.B/ � rank.A/.

Because the columns in A are linearly independent, if we take just these

columns as a matrix A, we have that rank.A/ D jAj. Similarly, if we take

the columns of B as a matrix B , we have rank.B/ D jBj. Since jAj < jBj, we

have rank.A/ < rank.B/.

We shall show that there is some column b 2 B that is not a linear combination

of the columns in A, and so A[fbg is linearly independent. The proof proceeds

by contradiction. Assume that each column in B is a linear combination of

the columns of A. That means that any vector that is a linear combination

of the columns of B is also a linear combination of the columns of A, and

so, treating the columns of A and B as matrices, the column space of B is a

subspace of the column space of A. By the second property above, we have

rank.B/ � rank.A/. But we have already shown that rank.A/ < rank.B/, a

contradiction. Therefore, some column in B is not a linear combination of the
columns of A, and .S; 	 / satisfies the exchange property.

Solution to Exercise 16.4-3

[This exercise defines what is commonly known as the dual of a matroid, and it
asks to prove that the dual of a matroid is itself a matroid. The literature contains
simpler proofs of this fact, but they depend on other (equivalent) definitions of
a matroid. The proof given here is more complicated, but it relies only on the
definition given in the text.]

We need to show three things to prove that .S; 	
0/ is a matroid:

1. S is finite. We are given that.

2. 	
0 is hereditary. Suppose that B 0 2 	

0 and A0 � B 0. Since B 0 2 	
0, there is

some maximal set B 2 	 such that B � S � B 0. But A0 � B 0 implies that

S �B 0 � S �A0, and so B � S �B 0 � S �A0. Thus, there exists a maximal
set B 2 	 such that B � S � A0, proving that A0 2 	

0.

3. .S; 	
0/ satisfies the exchange property. We start with two preliminary facts

about sets. The proofs of these facts are omitted.

Fact 1: jX � Y j D jX j � jX \ Y j.
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Fact 2: Let S be the universe of elements. If X �Y � Z and Z � S �Y , then

jX \Zj D jX j � jX \ Y j.
To show that .S; 	

0/ satisfies the exchange property, let us assume that A0 2 	
0,

B 0 2 	
0, and that jA0j < jB 0j. We need to show that there exists some x 2

B 0 � A0 such that A0 [ fxg 2 	
0. Because A0 2 	

0 and B 0 2 	
0, there are

maximal sets A � S � A0 and B � S � B 0 such that A 2 	 and B 2 	 .

Define the set X D B 0 � A0 � A, so that X consists of elements in B 0 but not

in A0 or A.

If X is nonempty, then let x be any element of X . By how we defined set X ,

we know that x 2 B 0 and x 62 A0, so that x 2 B 0 � A0. Since x 62 A, we also

have that A � S � A0 � fxg D S � .A0 [ fxg/, and so A0 [ fxg 2 	
0.

If X is empty, the situation is more complicated. Because jA0j < jB 0j, we have

that B 0 � A0 ¤ ;, and so X being empty means that B 0 � A0 � A.

Claim

There is an element y 2 B � A0 such that .A � B 0/ [ fyg 2 	 .

Proof First, observe that because A�B 0 � A and A 2 	 , we have that A�B 0 2
	 . Similarly, B � A0 � B and B 2 	 , and so B � A0 2 	 . If we show

that jA � B 0j < jB � A0j, the assumption that .S; 	 / is a matroid proves the
existence of y.

Because B 0 � A0 � A and A � S � A0, we can apply Fact 2 to conclude

that jB 0 \ Aj D jB 0j � jB 0 \ A0j. We claim that jB \ A0j � jA0 � B 0j. To
see why, observe that A0 � B 0 D A0 \ .S � B 0/ and B � S � B 0, and so

B \ A0 � .S � B 0/ \ A0 D A0 \ .S � B 0/ D A0 � B 0. Applying Fact 1, we

see that jA0 � B 0j D jA0j� jA0 \ B 0j D jA0j� jB 0 \ A0j, and hence jB \ A0j �
jA0j � jB 0 \ A0j.
Now, we have

jA0j < jB 0j (by assumption)

jA0j � jB 0 \ A0j < jB 0j � jB 0 \ A0j (subtracting same quantity)

jB \ A0j < jB 0j � jB 0 \ A0j (jB \ A0j � jA0j � jB 0 \ A0j)
jB \ A0j < jB 0 \ Aj (jB 0 \ Aj D jB 0j � jB 0 \ A0j)

jBj � jB \ A0j > jAj � jB 0 \ Aj (jAj D jBj)
jB � A0j > jA � B 0j (Fact 1) (claim)

Now we know there is an element y 2 B � A0 such that .A � B 0/ [ fyg 2 	 .

Moreover, we claim that y 62 A. To see why, we know that by the exchange

property, we can, without loss of generality, choose y so that y 62 A � B 0. In

order for y to be in A, it would have to be in A\ B 0. But y 2 B , which means

that y 62 B 0, and hence y 62 A \ B 0. Therefore y 62 A.

Applying the exchange property, we add such an element y in B�A0 to A�B 0,
maintaining that the set we get, say C , is in 	 . Then we keep applying the

exchange property, adding a new element in A�C to C , maintaining that C is

in 	 , until jC j D jAj. Once jC j D jAj, there must exist some element x 2 A
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that we have not added into C . We know that such an element exists because

the element y that we first added into C was not in A, and so some element x

in A must be left over. Also, we must have x 2 B 0 because all the elements

in A � B 0 are initially in C . Therefore, we have x 2 B 0 � A0.

The set C so constructed is maximal, because it has the same cardinality as A,

which is maximal, and C 2 	 . All the elements but one in C are also in A;

the one exception is in B � A0, and so C contains no elements in A0. Because

we never added x to C , we have that C � S � A0 � fxg D S � .A0 [ fxg/.
Therefore, A0 [ fxg 2 	

0, as we needed to show.

Solution to Problem 16-1

Before we go into the various parts of this problem, let us first prove once and for
all that the coin-changing problem has optimal substructure.

Suppose we have an optimal solution for a problem of making change for n cents,

and we know that this optimal solution uses a coin whose value is c cents; let this
optimal solution use k coins. We claim that this optimal solution for the problem

of n cents must contain within it an optimal solution for the problem of n�c cents.

We use the usual cut-and-paste argument. Clearly, there are k � 1 coins in the

solution to the n� c cents problem used within our optimal solution to the n cents

problem. If we had a solution to the n� c cents problem that used fewer than k�1

coins, then we could use this solution to produce a solution to the n cents problem

that uses fewer than k coins, which contradicts the optimality of our solution.

a. A greedy algorithm to make change using quarters, dimes, nickels, and pennies

works as follows:

� Give q D bn=25c quarters. That leaves nq D n mod 25 cents to make

change.
� Then give d D bnq=10c dimes. That leaves nd D nq mod 10 cents to make

change.
� Then give k D bnd =5c nickels. That leaves nk D nd mod 5 cents to make

change.
� Finally, give p D nk pennies.

An equivalent formulation is the following. The problem we wish to solve is

making change for n cents. If n D 0, the optimal solution is to give no coins.

If n > 0, determine the largest coin whose value is less than or equal to n.

Let this coin have value c. Give one such coin, and then recursively solve the

subproblem of making change for n � c cents.

To prove that this algorithm yields an optimal solution, we first need to show

that the greedy-choice property holds, that is, that some optimal solution to

making change for n cents includes one coin of value c, where c is the largest

coin value such that c � n. Consider some optimal solution. If this optimal

solution includes a coin of value c, then we are done. Otherwise, this optimal

solution does not include a coin of value c. We have four cases to consider:
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� If 1 � n < 5, then c D 1. A solution may consist only of pennies, and so it

must contain the greedy choice.
� If 5 � n < 10, then c D 5. By supposition, this optimal solution does not

contain a nickel, and so it consists of only pennies. Replace five pennies by

one nickel to give a solution with four fewer coins.
� If 10 � n < 25, then c D 10. By supposition, this optimal solution does not

contain a dime, and so it contains only nickels and pennies. Some subset of

the nickels and pennies in this solution adds up to 10 cents, and so we can

replace these nickels and pennies by a dime to give a solution with (between

1 and 9) fewer coins.
� If 25 � n, then c D 25. By supposition, this optimal solution does not

contain a quarter, and so it contains only dimes, nickels, and pennies. If

it contains three dimes, we can replace these three dimes by a quarter and

a nickel, giving a solution with one fewer coin. If it contains at most two

dimes, then some subset of the dimes, nickels, and pennies adds up to 25

cents, and so we can replace these coins by one quarter to give a solution

with fewer coins.

Thus, we have shown that there is always an optimal solution that includes the

greedy choice, and that we can combine the greedy choice with an optimal solu-

tion to the remaining subproblem to produce an optimal solution to our original

problem. Therefore, the greedy algorithm produces an optimal solution.

For the algorithm that chooses one coin at a time and then recurses on sub-

problems, the running time is ‚.k/, where k is the number of coins used in
an optimal solution. Since k � n, the running time is O.n/. For our first de-

scription of the algorithm, we perform a constant number of calculations (since

there are only 4 coin types), and the running time is O.1/.

b. When the coin denominations are c0; c1; : : : ; ck, the greedy algorithm to make

change for n cents works by finding the denomination cj such that j D
max f0 � i � k W ci � ng, giving one coin of denomination cj , and recurs-

ing on the subproblem of making change for n � cj cents. (An equivalent,

but more efficient, algorithm is to give
�

n=ck
˘

coins of denomination ck and

b.n mod ciC1/=cic coins of denomination ci for i D 0; 1; : : : ; k � 1.)

To show that the greedy algorithm produces an optimal solution, we start by

proving the following lemma:

Lemma

For i D 0; 1; : : : ; k, let ai be the number of coins of denomination ci used

in an optimal solution to the problem of making change for n cents. Then for
i D 0; 1; : : : ; k � 1, we have ai < c.

Proof If ai � c for some 0 � i < k, then we can improve the solution by using

one more coin of denomination ciC1 and c fewer coins of denomination ci . The

amount for which we make change remains the same, but we use c � 1 > 0

fewer coins. (lemma)

To show that the greedy solution is optimal, we show that any non-greedy so-

lution is not optimal. As above, let j D max f0 � i � k W ci � ng, so that the
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greedy solution uses at least one coin of denomination cj . Consider a non-

greedy solution, which must use no coins of denomination cj or higher. Let the

non-greedy solution use ai coins of denomination ci , for i D 0; 1; : : : ; j � 1;

thus we have
Pj �1

iD0 aic
i D n. Since n � cj , we have that

Pj �1

iD0 aic
i � cj .

Now suppose that the non-greedy solution is optimal. By the above lemma,

ai � c � 1 for i D 0; 1; : : : ; j � 1. Thus,
j �1
X

iD0

aic
i �

j �1
X

iD0

.c � 1/ci

D .c � 1/

j �1
X

iD0

ci

D .c � 1/
cj � 1

c � 1

D cj � 1

< cj ;

which contradicts our earlier assertion that
Pj �1

iD0 aic
i � cj . We conclude that

the non-greedy solution is not optimal.

Since any algorithm that does not produce the greedy solution fails to be opti-

mal, only the greedy algorithm produces the optimal solution.

The problem did not ask for the running time, but for the more efficient greedy-

algorithm formulation, it is easy to see that the running time is O.k/, since we

have to perform at most k each of the division, floor, and mod operations.

c. With actual U.S. coins, we can use coins of denomination 1, 10, and 25. When

n D 30 cents, the greedy solution gives one quarter and five pennies, for a total

of six coins. The non-greedy solution of three dimes is better.

The smallest integer numbers we can use are 1, 3, and 4. When n D 6 cents,

the greedy solution gives one 4-cent coin and two 1-cent coins, for a total of

three coins. The non-greedy solution of two 3-cent coins is better.

d. Since we have optimal substructure, dynamic programming might apply. And

indeed it does.

Let us define cŒj � to be the minimum number of coins we need to make change

for j cents. Let the coin denominations be d1; d2; : : : ; dk . Since one of the

coins is a penny, there is a way to make change for any amount j � 1.

Because of the optimal substructure, if we knew that an optimal solution for

the problem of making change for j cents used a coin of denomination di , we

would have cŒj � D 1C cŒj � di �. As base cases, we have that cŒj � D 0 for all

j � 0.

To develop a recursive formulation, we have to check all denominations, giving

cŒj � D
(

0 if j � 0 ;

1C min
1�i�k

fcŒj � di �g if j > 1 :

We can compute the cŒj � values in order of increasing j by using a table. The

following procedure does so, producing a table cŒ1 : : n�. It avoids even exam-

ining cŒj � for j � 0 by ensuring that j � di before looking up cŒj � di �. The
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procedure also produces a table denomŒ1 : : n�, where denomŒj � is the denomi-

nation of a coin used in an optimal solution to the problem of making change

for j cents.

COMPUTE-CHANGE.n; d; k/

let cŒ1 : : n� and denomŒ1 : : n� be new arrays

for j D 1 to n

cŒj � D 1
for i D 1 to k

if j � di and 1C cŒj � di � < cŒj �

cŒj � D 1C cŒj � di �

denomŒj � D di

return c and denom

This procedure obviously runs in O.nk/ time.

We use the following procedure to output the coins used in the optimal solution

computed by COMPUTE-CHANGE:

GIVE-CHANGE.j; denom/

if j > 0

give one coin of denomination denomŒj �

GIVE-CHANGE.j � denomŒj �; denom/

The initial call is GIVE-CHANGE.n; denom/. Since the value of the first pa-

rameter decreases in each recursive call, this procedure runs in O.n/ time.

Solution to Problem 16-5

a. The procedure CACHE-MANAGER is a generic procedure, which initializes a

cache by calling INITIALIZE-CACHE and then calls ACCESS with each data

element in turn. The inputs are a sequence R D hr1; r2; : : : ; rni of memory

requests and a cache size k.

CACHE-MANAGER.R; k/

INITIALIZE-CACHE.R; k/

for i D 1 to n

ACCESS.ri/

The running time of CACHE-MANAGER of course depends heavily on how

ACCESS is implemented. We have several choices for how to implement the

greedy strategy outlined in the problem. A straightforward way of implement-

ing the greedy strategy is that when processing request ri , for each of the at

most k elements currently in the cache, scan through requests riC1; : : : ; rn to

find which of the elements in the cache and ri has its next access furthest in

the future, and evict this element. Because each scan takes O.n/ time, each

request entails O.k/ scans, and there are n requests, the running time of this

straightforward approach is O.kn2/.
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Instead, we describe an asymptotically faster algorithm, which uses a red-black

tree to check whether a given element is currently in the cache, a max-priority

queue to retrieve the data element with the furthest access time, and a hash table

(resolving collisions by chaining) to map data elements to integer indices. We

assume that the data elements can be linearly ordered, so that it makes sense

to put them into a red-black tree and a max-priority queue. The following pro-

cedure INITIALIZE-CACHE creates and initializes some global data structures

that are used by ACCESS.

INITIALIZE-CACHE.R; k/

let T be a new red-black tree

let P be a new max-priority queue
let H be a new hash table

ind D 1

for i D 1 to n

j D HASH-SEARCH.ri/

if j == NIL

HASH-INSERT.ri ; ind/

let Sind be a new linked list

j D ind

ind D ind C 1

append i to Sj

In the above procedure, here is the meaning of various variables:

� The red-black tree T has at most k nodes and holds the distinct data elements

that are currently in the cache. We assume that the red-black tree procedures

are modified to keep track of the number of nodes currently in the tree, and

that the procedure TREE-SIZE returns this value. Because red-black tree T

has at most k nodes, we can insert into, delete from, or search in it in O.lg k/

worst-case time.
� The max-priority queue P contains elements with two attributes: key is the

next access time of a data element, and �alue is the actual data element

for each data element in the cache. key gives the key and �alue is satellite

data in the priority queue. Like the red-black tree T , the max-priority queue

contains only elements currently in the cache. We need to maintain T and P

separately, however, because T is keyed on the data elements and P is keyed

on access times. Using a max-heap to implement P , we can extract the

maximum element or insert a new element in O.lg k/ time, and we can find

the maximum element in ‚.1/ time.
� The hash table H is a dictionary or a map, which maps each data element to a

unique integer. This integer is used to index linked lists, which are described

next. We assume that the HASH-INSERT procedure uses the table-expansion

technique of Section 17.4.1 to keep the hash table’s load factor to be at most

some constant ˛. In this way, the amortized cost per insertion is ‚.1/ and,

under the assumption of simple uniform hashing, then by Theorems 11.1

and 11.2, the average-case search time is also ‚.1/.
� For every distinct data element ri , we create a linked list Sind (where

ind is obtained through the hash table) holding the indices in the in-
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put array where ri occurs. For example, if the input sequence is

hd; b; d; b; d; a; c; d; b; a; c; bi, then we create four linked lists: S1 for a,

S2 for b, S3 for c, and S4 for d . S1 holds the indices where a is accessed,

and so S1 D h6; 10i. Similarly, S2 D h2; 4; 9; 12i, S3 D h7; 11i and

S4 D h1; 3; 5; 8i.

For each data element ri , we first check whether there is already a linked list

associated with ri and create a new linked list if not. We retrieve the linked list

associated with ri and append i to it, indicating that an access to ri occurs at

access i .

ACCESS.ri/

// Compute the next access time for ri .

ind D HASH-SEARCH.ri/

time D 1
delete the head of Sind

if Sind is not empty

time D head of Sind

// Check to see whether ri is currently in the cache.

if TREE-SEARCH.T:root; ri / ¤ NIL

print “cache hit”

elseif TREE-SIZE.T / < k

// Insert in an empty slot in the cache.
let ´ be a new node for T

´:key D ri

RB-INSERT.T; ´/

let e�ent be a new object for P

e�ent :key D time

e�ent :�alue D ri

INSERT.P; e�ent/

print “cache miss, inserted ” ri “ in empty slot”

else e�ent D MAXIMUM.P /

if e�ent :key � time // ri has the furthest access time

print “cache miss, no data element evicted”

else // evict the element with furthest access time

print “cache miss, evict data element ” e�ent :�alue

e�ent D EXTRACT-MAX.P /

RB-DELETE.T; TREE-SEARCH.T:root; e�ent :�alue//

e�ent :key D time

e�ent :�alue D ri

INSERT.P; e�ent/

let ´ be a new node for T

´:key D ri

RB-INSERT.T; ´/

The procedure ACCESS takes an input ri and decides which element to evict,

if any, from the cache. The first if condition properly sets time to the next

access time of ri . The head of the linked list associated with ri contains i ; we

remove this element from the list, and the new head contains the next access
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time for ri . Then, we check to see whether ri is already present in the cache.

If ri is not present in the cache, we check to see whether we can store ri in

an empty slot. If there are no empty slots, we have to evict the element with

the furthest access time. We retrieve the element with the furthest access time

from the max-priority queue and compare it with that of ri . If ri ’s next access

is sooner, we evict the element with the furthest access time from the cache

(deleting the element from the tree and from the priority queue) and insert ri

into the tree and priority queue.

Under the assumption of simple uniform hashing, the average-case running

time of ACCESS is O.lg k/, since it performs a constant number of operations

on the red-black tree, priority queue, and hash table. Thus, the average-case
running time of CACHE-MANAGER is O.n lg k/.

b. To show that the problem exhibits optimal substructure, we define the subprob-

lem .C; i/ as the contents of the cache just before the i th request, where C is a

subset of the set of input data elements containing at most k of them. A solution

to .C; i/ is a sequence of decisions that specifies which element to evict (if any)

for each request i; i C 1; : : : ; n. An optimal solution to .C; i/ is a solution that

minimizes the number of cache misses.

Let S be an optimal solution to .C; i/. Let S 0 be the subsolution of S for

requests i C 1; i C 2; : : : ; n. If a cache hit occurs on the i th request, then the

cache remains unchanged. If a cache miss occurs, then the i th request results in

the contents of the cache changing to C 0 (possibly with C 0 D C if no element

was evicted). We claim that S 0 is an optimal solution to .C 0; iC1/. Why? If S 0

were not an optimal solution to .C 0; iC1/, then there exists another solution S 00

to .C 0; iC1/ that makes fewer cache misses than S 0. By combining S 00 with the

decision of S at the i th request, we obtain another solution that makes fewer

cache misses than S , which contradicts our assumption that S is an optimal

solution to .C; i/.

Suppose the i th request results in a cache miss. Let PC be the set of all cache

states that can be reached from C through a single decision of the cache man-

ager. The set PC contains up to k C 1 states: k of them arising from different

elements of the cache being evicted and one arising from the decision of evict-
ing no element. For example, if C D fr1; r2; r3g and the requested data element

is r4, then PC D ffr1; r2; r3g ; fr1; r2; r4g ; fr1; r3; r4g ; fr2; r3; r4gg.
Let miss.C; i/ denote the minimum number of cache misses for .C; i/. We can
state a recurrence for miss.C; i/ as

miss.C; i/ D

†
0 if i D n and rn 2 C ;

1 if i D n and rn 62 C ;

miss.C; i C 1/ if i < n and ri 2 C ;

1C min
C 02PC

fmiss.C 0; i C 1/g if i < n and ri 62 C :

Thus, we conclude that the problem exhibits optimal substructure.

c. To prove that the furthest-in-future strategy yields an optimal solution, we

show that the problem exhibits the greedy-choice property. Combined with the

optimal-substructure property from part (b), the greedy-choice property will



Solutions for Chapter 16: Greedy Algorithms 16-27

prove that furthest-in-future produces the minimum possible number of cache

misses.

We use the definitions of subproblem, solution, and optimal solution from

part (b). Since we will be comparing different solutions, let us define CAi as

the state of the cache for solution A just before the i th request. The following

theorem is the key.

Theorem (Greedy-choice property)

Let A be some optimal solution to .C; i/. Let b be the element in CAi [ frig
whose next access at the time of the i th request is furthest in the future, at

time m. Then, we can construct another solution A0 to .C; i/ that has the fol-

lowing properties:

1. On the i th request, A0 evicts b.

2. For i C 1 � j � m, the caches CAj and CA0j differ by at most one element.

If they differ, then b 2 CAj is always the element in CAj that is not in CA0j .

Equivalently, if CAj and CA0j differ, we can write CAj D Dj [ fbg and

CA0j D Dj [ fxg, where Dj is a size-(k � 1) set and x ¤ b is some data

element.

3. For requests i; : : : ; m � 1, if A has a cache hit, then A0 has a cache hit.

4. CAj D CA0j for j > m.

5. For requests i; : : : ; m, the number of cache misses produced by A0 is at most

the number of cache misses produced by A.

Proof If A evicts b at request i , then the proof of the theorem is trivial. There-

fore, suppose A evicts data element a on request i , where a ¤ b. We will prove

the theorem by constructing A0 inductively for each request.

(1) At request i , A0 evicts b instead of a.

(2) We proceed with induction on j , where i C 1 � j � m. The construction

for property 1 establishes the base case because CA;iC1 and CA0;iC1 differ by

just one element and b is the element in CA;iC1 that is not in CA0;iC1.

For the induction step, suppose property 2 is true for some request j , where

i C 1 � j < m. If A does not evict any element or evicts an element in Dj ,

then construct A0 to make the same decision on request j as A makes. If A

evicts b on request j , then construct A0 to evict x and keep the same element

as A keeps, namely rj . This construction conserves property 2 for j C 1. Note

that this construction might sometimes insert duplicate elements in the cache.

This situation can easily be dealt with by introducing a dummy element for x.

(3) Suppose A has a cache hit for request j , where i � j � m � 1. Then,

rj 2 Dj since rj ¤ b. Thus, rj 2 CA0j and A0 has a cache hit, too.

(4) By property 2, the cache CAm differs from CA0m by at most one element,

with b being the element in CAm that might not be in CA0m. If CAm D CA0m,

then construct A0 to make the same decision on request m as A. Otherwise,

CAm ¤ CA0m and b 2 CAm. Construct A0 to evict x and keep b on request m.

Since the mth request is for element b and b 2 CAm, A has a cache hit so that it

does not evict any element. Thus, we can ensure that CA;mC1 D CA0;mC1. From

the .mC 1/st request on, A0 simply makes the same decisions as A.
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(5) By property 3, for requests i; : : : ; m � 1, whenever we have a cache hit

for A, we also have a cache hit for A0. Thus, we have to concern ourselves with

only the mth request. If A has a cache miss on the mth request, we are done.

Otherwise, A has a cache hit on the mth request, and we will prove that there

exists at least one request j , where iC1 � j � m�1, such that the j th request

results in a cache miss for A and a cache hit for A0. Because A evicts data

element a in request i , then, by our construction of A0, CA0;iC1 D DiC1 [ fag.
The mth request is for data element b. If A has a cache hit, then because
none of the requests i C 1; : : : ; m � 1 were for b, A could not have evicted b

and brought it back. Moreover, because A has a cache hit on the mth request,

b 2 CAm. Therefore, A did not evict b in any of requests i; : : : ; m � 1. By

our construction, A0 did not evict a. But a request for a occurs at least once

before the mth request. Consider the first such instance. At this instance, A has

a cache miss and A0 has a cache hit.

The above theorem and the optimal-substructure property proved in part (b)
imply that furthest-in-future produces the minimum number of cache misses.



Lecture Notes for Chapter 17:

Amortized Analysis

Chapter 17 overview

Amortized analysis

� Analyze a sequence of operations on a data structure.

� Goal: Show that although some individual operations may be expensive, on

average the cost per operation is small.

Average in this context does not mean that we’re averaging over a distribution of

inputs.

� No probability is involved.

� We’re talking about average cost in the worst case.

Organization

We’ll look at 3 methods:

� aggregate analysis

� accounting method

� potential method

Using 3 examples:

� stack with multipop operation

� binary counter

� dynamic tables (later on)

Aggregate analysis

Stack operations

� PUSH.S; x/: O.1/ each) O.n/ for any sequence of n operations.

� POP.S/: O.1/ each) O.n/ for any sequence of n operations.
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� MULTIPOP.S; k/

while S is not empty and k > 0

POP.S/

k D k � 1

Running time of MULTIPOP:

� Linear in # of POP operations.

� Let each PUSH/POP cost 1.

� # of iterations of while loop is min.s; k/, where s D # of objects on stack.

� Therefore, total cost D min.s; k/.

Sequence of n PUSH, POP, MULTIPOP operations:

� Worst-case cost of MULTIPOP is O.n/.

� Have n operations.

� Therefore, worst-case cost of sequence is O.n2/.

Observation

� Each object can be popped only once per time that it’s pushed.

� Have � n PUSHes)� n POPs, including those in MULTIPOP.

� Therefore, total cost D O.n/.

� Average over the n operations) O.1/ per operation on average.

Again, notice no probability.

� Showed worst-case O.n/ cost for sequence.

� Therefore, O.1/ per operation on average.

This technique is called aggregate analysis.

Binary counter

� k-bit binary counter AŒ0 : : k � 1� of bits, where AŒ0� is the least significant bit

and AŒk � 1� is the most significant bit.

� Counts upward from 0.

� Value of counter is

k�1
X

iD0

AŒi� � 2i .

� Initially, counter value is 0, so AŒ0 : : k � 1� D 0.

� To increment, add 1 .mod 2k/:

INCREMENT.A; k/

i D 0

while i < k and AŒi� == 1

AŒi� D 0

i D i C 1

if i < k

AŒi� D 1
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Example: k D 3

[Underlined bits flip. Show costs later.]

counter A

value 2 1 0 cost

0 0 0 0 0

1 0 0 1 1

2 0 1 0 3

3 0 1 1 4

4 1 0 0 7

5 1 0 1 8

6 1 1 0 10
7 1 1 1 11

0 0 0 0 14
:::

::: 15

Cost of INCREMENT D ‚(# of bits flipped) .

Analysis

Each call could flip k bits, so n INCREMENTs takes O.nk/ time.

Observation

Not every bit flips every time.

[Show costs from above.]

bit flips how often times in n INCREMENTs

0 every time n

1 1=2 the time bn=2c
2 1=4 the time bn=4c

:::

i 1=2i the time bn=2ic
:::

i � k never 0

Therefore, total # of flips D
k�1
X

iD0

�

n=2i
˘

< n

1
X

iD0

1=2i

D n

�
1

1� 1=2

�

D 2n :

Therefore, n INCREMENTs costs O.n/.

Average cost per operation D O.1/.
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Accounting method

Assign different charges to different operations.

� Some are charged more than actual cost.

� Some are charged less.

Amortized cost D amount we charge.

When amortized cost > actual cost, store the difference on specific objects in the

data structure as credit.

Use credit later to pay for operations whose actual cost > amortized cost.

Differs from aggregate analysis:

� In the accounting method, different operations can have different costs.

� In aggregate analysis, all operations have same cost.

Need credit to never go negative.

� Otherwise, have a sequence of operations for which the amortized cost is not

an upper bound on actual cost.

� Amortized cost would tell us nothing.

Let ci D actual cost of i th operation ;

yci D amortized cost of i th operation :

Then require

n
X

iD1

yci �
n
X

iD1

ci for all sequences of n operations.

Total credit stored D
n
X

iD1

yci �
n
X

iD1

ci �
„ƒ‚…

had better be

0 .

Stack

operation actual cost amortized cost

PUSH 1 2

POP 1 0

MULTIPOP min.k; s/ 0

Intuition

When pushing an object, pay $2.

� $1 pays for the PUSH.

� $1 is prepayment for it being popped by either POP or MULTIPOP.

� Since each object has $1, which is credit, the credit can never go negative.

� Therefore, total amortized cost,D O.n/, is an upper bound on total actual cost.
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Binary counter

Charge $2 to set a bit to 1.

� $1 pays for setting a bit to 1.

� $1 is prepayment for flipping it back to 0.

� Have $1 of credit for every 1 in the counter.

� Therefore, credit � 0.

Amortized cost of INCREMENT:

� Cost of resetting bits to 0 is paid by credit.

� At most 1 bit is set to 1.

� Therefore, amortized cost � $2.

� For n operations, amortized cost D O.n/.

Potential method

Like the accounting method, but think of the credit as potential stored with the

entire data structure.

� Accounting method stores credit with specific objects.

� Potential method stores potential in the data structure as a whole.

� Can release potential to pay for future operations.

� Most flexible of the amortized analysis methods.

Let Di D data structure after i th operation ;

D0 D initial data structure ;

ci D actual cost of i th operation ;

yci D amortized cost of i th operation :

Potential function ˆ W Di ! R

ˆ.Di / is the potential associated with data structure Di .

yci D ci Cˆ.Di / �ˆ.Di�1/

D ci C�ˆ.Di /
„ ƒ‚ …

:

increase in potential due to i th operation

Total amortized cost D
n
X

iD1

yci

D
n
X

iD1

.ci Cˆ.Di / �ˆ.Di�1//

(telescoping sum: every term other than D0 and Dn

is added once and subtracted once)

D
n
X

iD1

ci Cˆ.Dn/ �ˆ.D0/ :
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If we require that ˆ.Di / � ˆ.D0/ for all i , then the amortized cost is always an

upper bound on actual cost.

In practice: ˆ.D0/ D 0, ˆ.Di / � 0 for all i .

Stack

ˆ D # of objects in stack

.D # of $1 bills in accounting method)

D0 D empty stack) ˆ.D0/ D 0.

Since # of objects in stack is always � 0, ˆ.Di / � 0 D ˆ.D0/ for all i .

operation actual cost �ˆ amortized cost

PUSH 1 .s C 1/ � s D 1 1C 1 D 2

where s D # of objects initially

POP 1 .s � 1/ � s D �1 1 � 1 D 0

MULTIPOP k0 D min.k; s/ .s � k0/ � s D �k0 k0 � k0 D 0

Therefore, amortized cost of a sequence of n operations D O.n/.

Binary counter

ˆ D bi D # of 1’s after i th INCREMENT

Suppose i th operation resets ti bits to 0.

ci � ti C 1 (resets ti bits, sets � 1 bit to 1)

� If bi D 0, the i th operation reset all k bits and didn’t set one, so

bi�1 D ti D k) bi D bi�1 � ti .

� If bi > 0, the i th operation reset ti bits, set one, so

bi D bi�1 � ti C 1.

� Either way, bi � bi�1 � ti C 1.

� Therefore,

�ˆ.Di / � .bi�1 � ti C 1/ � bi�1

D 1 � ti :

yci D ci C�ˆ.Di /

� .ti C 1/C .1 � ti /

D 2 :

If counter starts at 0, ˆ.D0/ D 0.

Therefore, amortized cost of n operations D O.n/.

Dynamic tables

A nice use of amortized analysis.
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Scenario

� Have a table—maybe a hash table.

� Don’t know in advance how many objects will be stored in it.

� When it fills, must reallocate with a larger size, copying all objects into the new,

larger table.

� When it gets sufficiently small, might want to reallocate with a smaller size.

Details of table organization not important.

Goals

1. O.1/ amortized time per operation.

2. Unused space always � constant fraction of allocated space.

Load factor ˛ D num=size, where num D # items stored, size D allocated size.

If size D 0, then num D 0. Call ˛ D 1.

Never allow ˛ > 1.

Keep ˛ > a constant fraction) goal (2).

Table expansion

Consider only insertion.

� When the table becomes full, double its size and reinsert all existing items.

� Guarantees that ˛ � 1=2.

� Each time we actually insert an item into the table, it’s an elementary insertion.

TABLE-INSERT.T; x/

if T:size == 0

allocate T: table with 1 slot

T:size D 1

if T:num == T:size // expand?

allocate new-table with 2 � T:size slots

insert all items in T: table into new-table // T:num elem insertions

free T: table

T: table D new-table

T:size D 2 � T:size

insert x into T: table // 1 elem insertion

T:num D T:numC 1

Initially, T:num D T:size D 0.
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Running time

Charge 1 per elementary insertion. Count only elementary insertions, since all

other costs together are constant per call.

ci D actual cost of i th operation

� If not full, ci D 1.

� If full, have i � 1 items in the table at the start of the i th operation. Have to

copy all i � 1 existing items, then insert i th item) ci D i .

n operations) ci D O.n/) O.n2/ time for n operations.

Of course, we don’t always expand:

ci D
(

i if i � 1 is exact power of 2 ;

1 otherwise :

Total cost D
n
X

iD1

ci

� nC
blg nc
X

j D0

2j

D nC 2blg ncC1 � 1

2� 1
< nC 2n

D 3n

Therefore, aggregate analysis says amortized cost per operation D 3.

Accounting method

Charge $3 per insertion of x.

� $1 pays for x’s insertion.

� $1 pays for x to be moved in the future.

� $1 pays for some other item to be moved.

Suppose we’ve just expanded, size D m before next expansion, size D 2m after

next expansion.

� Assume that the expansion used up all the credit, so that there’s no credit stored

after the expansion.

� Will expand again after another m insertions.

� Each insertion will put $1 on one of the m items that were in the table just after

expansion and will put $1 on the item inserted.

� Have $2m of credit by next expansion, when there are 2m items to move. Just

enough to pay for the expansion, with no credit left over!
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Potential method

ˆ.T / D 2 � T:num � T:size

� Initially, num D size D 0) ˆ D 0.

� Just after expansion, size D 2 � num) ˆ D 0.

� Just before expansion, size D num) ˆ D num) have enough potential to

pay for moving all items.

� Need ˆ � 0, always.

Always have

size � num � size=2 )
2 � num � size )
ˆ � 0 .

Amortized cost of i th operation
numi D num after i th operation ,

sizei D size after i th operation ,

ˆi D ˆ after i th operation .

� If no expansion:

sizei D sizei�1 ;

numi D numi�1 C 1 ;

ci D 1 :

Then we have

yci D ci Cˆi �ˆi�1

D 1C .2 � numi � sizei / � .2 � numi�1 � sizei�1/

D 1C .2 � numi � sizei / � .2.numi � 1/ � sizei /

D 1C 2

D 3 :

� If expansion:

sizei D 2 � sizei�1 ;

sizei�1 D numi�1 D numi � 1 ;

ci D numi�1 C 1 D numi :

Then we have

yci D ci Cˆi Cˆi�1

D numi C .2 � numi � sizei/ � .2 � numi�1 � sizei�1/

D numi C .2 � numi � 2.numi � 1// � .2.numi � 1/ � .numi � 1//

D numi C 2� .numi � 1/

D 3 :
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Φi

numisizei

0 8 16 24 32
0

8

16

24

32

i

Expansion and contraction

When ˛ drops too low, contract the table.

� Allocate a new, smaller one.

� Copy all items.

Still want

� ˛ bounded from below by a constant,

� amortized cost per operation D O.1/.

Measure cost in terms of elementary insertions and deletions.

“Obvious strategy”

� Double size when inserting into a full table (when ˛ D 1, so that after insertion

˛ would become > 1).

� Halve size when deletion would make table less than half full (when ˛ D 1=2,

so that after deletion ˛ would become < 1=2).

� Then always have 1=2 � ˛ � 1.

� Suppose we fill table.

Then insert ) double

2 deletes ) halve

2 inserts ) double

2 deletes ) halve

� � �

Not performing enough operations after expansion or contraction to pay for the

next one.
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Simple solution

� Double as before: when inserting with ˛ D 1) after doubling, ˛ D 1=2.
� Halve size when deleting with ˛ D 1=4) after halving, ˛ D 1=2.
� Thus, immediately after either expansion or contraction, have ˛ D 1=2.
� Always have 1=4 � ˛ � 1.

Intuition

� Want to make sure that we perform enough operations between consecutive

expansions/contractions to pay for the change in table size.
� Need to delete half the items before contraction.
� Need to double number of items before expansion.
� Either way, number of operations between expansions/contractions is at least a

constant fraction of number of items copied.

ˆ.T / D
(

2 � T:num � T:size if ˛ � 1=2 ;

T:size=2 � T:num if ˛ < 1=2 :

T empty) ˆ D 0.

˛ � 1=2) num � size=2) 2 � num � size) ˆ � 0.

˛ < 1=2) num < size=2) ˆ � 0.

Further intuition

ˆ measures how far from ˛ D 1=2 we are.

� ˛ D 1=2) ˆ D 2 � num � 2 � num D 0.
� ˛ D 1) ˆ D 2 � num � num D num.
� ˛ D 1=4) ˆ D size=2 � num D 4 � num=2 � num D num.
� Therefore, when we double or halve, have enough potential to pay for moving

all num items.
� Potential increases linearly between ˛ D 1=2 and ˛ D 1, and it also increases

linearly between ˛ D 1=2 and ˛ D 1=4.
� Since ˛ has different distances to go to get to 1 or 1=4, starting from 1=2, rate

of increase of ˆ differs.

� For ˛ to go from 1=2 to 1, num increases from size=2 to size, for a total

increase of size=2. ˆ increases from 0 to size. Thus, ˆ needs to increase

by 2 for each item inserted. That’s why there’s a coefficient of 2 on the

T:num term in the formula for ˆ when ˛ � 1=2.
� For ˛ to go from 1=2 to 1=4, num decreases from size=2 to size=4, for a total

decrease of size=4. ˆ increases from 0 to size=4. Thus, ˆ needs to increase

by 1 for each item deleted. That’s why there’s a coefficient of �1 on the

T:num term in the formula for ˆ when ˛ < 1=2.

Amortized costs: more cases

� insert, delete
� ˛ � 1=2, ˛ < 1=2 (use ˛i , since ˛ can vary a lot)
� size does/doesn’t change
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Insert

� ˛i�1 � 1=2, same analysis as before) yci D 3.

� ˛i�1 < 1=2) no expansion (only occurs when ˛i�1 D 1).

� If ˛i�1 < 1=2 and ˛i < 1=2:

yci D ci Cˆi Cˆi�1

D 1C .sizei=2 � numi/ � .sizei�1=2 � numi�1/

D 1C .sizei=2 � numi/ � .sizei=2 � .numi � 1//

D 0 :

� If ˛i�1 < 1=2 and ˛i � 1=2:

yci D 1C .2 � numi � sizei / � .sizei�1=2 � numi�1/

D 1C .2.numi�1 C 1/ � sizei�1/ � .sizei�1=2 � numi�1/

D 3 � numi�1 �
3

2
� sizei�1 C 3

D 3 � ˛i�1sizei�1 �
3

2
� sizei�1 C 3

<
3

2
� sizei�1 �

3

2
� sizei�1 C 3

D 3 :

Therefore, amortized cost of insert is < 3.

Delete

� If ˛i�1 < 1=2, then ˛i < 1=2.

� If no contraction:

yci D 1C .sizei=2 � numi/ � .sizei�1=2 � numi�1/

D 1C .sizei=2 � numi/ � .sizei=2 � .numi C 1//

D 2 :

� If contraction:

yci D .numi C 1
„ ƒ‚ …

/C .sizei=2 � numi/ � .sizei�1=2 � numi�1/

move + delete

Œsizei=2 D sizei�1=4 D numi�1 D numi C 1�

D .numi C 1/C ..numi C 1/ � numi/ � ..2 � numi C 2/ � .numi C 1//

D 1 :

� If ˛i�1 � 1=2, then no contraction.

� If ˛i � 1=2:

yci D 1C .2 � numi � sizei / � .2 � numi�1 � sizei�1/

D 1C .2 � numi � sizei / � .2 � numi C 2� sizei/

D �1 :
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� If ˛i < 1=2, since ˛i�1 � 1=2, have

numi D numi�1 � 1 � 1

2
� sizei�1 � 1 D 1

2
� sizei � 1 :

Thus,

yci D 1C .sizei=2 � numi / � .2 � numi�1 � sizei�1/

D 1C .sizei=2 � numi / � .2 � numi C 2� sizei/

D �1C 3

2
� sizei � 3 � numi

� �1C 3

2
� sizei � 3

�
1

2
� sizei � 1

�

D 2 :

Therefore, amortized cost of delete is � 2.
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Amortized Analysis

Solution to Exercise 17.1-3

This solution is also posted publicly

Let ci D cost of i th operation.

ci D
(

i if i is an exact power of 2 ;

1 otherwise :

Operation Cost

1 1

2 2

3 1

4 4

5 1

6 1

7 1

8 8

9 1

10 1
:::

:::

n operations cost

n
X

iD1

ci � nC
lg n
X

j D0

2j D nC .2n � 1/ < 3n :

(Note: Ignoring floor in upper bound of
P

2j .)

Average cost of operation D Total cost

# operations
< 3 .

By aggregate analysis, the amortized cost per operation D O.1/.
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Solution to Exercise 17.2-1

[We assume that the only way in which COPY is invoked is automatically, after
every sequence of k PUSH and POP operations.]

Charge $2 for each PUSH and POP operation and $0 for each COPY. When we call

PUSH, we use $1 to pay for the operation, and we store the other $1 on the item

pushed. When we call POP, we again use $1 to pay for the operation, and we store

the other $1 in the stack itself. Because the stack size never exceeds k, the actual

cost of a COPY operation is at most $k, which is paid by the $k found in the items

in the stack and the stack itself. Since k PUSH and POP operations occur between

two consecutive COPY operations, $k of credit are stored, either on individual

items (from PUSH operations) or in the stack itself (from POP operations) by the

time a COPY occurs. Since the amortized cost of each operation is O.1/ and the

amount of credit never goes negative, the total cost of n operations is O.n/.

Solution to Exercise 17.2-2

This solution is also posted publicly

Let ci D cost of i th operation.

ci D
(

i if i is an exact power of 2 ;

1 otherwise :

Charge each operation $3 (amortized cost yci ).

� If i is not an exact power of 2, pay $1, and store $2 as credit.

� If i is an exact power of 2, pay $i , using stored credit.

Operation Cost Actual cost Credit remaining

1 3 1 2

2 3 2 3

3 3 1 5

4 3 4 4

5 3 1 6
6 3 1 8

7 3 1 10

8 3 8 5

9 3 1 7

10 3 1 9
:::

:::
:::

:::

Since the amortized cost is $3 per operation,

n
X

iD1

yci D 3n.



17-16 Solutions for Chapter 17: Amortized Analysis

We know from Exercise 17.1-3 that

n
X

iD1

ci < 3n.

Then we have

n
X

iD1

yci �
n
X

iD1

ci ) credit D amortized cost � actual cost � 0.

Since the amortized cost of each operation is O.1/, and the amount of credit never

goes negative, the total cost of n operations is O.n/.

Solution to Exercise 17.2-3

This solution is also posted publicly

We introduce a new field A:max to hold the index of the high-order 1 in A. Initially,

A:max is set to �1, since the low-order bit of A is at index 0, and there are initially

no 1’s in A. The value of A:max is updated as appropriate when the counter is

incremented or reset, and we use this value to limit how much of A must be looked

at to reset it. By controlling the cost of RESET in this way, we can limit it to an

amount that can be covered by credit from earlier INCREMENTs.

INCREMENT.A/

i D 0

while i < A: length and AŒi� == 1

AŒi� D 0

i D i C 1

if i < A: length

AŒi� D 1

// Additions to book’s INCREMENT start here.

if i > A:max

A:max D i

else A:max D �1

RESET.A/

for i D 0 to A:max

AŒi� D 0

A:max D �1

As for the counter in the book, we assume that it costs $1 to flip a bit. In addition,

we assume it costs $1 to update A:max.

Setting and resetting of bits by INCREMENT will work exactly as for the original

counter in the book: $1 will pay to set one bit to 1; $1 will be placed on the bit

that is set to 1 as credit; the credit on each 1 bit will pay to reset the bit during

incrementing.

In addition, we’ll use $1 to pay to update max, and if max increases, we’ll place an

additional $1 of credit on the new high-order 1. (If max doesn’t increase, we can

just waste that $1—it won’t be needed.) Since RESET manipulates bits at positions

only up to A:max, and since each bit up to there must have become the high-order 1
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at some time before the high-order 1 got up to A:max, every bit seen by RESET

has $1 of credit on it. So the zeroing of bits of A by RESET can be completely paid

for by the credit stored on the bits. We just need $1 to pay for resetting max.

Thus charging $4 for each INCREMENT and $1 for each RESET is sufficient, so the

sequence of n INCREMENT and RESET operations takes O.n/ time.

Solution to Exercise 17.3-3

Let Di be the heap after the i th operation, and let Di consist of ni elements. Also,

let k be a constant such that each INSERT or EXTRACT-MIN operation takes at

most k ln n time, where n D max.ni�1; ni /. (We don’t want to worry about taking

the log of 0, and at least one of ni�1 and ni is at least 1. We’ll see later why we use

the natural log.)

Define

ˆ.Di / D
(

0 if ni D 0 ;

kni ln ni if ni > 0 :

This function exhibits the characteristics we like in a potential function: if we start

with an empty heap, then ˆ.D0/ D 0, and we always maintain that ˆ.Di / � 0.

Before proving that we achieve the desired amortized times, we show that if n � 2,

then n ln n
n�1
� 2. We have

n ln
n

n � 1
D n ln

�

1C 1

n � 1

�

D ln

�

1C 1

n � 1

�n

� ln
�

e
1

n�1

�n

(since 1C x � ex for all real x)

D ln e
n

n�1

D n

n � 1
� 2 ;

assuming that n � 2. (The equation ln e
n

n�1 D n
n�1

is why we use the natural log.)

If the i th operation is an INSERT, then ni D ni�1 C 1. If the i th operation inserts
into an empty heap, then ni D 1, ni�1 D 0, and the amortized cost is

yci D ci Cˆ.Di / �ˆ.Di�1/

� k ln 1C k � 1 ln 1 � 0

D 0 :

If the i th operation inserts into a nonempty heap, then ni D ni�1 C 1, and the

amortized cost is

yci D ci Cˆ.Di / �ˆ.Di�1/

� k ln ni C kni ln ni � kni�1 ln ni�1

D k ln ni C kni ln ni � k.ni � 1/ ln.ni � 1/
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D k ln ni C kni ln ni � kni ln.ni � 1/C k ln.ni � 1/

< 2k ln ni C kni ln
ni

ni � 1

� 2k ln ni C 2k

D O.lg ni/ :

If the i th operation is an EXTRACT-MIN, then ni D ni�1 � 1. If the i th operation

extracts the one and only heap item, then ni D 0, ni�1 D 1, and the amortized cost

is

yci D ci Cˆ.Di / �ˆ.Di�1/

� k ln 1C 0 � k � 1 ln 1

D 0 :

If the i th operation extracts from a heap with more than 1 item, then ni D ni�1� 1

and ni�1 � 2, and the amortized cost is

yci D ci Cˆ.Di / �ˆ.Di�1/

� k ln ni�1 C kni ln ni � kni�1 ln ni�1

D k ln ni�1 C k.ni�1 � 1/ ln.ni�1 � 1/ � kni�1 ln ni�1

D k ln ni�1 C kni�1 ln.ni�1 � 1/ � k ln.ni�1 � 1/ � kni�1 ln ni�1

D k ln
ni�1

ni�1 � 1
C kni�1 ln

ni�1 � 1

ni�1

< k ln
ni�1

ni�1 � 1
C kni�1 ln 1

D k ln
ni�1

ni�1 � 1

� k ln 2 (since ni�1 � 2)

D O.1/ :

A slightly different potential function—which may be easier to work with—is as

follows. For each node x in the heap, let di .x/ be the depth of x in Di . Define

ˆ.Di / D
X

x2Di

k.di .x/C 1/

D k

 

ni C
X

x2Di

di .x/

!

;

where k is defined as before.

Initially, the heap has no items, which means that the sum is over an empty set, and

so ˆ.D0/ D 0. We always have ˆ.Di / � 0, as required.

Observe that after an INSERT, the sum changes only by an amount equal to the

depth of the new last node of the heap, which is blg nic. Thus, the change

in potential due to an INSERT is k.1 C blg nic/, and so the amortized cost is

O.lg ni/CO.lg ni/ D O.lg ni / D O.lg n/.

After an EXTRACT-MIN, the sum changes by the negative of the depth of the old

last node in the heap, and so the potential decreases by k.1 C blg ni�1c/. The

amortized cost is at most k lg ni�1 � k.1C blg ni�1c/ D O.1/.
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Solution to Problem 17-2

a. The SEARCH operation can be performed by searching each of the individually

sorted arrays. Since all the individual arrays are sorted, searching one of them

using a binary search algorithm takes O.lg m/ time, where m is the size of the

array. In an unsuccessful search, the time is ‚.lg m/. In the worst case, we may

assume that all the arrays A0; A1; : : : ; Ak�1 are full, k D dlg.nC 1/e, and we

perform an unsuccessful search. The total time taken is

T .n/ D ‚.lg 2k�1 C lg 2k�2 C � � � C lg 21 C lg 20/

D ‚..k � 1/C .k � 2/C � � � C 1C 0/

D ‚.k.k � 1/=2/

D ‚.dlg.nC 1/e .dlg.nC 1/e � 1/=2/

D ‚
�

lg2 n
�

:

Thus, the worst-case running time is ‚.lg2 n/.

b. We create a new sorted array of size 1 containing the new element to be inserted.

If array A0 (which has size 1) is empty, then we replace A0 with the new sorted

array. Otherwise, we merge sort the two arrays into another sorted array of
size 2. If A1 is empty, then we replace A1 with the new array; otherwise we

merge sort the arrays as before and continue. Since array Ai is of size 2i , if we

merge sort two arrays of size 2i each, we obtain one of size 2iC1, which is the

size of AiC1. Thus, this method will result in another list of arrays in the same

structure that we had before.

Let us analyze its worst-case running time. We will assume that merge sort

takes 2m time to merge two sorted lists of size m each. If all the arrays

A0; A1; : : : ; Ak�2 are full, then the running time to fill array Ak�1 would be

T .n/ D 2
�

20 C 21 C � � � C 2k�2
�

D 2.2k�1 � 1/

D 2k � 2

D ‚.n/ :

Therefore, the worst-case time to insert an element into this data structure

is ‚.n/.

However, let us now analyze the amortized running time. Using the aggregate
method, we compute the total cost of a sequence of n inserts, starting with

the empty data structure. Let r be the position of the rightmost 0 in the binary

representation hnk�1; nk�2; : : : ; n0i of n, so that nj D 1 for j D 0; 1; : : : ; r�1.

The cost of an insertion when n items have already been inserted is

r�1
X

j D0

2 � 2j D O.2r / :

Furthermore, r D 0 half the time, r D 1 a quarter of the time, and so on.

There are at most dn=2re insertions for each value of r . The total cost of the n

operations is therefore bounded by



17-20 Solutions for Chapter 17: Amortized Analysis

O

 dlg.nC1/e
X

rD0

�l n

2r

m�

2r

!

D O.n lg n/ :

The amortized cost per INSERT operation, therefore is O.lg n/.

We can also use the accounting method to analyze the running time. We can

charge $k to insert an element. $1 pays for the insertion, and we put $.k � 1/

on the inserted item to pay for it being involved in merges later on. Each time

it is merged, it moves to a higher-indexed array, i.e., from Ai to AiC1. It can

move to a higher-indexed array at most k � 1 times, and so the $.k � 1/ on the

item suffices to pay for all the times it will ever be involved in merges. Since

k D ‚.lg n/, we have an amortized cost of ‚.lg n/ per insertion.

c. DELETE.x/ will be implemented as follows:

1. Find the smallest j for which the array Aj with 2j elements is full. Let y be

the last element of Aj .

2. Let x be in the array Ai . If necessary, find which array this is by using the

search procedure.

3. Remove x from Ai and put y into Ai . Then move y to its correct place in Ai .

4. Divide Aj (which now has 2j � 1 elements left): The first element goes into

array A0, the next 2 elements go into array A1, the next 4 elements go into
array A2, and so forth. Mark array Aj as empty. The new arrays are created

already sorted.

The cost of DELETE is ‚.n/ in the worst case, where i D k � 1 and j D
k � 2: ‚.lg n/ to find Aj , ‚.lg2 n/ to find Ai , ‚.2i/ D ‚.n/ to put y in its

correct place in array Ai , and ‚.2j / D ‚.n/ to divide array Aj . The following

sequence of n operations, where n=3 is a power of 2, yields an amortized cost

that is no better: perform n=3 INSERT operations, followed by n=3 pairs of

DELETE and INSERT. It costs O.n lg n/ to do the first n=3 INSERT operations.

This creates a single full array. Each subsequent DELETE/INSERT pair costs

‚.n/ for the DELETE to divide the full array and another ‚.n/ for the INSERT

to recombine it. The total is then ‚.n2/, or ‚.n/ per operation.

Solution to Problem 17-4

a. For RB-INSERT, consider a complete red-black tree in which the colors alter-

nate between levels. That is, the root is black, the children of the root are red,

the grandchildren of the root are black, the great-grandchildren of the root are

red, and so on. When a node is inserted as a red child of one of the red leaves,

then case 1 of RB-INSERT-FIXUP occurs .lg.nC 1//=2 times, so that there are

�.lg n/ color changes to fix the colors of nodes on the path from the inserted

node to the root.

For RB-DELETE, consider a complete red-black tree in which all nodes are

black. If a leaf is deleted, then the double blackness will be pushed all the way

up to the root, with a color change at each level (case 2 of RB-DELETE-FIXUP),

for a total of �.lg n/ color changes.
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b. All cases except for case 1 of RB-INSERT-FIXUP and case 2 of RB-DELETE-

FIXUP are terminating.

c. Case 1 of RB-INSERT-FIXUP reduces the number of red nodes by 1. As Fig-

ure 13.5 shows, node ´’s parent and uncle change from red to black, and ´’s

grandparent changes from black to red. Hence, ˆ.T 0/ D ˆ.T / � 1.

d. Lines 1–16 of RB-INSERT cause one node insertion and a unit increase in po-

tential. The nonterminating case of RB-INSERT-FIXUP (Case 1) makes three

color changes and decreases the potential by 1. The terminating cases of RB-

INSERT-FIXUP (cases 2 and 3) cause one rotation each and do not affect the

potential. (Although case 3 makes color changes, the potential does not change.

As Figure 13.6 shows, node ´’s parent changes from red to black, and ´’s grand-
parent changes from black to red.)

e. The number of structural modifications and amount of potential change result-
ing from lines 1–16 of RB-INSERT and from the terminating cases of RB-

INSERT-FIXUP are O.1/, and so the amortized number of structural modifica-

tions of these parts is O.1/. The nonterminating case of RB-INSERT-FIXUP

may repeat O.lg n/ times, but its amortized number of structural modifications

is 0, since by our assumption the unit decrease in the potential pays for the

structural modifications needed. Therefore, the amortized number of structural

modifications performed by RB-INSERT is O.1/.

f. From Figure 13.5, we see that case 1 of RB-INSERT-FIXUP makes the follow-

ing changes to the tree:

� Changes a black node with two red children (node C ) to a red node, resulting

in a potential change of �2.
� Changes a red node (node A in part (a) and node B in part (b)) to a black

node with one red child, resulting in no potential change.
� Changes a red node (node D) to a black node with no red children, resulting

in a potential change of 1.

The total change in potential is �1, which pays for the structural modifications

performed, and thus the amortized number of structural modifications in case 1

(the nonterminating case) is 0. The terminating cases of RB-INSERT-FIXUP

cause O.1/ structural changes. Because w.�/ is based solely on node col-

ors and the number of color changes caused by terminating cases is O.1/, the

change in potential in terminating cases is O.1/. Hence, the amortized number
of structural modifications in the terminating cases is O.1/. The overall amor-

tized number of structural modifications in RB-INSERT, therefore, is O.1/.

g. Figure 13.7 shows that case 2 of RB-DELETE-FIXUP makes the following

changes to the tree:

� Changes a black node with no red children (node D) to a red node, resulting

in a potential change of �1.
� If B is red, then it loses a black child, with no effect on potential.
� If B is black, then it goes from having no red children to having one red

child, resulting in a potential change of �1.
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The total change in potential is either �1 or �2, depending on the color of B .

In either case, one unit of potential pays for the structural modifications per-

formed, and thus the amortized number of structural modifications in case 2

(the nonterminating case) is at most 0. The terminating cases of RB-DELETE

cause O.1/ structural changes. Because w.�/ is based solely on node col-

ors and the number of color changes caused by terminating cases is O.1/, the

change in potential in terminating cases is O.1/. Hence, the amortized number

of structural changes in the terminating cases is O.1/. The overall amortized
number of structural modifications in RB-DELETE-FIXUP, therefore, is O.1/.

h. Since the amortized number structural modification in each operation is O.1/,

the actual number of structural modifications for any sequence of m RB-

INSERT and RB-DELETE operations on an initially empty red-black tree

is O.m/ in the worst case.



Lecture Notes for Chapter 21:

Data Structures for Disjoint Sets

Chapter 21 overview

Disjoint-set data structures

� Also known as “union find.”

� Maintain collection S D fS1; : : : ; Skg of disjoint dynamic (changing over time)

sets.

� Each set is identified by a representative, which is some member of the set.

Doesn’t matter which member is the representative, as long as if we ask for the

representative twice without modifying the set, we get the same answer both

times.

[We do not include notes for the proof of running time of the disjoint-set forest
implementation, which is covered in Section 21.4.]

Operations

� MAKE-SET.x/: make a new set Si D fxg, and add Si to S .

� UNION.x; y/: if x 2 Sx; y 2 Sy , then S D S � Sx � Sy [ fSx [ Syg.
� Representative of new set is any member of Sx [Sy, often the representative

of one of Sx and Sy .
� Destroys Sx and Sy (since sets must be disjoint).

� FIND-SET.x/: return representative of set containing x.

Analysis in terms of:

� n D # of elements D # of MAKE-SET operations,

� m D total # of operations.
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Analysis

� Since MAKE-SET counts toward total # of operations, m � n.

� Can have at most n � 1 UNION operations, since after n � 1 UNIONs, only 1

set remains.

� Assume that the first n operations are MAKE-SET (helpful for analysis, usually

not really necessary).

Application

Dynamic connected components.

For a graph G D .V; E/, vertices u; � are in same connected component if and

only if there’s a path between them.

� Connected components partition vertices into equivalence classes.

CONNECTED-COMPONENTS.G/

for each vertex � 2 G:V

MAKE-SET.�/

for each edge .u; �/ 2 G:E

if FIND-SET.u/ ¤ FIND-SET.�/

UNION.u; �/

SAME-COMPONENT.u; �/

if FIND-SET.u/ == FIND-SET.�/

return TRUE

else return FALSE

Note

If actually implementing connected components,

� each vertex needs a handle to its object in the disjoint-set data structure,

� each object in the disjoint-set data structure needs a handle to its vertex.

Linked list representation

� Each set is a singly linked list, represented by an object with attributes

� head: the first element in the list, assumed to be the set’s representative, and
� tail: the last element in the list.

Objects may appear within the list in any order.

� Each object in the list has attributes for

� the set member,
� pointer to the set object, and
� next.
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MAKE-SET: create a singleton list.

FIND-SET: follow the pointer back to the list object, and then follow the head

pointer to the representative.

UNION: a couple of ways to do it.

1. UNION.x; y/: append y’s list onto end of x’s list. Use x’s tail pointer to find

the end.

� Need to update the pointer back to the set object for every node on y’s list.
� If appending a large list onto a small list, it can take a while.

Operation # objects updated

UNION.x2; x1/ 1

UNION.x3; x2/ 2

UNION.x4; x3/ 3

UNION.x5; x4/ 4
:::

:::

UNION.xn; xn�1/ n � 1

‚.n2/ total

Amortized time per operation D ‚.n/.

2. Weighted-union heuristic: Always append the smaller list to the larger list.

(Break ties arbitrarily.)

A single union can still take �.n/ time, e.g., if both sets have n=2 members.

Theorem

With weighted union, a sequence of m operations on n elements takes

O.mC n lg n/ time.

Sketch of proof Each MAKE-SET and FIND-SET still takes O.1/. How many

times can each object’s representative pointer be updated? It must be in the

smaller set each time.

times updated size of resulting set

1 � 2

2 � 4

3 � 8
:::

:::

k � 2k

:::
:::

lg n � n

Therefore, each representative is updated � lg n times. (theorem)

Seems pretty good, but we can do much better.
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Disjoint-set forest

Forest of trees.

� 1 tree per set. Root is representative.

� Each node points only to its parent.

c

h e

b

f

d

g

f

c

h e

b

d

g

UNION(e,g)

� MAKE-SET: make a single-node tree.

� UNION: make one root a child of the other.

� FIND-SET: follow pointers to the root.

Not so good—could get a linear chain of nodes.

Great heuristics

� Union by rank: make the root of the smaller tree (fewer nodes) a child of the

root of the larger tree.

� Don’t actually use size.
� Use rank, which is an upper bound on height of node.
� Make the root with the smaller rank into a child of the root with the larger

rank.

� Path compression: Find path D nodes visited during FIND-SET on the trip to

the root. Make all nodes on the find path direct children of root.

a

b

c

d

d

a b c

Each node has two attributes, p (parent) and rank.
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MAKE-SET.x/

x:p D x

x:rank D 0

UNION.x; y/

LINK.FIND-SET.x/; FIND-SET.y//

LINK.x; y/

if x:rank > y:rank

y:p D x

else x:p D y

// If equal ranks, choose y as parent and increment its rank.

if x:rank == y:rank

y:rank D y:rankC 1

FIND-SET.x/

if x ¤ x:p

x:p D FIND-SET.x:p/

return x:p

FIND-SET makes a pass up to find the root, and a pass down as recursion unwinds

to update each node on find path to point directly to root.

Running time

If use both union by rank and path compression, O.m ˛.n//.

n ˛.n/

0–2 0

3 1

4–7 2

8–2047 3

2048–A4.1/ 4

What’s A4.1/? See Section 21.4, if you dare. It’s� 1080 � # of atoms in observ-

able universe.

This bound is tight—there exists a sequence of operations that takes �.m ˛.n//

time.
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Data Structures for Disjoint Sets

Solution to Exercise 21.2-3

This solution is also posted publicly

We want to show that we can assign O.1/ charges to MAKE-SET and FIND-SET

and an O.lg n/ charge to UNION such that the charges for a sequence of these

operations are enough to cover the cost of the sequence—O.mCn lg n/, according

to the theorem. When talking about the charge for each kind of operation, it is

helpful to also be able to talk about the number of each kind of operation.

Consider the usual sequence of m MAKE-SET, UNION, and FIND-SET operations,

n of which are MAKE-SET operations, and let l < n be the number of UNION

operations. (Recall the discussion in Section 21.1 about there being at most n � 1

UNION operations.) Then there are n MAKE-SET operations, l UNION operations,

and m � n � l FIND-SET operations.

The theorem didn’t separately name the number l of UNIONs; rather, it bounded

the number by n. If you go through the proof of the theorem with l UNIONs, you

get the time bound O.m�lCl lg l/ D O.mCl lg l/ for the sequence of operations.

That is, the actual time taken by the sequence of operations is at most c.mC l lg l/,

for some constant c.

Thus, we want to assign operation charges such that

(MAKE-SET charge) � n

C(FIND-SET charge) � .m � n � l/

C(UNION charge) � l

� c.mC l lg l/ ;

so that the amortized costs give an upper bound on the actual costs.

The following assignments work, where c 0 is some constant � c:

� MAKE-SET: c 0

� FIND-SET: c 0

� UNION: c 0.lg nC 1/

Substituting into the above sum, we get

c 0nC c 0.m� n � l/C c 0.lg nC 1/l D c 0mC c 0l lg n

D c 0.mC l lg n/

> c.mC l lg l/ :
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Solution to Exercise 21.2-5

As the hint suggests, make the representative of each set be the tail of its linked

list. Except for the tail element, each element’s representative pointer points to the

tail. The tail’s representative pointer points to the head. An element is the tail if

its next pointer is NIL. Now we can get to the tail in O.1/ time: if x:next == NIL,

then tail D x, else tail D x:rep. We can get to the head in O.1/ time as well: if

x:next == NIL, then head D x:rep, else head D x:rep:rep. The set object needs

only to store a pointer to the tail, though a pointer to any list element would suffice.

Solution to Exercise 21.2-6

This solution is also posted publicly

Let’s call the two lists A and B , and suppose that the representative of the new list

will be the representative of A. Rather than appending B to the end of A, instead

splice B into A right after the first element of A. We have to traverse B to update

pointers to the set object anyway, so we can just make the last element of B point

to the second element of A.

Solution to Exercise 21.3-3

You need to find a sequence of m operations on n elements that takes �.m lg n/

time. Start with n MAKE-SETs to create singleton sets fx1g ; fx2g ; : : : ; fxng. Next

perform the n� 1 UNION operations shown below to create a single set whose tree

has depth lg n.
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UNION.x1; x2/ n=2 of these

UNION.x3; x4/

UNION.x5; x6/
:::

UNION.xn�1; xn/

UNION.x2; x4/ n=4 of these

UNION.x6; x8/

UNION.x10; x12/
:::

UNION.xn�2; xn/

UNION.x4; x8/ n=8 of these

UNION.x12; x16/

UNION.x20; x24/
:::

UNION.xn�4; xn/
:::

UNION.xn=2; xn/ 1 of these

Finally, perform m � 2nC 1 FIND-SET operations on the deepest element in the

tree. Each of these FIND-SET operations takes �.lg n/ time. Letting m � 3n, we

have more than m=3 FIND-SET operations, so that the total cost is �.m lg n/.

Solution to Exercise 21.3-4

Maintain a circular, singly linked list of the nodes of each set. To print, just follow

the list until you get back to node x, printing each member of the list. The only

other operations that change are FIND-SET, which sets x:next D x, and LINK,
which exchanges the pointers x:next and y:next.

Solution to Exercise 21.3-5

With the path-compression heuristic, the sequence of m MAKE-SET, FIND-SET,

and LINK operations, where all the LINK operations take place before any of the
FIND-SET operations, runs in O.m/ time. The key observation is that once a

node x appears on a find path, x will be either a root or a child of a root at all times

thereafter.

We use the accounting method to obtain the O.m/ time bound. We charge a

MAKE-SET operation two dollars. One dollar pays for the MAKE-SET, and one

dollar remains on the node x that is created. The latter pays for the first time that

x appears on a find path and is turned into a child of a root.

We charge one dollar for a LINK operation. This dollar pays for the actual linking

of one node to another.
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We charge one dollar for a FIND-SET. This dollar pays for visiting the root and

its child, and for the path compression of these two nodes, during the FIND-SET.

All other nodes on the find path use their stored dollar to pay for their visitation

and path compression. As mentioned, after the FIND-SET, all nodes on the find

path become children of a root (except for the root itself), and so whenever they

are visited during a subsequent FIND-SET, the FIND-SET operation itself will pay

for them.

Since we charge each operation either one or two dollars, a sequence of m opera-

tions is charged at most 2m dollars, and so the total time is O.m/.

Observe that nothing in the above argument requires union by rank. Therefore, we

get an O.m/ time bound regardless of whether we use union by rank.

Solution to Exercise 21.4-4

Clearly, each MAKE-SET and LINK operation takes O.1/ time. Because the rank

of a node is an upper bound on its height, each find path has length O.lg n/, which
in turn implies that each FIND-SET takes O.lg n/ time. Thus, any sequence of

m MAKE-SET, LINK, and FIND-SET operations on n elements takes O.m lg n/

time. It is easy to prove an analogue of Lemma 21.7 to show that if we convert a

sequence of m0 MAKE-SET, UNION, and FIND-SET operations into a sequence of

m MAKE-SET, LINK, and FIND-SET operations that take O.m lg n/ time, then the

sequence of m0 MAKE-SET, UNION, and FIND-SET operations takes O.m0 lg n/

time.

Solution to Exercise 21.4-5

Professor Dante is mistaken. Take the following scenario. Let n D 16, and make

16 separate singleton sets using MAKE-SET. Then do 8 UNION operations to link

the sets into 8 pairs, where each pair has a root with rank 0 and a child with rank 1.

Now do 4 UNIONs to link pairs of these trees, so that there are 4 trees, each with a

root of rank 2, children of the root of ranks 1 and 0, and a node of rank 0 that is the

child of the rank-1 node. Now link pairs of these trees together, so that there are
two resulting trees, each with a root of rank 3 and each containing a path from a

leaf to the root with ranks 0, 1, and 3. Finally, link these two trees together, so that

there is a path from a leaf to the root with ranks 0, 1, 3, and 4. Let x and y be the

nodes on this path with ranks 1 and 3, respectively. Since A1.1/ D 3, level.x/ D 1,

and since A0.3/ D 4, level.y/ D 0. Yet y follows x on the find path.

Solution to Exercise 21.4-6

First, ˛0.22047 � 1/ D min fk W Ak.1/ � 2047g D 3, and 22047 � 1� 1080.
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Second, we need that 0 � level.x/ � ˛0.n/ for all nonroots x with x:rank � 1.

With this definition of ˛0.n/, we have A˛0.n/.x:rank/ � A˛0.n/.1/ � lg.n C 1/ >

lg n � x:p:rank. The rest of the proof goes through with ˛0.n/ replacing ˛.n/.

Solution to Problem 21-1

a. For the input sequence

4; 8; E; 3; E; 9; 2; 6; E; E; E; 1; 7; E; 5 ;

the values in the extracted array would be 4; 3; 2; 6; 8; 1.

The following table shows the situation after the i th iteration of the for loop

when we use OFF-LINE-MINIMUM on the same input. (For this input, n D 9

and m—the number of extractions—is 6).

i K1 K2 K3 K4 K5 K6 K7 extracted

1 2 3 4 5 6

0 f4; 8g f3g f9; 2; 6g fg fg f1; 7g f5g
1 f4; 8g f3g f9; 2; 6g fg fg f5; 1; 7g 1

2 f4; 8g f3g f9; 2; 6g fg f5; 1; 7g 2 1

3 f4; 8g f9; 2; 6; 3g fg f5; 1; 7g 3 2 1

4 f9; 2; 6; 3; 4; 8g fg f5; 1; 7g 4 3 2 1

5 f9; 2; 6; 3; 4; 8g fg f5; 1; 7g 4 3 2 1

6 f9; 2; 6; 3; 4; 8g f5; 1; 7g 4 3 2 6 1

7 f9; 2; 6; 3; 4; 8g f5; 1; 7g 4 3 2 6 1

8 f5; 1; 7; 9; 2; 6; 3; 4; 8g 4 3 2 6 8 1

Because j D mC 1 in the iterations for i D 5 and i D 7, no changes occur in
these iterations.

b. We want to show that the array extracted returned by OFF-LINE-MINIMUM is

correct, meaning that for i D 1; 2; : : : ; m, extractedŒj � is the key returned by

the j th EXTRACT-MIN call.

We start with n INSERT operations and m EXTRACT-MIN operations. The

smallest of all the elements will be extracted in the first EXTRACT-MIN after

its insertion. So we find j such that the minimum element is in Kj , and put the

minimum element in extractedŒj �, which corresponds to the EXTRACT-MIN

after the minimum element insertion.

Now we reduce to a similar problem with n � 1 INSERT operations and m � 1

EXTRACT-MIN operations in the following way: the INSERT operations are

the same but without the insertion of the smallest that was extracted, and the

EXTRACT-MIN operations are the same but without the extraction that ex-

tracted the smallest element.

Conceptually, we unite Ij and Ij C1, removing the extraction between them and

also removing the insertion of the minimum element from Ij [ Ij C1. Uniting Ij
and Ij C1 is accomplished by line 6. We need to determine which set is Kl , rather

than just using Kj C1 unconditionally, because Kj C1 may have been destroyed

when it was united into a higher-indexed set by a previous execution of line 6.
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Because we process extractions in increasing order of the minimum value

found, the remaining iterations of the for loop correspond to solving the re-

duced problem.

There are two other points worth making. First, if the smallest remaining ele-

ment had been inserted after the last EXTRACT-MIN (i.e., j D m C 1), then

no changes occur, because this element is not extracted. Second, there may be

smaller elements within the Kj sets than the the one we are currently looking

for. These elements do not affect the result, because they correspond to ele-

ments that were already extracted, and their effect on the algorithm’s execution

is over.

c. To implement this algorithm, we place each element in a disjoint-set forest.

Each root has a pointer to its Ki set, and each Ki set has a pointer to the root of
the tree representing it. All the valid sets Ki are in a linked list.

Before OFF-LINE-MINIMUM, there is initialization that builds the initial sets Ki

according to the Ii sequences.

� Line 2 (“determine j such that i 2 Kj ”) turns into j D FIND-SET.i/.
� Line 5 (“let l be the smallest value greater than j for which set Kl exists”)

turns into Kl D Kj :next.
� Line 6 (“Kl D Kj [ Kl , destroying Kj ”) turns into l D LINK.j; l/ and

remove Kj from the linked list.

To analyze the running time, we note that there are n elements and that we have

the following disjoint-set operations:

� n MAKE-SET operations
� at most n � 1 UNION operations before starting
� n FIND-SET operations
� at most n LINK operations

Thus the number m of overall operations is O.n/. The total running time is

O.m ˛.n// D O.n ˛.n//.

[The “tight bound” wording that this question uses does not refer to an “asymp-
totically tight” bound. Instead, the question is merely asking for a bound that is
not too “loose.”]

Solution to Problem 21-2

a. Denote the number of nodes by n, and let n D .m C 1/=3, so that m D
3n � 1. First, perform the n operations MAKE-TREE.�1/, MAKE-TREE.�2/,

. . . , MAKE-TREE.�n/. Then perform the sequence of n � 1 GRAFT operations

GRAFT.�1; �2/, GRAFT.�2; �3/, . . . , GRAFT.�n�1; �n/; this sequence produces

a single disjoint-set tree that is a linear chain of n nodes with �n at the root

and �1 as the only leaf. Then perform FIND-DEPTH.�1/ repeatedly, n times.

The total number of operations is nC .n � 1/C n D 3n � 1 D m.
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Each MAKE-TREE and GRAFT operation takes O.1/ time. Each FIND-DEPTH

operation has to follow an n-node find path, and so each of the n FIND-DEPTH

operations takes ‚.n/ time. The total time is n � ‚.n/ C .2n � 1/ � O.1/ D
‚.n2/ D ‚.m2/.

b. MAKE-TREE is like MAKE-SET, except that it also sets the d value to 0:

MAKE-TREE.�/

�:p D �

�:rank D 0

�:d D 0

It is correct to set �:d to 0, because the depth of the node in the single-node

disjoint-set tree is 0, and the sum of the depths on the find path for � consists

only of �:d.

c. FIND-DEPTH will call a procedure FIND-ROOT:

FIND-ROOT.�/

if �:p ¤ �:p:p

y D �:p

�:p D FIND-ROOT.y/

�:d D �:dC y:d

return �:p

FIND-DEPTH.�/

FIND-ROOT.�/ // no need to save the return value

if � == �:p

return �:d

else return �:dC �:p:d

FIND-ROOT performs path compression and updates pseudodistances along the

find path from �. It is similar to FIND-SET on page 571, but with three changes.

First, when � is either the root or a child of a root (one of these conditions

holds if and only if �:p D �:p:p) in the disjoint-set forest, we don’t have to

recurse; instead, we just return �:p. Second, when we do recurse, we save

the pointer �:p into a new variable y. Third, when we recurse, we update �:d

by adding into it the d values of all nodes on the find path that are no longer
proper ancestors of � after path compression; these nodes are precisely the

proper ancestors of � other than the root. Thus, as long as � does not start out

the FIND-ROOT call as either the root or a child of the root, we add y:d into �:d.

Note that y:d has been updated prior to updating �:d, if y is also neither the

root nor a child of the root.

FIND-DEPTH first calls FIND-ROOT to perform path compression and update

pseudodistances. Afterward, the find path from � consists of either just � (if �

is a root) or just � and �:p (if � is not a root, in which case it is a child of the

root after path compression). In the former case, the depth of � is just �:d, and

in the latter case, the depth is �:dC �:p:d.
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d. Our procedure for GRAFT is a combination of UNION and LINK:

GRAFT.r; �/

r 0 D FIND-ROOT.r/

� 0 D FIND-ROOT.�/

´ D FIND-DEPTH.�/

if r 0:rank > � 0:rank

� 0:p D r 0

r 0:d D r 0:dC ´C 1

� 0:d D � 0:d � r 0:d
else r 0:p D � 0

r 0:d D r 0:dC ´C 1 � � 0:d
if r 0:rank == � 0:rank

� 0:rank D � 0:rankC 1

This procedure works as follows. First, we call FIND-ROOT on r and � in

order to find the roots r 0 and � 0, respectively, of their trees in the disjoint-set

forest. As we saw in part (c), these FIND-ROOT calls also perform path com-

pression and update pseudodistances on the find paths from r and �. We then

call FIND-DEPTH.�/, saving the depth of � in the variable ´. (Since we have

just compressed �’s find path, this call of FIND-DEPTH takes O.1/ time.) Next,

we emulate the action of LINK, by making the root (r 0 or � 0) of smaller rank a

child of the root of larger rank; in case of a tie, we make r 0 a child of � 0.

If � 0 has the smaller rank, then all nodes in r’s tree will have their depths in-

creased by the depth of � plus 1 (because r is to become a child of �). Altering

the psuedodistance of the root of a disjoint-set tree changes the computed depth
of all nodes in that tree, and so adding ´ C 1 to r 0:d accomplishes this update

for all nodes in r’s disjoint-set tree. Since � 0 will become a child of r 0 in the

disjoint-set forest, we have just increased the computed depth of all nodes in

the disjoint-set tree rooted at � 0 by r 0:d. These computed depths should not

have changed, however. Thus, we subtract off r 0:d from � 0:d, so that the sum

� 0:d C r 0:d after making � 0 a child of r 0 equals � 0:d before making � 0 a child

of r 0.

On the other hand, if r 0 has the smaller rank, or if the ranks are equal, then r 0

becomes a child of � 0 in the disjoint-set forest. In this case, � 0 remains a root

in the disjoint-set forest afterward, and we can leave � 0:d alone. We have to

update r 0:d, however, so that after making r 0 a child of � 0, the depth of each

node in r’s disjoint-set tree is increased by ´C 1. We add ´C 1 to r 0:d, but we

also subtract out � 0:d, since we have just made r 0 a child of � 0. Finally, if the

ranks of r 0 and � 0 are equal, we increment the rank of � 0, as is done in the LINK

procedure.

e. The asymptotic running times of MAKE-TREE, FIND-DEPTH, and GRAFT are

equivalent to those of MAKE-SET, FIND-SET, and UNION, respectively. Thus,

a sequence of m operations, n of which are MAKE-TREE operations, takes

‚.m ˛.n// time in the worst case.



Lecture Notes for Chapter 22:

Elementary Graph Algorithms

Graph representation

Given graph G D .V; E/. In pseudocode, represent vertex set by G:V and edge set
by G:E.

� G may be either directed or undirected.

� Two common ways to represent graphs for algorithms:

1. Adjacency lists.

2. Adjacency matrix.

When expressing the running time of an algorithm, it’s often in terms of both jV j
and jEj. In asymptotic notation—and only in asymptotic notation—we’ll drop the

cardinality. Example: O.V CE/.

[The introduction to Part VI talks more about this.]

Adjacency lists

Array Adj of jV j lists, one per vertex.

Vertex u’s list has all vertices � such that .u; �/ 2 E. (Works for both directed and

undirected graphs.)

In pseudocode, denote the array as attribute G:Adj, so will see notation such as

G:AdjŒu�.

Example

For an undirected graph:

1 2

3

45

1

2

3

4

5

2 5

1

2

2

4 1 2

5 3

4

5

Adj

4 3
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If edges have weights, can put the weights in the lists.

Weight: w W E ! R

We’ll use weights later on for spanning trees and shortest paths.

Space: ‚.V C E/.

Time: to list all vertices adjacent to u: ‚.degree.u//.

Time: to determine whether .u; �/ 2 E: O.degree.u//.

Example

For a directed graph:

1 2

3

1

2

3

4

2

4

1 2

4

Adj

34

Same asymptotic space and time.

Adjacency matrix

jV j � jV j matrix A D .aij /

aij D
(

1 if .i; j / 2 E ;

0 otherwise :

1 0 0 1

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

0

1

0

0

1

1 2 3 4 5

1

2

3

4

5

1 0 0

0 0 1

1 0 0

0 1 1

0

0

1

0

1 2 3 4

1

2

3

4

Space: ‚.V 2/.

Time: to list all vertices adjacent to u: ‚.V /.

Time: to determine whether .u; �/ 2 E: ‚.1/.

Can store weights instead of bits for weighted graph.

We’ll use both representations in these lecture notes.

Representing graph attributes

Graph algorithms usually need to maintain attributes for vertices and/or edges. Use

the usual dot-notation: denote attribute d of vertex � by �:d.

Use the dot-notation for edges, too: denote attribute f of edge .u; �/ by .u; �/: f .
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Implementing graph attributes

No one best way to implement. Depends on the programming language, the algo-

rithm, and how the rest of the program interacts with the graph.

If representing the graph with adjacency lists, can represent vertex attributes in
additional arrays that parallel the Adj array, e.g., dŒ1 : : jV j�, so that if vertices

adjacent to u are in AdjŒu�, store u:d in array entry dŒu�.

But can represent attributes in other ways. Example: represent vertex attributes as

instance variables within a subclass of a Vertex class.

Breadth-first search

Input: Graph G D .V; E/, either directed or undirected, and source vertex s 2 V .

Output: �:d D distance (smallest # of edges) from s to �, for all � 2 V .

In book, also �:� such that .u; �/ is last edge on shortest path s ; �.

� u is �’s predecessor.
� set of edges f.�:�; �/ W � ¤ sg forms a tree.

Later, we’ll see a generalization of breadth-first search, with edge weights. For

now, we’ll keep it simple.

� Compute only �:d, not �:� . [See book for �:� .]
� Omitting colors of vertices. [Used in book to reason about the algorithm. We’ll

skip them here.]

Idea

Send a wave out from s.

� First hits all vertices 1 edge from s.

� From there, hits all vertices 2 edges from s.

� Etc.

Use FIFO queue Q to maintain wavefront.

� � 2 Q if and only if wave has hit � but has not come out of � yet.

BFS.V; E; s/

for each u 2 V � fsg
u:d D 1

s:d D 0

Q D ;
ENQUEUE.Q; s/

while Q ¤ ;
u D DEQUEUE.Q/

for each � 2 G:AdjŒu�

if �:d ==1
�:d D u:dC 1

ENQUEUE.Q; �/
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Example

directed graph [undirected example in book] .

a

b

s

e

c

i

g

h

f
0

1

3

2

1

2

3

3

3

Can show that Q consists of vertices with d values.

i i i : : : i i C 1 i C 1 : : : i C 1

� Only 1 or 2 values.

� If 2, differ by 1 and all smallest are first.

Since each vertex gets a finite d value at most once, values assigned to vertices are

monotonically increasing over time.

Actual proof of correctness is a bit trickier. See book.

BFS may not reach all vertices.

Time D O.V C E/.

� O.V / because every vertex enqueued at most once.

� O.E/ because every vertex dequeued at most once and we examine .u; �/ only

when u is dequeued. Therefore, every edge examined at most once if directed,

at most twice if undirected.

Depth-first search

Input: G D .V; E/, directed or undirected. No source vertex given!

Output: 2 timestamps on each vertex:

� �:d D discovery time

� �: f D finishing time

These will be useful for other algorithms later on.

Can also compute �:� . [See book.]

Will methodically explore every edge.

� Start over from different vertices as necessary.

As soon as we discover a vertex, explore from it.

� Unlike BFS, which puts a vertex on a queue so that we explore from it later.
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As DFS progresses, every vertex has a color:

� WHITE D undiscovered

� GRAY D discovered, but not finished (not done exploring from it)

� BLACK D finished (have found everything reachable from it)

Discovery and finishing times:

� Unique integers from 1 to 2 jV j.
� For all �, �:d < �: f .

In other words, 1 � �:d < �: f � 2 jV j.

Pseudocode

Uses a global timestamp time.

DFS.G/

for each u 2 G:V

u:color D WHITE

time D 0

for each u 2 G:V

if u:color == WHITE

DFS-VISIT.G; u/

DFS-VISIT.G; u/

time D timeC 1

u:d D time

u:color D GRAY // discover u

for each � 2 G:AdjŒu� // explore .u; �/

if �:color == WHITE

DFS-VISIT.�/

u:color D BLACK

time D timeC 1

u: f D time // finish u

Example

[Go through this example, adding in the d and f values as they’re computed. Show
colors as they change. Don’t put in the edge types yet.]

121

43

118

65

1613

1514

72 109

T

T

T

T

T

TB F

C C

C

C

C

C

d f
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Time D ‚.V CE/.

� Similar to BFS analysis.

� ‚, not just O , since guaranteed to examine every vertex and edge.

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each tree is
made of edges .u; �/ such that u is gray and � is white when .u; �/ is explored.

Theorem (Parenthesis theorem)

[Proof omitted.]

For all u; �, exactly one of the following holds:

1. u:d < u: f < �:d < �: f or �:d < �: f < u:d < u: f (i.e., the intervals Œu:d; u: f �

and Œ�:d; �: f � are disjoint) and neither of u and � is a descendant of the other.

2. u:d < �:d < �: f < u: f and � is a descendant of u.

3. �:d < u:d < u: f < �: f and u is a descendant of �.

So u:d < �:d < u: f < �: f cannot happen.

Like parentheses:

� OK: ( ) [ ] ( [ ] ) [ ( ) ]

� Not OK: ( [ ) ] [ ( ] )

Corollary

� is a proper descendant of u if and only if u:d < �:d < �: f < u: f .

Theorem (White-path theorem)

[Proof omitted.]

� is a descendant of u if and only if at time u:d, there is a path u ; � consisting

of only white vertices. (Except for u, which was just colored gray.)

Classification of edges

� Tree edge: in the depth-first forest. Found by exploring .u; �/.

� Back edge: .u; �/, where u is a descendant of �.

� Forward edge: .u; �/, where � is a descendant of u, but not a tree edge.

� Cross edge: any other edge. Can go between vertices in same depth-first tree

or in different depth-first trees.

[Now label the example from above with edge types.]

In an undirected graph, there may be some ambiguity since .u; �/ and .�; u/ are

the same edge. Classify by the first type above that matches.

Theorem

[Proof omitted.]

In DFS of an undirected graph, we get only tree and back edges. No forward or

cross edges.
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Topological sort

Directed acyclic graph (dag)

A directed graph with no cycles.

Good for modeling processes and structures that have a partial order:

� a > b and b > c) a > c.

� But may have a and b such that neither a > b nor b > c.

Can always make a total order (either a > b or b > a for all a ¤ b) from a partial

order. In fact, that’s what a topological sort will do.

Example

Dag of dependencies for putting on goalie equipment: [Leave on board, but show
without discovery and finishing times. Will put them in later.]

shorts

17/22 pants

T-shirt

leg pads

hose

socks

16/23

25/26 15/24

skates18/21

19/20

batting glove

chest pad

sweater

mask

catch glove

7/14

8/13

9/12

10/11

2/5

blocker3/4

1/6

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back edges.

Proof ) : Show that back edge) cycle.

Suppose there is a back edge .u; �/. Then � is ancestor of u in depth-first forest.

v

B

T

T

T

u
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Therefore, there is a path � ; u, so � ; u! � is a cycle.

( : Show that cycle) back edge.

Suppose G contains cycle c. Let � be the first vertex discovered in c, and let .u; �/

be the preceding edge in c. At time �:d, vertices of c form a white path � ; u

(since � is the first vertex discovered in c). By white-path theorem, u is descendant

of � in depth-first forest. Therefore, .u; �/ is a back edge. (lemma)

Topological sort of a dag: a linear ordering of vertices such that if .u; �/ 2 E,
then u appears somewhere before �. (Not like sorting numbers.)

TOPOLOGICAL-SORT.G/

call DFS.G/ to compute finishing times �: f for all � 2 G:V

output vertices in order of decreasing finishing times

Don’t need to sort by finishing times.

� Can just output vertices as they’re finished and understand that we want the

reverse of this list.

� Or put them onto the front of a linked list as they’re finished. When done, the

list contains vertices in topologically sorted order.

Time

‚.V C E/.

Do example. [Now write discovery and finishing times in goalie equipment exam-
ple.]

Order:

26 socks

24 shorts

23 hose

22 pants

21 skates

20 leg pads

14 t-shirt

13 chest pad

12 sweater

11 mask

6 batting glove

5 catch glove
4 blocker

Correctness

Just need to show if .u; �/ 2 E, then �: f < u: f .

When we explore .u; �/, what are the colors of u and �?

� u is gray.



Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-9

� Is � gray, too?

� No, because then � would be ancestor of u.

) .u; �/ is a back edge.

) contradiction of previous lemma (dag has no back edges).

� Is � white?

� Then becomes descendant of u.

By parenthesis theorem, u:d < �:d <�: f < u: f .

� Is � black?

� Then � is already finished.

Since we’re exploring .u; �/, we have not yet finished u.

Therefore, �: f < u: f .

Strongly connected components

Given directed graph G D .V; E/.

A strongly connected component (SCC) of G is a maximal set of vertices C � V

such that for all u; � 2 C , both u ; � and � ; u.

Example

[Just show SCC’s at first. Do DFS a little later.]

14/19 15/16

17/18 13/20

3/4

2/5

1/12

10/11

6/9

7/8

Algorithm uses GT D transpose of G.

� GT D .V; ET/, ET D f.u; �/ W .�; u/ 2 Eg.
� GT is G with all edges reversed.

Can create GT in ‚.V CE/ time if using adjacency lists.

Observation

G and GT have the same SCC’s. (u and � are reachable from each other in G if

and only if reachable from each other in GT.)

Component graph

� GSCC D .V SCC; ESCC/.
� V SCC has one vertex for each SCC in G.
� ESCC has an edge if there’s an edge between the corresponding SCC’s in G.
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For our example:

Lemma

GSCC is a dag. More formally, let C and C 0 be distinct SCC’s in G, let u; � 2 C ,

u0; � 0 2 C 0, and suppose there is a path u ; u0 in G. Then there cannot also be a

path � 0
; � in G.

Proof Suppose there is a path � 0
; � in G. Then there are paths u ; u0

; � 0

and � 0
; � ; u in G. Therefore, u and � 0 are reachable from each other, so they

are not in separate SCC’s. (lemma)

SCC.G/

call DFS.G/ to compute finishing times u: f for all u

compute GT

call DFS.GT/, but in the main loop, consider vertices in order of decreasing u: f

(as computed in first DFS)

output the vertices in each tree of the depth-first forest formed in second DFS

as a separate SCC

Example:

1. Do DFS

2. GT

3. DFS (roots blackened)

Time: ‚.V CE/.

How can this possibly work?

Idea

By considering vertices in second DFS in decreasing order of finishing times from

first DFS, we are visiting vertices of the component graph in topological sort order.

To prove that it works, first deal with 2 notational issues:

� Will be discussing u:d and u: f . These always refer to first DFS.

� Extend notation for d and f to sets of vertices U � V :

� d.U / D minu2U fu:dg (earliest discovery time)
� f .U / D maxu2U fu: f g (latest finishing time)
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Lemma

Let C and C 0 be distinct SCC’s in G D .V; E/. Suppose there is an edge .u; �/ 2
E such that u 2 C and � 2 C 0.

vuC
C′

Then f .C / > f .C 0/.

Proof Two cases, depending on which SCC had the first discovered vertex during

the first DFS.

� If d.C / < d.C 0/, let x be the first vertex discovered in C . At time x:d, all

vertices in C and C 0 are white. Thus, there exist paths of white vertices from x

to all vertices in C and C 0.

By the white-path theorem, all vertices in C and C 0 are descendants of x in

depth-first tree.

By the parenthesis theorem, x: f D f .C / > f .C 0/.
� If d.C / > d.C 0/, let y be the first vertex discovered in C 0. At time y:d, all

vertices in C 0 are white and there is a white path from y to each vertex in C 0

) all vertices in C 0 become descendants of y. Again, y: f D f .C 0/.

At time y:d, all vertices in C are white.

By earlier lemma, since there is an edge .u; �/, we cannot have a path from C 0

to C .

So no vertex in C is reachable from y.

Therefore, at time y: f , all vertices in C are still white.

Therefore, for all w 2 C , w: f > y: f , which implies that f .C / > f .C 0/.
(lemma)

Corollary

Let C and C 0 be distinct SCC’s in G D .V; E/. Suppose there is an edge

.u; �/ 2 ET, where u 2 C and � 2 C 0. Then f .C / < f .C 0/.

Proof .u; �/ 2 ET ) .�; u/ 2 E. Since SCC’s of G and GT are the same,

f .C 0/ > f .C /. (corollary)

Corollary

Let C and C 0 be distinct SCC’s in G D .V; E/, and suppose that f .C / > f .C 0/.
Then there cannot be an edge from C to C 0 in GT.

Proof It’s the contrapositive of the previous corollary.

Now we have the intuition to understand why the SCC procedure works.

When we do the second DFS, on GT, start with SCC C such that f .C / is max-

imum. The second DFS starts from some x 2 C , and it visits all vertices in C .
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Corollary says that since f .C / > f .C 0/ for all C 0 ¤ C , there are no edges from C

to C 0 in GT.

Therefore, DFS will visit only vertices in C .

Which means that the depth-first tree rooted at x contains exactly the vertices of C .

The next root chosen in the second DFS is in SCC C 0 such that f .C 0/ is maximum

over all SCC’s other than C . DFS visits all vertices in C 0, but the only edges out

of C 0 go to C , which we’ve already visited.

Therefore, the only tree edges will be to vertices in C 0.

We can continue the process.

Each time we choose a root for the second DFS, it can reach only

� vertices in its SCC—get tree edges to these,

� vertices in SCC’s already visited in second DFS—get no tree edges to these.

We are visiting vertices of .GT/SCC in reverse of topologically sorted order.

[The book has a formal proof.]
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Solution to Exercise 22.1-6

We start by observing that if aij D 1, so that .i; j / 2 E, then vertex i cannot
be a universal sink, for it has an outgoing edge. Thus, if row i contains a 1, then

vertex i cannot be a universal sink. This observation also means that if there is a

self-loop .i; i/, then vertex i is not a universal sink. Now suppose that aij D 0,

so that .i; j / 62 E, and also that i ¤ j . Then vertex j cannot be a universal sink,

for either its in-degree must be strictly less than jV j � 1 or it has a self-loop. Thus

if column j contains a 0 in any position other than the diagonal entry .j; j /, then

vertex j cannot be a universal sink.

Using the above observations, the following procedure returns TRUE if vertex k

is a universal sink, and FALSE otherwise. It takes as input a jV j � jV j adjacency

matrix A D .aij /.

IS-SINK.A; k/

let A be jV j � jV j
for j D 1 to jV j // check for a 1 in row k

if akj == 1

return FALSE

for i D 1 to jV j // check for an off-diagonal 0 in column k

if aik == 0 and i ¤ k

return FALSE

return TRUE

Because this procedure runs in O.V / time, we may call it only O.1/ times in

order to achieve our O.V /-time bound for determining whether directed graph G

contains a universal sink.

Observe also that a directed graph can have at most one universal sink. This prop-

erty holds because if vertex j is a universal sink, then we would have .i; j / 2 E

for all i ¤ j and so no other vertex i could be a universal sink.

The following procedure takes an adjacency matrix A as input and returns either a

message that there is no universal sink or a message containing the identity of the

universal sink. It works by eliminating all but one vertex as a potential universal
sink and then checking the remaining candidate vertex by a single call to IS-SINK.
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UNIVERSAL-SINK.A/

let A be jV j � jV j
i D j D 1

while i � jV j and j � jV j
if aij == 1

i D i C 1

else j D j C 1

if i > jV j
return “there is no universal sink”

elseif IS-SINK.A; i/ == FALSE

return “there is no universal sink”

else return i “is a universal sink”

UNIVERSAL-SINK walks through the adjacency matrix, starting at the upper left

corner and always moving either right or down by one position, depending on

whether the current entry aij it is examining is 0 or 1. It stops once either i or j

exceeds jV j.
To understand why UNIVERSAL-SINK works, we need to show that after the while

loop terminates, the only vertex that might be a universal sink is vertex i . The call

to IS-SINK then determines whether vertex i is indeed a universal sink.

Let us fix i and j to be values of these variables at the termination of the while

loop. We claim that every vertex k such that 1 � k < i cannot be a universal

sink. That is because the way that i achieved its final value at loop termination was

by finding a 1 in each row k for which 1 � k < i . As we observed above, any

vertex k whose row contains a 1 cannot be a universal sink.

If i > jV j at loop termination, then we have eliminated all vertices from consid-

eration, and so there is no universal sink. If, on the other hand, i � jV j at loop

termination, we need to show that every vertex k such that i < k � jV j cannot

be a universal sink. If i � jV j at loop termination, then the while loop terminated

because j > jV j. That means that we found a 0 in every column. Recall our earlier

observation that if column k contains a 0 in an off-diagonal position, then vertex k

cannot be a universal sink. Since we found a 0 in every column, we found a 0 in

every column k such that i < k � jV j. Moreover, we never examined any matrix

entries in rows greater than i , and so we never examined the diagonal entry in any

column k such that i < k � jV j. Therefore, all the 0s that we found in columns k

such that i < k � jV j were off-diagonal. We conclude that every vertex k such

that i < k � jV j cannot be a universal sink.

Thus, we have shown that every vertex less than i and every vertex greater than i

cannot be a universal sink. The only remaining possibility is that vertex i might be

a universal sink, and the call to IS-SINK checks whether it is.

To see that UNIVERSAL-SINK runs in O.V / time, observe that either i or j is

incremented in each iteration of the while loop. Thus, the while loop makes at

most 2 jV j � 1 iterations. Each iteration takes O.1/ time, for a total while loop

time of O.V / and, combined with the O.V /-time call to IS-SINK, we get a total

running time of O.V /.
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Solution to Exercise 22.1-7

This solution is also posted publicly

BBT .i; j / D
X

e2E

biebT
ej D

X

e2E

biebje

� If i D j , then biebje D 1 (it is 1 � 1 or .�1/ � .�1/) whenever e enters or leaves

vertex i , and 0 otherwise.

� If i ¤ j , then biebje D �1 when e D .i; j / or e D .j; i/, and 0 otherwise.

Thus,

BBT .i; j / D
(

degree of i D in-degree C out-degree if i D j ;

�.# of edges connecting i and j / if i ¤ j :

Solution to Exercise 22.2-3

Note: This exercise changed in the third printing. This solution reflects the change.

The BFS procedure cares only whether a vertex is white or not. A vertex � must

become non-white at the same time that �:d is assigned a finite value so that we do

not attempt to assign to �:d again, and so we need to change vertex colors in lines

5 and 14. Once we have changed a vertex’s color to non-white, we do not need to

change it again.

Solution to Exercise 22.2-5

This solution is also posted publicly

The correctness proof for the BFS algorithm shows that u:d D ı.s; u/, and the

algorithm doesn’t assume that the adjacency lists are in any particular order.

In Figure 22.3, if t precedes x in AdjŒw�, we can get the breadth-first tree shown

in the figure. But if x precedes t in AdjŒw� and u precedes y in AdjŒx�, we can get

edge .x; u/ in the breadth-first tree.

Solution to Exercise 22.2-6

The edges in E� are shaded in the following graph:

s

u w

v x
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To see that E� cannot be a breadth-first tree, let’s suppose that AdjŒs� contains u

before �. BFS adds edges .s; u/ and .s; �/ to the breadth-first tree. Since u is

enqueued before �, BFS then adds edges .u; w/ and .u; x/. (The order of w and x

in AdjŒu� doesn’t matter.) Symmetrically, if AdjŒs� contains � before u, then BFS

adds edges .s; �/ and .s; u/ to the breadth-first tree, � is enqueued before u, and

BFS adds edges .�; w/ and .�; x/. (Again, the order of w and x in AdjŒ�� doesn’t

matter.) BFS will never put both edges .u; w/ and .�; x/ into the breadth-first tree.

In fact, it will also never put both edges .u; x/ and .�; w/ into the breadth-first tree.

Solution to Exercise 22.2-7

Create a graph G where each vertex represents a wrestler and each edge represents

a rivalry. The graph will contain n vertices and r edges.

Perform as many BFS’s as needed to visit all vertices. Assign all wrestlers whose

distance is even to be babyfaces and all wrestlers whose distance is odd to be

heels. Then check each edge to verify that it goes between a babyface and a heel.

This solution would take O.nC r/ time for the BFS, O.n/ time to designate each

wrestler as a babyface or heel, and O.r/ time to check edges, which is O.n C r/

time overall.

Solution to Exercise 22.3-4

Note: This exercise changed in the third printing. This solution reflects the change.

The DFS and DFS-VISIT procedures care only whether a vertex is white or not.

By coloring vertex u gray when it is first visited, in line 3 of DFS-VISIT, we

ensure that u will not be visited again. Once we have changed a vertex’s color to

non-white, we do not need to change it again.

Solution to Exercise 22.3-5

a. Edge .u; �/ is a tree edge or forward edge if and only if � is a descendant of u

in the depth-first forest. (If .u; �/ is a back edge, then u is a descendant of �,

and if .u; �/ is a cross edge, then neither of u or � is a descendant of the other.)

By Corollary 22.8, therefore, .u; �/ is a tree edge or forward edge if and only if
u:d < �:d < �: f < u: f .

b. First, suppose that .u; �/ is a back edge. A self-loop is by definition a back
edge. If .u; �/ is a self-loop, then clearly �:d D u:d < u: f D �: f . If .u; �/

is not a self-loop, then u is a descendant of � in the depth-first forest, and by

Corollary 22.8, �:d < u:d < u: f < �: f .

Now, suppose that �:d � u:d < u: f � �: f . If u and � are the same vertex, then

�:d D u:d < u: f D �: f , and .u; �/ is a self-loop and hence a back edge. If u
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and � are distinct, then �:d < u:d < u: f < �: f . By the parenthesis theorem,

interval Œu:d; u: f � is contained entirely within the interval Œ�:d; �: f �, and u is a

descendant of � in a depth-first tree. Thus, .u; �/ is a back edge.

c. First, suppose that .u; �/ is a cross edge. Since neither u nor � is an ancestor of

the other, the parenthesis theorem says that the intervals Œu:d; u: f � and Œ�:d; �: f �

are entirely disjoint. Thus, we must have either u:d < u: f < �:d < �: f or

�:d < �: f < u:d < u: f . We claim that we cannot have u:d < �:d if .u; �/ is a

cross edge. Why? If u:d < �:d, then � is white at time u:d. By the white-path

theorem, � is a descendant of u, which contradicts .u; �/ being a cross edge.
Thus, we must have �:d < �: f < u:d < u: f .

Now suppose that �:d < �: f < u:d < u: f . By the parenthesis theorem, neither

u nor � is a descendant of the other, which means that .u; �/ must be a cross
edge.

Solution to Exercise 22.3-8

Let us consider the example graph and depth-first search below.

d f

w 1 6

u 2 3

� 4 5
u v

w

Clearly, there is a path from u to � in G. The bold edges are in the depth-first

forest produced. We can see that u:d < �:d in the depth-first search but � is not a

descendant of u in the forest.

Solution to Exercise 22.3-9

Let us consider the example graph and depth-first search below.

d f

w 1 6

u 2 3

� 4 5
u v

w

Clearly, there is a path from u to � in G. The bold edges of G are in the depth-first

forest produced by the search. However, �:d > u: f and the conjecture is false.

Solution to Exercise 22.3-11

Let us consider the example graph and depth-first search below.



22-18 Solutions for Chapter 22: Elementary Graph Algorithms

d f

w 1 2

u 3 4
� 5 6

w vu

Clearly u has both incoming and outgoing edges in G but a depth-first search of G

produced a depth-first forest where u is in a tree by itself.

Solution to Exercise 22.3-12

This solution is also posted publicly

The following pseudocode modifies the DFS and DFS-VISIT procedures to assign

values to the cc attributes of vertices.

DFS.G/

for each vertex u 2 G:V

u:color D WHITE

u:� D NIL

time D 0

counter D 0

for each vertex u 2 G:V

if u:color == WHITE

counter D counter C 1

DFS-VISIT.G; u; counter/

DFS-VISIT.G; u; counter/

u:cc D counter // label the vertex

time D timeC 1

u:d D time

u:color D GRAY

for each � 2 G:AdjŒu�

if �:color == WHITE

�:� D u

DFS-VISIT.G; �; counter/

u:color D BLACK

time D timeC 1

u: f D time

This DFS increments a counter each time DFS-VISIT is called to grow a new tree

in the DFS forest. Every vertex visited (and added to the tree) by DFS-VISIT is

labeled with that same counter value. Thus u:cc D �:cc if and only if u and � are

visited in the same call to DFS-VISIT from DFS, and the final value of the counter

is the number of calls that were made to DFS-VISIT by DFS. Also, since every

vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by each call to DFS-VISIT

from DFS are exactly the vertices in one connected component of G.
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� All vertices in a connected component are visited by one call to DFS-VISIT

from DFS:

Let u be the first vertex in component C visited by DFS-VISIT. Since a vertex

becomes non-white only when it is visited, all vertices in C are white when

DFS-VISIT is called for u. Thus, by the white-path theorem, all vertices in C

become descendants of u in the forest, which means that all vertices in C are

visited (by recursive calls to DFS-VISIT) before DFS-VISIT returns to DFS.

� All vertices visited by one call to DFS-VISIT from DFS are in the same con-

nected component:

If two vertices are visited in the same call to DFS-VISIT from DFS, they are in

the same connected component, because vertices are visited only by following

paths in G (by following edges found in adjacency lists, starting from some
vertex).

Solution to Exercise 22.4-3

This solution is also posted publicly

An undirected graph is acyclic (i.e., a forest) if and only if a DFS yields no back

edges.

� If there’s a back edge, there’s a cycle.

� If there’s no back edge, then by Theorem 22.10, there are only tree edges.

Hence, the graph is acyclic.

Thus, we can run DFS: if we find a back edge, there’s a cycle.

� Time: O.V /. (Not O.V CE/!)

If we ever see jV j distinct edges, we must have seen a back edge because (by

Theorem B.2 on p. 1174) in an acyclic (undirected) forest, jEj � jV j � 1.
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Solution to Exercise 22.4-5

TOPOLOGICAL-SORT.G/

// Initialize in-degree, ‚.V / time.
for each vertex u 2 G:V

u: in-degree D 0

// Compute in-degree, ‚.V CE/ time.

for each vertex u 2 G:V

for each � 2 G:AdjŒu�

�: in-degree D �: in-degreeC 1

// Initialize Queue, ‚.V / time.

Q D ;
for each vertex u 2 G:V

if u: in-degree == 0

ENQUEUE.Q; u/

// while loop takes O.V C E/ time.

while Q ¤ ;
u D DEQUEUE.Q/

output u

// for loop executes O.E/ times total.

for each � 2 G:AdjŒu�

�: in-degree D �: in-degree � 1

if �: in-degree == 0

ENQUEUE.Q; �/

// Check for cycles, O.V / time.

for each vertex u 2 G:V

if u: in-degree ¤ 0

report that there’s a cycle

// Another way to check for cycles would be to count the vertices

// that are output and report a cycle if that number is < jV j.

To find and output vertices of in-degree 0, we first compute all vertices’ in-degrees

by making a pass through all the edges (by scanning the adjacency lists of all the

vertices) and incrementing the in-degree of each vertex an edge enters.

� Computing all in-degrees takes ‚.V C E/ time (jV j adjacency lists accessed,

jEj edges total found in those lists, ‚.1/ work for each edge).

We keep the vertices with in-degree 0 in a FIFO queue, so that they can be en-

queued and dequeued in O.1/ time. (The order in which vertices in the queue are

processed doesn’t matter, so any kind of FIFO queue works.)

� Initializing the queue takes one pass over the vertices doing ‚.1/ work, for total

time ‚.V /.

As we process each vertex from the queue, we effectively remove its outgoing

edges from the graph by decrementing the in-degree of each vertex one of those

edges enters, and we enqueue any vertex whose in-degree goes to 0. We do not need

to actually remove the edges from the adjacency list, because that adjacency list
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will never be processed again by the algorithm: Each vertex is enqueued/dequeued

at most once because it is enqueued only if it starts out with in-degree 0 or if its in-

degree becomes 0 after being decremented (and never incremented) some number

of times.

� The processing of a vertex from the queue happens O.V / times because no

vertex can be enqueued more than once. The per-vertex work (dequeue and

output) takes O.1/ time, for a total of O.V / time.

� Because the adjacency list of each vertex is scanned only when the vertex is
dequeued, the adjacency list of each vertex is scanned at most once. Since the

sum of the lengths of all the adjacency lists is ‚.E/, at most O.E/ time is spent

in total scanning adjacency lists. For each edge in an adjacency list, ‚.1/ work

is done, for a total of O.E/ time.

Thus the total time taken by the algorithm is O.V C E/.

The algorithm outputs vertices in the right order (u before � for every edge .u; �/)

because � will not be output until its in-degree becomes 0, which happens only

when every edge .u; �/ leading into � has been “removed” due to the processing

(including output) of u.

If there are no cycles, all vertices are output.

� Proof: Assume that some vertex �0 is not output. Vertex �0 cannot start out

with in-degree 0 (or it would be output), so there are edges into �0. Since �0’s

in-degree never becomes 0, at least one edge .�1; �0/ is never removed, which

means that at least one other vertex �1 was not output. Similarly, �1 not output

means that some vertex �2 such that .�2; �1/ 2 E was not output, and so on.

Since the number of vertices is finite, this path (� � � ! �2 ! �1 ! �0) is finite,

so we must have �i D �j for some i and j in this sequence, which means there

is a cycle.

If there are cycles, not all vertices will be output, because some in-degrees never

become 0.

� Proof: Assume that a vertex in a cycle is output (its in-degree becomes 0). Let �

be the first vertex in its cycle to be output, and let u be �’s predecessor in the

cycle. In order for �’s in-degree to become 0, the edge .u; �/ must have been

“removed,” which happens only when u is processed. But this cannot have

happened, because � is the first vertex in its cycle to be processed. Thus no

vertices in cycles are output.

Solution to Exercise 22.5-5

We have at our disposal an O.V CE/-time algorithm that computes strongly con-

nected components. Let us assume that the output of this algorithm is a map-

ping u:scc, giving the number of the strongly connected component containing

vertex u, for each vertex u. Without loss of generality, assume that u:scc is an

integer in the set f1; 2; : : : ; jV jg.
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Construct the multiset (a set that can contain the same object more than once)

T D fu:scc W u 2 V g, and sort it by using counting sort. Since the values we are

sorting are integers in the range 1 to jV j, the time to sort is O.V /. Go through the

sorted multiset T and every time we find an element x that is distinct from the one

before it, add x to V SCC. (Consider the first element of the sorted set as “distinct

from the one before it.”) It takes O.V / time to construct V SCC.

Construct the set of ordered pairs

S D f.x; y/ W there is an edge .u; �/ 2 E; x D u:scc; and y D �:sccg :

We can easily construct this set in ‚.E/ time by going through all edges in E and

looking up u:scc and �:scc for each edge .u; �/ 2 E.

Having constructed S , remove all elements of the form .x; x/. Alternatively, when

we construct S , do not put an element in S when we find an edge .u; �/ for which

u:scc D �:scc. S now has at most jEj elements.

Now sort the elements of S using radix sort. Sort on one component at a time. The
order does not matter. In other words, we are performing two passes of counting

sort. The time to do so is O.V CE/, since the values we are sorting on are integers

in the range 1 to jV j.
Finally, go through the sorted set S , and every time we find an element .x; y/

that is distinct from the element before it (again considering the first element of

the sorted set as distinct from the one before it), add .x; y/ to ESCC. Sorting and
then adding .x; y/ only if it is distinct from the element before it ensures that we

add .x; y/ at most once. It takes O.E/ time to go through S in this way, once S

has been sorted.

The total time is O.V C E/.

Solution to Exercise 22.5-6

The basic idea is to replace the edges within each SCC by one simple, directed

cycle and then remove redundant edges between SCC’s. Since there must be at

least k edges within an SCC that has k vertices, a single directed cycle of k edges

gives the k-vertex SCC with the fewest possible edges.

The algorithm works as follows:

1. Identify all SCC’s of G. Time: ‚.V C E/, using the SCC algorithm in Sec-

tion 22.5.

2. Form the component graph GSCC. Time: O.V CE/, by Exercise 22.5-5.

3. Start with E 0 D ;. Time: O.1/.

4. For each SCC of G, let the vertices in the SCC be �1; �2; : : : ; �k , and add to E 0

the directed edges .�1; �2/; .�2; �3/; : : : ; .�k�1; �k/; .�k; �1/. These edges form

a simple, directed cycle that includes all vertices of the SCC. Time for all

SCC’s: O.V /.

5. For each edge .u; �/ in the component graph GSCC, select any vertex x in u’s

SCC and any vertex y in �’s SCC, and add the directed edge .x; y/ to E 0.
Time: O.E/.

Thus, the total time is ‚.V CE/.
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Solution to Exercise 22.5-7

To determine whether G D .V; E/ is semiconnected, do the following:

1. Call STRONGLY-CONNECTED-COMPONENTS.

2. Form the component graph. (By Exercise 22.5-5, you may assume that this

takes O.V CE/ time.)

3. Topologically sort the component graph. (Recall that it’s a dag.) Assuming that

G contains k SCC’s, the topological sort gives a linear ordering h�1; �2; : : : ; �ki
of the vertices.

4. Verify that the sequence of vertices h�1; �2; : : : ; �ki given by topological sort

forms a linear chain in the component graph. That is, verify that the edges

.�1; �2/; .�2; �3/; : : : ; .�k�1; �k/ exist in the component graph. If the vertices

form a linear chain, then the original graph is semiconnected; otherwise it is

not.

Because we know that all vertices in each SCC are mutually reachable from each

other, it suffices to show that the component graph is semiconnected if and only if

it contains a linear chain. We must also show that if there’s a linear chain in the

component graph, it’s the one returned by topological sort.

We’ll first show that if there’s a linear chain in the component graph, then it’s the

one returned by topological sort. In fact, this is trivial. A topological sort has to

respect every edge in the graph. So if there’s a linear chain, a topological sort must

give us the vertices in order.

Now we’ll show that the component graph is semiconnected if and only if it con-
tains a linear chain.

First, suppose that the component graph contains a linear chain. Then for every

pair of vertices u; � in the component graph, there is a path between them. If u

precedes � in the linear chain, then there’s a path u ; �. Otherwise, � precedes u,

and there’s a path � ; u.

Conversely, suppose that the component graph does not contain a linear chain.

Then in the list returned by topological sort, there are two consecutive vertices �i

and �iC1, but the edge .�i ; �iC1/ is not in the component graph. Any edges out of �i

are to vertices �j , where j > i C 1, and so there is no path from �i to �iC1 in the

component graph. And since �iC1 follows �i in the topological sort, there cannot be

any paths at all from �iC1 to �i . Thus, the component graph is not semiconnected.

Running time of each step:

1. ‚.V C E/.

2. O.V CE/.

3. Since the component graph has at most jV j vertices and at most jEj edges,

O.V CE/.

4. Also O.V C E/. We just check the adjacency list of each vertex �i in the

component graph to verify that there’s an edge .�i ; �iC1/. We’ll go through

each adjacency list once.

Thus, the total running time is ‚.V CE/.
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Solution to Problem 22-1

This solution is also posted publicly

a. 1. Suppose .u; �/ is a back edge or a forward edge in a BFS of an undirected

graph. Then one of u and �, say u, is a proper ancestor of the other (�) in

the breadth-first tree. Since we explore all edges of u before exploring any

edges of any of u’s descendants, we must explore the edge .u; �/ at the time

we explore u. But then .u; �/ must be a tree edge.

2. In BFS, an edge .u; �/ is a tree edge when we set �:� D u. But we only

do so when we set �:d D u:d C 1. Since neither u:d nor �:d ever changes

thereafter, we have �:d D u:dC 1 when BFS completes.

3. Consider a cross edge .u; �/ where, without loss of generality, u is visited

before �. At the time we visit u, vertex � must already be on the queue, for

otherwise .u; �/ would be a tree edge. Because � is on the queue, we have

�:d � u:d C 1 by Lemma 22.3. By Corollary 22.4, we have �:d � u:d.

Thus, either �:d D u:d or �:d D u:dC 1.

b. 1. Suppose .u; �/ is a forward edge. Then we would have explored it while

visiting u, and it would have been a tree edge.

2. Same as for undirected graphs.

3. For any edge .u; �/, whether or not it’s a cross edge, we cannot have

�:d > u:dC 1, since we visit � at the latest when we explore edge .u; �/.

Thus, �:d � u:dC 1.

4. Clearly, �:d � 0 for all vertices �. For a back edge .u; �/, � is an ancestor

of u in the breadth-first tree, which means that �:d � u:d. (Note that since

self-loops are considered to be back edges, we could have u D �.)

Solution to Problem 22-3

a. An Euler tour is a single cycle that traverses each edge of G exactly once, but
it might not be a simple cycle. An Euler tour can be decomposed into a set of

edge-disjoint simple cycles, however.

If G has an Euler tour, therefore, we can look at the simple cycles that, together,

form the tour. In each simple cycle, each vertex in the cycle has one entering

edge and one leaving edge. In each simple cycle, therefore, each vertex � has

in-degree.�/ D out-degree.�/, where the degrees are either 1 (if � is on the

simple cycle) or 0 (if � is not on the simple cycle). Adding the in- and out-

degrees over all edges proves that if G has an Euler tour, then in-degree.�/ D
out-degree.�/ for all vertices �.

We prove the converse—that if in-degree.�/ D out-degree.�/ for all vertices �,

then G has an Euler tour—in two different ways. One proof is nonconstructive,

and the other proof will help us design the algorithm for part (b).

First, we claim that if in-degree.�/ D out-degree.�/ for all vertices �, then we

can pick any vertex u for which in-degree.u/ D out-degree.u/ � 1 and create
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a cycle (not necessarily simple) that contains u. To prove this claim, let us start

by placing vertex u on the cycle, and choose any leaving edge of u, say .u; �/.

Now we put � on the cycle. Since in-degree.�/ D out-degree.�/ � 1, we can

pick some leaving edge of � and continue visiting edges and vertices. Each time

we pick an edge, we can remove it from further consideration. At each vertex

other than u, at the time we visit an entering edge, there must be an unvisited

leaving edge, since in-degree.�/ D out-degree.�/ for all vertices �. The only

vertex for which there might not be an unvisited leaving edge is u, since we
started the cycle by visiting one of u’s leaving edges. Since there’s always a

leaving edge we can visit from all vertices other than u, eventually the cycle

must return to u, thus proving the claim.

The nonconstructive proof proves the contrapositive—that if G does not have

an Euler tour, then in-degree.�/ ¤ out-degree.�/ for some vertex �—by con-

tradiction. Choose a graph G D .V; E/ that does not have an Euler tour but

has at least one edge and for which in-degree.�/ D out-degree.�/ for all ver-

tices �, and let G have the fewest edges of any such graph. By the above claim,

G contains a cycle. Let C be a cycle of G with the greatest number of edges,

and let VC be the set of vertices visited by cycle C . By our assumption, C is

not an Euler tour, and so the set of edges E 0 D E � C is nonempty. If we use

the set V of vertices and the set E 0 of edges, we get the graph G0 D .V; E 0/;
this graph has in-degree.�/ D out-degree.�/ for all vertices �, since we have

removed one entering edge and one leaving edge for each vertex on cycle C .

Consider any component G00 D .V 00; E 00/ of G0, and observe that G00 also has

in-degree.�/ D out-degree.�/ for all vertices �. Since E 00 � E 0 ¨ E, it fol-

lows from how we chose G that G00 must have an Euler tour, say C 0. Because
the original graph G is connected, there must be some vertex x 2 V 00[VC and,

without loss of generality, consider x to be the first and last vertex on both C

and C 0. But then the cycle C 00 formed by first traversing C and then travers-

ing C 0 is a cycle of G with more edges than C , contradicting our choice of C .

We conclude that C must have been an Euler tour.

The constructive proof uses the same ideas. Let us start at a vertex u and, via

random traversal of edges, create a cycle. We know that once we take any edge

entering a vertex � ¤ u, we can find an edge leaving � that we have not yet

taken. Eventually, we get back to vertex u, and if there are still edges leaving u

that we have not taken, we can continue the cycle. Eventually, we get back to

vertex u and there are no untaken edges leaving u. If we have visited every

edge in the graph G, we are done. Otherwise, since G is connected, there must

be some unvisited edge leaving a vertex, say �, on the cycle. We can traverse

a new cycle starting at �, visiting only previously unvisited edges, and we can

splice this cycle into the cycle we already know. That is, if the original cycle

is hu; : : : ; �; w; : : : ; ui, and the new cycle is h�; x; : : : ; �i, then we can create

the cycle hu; : : : ; �; x; : : : ; �; w; : : : ; ui. We continue this process of finding a
vertex with an unvisited leaving edge on a visited cycle, visiting a cycle starting

and ending at this vertex, and splicing in the newly visited cycle, until we have

visited every edge.

b. The algorithm is based on the idea in the constructive proof above.



22-26 Solutions for Chapter 22: Elementary Graph Algorithms

We assume that G is represented by adjacency lists, and we work with a copy

of the adjacency lists, so that as we visit each edge, we can remove it from

its adjacency list. The singly linked form of adjacency list will suffice. The

output of this algorithm is a doubly linked list T of vertices which, read in list

order, will give an Euler tour. The algorithm constructs T by finding cycles

(also represented by doubly linked lists) and splicing them into T . By using

doubly linked lists for cycles and the Euler tour, splicing a cycle into the Euler

tour takes constant time.

We also maintain a singly linked list L, in which each list element consists of

two parts:

1. a vertex �, and

2. a pointer to some appearance of � in T .

Initially, L contains one vertex, which may be any vertex of G.

Here is the algorithm:

EULER-TOUR.G/

T D empty list

L D .any vertex � 2 G:V; NIL/

while L is not empty

remove .�; location-in-T / from L

C D VISIT.G; L; �/

if location-in-T == NIL

T D C

else splice C into T just before location-in-T

return T

VISIT.G; L; �/

C D empty sequence of vertices

u D �

while out-degree.u/ > 0

let w be the first vertex in G:AdjŒu�

remove w from G:AdjŒu�, decrementing out-degree.u/

add u onto the end of C

if out-degree.u/ > 0

add .u; u’s location in C / to L

u D w

return C

The use of NIL in the initial assignment to L ensures that the first cycle C

returned by VISIT becomes the current version of the Euler tour T . All cycles

returned by VISIT thereafter are spliced into T . We assume that whenever an

empty cycle is returned by VISIT, splicing it into T leaves T unchanged.

Each time that EULER-TOUR removes a vertex � from the list L, it calls

VISIT.G; L; �/ to find a cycle C , possibly empty and possibly not simple, that

starts and ends at �; the cycle C is represented by a list that starts with � and

ends with the last vertex on the cycle before the cycle ends at �. EULER-TOUR
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then splices this cycle C into the Euler tour T just before some appearance of �

in T .

When VISIT is at a vertex u, it looks for some vertex w such that the edge .u; w/

has not yet been visited. Removing w from AdjŒu� ensures that we will never

visit .u; w/ again. VISIT adds u onto the cycle C that it constructs. If, after

removing edge .u; w/, vertex u still has any leaving edges, then u, along with

its location in C , is added to L. The cycle construction continues from w, and

it ceases once a vertex with no unvisited leaving edges is found. Using the

argument from part (a), at that point, this vertex must close up a cycle. At that

point, therefore, the cycle C is returned.

It is possible that a vertex u has unvisited leaving edges at the time it is added to

list L in VISIT, but that by the time that u is removed from L in EULER-TOUR,

all of its leaving edges have been visited. In this case, the while loop of VISIT

executes 0 iterations, and VISIT returns an empty cycle.

Once the list L is empty, every edge has been visited. The resulting cycle T is

then an Euler tour.

To see that EULER-TOUR takes O.E/ time, observe that because we remove

each edge from its adjacency list as it is visited, no edge is visited more than

once. Since each edge is visited at some time, the number of times that a vertex

is added to L, and thus removed from L, is at most jEj. Thus, the while loop in
EULER-TOUR executes at most E iterations. The while loop in VISIT executes

one iteration per edge in the graph, and so it executes at most E iterations as

well. Since adding vertex u to the doubly linked list C takes constant time and

splicing C into T takes constant time, the entire algorithm takes O.E/ time.

Solution to Problem 22-4

Compute GT in the usual way, so that GT is G with its edges reversed. Then do

a depth-first search on GT, but in the main loop of DFS, consider the vertices in

order of increasing values of L.�/. If vertex u is in the depth-first tree with root �,

then min.u/ D �. Clearly, this algorithm takes O.V C E/ time.

To show correctness, first note that if u is in the depth-first tree rooted at � in GT,

then there is a path � ; u in GT, and so there is a path u ; � in G. Thus, the

minimum vertex label of all vertices reachable from u is at most L.�/, or in other

words, L.�/ � min fL.w/ W w 2 R.u/g.
Now suppose that L.�/ > min fL.w/ W w 2 R.u/g, so that there is a vertex

w 2 R.u/ such that L.w/ < L.�/. At the time �:d that we started the depth-

first search from �, we would have already discovered w, so that w:d < �:d.

By the parenthesis theorem, either the intervals Œ�:d; �: f �, and Œw:d; w: f � are dis-

joint and neither � nor w is a descendant of the other, or we have the ordering

w:d < �:d < �: f < w: f and � is a descendant of w. The latter case cannot

occur, since � is a root in the depth-first forest (which means that � cannot be a de-
scendant of any other vertex). In the former case, since w:d < �:d, we must have

w:d < w: f < �:d < �: f . In this case, since u is reachable from w in GT, we would
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have discovered u by the time w: f , so that u:d < w: f . Since we discovered u dur-

ing a search that started at �, we have �:d � u:d. Thus, �:d � u:d < w: f < �:d,

which is a contradiction. We conclude that no such vertex w can exist.



Lecture Notes for Chapter 23:

Minimum Spanning Trees

Chapter 23 overview

Problem

� A town has a set of houses and a set of roads.

� A road connects 2 and only 2 houses.

� A road connecting houses u and � has a repair cost w.u; �/.

� Goal: Repair enough (and no more) roads such that

1. everyone stays connected: can reach every house from all other houses, and

2. total repair cost is minimum.

Model as a graph:

� Undirected graph G D .V; E/.

� Weight w.u; �/ on each edge .u; �/ 2 E.

� Find T � E such that

1. T connects all vertices (T is a spanning tree), and

2. w.T / D
X

.u;�/2T

w.u; �/ is minimized.

A spanning tree whose weight is minimum over all spanning trees is called a min-

imum spanning tree, or MST.

Example of such a graph [edges in MST are shaded] :

10

12

9

8 8

2

11

9
5

61

7

3 3

b

a

c

d

f

e

g

h

i

In this example, there is more than one MST. Replace edge .e; f / in the MST

by .c; e/. Get a different spanning tree with the same weight.
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Growing a minimum spanning tree

Some properties of an MST:

� It has jV j � 1 edges.

� It has no cycles.

� It might not be unique.

Building up the solution

� We will build a set A of edges.

� Initially, A has no edges.

� As we add edges to A, maintain a loop invariant:

Loop invariant: A is a subset of some MST.

� Add only edges that maintain the invariant. If A is a subset of some MST, an

edge .u; �/ is safe for A if and only if A [ f.u; �/g is also a subset of some

MST. So we will add only safe edges.

Generic MST algorithm

GENERIC-MST.G; w/

A D ;
while A is not a spanning tree

find an edge .u; �/ that is safe for A

A D A [ f.u; �/g
return A

Use the loop invariant to show that this generic algorithm works.

Initialization: The empty set trivially satisfies the loop invariant.

Maintenance: Since we add only safe edges, A remains a subset of some MST.

Termination: All edges added to A are in an MST, so when we stop, A is a span-

ning tree that is also an MST.

Finding a safe edge

How do we find safe edges?

Let’s look at the example. Edge .c; f / has the lowest weight of any edge in the

graph. Is it safe for A D ;?
Intuitively: Let S � V be any set of vertices that includes c but not f (so that

f is in V � S). In any MST, there has to be one edge (at least) that connects S

with V � S . Why not choose the edge with minimum weight? (Which would be

.c; f / in this case.)

Some definitions: Let S � V and A � E.
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� A cut .S; V � S/ is a partition of vertices into disjoint sets V and S � V .

� Edge .u; �/ 2 E crosses cut .S; V � S/ if one endpoint is in S and the other is

in V � S .

� A cut respects A if and only if no edge in A crosses the cut.

� An edge is a light edge crossing a cut if and only if its weight is minimum over

all edges crossing the cut. For a given cut, there can be > 1 light edge crossing

it.

Theorem

Let A be a subset of some MST, .S; V � S/ be a cut that respects A, and .u; �/ be

a light edge crossing .S; V � S/. Then .u; �/ is safe for A.

Proof Let T be an MST that includes A.

If T contains .u; �/, done.

So now assume that T does not contain .u; �/. We’ll construct a different MST T 0

that includes A[ f.u; �/g.
Recall: a tree has unique path between each pair of vertices. Since T is an MST, it

contains a unique path p between u and �. Path p must cross the cut .S; V � S/

at least once. Let .x; y/ be an edge of p that crosses the cut. From how we

chose .u; �/, must have w.u; �/ � w.x; y/.

u

v
y

x

S

V–S

[Except for the dashed edge .u; �/, all edges shown are in T . A is some subset of
the edges of T , but A cannot contain any edges that cross the cut .S; V �S/, since
this cut respects A. Shaded edges are the path p.]

Since the cut respects A, edge .x; y/ is not in A.

To form T 0 from T :

� Remove .x; y/. Breaks T into two components.

� Add .u; �/. Reconnects.
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So T 0 D T � f.x; y/g [ f.u; �/g.
T 0 is a spanning tree.

w.T 0/ D w.T / � w.x; y/Cw.u; �/

� w.T / ;

since w.u; �/ � w.x; y/. Since T 0 is a spanning tree, w.T 0/ � w.T /, and T is an

MST, then T 0 must be an MST.

Need to show that .u; �/ is safe for A:

� A � T and .x; y/ 62 A) A � T 0.
� A [ f.u; �/g � T 0.
� Since T 0 is an MST, .u; �/ is safe for A. (theorem)

So, in GENERIC-MST:

� A is a forest containing connected components. Initially, each component is a

single vertex.

� Any safe edge merges two of these components into one. Each component is a

tree.

� Since an MST has exactly jV j � 1 edges, the for loop iterates jV j � 1 times.

Equivalently, after adding jV j�1 safe edges, we’re down to just one component.

Corollary

If C D .VC ; EC / is a connected component in the forest GA D .V; A/ and .u; �/

is a light edge connecting C to some other component in GA (i.e., .u; �/ is a light

edge crossing the cut .VC ; V � VC /), then .u; �/ is safe for A.

Proof Set S D VC in the theorem. (corollary)

This idea naturally leads to the algorithm known as Kruskal’s algorithm to solve
the minimum-spanning-tree problem.

Kruskal’s algorithm

G D .V; E/ is a connected, undirected, weighted graph. w W E ! R.

� Starts with each vertex being its own component.

� Repeatedly merges two components into one by choosing the light edge that

connects them (i.e., the light edge crossing the cut between them).

� Scans the set of edges in monotonically increasing order by weight.

� Uses a disjoint-set data structure to determine whether an edge connects ver-

tices in different components.
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KRUSKAL.G; w/

A D ;
for each vertex � 2 G:V

MAKE-SET.�/

sort the edges of G:E into nondecreasing order by weight w

for each .u; �/ taken from the sorted list

if FIND-SET.u/ ¤ FIND-SET.�/

A D A [ f.u; �/g
UNION.u; �/

return A

Run through the above example to see how Kruskal’s algorithm works on it:

.c; f / W safe

.g; i/ W safe

.e; f / W safe

.c; e/ W reject

.d; h/ W safe

.f; h/ W safe

.e; d/ W reject

.b; d/ W safe

.d; g/ W safe

.b; c/ W reject

.g; h/ W reject

.a; b/ W safe

At this point, we have only one component, so all other edges will be rejected. [We
could add a test to the main loop of KRUSKAL to stop once jV j � 1 edges have
been added to A.]

Get the shaded edges shown in the figure.

Suppose we had examined .c; e/ before .e; f /. Then would have found .c; e/ safe

and would have rejected .e; f /.

Analysis

Initialize A: O.1/

First for loop: jV j MAKE-SETs

Sort E: O.E lg E/

Second for loop: O.E/ FIND-SETs and UNIONs

� Assuming the implementation of disjoint-set data structure, already seen in

Chapter 21, that uses union by rank and path compression:

O..V CE/ ˛.V //CO.E lg E/ :

� Since G is connected, jEj � jV j � 1) O.E ˛.V //CO.E lg E/.

� ˛.jV j/ D O.lg V / D O.lg E/.

� Therefore, total time is O.E lg E/.

� jEj � jV j2) lg jEj D O.2 lg V / D O.lg V /.
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� Therefore, O.E lg V / time. (If edges are already sorted, O.E ˛.V //, which is

almost linear.)

Prim’s algorithm

� Builds one tree, so A is always a tree.

� Starts from an arbitrary “root” r .

� At each step, find a light edge crossing cut .VA; V � VA/, where VA D vertices

that A is incident on. Add this edge to A.

light edge

VA

[Edges of A are shaded.]

How to find the light edge quickly?

Use a priority queue Q:

� Each object is a vertex in V � VA.

� Key of � is minimum weight of any edge .u; �/, where u 2 VA.

� Then the vertex returned by EXTRACT-MIN is � such that there exists u 2 VA

and .u; �/ is light edge crossing .VA; V � VA/.

� Key of � is1 if � is not adjacent to any vertices in VA.

The edges of A will form a rooted tree with root r :

� r is given as an input to the algorithm, but it can be any vertex.

� Each vertex knows its parent in the tree by the attribute �:� D parent of �.

�:� D NIL if � D r or � has no parent.

� As algorithm progresses, A D f.�; �:�/ W � 2 V � frg �Qg.
� At termination, VA D V )Q D ;, so MST is A D f.�; �:�/ W � 2 V � frgg.
[The pseudocode that follows differs from the book in that it explicitly calls INSERT

and DECREASE-KEY to operate on Q.]
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PRIM.G; w; r/

Q D ;
for each u 2 G:V

u:key D 1
u:� D NIL

INSERT.Q; u/

DECREASE-KEY.Q; r; 0/ // r:key D 0

while Q ¤ ;
u D EXTRACT-MIN.Q/

for each � 2 G:AdjŒu�

if � 2 Q and w.u; �/ < �:key

�:� D u

DECREASE-KEY.Q; �; w.u; �//

Do example from previous graph. [Let a student pick the root.]

Analysis

Depends on how the priority queue is implemented:

� Suppose Q is a binary heap.

Initialize Q and first for loop: O.V lg V /

Decrease key of r : O.lg V /

while loop: jV j EXTRACT-MIN calls) O.V lg V /

� jEj DECREASE-KEY calls) O.E lg V /

Total: O.E lg V /

� Suppose we could do DECREASE-KEY in O.1/ amortized time.

Then � jEj DECREASE-KEY calls take O.E/ time altogether ) total time

becomes O.V lg V CE/.

In fact, there is a way to do DECREASE-KEY in O.1/ amortized time: Fi-

bonacci heaps, in Chapter 19.
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Minimum Spanning Trees

Solution to Exercise 23.1-1

This solution is also posted publicly

Theorem 23.1 shows this.

Let A be the empty set and S be any set containing u but not �.

Solution to Exercise 23.1-4

This solution is also posted publicly

A triangle whose edge weights are all equal is a graph in which every edge is a light

edge crossing some cut. But the triangle is cyclic, so it is not a minimum spanning

tree.

Solution to Exercise 23.1-6

This solution is also posted publicly

Suppose that for every cut of G, there is a unique light edge crossing the cut. Let

us consider two minimum spanning trees, T and T 0, of G. We will show that every

edge of T is also in T 0, which means that T and T 0 are the same tree and hence

there is a unique minimum spanning tree.

Consider any edge .u; �/ 2 T . If we remove .u; �/ from T , then T becomes

disconnected, resulting in a cut .S; V �S/. The edge .u; �/ is a light edge crossing

the cut .S; V � S/ (by Exercise 23.1-3). Now consider the edge .x; y/ 2 T 0 that

crosses .S; V � S/. It, too, is a light edge crossing this cut. Since the light edge

crossing .S; V �S/ is unique, the edges .u; �/ and .x; y/ are the same edge. Thus,

.u; �/ 2 T 0. Since we chose .u; �/ arbitrarily, every edge in T is also in T 0.
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Here’s a counterexample for the converse:

x

y

z

1

1

Here, the graph is its own minimum spanning tree, and so the minimum spanning

tree is unique. Consider the cut .fxg ; fy; ´g/. Both of the edges .x; y/ and .x; ´/

are light edges crossing the cut, and they are both light edges.

Solution to Exercise 23.1-10

Let w.T / D
P

.x;y/2T w.x; y/. We have w0.T / D w.T / � k. Consider any other
spanning tree T 0, so that w.T / � w.T 0/.

If .x; y/ 62 T 0, then w0.T 0/ D w.T 0/ � w.T / > w0.T /.

If .x; y/ 2 T 0, then w0.T 0/ D w.T 0/ � k � w.T / � k D w0.T /.

Either way, w0.T / � w0.T 0/, and so T is a minimum spanning tree for weight

function w0.

Solution to Exercise 23.2-4

We know that Kruskal’s algorithm takes O.V / time for initialization, O.E lg E/

time to sort the edges, and O.E ˛.V // time for the disjoint-set operations, for a

total running time of O.V CE lg E CE ˛.V // D O.E lg E/.

If we knew that all of the edge weights in the graph were integers in the range

from 1 to jV j, then we could sort the edges in O.V C E/ time using counting

sort. Since the graph is connected, V D O.E/, and so the sorting time is reduced
to O.E/. This would yield a total running time of O.V C E C E ˛.V // D
O.E ˛.V //, again since V D O.E/, and since E D O.E ˛.V //. The time to

process the edges, not the time to sort them, is now the dominant term. Knowledge

about the weights won’t help speed up any other part of the algorithm, since nothing

besides the sort uses the weight values.

If the edge weights were integers in the range from 1 to W for some constant W ,

then we could again use counting sort to sort the edges more quickly. This time,

sorting would take O.ECW / D O.E/ time, since W is a constant. As in the first

part, we get a total running time of O.E ˛.V //.
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Solution to Exercise 23.2-5

The time taken by Prim’s algorithm is determined by the speed of the queue oper-

ations. With the queue implemented as a Fibonacci heap, it takes O.E C V lg V /

time.

Since the keys in the priority queue are edge weights, it might be possible to im-

plement the queue even more efficiently when there are restrictions on the possible

edge weights.

We can improve the running time of Prim’s algorithm if W is a constant by imple-

menting the queue as an array QŒ0 : : W C 1� (using the W C 1 slot for keyD 1),

where each slot holds a doubly linked list of vertices with that weight as their

key. Then EXTRACT-MIN takes only O.W / D O.1/ time (just scan for the first

nonempty slot), and DECREASE-KEY takes only O.1/ time (just remove the ver-

tex from the list it’s in and insert it at the front of the list indexed by the new key).

This gives a total running time of O.E/, which is the best possible asymptotic time

(since �.E/ edges must be processed).

However, if the range of edge weights is 1 to jV j, then EXTRACT-MIN takes

‚.V / time with this data structure. So the total time spent doing EXTRACT-MIN

is ‚.V 2/, slowing the algorithm to ‚.E C V 2/ D ‚.V 2/. In this case, it is better

to keep the Fibonacci-heap priority queue, which gave the ‚.E C V lg V / time.

Other data structures yield better running times:

� van Emde Boas trees (see Chapter 20) give an upper bound of O.ECV lg lg V /

time for Prim’s algorithm.

� A redistributive heap (used in the single-source shortest-paths algorithm of

Ahuja, Mehlhorn, Orlin, and Tarjan, and mentioned in the chapter notes for

Chapter 24) gives an upper bound of O
�

E C V
p

lg V
�

for Prim’s algorithm.

Solution to Exercise 23.2-7

We start with the following lemma.

Lemma

Let T be a minimum spanning tree of G D .V; E/, and consider a graph G0 D
.V 0; E 0/ for which G is a subgraph, i.e., V � V 0 and E � E 0. Let T D E � T be

the edges of G that are not in T . Then there is a minimum spanning tree of G0 that

includes no edges in T .

Proof By Exercise 23.2-1, there is a way to order the edges of E so that Kruskal’s

algorithm, when run on G, produces the minimum spanning tree T . We will show

that Kruskal’s algorithm, run on G0, produces a minimum spanning tree T 0 that

includes no edges in T . We assume that the edges in E are considered in the same

relative order when Kruskal’s algorithm is run on G and on G0. We first state and

prove the following claim.
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Claim

For any pair of vertices u; � 2 V , if these vertices are in the same set after Kruskal’s

algorithm run on G considers any edge .x; y/ 2 E, then they are in the same set

after Kruskal’s algorithm run on G0 considers .x; y/.

Proof of claim Let us order the edges of E by nondecreasing weight as h.x1; y1/;

.x2; y2/; : : : ; .xk; yk/i, where k D jEj. This sequence gives the order in which the

edges of E are considered by Kruskal’s algorithm, whether it is run on G or on G0.
We will use induction, with the inductive hypothesis that if u and � are in the same

set after Kruskal’s algorithm run on G considers an edge .xi ; yi /, then they are in

the same set after Kruskal’s algorithm run on G0 considers the same edge. We use

induction on i .

Basis: For the basis, i D 0. Kruskal’s algorithm run on G has not considered
any edges, and so all vertices are in different sets. The inductive hypothesis holds

trivially.

Inductive step: We assume that any vertices that are in the same set after Kruskal’s

algorithm run on G has considered edges h.x1; y1/; .x2; y2/; : : : ; .xi�1; yi�1/i
are in the same set after Kruskal’s algorithm run on G0 has considered the same

edges. When Kruskal’s algorithm runs on G0, after it considers .xi�1; yi�1/, it may

consider some edges in E 0�E before considering .xi ; yi /. The edges in E 0�E may

cause UNION operations to occur, but sets are never divided. Hence, any vertices

that are in the same set after Kruskal’s algorithm run on G0 considers .xi�1; yi�1/

are still in the same set when .xi ; yi / is considered.

When Kruskal’s algorithm run on G considers .xi ; yi /, either xi and yi are found

to be in the same set or they are not.

� If Kruskal’s algorithm run on G finds xi and yi to be in the same set, then

no UNION operation occurs. The sets of vertices remain the same, and so the

inductive hypothesis continues to hold after considering .xi ; yi /.
� If Kruskal’s algorithm run on G finds xi and yi to be in different sets, then

the operation UNION.xi ; yi / will occur. Kruskal’s algorithm run on G0 will

find that either xi and yi are in the same set or they are not. By the induc-

tive hypothesis, when edge .xi ; yi / is considered, all vertices in xi ’s set when

Kruskal’s algorithm runs on G are in xi ’s set when Kruskal’s algorithm runs

on G0, and the same holds for yi . Regardless of whether Kruskal’s algorithm

run on G0 finds xi and yi to already be in the same set, their sets are united af-

ter considering .xi ; yi /, and so the inductive hypothesis continues to hold after

considering .xi ; yi /. (claim)

With the claim in hand, we suppose that some edge .u; �/ 2 T is placed into T 0.
That means that Kruskal’s algorithm run on G found u and � to be in the same

set (since .u; �/ 2 T ) but Kruskal’s algorithm run on G0 found u and � to be in

different sets (since .u; �/ is placed into T 0). This fact contradicts the claim, and we

conclude that no edge in T is placed into T 0. Thus, by running Kruskal’s algorithm

on G and G0, we demonstrate that there exists a minimum spanning tree of G0 that
includes no edges in T . (lemma)

We use this lemma as follows. Let G0 D .V 0; E 0/ be the graph G D .V; E/ with

the one new vertex and its incident edges added. Suppose that we have a minimum
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spanning tree T for G. We compute a minimum spanning tree for G0 by creating

the graph G00 D .V 0; E 00/, where E 00 consists of the edges of T and the edges

in E 0 � E (i.e., the edges added to G that made G0), and then finding a minimum

spanning tree T 0 for G00. By the lemma, there is a minimum spanning tree for G0

that includes no edges of E � T . In other words, G0 has a minimum spanning tree

that includes only edges in T and E 0�E; these edges comprise exactly the set E 00.
Thus, the the minimum spanning tree T 0 of G00 is also a minimum spanning tree

of G0.

Even though the proof of the lemma uses Kruskal’s algorithm, we are not required

to use this algorithm to find T 0. We can find a minimum spanning tree by any

means we choose. Let us use Prim’s algorithm with a Fibonacci-heap priority
queue. Since jV 0j D jV j C 1 and jE 00j � 2 jV j � 1 (E 00 contains the jV j � 1

edges of T and at most jV j edges in E 0 �E), it takes O.V / time to construct G00,
and the run of Prim’s algorithm with a Fibonacci-heap priority queue takes time

O.E 00 C V 0 lg V 0/ D O.V lg V /. Thus, if we are given a minimum spanning tree

of G, we can compute a minimum spanning tree of G0 in O.V lg V / time.

Solution to Problem 23-1

a. To see that the minimum spanning tree is unique, observe that since the graph

is connected and all edge weights are distinct, then there is a unique light edge

crossing every cut. By Exercise 23.1-6, the minimum spanning tree is unique.

To see that the second-best minimum spanning tree need not be unique, here is

a weighted, undirected graph with a unique minimum spanning tree of weight 7

and two second-best minimum spanning trees of weight 8:

1

2 4

3 5

minimum
spanning tree

1

2 4

3 5

second-best
minimum

spanning tree

1

2 4

3 5

second-best
minimum

spanning tree

b. Since any spanning tree has exactly jV j � 1 edges, any second-best minimum

spanning tree must have at least one edge that is not in the (best) minimum

spanning tree. If a second-best minimum spanning tree has exactly one edge,

say .x; y/, that is not in the minimum spanning tree, then it has the same set of

edges as the minimum spanning tree, except that .x; y/ replaces some edge, say

.u; �/, of the minimum spanning tree. In this case, T 0 D T �f.u; �/g[f.x; y/g,
as we wished to show.

Thus, all we need to show is that by replacing two or more edges of the min-

imum spanning tree, we cannot obtain a second-best minimum spanning tree.

Let T be the minimum spanning tree of G, and suppose that there exists a

second-best minimum spanning tree T 0 that differs from T by two or more
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edges. There are at least two edges in T � T 0, and let .u; �/ be the edge in

T � T 0 with minimum weight. If we were to add .u; �/ to T 0, we would get a

cycle c. This cycle contains some edge .x; y/ in T 0 � T (since otherwise, T

would contain a cycle).

We claim that w.x; y/ > w.u; �/. We prove this claim by contradiction,

so let us assume that w.x; y/ < w.u; �/. (Recall the assumption that

edge weights are distinct, so that we do not have to concern ourselves with

w.x; y/ D w.u; �/.) If we add .x; y/ to T , we get a cycle c 0, which contains

some edge .u0; � 0/ in T �T 0 (since otherwise, T 0 would contain a cycle). There-

fore, the set of edges T 00 D T �f.u0; � 0/g[ f.x; y/g forms a spanning tree, and

we must also have w.u0; � 0/ < w.x; y/, since otherwise T 00 would be a span-
ning tree with weight less than w.T /. Thus, w.u0; � 0/ < w.x; y/ < w.u; �/,

which contradicts our choice of .u; �/ as the edge in T �T 0 of minimum weight.

Since the edges .u; �/ and .x; y/ would be on a common cycle c if we were
to add .u; �/ to T 0, the set of edges T 0 � f.x; y/g [ f.u; �/g is a spanning

tree, and its weight is less than w.T 0/. Moreover, it differs from T (because

it differs from T 0 by only one edge). Thus, we have formed a spanning tree

whose weight is less than w.T 0/ but is not T . Hence, T 0 was not a second-best

minimum spanning tree.

c. We can fill in maxŒu; �� for all u; � 2 V in O.V 2/ time by simply doing a search

from each vertex u, having restricted the edges visited to those of the spanning

tree T . It doesn’t matter what kind of search we do: breadth-first, depth-first,

or any other kind.

We’ll give pseudocode for both breadth-first and depth-first approaches. Each

approach differs from the pseudocode given in Chapter 22 in that we don’t need

to compute d or f values, and we’ll use the max table itself to record whether a

vertex has been visited in a given search. In particular, maxŒu; �� D NIL if and

only if u D � or we have not yet visited vertex � in a search from vertex u. Note

also that since we’re visiting via edges in a spanning tree of an undirected graph,

we are guaranteed that the search from each vertex u—whether breadth-first or

depth-first—will visit all vertices. There will be no need to “restart” the search

as is done in the DFS procedure of Section 22.3. Our pseudocode assumes that
the adjacency list of each vertex consists only of edges in the spanning tree T .

Here’s the breadth-first search approach:
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BFS-FILL-MAX.G; T; w/

let max be a new table with an entry maxŒu; �� for each u; � 2 G:V

for each vertex u 2 G:V

for each vertex � 2 G:V

maxŒu; �� D NIL

Q D ;
ENQUEUE.Q; u/

while Q ¤ ;
x D DEQUEUE.Q/

for each � 2 G:AdjŒx�

if maxŒu; �� == NIL and � ¤ u

if x == u or w.x; �/ > maxŒu; x�

maxŒu; �� D .x; �/

else maxŒu; �� D maxŒu; x�

ENQUEUE.Q; �/

return max

Here’s the depth-first search approach:

DFS-FILL-MAX.G; T; w/

let max be a new table with an entry maxŒu; �� for each u; � 2 G:V

for each vertex u 2 G:V

for each vertex � 2 G:V

maxŒu; �� D NIL

DFS-FILL-MAX-VISIT.G; u; u; max/

return max

DFS-FILL-MAX-VISIT.G; u; x; max/

for each vertex � 2 G:AdjŒx�

if maxŒu; �� == NIL and � ¤ u

if x == u or w.x; �/ > maxŒu; x�

maxŒu; �� D .x; �/

else maxŒu; �� D maxŒu; x�

DFS-FILL-MAX-VISIT.G; u; �; max/

For either approach, we are filling in jV j rows of the max table. Since the

number of edges in the spanning tree is jV j � 1, each row takes O.V / time to

fill in. Thus, the total time to fill in the max table is O.V 2/.

d. In part (b), we established that we can find a second-best minimum spanning

tree by replacing just one edge of the minimum spanning tree T by some
edge .u; �/ not in T . As we know, if we create spanning tree T 0 by replacing

edge .x; y/ 2 T by edge .u; �/ 62 T , then w.T 0/ D w.T /�w.x; y/Cw.u; �/.

For a given edge .u; �/, the edge .x; y/ 2 T that minimizes w.T 0/ is the edge

of maximum weight on the unique path between u and � in T . If we have al-

ready computed the max table from part (c) based on T , then the identity of this

edge is precisely what is stored in maxŒu; ��. All we have to do is determine an

edge .u; �/ 62 T for which w.maxŒu; ��/ � w.u; �/ is minimum.



Solutions for Chapter 23: Minimum Spanning Trees 23-15

Thus, our algorithm to find a second-best minimum spanning tree goes as fol-

lows:

1. Compute the minimum spanning tree T . Time: O.ECV lg V /, using Prim’s

algorithm with a Fibonacci-heap implementation of the priority queue. Since

jEj < jV j2, this running time is O.V 2/.

2. Given the minimum spanning tree T , compute the max table, as in part (c).

Time: O.V 2/.

3. Find an edge .u; �/ 62 T that minimizes w.maxŒu; ��/ � w.u; �/. Time:

O.E/, which is O.V 2/.

4. Having found an edge .u; �/ in step 3, return T 0 D T �fmaxŒu; ��g[f.u; �/g
as a second-best minimum spanning tree.

The total time is O.V 2/.
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Single-Source Shortest Paths

Shortest paths

How to find the shortest route between two points on a map.

Input:

� Directed graph G D .V; E/
� Weight function w W E ! R

Weight of path p D h�0; �1; : : : ; �ki

D
k
X

iD1

w.�i�1; �i /

D sum of edge weights on path p :

Shortest-path weight u to �:

ı.u; �/ D
(

min
n

w.p/ W u p
; �

o

if there exists a path u ; � ;

1 otherwise :

Shortest path u to � is any path p such that w.p/ D ı.u; �/.

Example

shortest paths from s

[ı values appear inside vertices. Shaded edges show shortest paths.]

6

5

3

s

t x

y z

0

3 9

5 11

2

3

1

6

4 2 7

6

5

3

s

t x

y z

0

3 9

5 11

2

3

1

6

4 2 7

This example shows that the shortest path might not be unique.

It also shows that when we look at shortest paths from one vertex to all other

vertices, the shortest paths are organized as a tree.
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Can think of weights as representing any measure that

� accumulates linearly along a path, and

� we want to minimize.

Examples: time, cost, penalties, loss.

Generalization of breadth-first search to weighted graphs.

Variants

� Single-source: Find shortest paths from a given source vertex s 2 V to every

vertex � 2 V .

� Single-destination: Find shortest paths to a given destination vertex.

� Single-pair: Find shortest path from u to �. No way known that’s better in

worst case than solving single-source.

� All-pairs: Find shortest path from u to � for all u; � 2 V . We’ll see algorithms

for all-pairs in the next chapter.

Negative-weight edges

OK, as long as no negative-weight cycles are reachable from the source.

� If we have a negative-weight cycle, we can just keep going around it, and get

w.s; �/ D �1 for all � on the cycle.

� But OK if the negative-weight cycle is not reachable from the source.

� Some algorithms work only if there are no negative-weight edges in the graph.

We’ll be clear when they’re allowed and not allowed.

Optimal substructure

Lemma

Any subpath of a shortest path is a shortest path.

Proof Cut-and-paste.

u x y v
pux pxy pyv

Suppose this path p is a shortest path from u to �.

Then ı.u; �/ D w.p/ D w.pux/Cw.pxy/C w.py�/.

Now suppose there exists a shorter path x
p0

xy
; y.

Then w.p0
xy/ < w.pxy/.

Construct p0:

u x y v
pux p'xy pyv
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Then

w.p0/ D w.pux/Cw.p0
xy/Cw.py�/

< w.pux/Cw.pxy/Cw.py�/

D w.p/ :

Contradicts the assumption that p is a shortest path. (lemma)

Cycles

Shortest paths can’t contain cycles:

� Already ruled out negative-weight cycles.

� Positive-weight) we can get a shorter path by omitting the cycle.

� Zero-weight: no reason to use them ) assume that our solutions won’t use

them.

Output of single-source shortest-path algorithm

For each vertex � 2 V :

� �:d D ı.s; �/.

� Initially, �:d D1.
� Reduces as algorithms progress. But always maintain �:d � ı.s; �/.
� Call �:d a shortest-path estimate.

� �:� D predecessor of � on a shortest path from s.

� If no predecessor, �:� D NIL.
� � induces a tree—shortest-path tree.
� We won’t prove properties of � in lecture—see text.

Initialization

All the shortest-paths algorithms start with INIT-SINGLE-SOURCE.

INIT-SINGLE-SOURCE.G; s/

for each � 2 G:V

�:d D 1
�:� D NIL

s:d D 0

Relaxing an edge .u; �/

Can we improve the shortest-path estimate for � by going through u and taking

.u; �/?
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RELAX.u; �; w/

if �:d > u:dCw.u; �/

�:d D u:dCw.u; �/

�:� D u

3 3

RELAX

u v

4 10

4 7

RELAX

4 6

4 6

For all the single-source shortest-paths algorithms we’ll look at,

� start by calling INIT-SINGLE-SOURCE ,

� then relax edges.

The algorithms differ in the order and how many times they relax each edge.

Shortest-paths properties

Based on calling INIT-SINGLE-SOURCE once and then calling RELAX zero or

more times.

Triangle inequality

For all .u; �/ 2 E, we have ı.s; �/ � ı.s; u/C w.u; �/.

Proof Weight of shortest path s ; � is � weight of any path s ; �. Path

s ; u! � is a path s ; �, and if we use a shortest path s ; u, its weight is

ı.s; u/Cw.u; �/.

Upper-bound property

Always have �:d � ı.s; �/ for all �. Once �:d D ı.s; �/, it never changes.

Proof Initially true.

Suppose there exists a vertex such that �:d < ı.s; �/.

Without loss of generality, � is first vertex for which this happens.

Let u be the vertex that causes �:d to change.

Then �:d D u:d Cw.u; �/.

So,

�:d < ı.s; �/

� ı.s; u/Cw.u; �/ (triangle inequality)

� u:dC w.u; �/ (� is first violation)

) �:d < u:dC w.u; �/ :



Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-5

Contradicts �:d D u:dC w.u; �/.

Once �:d reaches ı.s; �/, it never goes lower. It never goes up, since relaxations

only lower shortest-path estimates.

No-path property

If ı.s; �/ D1, then �:d D 1 always.

Proof �:d � ı.s; �/ D1) �:d D 1.

Convergence property

If s ; u! � is a shortest path, u:d D ı.s; u/, and we call RELAX.u; �; w/, then

�:d D ı.s; �/ afterward.

Proof After relaxation:

�:d � u:dCw.u; �/ (RELAX code)

D ı.s; u/C w.u; �/

D ı.s; �/ (lemma—optimal substructure)

Since �:d � ı.s; �/, must have �:d D ı.s; �/.

Path relaxation property

Let p D h�0; �1; : : : ; �ki be a shortest path from s D �0 to �k. If we relax,

in order, .�0; �1/; .�1; �2/; : : : ; .�k�1; �k/, even intermixed with other relaxations,

then �k:d D ı.s; �k/.

Proof Induction to show that �i :d D ı.s; �i / after .�i�1; �i / is relaxed.

Basis: i D 0. Initially, �0:d D 0 D ı.s; �0/ D ı.s; s/.

Inductive step: Assume �i�1:d D ı.s; �i�1/. Relax .�i�1; �i /. By convergence

property, �i :d D ı.s; �i / afterward and �i :d never changes.

The Bellman-Ford algorithm

� Allows negative-weight edges.

� Computes �:d and �:� for all � 2 V .

� Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise.
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BELLMAN-FORD.G; w; s/

INIT-SINGLE-SOURCE.G; s/

for i D 1 to jG:Vj � 1

for each edge .u; �/ 2 G:E

RELAX.u; �; w/

for each edge .u; �/ 2 G:E

if �:d > u:dCw.u; �/

return FALSE

return TRUE

Core: The nested for loops relax all edges jV j � 1 times.

Time: ‚.VE/.

Example

s

r

x

yz

0

–1

1

2 –2

–1

4

3

5

2

–3

21

Values you get on each pass and how quickly it converges depends on order of

relaxation.

But guaranteed to converge after jV j � 1 passes, assuming no negative-weight

cycles.

Proof Use path-relaxation property.

Let � be reachable from s, and let p D h�0; �1; : : : ; �ki be a shortest path from s

to �, where �0 D s and �k D �. Since p is acyclic, it has � jV j � 1 edges, so

k � jV j � 1.

Each iteration of the for loop relaxes all edges:

� First iteration relaxes .�0; �1/.

� Second iteration relaxes .�1; �2/.

� kth iteration relaxes .�k�1; �k/.

By the path-relaxation property, �:d D �k:d D ı.s; �k/ D ı.s; �/.

How about the TRUE/FALSE return value?

� Suppose there is no negative-weight cycle reachable from s.

At termination, for all .u; �/ 2 E,

�:d D ı.s; �/

� ı.s; u/Cw.u; �/ (triangle inequality)

D u:dCw.u; �/ :

So BELLMAN-FORD returns TRUE.
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� Now suppose there exists negative-weight cycle c D h�0; �1; : : : ; �ki, where

�0 D �k, reachable from s.

Then

k
X

iD1

.�i�1; �i / < 0 :

Suppose (for contradiction) that BELLMAN-FORD returns TRUE.

Then �i :d � �i�1:dCw.�i�1; �i / for i D 1; 2; : : : ; k.

Sum around c:
k
X

iD1

�i :d �
k
X

iD1

.�i�1:dC w.�i�1; �i//

D
k
X

iD1

�i�1:dC
k
X

iD1

w.�i�1; �i/

Each vertex appears once in each summation
Pk

iD1 �i :d and
Pk

iD1 �i�1:d )

0 �
k
X

iD1

w.�i�1; �i / :

Contradicts c being a negative-weight cycle.

Single-source shortest paths in a directed acyclic graph

Since a dag, we’re guaranteed no negative-weight cycles.

DAG-SHORTEST-PATHS.G; w; s/

topologically sort the vertices

INIT-SINGLE-SOURCE.G; s/

for each vertex u, taken in topologically sorted order
for each vertex � 2 G:AdjŒu�

RELAX.u; �; w/

Example

s t x y z

2

6

2

–2–1

4

2 7

1

0 6 5 3

Time

‚.V CE/.
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Correctness

Because we process vertices in topologically sorted order, edges of any path must

be relaxed in order of appearance in the path.

) Edges on any shortest path are relaxed in order.

) By path-relaxation property, correct.

Dijkstra’s algorithm

No negative-weight edges.

Essentially a weighted version of breadth-first search.

� Instead of a FIFO queue, uses a priority queue.

� Keys are shortest-path weights (�:d).

Have two sets of vertices:

� S D vertices whose final shortest-path weights are determined,

� Q D priority queue D V � S .

DIJKSTRA.G; w; s/

INIT-SINGLE-SOURCE.G; s/

S D ;
Q D G:V // i.e., insert all vertices into Q

while Q ¤ ;
u D EXTRACT-MIN.Q/

S D S [ fug
for each vertex � 2 G:AdjŒu�

RELAX.u; �; w/

� Looks a lot like Prim’s algorithm, but computing �:d, and using shortest-path

weights as keys.

� Dijkstra’s algorithm can be viewed as greedy, since it always chooses the “light-

est” (“closest”?) vertex in V � S to add to S .

Example

s

x

y

z

2

3 4

10

1

0

8

5

6

5

Order of adding to S : s; y; ´; x.
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Correctness

Loop invariant: At the start of each iteration of the while loop, �:d D
ı.s; �/ for all � 2 S .

Initialization: Initially, S D ;, so trivially true.

Termination: At end, Q D ;) S D V ) �:d D ı.s; �/ for all � 2 V .

Maintenance: Need to show that u:d D ı.s; u/ when u is added to S in each
iteration.

Suppose there exists u such that u:d ¤ ı.s; u/. Without loss of generality, let u

be the first vertex for which u:d ¤ ı.s; u/ when u is added to S .

Observations:

� u ¤ s, since s:d D ı.s; s/ D 0.
� Therefore, s 2 S , so S ¤ ;.
� There must be some path s ; u, since otherwise u:d D ı.s; u/ D 1 by

no-path property.

So, there’s a path s ; u.

Then there’s a shortest path s
p
; u.

Just before u is added to S , path p connects a vertex in S (i.e., s) to a vertex in

V � S (i.e., u).

Let y be first vertex along p that’s in V � S , and let x 2 S be y’s predecessor.

y
p1

S

s

x

u

p2

Decompose p into s
p1
; x ! y

p2
; u. (Could have x D s or y D u, so that p1

or p2 may have no edges.)

Claim

y:d D ı.s; y/ when u is added to S .

Proof x 2 S and u is the first vertex such that u:d ¤ ı.s; u/ when u is added

to S ) x:d D ı.s; x/ when x is added to S . Relaxed .x; y/ at that time, so by

the convergence property, y:d D ı.s; y/. (claim)

Now can get a contradiction to u:d ¤ ı.s; u/:

y is on shortest path s ; u, and all edge weights are nonnegative

) ı.s; y/ � ı.s; u/)
y:d D ı.s; y/

� ı.s; u/

� u:d (upper-bound property) .
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Also, both y and u were in Q when we chose u, so

u:d � y:d) u:d D y:d :

Therefore, y:d D ı.s; y/ D ı.s; u/ D u:d.

Contradicts assumption that u:d ¤ ı.s; u/. Hence, Dijkstra’s algorithm is cor-

rect.

Analysis

Like Prim’s algorithm, depends on implementation of priority queue.

� If binary heap, each operation takes O.lg V / time) O.E lg V /.

� If a Fibonacci heap:

� Each EXTRACT-MIN takes O.1/ amortized time.
� There are O.V / other operations, taking O.lg V / amortized time each.
� Therefore, time is O.V lg V CE/.

Difference constraints

Given a set of inequalities of the form xj � xi � bk.

� x’s are variables, 1 � i; j � n,

� b’s are constants, 1 � k � m.

Want to find a set of values for the x’s that satisfy all m inequalities, or determine

that no such values exist. Call such a set of values a feasible solution.

Example

x1 � x2 � 5

x1 � x3 � 6

x2 � x4 � �1

x3 � x4 � �2

x4 � x1 � �3

Solution: x D .0;�4;�5;�3/

Also: x D .5; 1; 0; 2/ D [above solution]C 5

Lemma

If x is a feasible solution, then so is x C d for any constant d .

Proof x is a feasible solution) xj � xi � bk for all i; j; k

) .xj C d/ � .xi C d/ � bk. (lemma)
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Constraint graph

G D .V; E/, weighted, directed.

� V D f�0; �1; �2; : : : ; �ng: one vertex per variable C �0

� E D f.�i ; �j / W xj � xi � bk is a constraintg [ f.�0; �1/; .�0; �2/; : : : ; .�0; �n/g
� w.�0; �j / D 0 for all j
� w.�i ; �j / D bk if xj � xi � bk

v0

v2

v3

0

0 –4

–3 –5

–3

6

–2

5

–1

v1

v4

0

0

0

0

Theorem

Given a system of difference constraints, let G D .V; E/ be the corresponding

constraint graph.

1. If G has no negative-weight cycles, then

x D .ı.�0; �1/; ı.�0; �2/; : : : ; ı.�0; �n//

is a feasible solution.

2. If G has a negative-weight cycle, then there is no feasible solution.

Proof

1. Show no negative-weight cycles) feasible solution.

Need to show that xj � xi � bk for all constraints. Use

xj D ı.�0; �j /

xi D ı.�0; �i /

bk D w.�i ; �j / :

By the triangle inequality,

ı.�0; �j / � ı.�0; �i /Cw.�i ; �j /

xj � xi C bk

xj � xi � bk :

Therefore, feasible.

2. Show negative-weight cycles) no feasible solution.

Without loss of generality, let a negative-weight cycle be c D h�1; �2; : : : ;

�ki, where �1 D �k. (�0 can’t be on c, since �0 has no entering edges.) c

corresponds to the constraints

x2 � x1 � w.�1; �2/ ;

x3 � x2 � w.�2; �3/ ;

:::

xk�1 � xk�2 � w.�k�2; �k�1/ ;

xk � xk�1 � w.�k�1; �k/ :



24-12 Lecture Notes for Chapter 24: Single-Source Shortest Paths

If x is a solution satisfying these inequalities, it must satisfy their sum.

So add them up.

Each xi is added once and subtracted once. (�1 D �k ) x1 D xk.)

We get 0 � w.c/.

But w.c/ < 0, since c is a negative-weight cycle.

Contradiction) no such feasible solution x exists. (theorem)

How to find a feasible solution

1. Form constraint graph.

� nC 1 vertices.
� mC n edges.
� ‚.mC n/ time.

2. Run BELLMAN-FORD from �0.

� O..nC 1/.mC n// D O.n2 C nm/ time.

3. If BELLMAN-FORD returns FALSE) no feasible solution.

If BELLMAN-FORD returns TRUE) set xi D ı.�0; �i/ for all i .



Solutions for Chapter 24:

Single-Source Shortest Paths

Solution to Exercise 24.1-3

This solution is also posted publicly

If the greatest number of edges on any shortest path from the source is m, then the
path-relaxation property tells us that after m iterations of BELLMAN-FORD, every

vertex � has achieved its shortest-path weight in �:d. By the upper-bound property,

after m iterations, no d values will ever change. Therefore, no d values will change

in the .mC 1/st iteration. Because we do not know m in advance, we cannot make

the algorithm iterate exactly m times and then terminate. But if we just make the

algorithm stop when nothing changes any more, it will stop after mC 1 iterations.

BELLMAN-FORD-(M+1).G; w; s/

INITIALIZE-SINGLE-SOURCE.G; s/

changes D TRUE

while changes == TRUE

changes D FALSE

for each edge .u; �/ 2 G:E

RELAX-M.u; �; w/

RELAX-M.u; �; w/

if �:d > u:dCw.u; �/

�:d D u:dCw.u; �/

�:� D u

changes D TRUE

The test for a negative-weight cycle (based on there being a d value that would

change if another relaxation step was done) has been removed above, because this

version of the algorithm will never get out of the while loop unless all d values

stop changing.

Solution to Exercise 24.2-3

Instead of modifying the DAG-SHORTEST-PATHS procedure, we’ll modify the

structure of the graph so that we can run DAG-SHORTEST-PATHS on it. In fact,
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we’ll give two ways to transform a PERT chart G D .V; E/ with weights on ver-

tices to a PERT chart G0 D .V 0; E 0/ with weights on edges. In each way, we’ll

have that jV 0j � 2 jV j and jE 0j � jV j C jEj. We can then run on G0 the same

algorithm to find a longest path through a dag as is given in Section 24.2 of the

text.

In the first way, we transform each vertex � 2 V into two vertices � 0 and � 00 in V 0.
All edges in E that enter � will enter � 0 in E 0, and all edges in E that leave � will

leave � 00 in E 0. In other words, if .u; �/ 2 E, then .u00; � 0/ 2 E 0. All such edges

have weight 0. We also put edges .� 0; � 00/ into E 0 for all vertices � 2 V , and these

edges are given the weight of the corresponding vertex � in G. Thus, jV 0j D 2 jV j,
jE 0j D jV j C jEj, and the edge weight of each path in G0 equals the vertex weight
of the corresponding path in G.

In the second way, we leave vertices in V alone, but we add one new source vertex s

to V 0, so that V 0 D V [ fsg. All edges of E are in E 0, and E 0 also includes an
edge .s; �/ for every vertex � 2 V that has in-degree 0 in G. Thus, the only vertex

with in-degree 0 in G0 is the new source s. The weight of edge .u; �/ 2 E 0 is the

weight of vertex � in G. In other words, the weight of each entering edge in G0 is

the weight of the vertex it enters in G. In effect, we have “pushed back” the weight

of each vertex onto the edges that enter it. Here, jV 0j D jV j C 1, jE 0j � jV j C jEj
(since no more than jV j vertices have in-degree 0 in G), and again the edge weight

of each path in G0 equals the vertex weight of the corresponding path in G.

Solution to Exercise 24.3-3

This solution is also posted publicly

Yes, the algorithm still works. Let u be the leftover vertex that does not

get extracted from the priority queue Q. If u is not reachable from s, then

u:d D ı.s; u/ D 1. If u is reachable from s, then there is a shortest path

p D s ; x ! u. When the vertex x was extracted, x:d D ı.s; x/ and then the
edge .x; u/ was relaxed; thus, u:d D ı.s; u/.

Solution to Exercise 24.3-4

1. Verify that s:d D 0 and s:� D NIL.

2. Verify that �:d D �:�:Cw.�:�; �/ for all � ¤ s.

3. Verify that �:d D1 if and only if �:ß D NIL for all � ¤ s.

4. If any of the above verification tests fail, declare the output to be incorrect.

Otherwise, run one pass of Bellman-Ford, i.e., relax each edge .u; �/ 2 E

one time. If any values of �:d change, then declare the output to be incorrect;

otherwise, declare the output to be correct.
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Solution to Exercise 24.3-5

Let the graph have vertices s; x; y; ´ and edges .s; x/; .x; y/; .y; ´/; .s; y/, and

let every edge have weight 0. Dijkstra’s algorithm could relax edges in the or-

der .s; y/; .s; x/; .y; ´/; .x; y/. The graph has two shortest paths from s to ´:

hs; x; y; ´i and hs; y; ´i, both with weight 0. The edges on the shortest path

hs; x; y; ´i are relaxed out of order, because .x; y/ is relaxed after .y; ´/.

Solution to Exercise 24.3-6

This solution is also posted publicly

To find the most reliable path between s and t , run Dijkstra’s algorithm with edge

weights w.u; �/ D � lg r.u; �/ to find shortest paths from s in O.ECV lg V / time.
The most reliable path is the shortest path from s to t , and that path’s reliability is

the product of the reliabilities of its edges.

Here’s why this method works. Because the probabilities are independent, the

probability that a path will not fail is the product of the probabilities that its edges

will not fail. We want to find a path s
p
; t such that

Q

.u;�/2p r.u; �/ is maximized.

This is equivalent to maximizing lg.
Q

.u;�/2p r.u; �// DP.u;�/2p lg r.u; �/, which

is in turn equivalent to minimizing
P

.u;�/2p � lg r.u; �/. (Note: r.u; �/ can be 0,

and lg 0 is undefined. So in this algorithm, define lg 0 D �1.) Thus if we assign

weights w.u; �/ D � lg r.u; �/, we have a shortest-path problem.

Since lg 1 = 0, lg x < 0 for 0 < x < 1, and we have defined lg 0 D �1, all the

weights w are nonnegative, and we can use Dijkstra’s algorithm to find the shortest

paths from s in O.E C V lg V / time.

Alternative solution

You can also work with the original probabilities by running a modified version of

Dijkstra’s algorithm that maximizes the product of reliabilities along a path instead

of minimizing the sum of weights along a path.

In Dijkstra’s algorithm, use the reliabilities as edge weights and substitute

� max (and EXTRACT-MAX) for min (and EXTRACT-MIN) in relaxation and the

queue,
� � for C in relaxation,
� 1 (identity for �) for 0 (identity forC) and�1 (identity for min) for1 (identity

for max).

For example, we would use the following instead of the usual RELAX procedure:

RELAX-RELIABILITY.u; �; r/

if �:d < u:d � r.u; �/

�:d D u:d � r.u; �/

�:� D u
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This algorithm is isomorphic to the one above: it performs the same operations

except that it is working with the original probabilities instead of the transformed

ones.

Solution to Exercise 24.3-8

Observe that if a shortest-path estimate is not 1, then it’s at most .jV j � 1/W .

Why? In order to have �:d < 1, we must have relaxed an edge .u; �/ with

u:d < 1. By induction, we can show that if we relax .u; �/, then �:d is at most

the number of edges on a path from s to � times the maximum edge weight. Since

any acyclic path has at most jV j � 1 edges and the maximum edge weight is W ,

we see that �:d � .jV j � 1/W . Note also that �:d must also be an integer, unless

it is1.

We also observe that in Dijkstra’s algorithm, the values returned by the EXTRACT-

MIN calls are monotonically increasing over time. Why? After we do our initial

jV j INSERT operations, we never do another. The only other way that a key value

can change is by a DECREASE-KEY operation. Since edge weights are nonneg-

ative, when we relax an edge .u; �/, we have that u:d � �:d. Since u is the

minimum vertex that we just extracted, we know that any other vertex we extract

later has a key value that is at least u:d.

When keys are known to be integers in the range 0 to k and the key values extracted

are monotonically increasing over time, we can implement a min-priority queue so

that any sequence of m INSERT, EXTRACT-MIN, and DECREASE-KEY operations

takes O.m C k/ time. Here’s how. We use an array, say AŒ0 : : k�, where AŒj � is

a linked list of each element whose key is j . Think of AŒj � as a bucket for all

elements with key j . We implement each bucket by a circular, doubly linked list

with a sentinel, so that we can insert into or delete from each bucket in O.1/ time.

We perform the min-priority queue operations as follows:

� INSERT: To insert an element with key j , just insert it into the linked list

in AŒj �. Time: O.1/ per INSERT.

� EXTRACT-MIN: We maintain an index min of the value of the smallest key

extracted. Initially, min is 0. To find the smallest key, look in AŒmin� and, if

this list is nonempty, use any element in it, removing the element from the list
and returning it to the caller. Otherwise, we rely on the monotonicity property

and increment min until we either find a list AŒmin� that is nonempty (using any

element in AŒmin� as before) or we run off the end of the array A (in which case

the min-priority queue is empty).

Since there are at most m INSERT operations, there are at most m elements in

the min-priority queue. We increment min at most k times, and we remove and

return some element at most m times. Thus, the total time over all EXTRACT-

MIN operations is O.mC k/.

� DECREASE-KEY: To decrease the key of an element from j to i , first check

whether i � j , flagging an error if not. Otherwise, we remove the element

from its list AŒj � in O.1/ time and insert it into the list AŒi� in O.1/ time.

Time: O.1/ per DECREASE-KEY.
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To apply this kind of min-priority queue to Dijkstra’s algorithm, we need to let

k D .jV j � 1/W , and we also need a separate list for keys with value1. The num-

ber of operations m is O.V CE/ (since there are jV j INSERT and jV j EXTRACT-

MIN operations and at most jEj DECREASE-KEY operations), and so the total time

is O.V CE C V W / D O.V W CE/.

Solution to Exercise 24.3-9

First, observe that at any time, there are at most W C 2 distinct key values in the

priority queue. Why? A key value is either1 or it is not. Consider what happens
whenever a key value �:d becomes finite. It must have occurred due to the relax-

ation of an edge .u; �/. At that time, u was being placed into S , and u:d � y:d for

all vertices y 2 V �S . After relaxing edge .u; �/, we have �:d � u:dCW . Since

any other vertex y 2 V �S with y:d <1 also had its estimate changed by a relax-

ation of some edge x with x:d � u:d, we must have y:d � x:dCW � u:dCW .

Thus, at the time that we are relaxing edges from a vertex u, we must have, for all

vertices � 2 V � S , that u:d � �:d � u:dCW or �:d D 1. Since shortest-path

estimates are integer values (except for1), at any given moment we have at most

W C 2 different ones: u:d; u:d C 1; u:d C 2; : : : ; u:dCW and1.

Therefore, we can maintain the min-priorty queue as a binary min-heap in which

each node points to a doubly linked list of all vertices with a given key value. There

are at most W C 2 nodes in the heap, and so EXTRACT-MIN runs in O.lg W /

time. To perform DECREASE-KEY, we need to be able to find the heap node

corresponding to a given key in O.lg W / time. We can do so in O.1/ time as

follows. First, keep a pointer inf to the node containing all the 1 keys. Second,

maintain an array locŒ0 : : W �, where locŒi � points to the unique heap entry whose

key value is congruent to i .mod .W C 1//. As keys move around in the heap, we
can update this array in O.1/ time per movement.

Alternatively, instead of using a binary min-heap, we could use a red-black tree.

Now INSERT, DELETE, MINIMUM, and SEARCH—from which we can construct
the priority-queue operations—each run in O.lg W / time.

Solution to Exercise 24.4-4

Let ı.u/ be the shortest-path weight from s to u. Then we want to find ı.t/.

ı must satisfy

ı.s/ D 0

ı.�/� ı.u/ � w.u; �/ for all .u; �/ 2 E (Lemma 24.10) ;

where w.u; �/ is the weight of edge .u; �/.

Thus x� D ı.�/ is a solution to

xs D 0

x� � xu � w.u; �/ :
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To turn this into a set of inequalities of the required form, replace xs D 0 by xs � 0

and �xs � 0 (i.e., xs � 0). The constraints are now

xs � 0 ;

�xs � 0 ;

x� � xu � w.u; �/ ;

which still has x� D ı.�/ as a solution.

However, ı isn’t the only solution to this set of inequalities. (For example, if all

edge weights are nonnegative, all xi D 0 is a solution.) To force xt D ı.t/ as

required by the shortest-path problem, add the requirement to maximize (the ob-

jective function) xt . This is correct because

� max.xt / � ı.t/ because xt D ı.t/ is part of one solution to the set of inequali-

ties,

� max.xt / � ı.t/ can be demonstrated by a technique similar to the proof of

Theorem 24.9:

Let p be a shortest path from s to t . Then by definition,

ı.t/ D
X

.u;�/2p

w.u; �/ :

But for each edge .u; �/ we have the inequality x� � xu � w.u; �/, so

ı.t/ D
X

.u;�/2p

w.u; �/ �
X

.u;�/2p

.x� � xu/ D xt � xs :

But xs D 0, so xt � ı.t/.

Note: Maximizing xt subject to the above inequalities solves the single-pair

shortest-path problem when t is reachable from s and there are no negative-weight

cycles. But if there’s a negative-weight cycle, the inequalities have no feasible so-

lution (as demonstrated in the proof of Theorem 24.9); and if t is not reachable

from s, then xt is unbounded.

Solution to Exercise 24.4-7

This solution is also posted publicly

Observe that after the first pass, all d values are at most 0, and that relaxing

edges .�0; �i / will never again change a d value. Therefore, we can eliminate �0 by

running the Bellman-Ford algorithm on the constraint graph without the �0 vertex

but initializing all shortest path estimates to 0 instead of1.

Solution to Exercise 24.4-10

To allow for single-variable constraints, we add the variable x0 and let it correspond

to the source vertex �0 of the constraint graph. The idea is that, if there are no
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negative-weight cycles containing �0, we will find that ı.�0; �0/ D 0. In this case,

we set x0 D 0, and so we can treat any single-variable constraint using xi as if it

were a 2-variable constraint with x0 as the other variable.

Specifically, we treat the constraint xi � bk as if it were xi � x0 � bk , and we
add the edge .�0; �i/ with weight bk to the constraint graph. We treat the constraint

�xi � bk as if it were x0 � xi � bk, and we add the edge .�i ; �0/ with weight bk

to the constraint graph.

Once we find shortest-path weights from �0, we set xi D ı.�0; �i / for all

i D 0; 1; : : : ; n; that is, we do as before but also include x0 as one of the vari-

ables that we set to a shortest-path weight. Since �0 is the source vertex, either

x0 D 0 or x0 < 0.

If ı.�0; �0/ D 0, so that x0 D 0, then setting xi D ı.�0; �i / for all i D 0; 1; : : : ; n

gives a feasible solution for the system. The only new constraints beyond those in

the text are those involving x0. For constraints xi � bk, we use xi � x0 � bk. By

the triangle inequality, ı.�0; �i / � ı.�0; �0/ C w.�0; �i / D bk , and so xi � bk.

For constraints �xi � bk, we use x0 � xi � bk. By the triangle inequality, 0 D
ı.�0; �0/ � ı.�0; �i /Cw.�i ; �0/; thus, 0 � xi C bk or, equivalently, �xi � bk.

If ı.�0; �0/ < 0, so that x0 < 0, then there is a negative-weight cycle containing �0.

The portion of the proof of Theorem 24.9 that deals with negative-weight cycles

carries through but with �0 on the negative-weight cycle, and we see that there is
no feasible solution.

Solution to Exercise 24.5-4

This solution is also posted publicly

Whenever RELAX sets � for some vertex, it also reduces the vertex’s d value.

Thus if s:� gets set to a non-NIL value, s:d is reduced from its initial value of 0 to

a negative number. But s:d is the weight of some path from s to s, which is a cycle

including s. Thus, there is a negative-weight cycle.

Solution to Exercise 24.5-7

Suppose we have a shortest-paths tree G� . Relax edges in G� according to the

order in which a BFS would visit them. Then we are guaranteed that the edges

along each shortest path are relaxed in order. By the path-relaxation property, we

would then have �:d D ı.s; �/ for all � 2 V . Since G� contains at most jV j � 1

edges, we need to relax only jV j � 1 edges to get �:d D ı.s; �/ for all � 2 V .

Solution to Exercise 24.5-8

Suppose that there is a negative-weight cycle c D h�0; �1; : : : ; �ki, where �0 D �k,

that is reachable from the source vertex s; thus, w.c/ < 0. Without loss of general-
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ity, c is simple. There must be an acyclic path from s to some vertex of c that uses

no other vertices in c. Without loss of generality let this vertex of c be �0, and let

this path from s to �0 be p D hu0; u1; : : : ; uli, where u0 D s and ul D �0 D �k.

(It may be the case that ul D s, in which case path p has no edges.) After the call

to INITIALIZE-SINGLE-SOURCE sets �:d D 1 for all � 2 V � fsg, perform the

following sequence of relaxations. First, relax every edge in path p, in order. Then

relax every edge in cycle c, in order, and repeatedly relax the cycle. That is, we

relax the edges .u0; u1/, .u1; u2/, . . . , .ul�1; �0/, .�0; �1/, .�1; �2/, . . . , .�k�1; �0/,
.�0; �1/, .�1; �2/, . . . , .�k�1; �0/, .�0; �1/, .�1; �2/, . . . , .�k�1; �0/, . . . .

We claim that every edge relaxation in this sequence reduces a shortest-path es-

timate. Clearly, the first time we relax an edge .ui�1; ui / or .�j �1; �j /, for

i D 1; 2; : : : ; l and j D 1; 2; : : : ; k � 1 (note that we have not yet relaxed the last

edge of cycle c), we reduce ui :d or �j :d from1 to a finite value. Now consider

the relaxation of any edge .�j �1; �j / after this opening sequence of relaxations.

We use induction on the number of edge relaxations to show that this relaxation

reduces �j :d.

Basis: The next edge relaxed after the opening sequence is .�k�1; �k/. Before

relaxation, �k:d D w.p/, and after relaxation, �k:d D w.p/ C w.c/ < w.p/,

since w.c/ < 0.

Inductive step: Consider the relaxation of edge .�j �1; �j /. Since c is a sim-

ple cycle, the last time �j :d was updated was by a relaxation of this same

edge. By the inductive hypothesis, �j �1:d has just been reduced. Thus,

�j �1:dCw.�j �1; �j / < �j :d, and so the relaxation will reduce the value of �j :d.

Solution to Problem 24-1

a. Assume for the purpose contradiction that Gf is not acyclic; thus Gf has a

cycle. A cycle must have at least one edge .u; �/ in which u has higher index

than �. This edge is not in Ef (by the definition of Ef ), in contradition to the

assumption that Gf has a cycle. Thus Gf is acyclic.

The sequence h�1; �2; : : : ; �jV ji is a topological sort for Gf , because from the

definition of Ef we know that all edges are directed from smaller indices to

larger indices.

The proof for Eb is similar.

b. For all vertices � 2 V , we know that either ı.s; �/ D 1 or ı.s; �/ is finite.

If ı.s; �/ D 1, then �:d will be 1. Thus, we need to consider only the

case where �:d is finite. There must be some shortest path from s to �. Let

p D h�0; �1; : : : ; �k�1; �ki be that path, where �0 D s and �k D �. Let us now

consider how many times there is a change in direction in p, that is, a situation

in which .�i�1; �i / 2 Ef and .�i ; �iC1/ 2 Eb or vice versa. There can be at

most jV j�1 edges in p, so there can be at most jV j�2 changes in direction. Any

portion of the path where there is no change in direction is computed with the

correct d values in the first or second half of a single pass once the vertex that

begins the no-change-in-direction sequence has the correct d value, because the

edges are relaxed in the order of the direction of the sequence. Each change in



Solutions for Chapter 24: Single-Source Shortest Paths 24-21

direction requires a half pass in the new direction of the path. The following

table shows the maximum number of passes needed depending on the parity of

jV j � 1 and the direction of the first edge:

jV j � 1 first edge direction passes

even forward .jV j � 1/=2

even backward .jV j � 1/=2C 1

odd forward jV j =2

odd backward jV j =2

In any case, the maximum number of passes that we will need is djV j =2e.
c. This scheme does not affect the asymptotic running time of the algorithm be-

cause even though we perform only djV j =2e passes instead of jV j � 1 passes,

it is still O.V / passes. Each pass still takes ‚.E/ time, so the running time

remains O.VE/.

Solution to Problem 24-2

a. Consider boxes with dimensions x D .x1; : : : ; xd /, y D .y1; : : : ; yd /, and

´ D .´1; : : : ; ´d /. Suppose there exists a permutation � such that x�.i/ < yi

for i D 1; : : : ; d and there exists a permutation � 0 such that y� 0.i/ < ´i for

i D 1; : : : ; d , so that x nests inside y and y nests inside ´. Construct a

permutation � 00, where � 00.i/ D � 0.�.i//. Then for i D 1; : : : ; d , we have

x� 00.i/ D x� 0.�.i// < y� 0.i/ < ´i , and so x nests inside ´.

b. Sort the dimensions of each box from longest to shortest. A box X with

sorted dimensions .x1; x2; : : : ; xd / nests inside a box Y with sorted dimensions

.y1; y2; : : : ; yd / if and only if xi < yi for i D 1; 2; : : : ; d . The sorting can

be done in O.d lg d/ time, and the test for nesting can be done in O.d/ time,
and so the algorithm runs in O.d lg d/ time. This algorithm works because a

d -dimensional box can be oriented so that every permutation of its dimensions

is possible. (Experiment with a 3-dimensional box if you are unsure of this).

c. Construct a dag G D .V; E/, where each vertex �i corresponds to box Bi , and

.�i ; �j / 2 E if and only if box Bi nests inside box Bj . Graph G is indeed a dag,

because nesting is transitive and antireflexive (i.e., no box nests inside itself).

The time to construct the dag is O.dn2Cdn lg d/, from comparing each of the
�

n

2

�

pairs of boxes after sorting the dimensions of each.

Add a supersource vertex s and a supersink vertex t to G, and add edges .s; �i /

for all vertices �i with in-degree 0 and .�j ; t/ for all vertices �j with out-

degree 0. Call the resulting dag G0. The time to do so is O.n/.

Find a longest path from s to t in G0. (Section 24.2 discusses how to find a

longest path in a dag.) This path corresponds to a longest sequence of nesting

boxes. The time to find a longest path is O.n2/, since G0 has nC 2 vertices and

O.n2/ edges.

Overall, this algorithm runs in O.dn2 C dn lg d/ time.
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Solution to Problem 24-3

This solution is also posted publicly

a. We can use the Bellman-Ford algorithm on a suitable weighted, directed graph

G D .V; E/, which we form as follows. There is one vertex in V for each

currency, and for each pair of currencies ci and cj , there are directed edges

.�i ; �j / and .�j ; �i /. (Thus, jV j D n and jEj D n.n � 1/.)

To determine edge weights, we start by observing that

RŒi1; i2� � RŒi2; i3� � � �RŒik�1; ik � �RŒik; i1� > 1

if and only if

1

RŒi1; i2�
� 1

RŒi2; i3�
� � � 1

RŒik�1; ik �
� 1

RŒik; i1�
< 1 :

Taking logs of both sides of the inequality above, we express this condition as

lg
1

RŒi1; i2�
C lg

1

RŒi2; i3�
C � � � C lg

1

RŒik�1; ik �
C lg

1

RŒik; i1�
< 0 :

Therefore, if we define the weight of edge .�i ; �j / as

w.�i ; �j / D lg
1

RŒi; j �

D � lg RŒi; j � ;

then we want to find whether there exists a negative-weight cycle in G with

these edge weights.

We can determine whether there exists a negative-weight cycle in G by adding

an extra vertex �0 with 0-weight edges .�0; �i / for all �i 2 V , running
BELLMAN-FORD from �0, and using the boolean result of BELLMAN-FORD

(which is TRUE if there are no negative-weight cycles and FALSE if there is a

negative-weight cycle) to guide our answer. That is, we invert the boolean result

of BELLMAN-FORD.

This method works because adding the new vertex �0 with 0-weight edges

from �0 to all other vertices cannot introduce any new cycles, yet it ensures

that all negative-weight cycles are reachable from �0.

It takes ‚.n2/ time to create G, which has ‚.n2/ edges. Then it takes O.n3/

time to run BELLMAN-FORD. Thus, the total time is O.n3/.

Another way to determine whether a negative-weight cycle exists is to create G

and, without adding �0 and its incident edges, run either of the all-pairs shortest-

paths algorithms. If the resulting shortest-path distance matrix has any negative

values on the diagonal, then there is a negative-weight cycle.

b. Assuming that we ran BELLMAN-FORD to solve part (a), we only need to find

the vertices of a negative-weight cycle. We can do so as follows. First, relax

all the edges once more. Since there is a negative-weight cycle, the d value of

some vertex u will change. We just need to repeatedly follow the � values until
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we get back to u. In other words, we can use the recursive method given by the

PRINT-PATH procedure of Section 22.2, but stop it when it returns to vertex u.

The running time is O.n3/ to run BELLMAN-FORD, plus O.n/ to print the

vertices of the cycle, for a total of O.n3/ time.

Solution to Problem 24-4

a. Since all weights are nonnegative, use Dijkstra’s algorithm. Implement the

priority queue as an array QŒ0 : : jEj C 1�, where QŒi� is a list of vertices � for

which �:d D i . Initialize �:d for � ¤ s to jEj C 1 instead of to1, so that all

vertices have a place in Q. (Any initial �:d > ı.s; �/ works in the algorithm,

since �:d decreases until it reaches ı.s; �/.)

The jV j EXTRACT-MINs can be done in O.E/ total time, and decreasing a

d value during relaxation can be done in O.1/ time, for a total running time

of O.E/.

� When �:d decreases, just add � to the front of the list in QŒ�:d�.
� EXTRACT-MIN removes the head of the list in the first nonempty slot of Q.

To do EXTRACT-MIN without scanning all of Q, keep track of the small-

est i for which QŒi� is not empty. The key point is that when �:d decreases

due to relaxation of edge .u; �/, �:d remains � u:d, so it never moves to

an earlier slot of Q than the one that had u, the previous minimum. Thus

EXTRACT-MIN can always scan upward in the array, taking a total of O.E/

time for all EXTRACT-MINs.

b. For all .u; �/ 2 E, we have w1.u; �/ 2 f0; 1g, so ı1.s; �/ � jV j � 1 � jEj.
Use part (a) to get the O.E/ time bound.

c. To show that wi .u; �/ D 2wi�1.u; �/ or wi.u; �/ D 2wi�1.u; �/C 1, observe

that the i bits of wi.u; �/ consist of the i �1 bits of wi�1.u; �/ followed by one

more bit. If that low-order bit is 0, then wi .u; �/ D 2wi�1.u; �/; if it is 1, then

wi .u; �/ D 2wi�1.u; �/C 1.

Notice the following two properties of shortest paths:

1. If all edge weights are multiplied by a factor of c, then all shortest-path

weights are multiplied by c.

2. If all edge weights are increased by at most c, then all shortest-path weights

are increased by at most c.jV j � 1/, since all shortest paths have at most

jV j � 1 edges.

The lowest possible value for wi .u; �/ is 2wi�1.u; �/, so by the first observa-

tion, the lowest possible value for ıi.s; �/ is 2ıi�1.s; �/.

The highest possible value for wi.u; �/ is 2wi�1.u; �/ C 1. Therefore, us-

ing the two observations together, the highest possible value for ıi.s; �/ is

2ıi�1.s; �/C jV j � 1.
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d. We have

ywi.u; �/ D wi .u; �/C 2ıi�1.s; u/ � 2ıi�1.s; �/

� 2wi�1.u; �/C 2ıi�1.s; u/ � 2ıi�1.s; �/

� 0 :

The second line follows from part (c), and the third line follows from

Lemma 24.10: ıi�1.s; �/ � ıi�1.s; u/Cwi�1.u; �/.

e. Observe that if we compute ywi.p/ for any path p W u ; �, the terms ıi�1.s; t/

cancel for every intermediate vertex t on the path. Thus,

ywi.p/ D wi.p/C 2ıi�1.s; u/ � 2ıi�1.s; �/ :

(This relationship will be shown in detail in equation (25.10) within the proof of
Lemma 25.1.) The ıi�1 terms depend only on u, �, and s, but not on the path p;

therefore the same paths will be of minimum wi weight and of minimum ywi

weight between u and �. Letting u D s, we get

yıi.s; �/ D ıi.s; �/C 2ıi�1.s; s/ � 2ıi�1.s; �/

D ıi.s; �/ � 2ıi�1.s; �/ :

Rewriting this result as ıi .s; �/ D yıi .s; �/C 2ıi�1.s; �/ and combining it with

ıi.s; �/ � 2ıi�1.s; �/CjV j�1 (from part (c)) gives us yıi .s; �/ � jV j�1 � jEj.
f. To compute ıi .s; �/ from ıi�1.s; �/ for all � 2 V in O.E/ time:

1. Compute the weights ywi.u; �/ in O.E/ time, as shown in part (d).

2. By part (e), yıi .s; �/ � jEj, so use part (a) to compute all yıi .s; �/ in O.E/

time.

3. Compute all ıi .s; �/ from yıi .s; �/ and ıi�1.s; �/ as shown in part (e), in

O.V / time.

To compute all ı.s; �/ in O.E lg W / time:

1. Compute ı1.s; �/ for all � 2 V . As shown in part (b), this takes O.E/ time.

2. For each i D 2; 3; : : : ; k, compute all ıi .s; �/ from ıi�1.s; �/ in O.E/

time as shown above. This procedure computes ı.s; �/ D ık.u; �/ in time

O.Ek/ D O.E lg W /.

Solution to Problem 24-6

Observe that a bitonic sequence can increase, then decrease, then increase, or it can

decrease, then increase, then decrease. That is, there can be at most two changes of

direction in a bitonic sequence. Any sequence that increases, then decreases, then

increases, then decreases has a bitonic sequence as a subsequence.

Now, let us suppose that we had an even stronger condition than the bitonic prop-

erty given in the problem: for each vertex � 2 V , the weights of the edges along

any shortest path from s to � are increasing. Then we could call INITIALIZE-

SINGLE-SOURCE and then just relax all edges one time, going in increasing order

of weight. Then the edges along every shortest path would be relaxed in order
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of their appearance on the path. (We rely on the uniqueness of edge weights to

ensure that the ordering is correct.) The path-relaxation property (Lemma 24.15)

would guarantee that we would have computed correct shortest paths from s to

each vertex.

If we weaken the condition so that the weights of the edges along any shortest path

increase and then decrease, we could relax all edges one time, in increasing order

of weight, and then one more time, in decreasing order of weight. That order, along

with uniqueness of edge weights, would ensure that we had relaxed the edges of

every shortest path in order, and again the path-relaxation property would guarantee

that we would have computed correct shortest paths.

To make sure that we handle all bitonic sequences, we do as suggested above. That

is, we perform four passes, relaxing each edge once in each pass. The first and third

passes relax edges in increasing order of weight, and the second and fourth passes

in decreasing order. Again, by the path-relaxation property and the uniqueness of
edge weights, we have computed correct shortest paths.

The total time is O.V CE lg V /, as follows. The time to sort jEj edges by weight

is O.E lg E/ D O.E lg V / (since jEj D O.V 2/). INITIALIZE-SINGLE-SOURCE

takes O.V / time. Each of the four passes takes O.E/ time. Thus, the total time is

O.E lg V C V CE/ D O.V CE lg V /.



Lecture Notes for Chapter 25:

All-Pairs Shortest Paths

Chapter 25 overview

Given a directed graph G D .V; E/, weight function w W E ! R, jV j D n.
Assume that we can number the vertices 1; 2; : : : ; n.

Goal: create an n � n matrix D D .dij / of shortest-path distances, so that

dij D ı.i; j / for all vertices i and j .

Could run BELLMAN-FORD once from each vertex:

� O.V 2E/—which is O.V 4/ if the graph is dense (E D ‚.V 2/).

If no negative-weight edges, could run Dijkstra’s algorithm once from each vertex:

� O.VE lg V / with binary heap—O.V 3 lg V / if dense,

� O.V 2 lg V C VE/ with Fibonacci heap—O.V 3/ if dense.

We’ll see how to do in O.V 3/ in all cases, with no fancy data structure.

Shortest paths and matrix multiplication

Assume that G is given as adjacency matrix of weights: W D .wij /, with vertices

numbered 1 to n.

wij D

�
0 if i D j ;

weight of .i; j / if i ¤ j , .i; j / 2 E ;

1 if i ¤ j , .i; j / … E :

Won’t worry about predecessors—see book.

Will use dynamic programming at first.

Optimal substructure

Recall: subpaths of shortest paths are shortest paths.
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Recursive solution

Let l
.m/
ij D weight of shortest path i ; j that contains � m edges.

� m D 0

) there is a shortest path i ; j with � m edges if and only if i D j

) l
.0/
ij D

(

0 if i D j ;

1 if i ¤ j :

� m � 1

) l
.m/
ij D min

�

l
.m�1/
ij min

1�k�n

˚

l
.m�1/

ik
Cwkj

	�

(k ranges over all possible
predecessors of j )

D min
1�k�n

˚

l
.m�1/

ik
Cwkj

	

(since wjj D 0 for all j ) .

� Observe that when m D 1, must have l
.1/
ij D wij .

Conceptually, when the path is restricted to at most 1 edge, the weight of the

shortest path i ; j must be wij .

And the math works out, too:

l
.1/
ij D min

1�k�n

˚

l
.0/

ik
C wkj

	

D l
.0/
i i Cwij (l

.0/
i i is the only non-1 among l

.0/

ik
)

D wij :

All simple shortest paths contain � n � 1 edges

) ı.i; j / D l
.n�1/
ij D l

.n/
ij D l

.nC1/
ij D : : :

Compute a solution bottom-up

Compute L.1/; L.2/; : : : ; L.n�1/.

Start with L.1/ D W , since l
.1/
ij D wij .

Go from L.m�1/ to L.m/:

EXTEND.L; W; n/

let L0 D
�

l 0
ij

�

be a new n � n matrix

for i D 1 to n

for j D 1 to n

l 0
ij D 1

for k D 1 to n

l 0
ij D min.l 0

ij ; lik Cwkj /

return L0

Compute each L.m/:

SLOW-APSP.W; n/

L.1/ D W

for m D 2 to n � 1

let L.m/ be a new n � n matrix

L.m/ D EXTEND.L.m�1/; W; n/

return L.n�1/
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Time

� EXTEND: ‚.n3/.

� SLOW-APSP: ‚.n4/.

Observation

EXTEND is like matrix multiplication:

L ! A

W ! B

L0 ! C

min ! C
C ! �
1 ! 0

let C be an n � n matrix

for i D 1 to n

for j D 1 to n

cij D 0

for k D 1 to n

cij D cij C aik � bkj

return C

So, we can view EXTEND as just like matrix multiplication!

Why do we care?

Because our goal is to compute L.n�1/ as fast as we can. Don’t need to compute

all the intermediate L.1/; L.2/; L.3/; : : : ; L.n�2/.

Suppose we had a matrix A and we wanted to compute An�1 (like calling EXTEND

n � 1 times).

Could compute A; A2; A4; A8; : : :

If we knew Am D An�1 for all m � n� 1, could just finish with Ar , where r is the

smallest power of 2 that’s � n � 1. (r D 2dlg.n�1/e)

FASTER-APSP.W; n/

L.1/ D W

m D 1

while m < n � 1

let L.2m/ be a new n � n matrix

L.2m/ D EXTEND.L.m/; L.m/; n/

m D 2m

return L.m/

OK to overshoot, since products don’t change after L.n�1/.

Time

‚.n3 lg n/.
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Floyd-Warshall algorithm

A different dynamic-programming approach.

For path p D h�1; �2; : : : ; �li, an intermediate vertex is any vertex of p other than

�1 or �l .

Let d
.k/
ij D shortest-path weight of any path i ; j with all intermediate vertices

in f1; 2; : : : ; kg.
Consider a shortest path i

p
; j with all intermediate vertices in f1; 2; : : : ; kg:

� If k is not an intermediate vertex, then all intermediate vertices of p are in

f1; 2; : : : ; k � 1g.
� If k is an intermediate vertex:

i k j
p1 p2

all intermediate vertices in {1, 2, ..., k–1}

Recursive formulation

d
.k/
ij D

(

wij if k D 0 ;

min
�

d
.k�1/
ij ; d

.k�1/

ik
C d

.k�1/

kj

�

if k � 1 :

(Have d
.0/
ij D wij because can’t have intermediate vertices)� 1 edge.)

Want D.n/ D
�

d
.n/
ij

�

, since all vertices numbered � n.

Compute bottom-up

Compute in increasing order of k:

FLOYD-WARSHALL.W; n/

D.0/ D W

for k D 1 to n

let D.k/ D
�

d
.k/
ij

�

be a new n � n matrix

for i D 1 to n

for j D 1 to n

d
.k/
ij D min

�

d
.k�1/
ij ; d

.k�1/

ik
C d

.k�1/

kj

�

return D.n/

Can drop superscripts. (See Exercise 25.2-4 in text.)

Time

‚.n3/.
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Transitive closure

Given G D .V; E/, directed.

Compute G� D .V; E�/.

� E� D f.i; j / W there is a path i ; j in Gg.
Could assign weight of 1 to each edge, then run FLOYD-WARSHALL.

� If dij < n, then there is a path i ; j .

� Otherwise, dij D1 and there is no path.

Simpler way

Substitute other values and operators in FLOYD-WARSHALL.

� Use unweighted adjacency matrix

� min! _ (OR)

� C! ^ (AND)

� t
.k/
ij D

(

1 if there is path i ;j with all intermediate vertices in f1; 2; : : : ; kg ;

0 otherwise :

� t
.0/
ij D

(

0 if i ¤ j and .i; j / … E ;

1 if i D j or .i; j / 2 E :

� t
.k/
ij D t

.k�1/
ij _

�

t
.k�1/

ik
^ t

.k�1/

kj

�

.

TRANSITIVE-CLOSURE.G; n/

n D jG:Vj
let T .0/ D

�

t
.0/
ij

�

be a new n � n matrix

for i D 1 to n

for j D 1 to n

if i == j or .i; j / 2 G:E

t
.0/
ij D 1

else t
.0/
ij D 0

for k D 1 to n

let T .k/ D
�

t
.k/
ij

�

be a new n � n matrix

for i D 1 to n

for j D 1 to n

t
.k/
ij D t

.k�1/
ij _

�

t
.k�1/

ik
^ t

.k�1/

kj

�

return T .n/

Time

‚.n3/, but simpler operations than FLOYD-WARSHALL.
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Johnson’s algorithm

Idea

If the graph is sparse, it pays to run Dijkstra’s algorithm once from each vertex.

If we use a Fibonacci heap for the priority queue, the running time is down
to O.V 2 lg V C VE/, which is better than FLOYD-WARSHALL’s ‚.V 3/ time if

E D o.V 2/.

But Dijkstra’s algorithm requires that all edge weights be nonnegative.

Donald Johnson figured out how to make an equivalent graph that does have all

edge weights � 0.

Reweighting

Compute a new weight function yw such that

1. For all u; � 2 V , p is a shortest path u ; � using w if and only if p is a shortest

path u ; � using yw.

2. For all .u; �/ 2 E; yw.u; �/ � 0.

Property (1) says that it suffices to find shortest paths with yw. Property (2) says we

can do so by running Dijkstra’s algorithm from each vertex.

How to come up with yw?

Lemma shows it’s easy to get property (1):

Lemma (Reweighting doesn’t change shortest paths)

Given a directed, weighted graph G D .V; E/; w W E ! R. Let h be any function
such that h W V ! R. For all .u; �/ 2 E, define

yw.u; �/ D w.u; �/C h.u/ � h.�/ :

Let p D h�0; �1; : : : ; �ki be any path �0 ; �k.

Then p is a shortest path �0 ; �k with w if and only if p is a shortest path �0 ; �k

with yw. (Formally, w.p/ D ı.�0; �k/ if and only if yw D yı.�0; �k/, where yı is the

shortest-path weight with yw.)

Also, G has a negative-weight cycle with w if and only if G has a negative-weight

cycle with yw.

Proof First, we’ll show that yw.p/ D w.p/C h.�0/ � h.�k/:

yw.p/ D
k
X

iD1

yw.�i�1; �i /

D
k
X

iD1

.w.�i�1; �i/C h.�i�1/ � h.�i//

D
k
X

iD1

w.�i�1; �i /C h.�0/ � h.�k/ (sum telescopes)

D w.p/C h.�0/ � h.�k/ :
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Therefore, any path �0
p
; �k has yw.p/ D w.p/ C h.�0/ � h.�k/. Since h.�0/

and h.�k/ don’t depend on the path from �0 to �k, if one path �0 ; �k is shorter

than another with w, it’s also shorter with yw.

Now show there exists a negative-weight cycle with w if and only if there exists a

negative-weight cycle with yw:

� Let cycle c D h�0; �1; : : : ; �ki, where �0 D �k.

� Then

yw.c/ D w.c/C h.�0/ � h.�k/

D w.c/ (since �0 D �k) .

Therefore, c has a negative-weight cycle with w if and only if it has a negative-

weight cycle with yw. (lemma)

So, now to get property (2), we just need to come up with a function h W V ! R

such that when we compute yw.u; �/ D w.u; �/C h.u/ � h.�/, it’s � 0.

Do what we did for difference constraints:

� G0 D .V 0; E 0/

� V 0 D V [ fsg, where s is a new vertex.
� E 0 D E [ f.s; �/ W � 2 V g.
� w.s; �/ D 0 for all � 2 V .

� Since no edges enter s, G0 has the same set of cycles as G. In particular, G0 has

a negative-weight cycle if and only if G does.

Define h.�/ D ı.s; �/ for all � 2 V .

Claim

yw.u; �/ D w.u; �/C h.u/ � h.�/ � 0.

Proof By the triangle inequality,

ı.s; �/ � ı.s; u/Cw.u; �/

h.�/ � h.u/Cw.u; �/ :

Therefore, w.u; �/C h.u/ � h.�/ � 0. (claim)
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Johnson’s algorithm

form G0

run BELLMAN-FORD on G0 to compute ı.s; �/ for all � 2 G0:V
if BELLMAN-FORD returns FALSE

G has a negative-weight cycle

else compute yw.u; �/ D w.u; �/C ı.s; u/ � ı.s; �/ for all .u; �/ 2 E

let D D .du�/ be a new n � n matrix

for each vertex u 2 G:V

run Dijkstra’s algorithm from u using weight function yw
to compute yı.u; �/ for all � 2 V

for each vertex � 2 G:V

// Compute entry du� in matrix D.

du� D yı.u; �/C ı.s; �/ � ı.s; u/
„ ƒ‚ …

because if p is a path u ; �, then yw.p/ D w.p/C h.u/ � h.�/
return D

Time

� ‚.V CE/ to compute G0.
� O.VE/ to run BELLMAN-FORD.

� ‚.E/ to compute yw.

� O.V 2 lg V CVE/ to run Dijkstra’s algorithm jV j times (using Fibonacci heap).

� ‚.V 2/ to compute D matrix.

Total: O.V 2 lg V C VE/.



Solutions for Chapter 25:

All-Pairs Shortest Paths

Solution to Exercise 25.1-3

This solution is also posted publicly

The matrix L.0/ corresponds to the identity matrix

I D

�
1 0 0 � � � 0

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � 1

�
of regular matrix multiplication. Substitute 0 (the identity for C) for1 (the iden-

tity for min), and 1 (the identity for �) for 0 (the identity for C).

Solution to Exercise 25.1-5

This solution is also posted publicly

The all-pairs shortest-paths algorithm in Section 25.1 computes

L.n�1/ D W n�1 D L.0/ �W n�1 ;

where l
.n�1/
ij D ı.i; j / and L.0/ is the identity matrix. That is, the entry in the

i th row and j th column of the matrix “product” is the shortest-path distance from

vertex i to vertex j , and row i of the product is the solution to the single-source

shortest-paths problem for vertex i .

Notice that in a matrix “product” C D A � B , the i th row of C is the i th row of A

“multiplied” by B . Since all we want is the i th row of C , we never need more than

the i th row of A.

Thus the solution to the single-source shortest-paths from vertex i is L
.0/
i �W n�1,

where L
.0/
i is the i th row of L.0/—a vector whose i th entry is 0 and whose other

entries are1.

Doing the above “multiplications” starting from the left is essentially the same

as the BELLMAN-FORD algorithm. The vector corresponds to the d values in

BELLMAN-FORD—the shortest-path estimates from the source to each vertex.
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� The vector is initially 0 for the source and1 for all other vertices, the same as

the values set up for d by INITIALIZE-SINGLE-SOURCE.

� Each “multiplication” of the current vector by W relaxes all edges just as

BELLMAN-FORD does. That is, a distance estimate in the row, say the distance

to �, is updated to a smaller estimate, if any, formed by adding some w.u; �/ to

the current estimate of the distance to u.

� The relaxation/multiplication is done n � 1 times.

Solution to Exercise 25.1-10

Run SLOW-ALL-PAIRS-SHORTEST-PATHS on the graph. Look at the diagonal el-

ements of L.m/. Return the first value of m for which one (or more) of the diagonal

elements (l
.m/
i i ) is negative. If m reaches nC 1, then stop and declare that there are

no negative-weight cycles.

Let the number of edges in a minimum-length negative-weight cycle be m�, where

m� D1 if the graph has no negative-weight cycles.

Correctness

Let’s assume that for some value m� � n and some value of i , we find that

l
.m�/
i i < 0. Then the graph has a cycle with m� edges that goes from vertex i

to itself, and this cycle has negative weight (stored in l
.m�/
i i ). This is the minimum-

length negative-weight cycle because SLOW-ALL-PAIRS-SHORTEST-PATHS com-
putes all paths of 1 edge, then all paths of 2 edges, and so on, and all cycles shorter

than m� edges were checked before and did not have negative weight. Now assume

that for all m � n, there is no negative l
.m/
i i element. Then, there is no negative-

weight cycle in the graph, because all cycles have length at most n.

Time

O.n4/. More precisely, ‚.n3 �min.n; m�//.

Faster solution

Run FASTER-ALL-PAIRS-SHORTEST-PATHS on the graph until the first time that

the matrix L.m/ has one or more negative values on the diagonal, or until we have

computed L.m/ for some m > n. If we find any negative entries on the diagonal,
we know that the minimum-length negative-weight cycle has more than m=2 edges

and at most m edges. We just need to binary search for the value of m� in the range

m=2 < m� � m. The key observation is that on our way to computing L.m/, we

computed L.1/, L.2/, L.4/, L.8/, . . . , L.m=2/, and these matrices suffice to compute

every matrix we’ll need. Here’s pseudocode:
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FIND-MIN-LENGTH-NEG-WEIGHT-CYCLE.W /

n D W:rows

L.1/ D W

m D 1

while m � n and no diagonal entries of L.m/ are negative

L.2m/ D EXTEND-SHORTEST-PATHS.L.m/; L.m//

m D 2m

if m > n and no diagonal entries of L.m/ are negative

return “no negative-weight cycles”

elseif m � 2

return m

else

low D m=2

high D m

d D m=4

while d � 1

s D lowC d

L.s/ D EXTEND-SHORTEST-PATHS.L.low/; L.d//

if L.s/ has any negative entries on the diagonal

high D s

else low D s

d D d=2

return high

Correctness

If, after the first while loop, m > n and no diagonal entries of L.m/ are negative,

then there is no negative-weight cycle. Otherwise, if m � 2, then either m D 1 or

m D 2, and L.m/ is the first matrix with a negative entry on the diagonal. Thus, the

correct value to return is m.

If m > 2, then we maintain an interval bracketed by the values low and high, such

that the correct value m� is in the range low < m� � high. We use the following

loop invariant:

Loop invariant: At the start of each iteration of the “while d � 1” loop,

1. d D 2p for some integer p � �1,

2. d D .high � low/=2,

3. low < m� � high.

Initialization: Initially, m is an integer power of 2 and m > 2. Since d D m=4,

we have that d is an integer power of 2 and d > 1=2, so that d D 2p for some

integer p � 0. We also have .high � low/=2 D .m � .m=2//=2 D m=4 D d .

Finally, L.m/ has a negative entry on the diagonal and L.m=2/ does not. Since
low D m=2 and high D m, we have that low < m� � high.

Maintenance: We use high, low, and d to denote variable values in a given it-

eration, and high0, low0, and d 0 to denote the same variable values in the next

iteration. Thus, we wish to show that d D 2p for some integer p � �1 im-

plies d 0 D 2p0

for some integer p0 � �1, that d D .high � low/=2 implies

d 0 D .high0 � low0/=2, and that low < m� � high implies low0 < m� � high0.
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To see that d 0 D 2p0

, note that d 0 D d=2, and so d D 2p�1. The condition that

d � 1 implies that p � 0, and so p0 � �1.

Within each iteration, s is set to low C d , and one of the following actions

occurs:

� If L.s/ has any negative entries on the diagonal, then high0 is set to s and

d 0 is set to d=2. Upon entering the next iteration, .high0 � low0/=2 D
.s � low0/=2 D ..lowCd/� low/=2 D d=2 D d 0. Since L.s/ has a negative

diagonal entry, we know that m� � s. Because high0 D s and low0 D low,

we have that low0 < m� � high0.
� If L.s/ has no negative entries on the diagonal, then low0 is set to s, and

d 0 is set to d=2. Upon entering the next iteration, .high0 � low0/=2 D
.high0 � s/=2 D .high�.lowCd//=2 D .high�low/=2�d=2 D d�d=2 D
d=2 D d 0. Since L.s/ has no negative diagonal entries, we know that m� > s.

Because low0 D s and high0 D high, we have that low0 < m� � high0.

Termination: At termination, d < 1. Since d D 2p for some integer p � �1,

we must have p D �1, so that d D 1=2. By the second part of the loop

invariant, if we multiply both sides by 2, we get that high � low D 2d D 1.

By the third part of the loop invariant, we know that low < m� � high. Since
high � low D 2d D 1 and m� > low, the only possible value for m� is high,

which the procedure returns.

Time

If there is no negative-weight cycle, the first while loop iterates ‚.lg n/ times, and
the total time is ‚.n3 lg n/.

Now suppose that there is a negative-weight cycle. We claim that each time we

call EXTEND-SHORTEST-PATHS.L.low/; L.d//, we have already computed L.low/

and L.d/. Initially, since low D m=2, we had already computed L.low/ in the first

while loop. In succeeding iterations of the second while loop, the only way that low

changes is when it gets the value of s, and we have just computed L.s/. As for L.d/,

observe that d takes on the values m=4; m=8; m=16; : : : ; 1, and again, we computed

all of these L matrices in the first while loop. Thus, the claim is proven. Each of

the two while loops iterates ‚.lg m�/ times. Since we have already computed the

parameters to each call of EXTEND-SHORTEST-PATHS, each iteration is dominated

by the ‚.n3/-time call to EXTEND-SHORTEST-PATHS. Thus, the total time is

‚.n3 lg m�/.

In general, therefore, the running time is ‚.n3 lg min.n; m�//.

Space

The slower algorithm needs to keep only three matrices at any time, and so its space

requirement is ‚.n3/. This faster algorithm needs to maintain ‚.lg min.n; m�//

matrices, and so the space requirement increases to ‚.n3 lg min.n; m�//.
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Solution to Exercise 25.2-4

This solution is also posted publicly

With the superscripts, the computation is d
.k/
ij D min

�

d
.k�1/
ij ; d

.k�1/

ik
C d

.k�1/

kj

�

. If,

having dropped the superscripts, we were to compute and store dik or dkj before

using these values to compute dij , we might be computing one of the following:

d
.k/
ij D min

�

d
.k�1/
ij ; d

.k/

ik
C d

.k�1/

kj

�

;

d
.k/
ij D min

�

d
.k�1/
ij ; d

.k�1/

ik
C d

.k/

kj

�

;

d
.k/
ij D min

�

d
.k�1/
ij ; d

.k/

ik
C d

.k/

kj

�

:

In any of these scenarios, we’re computing the weight of a shortest path from i to j

with all intermediate vertices in f1; 2; : : : ; kg. If we use d
.k/

ik
, rather than d

.k�1/

ik
,

in the computation, then we’re using a subpath from i to k with all intermediate

vertices in f1; 2; : : : ; kg. But k cannot be an intermediate vertex on a shortest path

from i to k, since otherwise there would be a cycle on this shortest path. Thus,

d
.k/

ik
D d

.k�1/

ik
. A similar argument applies to show that d

.k/

kj
D d

.k�1/

kj
. Hence, we

can drop the superscripts in the computation.

Solution to Exercise 25.2-6

Here are two ways to detect negative-weight cycles:

1. Check the main-diagonal entries of the result matrix for a negative value. There

is a negative weight cycle if and only if d
.n/
i i < 0 for some vertex i :

� d
.n/
i i is a path weight from i to itself; so if it is negative, there is a path from i

to itself (i.e., a cycle), with negative weight.
� If there is a negative-weight cycle, consider the one with the fewest vertices.

� If it has just one vertex, then some wi i < 0, so di i starts out negative, and

since d values are never increased, it is also negative when the algorithm

terminates.

� If it has at least two vertices, let k be the highest-numbered vertex in the

cycle, and let i be some other vertex in the cycle. d
.k�1/

ik
and d

.k�1/

ki
have

correct shortest-path weights, because they are not based on negative-

weight cycles. (Neither d
.k�1/

ik
nor d

.k�1/

ki
can include k as an intermedi-

ate vertex, and i and k are on the negative-weight cycle with the fewest

vertices.) Since i ; k ; i is a negative-weight cycle, the sum of those

two weights is negative, so d
.k/
i i will be set to a negative value. Since d

values are never increased, it is also negative when the algorithm termi-

nates.

In fact, it suffices to check whether d
.n�1/
i i < 0 for some vertex i . Here’s why.

A negative-weight cycle containing vertex i either contains vertex n or it does

not. If it does not, then clearly d
.n�1/
i i < 0. If the negative-weight cycle contains
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vertex n, then consider d .n�1/
nn . This value must be negative, since the cycle,

starting and ending at vertex n, does not include vertex n as an intermediate

vertex.

2. Alternatively, one could just run the normal FLOYD-WARSHALL algorithm one

extra iteration to see if any of the d values change. If there are negative cycles,

then some shortest-path cost will be cheaper. If there are no such cycles, then

no d values will change because the algorithm gives the correct shortest paths.

Solution to Exercise 25.3-4

This solution is also posted publicly

It changes shortest paths. Consider the following graph. V D fs; x; y; ´g, and

there are 4 edges: w.s; x/ D 2, w.x; y/ D 2, w.s; y/ D 5, and w.s; ´/ D �10.

So we’d add 10 to every weight to make yw. With w, the shortest path from s to y

is s ! x ! y, with weight 4. With yw, the shortest path from s to y is s ! y,

with weight 15. (The path s ! x ! y has weight 24.) The problem is that by just

adding the same amount to every edge, you penalize paths with more edges, even

if their weights are low.

Solution to Exercise 25.3-6

In this solution, we assume that1�1 is undefined; in particular, it’s not 0.

Let G D .V; E/, where V D fs; ug, E D f.u; s/g, and w.u; s/ D 0. There

is only one edge, and it enters s. When we run Bellman-Ford from s, we get

h.s/ D ı.s; s/ D 0 and h.u/ D ı.s; u/ D 1. When we reweight, we get

yw.u; s/ D 0 C 1 � 0 D 1. We compute yı.u; s/ D 1, and so we compute

dus D 1C 0�1 ¤ 0. Since ı.u; s/ D 0, we get an incorrect answer.

If the graph G is strongly connected, then we get h.�/ D ı.s; �/ < 1 for all

vertices � 2 V . Thus, the triangle inequality says that h.�/ � h.u/Cw.u; �/ for all

edges .u; �/ 2 E, and so yw.u; �/ D w.u; �/Ch.u/�h.�/ � 0. Moreover, all edge

weights yw.u; �/ used in Lemma 25.1 are finite, and so the lemma holds. Therefore,

the conditions we need in order to use Johnson’s algorithm hold: that reweighting

does not change shortest paths, and that all edge weights yw.u; �/ are nonnegative.

Again relying on G being strongly connected, we get that yı.u; �/ < 1 for all

edges .u; �/ 2 E, which means that du� D yı.u; �/ C h.�/ � h.u/ is finite and

correct.

Solution to Problem 25-1

a. Let T D .tij / be the jV j � jV j matrix representing the transitive closure, such

that tij is 1 if there is a path from i to j , and 0 otherwise.
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Initialize T (when there are no edges in G) as follows:

tij D
(

1 if i D j ;

0 otherwise :

We update T as follows when an edge .u; �/ is added to G:

TRANSITIVE-CLOSURE-UPDATE.T; u; �/

let T be jV j � jV j
for i D 1 to jV j

for j D 1 to jV j
if tiu == 1 and t�j == 1

tij D 1

� With this procedure, the effect of adding edge .u; �/ is to create a path (via

the new edge) from every vertex that could already reach u to every vertex

that could already be reached from �.
� Note that the procedure sets tu� D 1, because both tuu and t�� are initialized

to 1.
� This procedure takes ‚.V 2/ time because of the two nested loops.

b. Consider inserting the edge .�jV j; �1/ into the straight-line graph �1 ! �2 !
� � � ! �jV j.

Before this edge is inserted, only jV j .jV j C 1/=2 entries in T are 1 (the entries

on and above the main diagonal). After the edge is inserted, the graph is a cycle

in which every vertex can reach every other vertex, so all jV j2 entries in T are 1.

Hence jV j2� .jV j .jV jC1/=2/ D ‚.V 2/ entries must be changed in T , so any
algorithm to update the transitive closure must take �.V 2/ time on this graph.

c. The algorithm in part (a) would take ‚.V 4/ time to insert all possible ‚.V 2/

edges, so we need a more efficient algorithm in order for any sequence of in-

sertions to take only O.V 3/ total time.

To improve the algorithm, notice that the loop over j is pointless when ti� D 1.

That is, if there is already a path i ; �, then adding the edge .u; �/ cannot

make any new vertices reachable from i . The loop to set tij to 1 for j such that

there exists a path � ; j is just setting entries that are already 1. Eliminate

this redundant processing as follows:

TRANSITIVE-CLOSURE-UPDATE.T; u; �/

let T be jV j � jV j
for i D 1 to jV j

if tiu == 1 and ti� == 0

for j D 1 to jV j
if t�j == 1

tij D 1

We show that this procedure takes O.V 3/ time to update the transitive closure

for any sequence of n insertions:

� There cannot be more than jV j2 edges in G, so n � jV j2.
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� Summed over n insertions, the time for the outer for loop header and the test

for tiu == 1 and ti� == 0 is O.nV / D O.V 3/.
� The last three lines, which take ‚.V / time, are executed only O.V 2/ times

for n insertions. To see why, notice that the last three lines are executed only

when ti� equals 0, and in that case, the last line sets ti� D 1. Thus, the

number of 0 entries in T is reduced by at least 1 each time the last three lines

run. Since there are only jV j2 entries in T , these lines can run at most jV j2
times.

� Hence, the total running time over n insertions is O.V 3/.



Lecture Notes for Chapter 26:

Maximum Flow

Chapter 26 overview

Network flow

[The third edition treats flow networks differently from the first two editions. The
concept of net flow is gone, except that we do discuss net flow across a cut. Skew
symmetry is also gone, as is implicit summation notation. The third edition counts
flows on edges directly. We find that although the mathematics is not quite as slick
as in the first two editions, the approach in the third edition matches intuition more
closely, and therefore students tend to pick it up more quickly.]

Use a graph to model material that flows through conduits.

Each edge represents one conduit, and has a capacity, which is an upper bound on

the flow rate D units/time.

Can think of edges as pipes of different sizes. But flows don’t have to be of liquids.

Book has an example where a flow is how many trucks per day can ship hockey

pucks between cities.

Want to compute max rate that we can ship material from a designated source to a

designated sink.

Flow networks

G D .V; E/ directed.

Each edge .u; �/ has a capacity c.u; �/ � 0.

If .u; �/ 62 E, then c.u; �/ D 0.

If .u; �/ 2 E, then reverse edge .�; u/ 62 E. (Can work around this restriction.)

Source vertex s, sink vertex t , assume s ; � ; t for all � 2 V , so that each

vertex lies on a path from source to sink.

Example: [Edges are labeled with capacities.]
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3

2

3

2

3

1s t

2

w

y

x

z

3 3

Flow

A function f W V � V ! R satisfying

� Capacity constraint: For all u; � 2 V; 0 � f .u; �/ � c.u; �/,

� Flow conservation: For all u 2 V � fs; tg,
X

�2V

f .�; u/

„ ƒ‚ …

flow into u

D
X

�2V

f .u; �/

„ ƒ‚ …

flow out of u

.

Equivalently,
X

�2V

f .u; �/ �
X

�2V

f .�; u/ D 0.

[Add flows to previous example. Edges here are labeled as flow/capacity. Leave
on board.]

2/3

1/2

2/3

2/2

1/3

1/1s t

2/2

w

y

x

z

1/3 1/3

� Note that all flows are � capacities.

� Verify flow conservation by adding up flows at a couple of vertices.

� Note that all flowsD 0 is legitimate.

Value of flow f D jf j
D

X

�2V

f .s; �/ �
X

�2V

f .�; s/

D flow out of source � flow into source :

In the example above, value of flow f D jf j D 3.

Maximum-flow problem

Given G, s, t , and c, find a flow whose value is maximum.

Antiparallel edges

Definition of flow network does not allow both .u; �/ and .�; u/ to be edges. These

edges would be antiparallel.

What if we really need antiparallel edges?
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� Choose one of them, say .u; �/.
� Create a new vertex � 0.
� Replace .u; �/ by two new edges .u; � 0/ and .� 0; �/, with c.u; � 0/ D c.� 0; �/ D

c.u; �/.
� Get an equivalent flow network with no antiparallel edges.

Cuts

A cut .S; T / of flow network G D .V; E/ is a partition of V into S and T D V �S

such that s 2 S and t 2 T .

� Similar to cut used in minimum spanning trees, except that here the graph is

directed, and we require s 2 S and t 2 T .

For flow f , the net flow across cut .S; T / is

f .S; T / D
X

u2S

X

�2T

f .u; �/ �
X

u2S

X

�2T

f .�; u/ :

Capacity of cut .S; T / is

c.S; T / D
X

u2S

X

�2T

c.u; �/ :

A minimum cut of G is a cut whose capacity is minimum over all cuts of G.

Asymmetry between net flow across a cut and capacity of a cut: For capacity,

count only capacities of edges going from S to T . Ignore edges going in the

reverse direction. For net flow, count flow on all edges across the cut: flow on

edges going from S to T minus flow on edges going from T to S .

In previous example, consider the cut S D fs; w; yg ; T D fx; ´; tg.
f .S; T / D f .w; x/C f .y; ´/

„ ƒ‚ …

from S to T

� f .x; y/
„ ƒ‚ …

from T to S

D 2C 2 � 1

D 3 :

c.S; T / D c.w; x/C c.y; ´/
„ ƒ‚ …

from S to T

D 2C 3

D 5 :

Now consider the cut S D fs; w; x; yg ; T D f´; tg.
f .S; T / D f .x; t/C f .y; ´/

„ ƒ‚ …

from S to T

� f .´; x/
„ ƒ‚ …

from T to S

D 2C 2 � 1

D 3 :

c.S; T / D c.x; t/C c.y; ´/
„ ƒ‚ …

from S to T

D 3C 3

D 6 :

Same flow as previous cut, higher capacity.
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Lemma

For any cut .S; T /, f .S; T / D jf j.
(Net flow across the cut equals value of the flow.)

[Leave on board.]

[This proof is much more involved than the proof in the first two editions. You
might want to omit it, or just give the intuition that no matter where you cut the
pipes in a network, you’ll see the same flow volume coming out of the openings.]

Proof Rewrite flow conservation: for any u 2 V � fs; tg,
X

�2V

f .u; �/ �
X

�2V

f .�; u/ D 0 :

Take definition of jf j and add in left-hand side of above equation, summed over

all vertices in S � fsg. Above equation applies to each vertex in S � fsg (since

t 62 S and obviously s 62 S � fsg), so just adding in lots of 0s:

jf j D
X

�2V

f .s; �/ �
X

�2V

f .�; s/C
X

u2S�fsg

 
X

�2V

f .u; �/ �
X

�2V

f .�; u/

!

:

Expand right-hand summation and regroup terms:

jf j D
X

�2V

f .s; �/ �
X

�2V

f .�; s/C
X

u2S�fsg

X

�2V

f .u; �/�
X

u2S�fsg

X

�2V

f .�; u/

D
X

�2V

 

f .s; �/C
X

u2S�fsg
f .u; �/

!

�
X

�2V

 

f .�; s/C
X

u2S�fsg
f .�; u/

!

D
X

�2V

X

u2S

f .u; �/ �
X

�2V

X

u2S

f .�; u/ :

Partition V into S [ T and split each summation over V into summations over S

and T :

jf j D
X

�2S

X

u2S

f .u; �/C
X

�2T

X

u2S

f .u; �/�
X

�2S

X

u2S

f .�; u/�
X

�2T

X

u2S

f .�; u/

D
X

�2T

X

u2S

f .u; �/ �
X

�2T

X

u2S

f .�; u/

C
 
X

�2S

X

u2S

f .u; �/ �
X

�2S

X

u2S

f .�; u/

!

:

Summations within parentheses are the same, since f .x; y/ appears once in each

summation, for any x; y 2 V . These summations cancel:

jf j D
X

u2S

X

�2T

f .u; �/ �
X

u2S

X

�2T

f .�; u/

D f .S; T / : (lemma)

Corollary

The value of any flow � capacity of any cut.

[Leave on board.]
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Proof Let .S; T / be any cut, f be any flow.

jf j D f .S; T / (lemma)

D
X

u2S

X

�2T

f .u; �/ �
X

u2S

X

�2T

f .�; u/ (definition of f .S; T /)

�
X

u2S

X

�2T

f .u; �/ (f .�; u/ � 0)

�
X

u2S

X

�2T

c.u; �/ (capacity constraint)

D c.S; T / : (definition of c.S; T /) (corollary)

Therefore, maximum flow � capacity of minimum cut.

Will see a little later that this is in fact an equality.

The Ford-Fulkerson method

Residual network

Given a flow f in network G D .V; E/.

Consider a pair of vertices u; � 2 V .

How much additional flow can we push directly from u to �?
That’s the residual capacity,

cf .u; �/ D

�
c.u; �/ � f .u; �/ if .u; �/ 2 E ;

f .�; u/ if .�; u/ 2 E ;

0 otherwise (i.e., .u; �/; .�; u/ 62 E) :

The residual network is Gf D .V; Ef /, where

Ef D f.u; �/ 2 V � V W cf .u; �/ > 0g :

Each edge of the residual network can admit a positive flow.

For our example:

2

1
1

1

1
2

2

2

2

1
1 2 1

1
2

Gf

s t

w

y

x

z

Every edge .u; �/ 2 Ef corresponds to an edge .u; �/ 2 E or .�; u/ 2 E (or both).

Therefore, jEf j � 2 jEj.
Residual network is similar to a flow network, except that it may contain antiparal-
lel edges (.u; �/ and .�; u/). Can define a flow in a residual network that satisfies

the definition of a flow, but with respect to capacities cf in Gf .

Given flows f in G and f 0 in Gf , define .f " f 0/, the augmentation of f by f 0,
as a function V � V ! R:
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.f "f 0/.u; �/ D
(

f .u; �/C f 0.u; �/ � f 0.�; u/ if .u; �/ 2 E ;

0 otherwise

for all u; � 2 V .

Intuition: Increase the flow on .u; �/ by f 0.u; �/ but decrease it by f 0.�; u/ be-

cause pushing flow on the reverse edge in the residual network decreases the flow

in the original network. Also known as cancellation.

Lemma

Given a flow network G, a flow f in G, and the residual network Gf , let f 0 be a

flow in Gf . Then f "f 0 is a flow in G with value jf "f 0j D jf j C jf 0j.

[See book for proof. It has a lot of summations in it. Probably not worth writing
on the board.]

Augmenting path

A simple path s ; t in Gf .

� Admits more flow along each edge.

� Like a sequence of pipes through which we can squirt more flow from s to t .

How much more flow can we push from s to t along augmenting path p?

cf .p/ D min fcf .u; �/ W .u; �/ is on pg :

For our example, consider the augmenting path p D hs; w; y; ´; x; ti.
Minimum residual capacity is 1.

After we push 1 additional unit along p: [Continue from G left on board from
before. Edge .y; w/ has f .y; w/ D 0, which we omit, showing only c.y; w/ D 3.]

3

1

1
3

2

2

1

1
1 2

2
3

Gf

G

s t

w

y

x

z

3/3

1/2

3/3

2/2

2/3

1/1s t

2/2

w

y

x

z

3 2/3

Observe that Gf now has no augmenting path. Why? No edges cross the cut

.fs; wg ; fx; y; ´; tg/ in the forward direction in Gf . So no path can get from s to t .

Claim that the flow shown in G is a maximum flow.
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Lemma

Given flow network G, flow f in G, residual network Gf . Let p be an augmenting

path in Gf . Define fp W V � V ! R:

fp.u; �/ D
(

cf .p/ if .u; �/ is on p ;

0 otherwise :

Then fp is a flow in Gf with value jfpj D cf .p/ > 0.

Corollary

Given flow network G, flow f in G, and an augmenting path p in Gf , define fp

as in lemma. Then f "fp is a flow in G with value jf "fpj D jf j C jfpj > jf j.

Theorem (Max-flow min-cut theorem)

The following are equivalent:

1. f is a maximum flow.

2. Gf has no augmenting path.

3. jf j D c.S; T / for some cut .S; T /.

Proof

(1)) (2): Show the contrapositive: if Gf has an augmenting path, then f is not a

maximum flow. If Gf has augmenting path p, then by the above corollary, f "fp

is a flow in G with value jf j C jfpj > jf j, so that f was not a maximum flow.

(2)) (3): Suppose Gf has no augmenting path. Define

S D f� 2 V W there exists a path s ; � in Gf g ;

T D V � S :

Must have t 2 T ; otherwise there is an augmenting path.

Therefore, .S; T / is a cut.

Consider u 2 S and � 2 T :

� If .u; �/ 2 E, must have f .u; �/ D c.u; �/; otherwise, .u; �/ 2 Ef ) � 2 S .

� If .�; u/ 2 E, must have f .�; u/ D 0; otherwise, cf .u; �/ D f .�; u/ > 0)
.u; �/ 2 Ef ) � 2 S .

� If .u; �/; .�; u/ 62 E, must have f .u; �/ D f .�; u/ D 0.

Then,

f .S; T / D
X

u2S

X

�2T

f .u; �/�
X

�2T

X

u2S

f .�; u/

D
X

u2S

X

�2T

c.u; �/ �
X

�2T

X

u2S

0

D c.S; T / :

By lemma, jf j D f .S; T / D c.S; T /.

(3)) (1): By corollary, jf j � c.S; T /.

Therefore, jf j D c.S; T /) f is a max flow. (theorem)
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Ford-Fulkerson algorithm

Keep augmenting flow along an augmenting path until there is no augmenting path.

Represent the flow attribute using the usual dot-notation, but on an edge: .u; �/: f .

FORD-FULKERSON.G; s; t/

for all .u; �/ 2 G:E

.u; �/: f D 0

while there is an augmenting path p in Gf

augment f by cf .p/

Analysis

If capacities are all integer, then each augmenting path raises jf j by � 1. If max
flow is f �, then need � jf �j iterations) time is O.E jf �j/.
[Handwaving—see book for better explanation.]

Note that this running time is not polynomial in input size. It depends on jf �j,
which is not a function of jV j and jEj.
If capacities are rational, can scale them to integers.

If irrational, FORD-FULKERSON might never terminate!

Edmonds-Karp algorithm

Do FORD-FULKERSON, but compute augmenting paths by BFS of Gf . Augment-

ing paths are shortest paths s ; t in Gf , with all edge weights D 1.

Edmonds-Karp runs in O.VE2/ time.

To prove, need to look at distances to vertices in Gf .

Let ıf .u; �/ D shortest path distance u to � in Gf , with unit edge weights.

Lemma

For all � 2 V � fs; tg, ıf .s; �/ increases monotonically with each flow augmenta-

tion.

Proof Suppose there exists � 2 V �fs; tg such that some flow augmentation causes

ıf .s; �/ to decrease. Will derive a contradiction.

Let f be the flow before the first augmentation that causes a shortest-path distance

to decrease, f 0 be the flow afterward.

Let � be a vertex with minimum ıf 0.s; �/ whose distance was decreased by the

augmentation, so ıf 0.s; �/ < ıf .s; �/.

Let a shortest path s to � in Gf 0 be s ; u ! �, so .u; �/ 2 Ef 0 and ıf 0.s; �/ D
ıf 0.s; u/C 1. (Or ıf 0.s; u/ D ıf 0.s; �/ � 1.)

Since ıf 0.s; u/ < ıf 0.s; �/ and how we chose �, we have ıf 0.s; u/ � ıf .s; u/.

Claim

.u; �/ 62 Ef .
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Proof If .u; �/ 2 Ef , then

ıf .s; �/ � ıf .s; u/C 1 (triangle inequality)

� ıf 0.s; u/C 1

D ıf 0.s; �/ ;

contradicting ıf 0.s; �/ < ıf .s; �/. (claim)

How can .u; �/ 62 Ef and .u; �/ 2 Ef 0?

The augmentation must increase flow � to u.

Since Edmonds-Karp augments along shortest paths, the shortest path s to u in Gf

has .�; u/ as its last edge.

Therefore,

ıf .s; �/ D ıf .s; u/ � 1

� ıf 0.s; u/ � 1

D ıf 0.s; �/ � 2 ;

contradicting ıf 0.s; �/ < ıf .s; �/.

Therefore, � cannot exist. (lemma)

Theorem

Edmonds-Karp performs O.VE/ augmentations.

Proof Suppose p is an augmenting path and cf .u; �/ D cf .p/. Then call .u; �/ a

critical edge in Gf , and it disappears from the residual network after augmenting

along p.

� 1 edge on any augmenting path is critical.

Will show that each of the jEj edges can become critical � jV j =2 times.

Consider u; � 2 V such that either .u; �/ 2 E or .�; u/ 2 E or both. Since

augmenting paths are shortest paths, when .u; �/ becomes critical first time,

ıf .s; �/ D ıf .s; u/C 1.

Augment flow, so that .u; �/ disppears from the residual network. This edge cannot

reappear in the residual network until flow from u to � decreases, which happens

only if .�; u/ is on an augmenting path in Gf 0 : ıf 0.s; u/ D ıf 0.s; �/ C 1. (f 0 is
flow when this occurs.)

By lemma, ıf .s; �/ � ıf 0.s; �/)
ıf 0.s; u/ D ıf 0.s; �/C 1

� ıf .s; �/C 1

D ıf .s; u/C 2 :

Therefore, from the time .u; �/ becomes critical to the next time, distance of u

from s increases by � 2. Initially, distance to u is � 0, and augmenting path can’t

have s, u, and t as intermediate vertices.

Therefore, until u becomes unreachable from source, its distance is � jV j � 2)
after u becomes critical the first time, it can become critical � .jV j � 2/=2 D
jV j =2 � 1 times more) u can become critical � jV j =2 times.
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Since O.E/ pairs of vertices can have an edge between them in residual network,

total # of critical edges during execution of Edmonds-Karp is O.VE/. Since each

augmenting path has � 1 critical edge, have O.VE/ augmentations. (theorem)

Use BFS to find each augmenting path in O.E/ time) O.VE2/ time.

Can get better bounds.

Push-relabel algorithms in Sections 26.4–26.5 give O.V 3/.

Can do even better.

Maximum bipartite matching

Example of a problem that can be solved by turning it into a flow problem.

G D .V; E/ (undirected) is bipartite if we can partition V D L [ R such that all

edges in E go between L and R.

L R

matching maximum matching

L R

A matching is a subset of edges M � E such that for all � 2 V , � 1 edge of M

is incident on �. (Vertex � is matched if an edge of M is incident on it; otherwise

unmatched).

Maximum matching: a matching of maximum cardinality. (M is a maximum

matching if jM j � jM 0j for all matchings M 0.)

Problem

Given a bipartite graph (with the partition), find a maximum matching.

Application

Matching planes to routes.

� L D set of planes.

� R D set of routes.

� .u; �/ 2 E if plane u can fly route �.
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� Want maximum # of routes to be served by planes.

Given G, define flow network G0 D .V 0; E 0/.

� V 0 D V [ fs; tg.
� E 0 D f.s; u/ W u 2 Lg [ f.u; �/ W .u; �/ 2 Eg [ f.�; t/ W � 2 Rg.
� c.u; �/ D 1 for all .u; �/ 2 E 0.

s t

Each vertex in V has � 1 incident edge) jEj � jV j =2.

Therefore, jEj � jE 0j D jEj C jV j � 3 jEj.
Therefore, jE 0j D ‚.E/.

Find a max flow in G0. Book shows that it will have integer values for all .u; �/.

Use edges that carry flow of 1 in matching.

Book proves that this method produces a maximum matching.



Solutions for Chapter 26:

Maximum Flow

Solution to Exercise 26.1-1

We will prove that for every flow in G D .V; E/, we can construct a flow in
G0 D .V 0; E 0/ that has the same value as that of the flow in G. The required result

follows since a maximum flow in G is also a flow. Let f be a flow in G. By

construction, V 0 D V [ fxg and E 0 D .E � f.u; �/g/[ f.u; x/; .x; �/g. Construct

f 0 in G0 as follows:

f 0.y; ´/ D
(

f .y; ´/ if .y; ´/ ¤ .u; x/ and .y; ´/ ¤ .x; �/ ;

f .u; �/ if .y; ´/ D .u; x/ or .y; ´/ D .x; �/ :

Informally, f 0 is the same as f , except that the flow f .u; �/ now passes through

an intermediate vertex x. The vertex x has incoming flow (if any) only from u, and

has outgoing flow (if any) only to vertex �.

We first prove that f 0 satisfies the required properties of a flow. It is obvious that

the capacity constraint is satisfied for every edge in E 0 and that every vertex in

V 0 � fu; �; xg obeys flow conservation.

To show that edges .u; x/ and .x; �/ obey the capacity constraint, we have

f .u; x/ D f .u; �/ � c.u; �/ D c.u; x/ ;

f .x; �/ D f .u; �/ � c.u; �/ D c.x; �/ :

We now prove flow conservation for u. Assuming that u 62 fs; tg, we have
X

y2V 0

f 0.u; y/ D
X

y2V 0�fxg
f 0.u; y/C f 0.u; x/

D
X

y2V �f�g
f .u; y/C f .u; �/

D
X

y2V

f .u; y/

D
X

y2V

f .y; u/ (because f obeys flow conservation)

D
X

y2V 0

f 0.y; u/ :

For vertex �, a symmetric argument proves flow conservation.
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For vertex x, we have
X

y2V 0

f 0.y; x/ D f 0.u; x/

D f 0.x; �/

D
X

y2V 0

f 0.x; y/ :

Thus, f 0 is a valid flow in G0.

We now prove that the values of the flow in both cases are equal. If the source s is
not in fu; �g, the proof is trivial, since our construction assigns the same flows to

incoming and outgoing edges of s. If s D u, then

jf 0j D
X

y2V 0

f 0.u; y/ �
X

y2V 0

f 0.y; u/

D
X

y2V 0�fxg
f 0.u; y/ �

X

y2V 0

f 0.y; u/C f 0.u; x/

D
X

y2V �f�g
f .u; y/ �

X

y2V

f .y; u/C f .u; �/

D
X

y2V

f .u; y/ �
X

y2V

f .y; u/

D jf j :

The case when s D � is symmetric. We conclude that f 0 is a valid flow in G0 with

jf 0j D jf j.

Solution to Exercise 26.1-3

We show that, given any flow f 0 in the flow network G D .V; E/, we can construct

a flow f as stated in the exercise. The result will follow when f 0 is a maximum

flow. The idea is that even if there is a path from s to the connected component

of u, no flow can enter the component, since the flow has no path to reach t . Thus,

all the flow inside the component must be cyclic, which can be made zero without

affecting the net value of the flow.

Two cases are possible: where u is not connected to t , and where u is not connected

to s. We only analyze the former case. The analysis for the latter case is similar.

Let Y be the set of all vertices that have no path to t . Our roadmap will be to first
prove that no flow can leave Y . We use this result and flow conservation to prove

that no flow can enter Y . We shall then constuct the flow f , which has the required

properties, and prove that jf j D jf 0j.
The first step is to prove that there can be no flow from a vertex y 2 Y to a vertex

� 2 V � Y . That is, f 0.y; �/ D 0. This is so, because there are no edges .y; �/

in E. If there were an edge .y; �/ 2 E, then there would be a path from y to t ,

which contradicts how we defined the set Y .

We will now prove that f 0.�; y/ D 0, too. We will do so by applying flow conser-

vation to each vertex in Y and taking the sum over Y . By flow conservation, we

have
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X

y2Y

X

�2V

f 0.y; �/ D
X

y2Y

X

�2V

f 0.�; y/ :

Partitioning V into Y and V � Y gives
X

y2Y

X

�2V �Y

f 0.y; �/C
X

y2Y

X

�2Y

f 0.y; �/

D
X

y2Y

X

�2V �Y

f 0.�; y/C
X

y2Y

X

�2Y

f 0.�; y/ : (�)

But we also have
X

y2Y

X

�2Y

f 0.y; �/ D
X

y2Y

X

�2Y

f 0.�; y/ ;

since the left-hand side is the same as the right-hand side, except for a change of

variable names � and y. We also have
X

y2Y

X

�2V �Y

f 0.y; �/ D 0 ;

since f 0.y; �/ D 0 for each y 2 Y and � 2 V � Y . Thus, equation (�) simplifies

to
X

y2Y

X

�2V �Y

f 0.�; y/ D 0 :

Because the flow function is nonnegative, f .�; y/ D 0 for each � 2 V and y 2 Y .

We conclude that there can be no flow between any vertex in Y and any vertex

in V � Y .

The same technique can show that if there is a path from u to t but not from s to u,

and we define Z as the set of vertices that do not have have a path from s to u,

then there can be no flow between any vertex in Z and any vertex in V � Z. Let

X D Y [Z. We thus have f 0.�; x/ D f 0.x; �/ D 0 if x 2 X and � 62 X .

We are now ready to construct flow f :

f .u; �/ D
(

f 0.u; �/ if u; � 62 X ;

0 otherwise :

We note that f satisfies the requirements of the exercise. We now prove that f

also satisfies the requirements of a flow function.

The capacity constraint is satisfied, since whenever f .u; �/ D f 0.u; �/, we have

f .u; �/ D f 0.u; �/ � c.u; �/ and whenever f .u; �/ D 0, we have f .u; �/ D 0 �
c.u; �/.

For flow conservation, let x be some vertex other than s or t . If x 2 X , then from

the construction of f , we have
X

�2V

f .x; �/ D
X

�2V

f .�; x/ D 0 :
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Otherwise, if x 62 X , note that f .x; �/ D f 0.x; �/ and f .�; x/ D f 0.�; x/ for all

vertices � 2 V . Thus,
X

�2V

f .x; �/ D
X

�2V

f 0.x; �/

D
X

�2V

f 0.�; x/ (because f 0 obeys flow conservation)

D
X

�2V

f .�; x/ :

Finally, we prove that the value of the flow remains the same. Since s 62 X , we

have f .s; �/ D f 0.s; �/ and f .�; x/ D f 0.�; x/ for all vertices � 2 V , and so

jf j D
X

�2V

f .s; �/ �
X

�2V

f .�; s/

D
X

�2V

f 0.s; �/ �
X

�2V

f 0.�; s/

D jf 0j :

Solution to Exercise 26.1-4

To see that the flows form a convex set, we show that if f1 and f2 are flows, then

so is f̨1 C .1� ˛/f2 for all ˛ such that 0 � ˛ � 1.

For the capacity constraint, first observe that ˛ � 1 implies that 1 � ˛ � 0. Thus,

for any u; � 2 V , we have

f̨1.u; �/C .1 � ˛/f2.u; �/ � 0 � f1.u; �/C 0 � .1 � ˛/f2.u; �/

D 0 :

Since f1.u; �/ � c.u; �/ and f2.u; �/ � c.u; �/, we also have

f̨1.u; �/C .1 � ˛/f2.u; �/ � ˛c.u; �/C .1� ˛/c.u; �/

D .˛ C .1 � ˛//c.u; �/

D c.u; �/ :

For flow conservation, observe that since f1 and f2 obey flow conservation, we

have
P

�2V f1.�; u/ D P

�2V f1.u; �/ and
P

�2V f1.�; u/ D P

�2V f1.u; �/ for

any u 2 V � fs; tg. We need to show that
X

�2V

. f̨1.�; u/C .1 � ˛/f2.�; u// D
X

�2V

. f̨1.u; �/C .1 � ˛/f2.u; �//

for any u 2 V �fs; tg. We multiply both sides of the equality for f1 by ˛, multiply

both sides of the equality for f2 by 1 � ˛, and add the left-hand and right-hand

sides of the resulting equalities to get

˛
X

�2V

f1.�; u/C .1 � ˛/
X

�2V

f2.�; u/ D ˛
X

�2V

f1.u; �/C .1 � ˛/
X

�2V

f2.u; �/ :
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Observing that

˛
X

�2V

f1.�; u/C .1� ˛/
X

�2V

f2.�; u/ D
X

�2V

f̨1.�; u/C
X

�2V

.1� ˛/f2.�; u/

D
X

�2V

. f̨1.�; u/C .1� ˛/f2.�; u//

and, likewise, that

˛
X

�2V

f1.u; �/C .1 � ˛/
X

�2V

f2.u; �/ D
X

�2V

. f̨1.u; �/C .1� ˛/f2.u; �//

completes the proof that flow conservation holds, and thus that flows form a convex

set.

Solution to Exercise 26.1-6

Create a vertex for each corner, and if there is a street between corners u and �,

create directed edges .u; �/ and .�; u/. Set the capacity of each edge to 1. Let the

source be corner on which the professor’s house sits, and let the sink be the corner

on which the school is located. We wish to find a flow of value 2 that also has the

property that f .u; �/ is an integer for all vertices u and �. Such a flow represents
two edge-disjoint paths from the house to the school.

Solution to Exercise 26.1-7

We will construct G0 by splitting each vertex � of G into two vertices �1; �2, joined

by an edge of capacity l.�/. All incoming edges of � are now incoming edges

to �1. All outgoing edges from � are now outgoing edges from �2.

More formally, construct G0 D .V 0; E 0/ with capacity function c 0 as follows. For

every � 2 V , create two vertices �1; �2 in V 0. Add an edge .�1; �2/ in E 0 with

c 0.�1; �2/ D l.�/. For every edge .u; �/ 2 E, create an edge .u2; �1/ in E 0 with

capacity c 0.u2; �1/ D c.u; �/. Make s1 and t2 as the new source and target vertices

in G0. Clearly, jV 0j D 2 jV j and jE 0j D jEj C jV j.
Let f be a flow in G that respects vertex capacities. Create a flow function f 0 in G0

as follows. For each edge .u; �/ 2 G, let f 0.u2; �1/ D f .u; �/. For each vertex

u 2 V � ftg, let f 0.u1; u2/ DP�2V f .u; �/. Let f 0.t1; t2/ DP�2V f .�; t/.

We readily see that there is a one-to-one correspondence between flows that respect

vertex capacities in G and flows in G0. For the capacity constraint, every edge

in G0 of the form .u2; �1/ has a corresponding edge in G with a corresponding

capacity and flow and thus satisfies the capacity constraint. For edges in E 0 of

the form .u1; u2/, the capacities reflect the vertex capacities in G. Therefore, for

u 2 V � fs; tg, we have f 0.u1; u2/ D
P

�2V f .u; �/ � l.u/ D c 0.u1; u2/. We

also have f 0.t1; t2/ D
P

�2V f .�; t/ � l.t/ D c 0.t1; t2/. Note that this constraint

also enforces the vertex capacities in G.
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Now, we prove flow conservation. By construction, every vertex of the form u1

in G0 has exactly one outgoing edge .u1; u2/, and every incoming edge to u1 cor-

responds to an incoming edge of u 2 G. Thus, for all vertices u 2 V � fs; tg, we

have

incoming flow to u1 D
X

�2V 0

f 0.�; u1/

D
X

�2V

f .�; u/

D
X

�2V

f .u; �/ (because f obeys flow conservation)

D f 0.u1; u2/

D outgoing flow from u1 :

For t1, we have

incoming flow D
X

�2V 0

f 0.�; t1/

D
X

�2V

f .�; t/

D f 0.t1; t2/

D outgoing flow :

Vertices of the form u2 have exactly one incoming edge .u1; u2/, and every outgo-

ing edge of u2 corresponds to an outgoing edge of u 2 G. Thus, for u2 ¤ t2,

incoming flow D f 0.u1; u2/

D
X

�2V

f .u; �/

D
X

�2V 0

f 0.u2; �/

D outgoing flow :

Finally, we prove that jf 0j D jf j:
jf 0j D

X

�2V 0

f 0.s1; �/

D f 0.s1; s2/ (because there are no other outgoing edges from s1)

D
X

�2V

f .s; �/

D jf j :

Solution to Exercise 26.2-1

Lemma

1. If � 62 V1, then f .s; �/ D 0.

2. If � 62 V2, then f .�; s/ D 0.

3. If � 62 V1 [ V2, then f 0.s; �/ D 0.

4. If � 62 V1 [ V2, then f 0.�; s/ D 0.
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Proof

1. Let � 62 V1 be some vertex. From the definition of V1, there is no edge from s

to �. Thus, f .s; �/ D 0.

2. Let � 62 V2 be some vertex. From the definition of V2, there is no edge from �

to s. Thus, f .�; s/ D 0.

3. Let � 62 V1[V2 be some vertex. From the definition of V1 and V2, neither .s; �/

nor .�; s/ exists. Therefore, the third condition of the definition of residual

capacity (equation (26.2)) applies, and cf .s; �/ D 0. Thus, f 0.s; �/ D 0.

4. Let � 62 V1 [ V2 be some vertex. By equation (26.2), we have that cf .�; s/ D 0

and thus f 0.�; s/ D 0. (lemma)

We conclude that the summations in equation (26.6) equal the summations in equa-

tion (26.7).

Solution to Exercise 26.2-8

Let Gf be the residual network just before an iteration of the while loop of FORD-

FULKERSON, and let Es be the set of residual edges of Gf into s. We’ll show
that the augmenting path p chosen by FORD-FULKERSON does not include an

edge in Es. Thus, even if we redefine Gf to disallow edges in Es, the path p still

remains an augmenting path in the redefined network. Since p remains unchanged,

an iteration of the while loop of FORD-FULKERSON updates the flow in the same

way as before the redefinition. Furthermore, by disallowing some edges, we do

not introduce any new augmenting paths. Thus, FORD-FULKERSON still correctly

computes a maximum flow.

Now, we prove that FORD-FULKERSON never chooses an augmenting path p that

includes an edge .�; s/ 2 Es. Why? The path p always starts from s, and if p

included an edge .�; s/, the vertex s would be repeated twice in the path. Thus, p

would no longer be a simple path. Since FORD-FULKERSON chooses only simple

paths, p cannot include .�; s/.

Solution to Exercise 26.2-9

The augmented flow f " f 0 satisfies the flow conservation property but not the

capacity constraint property.

First, we prove that f "f 0 satisfies the flow conservation property. We note that

if edge .u; �/ 2 E, then .�; u/ 62 E and f 0.�; u/ D 0. Thus, we can rewrite the

definition of flow augmentation (equation (26.4)), when applied to two flows, as

.f "f 0/.u; �/ D
(

f .u; �/C f 0.u; �/ if .u; �/ 2 E ;

0 otherwise :

The definition implies that the new flow on each edge is simply the sum of the two

flows on that edge. We now prove that in f "f 0, the net incoming flow for each
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vertex equals the net outgoing flow. Let u 62 fs; tg be any vertex of G. We have
X

�2V

.f "f 0/.�; u/

D
X

�2V

.f .�; u/C f 0.�; u//

D
X

�2V

f .�; u/C
X

�2V

f 0.�; u/

D
X

�2V

f .u; �/C
X

�2V

f 0.u; �/ (because f , f 0 obey flow conservation)

D
X

�2V

.f .u; �/C f 0.u; �//

D
X

�2V

.f "f 0/.u; �/ :

We conclude that f "f 0 satisfies flow conservation.

We now show that f "f 0 need not satisfy the capacity constraint by giving a sim-

ple counterexample. Let the flow network G have just a source and a target vertex,

with a single edge .s; t/ having c.s; t/ D 1. Define the flows f and f 0 to have

f .s; t/ D f 0.s; t/ D 1. Then, we have .f "f 0/.s; t/ D 2 > c.s; t/. We conclude

that f "f 0 need not satisfy the capacity constraint.

Solution to Exercise 26.2-11

This solution is also posted publicly

For any two vertices u and � in G, we can define a flow network Gu� consisting

of the directed version of G with s D u, t D �, and all edge capacities set to 1.

(The flow network Gu� has V vertices and 2 jEj edges, so that it has O.V / vertices

and O.E/ edges, as required. We want all capacities to be 1 so that the number of

edges of G crossing a cut equals the capacity of the cut in Gu� .) Let fu� denote a

maximum flow in Gu� .

We claim that for any u 2 V , the edge connectivity k equals min
�2V �fug

fjfu�jg. We’ll

show below that this claim holds. Assuming that it holds, we can find k as follows:

EDGE-CONNECTIVITY.G/

k D 1
select any vertex u 2 G:V

for each vertex � 2 G:V � fug
set up the flow network Gu� as described above

find the maximum flow fu� on Gu�

k D min.k; jfu�j/
return k

The claim follows from the max-flow min-cut theorem and how we chose capac-

ities so that the capacity of a cut is the number of edges crossing it. We prove
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that k D min
�2V �fug

fjfu�jg, for any u 2 V by showing separately that k is at least this

minimum and that k is at most this minimum.

� Proof that k � min
�2V �fug

fjfu�jg:

Let m D min
�2V �fug

fjfu�jg. Suppose we remove only m � 1 edges from G. For

any vertex �, by the max-flow min-cut theorem, u and � are still connected.

(The max flow from u to � is at least m, hence any cut separating u from � has

capacity at least m, which means at least m edges cross any such cut. Thus at

least one edge is left crossing the cut when we remove m�1 edges.) Thus every

vertex is connected to u, which implies that the graph is still connected. So at

least m edges must be removed to disconnect the graph—i.e., k � min
�2V �fug

fjfu�jg.
� Proof that k � min

�2V �fug
fjfu�jg:

Consider a vertex � with the minimum jfu�j. By the max-flow min-cut the-

orem, there is a cut of capacity jfu�j separating u and �. Since all edge ca-

pacities are 1, exactly jfu�j edges cross this cut. If these edges are removed,
there is no path from u to �, and so our graph becomes disconnected. Hence

k � min
�2V �fug

fjfu�jg.
� Thus, the claim that k D min

�2V �fug
fjfu�jg, for any u 2 V is true.

Solution to Exercise 26.2-12

The idea of the proof is that if f .�; s/ D 1, then there must exist a cycle containing

the edge .�; s/ and for which each edge carries one unit of flow. If we reduce the

flow on each edge in the cycle by one unit, we can reduce f .�; s/ to 0 without

affecting the value of the flow.

Given the flow network G and the flow f , we say that vertex y is flow-connected

to vertex ´ if there exists a path p from y to ´ such that each edge of p has a
positive flow on it. We also define y to be flow-connected to itself. In particular, s

is flow-connected to s.

We start by proving the following lemma:

Lemma

Let G D .V; E/ be a flow network and f be a flow in G. If s is not flow-connected
to �, then f .�; s/ D 0.

Proof The idea is that since s is not flow-connected to �, there cannot be any flow

from s to �. By using flow conservation, we will prove that there cannot be any

flow from � to s either, and thus that f .�; s/ D 0.

Let Y be the set of all vertices y such that s is flow-connected to y. By applying
flow conservation to vertices in V � Y and taking the sum, we obtain
X

´2V �Y

X

x2V

f .x; ´/ D
X

´2V �Y

X

x2V

f .´; x/ :
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Partitioning V into Y and V � Y gives
X

´2V �Y

X

x2V �Y

f .x; ´/C
X

´2V �Y

X

x2Y

f .x; ´/

D
X

´2V �Y

X

x2V �Y

f .´; x/C
X

´2V �Y

X

x2Y

f .´; x/ : (�)

But we have
X

´2V �Y

X

x2V �Y

f .x; ´/ D
X

´2V �Y

X

x2V �Y

f .´; x/ ;

since the left-hand side is the same as the right-hand side, except for a change of

variable names x and ´. We also have
X

´2V �Y

X

x2Y

f .x; ´/ D 0 ;

since the flow from any vertex in Y to any vertex in V � Y must be 0. Thus,

equation (�) simplifies to
X

´2V �Y

X

x2Y

f .´; x/ D 0 :

The above equation implies that f .´; x/ D 0 for each ´ 2 V � Y and x 2 Y . In

particular, since � 2 V � Y and s 2 Y , we have that f .�; s/ D 0.

Now, we show how to construct the required flow f 0. By the contrapositive of the

lemma, f .�; s/ > 0 implies that s is flow-connected to � through some path p.

Let path p0 be the path s
p
; � ! s. Path p0 is a cycle that has positive flow

on each edge. Because we assume that all edge capacities are integers, the flow

on each edge of p0 is at least 1. If we subtract 1 from each edge of the cycle to

obtain a flow f 0, then f 0 still satisfies the properties of a flow network and has the

same value as jf j. Because edge .�; s/ is in the cycle, we have that f 0.�; s/ D
f .�; s/� 1 D 0.

Solution to Exercise 26.2-13

Let .S; T / and .X; Y / be two cuts in G (and G0). Let c 0 be the capacity function

of G0. One way to define c 0 is to add a small amount ı to the capacity of each edge
in G. That is, if u and � are two vertices, we set

c 0.u; �/ D c.u; �/C ı :

Thus, if c.S; T / D c.X; Y / and .S; T / has fewer edges than .X; Y /, then

we would have c 0.S; T / < c 0.X; Y /. We have to be careful and choose a

small ı, lest we change the relative ordering of two unequal capacities. That is,

if c.S; T / < c.X; Y /, then no matter many more edges .S; T / has than .X; Y /, we

still need to have c 0.S; T / < c 0.X; Y /. With this definition of c 0, a minimum cut

in G0 will be a minimum cut in G that has the minimum number of edges.

How should we choose the value of ı? Let m be the minimum difference between

capacities of two unequal-capacity cuts in G. Choose ı D m=.2 jEj/. For any

cut .S; T /, since the cut can have at most jEj edges, we can bound c 0.S; T / by
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c.S; T / � c 0.S; T / � c.S; T /C jEj � ı :

Let c.S; T / < c.X; Y /. We need to prove that c 0.S; T / < c 0.X; Y /. We have

c 0.S; T / � c.S; T /C jEj � ı
D c.S; T /Cm=2

< c.X; Y / (since c.X; Y / � c.S; T / � m)

� c 0.X; Y / :

Because all capacities are integral, we can choose m D 1, obtaining ı D 1=2 jEj.
To avoid dealing with fractional values, we can scale all capacities by 2 jEj to

obtain

c 0.u; �/ D 2 jEj � c.u; �/C 1 :

Solution to Exercise 26.3-3

This solution is also posted publicly

By definition, an augmenting path is a simple path s ; t in the residual net-

work G0
f

. Since G has no edges between vertices in L and no edges between

vertices in R, neither does the flow network G0 and hence neither does G0
f

. Also,

the only edges involving s or t connect s to L and R to t . Note that although edges

in G0 can go only from L to R, edges in G0
f

can also go from R to L.

Thus any augmenting path must go

s ! L! R! � � � ! L! R! t ;

crossing back and forth between L and R at most as many times as it can do

so without using a vertex twice. It contains s, t , and equal numbers of dis-

tinct vertices from L and R—at most 2 C 2 � min.jLj ; jRj/ vertices in all. The

length of an augmenting path (i.e., its number of edges) is thus bounded above by

2 �min.jLj ; jRj/C 1.

Solution to Exercise 26.4-1

We apply the definition of excess flow (equation (26.14)) to the initial preflow f

created by INITIALIZE-PREFLOW (equation (26.15)) to obtain

e.s/ D
X

�2V

f .�; s/ �
X

�2V

f .s; �/

D 0�
X

�2V

c.s; �/

D �
X

�2V

c.s; �/ :

Now,

� jf �j D
X

�2V

f �.�; s/ �
X

�2V

f �.s; �/
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� 0 �
X

�2V

c.s; �/ (since f �.�; s/ � 0 and f �.s; �/ � c.s; �/)

D e.s/ :

Solution to Exercise 26.4-3

Each time we call RELABEL.u/, we examine all edges .u; �/ 2 Ef . Since the

number of relabel operations is at most 2 jV j � 1 per vertex, edge .u; �/ will be

examined during relabel operations at most 4 jV j � 2 D O.V / times (at most

2 jV j � 1 times during calls to RELABEL.u/ and at most 2 jV j � 1 times during

calls to RELABEL.�/). Summing up over all the possible residual edges, of which

there are at most 2 jEj D O.E/, we see that the total time spent relabeling vertices

is O.VE/.

Solution to Exercise 26.4-4

We can find a minimum cut, given a maximum flow found in G D .V; E/ by a

push-relabel algorithm, in O.V / time. First, find a height yh such that 0 < yh < jV j
and there is no vertex whose height equals yh at termination of the algorithm. We

need consider only jV j � 2 vertices, since s:h D jV j and t:h D 0. Because yh can

be one of at most jV j � 1 possible values, we know that for at least one number in

1; 2; : : : ; jV j � 1, there will be no vertex of that height. Hence, yh is well defined,

and it is easy to find in O.V / time by using a simple boolean array indexed by

heights 1; 2; : : : ; jV j � 1.

Let S D
˚

u 2 V W u:h > yh
	

and T D
˚

� 2 V W �:h < yh
	

. Because we know that

s:h D jV j > yh, we have s 2 S , and because t:h D 0 < yh, we have t 2 T , as
required for a cut.

We need to show that f .u; �/ D c.u; �/, i.e., that .u; �/ 62 Ef , for all u 2 S and

� 2 T . Once we do that, we have that f .S; T / D c.S; T /, and by Corollary 26.5,

.S; T / is a minimum cut.

Suppose for the purpose of contradiction that there exist vertices u 2 S and � 2 T

such that .u; �/ 2 Ef . Because h is always maintained as a height function

(Lemma 26.16), we have that u:h � �:hC 1. But we also have �:h < yh < u:h,

and because all values are integer, �:h � u:h� 2. Thus, we have u:h � �:hC 1 �
u:h�2C1 D u:h�1, which gives the contradiction that u:height � u:height�1.

Thus, .S; T / is a minimum cut.

Solution to Exercise 26.4-7

If we set s:h D jV j � 2, we have to change our definition of a height function to

allow s:h D jV j � 2, rather than s:h D jV j. The only change we need to make to
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the proof of correctness is to update the proof of Lemma 26.17. The original proof

derives the contradiction that s:h � k < jV j, which is at odds with s:h D jV j.
When s:h D jV j � 2, there is no contradiction.

As in the original proof, let us suppose that we have a simple augmenting path

h�0; �1; : : : ; �ki, where �0 D s and �k D t , so that k < jV j. How could .s; �1/ be

a residual edge? It had been saturated in INITIALIZE-PREFLOW, which means that

we had to have pushed some flow from �1 to s. In order for that to have happened,

we must have had �1:h D s:hC 1. If we set s:h D jV j � 2, then �1:h was jV j � 1

at the time. Since then, �1:h did not decrease, and so we have �1:h � jV j � 1.

Working backwards over our augmenting path, we have �k�i :h � t:h C i for

i D 0; 1; : : : ; k. As before, because the augmenting path is simple, k < jV j.
Letting i D k � 1, we have �1:h � t:h C k � 1 < 0 C jV j � 1. We now have

the contradiction that �1:h � jV j � 1 and �1:h < jV j � 1, which shows that

Lemma 26.17 still holds.

Nothing in the analysis changes asymptotically.

Solution to Problem 26-2

a. The idea is to use a maximum-flow algorithm to find a maximum bipartite

matching that selects the edges to use in a minimum path cover. We must show

how to formulate the max-flow problem and how to construct the path cover

from the resulting matching, and we must prove that the algorithm indeed finds

a minimum path cover.

Define G0 as suggested, with directed edges. Make G0 into a flow network with

source x0 and sink y0 by defining all edge capacities to be 1. G0 is the flow

network corresponding to a bipartite graph G00 in which L D fx1; : : : ; xng,
R D fy1; : : : ; yng, and the edges are the (undirected version of the) subset

of E 0 that doesn’t involve x0 or y0.

The relationship of G to the bipartite graph G00 is that every vertex i in G is

represented by two vertices, xi and yi , in G00. Edge .i; j / in G corresponds to

edge .xi ; yj / in G00. That is, an edge .xi ; yj / in G00 means that an edge in G

leaves i and enters j . Vertex xi tells us about edges leaving i , and yi tells us

about edges entering i .

The edges in a bipartite matching in G00 can be used in a path cover of G, for

the following reasons:

� In a bipartite matching, no vertex is used more than once. In a bipartite

matching in G00, since no xi is used more than once, at most one edge in the

matching leaves any vertex i in G. Similarly, since no yj is used more than

once, at most one edge in the matching enters any vertex j in G.
� In a path cover, since no vertex appears in more than one path, at most one

path edge enters each vertex and at most one path edge leaves each vertex.

We can construct a path cover P from any bipartite matching M (not just a

maximum matching) by moving from some xi to its matching yj (if any), then

from xj to its matching yk, and so on, as follows:
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1. Start a new path containing a vertex i that has not yet been placed in a path.

2. If xi is unmatched, the path can’t go any farther; just add it to P .

3. If xi is matched to some yj , add j to the current path. If j has already been

placed in a path (i.e., though we’ve just entered j by processing yj , we’ve

already built a path that leaves j by processing xj ), combine this path with

that one and go back to step 1. Otherwise go to step 2 to process xj .

This algorithm constructs a path cover, for the following reasons:

� Every vertex is put into some path, because we keep picking an unused vertex

from which to start a path until there are no unused vertices.
� No vertex is put into two paths, because every xi is matched to at most

one yj , and vice versa. That is, at most one candidate edge leaves each

vertex, and at most one candidate edge enters each vertex. When building a

path, we start or enter a vertex and then leave it, building a single path. If we

ever enter a vertex that was left earlier, it must have been the start of another

path, since there are no cycles, and we combine those paths so that the vertex

is entered and left on a single path.

Every edge in M is used in some path because we visit every xi , and we incor-
porate the single edge, if any, from each visited xi . Thus, there is a one-to-one

correspondence between edges in the matching and edges in the constructed

path cover.

We now show that the path cover P constructed above has the fewest possible

paths when the matching is maximum.

Let f be the flow corresonding to the bipartite matching M .

jV j D
X

p2P

(# vertices in p) (every vertex is on exactly 1 path)

D
X

p2P

(1 + # edges in p)

D
X

p2P

1C
X

p2P

(# edges in p)

D jP j C jM j (by 1-to-1 correspondence)

D jP j C jf j (by Lemma 26.9) .

Thus, for the fixed set V in our graph G, jP j (the number of paths) is minimized

when the flow f is maximized.

The overall algorithm is as follows:

� Use FORD-FULKERSON to find a maximum flow in G0 and hence a maxi-

mum bipartite matching M in G00.
� Construct the path cover as described above.

Time

O.VE/ total:

� O.V CE/ to set up G0,
� O.VE/ to find the maximum bipartite matching,
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� O.E/ to trace the paths, because each edge 2 M is traversed only once and

there are O.E/ edges in M .

b. The algorithm does not work if there are cycles.

Consider a graph G with 4 vertices, consisting of a directed triangle and an

edge pointing to the triangle:

E D f.1; 2/; .2; 3/; .3; 1/; .4; 1/g
G can be covered with a single path: 4! 1! 2! 3, but our algorithm might

find only a 2-path cover.

In the bipartite graph G0, the edges .xi ; yj / are

.x1; y2/; .x2; y3/; .x3; y1/; .x4; y1/ :

There are 4 edges from an xi to a yj , but 2 of them lead to y1, so a maximum

bipartite matching can have only 3 edges (and the maximum flow in G0 has

value 3). In fact, there are 2 possible maximum matchings. It is always pos-

sible to match .x1; y2/ and .x2; y3/, and then either .x3; y1/ or .x4; y1/ can be

chosen, but not both.

The maximum flow found by one of our max-flow algorithms could find the

flow corresponding to either of these matchings, since both are maximal. If

it finds the matching with edge .x3; x1/, then the matching would not con-

tain .x4; x1/; given that matching, our path algorithm is forced to produce 2

paths, one of which contains just the vertex 4.

Solution to Problem 26-3

a. Assume for the sake of contradiction that Ak 62 T for some Ak 2 Ri . Since

Ak 62 T , we must have Ak 2 S . On the other hand, we have Ji 2 T . Thus,

the edge .Ak; Ji/ crosses the cut .S; T /. But c.Ak; Ji / D 1 by construction,

which contradicts the assumption that .S; T / is a finite-capacity cut.

b. Let us define a project-plan as a set of jobs to accept and experts to hire. Let

P be a project-plan. We assume that P has two attributes. The attribute P:J

denotes the set of accepted jobs, and P:A denotes the set of hired experts.

A valid project-plan is one in which we have hired all experts that are required
by the accepted jobs. Specifically, let P be a valid project plan. If Ji 2 P:J,

then Ak 2 P:A for each Ak 2 Ri . Note that Professor Gore might decide to

hire more experts than those that are actually required.

We define the revenue of a project-plan as the total profit from the accepted jobs

minus the total cost of the hired experts. The problem asks us to find a valid

project plan with maximum revenue.

We start by proving the following lemma, which establishes the relationship

between the capacity of a cut in flow network G and the revenue of a valid

project-plan.
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Lemma (Min-cut max-revenue)

There exists a finite-capacity cut .S; T / of G with capacity c.S; T / if and only

if there exists a valid project-plan with net revenue
�P

Ji 2J pi

�

� c.S; T /.

Proof Let .S; T / be a finite-capacity cut of G with capacity c.S; T /. We prove

one direction of the lemma by constructing the required project-plan.

Construct the project-plan P by including Ji in P:J if and only if Ji 2 T

and including Ak in P:A if and only if Ak 2 T . From part (a), P is a valid

project-plan, since, for every Ji 2 P:J, we have Ak 2 P:A for each Ak 2 Ri .

Since the capacity of the cut is finite, there cannot be any edges of the

form .Ak; Ji / crossing the cut, where Ak 2 S and Ji 2 T . All edges going

from a vertex in S to a vertex in T must be either of the form .s; Ak/ or of the

form .Ji ; t/. Let EA be the set of edges of the form .s; Ak/ that cross the cut,

and let EJ be the set of edges of the form .Ji ; t/ that cross the cut, so that

c.S; T / D
X

.s;Ak/2EA

c.s; Ak/C
X

.Ji ;t/2EJ

c.Ji ; t/ :

Consider edges of the form .s; Ak/. We have

.s; Ak/ 2 EA if and only if Ak 2 T

if and only if Ak 2 P:A :

By construction, c.s; Ak/ D ck. Taking summations over EA and over P:A, we

obtain
X

.s;Ak/2EA

c.s; Ak/ D
X

Ak2P: A

ck :

Similarly, consider edges of the form .Ji ; t/. We have

.Ji ; t/ 2 EJ if and only if Ji 2 S

if and only if Ji 62 T

if and only if Ji 62 P:J :

By construction, c.Ji ; t/ D pi . Taking summations over EJ and over P:J, we

obtain
X

.Ji ;t/2EJ

c.Ji ; t/ D
X

Ji 62P: J

pi :

Let � be the net revenue of P . Then, we have
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� D
X

Ji 2P: J

pi �
X

Ak2P: A

ck

D
 
X

Ji 2J

pi �
X

Ji 62P: J

pi

!

�
X

Ak2P: A

ck

D
X

Ji 2J

pi �
 
X

Ji 62P: J

pi C
X

Ak2P: A

ck

!

D
X

Ji 2J

pi �
 

X

.Ji ;t/2EJ

c.Ji ; t/C
X

.s;Ak/2EA

c.s; Ak/

!

D
 
X

Ji 2J

pi

!

� c.S; T / :

Now, we prove the other direction of the lemma by constructing the required

cut from a valid project-plan.

Construct the cut .S; T / as follows. For every Ji 2 P:J, let Ji 2 T . For every

Ak 2 P:A, let Ak 2 T .

First, we prove that the cut .S; T / is a finite-capacity cut. Since edges of the

form .Ak; Ji / are the only infinite-capacity edges, it suffices to prove that there

are no edges .Ak; Ji / such that Ak 2 S and Ji 2 T .

For the purpose of contradiction, assume there is an edge .Ak; Ji / such that

Ak 2 S and Ji 2 T . By our constuction, we must have Ji 2 P:J and

Ak 62 P:A. But since the edge .Ak; Ji / exists, we have Ak 2 Ri . Since P is a

valid project-plan, we derive the contradiction that Ak must have been in P:A.

From here on, the analysis is the same as the previous direction. In particular,

the last equation from the previous analysis holds: the net revenue � equals
�P

Ji 2J pi

�

� c.S; T /.

We conclude that the problem of finding a maximum-revenue project-plan re-

duces to the problem of finding a minimum cut in G. Let .S; T / be a minimum

cut. From the lemma, the maximum net revenue is given by
 
X

ji 2J

pi

!

� c.S; T / :

c. Construct the flow network G as shown in the problem statement. Obtain a

minimum cut .S; T / by running any of the maximum-flow algorithms (say,

Edmonds-Karp). Construct the project plan P as follows: add Ji to P:J if and

only if Ji 2 T . Add Ak to P:A if and only if Ak 2 T .

First, we note that the number of vertices in G is jV j D m C n C 2, and the

number of edges in G is jEj D r C m C n. Constructing G and recovering

the project-plan from the minimum cut are clearly linear-time operations. The

running time of our algorithm is thus asymptotically the same as the running

time of the algorithm used to find the minimum cut. If we use Edmonds-Karp

to find the minimum cut, the running time is O.VE2/.
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Solution to Problem 26-4

This solution is also posted publicly

a. Just execute one iteration of the Ford-Fulkerson algorithm. The edge .u; �/ in E

with increased capacity ensures that the edge .u; �/ is in the residual network.

So look for an augmenting path and update the flow if a path is found.

Time

O.V C E/ D O.E/ if we find the augmenting path with either depth-first or
breadth-first search.

To see that only one iteration is needed, consider separately the cases in which

.u; �/ is or is not an edge that crosses a minimum cut. If .u; �/ does not cross a

minimum cut, then increasing its capacity does not change the capacity of any

minimum cut, and hence the value of the maximum flow does not change. If

.u; �/ does cross a minimum cut, then increasing its capacity by 1 increases the
capacity of that minimum cut by 1, and hence possibly the value of the maxi-

mum flow by 1. In this case, there is either no augmenting path (in which case

there was some other minimum cut that .u; �/ does not cross), or the augment-

ing path increases flow by 1. No matter what, one iteration of Ford-Fulkerson

suffices.

b. Let f be the maximum flow before reducing c.u; �/.

If f .u; �/ D 0, we don’t need to do anything.

If f .u; �/ > 0, we will need to update the maximum flow. Assume from now

on that f .u; �/ > 0, which in turn implies that f .u; �/ � 1.

Define f 0.x; y/ D f .x; y/ for all x; y 2 V , except that f 0.u; �/ D f .u; �/�1.
Although f 0 obeys all capacity contraints, even after c.u; �/ has been reduced,

it is not a legal flow, as it violates flow conservation at u (unless u D s) and �

(unless � D t). f 0 has one more unit of flow entering u than leaving u, and it

has one more unit of flow leaving � than entering �.

The idea is to try to reroute this unit of flow so that it goes out of u and into �

via some other path. If that is not possible, we must reduce the flow from s to u

and from � to t by one unit.

Look for an augmenting path from u to � (note: not from s to t).

� If there is such a path, augment the flow along that path.
� If there is no such path, reduce the flow from s to u by augmenting the flow

from u to s. That is, find an augmenting path u ; s and augment the

flow along that path. (There definitely is such a path, because there is flow

from s to u.) Similarly, reduce the flow from � to t by finding an augmenting

path t ; � and augmenting the flow along that path.

Time

O.V CE/ D O.E/ if we find the paths with either DFS or BFS.
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Solution to Problem 26-5

a. The capacity of a cut is defined to be the sum of the capacities of the edges

crossing it. Since the number of such edges is at most jEj, and the capacity of

each edge is at most C , the capacity of any cut of G is at most C jEj.
b. The capacity of an augmenting path is the minimum capacity of any edge on the

path, so we are looking for an augmenting path whose edges all have capacity at

least K. Do a breadth-first search or depth-first-search as usual to find the path,

considering only edges with residual capacity at least K. (Treat lower-capacity

edges as though they don’t exist.) This search takes O.V CE/ D O.E/ time.

(Note that jV j D O.E/ in a flow network.)

c. MAX-FLOW-BY-SCALING uses the Ford-Fulkerson method. It repeatedly aug-

ments the flow along an augmenting path until there are no augmenting paths

with capacity at least 1. Since all the capacities are integers, and the capacity

of an augmenting path is positive, when there are no augmenting paths with ca-
pacity at least 1, there must be no augmenting paths whatsoever in the residual

network. Thus, by the max-flow min-cut theorem, MAX-FLOW-BY-SCALING

returns a maximum flow.

d. � The first time line 4 is executed, the capacity of any edge in Gf equals its

capacity in G, and by part (a) the capacity of a minimum cut of G is at

most C jEj. Initially K D 2blg C c, and so 2K D 2 � 2blg C c D 2blg C cC1 >

2lg C D C . Thus, the capacity of a minimum cut of Gf is initially less than

2K jEj.
� The other times line 4 is executed, K has just been halved, and so the ca-

pacity of a cut of Gf is at most 2K jEj at line 4 if and only if that capacity
was at most K jEj when the while loop of lines 5–6 last terminated. Thus,

we want to show that when line 7 is reached, the capacity of a minimum cut

of Gf is at most K jEj.
Let Gf be the residual network when line 7 is reached. When we reach

line 7, Gf contains no augmenting path with capacity at least K. Therefore,

a maximum flow f 0 in Gf has value jf 0j < K jEj. Then, by the max-flow

min-cut theorem, a minimum cut in Gf has capacity less than K jEj.
e. By part (d), when line 4 is reached, the capacity of a minimum cut of Gf is

at most 2K jEj, and thus the maximum flow in Gf is at most 2K jEj. The

following lemma shows that the value of a maximum flow in G equals the
value of the current flow f in G plus the value of a maximum flow in Gf .

Lemma

Let f be a flow in flow network G, and f 0 be a maximum flow in the residual

network Gf . Then f " f 0 is a maximum flow in G.

Proof By the max-flow min-cut theorem, jf 0j D cf .S; T / for some cut .S; T /

of Gf , which is also a cut of G. By Lemma 26.4, jf j D f .S; T /. By

Lemma 26.1, f "f 0 is a flow in G with value jf "f 0j D jf j C jf 0j. We
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will show that jf j C jf 0j D c.S; T / which, by the max-flow min-cut theorem,

will prove that f "f 0 is a maximum flow in G.

We have

jf j C jf 0j D f .S; T /C cf .S; T /

D
 
X

u2S

X

�2T

f .u; �/ �
X

u2S

X

�2T

f .�; u/

!

C
X

u2S

X

�2T

cf .u; �/

D
 

X

u2S;�2T

f .u; �/ �
X

u2S;�2T

f .�; u/

!

C

0

B
@

X

u2S;�2T;
.u;�/2E

c.u; �/ �
X

u2S;�2T;
.u;�/2E

f .u; �/C
X

u2S;�2T;
.�;u/2E

f .�; u/

1

C
A :

Noting that .u; �/ 62 E implies f .u; �/ D 0, we have that
X

u2S;�2T

f .u; �/ D
X

u2S;�2T;
.u;�/2E

f .u; �/ :

Similarly,
X

u2S;�2T

f .�; u/ D
X

u2S;�2T;
.�;u/2E

f .�; u/ :

Thus, the summations of f .u; �/ cancel each other out, as do the summations

of f .�; u/. Therefore,

jf j C jf 0j D
X

u2S;�2T;
.u;�/2E

c.u; �/

D
X

u2S

X

�2T

c.u; �/

D c.S; T / : (lemma)

By this lemma, we see that the value of a maximum flow in G is at most 2K jEj
more than the value of the current flow f in G. Every time the inner while loop

finds an augmenting path of capacity at least K, the flow in G increases by at

least K. Since the flow cannot increase by more than 2K jEj, the loop executes

at most .2K jEj/=K D 2 jEj times.

f. The time complexity is dominated by the while loop of lines 4–7. (The lines

outside the loop take O.E/ time.) The outer while loop executes O.lg C /

times, since K is initially O.C / and is halved on each iteration, until K < 1.

By part (e), the inner while loop executes O.E/ times for each value of K, and

by part (b), each iteration takes O.E/ time. Thus, the total time is O.E2 lg C /.





Index

This index covers exercises and problems from the textbook that are solved in this

manual. The first page in the manual that has the solution is listed here.

Exercise 2.2-2, 2-17

Exercise 2.2-4, 2-17

Exercise 2.3-3, 2-17

Exercise 2.3-4, 2-18

Exercise 2.3-5, 2-18

Exercise 2.3-6, 2-19

Exercise 2.3-7, 2-19

Exercise 3.1-1, 3-7

Exercise 3.1-2, 3-7

Exercise 3.1-3, 3-8

Exercise 3.1-4, 3-8

Exercise 3.1-8, 3-8

Exercise 3.2-4, 3-9

Exercise 3.2-5, 3-9

Exercise 3.2-6, 3-10

Exercise 3.2-7, 3-10

Exercise 4.1-1, 4-17

Exercise 4.1-2, 4-17

Exercise 4.1-4, 4-17

Exercise 4.1-5, 4-18

Exercise 4.2-2, 4-19

Exercise 4.2-4, 4-19

Exercise 4.3-1, 4-20

Exercise 4.3-7, 4-20

Exercise 4.4-6, 4-21

Exercise 4.4-9, 4-21

Exercise 4.5-2, 4-22

Exercise 5.1-3, 5-9

Exercise 5.2-1, 5-10

Exercise 5.2-2, 5-10

Exercise 5.2-4, 5-11

Exercise 5.2-5, 5-12

Exercise 5.3-1, 5-13

Exercise 5.3-2, 5-13

Exercise 5.3-3, 5-13

Exercise 5.3-4, 5-14

Exercise 5.3-7, 5-14

Exercise 5.4-6, 5-16

Exercise 6.1-1, 6-10

Exercise 6.1-2, 6-10

Exercise 6.1-3, 6-10

Exercise 6.2-6, 6-11

Exercise 6.3-3, 6-11

Exercise 6.4-1, 6-14

Exercise 6.5-2, 6-15

Exercise 6.5-6, 6-15

Exercise 7.2-3, 7-9

Exercise 7.2-5, 7-9

Exercise 7.3-1, 7-10

Exercise 7.4-2, 7-10

Exercise 8.1-3, 8-10

Exercise 8.1-4, 8-10

Exercise 8.2-2, 8-11

Exercise 8.2-3, 8-11

Exercise 8.2-4, 8-11

Exercise 8.3-2, 8-12

Exercise 8.3-3, 8-12

Exercise 8.3-4, 8-13

Exercise 8.4-2, 8-13

Exercise 9.1-1, 9-10

Exercise 9.3-1, 9-10

Exercise 9.3-3, 9-11

Exercise 9.3-5, 9-12

Exercise 9.3-8, 9-13

Exercise 9.3-9, 9-14

Exercise 11.1-4, 11-16

Exercise 11.2-1, 11-17

Exercise 11.2-4, 11-17



I-2 Index

Exercise 11.2-6, 11-18

Exercise 11.3-3, 11-19

Exercise 11.3-5, 11-20

Exercise 12.1-2, 12-15

Exercise 12.2-5, 12-15

Exercise 12.2-7, 12-16

Exercise 12.3-3, 12-17

Exercise 12.4-1, 12-12

Exercise 12.4-2, 12-17

Exercise 12.4-3, 12-9

Exercise 12.4-4, 12-18

Exercise 13.1-3, 13-13

Exercise 13.1-4, 13-13

Exercise 13.1-5, 13-13

Exercise 13.2-4, 13-14

Exercise 13.3-3, 13-14

Exercise 13.3-4, 13-15

Exercise 13.4-6, 13-16

Exercise 13.4-7, 13-16

Exercise 14.1-5, 14-9

Exercise 14.1-6, 14-9

Exercise 14.1-7, 14-9

Exercise 14.2-2, 14-10

Exercise 14.3-3, 14-13

Exercise 14.3-6, 14-14

Exercise 14.3-7, 14-15

Exercise 15.1-1, 15-21

Exercise 15.1-2, 15-21

Exercise 15.1-3, 15-22

Exercise 15.1-4, 15-22

Exercise 15.1-5, 15-23

Exercise 15.2-4, 15-23

Exercise 15.2-5, 15-24

Exercise 15.3-1, 15-25

Exercise 15.3-5, 15-26

Exercise 15.3-6, 15-27

Exercise 15.4-4, 15-28

Exercise 16.1-1, 16-9

Exercise 16.1-2, 16-10

Exercise 16.1-3, 16-11

Exercise 16.1-4, 16-11

Exercise 16.1-5, 16-13

Exercise 16.2-2, 16-14

Exercise 16.2-4, 16-16

Exercise 16.2-6, 16-16

Exercise 16.2-7, 16-17

Exercise 16.3-1, 16-17

Exercise 16.4-2, 16-17

Exercise 16.4-3, 16-18

Exercise 17.1-3, 17-14

Exercise 17.2-1, 17-15

Exercise 17.2-2, 17-15

Exercise 17.2-3, 17-16

Exercise 17.3-3, 17-17

Exercise 21.2-3, 21-6

Exercise 21.2-5, 21-7

Exercise 21.2-6, 21-7

Exercise 21.3-3, 21-7

Exercise 21.3-4, 21-8

Exercise 21.3-5, 21-8

Exercise 21.4-4, 21-9

Exercise 21.4-5, 21-9

Exercise 21.4-6, 21-9

Exercise 22.1-6, 22-13

Exercise 22.1-7, 22-15

Exercise 22.2-3, 22-15

Exercise 22.2-5, 22-15

Exercise 22.2-6, 22-15

Exercise 22.2-7, 22-16

Exercise 22.3-4, 22-16

Exercise 22.3-5, 22-16

Exercise 22.3-8, 22-17

Exercise 22.3-9, 22-17

Exercise 22.3-11, 22-17

Exercise 22.3-12, 22-18

Exercise 22.4-3, 22-19

Exercise 22.4-5, 22-20

Exercise 22.5-5, 22-21

Exercise 22.5-6, 22-22

Exercise 22.5-7, 22-23

Exercise 23.1-1, 23-8

Exercise 23.1-4, 23-8

Exercise 23.1-6, 23-8

Exercise 23.1-10, 23-9

Exercise 23.2-4, 23-9

Exercise 23.2-5, 23-10

Exercise 23.2-7, 23-10

Exercise 24.1-3, 24-13

Exercise 24.2-3, 24-13

Exercise 24.3-3, 24-14

Exercise 24.3-4, 24-14

Exercise 24.3-5, 24-15

Exercise 24.3-6, 24-15

Exercise 24.3-8, 24-16

Exercise 24.3-9, 24-17

Exercise 24.4-4, 24-17



Index I-3

Exercise 24.4-7, 24-18

Exercise 24.4-10, 24-18

Exercise 24.5-4, 24-19

Exercise 24.5-7, 24-19

Exercise 24.5-8, 24-19

Exercise 25.1-3, 25-9

Exercise 25.1-5, 25-9

Exercise 25.1-10, 25-10

Exercise 25.2-4, 25-13

Exercise 25.2-6, 25-13

Exercise 25.3-4, 25-14

Exercise 25.3-6, 25-14

Exercise 26.1-1, 26-12

Exercise 26.1-3, 26-13

Exercise 26.1-4, 26-15

Exercise 26.1-6, 26-16

Exercise 26.1-7, 26-16

Exercise 26.2-1, 26-17

Exercise 26.2-8, 26-18

Exercise 26.2-9, 26-18

Exercise 26.2-11, 26-19

Exercise 26.2-12, 26-20

Exercise 26.2-13, 26-21

Exercise 26.3-3, 26-22

Exercise 26.4-1, 26-22

Exercise 26.4-3, 26-23

Exercise 26.4-4, 26-23

Exercise 26.4-7, 26-23

Problem 2-1, 2-20

Problem 2-2, 2-21

Problem 2-4, 2-22

Problem 3-3, 3-10

Problem 4-1, 4-22

Problem 4-3, 4-24

Problem 5-1, 5-17

Problem 6-1, 6-15

Problem 6-2, 6-16

Problem 7-2, 7-11

Problem 7-4, 7-12

Problem 8-1, 8-13

Problem 8-3, 8-16

Problem 8-4, 8-17

Problem 8-7, 8-20

Problem 9-1, 9-15

Problem 9-2, 9-16

Problem 9-3, 9-19

Problem 9-4, 9-21

Problem 11-1, 11-21

Problem 11-2, 11-22

Problem 11-3, 11-24

Problem 12-2, 12-19

Problem 12-3, 12-20

Problem 13-1, 13-16

Problem 14-1, 14-15

Problem 14-2, 14-17

Problem 15-1, 15-29

Problem 15-2, 15-31

Problem 15-3, 15-34

Problem 15-4, 15-36

Problem 15-5, 15-39

Problem 15-8, 15-42

Problem 15-9, 15-45

Problem 15-11, 15-47

Problem 15-12, 15-50

Problem 16-1, 16-20

Problem 16-5, 16-23

Problem 17-2, 17-19

Problem 17-4, 17-20

Problem 21-1, 21-10

Problem 21-2, 21-11

Problem 22-1, 22-24

Problem 22-3, 22-24

Problem 22-4, 22-27

Problem 23-1, 23-12

Problem 24-1, 24-20

Problem 24-2, 24-21

Problem 24-3, 24-22

Problem 24-4, 24-23

Problem 24-6, 24-24

Problem 25-1, 25-14

Problem 26-2, 26-24

Problem 26-3, 26-26

Problem 26-4, 26-29

Problem 26-5, 26-30


