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Preface

What Is the Book About?
“When a straight line standing on a straight line makes the adjacent angles

equal to one another, each of the equal angles is right, and the straight line
standing on the other is called a perpendicular to that on which it stands.”

— Euclid, Elements, Book 1, definition 10
This is Euclid’s definition for “perpendicular”, from which a more general

concept of “orthogonal” is derived. Although in this book we will be mostly
concerned with orthogonal vectors or functions, they are essentially no different
from two perpendicular straight lines, as described by Euclid some 23 centuries
ago.

Orthogonality is of important significance not only in geometry and mathe-
matics, but also in science and engineering in general, and in data processing in
particular. This book is about a set of computational methods, known collectively
as orthogonal transforms, that enables us to take advantage of orthogonality. As
we will see through out the book, orthogonality is a much desired property that
will keep things untangled and nicely separated for ease of manipulation, and an
orthogonal transform can rotate a signal, represented as a vector in Euclidean
space, or more generally, in Hilbert space, in such a way that the signal com-
ponents tend to become, approximately or accurately, orthogonal to each other.
These orthogonal transforms, such as the Fourier transform and discrete cosine
transform, lend themselves well to various data processing and analysis needs,
and are therefore used in a wide variety of disciplines and areas including both
social and natural sciences as well as engineering. The book also covers the
Laplace and Z-transforms, which can be considered as the extended versions
of the Fourier transform, and the wavelet transforms that may not be strictly
orthogonal but still closely related to those that are.

In the last few decades the scale of data collection across many fields has
been increasing drastically due mostly to the rapid advances in technologies.
Consequently how to best make sense of the fast accumulating data has become
more challenging. Wherever a large amount of data is collected, from stock mar-
ket indices in economy to microarray data in bioinformatics, from seismic data
in geophysics to audio and video data in communication engineering, there is
always the need to process and compress the data in some meaningful way for
the purpose of effective and efficient data analysis and interpretation, by various

ix
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computational methods and algorithms. The transform methods covered in this
book can be used as a set of basic tools for the data processing and the subse-
quent analysis such as data mining, knowledge discovery, and machine learning.

The specific purpose of each data processing and analysis task at hand may
vary from case to case. From a set of given data, one may desire to remove
certain type of noise, or extract a particular kind of features of interest, and
very often it is desirable to reduce the quantity of the data without losing useful
information for storage and transmission. On the other hand, many operations
needed for achieving these very different goals may all be carried out using the
same mathematical tool of orthogonal transform, by which the data is manip-
ulated and represented in such a way that the desired results can be achieved
effectively in the subsequent processing. To address all such needs, this book
presents a thorough introduction to the mathematical background common to
a set of transform methods used in a wide variety of data processing problems,
and provides a repertoire of computational algorithms for these methods.

The basic approach of the book is the combination of the theoretical derivation
and practical implementation of each transform method discussed. Certainly
many existing books touch upon the topics of orthogonal transform and wavelet
transforms, from either mathematical or engineering point of view. Some of them
may concentrate on the theories of these transform methods, while others may
emphasize their applications, but relatively few would guide the reader directly
from the mathematical theories to the computational algorithms, and then to
their applications to real data analysis, as what this book intends to do. Here
deliberate efforts are made to bridge the gap between the theoretical background
and the practical implementation, based on the belief that to truly understand
a certain method, one needs to be able to convert the mathematical theory
ultimately into computer code so that the algorithm can be actually implemented
and tested. This idea has been the guiding principle through out the writing of
the book. For each of the orthogonal and wavelet transform method covered,
we will first derive the theory mathematically, then present the corresponding
computational algorithm, and finally provide the code segments in Matlab or C
for the key parts of the algorithm. Moreover, we will also include some relatively
simple application examples to illustrate the actual data processing effects of the
algorithm. In fact every one of the orthogonal and wavelet transform methods
covered in the book has been implemented by either Matlab or C programming
language and tested on real data. The complete programs are also made readily
available in the accompanying CD as well as a website dedicated to the book
at: http://fourier.eng.hmc.edu/book/programs. The reader is encouraged and
expected to try these algorithms out by running the code on his/her own data.

Why Orthogonal Transforms?
The transform methods covered in the book are a collection of both old and

new ideas ranging from the classical Fourier series expansion that goes back
almost 200 years, to some relatively recent thoughts such as the various origins of
the method now called wavelet transform. While all of these ideas were originally
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developed with different goals and applications in mind, for either solving the
heat equation or the analysis of seismic data, they can all be considered to
belong to the same family, based on the common mathematical frame work
they all share, and their similar applications in data processing and analysis.
The discussions of specific methods and algorithms in the chapters will all be
approached from such a unified point of view.

Before the specific discussion of each of the methods, let us first address a
fundamental issue: why do we need to carry out an orthogonal transform on
the data to start with? As the measurement of a certain variable such as the
temperature or pressure of some physical process, a signal tends to vary contin-
uously and smoothly, as the energy associated with the physical process tends
to be distributed relatively evenly in both space and time. Most of such tem-
poral or spatial signals are likely to be correlated, in the sense that given the
value of a signal at a certain point in space or time, one can predict with reason-
able confidence that the signal at a neighboring point will take a similar value.
Such everyday experience is due to the fundamental nature of the physical world
ruled by the principles of minimum energy and maximum entropy, in which any
abruption and discontinuities, typically caused by energy surge of some kind,
are relatively rare and unlikely events (except in the macroscopic world ruled by
the quantum mechanics). On the other hand, from the signal processing view
point, the high signal correlation and even energy distribution are not desirable
in general, as it becomes difficult to decompose the signal, which is needed in
various applications such as information extraction, noise reduction and data
compression. The issue therefore becomes, how can the signal be converted so
that it is less correlated and its energy is less evenly distributed, and to what
extent can such a conversion be carried out to achieve such goals.

Specifically, in order to represent, process and analyze a signal, it needs to be
decomposed into a set of components along a certain dimension. While typically
a signal is represented by default as a continuous or discrete function of time or
space, it may be desirable to represent it along some alternative dimension, most
commonly frequency, so that it can be processed and analyzed more effectively
and conveniently. Viewed mathematically, a signal is a vector in a some vector
space which can be represented under different orthogonal bases that all span the
same space. Each of such representations corresponds to a different decomposi-
tion of the signal. Moreover, these representations are all equivalent in the sense
that they are related to each other by certain rotation in the space which con-
serves the total energy or information contained in the signal. From this point
of view, all different orthogonal transform methods developed in the last two
hundred years by mathematicians, scientists and engineers for various purposes
can be unified to form a family of algorithms for the same general purpose.

While all representations of a given signal corresponding to different trans-
form methods are equivalent in terms of the total signal energy which is always
conserved, they may be different in terms of how much the signal components
after the transform are still correlated, and how the total energy or informa-
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tion in the signal is redistributed among the components. If, after a properly
chosen orthogonal transform, the signal will be represented in such a way that
its components are decorrelated and most of the signal information of interest
is concentrated in a small subset of its components, then the remaining com-
ponents could be neglected as they carry little information. This simple idea is
essentially the answer to the question asked above: why an orthogonal transform
is needed, and it is actually the foundation of the general orthogonal transform
method for feature selection, data compression, and noise reduction. In a certain
sense, once a proper basis of the space is chosen so that the signal is represented
in such a favorable manner, the signal-processing goal is already achieved to a
significant extent.

What Is In The chapters?
The first two chapters establish the mathematical foundation for the subse-

quent chapters each discussing a specific type of transform methods. Chapter 1 is
a brief summary of the basic concepts of signals and linear time-invariant (LTI)
systems. For readers with engineering background, most of this chapter may be
a quick review which could even be skipped. For others this chapter serves as
an introduction to the mathematical language by which the signals and systems
will be described in the following chapters.

Chapter 2 sets up the stage for all transform methods by introducing the key
concepts of vector space, or more strictly speaking, Hilbert space, and the linear
transformations in such a space. Here a usual N-dimensional space is further
generalized in several aspects: (1) the dimension N of the space may be extended
to infinity, (2) a vector space may also include a function space composed of
all continuous functions satisfying certain conditions, and (3) the basis vectors
of a space may become uncountable. The mathematics needed for a rigorous
treatment of these much-generalized spaces is likely to be beyond the comfort
zone of most readers with typical engineering or science background, and it is
therefore also beyond the scope of this book. The emphasis of the discussion
here is not mathematical rigor, but the basic understanding and realization that
many of the properties of these generalized spaces are just the natural extensions
of those of the familiar N-D vector space. The purpose of such discussions is to
establish a common foundation for all the transform methods so that they can
all be studied from a unified point of view, namely, any given signal, either
continuous or discrete, with either finite or infinite duration, can be treated
as a vector in a certain space and represented differently by any of a variety
of orthogonal transform methods, each corresponding to one of the orthogonal
bases that span the space. Moreover, all of these different representations are
related to each other by rotations in the space. Such basic ideas may also be
extended to non-orthogonal (e.g., biorthogonal) bases that are used in wavelet
transforms. All transform methods considered in the later chapters will be viewed
and studied in such a frame work.

In Chapters 3 and 4, we study the classical Fourier methods for continuous
and discrete signals respectively. While the general topic of the Fourier transform
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is covered in a large number of textbooks in various fields such as engineering,
physics, and mathematics, here a not-so-conventional approach is adopted to
treat all Fourier related methods from a unified point of view. Specifically, the
Fourier series (FS) expansion, the continuous and discrete-time Fourier trans-
forms (CTFT and DTFT), and the discrete Fourier transform (DFT), will be
considered as four different variations of the same general Fourier transform,
corresponding to the four combinations of the two basic ways to categorize a sig-
nal: continuous versus discrete, periodic versus non-periodic. By doing so, many
of the dual and symmetrical relationships among these four different forms and
between time and frequency domains of the Fourier transform can be much more
clearly and conveniently presented and understood.

Chapter 5 briefly discusses the Laplace and Z transforms. Strictly speaking,
these transforms do not belong to the family of orthogonal transforms, which
convert a 1-dimensional signal of time into another 1-dimensional function along
a different variable, typically, frequency ω = 2πf . Instead, the Laplace and Z-
transforms convert a 1-dimensional signal from time domain into a 2-dimensional
function in a complex plane s = σ + jω, called s-plane for a continuous signal,
or z = es called z-plane for a discrete signal. However, as these transforms are
respectively the natural extensions of the continuous and discrete-time Fourier
transforms, and are widely used in signal processing and system analysis, they
are included in the book as two extra tools in the toolbox.

Chapter 6 discusses the Hartly and cosine transforms, both of which are closely
related to the Fourier transform. As real transforms, both Hartly and cosine
transforms have the advantage of reduced computational cost when compared
with the Fourier transform, which by definition is complex. If the signal in ques-
tion is real, i.e., its imaginary part is all zero, then half of the computation in its
Fourier transform is redundant and therefore wasted. However, this redundancy
is avoided by real transforms such as the cosine transform, which, for this reason,
is widely used for data compression, such as in the image compression standard
JPEG.

Chapter 7 combines three transform methods, the Walsh-Hadamard, slant, and
Haar transforms, all sharing some similar characteristics, i.e., the basis functions
associated with these transforms all have square-wave like waveforms. Moreover,
due to the fact that the Haar transform possesses the basic characteristics of
the general wavelet transform method, and also due to its simplicity, the Haar
transform can also serve as a bridge between the two camps of the orthogonal
transforms and the wavelet transforms, and a natural transition leading from the
former to the latter.

In Chapter 8 we discuss the Karhunen-Loeve transform (KLT), which can be
considered as a capstone of all previously discussed methods, and the associated
data analysis method, principal component analysis (PCA), which is popularly
used in many data processing applications. The KLT is the optimal transform
method among all orthogonal transforms in terms of the two main characteristics
of the general orthogonal transform method, namely, the compaction of signal



xiv Preface

energy and the decorrelation among all signal components. In this regard, all
orthogonal transform methods can be compared against the optimal KLT for an
assessment of their performances.

We next consider in Chapter 9 both the continuous and discrete-time wavelet
transforms (CTWT and DTWT), which differ from all orthogonal transforms
discussed previously in two main aspects. First, the wavelet transforms are not
strictly orthogonal as the bases used to span the vector space and to represent
a given signal may not be necessarily orthogonal. Second, the wavelet transform
converts a 1-dimensional time signal into a 2-dimensional function of two vari-
ables, one for different levels of details corresponding to different frequencies in
the Fourier transform, while the other for different temporal positions, which
is completely absent in the Fourier or any other orthogonal transform. While
redundancy is inevitably introduced into the 2-dimensional transform domain
by such a wavelet transform, the additional second dimension also enables the
transform to achieve both temporal and frequency localities in signal represen-
tation. Such a capability is the main advantage of the wavelet transform method
over orthogonal transforms like the Fourier transform in some applications such
as data compression.

Finally in Chapter 10, we introduce the basic concept of multiresolution analy-
sis (MA), and Mallat’s fast algorithm for the discrete wavelet transform (DWT)
together with its filter bank implementation. Similar to the orthogonal trans-
forms, this algorithm converts a discrete signal of size N into a set of DWT
coefficients also of size N, from which the original signal can be perfectly recon-
structed, i.e., there is no redundancy introduced by the DWT. However, different
from orthogonal transforms, the DWT coefficients represent the signal with tem-
poral as well as frequency (levels of details) localities.

Moreover, some fundamental results in linear algebra and statistics are also
summarized in the two appendices in the back of the book.

Who Are the Intended Readers?
The book can be used as a textbook for either an undergraduate or gradu-

ate course in digital signal processing, communication or other related areas. In
such a classroom setting, all orthogonal transform methods can be systemati-
cally studied following a thorough introduction of the mathematical background
common to these methods. The mathematics prerequisite is no more than basic
calculus and linear algebra. Moreover, the book can also be used as a reference
book by practicing professionals in both natural and social sciences, as well as
engineering. A financial analyst or a biologist may need to learn how to effec-
tively analyze and interpret his/her data, a database designer may need to know
how to compress his data before storing them in the database, and a software
engineer may need to learn the basic data processing algorithms while developing
a software tool in the filed. In general, anyone who deals with a large quantity of
data may desire to gain some basic knowledge in data processing, regardless of
his/her backgrounds and specialties. In fact the book project has been developed
with such potential readers in mind. Due possibly to the personal experience, the
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author always feels that self-learning (or to borrow a machine learning terminol-
ogy, “unsupervised learning”) is no less important than formal classroom learn-
ing. One may have been out of school for years but till feel the need to update
and expand his/her knowledge. Such readers could certainly study whichever
chapters of interest, instead of systematically reading through out the chapters
from beginning to end. It is hoped that the book can serve as a toolbox from
which some pertinent transform methods can be chosen and applied, in combi-
nation with the reader’s expertise in his/her own field, to develop a solution to
the specific data processing/analysis problems at hand.

Finally let us end by again quoting Euclid, this time, a story about him. A
youth who had begun to study geometry with Euclid, when he had learned the
first proposition, asked, ”What do I get by learning these things?” So Euclid
called a slave and said ”Give him three pence, since he must make a gain out of
what he learns.” Explicit efforts are made in this book to discuss the practical
uses of the orthogonal transforms as well as the mathematics behind them, one
should realize that after all the book is about a set of mathematical tools, just
like those propositions in Euclid’s geometry, out of learning which the reader
may not be able to make a direct gain. However, in the end, it is the application
of these tools toward solving specific problems in practice that will enable the
reader to make a gain out of what he learns from the book, much more than
three pence.



Notation

General notation

iff if and only if
j =

√
−1 = ejπ/2 imaginary unit

u + jv = u− jv complex conjugate of u + jv
Re(u + jv) = u real part of u + jv
Im(u + jv) = v imaginary part of u + jv
|u + jv| =

√
u2 + v2 magnitude (absolute value) of u + jv

$ (u + jv) = tan−1(v/u) phase of u + jv
xn×1 an n by 1 column vector
x complex conjugate of x
xT transpose of x, a 1 by n row vector
x∗ = xT conjugate transpose of matrix A
||x|| norm of vector x
Am×n an m by n matrix of m rows and n columns
A complex conjugate of matrix A
A−1 inverse of matrix A
AT transpose of matrix A

A∗ = A
T = AT conjugate transpose of matrix A

N set of all positive integers including 0
Z set of all real integers
R set of all real numbers
C set of all complex numbers
x(t) continuous time signal
x[n] discrete signal
ẋ(t) = dx(t)/dt first order time derivative of x(t)
ẍ(t) = dx2/dt2 second order time derivative of x(t)

Unless otherwise noted, a bold-faced lower case letter x represents a vector,
and a bold-faced upper case letter A represents a matrix.

xvi



1 Signals and Systems

In the first two chapters, we will consider some basic concepts and ideas as the
mathematical background for the specific discussions of the various orthogonal
transform methods in the subsequent chapters. Here we will set up a framework
common to all such methods, so that they can be studied from a unified point
of view. While some discussions here may seem mathematical, the emphasis is
the intuitive understanding of the concepts, instead of the mathematical rigor.

1.1 Continuous and Discrete Signals

A physical signal, always assumed to be a real or complex-valued function of
time, unless otherwise specified (e.g., a spatial function), can be recorded as a
continuous time function x(t), or sampled at a certain rate (number of samples
per unit time) to produce a discrete time function x[n]. In either case, the dura-
tion of the signal is finite in practice but could also be considered infinite in
theory, i.e., −∞ < t <∞ for x(t) and −∞ < n < ∞ for x[n].

A given continuous signal x(t) can be discretized to generate a set of discrete
samples x[n]. Assume the time interval between two consecutive samples, is (
seconds, then the nth sample is:

x[n] = x(t)
∣∣
t=n( = x(n() (1.1)

A discrete signal can be represented as a vector x = [· · · , x[n− 1], x[n], x[n +
1], · · · ]T of finite or infinite dimensions composed of all of its samples. We will
always represent a discrete signal as a column vector (transpose of a row vector)
in the future.

We define the discrete unit impulse or Kronecker delta function as:

δ[n] =
{

1 n = 0
0 n $= 0

(1.2)

and represent a discrete signal as:

x[n] =
∞∑

m=−∞
x[m]δ[n−m], (n = 0,±1,±2, · · · ) (1.3)

This equation can be interpreted in two conceptually different ways.

1



2 Chapter 1. Signals and Systems

Figure 1.1 Sampling of a continuous signal

Figure 1.2 Approximation of a continuous signal

! First, a discrete signal x[n] can be decomposed into a set of unit impulses
each at a different moment n = m and weighted by the signal amplitude x[m]
at the moment n = m, as shown in Fig.1.1.! Second, the Kronecker delta δ[n−m] sifts out one particular value of the
signal x[n] at m = n from a sequence of signal samples. This is the sifting
property of the function.

On the other hand, a continuous signal can also be approximated by a set of
its samples. To do so, we first define a unit square impulse function:

δ((t) =
{

1/∆ 0 ≤ t < (
0 otherwise

(1.4)

As the width and height of this square impulse are respectively ( and 1/(, i.e,
it covers a unit area (× 1/( = 1, independent of (. Now the continuous signal
x(t) can be approximated by its samples x[n] as a sequence of weighted square
impulses:

x(t) ≈ x̂(t) =
∞∑

n=−∞
x [n] δ((t− n()( (1.5)

This approximation is composed of a sequence of square impulses x[n]δ((t−
n(), which is weighted by the sample value x[n] for the amplitude of the signal
at the moment t = n(, as shown in Fig.1.2. If we let (→ 0, the square impulse
function will have infinitesimally narrow width and infinite height. At the limit,
the summation in Eq.1.5 becomes an integral and the approximation becomes
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exact:

x(t) = lim
(→0

∞∑

n=−∞
x[n]δ((t− n()( =

∫ ∞

−∞
x(τ)δ(t − τ)dτ (1.6)

where

δ(t) = lim
(→0

δ((t) =
{
∞ t = 0
0 t $= 0

(1.7)

is the continuous unit impulse or Dirac delta function. The Dirac delta δ(t) has
an infinite height but zero width at t = 0, and it still covers a unit area:

∫ ∞

−∞
δ(t)dt = lim

∆→0
[( · 1/(] = 1 (1.8)

In particular, when t = 0, Eq.1.6 becomes:

x(0) =
∫ ∞

−∞
x(τ)δ(τ)dτ (1.9)

Eq.1.6 can be interpreted in two conceptually different ways.! First, a continuous signal x(t) can be decomposed into a set of infinitely many
unit impulses each at a different moment t = τ and weighted by the signal
intensity x(τ) at the moment t = τ .! Second, the Dirac delta δ(τ − t) sifts out the value of x(t) at τ = t from a
sequence of infinitely many uncountable signal samples. This is the sifting
property of the function.

Note that the discrete impulse function δ[n] has unit height, while the continu-
ous impulse function δ(t) has a unit area, the height multiplied by width (time),
and they have different dimensions. The dimension of the discrete impulse func-
tion is the same as that of the signal (e.g., voltage), while the dimension of the
latter is the signal’s dimension divided by time (e.g., voltage/time). In other
words, x(τ)δ(t − τ) represents the density of the signal at t = τ , only integrated
over time will its dimension become the same as the signal x(t).

In summary, the results above indicate that a time signal, either continuous
or discrete, can be decomposed in time domain to become a linear combination,
either an integral or a summation, of a sequence of time impulses or components.
However, as we will see in the future chapters, the decomposition of the signal
is not unique. The signal can also be decomposed in different domains other
than time, such as frequency, and these representations of the signal in different
domains are related by certain orthogonal transformations.

1.2 The Dirac Delta and Unit Step Function

The impulse function δ(t) is closely related to the unit step function (also called
Heaviside step function) u(t), another important functions to be heavily used in
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Figure 1.3 Generation of unit step and unit impulse

future discussions. First, we define a piece-wise linear function as:

u((t) =






0 t < 0
t/( 0 ≤ t < (
1 t ≥ (

(1.10)

Taking the time derivative of this function, we get

δ((t) =
d

dt
u((t) =






0 t < 0
1/( 0 ≤ t < (
0 t ≥ (

(1.11)

which is the square impulse considered before in Eq.1.4. As its width and height
are respectively ( and 1/(, the area underneath the function is 1:

∫ ∞

−∞
δ((t)dt =

1
(( = 1 (1.12)

At the limit (→ 0, u((t) becomes the unit step function:

lim
(→0

u((t) = u(t) =
{

1 t > 0
0 t < 0

(1.13)

Note that the value u(0) of the step function at t = 0 is not specifically defined in
this process. Although either u(0) = 0 or u(0) = 1 is used in various literatures,
we will define u(0) = 1/2, for reason to be discussed in the future. Also, at the
limit (→ 0, δ((t) becomes Dirac delta discussed above:

lim
(→0

δ((t) = δ(t) =
{
∞ t = 0
0 t $= 0

(1.14)

which of course still satisfies the unit area condition:
∫ ∞

−∞
δ(t)dt = 1 (1.15)

In addition to the square impulse δ((t), the Dirac delta can also be generated
from a variety of different nascent delta functions as the limit when a certain
parameter of the function approaches either zero or infinity. As an example of
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Figure 1.4 Gaussian functions with different σ values

such a function, we consider the Gaussian function:

g(t) =
1√

2πσ2
e−t2/2σ2

(1.16)

which is the probability density function of a normally distributed random vari-
able t with zero mean and variance σ2. Obviously the area underneath this
density function is always one, independent of σ:

∫ ∞

−∞
g(t)dt =

1√
2πσ2

∫ ∞

−∞
e−t2/2σ2

dt = 1 (1.17)

At the limit σ → 0, this Gaussian function g(t) becomes infinity when t = 0 but
it is zero for all t $= 0, i.e., it becomes the unit impulse function:

lim
σ→0

1√
2πσ2

e−t2/2σ2
dt = δ(t) (1.18)

The argument t of a Dirac delta δ(t) may be scaled so that it becomes δ(at).
In this case Eq.1.9 becomes:

∫ ∞

−∞
x(τ)δ(aτ) dτ =

∫ ∞

−∞
x(

u

a
)δ(u)

1
|a| du =

1
|a|x(0) (1.19)

where we have defined u = aτ . Comparing this result with Eq.1.9, we see that

δ(at) =
1
|a|δ(t), i.e. |a|δ(at) = δ(t) (1.20)

For example, a delta function δ(f) in frequency can also be expressed as a func-
tion of angular frequency ω = 2πf as:

δ(f) = 2πδ(ω) (1.21)

More generally, the Dirac delta may also be defined over a function f(t),
instead of a variable t, so that it become δ(f(t)), which is zero except when
f(t) = 0, i.e., when t is one of the roots tk of f(t) (so that f(tk) = 0). To see
how such an impulse is scaled, consider the following integral:

∫ ∞

−∞
x(τ)δ(f(τ)) dτ =

∫ ∞

−∞
x(τ)δ(u)

1
|f ′(τ)| du (1.22)
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where we have changed the integral variable from τ to u = f(τ). If τ = τ0 is the
only root of f(τ), i.e., u = f(τ0) = 0, then the integral above becomes:

∫ ∞

−∞
x(τ)δ(f(τ)) dτ =

x(τ0)
|f ′(τ0)|

(1.23)

If f(τ) has multiple roots τk, then we have:
∫ ∞

−∞
x(τ)δ(f(τ)) dτ =

∑

k

x(τk)
|f ′(τk)| (1.24)

This is the generalized sifting property of the impulse function. Based on these
results, we can express the delta function as:

δ(f(t)) =
∑

k

δ(t− tk)
|f ′(τk)| (1.25)

which is composed of a set of impulses each corresponding to one of the roots
of f(t), weighted by the reciprocal of the absolute value of the derivative of the
function evaluated at the root.

Before leaving this section let us consider four important relationships showing
that the Kronecker and Dirac delta functions can be generated respectively as
the sum and integral of certain complex exponential functions. These formulas
are useful in the future discussions of the different forms of the Fourier transform.! Dirac delta as an integral of a complex exponential:

∫ ∞

−∞
e±j2πftdt = δ(f) (1.26)! Kronecker delta as an integral of a complex exponential:

1
T

∫

T
e±j2πkt/T dt = δ[k] (1.27)! A train of Dirac deltas with period F as a summation of a complex exponen-

tial:

1
F

∞∑

k=−∞
e±j2kπf/F =

∞∑

n=−∞
δ(f − nF ) (1.28)

! A train of Kronecker deltas with period N as a summation of complex expo-
nential:

1
N

N−1∑

n=0

e±j2πnm/N =
1
N

N−1∑

n=0

cos(2πnm/N) ± j

N

N−1∑

n=0

sin(2πnm/N)

=
∞∑

k=−∞
δ[m− kN ] (1.29)
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and
N−1∑

n=0

sin(2πnm/N) = 0

The proof of these four important identities is left as homework problems for the
reader.

The integral in Eq.1.26 can also be written as:
∫ ∞

−∞
e±j2πftdt =

∫ ∞

−∞
[cos(2πft) ± j sin(2πft)]dt

= 2
∫ ∞

0
cos(2πft)dt = δ(f) (1.30)

The second equal sign is due to the fact that sin(2πft) = − sin(−2πft) is odd
and its integral over all time −∞ < t <∞ is zero, and cos(2πft) = cos(−2πft) is
even and its integral over all time is twice the integral over half time 0 < t <∞.

This result can be interpreted intuitively. The integral of any sinusoid over all
time −∞ < t <∞ is always zero, except if f = 0 then sin(0) = 0 but cos(0) = 1,
and the integral over all time becomes infinity. Alternatively, if we integrate the
complex exponential with respect to f , we get:

∫ ∞

−∞
ej2πftdf = 2

∫ ∞

0
cos(2πft)df = δ(t) (1.31)

which can also be interpreted intuitively as a superposition of infinitely many
cosine functions with progressively higher frequency f . These sinusoids cancel
each other at any time t $= 0 except when t = 0, where all cosine functions equal
to 1 and their superposition becomes infinity. Similar arguments can also be
made for the other three cases.

1.3 Attributes of Signals

A time signal can be characterized by the following parameters:! The Energy contained in a continuous signal x(t) is:

E =
∫ ∞

−∞
|x(t)|2dt (1.32)

or in a discrete signal x[n]:

E =
∞∑

n=−∞
|x[n]|2 (1.33)

where |x(t)|2 or |x[n]|2 represents the power of the signal. If the energy E < ∞
contained in a signal x(t) or x[n] is finite, then it is called an energy signal. A
continuous energy signal is said to be square-integrable, and a discrete energy
signal is said to be square-summable. All signals to be discussed later, either
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continuous or discrete, will be assumed to be such energy signals and are
therefore square-integrable/summable.! The average power of the signal:

P = lim
T→∞

1
T

∫ T

0
|x(t)|2dt (1.34)

or for a discrete signal:

P = lim
N→∞

1
N

N∑

n=1

|x[n]|2 (1.35)

If E of x(t) is not finite but P is, x(t) is a power signal. Obviously the average
power of an energy signal is zero.! The cross-correlation measures the similarity between two signals and is
defined as:

rxy(τ) = x(t) & y(t) =
∫ ∞

−∞
x(t) y(t− τ)dt =

∫ ∞

−∞
x(t + τ) y(t)dt

$=
∫ ∞

−∞
x(t− τ) y(t)dt = y(t) & x(t) (1.36)

Note that x(t) & y(t) $= y(t) & x(t), i.e., the cross-correlation is not commuta-
tive. For discrete signal, we have

rxy[m] = x[n] & y[n] =
∞∑

n=−∞
x[n] y[n−m] =

∞∑

n=−∞
x[n + m] y[n] (1.37)

In particular, when x(t) = y(t) or x[n] = y[n], the cross-correlation becomes
the autocorrelation which measures the self-similarity of the signal:

rx(τ) =
∫ ∞

−∞
x(t)x(t− τ)dt =

∫ ∞

−∞
x(t + τ)x(t)dt (1.38)

or

rx[m] =
∞∑

n=−∞
x[n] x[n−m] =

∞∑

n=−∞
x[n + m] x[n] (1.39)

! A random time signal x(t) is called a stochastic process and its auto-covariance
is

Covx(t, τ) = σ2
x = E[(x(t) − µx(t)) (x(τ) − µx(τ))] (1.40)

The cross-covariance of two stochastic processes is

Covxy(t, τ) = σ2
xy = E[(x(t) − µx(t)) (y(τ) − µy(τ))] (1.41)

Here E(x) is the expectation of a random variable x as defined in Appendix
B.
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1.4 Signal Arithmetics and Transformations

Any of the arithmetic operations can be applied to two continuous signal x(t)
and y(t), or two discrete signals x[n] and y[n] to produce a new signal z(t) or
z[n]:! Scaling: z(t) = ax(t) or z[n] = ax[n]! Addition/subtraction: z(t) = x(t) ± y(t) or z[n] = x[n] ± y[n];! Multiplication: z(t) = x(t)y(t) or z[n] = x[n]y[n]! Division: z(t) = x(t)/y(t) or z[n] = x[n]/y[n]

Note that these operations are actually applied to the values of the two signals
x(t) and y(t) at each moment t, and the result becomes the value of z(t) at the
same moment, and the same is true for the operations on the discrete signals.
Also, the addition and subtraction of two discrete signals can be carried out as
vector operations z = x ± y. Obviously this kind of vector operations do not
apply to multiplication or division.

Next we consider the transformations of a give continuous signal. Both the
amplitude and the argument of a time function x(t) can be modified by a linear
transformation y = ax + b:! Transformation of signal amplitude (vertical in time plot):

y(t) = ax(t) + x0 = a[x(t) + x0/a] (1.42)

– Translation:
y(t) = x(t) + x0 is moved either upward if x0 > 0 or downward if x0 < 0.

– Scaling:
y(t) = ax(t) is either up-scaled if |a| > 1 or down-scaled if |a| < 1. The
signal is also flipped (upside-down) if a < 0.! Transformation of time argument t (horizontal in time plot):

τ = at + t0 = a(t + t0/a)), y(τ) = x(at + t0) = x(a(t + t0/a)) (1.43)

– Translation (or shifts):
y(t) = x(t + t0) is either right-shifted if t0 < 0, or left-shifted if t0 < 0.

– Scaling:
y(t) = x(at) is either compressed if |a| > 1, expanded if |a| < 1. The signal
is also reversed in time if a < 0.

In general, a transformation in time y(t) = x(at + t0) = x(a(t + t0/a)) contain-
ing translation and scaling can be carried out in either of two alternative meth-
ods.! Method 1:

This is a two-step process:
– Step 1: define an intermediate signal z(t) = x(t + t0) due to translation;
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– Step 2: find the transformed signal y(t) = z(at) due to time-scaling (con-
taining time reversal if a < 0);

The two steps can be carried out equivalently in reverse order:
– Step 1: define an intermediate signal z(t) = x(at) due to time-scaling (con-

taining time reversal if a < 0);
– Step 2: find the transformed signal y(t) = z(t + t0/a) due to translation;
However, note that the translation parameters (direction and amount) are
different depending on whether it is carried before or after scaling.! Method 2:
First find the values of the original signal v1 = x(t1) and v2 = x(t2) at two
arbitrarily chosen time points t = t1 and t = t2. The transformed signal y(t) =
x(at + t0) will take the same values v1 and v2 when its argument is at + t0 =
t1 and at + t0 = t2, respectively. Solving these two equations for t, we get
t = (t1 − t0)/a and t = (t2 − t0)/a, at which y(t) will take the value v1 and
v2, respectively. As the time transformation at + t0 is linear, the value y(t) at
any other time moment t can be found by linear interpolation based on these
two points.

Example 1.1: Consider the transformation of a signal in time:

x(t) =
{

t 0 < t < 2
0 otherwise

(1.44)

! Translation (Fig.1.5 (a)):

y(t) = x(t + 3), z(t) = x(t− 1) (1.45)! Expansion/compression (Fig.1.5 (b)):

y(t) = x(2t/3), z(t) = x(2t) (1.46)! Time reversal (Fig.1.5 (c)):

y(t) = x(−t), z(t) = x(−2t) (1.47)! Combination of translation, scaling and reversal:

y(t) = x(−2t + 3) = x(−2(t− 3
2
)) (1.48)

– Method 1: based on the first expression y(t) = x(−2t + 3) we get (Fig.1.5
(d)):

z(t) = x(t + 3), y(t) = z(−2t) (1.49)

alternatively, based on the second expression of y(t) = x(−2(t− 3/2)) we
get (Fig.1.5 (e)):

z(t) = x(−2t), y(t) = z(t− 3
2
) (1.50)
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Figure 1.5 Transformation of continuous signal

– Method 2: the signal has two break points at t1 = 0 and t2 = 2, correspond-
ingly, the two break points for y(t) can be found to be:

−2t + 3 = 0 =⇒ t =
3
2

−2t + 3 = 2 =⇒ t =
1
2

By linear interpolation based on these two points, the entire signal y(t) can
be easily obtained, same as that obtained by the previous method shown
in Fig.1.5(d) and (e).

In the transformation of discrete signals, the expansion and compression for
continuous signals are replaced by up-sampling and down-sampling:! Down-sampling (decimation):

keep every Nth sample and discard the rest. Signal size becomes 1/N of the
original one.

x(N)[n] = x[nN ] (1.51)

For example, if N = 3, x(3)[0] = x[0], x(3)[1] = x[3], x(3)[2] = x[6], · · ·



12 Chapter 1. Signals and Systems

Figure 1.6 Transformation of discrete signal

! Up-sampling (interpolation by zero stuffing):
insert N − 1 zeros between every two consecutive samples. Signal size becomes
N times the original one.

x(N)[n] =
{

x[n/N ] n = 0,±N,±2N, · · ·
0 otherwise

(1.52)

For example, if N = 2, x(2)[0] = x[0], x(2)[2] = x[1], x(2)[4] = x[2], · · · , x[n] =
0 for all other n.

Example 1.2: Given x[n] as shown in Fig.1.6(a), a transformation y[n] = x[−n +
4], shown in Fig.1.6(b), can be obtained based on two time points:

−n + 4 = 0 =⇒ n = 4

−n + 4 = 3 =⇒ n = 1 (1.53)

The up and down sampling of the signal in Fig.1.6(a) can be obtained in the
following table and shown in Fig.1.6(c) and (d), respectively.

n · · · -1 0 1 2 3 4 5 6 7 · · ·
x[n] · · · 0 1 2 3 4 0 0 0 0 · · ·

x(2)[n] · · · 0 1 3 0 0 0 0 0 0 · · ·
x(2)[n] · · · 0 1 0 2 0 3 0 4 0 · · ·

(1.54)
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1.5 Linear and Time Invariant Systems

A generic system (electrical, mechanical, biological, economical, etc.) can be sym-
bolically represented in terms of the relationship between its input x(t) (stimulus,
excitation) and output y(t) (response, reaction):

y(t) = O[x(t)] (1.55)

where the symbol O[ ] represents the operation applied by the system to the
input x(t) to produce the output y(t).

A system is linear if its input-output relationship satisfies both homogeneity
and superposition. Let y(t) be the response of a system to an input x(t):

O[x(t)] = y(t) (1.56)

then the system is linear if the following two conditions are satisfied:! Homogeneity:

O [ax(t)] = aO[x(t)] = ay(t) (1.57)! Superposition: If O[xn(t)] = yn(t) (n = 1, 2, · · · , N), then:

O
[

N∑

n=1

xi(t)

]
=

N∑

n=1

O[xn(t)] =
N∑

n=1

yn(t) (1.58)

or

O
[∫ ∞

−∞
x(τ)dτ

]
=
∫ ∞

−∞
O[x(τ)]dτ =

∫ ∞

−∞
y(τ)dτ (1.59)

Combining these two properties together, we have

O
[

N∑

n=1

anxn(t)

]
=

N∑

n=1

anO[xn(t)] =
N∑

n=1

anyn(t) (1.60)

or

O
[∫ ∞

−∞
a(τ)x(τ)dτ

]
=
∫ ∞

−∞
a(τ)O[x(τ)]dτ =

∫ ∞

−∞
a(τ)y(τ)dτ (1.61)

A system is time-invariant if how it responds to the input does not change
over time. In other words:

if O[x(t)] = y(t), then O[x(t− τ)] = y(t− τ) (1.62)

A system which is both linear and time-invariant is referred to as a linear and
time-invariant (LTI) system.

If an LTI system’s response to some input x(t) is y(t) = O[x(t)], then its
response to dx(t)/dt is dy(t)/dt.

Proof: As this is an LTI system, we have

O[
1
( [x(t +()− x(t)] =

1
( [y(t +(t)− y(t)] (1.63)
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At the limit (→ 0, the above becomes

O
[

d

dt
x(t)
]

=
d

dt
y(t) (1.64)

Example 1.3: Check to see if each of the following systems is linear.! The input x(t) is the voltage across a resistor R and the output y(t) is the
current passing R:

y(t) = O[x(t)] =
1
R

x(t)

This is obviously a linear system.! The input x(t) is the voltage across a resistor R and the output y(t) is the
power consumed by R:

y(t) = O[x(t)] =
1
R

x2(t)

This is not a linear system.! The input x(t) is the voltage across a resistor R and a capacitor C in series
and the output is the voltage across C:

RC
d

dt
y(t) + y(t) = τ

d

dt
y(t) + y(t) = x(t)

where τ = RC is the time constant of the system. As the system is character-
ized by a linear, first order ordinary differential equation (ODE), it is linear.! A system produces its output y(t) by adding a constant a to its input x(t):

y(t) = O[x(t)] = x(t) + a

Consider

O[x1(t) + x2(t)] = x1(t) + x2(t) + a $= O[x1(t)] + O[x2(t)] = x1(t) + x2(t) + 2a

This is not a linear system.! The input x(t) is the force f applied to a spring of length l0 and spring constant
k, the output y(t) = l − l0 = ∆l is the change of length l of the spring, or the
displacement of the moving end of the spring.
According to Hooke’s law,

y(t) = ∆l = −kf = −kx(t)

This system is linear.! Same as above except the output y(t) = l is the length of the spring.

y(t) = l = l0 + ∆l = l0 − kx(t)

This is not a linear system.
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Figure 1.7 Response of a continuous LTI system

1.6 Signals Through LTI Systems (Continuous)

If the input to an LTI system is an impulse x(t) = δ(t) at t = 0, then the response
of the system

h(t) = O[δ(t)] (1.65)

is called the impulse response function. Given the impulse response h(t) of an
LTI system, we can find its response to any input x(t) that can be expressed in
Eq. 1.6:

x(t) =
∫ ∞

−∞
x(τ)δ(t − τ)dτ

According to Eq. 1.59, we have

y(t) = O[x(t)] = O
[∫ ∞

−∞
x(τ)δ(t − τ)dτ

]

=
∫ ∞

−∞
x(τ)O[δ(t − τ)]dτ =

∫ ∞

−∞
x(τ)h(t − τ)]dτ (1.66)

This process is illustrated in Fig.1.7. The integration on the right hand side above
is called the continuous convolution, which is generally defined as an operation
of two continuous functions x(t) and y(t):

z(t) = x(t) ∗ y(t) =
∫ ∞

−∞
x(τ)y(t − τ)dτ =

∫ ∞

−∞
y(τ)x(t − τ)dτ = y(t) ∗ x(t)

(1.67)
Note that convolution is commutative, i.e., x(t) ∗ y(t) = y(t) ∗ x(t).

In particular, if the input to an LTI system is a complex exponential function:

x(t) = est = e(σ+jω)t = [cos(ωt) + j sin(ωt)]eσt (1.68)

where s = σ + jω is a complex parameter, the corresponding output is

y(t) = O[est] =
∫ ∞

−∞
h(τ)es(t−τ)dτ = est

∫ ∞

−∞
h(τ)e−sτdτ = H(s)est (1.69)
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where H(s) is a constant (independent of the time variable t) defined as

H(s) =
∫ ∞

−∞
h(τ)e−sτdτ (1.70)

This is called the transfer function of the continuous LTI system, which is the
Laplace transform of the impulse response function h(t) of the system, to be
discussed in Chapter 5. We note that Eq.1.69 is an eigenequation, where the con-
stant H(s) and the complex exponential est are, respectively, the eigenvalue and
the corresponding eigenfunction of the LTI system. Also note that the complex
exponential est is the eigenfunction of any continuous LTI system, independent
of its specific impulse response h(t). In particular, when s = jω = j2πf (σ = 0),
H(s) becomes:

H(jω) =
∫ ∞

−∞
h(τ)e−jωτdτ or H(f) =

∫ ∞

−∞
h(τ)e−j2πfτdτ (1.71)

This is called the frequency response function of the system, which is the Fourier
transform of the impulse response function h(t), to be discussed in Chapter 3.

Given H(jω) of a system, its response to an input x(t) = ejω0t can be found
by evaluating Eq.1.69 at s = jω0:

y(t) = O[ejω0t] = H(jω0)ejω0t (1.72)

Moreover, if the input x(t) can be written as a linear combination of a set of
complex exponentials:

x(t) =
∞∑

k=−∞
Xkejkω0t (1.73)

where Xk (−∞ < k <∞) are a set of constant coefficients, then, due to the
linearity of the system, its output is:

y(t) = O[
∞∑

k=−∞
Xkejkω0t] =

∞∑

k=−∞
XkO[ejkω0t]

=
∞∑

k=−∞
XkH(jkω0)ejkω0t =

∞∑

k=−∞
Ykejkω0t (1.74)

where the kth coefficient Yk is defined as Yk = XkH(jkω0). The significance of
this result is that we can obtain the response of an LTI system described by
H(s) to any input x(t) in the form of a linear combination of a set of complex
exponentials. This is an important conclusion of the Fourier transform theory
considered in Chapter 3.

An LTI system is stable if its response to any bounded input is also bounded
for all t:

if |x(t)| < Bx then |y(t)| < By (1.75)
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As the output and input of an LTI is related by convolution

y(t) = h(t) ∗ x(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ (1.76)

we have:

|y(t)| =
∣∣
∫ ∞

−∞
h(τ)x(t − τ)dτ

∣∣ ≤
∫ ∞

−∞
|h(τ)||x(t − τ)|dτ

< Bx

∫ ∞

−∞
|h(τ)|dτ < By (1.77)

which obviously requires:
∫ ∞

−∞
|h(τ)|dτ < ∞ (1.78)

In other words, if the impulse response function h(t) of an LTI system is abso-
lutely integrable, then the system is stable, i.e., Eq.1.78 is the sufficient condition
for an LTI system to be stable. We can show that this condition is also necessary,
i.e., all stable LTI systems’ impulse response functions are absolutely integrable.

An LTI system is causal if its output y(t) only depends on the current and past
input x(t) (but not the future). Assuming the system is initially at rest with zero
output y(t) = 0 for t < 0, then its response y(t) = h(t) to an impulse x(t) = δ(t)
at moment t = 0 will be at rest before the moment t = 0, i.e., h(t) = h(t)u(t).
Its response to a general input x(t) is:

y(t) = h(t) ∗ x(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ =

∫ ∞

0
h(τ)x(t − τ)dτ (1.79)

Moreover, if the input begins at a specific moment, e.g., t = 0, i.e., x(t) = x(t)u(t)
and x(t− τ) = 0 for τ > t, then we have

y(t) = h(t) ∗ x(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ =

∫ t

0
h(τ)x(t − τ)dτ (1.80)

1.7 Signals Through LTI Systems (Discrete)

Similar to the above discussion for continuous signals and systems, the following
results can be obtained for discrete signals and systems. First, as shown in Eq.1.3,
a discrete signal can be written as:

x[n] =
∞∑

m=−∞
x[m]δ[n−m] (1.81)

If the impulse response of a discrete LTI system is

h[n] = O[δ[n]] (1.82)
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Figure 1.8 Response of a discrete LTI system

then its response to a signal x[n] is:

y[n] = O[x[n]] = O
[ ∞∑

m=−∞
x[m]δ[n−m]

]
=

∞∑

m=−∞
x[m]O[δ[n−m]]

=
∞∑

m=−∞
x[m]h[n−m] (1.83)

This process is illustrated in Fig.1.8.
The last summation in Eq.1.83 is defined called the discrete convolution, which

is generally defined as an operation of two discrete functions x[n] and h[n]:

z[n] = x[n] ∗ y[n] =
∞∑

m=−∞
x[m]y[n−m] =

∞∑

m=−∞
y[m]x[n−m] = y[n] ∗ x[n]

(1.84)
Note that convolution is commutative, i.e., x[n] ∗ y[n] = y[n] ∗ x[n].

Similar to the continuous case, if the system is causal and the input is zero
until t = 0, we have:

y[n] =
n∑

m=0

x[m]h[n−m] (1.85)

In particular, if the input to an LTI system is a complex exponential function:

x[n] = esn = (es)n = zn (1.86)

where s = σ + jω as defined above, and z is defined as z = es, the corresponding
output is

y[n] = O[zn] =
∞∑

k=−∞
h[k]zn−k = zn

∞∑

k=−∞
h[k]z−k = H(z)zn (1.87)

where H(z) is a constant (independent of the time variable n) defined as

H(z) =
∞∑

k=−∞
h[k]z−k (1.88)

This is called the transfer function of the discrete LTI system, which is the Z-
transform of the impulse response h[n] of the system, to be discussed in Chapter
5. We note that Eq.1.87 is an eigenequation, where the constant H(z) and the
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complex exponential zn are, respectively, the eigenvalue and the correspond-
ing eigenfunction of the LTI system. Also note that the complex exponential
zn is the eigenfunction of any discrete LTI system, independent of its specific
impulse response h[n]. In particular, when s = jω (σ = 0), z = es = ejω and H(z)
becomes:

H(ejω) =
∞∑

k=−∞
h[k]e−jkω (1.89)

This is the frequency response function of the system, which is the Fourier trans-
form of the discrete impulse response function h[n], to be discussed in Chapter
4.

Given H(ejω) of a discrete system, its response to a discrete input x[n] = zn =
ejω0n can be found to by evaluating Eq.1.87 at z = ejω0 :

y[n] = O[ejω0n] = H(ejω0)ejω0n (1.90)

Moreover, if the input x[n] can be written as a linear combination of a set of
complex exponentials:

x[n] =
N−1∑

k=0

Xkejkω0n/N (1.91)

where Xk (0 ≤ k < N) are a set of constant coefficients, then, due to the linearity
of the system, its output is:

y[n] = O[
N−1∑

k=0

Xkejkω0n/N ] =
N−1∑

k=0

XkO[ejkω0n]

=
N−1∑

k=0

XkH(ejkω0)ejkω0n =
N−1∑

k=0

Ykejkω0n (1.92)

where the kth coefficient Yk is defined as Yk = XkH(ejkω0 ). The significance of
this result is that we can obtain the response of a discrete LTI system described
by H(z) to any input x[n] in the form of a linear combination of a set of complex
exponentials. This is an important conclusion of the discrete Fourier transform
theory considered in Chapter 4.

Similar to a stable continuous LTI system, a stable discrete LTI system’s
response to any bounded input is also bounded for all n:

if |x[n]| < Bx then |y[n]| < By (1.93)

As the output and input of an LTI is related by convolution

y[n] = h[n] ∗ x[n] =
∞∑

m=−∞
h[m]x[n−m] (1.94)
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we have:

|y[n]| =
∣∣

∞∑

m=−∞
h[m]x[n−m]

∣∣ ≤
∞∑

m=−∞
|h[m]||x[n− n]|

< Bx

∞∑

m=−∞
|h[m]|dτ < By (1.95)

which obviously requires:
∞∑

m=−∞
|h[m]| <∞ (1.96)

In other words, if the impulse response function h[n] of an LTI system is abso-
lutely summable, then the system is stable, i.e., Eq.1.96 is the sufficient condition
for an LTI system to be stable. We can show that this condition is also necessary,
i.e., all stable LTI systems’ impulse response functions are absolutely summable.

Also, a discrete LTI system is causal if its output y[n] only depends on the
current and past input x[n] (but not the future). Assuming the system is initially
at rest with zero output y[n] = 0 for n < 0, then its response y[n] = h[n] to an
impulse x[n] = δ[n] at moment n = 0 will be at rest before the moment n = 0,
i.e., h[n] = h[n]u[n]. Its response to a general input x[n] is:

y[n] = h[n] ∗ x[n] =
∞∑

m=−∞
h[m]x[n−m] =

∞∑

m=0

h[m]x[n−m] (1.97)

Moreover, if the input begins at a specific moment, e.g., n = 0, i.e., x[n] =
x[n]u[n] and x[n−m] = 0 for m > n, then we have

y[n] = h[n] ∗ x[n] =
∞∑

m=−∞
h[m]x[n−m] =

n∑

m=0

h[m]x[n−m] (1.98)

1.8 Continuous and discrete convolutions

The operation of convolution in both continuous and discrete cases defined
respectively in Eqs.1.67 and 1.84 is of great importance in the future discussions.
Here we further consider how such a convolution can be specifically carried out.
First we consider the continuous convolution:

x(t) ∗ y(t) =
∫ ∞

−∞
x(τ)y(t − τ)dτ

which can be carried out conceptually in the following three steps:

1. Find the time reversal of one of the two functions, say, y(τ), by flipping it in
time to get y(−τ);

2. Slide this flipped function y(t− τ) along the τ axis as t goes from −∞ to ∞;
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Figure 1.9 The convolution of two functions

The three steps are shown top-down, then left to right. The shaded area repre-
sents the convolution evaluated at a specific time moment such as t = t2, t = t3,
and t = t4.

3. For each time moment t, find the integral of the product x(τ)y(t − τ) over all
τ , i.e., find the area of overlap between x(τ) and y(t− τ), which is proportional
to the convolution z(t) at t.

Example 1.4: Let x(t) = u(t) and y(t) = e−atu(t), the convolution of the two
functions is

y(t) ∗ x(t) =
∫ ∞

−∞
y(τ)x(t − τ)dτ =

∫ t

0
y(τ)dτ =

∫ t

0
e−aτdτ

= −1
a
e−aτ

∣∣t
0

=
1
a
(1− e−at)

This process is shown in Fig.1.9. Alternatively, the convolution can also be writ-
ten as:

x(t) ∗ y(t) =
∫ ∞

−∞
x(τ)y(t − τ)dτ =

∫ t

0
y(t− τ)dτ =

∫ t

0
e−a(t−τ)dτ

=
1
a
e−ateaτ

∣∣t
0

=
1
a
e−at(eat − 1) =

1
a
(1− e−at)
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Although convolution and cross-correlation (Eq.1.36) are conceptually two dif-
ferent operations, they look similar and are closely related. If we flip one of the
two functions in a convolution, it becomes the same as the cross correlation.

x(t) ∗ y(−t) =
∫ ∞

−∞
x(τ)y(τ − t)dτ = rxy(t) = x(t) & y(t) (1.99)

In other words, if one of the signals y(t) = y(−t) is even, then we have x(t) ∗
y(t) = x(t) & y(t).

Example 1.5: Let x(t) = e−atu(t) and y(t) = e−btu(t), and both a and b are
positive. We first find their convolution:

x(t) ∗ y(t) =
∫ ∞

−∞
x(τ)y(t − τ)dτ

As y(t− τ) can be written as:

y(t− τ) = e−b(t−τ)u(t− τ) =
{

e−b(t−τ) τ < t
0 τ > t

we have

x(t) ∗ y(t) =
∫ t

0
e−ate−b(t−τ)dτ = e−bt

∫ t

0
e−(a−b)τdτ =

1
a− b

(e−bt − e−at)

=
1

b− a
(e−at − e−bt) = y(t) ∗ x(t)

Next we find the cross-correlation x(t) & y(t):

x(t) & y(t) =
∫ ∞

−∞
x(τ)y(τ − t)dτ

Consider two cases:! If t > 0, the above becomes:
∫ ∞

t
e−aτe−b(τ−t)dτ = ebt

∫ ∞

t
e−(a+b)τdτ =

e−at

a + b
u(t)! If t < 0, the above becomes:

∫ ∞

0
e−aτe−b(τ−t)dτ = ebt

∫ ∞

0
e−(a+b)τdτ =

ebt

a + b
u(−t)

Example 1.6: Let x[n] = u[n] and y[n] = anu[n] (assuming |a| < 1), the convo-
lution of the two functions is:

y[n] ∗ x[n] =
∞∑

m=−∞
y[m]x[n−m] =

n∑

m=0

y[m] =
n∑

m=0

am =
1− an+1

1− a
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Here we have used the geometric series formula:
N∑

n=0

xn =
1− xN+1

1− x

Alternatively, the convolution can also be written as:

x[n] ∗ y[n] =
∞∑

m=−∞
x[m]y[n−m] =

n∑

m=0

y[n−m]

= an
n∑

m=0

a−m = an 1− a−(n+1)

1− a−1
=

1− an+1

1− a

1.9 Problems

1. Prove the identity in Eq.1.26:
∫ ∞

−∞
e±j2πftdt = δ(f)

Hint: Follow these steps:
a. Change the lower and upper integral limits to −a/2 and a/2, respectively,

and show that this definite integral results in a sinc function a sinc(af) of
frequency f with a parameter a. A sinc function is defined as sinc(x) =
sin(πx)/πx.

b. Show that the following integral of this sinc function a sinc(af) is 1 (inde-
pendent of a):

a

∫ ∞

−∞
sinc(af)df = 1

based on the integral formula:
∫ ∞

0

sin(x)
x

dx =
π

2

c. Let a →∞ and show that a sinc(af) approaches a unit impulse:

lim
a→∞

s(f, a) = δ(f)

Proof:
Consider the sinc function which can be obtained by the following integral:

∫ a/2

−a/2
e±j2πftdt =

1
±j2πf

e±j2πft
∣∣a/2

−a/2
=

sin(πfa)
πf

= a sinc(af)

where sinc(x) is the sinc function commonly defined as:

sinc(x) =
sin(πx)
πx
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In particular when x = 0, we have limx→0 sinc(x) = 1. When a is increased,
the function a sinc(af) becomes narrower but taller, until when a →∞, it
becomes infinity at f = 0 but zero everywhere else. Also, as the integral of
this sinc function is unity:

∫ ∞

−∞

sin(πfa)
πf

df =
1
π

∫ ∞

−∞

sin(πfa)
af

d(af) =
1
π

∫ ∞

−∞

sin(x)
x

dx = 1

Now we see that Eq.1.26 represents a Dirac delta:
∫ ∞

−∞
e±j2πftdt = lim

a→∞
a sinc(af) = δ(f)

2. Prove the identity in Eq.1.27:

1
T

∫

T
e±j2πkt/T dt = δ[k]

Hint: According to Euler’s formula, the integrand can be expressed as:

e±j2πkt/T = cos
(

2πt

T/k

)
± j sin

(
2πt

T/k

)

Proof:
1
T

∫

T
ej2πkt/T dt =

1
T

[
∫

T
cos(

2π
T/k

t)dt ± j

∫

T
sin(

2π
T/k

t)dt]

The sinusoids have period T/k and their integral over T is zero, except if
k = 0 then cos 0 = 1 and

∫
T dt/T = 1, i.e., it is a Kronecker delta.

3. Prove the identity in Eq.1.28:

1
F

∞∑

k=−∞
e±j2kπf/F =

∞∑

n=−∞
δ(f − nF )

Hint: Follow these steps:
a. Find the summation of the following series:

∞∑

k=−∞
(aex)k =

∞∑

k=0

(aex)k +
0∑

k=−∞
(aex)k − 1 =

∞∑

k=0

(aex)k +
∞∑

k=0

(ae−x)k − 1

based on the power series formula for |a| < 1:
∞∑

k=0

(aex)k =
1

1− aex

b. Obtain the value for the sum above when a = 1.
c. Apply the result to the left-hand side of the equation you are trying to

prove, and show it is an impulse at every f = nF for all integer n, i.e., it
is a series of infinite impulses separated by an interval F . (Hint: consider
its value for two cases: (a) f = nF and (b) f $= nF .)

d. Show that each of these impulses is a unit impulse by showing that the
integral over any F with respect to f is 1, as shown on the right-hand side.
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Proof:
First we note that if f = nF is any multiple of F , then e±j2kπf/F = e±j2πnk =
1, and the summation on the left-hand side is infinity. Next we consider the
following summation with the assumptions that |a| < 1 and f $= nF :

∞∑

k=−∞
(aejx)k =

∞∑

k=0

(aejx)k +
∞∑

k=0

(ae−jx)k − (ejx)0

=
1

1− aejx
+

1
1− ae−jx

− 1 =
2− a(ejx + e−jx)

1− a(ejx + e−jx) + a2
− 1

The first equal sign is due to the fact that the following power series converges
when |a| < 1:

∞∑

k=0

(aex)k =
1

1− aex

When a → 1, this summation becomes 1− 1 = 0. Now we see that the sum-
mation on the left-hand side of Eq.1.28 is zero except when f = nF , in which
case it is infinity. In other words, the summation is actually an impulse train
with a gap F . Moreover, we can further show that the integral of each impulse
with respect to f over one period F is 1:

∫

F

1
F

∞∑

k=−∞
e±j2kπf/F df =

1
F

∞∑

k=−∞

∫

F
e±j2kπf/F df =

∞∑

k=−∞
δ[k]

= · · · δ[−1] + δ[0] + δ[1] · · · = · · · + 0 + 1 + 0 + · · · = 1

Here we have used the result of Eq.1.27.
4. Prove the identity in Eq.1.29:

1
N

N−1∑

n=0

e±j2πnm/N

=
1
N

N−1∑

n=0

cos(2π nm/N) ± 1
N

N−1∑

n=0

sin(2π nm/N)

=
1
N

N−1∑

n=0

cos(2π nm/N) =
∞∑

k=−∞
δ[m− kN ]

and
N−1∑

n=0

sin(2π nm/N) = 0

Hint: Consider the summation on the left-hand side in the following two
cases:
a. First, show that the summation is equal to 1 when m is any multiple of N ,

i.e., m = kN for all −∞ < k < ∞.
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b. Second, show that when m $= kN , the summation is equal to 0 based on
this formula:

N−1∑

n=0

xn =
1− xN

1− x

Proof:
The summation is obviously equal to 1 if m = kNi for all integer k, otherwise
the above becomes

1
N

N−1∑

n=0

e±j2πnk/N =
1
N

N−1∑

n=0

(e±j2πk/N )n =
1
N

1− e±j2πkN/N

(1 − e±j2πk/N )
= 0

The second equal sign is due to the geometric series formula
N−1∑

n=0

xn =
1− xN

1− x

and e±j2πk = 1.



2 Vector Spaces and Signal
Representation

2.1 Inner Product Space

2.1.1 Vector Space

In our future discussion, any signal, either a continuous one represented as a
time function x(t), or a discrete one represented as a vector x = [· · · , x[n], · · · ]T ,
will be considered as a vector in a vector space, which is just a generalization of
the familiar concept of N-dimensional (N-D) space, formally defined as below.

Definition 2.1. A vector space is a set V with two operations of vector addition
and scalar multiplication defined for its members, referred to as vectors.

1. Vector addition maps any two vectors x, y ∈ V to another vector x + y ∈ V
satisfying the following properties:
– Commutativity:

x + y = y + x (2.1)

– Associativity:

x + (y + z) = (x + y) + z (2.2)

– Existence of zero: there is a vector 0 ∈ V such that:

0 + x = x + 0 = x (2.3)

– Existence of inverse: for any vector x ∈ V , there is another vector −x ∈ V
such that

x + (−x) = 0 (2.4)

2. Scalar multiplication maps a vector x ∈ V and a scalar a ∈ C to another
vector ax ∈ V with the following properties:
– a(x + y) = ax + ay
– (a + b)x = ax + bx
– abx = a(bx)
– 1x = x

27
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For example, an N-dimensional space, denoted by RN or CN , is a vector space,
whose element vector x can be written as an n-tuple, an ordered list of n elements:

x =





x1

x2

...
xN




= [x1, x2, · · · , xN ]T (2.5)

where xn ∈ C (n = 1, · · · , N) is a real or complex scalar. An alternative range for
the index n = 0, · · · , N − 1 may also be used in the future for convenience. The
dimensionality n may be extended to infinity for an infinite-dimensional space.
Through out the future discussion, a vector is always represented as a column
vector, or the transpose of a row vector.

A vector space can be defined to contain all M by N matrices composed of n
column (or row) vectors:

X = [x1, · · · , xN ] =





x11 x12 · · · x1N

x21 x22 · · · x2N

...
...

. . .
...

xM1 xM2 · · · xMN




(2.6)

where the nth column is an M-D vector xn = [x1n, · · · , xMn]T . Such a matrix can
be converted to an MN-D vector by cascading all the column (or row) vectors.

In the N-D space RN or CN , the two operations generally defined above take
the following forms:! A vector x can be multiplied by a real or complex scalar factor a to become

ax = [ax1, ax2, · · · , axN ]T (2.7)

If a = 1/b, the above can also be written as x/b.! The sum of two vectors is defined as

x + y = [x1 + y1, x2 + y2, · · · , xN + yN ]T (2.8)

Based on this operation, the difference between the two vectors can also be
defined:

x− y = x + (−y) = [x1 − y1, x2 − y2, · · · , xn − yN ]T (2.9)! The zero vector is a special vector with all components equal to zero:

0 = [0, 0, · · · , 0]T (2.10)

As another example, a vector space V can also be a set containing all continu-
ous functions x(t) (real or complex valued) defined over a specific range a ≤ t ≤ b,
which could be infinite if a = −∞ and/or b = ∞. Any function x = x(t) ∈ V can
be added to another one y = y(t) ∈ V to get x + y = x(t) + y(t) ∈ V , or multi-
plied by a scalar a to get ax = ax(t) ∈ V . It can be shown that these operations
satisfy all the conditions in the definition of a vector space.
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Note that in our discussion, the term “vector”, represented by x, may have two
interpretations. First, it can be an element of any vector space V in the general
sense, such as a function vector x = x(t) . Second, it can also mean specifically
an N-D vector x = [x1, · · · , xN ]T , a tuple of n discrete elements (where n may
be infinity). However, it should be clear what a vector x indicates in a specific
discussion from the context.

Definition 2.2. The sum of two subspaces S1 ⊂ V and S2 ⊂ V of a vector space
V is defined as

S1 + S2 = {s1 + s2|s1 ∈ S1, s2 ∈ S2} (2.11)

In particular, if S1 and S2 are mutually exclusive:

S1 ∩ S2 = {0} (2.12)

then their sum S1 + S2 is called direct sum, denoted by S1 ⊕ S2. Moreover, if
S1 ⊕ S2 = V , then S1 and S2 form a direct sum decomposition of the vector space
V , and S1 and S2 are said to be complementary. The direct sum decomposition
of V can be generalized to include multiple subspaces:

V = ⊕n
i=1Si = S1 ⊕ · · ·⊕ Sn (2.13)

where all subspaces Si ⊂ V are mutually exclusive:

Si ∩




∑

i$=j

Sj



 = {0} (2.14)

Definition 2.3. Let S1 ⊂ V and S2 ⊂ V be subsets of V and S1 ⊕ S2 = V . Then

pS1,S2
(s1 + s2) = s1, (s1 ∈ S1, s2 ∈ S2) (2.15)

is called the projection of s1 + s2 onto S1 along S2.

2.1.2 Inner Product Space

Definition 2.4. An inner product on a vector space V is a function that maps
two vectors x, y ∈ V to a scalar < x, y >∈ C and satisfies the following condi-
tions:! Positive definiteness:

< x, x > ≥ 0, < x, x >= 0 iff x = 0 (2.16)! Conjugate symmetry: 1

< x, y >= < y, x > (2.17)

1 The over-line indicates the complex conjugate of a complex value, i.e., u + jv = u− jv (where
j =

√
−1 is the imaginary unit).
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If the vector space is real, the inner product becomes symmetric:

< x, y >=< y, x > (2.18)! Linearity in the first variable:

< ax + by, z >= a < x, z > +b < y, z > (2.19)

where a, b ∈ C. As a special case, when b = 0, we have:

< ax, y >= a < x, y >, < x, ay >= a < x, y > (2.20)

Note that in general the linearity does not apply to the second variable (unless
the coefficients are real a, b ∈ R):

< x, ay + bz >= < ay + bz, x > = a < y, x > +b < z, x >

= a < x, y > +b < x, z > $= a < x, y > +b < x, z > (2.21)

In general, we have:

<
∑

i

cixi, y >=
∑

i

ci < xi, y >

< x,
∑

i

ciyi >=
∑

i

ci < x, yi > (2.22)

All vector spaces discussed in the future will be assumed to be inner product
spaces. Some examples of the inner product include:! In an N-D vector space, the inner product, also called the dot product, of two

vectors x and y is defined as:

< x, y >= xT y = y∗x = [x1, x2, · · · , xN ]





y1

y2

· · ·
yN



 =
N∑

n=1

xnyn (2.23)

where y∗ = yT is the conjugate transpose of y.! In a space of 2-D matrices XM×N containing M ×N elements xmn (m =
1, · · · , M, n = 1, · · · , N), the inner product of two such matrices X and Y is
defined as:

< X, Y >=
M∑

m=1

N∑

n=1

xmnymn (2.24)

This inner product is equivalent to Eq.2.23 if we cascade the column (or row)
vectors of two arrays X and Y to form two MN-D vectors.! In a function space, the inner product of two function vectors x(t) and y(t) is
defined as:

< x(t), y(t) >=
∫ b

a
x(t)y(t)dt =

∫ b

a
x(t)y(t)dt = < y(t), x(t) > (2.25)
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In particular, Eq.1.9 for the sifting property of the delta function δ(t) is an
inner product:

< x(t), δ(t) >=
∫ ∞

−∞
x(τ)δ(τ)dτ = x(0)! The inner product of two random variables x and y can be defined as the

expectation of their product:

< x, y >= E[xy] (2.26)

If these two random variables have zero means, i.e., µx = E(x) = 0 and µx =
E(x) = 0, the inner product above is also their covariance:

σ2
xy = E[(x− µx)(y − µy)] = E(xy)− µxµy = E(xy) =< x, y > (2.27)

Based on inner product, the following important concepts can be defined:

Definition 2.5. If the inner product of two vectors x and y is zero, < x, y >= 0,
they are orthogonal (perpendicular) to each other, denoted by x ⊥ y.

Definition 2.6. A vector space with inner product defined is called an inner
product space. When the inner product is defined, CN is called a unitary space
and RN is called a Euclidean space.

Definition 2.7. The norm of a vector x ∈ V is defined as:

||x|| =
√

< x, x > =< x, x >1/2, or ||x||2 =< x, x > (2.28)

The norm ||x|| is nonnegative and it is zero if and only if x = 0. In particular, if
||x|| = 1, x is normalized and is called a unit vector. Any vector can be normalized
if divided by its own norm: x/||x||. The vector norm squared ||x||2 =< x, x >
can be considered as the energy of the vector.

In an N-D unitary space, the norm of a vector x = [x1, · · · , xN ]T ∈ CN is:

||x|| =
√

< x, x > =
√

xT x =

[
N∑

n=1

xnxn

]1/2

=

[
N∑

n=1

|xn|2
]1/2

(2.29)

The total energy contained in this vector is its norm squared:

E = ||x||2 =< x, x >=
N∑

n=1

|xn|2 (2.30)

The concept of N-D Euclidean space can be generalized to an infinite-
dimensional space, in which case the range of the summation will cover all real
integers Z in the entire real axis −∞ < n < ∞. This norm exists only if the
summation to converge to a finite value, i.e., the vector x is an energy signal



32 Chapter 2. Vector Spaces and Signal Representation

containing finite energy:
∞∑

n=−∞
|xn|2 < ∞ (2.31)

All such vectors x satisfying the above are said to be square-summable and they
form a vector space called l2 space denoted as l2(Z).

Similarly, in a function space, the norm of a function vector x = x(t) is defined
as:

||x|| =
(∫ b

a
x(t)x(t) dt

)1/2

=
(∫ b

a
|x(t)|2 dt

)1/2

(2.32)

where the lower and upper integral limits a < b are two real numbers, which may
be extended to all real values R in the entire real axis −∞ < t <∞. This norm
exists only if the integral converges to a finite value, i.e., x(t) is an energy signal
containing finite energy:

∫ ∞

−∞
|x(t)|2dt <∞ (2.33)

All such functions x(t) satisfying the above are said to be square-integrable, and
they form a function space called L2 space denoted as L2(R).

In the future, all vectors and functions to be discussed are assumed to be
square-summable/integrable, i.e., they represent energy signals containing finite
energy, so that these conditions do not need to be mentioned every time a signal
vector is considered.

Theorem 2.1. Cauchy-Schwarz inequality

| < x, y > |2 ≤ < x, x >< y, y >, i.e., | < x, y > | ≤ ||x|| · ||y|| (2.34)

Proof: Let λ ∈ C be an arbitrary complex number and we have:

< x− λy, x− λy >= ||x||2 − λ < x, y > −λ < y, x > +|λ|2||y||2 ≥ 0 (2.35)

Obviously the Cauchy-Schwarz inequality holds if y = 0. Otherwise, we let

λ =
< x, y >

||y||2 , then λ =
< y, x >

||y||2 , |λ|2 =
| < x, y > |2

||y||4 (2.36)

Substitute it in the inequality above, we get

||x||2 − | < x, y > |2
||y||2 ≥ 0, i.e., | < x, y >≤ ||x|| · ||y|| (2.37)

Definition 2.8. The angle between two vectors x and y is defined as:

θ = cos−1

(
< x, y >

||x|| ||y||

)
= cos−1

(
< x, y >√

< x, x >
√

< y, y >

)
(2.38)
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Figure 2.1 Orthogonal Projection

Now the inner product of x and y can also be written as

< x, y >= ||x|| · ||y|| cos θ (2.39)

If θ = 0 or cos θ = 1, i.e., the two vectors x and y are collinear, the Cauchy-
Schwarz inequality becomes an equality. On the other hand, if < x, y >= 0, i.e.,
x and y are orthogonal or perpendicular to each other, then the angle between
them becomes θ = cos−10 = π/2.

Definition 2.9. The orthogonal projection of a vector x ∈ V onto another vector
y ∈ V is defined as

py(x) =
< x, y >

||y||
y

||y|| =
< x, y >

< y, y >
y = ||x|| cos θ

y

||y|| (2.40)

where θ is the angle between the two vectors.

The projection py(x) is a vector and its norm or length is a scalar denoted
by:

py(x) = ||py(x)|| =
< x, y >

||y|| = ||x|| cos θ (2.41)

which is sometimes also referred to as the projection. The projection py(x) is
illustrated in Fig.2.1. In particular, if y is a unit vector, i.e., ||y|| = 1, we have

py(x) =< x, y > y, ||py(x)|| =< x, y > (2.42)

In other words, the projection of x onto a unit vector is simply their inner
product.

Definition 2.10. Let S ⊂ V and S ⊕ S⊥ = V . Then

pS(s + r) = s, (s ∈ S, r2 ∈ S⊥) (2.43)

is called the orthogonal projection of s + r onto S.

Example 2.1: Find the projection of x = [1, 2]T onto y = [3, 1]T .
The angle between the two vectors is

θ = cos−1(
< x, y >√

< x, x >< y, y >
) = cos−1(

5√
5× 10

) = cos−1 0.707 = 45◦ (2.44)
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The projection of x on y is:

py(x) =
< x, y >

< y, y >
y =

5
10

[
3
1

]
=
[

1.5
0.5

]
(2.45)

The projection is
√

1.52 + 0.52 ≈ 1.58, which is of course the same as ||x|| cos θ =√
5 cos 45◦ ≈ 1.58. If y is normalized to become z = y/||y|| = [3, 1]/

√
10, then the

projection of x onto z can be simply obtained as their inner product:

pz(x) = ||pz(x)|| =< x, z >= [1, 2]
[

3
1

]
/
√

10 = 5/
√

10 ≈ 1.58 (2.46)

Definition 2.11. The distance between two vectors x, y is defined as

d(x, y) = ||x− y|| (2.47)

Theorem 2.2. The distance satisfies the following three conditions:! Nonnegative: d(x, y) ≥ 0. d(x, y) = 0 iff x = y.! Symmetric: d(x, y) = d(y, x).! Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y)

Proof: The first two conditions are self-evident based on the definition. We
now show that the distance d(x, y) does indeed satisfy the third condition. Con-
sider the following:

||u + v||2 =< u + v, u + v >= ||u||2+ < u, v > + < v, u > +||v||2

= ||u||2 + 2 Re < u, v > +||v||2 ≤ ||u||2 + 2 | < u, v > | + ||v||2

≤ ||u||2 + 2 ||u|| ||v|| + ||v||2 = (||u|| + ||v||)2 (2.48)

The first ≤ sign above is due to the fact that the magnitude of a complex number
is no less that its real part, and the second ≤ sign is simply the Cauchy-Schwarz
inequality. Taking the square root on both sides, we get:

||u + v|| ≤ ||u|| + ||v|| (2.49)

We further let u = x− z and v = z − y, the above becomes the triangle inequal-
ity:

||x− y|| ≤ ||x− z|| + ||z − y||, i.e., d(x, y) ≤ d(x, z) + d(z, y) (2.50)

This completes the proof.
When distance is defined between any two elements of a vector space, the

space becomes a metric space. In a unitary space CN , the distance between x
and y is:

d(x, y) = ||x− y|| =

(
N∑

n=1

|xn − yn|2
)1/2

(2.51)
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This is the Euclidean distance, which can be considered as a special case of the
more general p-norm distance defined as:

dp(x, y) =

(
N∑

n=1

|xn − yn|p
)1/p

(2.52)

Obviously the Euclidean distance is the p-norm distance when p = 2. Also, other
commonly used p-norm distances include:

d1(x, y) =
N∑

n=1

|xn − yn| (2.53)

d∞(x, y) = max(|x1 − y1|, · · · , |xN − yN |) (2.54)

In a function space, the distance between two functions x(t) and y(t) is:

d(x(t), y(t)) = ||x(t) − y(t)|| =
(∫ b

a
|x(t) − y(t)|2 dt

)1/2

(2.55)

Definition 2.12. Two subspaces S1 ⊂ V and S2 ⊂ V of a vector space V are
orthogonal, denoted by S1⊥S2, if s1⊥s2 for any s1 ∈ S1 and s2 ∈ S2. In partic-
ular, if one of the subsets contains only one vector S1 = {s1}, then the vector is
orthogonal to the other subset, i.e., s1⊥S2.

Definition 2.13. The orthogonal complement of a subspace S ⊂ V is the set of
all vectors in V that are orthogonal to S:

S⊥ = {v ∈ V | v⊥S} (2.56)

Obviously we have

S ∩ S⊥ = {0}, and S ⊕ S⊥ = V (2.57)

In general, more than two subspaces Si ⊂ V (i = 1, · · · , n) are orthogonal com-
plement if

V = S1 ⊕ · · ·⊕ Sn, and Si⊥Sj, (i $= j) (2.58)

2.1.3 Bases of a Vector Space

Definition 2.14. The linear span of a set of vectors bi, (i = 1, · · · , n) in space
V is a subspace W ⊂ V :

W = span(b1, · · · , bN ) = {
N∑

n=1

cnbn|cn ∈ C} (2.59)

Definition 2.15. A set of vectors vn, (n = 1, · · · , N) in an N-D space V forms
a basis of the space if they are linearly independent, i.e., they span the space
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so that any vector x ∈ V in the space can be uniquely expressed as a linear
combination of these basis vectors:

x =
N∑

n=1

cnbn (2.60)

The basis vectors are linearly independent, i.e., none of them can be repre-
sented as a linear combination of the rest, and including any extra vector in the
basis it would no longer be linearly independent. These basis vectors are also
said to be complete as removing any of them would result in inability to rep-
resent certain vectors in the space. In other words, a basis is a minimum set of
vectors that can represent any vector in the space. Also it is obvious that there
are infinitely many bases that can all span the same space, as, any rotation of
a given basis will result in a different basis. This idea is of great importance in
our future discussion.

Consider as an example the N-D unitary space CN . How many linearly inde-
pendent vectors does a basis need to contain for it to span the entire space?
Let us assume for now this basis consists of M linearly independent vectors
{b1, · · · , bM}, where each vector bi is an N-D vector. Then any x ∈ CN can be
represented as a linear combination of these basis vectors:

x =




x1

...
xN





N×1

=
M∑

m=1

cmbm = [b1, · · · , bM ]N×M




c1

...
cM





M×1

= Bc (2.61)

where B = [b1, · · · , bM ] is an N by M matrix composed of the M N-D basis vec-
tors as its columns, and c = [c1, · · · , cM ]T is a vector composed of M coefficients,
which can be found by solving this linear equation system.

Obviously for the solution to exist, the number of equations N can be no
greater than the number of unknowns M . On the other hand, M can be no
greater then N as there can be no more than N independent basis vectors in
this N-D space. It is therefore clear that a basis of an N-D space must have
exactly M = N basis vectors. Now the matrix B becomes an N by N square
matrix with full rank (as all column vectors are independent), and the coefficients
can be obtained by solving the system with N unknowns and N equations:

c =




c1

...
cN



 = [b1, · · · , bN ]−1




x1

...
xN



 = B−1x (2.62)

The computational complexity to solve this system of N equations and N
unknowns is O(N3).
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As a very simple example for the basis of a vector space, recall that in a 3-D
space R3 a vector v = [x, y, z]T is conventionally represented as:

v =




x
y
z



 = x




1
0
0



+ y




0
1
0



+ z




0
0
1



 = xi + yj + zk (2.63)

where i = [1, 0, 0]T , j = [0, 1, 0]T , and k = [0, 0, 1]T are the three standard or
canonical basis vectors along each of the three mutually perpendicular axes. The
concept of the standard basis {i, j, k} in the 3-D space can be generalized to
an N-D unitary space CN , where the standard basis is composed of a set of n
vectors defined as:

e1 =





1
0
...
0




, e2 =





0
1
...
0




, · · · , eN =





0
...
0
1




(2.64)

In general, all components of the nth standard basis vector en are zero except
the nth one which is 1. If we denote the mth component of the nth vector en by
emn, then we have emn = δ[m− n]. Now we see that in the N-D space a vector
x = [x1, · · · , xN ]T is expressed as a linear combination of the N standard basis
vectors:

x =





x1

x2

...
xN




= x1e1 + x2e2 + · · · + xNeN =

N∑

n=1

xnen (2.65)

where the nth coordinate or component xn is the coefficient for the ith vector en

of the standard basis. In other words, whenever a vector is presented in the form
of a tuple or column vector, it is actually represented in terms of the standard
basis, which is always implicitly used to specify a vector, unless a different basis
is explicitly specified.

Example 2.2:
A 2-D Euclidean R2 space can be spanned by a standard basis e1 = [1, 0]T

and e2 = [0, 1]T , by which two vectors a1 and a2 can be represented as:

a1 = 1e1 + 0e2 =
[

1
0

]
, a2 = −1e1 + 2e2 =

[
−1

2

]

As a1 and a2 are independent (none of the two can be obtained by scaling the
other), they can be used as the basis vectors to span the space. Any given vector
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Figure 2.2 Different basis vectors of a 2-D space

such as

x =
[

1
2

]
= 1e1 + 2e2 = 1

[
1
0

]
+ 2
[

0
1

]

can be expressed by these basis vectors as:

x = c1a1 + c2a2 = [a1, a2]
[

c1

c2

]

i.e.,

c1

[
1
0

]
+ c2

[
−1

2

]
=
[

1 −1
0 2

] [
c1

c2

]
=
[

1
2

]

Solving this we get c1 = 2 and c2 = 1, so that x can be expressed by a1 and a2

as:

x = 1a1 + 2a2 = 2
[
1
0

]
+ 1
[
−1
2

]
=
[

1
2

]

This example is illustrated in Fig.2.2

Example 2.3: The example above can also be extended to the function space
spanned by two basis functions defined over [0, 2]:

a1(t) =
{

1 (0 ≤ t < 1)
0 (1 ≤ t < 2)

, a2(t) =
{
−1 (0 ≤ t < 1)

2 (1 ≤ t < 2)
(2.66)

A given time function x(t) in the space

x(t) =
{

1 (0 ≤ t < 1)
2 (1 ≤ t < 2)

(2.67)

can be represented by the two basis functions as:

x(t) = c1a1(t) + c2a2(t) (2.68)

where the coefficients c1 = 2 and c2 = 1, same as before.
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Figure 2.3 Representation of a time function by basis functions

2.1.4 Orthogonal Bases

A vector space V can be spanned by a set of orthogonal basis vectors
{· · · , vn, · · · } satisfying:

< vm, vn >= δ[m− n] ||vn||2 (2.69)

A given signal vector x ∈ V in the space can be expressed as:

x =
∑

n

cnvn (2.70)

Taking the inner product with vm on both sides we get:

< x, vm >=<
∑

n

cnvn, vm >=
∑

n

cn < vn, vm >= cm||vm||2 (2.71)

and the coefficients can be obtained as:

cm =
1

||vm||2 < x, vm >, (m = 1, · · · , N) (2.72)

Now the vector can be expressed as:

x =
∑

n

cnvn =
∑

n

1
||vn||2

< x, vn > vn =
∑

n

pvn
(x) (2.73)

We see that x is expressed as the vector sum of its projections pvn
(x) (Eq.2.40)

onto each of the basis vectors vn. We can further normalize the orthogonal basis
to get a set of orthonormal basis vectors:

un =
vn

||vn||
, (n = 1, · · · , N) (2.74)
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so that they satisfy < um, un >= δ[m− n]. Now a vector x can be expressed as:

x =
∑

n

cnun =
∑

n

< x, un > un (2.75)

where

cn =< x, un >= pun(x) (2.76)

These two equations form a unitary transform pair.
In particular, in an N-D unitary space CN a vector is an N-tuple, represented

as a column vector containing N components: x = [x1, · · · , xN ]T , and the space
can be spanned by a set of N orthonormal vectors {u1, · · · , uN}:

< um, un >= uT
mun =

N∑

k=1

ukmukn = δ[m− n] (2.77)

and any vector x ∈ CN can be expressed as a linear combination of these basis
vectors:

x =
N∑

n=1

cnun = [u1, · · · , uN ]




c1

...
cN



 = Uc (2.78)

where c = [c1, · · · , cN ]T is an N-D coefficient vector containing the N coefficients,
and U = [u1, · · · , uN ] is a unitary matrix that satisfies

U−1 = U ∗, i.e., UU ∗ = U ∗U = I, (2.79)

Premultiplying U−1 = U ∗ on both sides Eq.2.78, we get the coefficient vector:

U−1x = U−1Uc = U ∗Uc = c (2.80)

Eqs. 2.78 and 2.80 can be rewritten as a transform pair:
{

c = U ∗x
x = Uc

(2.81)

Alternatively, each coefficient cn in Eq.2.78 can be obtained by taking an inner
product with um on both sides of the equation to get:

< x, um >=<
N∑

n=1

cnun, um >=
N∑

n=1

cn < un, um >=
N∑

n=1

cnδ[m− n] = cm

(2.82)
Now the transform pair above can also be written as:

{
cn =< x, un > (n = 1, · · · , N)
x =

∑N
n=1 cnun =

∑N
n=1 < x, un > un

(2.83)

or in component form as:
{

cn =
∑N

m=1 xmumn, (n = 1, · · · , N)
xm =

∑N
n=1 cnunm, (m = 1, · · · , N)

(2.84)
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Figure 2.4 Representations of the same vector under different bases

The two equations in Eqs.2.81 (or 2.83) form a pair of discrete unitary transforms,
the first one for the forward transform while the second one for the inverse trans-
form. The computational complexity for either of them is O(N2), in comparison
to O(N3) needed in Eq.2.62 for an arbitrary basis. The reduced complexity is
certainly a main advantage of the orthogonal bases.

We see that the vector x and its coefficient vector c are related by a unitary
matrix U , representing a rotation in the space. Different unitary matrices repre-
sent different rotations, each corresponding to a particular set of basis vectors,
the column (or row) vectors of matrix. Moreover, as the product of two unitary
matrices is another unitary matrix, any two orthonormal bases are also related
by a certain rotation.

The standard basis {e1, · · · , eN} is obviously a special orthonormal basis:

< em, en >= eT
men = δ[m− n] (2.85)

These standard basis vectors form a matrix:

[e1, · · · , eN ] =





1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




= I (2.86)

As a special unitary matrix I−1 = IT = I, the identity matrix corresponding
unitary transform x = Ix, an identity transform, i.e., the representation of the
vector is not changed.

Any given signal vector x can be equivalently represented by different bases
of the space, such as the standard basis, an orthogonal basis, or some arbitrary
basis, as illustrated in Fig. 2.4.

Due to the advantages of orthogonal bases, it is often desirable to convert a
given non-orthogonal basis {a1, · · · , aN} into an orthogonal basis {u1, · · · , uN}
by the following steps of the Gram-Schmidt orthogonalization process:! u1 = a1! u2 = a2 − Pu1a2
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Figure 2.5 Gram-Schmidt orthogonalization

! u3 = a3 − Pu1a3 − Pu2a3! · · · · · · · · ·! uN = aN −
∑N−1

n=1 PunaN

Example 2.4: In Example 2.2, a vector x = [1, 2]T in a 2-D space is represented
under a basis composed of a1 = [1, 0]T and a2 = [−1, 2]T . Now we show that
based on this basis an orthogonal basis can be constructed by the Gram-Schmidt
orthogonalization process. In this case of n = 2, we have u1 = a1 = [1, 0]T , and

u2 = a2 − Pu1a2 =
[
−1
2

]
−
[
−1
0

]
=
[

0
2

]

We see that < u1, u2 >= 0, i.e., the new basis {u1, u2} is indeed orthogonal.
Now the same vector x = [1, 2]T can be represented by the new orthogonal basis
as:

x =
[

1
2

]
= 1u1 + 1u2 =

[
1
0

]
+
[

0
2

]

In this particular case, the two coefficients both happen to be 1, as illustrated
in Fig.2.5.

Example 2.5: (Homework) Two vectors u1 = [2, 1]T /
√

5 and u2 = [−1, 2]T /
√

5
in R2 space are orthogonal

< u1, u2 >=
1
5

[2, 1]
[
−1
2

]
= 0 (2.87)

and normalized:

< u1, u1 >=
1
5

[2, 1]
[

1
1

]
= 1, < u2, u2 >=

1
5

[−1, 2]
[
−1
2

]
= 1 (2.88)

and they can therefore be used as orthonormal basis vectors. A given vector
x = [1, 2]T can be expressed as:

x = c1u1 + c2u2 (2.89)
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The coefficients c1 and c2 can now be found by the projection method above
(instead of solving a linear equation system as in the previous example):

c1 =< x, u1 >=
1√
5

[1, 2]
[

2
1

]
=

4√
5
, c2 =< x, u2 >=

1√
5

[1, 2]
[
−1
2

]
=

3√
5

(2.90)

2.1.5 Signal Representation by Standard Basis

Previously we showed that a vector x = [· · · , xm, · · · ]T can be expressed by the
standard basis as:

x =
N∑

n=1

xnen (2.91)

and its mth component xm of the vector as:

xm =
N∑

n=1

xnemn =
N∑

n=1

xnδ[m− n], (m = 1, · · · , N) (2.92)

If we assume this vector is a representation of a discrete time signal
x[1], · · · , x[N ], we see that the equation above is the exactly the same as Eq.1.3
shown in the previous chapter. Here emn = δ[m− n] is the mth component of
the nth basis vector en, which is 0 except m = n. Now we see that when a
discrete time signal is represented by a vector x under the standard basis, the
signal is actually decomposed in time in terms of a set of components x[m] each
corresponding to one particular time segment δ[m− n]. While the signal rep-
resentation by the standard basis and the corresponding signal decomposition
in time seem most reasonable thing to do, we note that it is also possible, and
often beneficial, to use other bases to represent the signal and correspondingly
to decompose the signal into a set of components along some dimensions other
than time.

The concept of representing a discrete time signal x[n] by the standard basis
can be extended to the representation of a continuous time signal x(t) (0 < t <
T ). To do so, we first define a function:

δ((t) =
{

1/( 0 ≤ t < (
0 otherwise

(2.93)

from which a set of functions δ((t− n() (n = 0, · · · , N − 1) can be obtained by
translation in time, and they are obviously orthonormal:

< δ((t−m(), δ((t− n() >=
∫
δ((t−m() δ((t− n()dt = 0, (m $= n)

(2.94)
Next, we sample the continuous time signal x(t) with a sampling interval ( =
T/N to get a set of discrete samples {x0, · · · , xN−1}, and approximate the signal
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Figure 2.6 Vector representation of an N-D space (N=3)

as:

x(t) ≈
N−1∑

n=0

xnδ((t− n()( (2.95)

Here xnφn(t) represents the nth segment of the signal over the time duration
n( < t < (n + 1)(, as illustrated in Fig.2.6. We see that each of these functions
δ((t− n() represents a certain time segment, same as the standard basis emn =
δ[m− n] in CN . However, we note that δ((t− n() do not form a basis that
spans the function space, as they are not complete, in the sense that they can
only approximate but not precisely represent a continuous function x(t) in the
space. However, if we reduce the sampling interval by letting (→ 0, we get the
Dirac delta at the limit:

lim
(→0

δ((t) = δ(t) (2.96)

and the summation above becomes an integral, by which the function x(t) can
be precisely represented:

x(t) =
∫

x(τ)δ(t − τ)dτ (2.97)

This equation is the exactly the same as Eq. 1.6 in the previous chapter. Now
we have obtained a set of basis functions φτ (t) = δ(t− τ) (for all τ), which are
complete as well as orthonormal, i.e., they form a standard basis of the function
space, by which any continuous signal can be represented, just as the standard
basis en in CN by which any discrete signal can represented.

It may seem only natural to represent a discrete or continuous time signal
by the corresponding standard basis representing a sequence of time segments,
corresponding to the decomposition of the signal into time components. How-
ever, this is not the only way or the best way to represent the signal. The time
signal can also be represented by a basis other than the standard basis, so that
the signal is decomposed along some different dimension other than time. Such
alternative way of signal representation and decomposition may be desirable, as
the signal can be more conveniently processed and analyzed, for whatever pur-
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pose of the signal processing task. This is actually the fundamental reason why
different orthogonal transforms are developed, as to be discussed in details in
future chapters.

2.1.6 Hilbert Space

So far we have mostly considered inner product spaces of finite dimensions.
Additional theory is needed to deal with spaces of infinite dimensions.

Definition 2.16. ! In a metric space V (an inner-product space with distance
d(x, y) defined), a sequence {x1, x2, · · · } is a Cauchy sequence if for any
ε > 0, there exists an N > 0 such that for any m, n > N , d(xm, xn) < ε.! A metric space V is complete if every Cauchy sequence {xn} in V converges
to a x ∈ V :

lim
m→∞

d(xm, x) = ||x− xm|| = 0 (2.98)

In other words, for any ε > 0, there exists an N > 0 such that

if m > N, then, d(xm, x) < ε (2.99)! An inner product space that is complete is a Hilbert space, denoted by H.! Let bn be a set of orthogonal vectors (n = 1, 2, · · · ) in H, and an arbitrary
vector x is approximated in an M-D subspace by

x̂M =
m∑

n=1

cnbn (2.100)

If the least squares error of this approximation ||x− x̂M ||2 converges to zero
when m →∞, i.e.,

lim
m→∞

||x− x̂M ||2 = lim
m→∞

||x−
M∑

n=1

cnbn||2 = 0 (2.101)

then this set of orthogonal vectors is said to be complete, called a complete
orthogonal system, and the approximation converges to the given vector:

lim
m→∞

M∑

n=1

cnbn =
∞∑

n=1

cnbn = x (2.102)

In the following discussions, the lower and upper limits of a summation will
not always be explicitly given, as the summation may be finite (e.g., from 1 to
N) or infinite (e.g., from 1 or −∞ to ∞), depending on each specific case.

Theorem 2.3. Let {bn} be a complete orthonormal system in a Hilbert space
H:

< bm, bn >= δ[m− n] (2.103)
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Then

1. Any vector x ∈ H can be expressed as:

x =
∑

n

< x, bn > bn (2.104)

2.

< x, y >=
∑

n

< x, bn > < y, bn > (2.105)

This is the Plancherel’s or Parseval’s theorem.

Proof: Under the basis {bn}, any x ∈ H can be written as:

x =
∑

n

cnbn (2.106)

Taking an inner product with bm on both sides we get

< x, bm >=<
∑

n

cnbn, bm >=
∑

n

cn < bn, bm >=
∑

n

cnδ[m− n] = cm

(2.107)
and we have

x =
∑

n

cnbn =
∑

n

< x, bn > bn (2.108)

This is the generalized Fourier expansion of a vector x in terms of basis {bn}, and
Eq.2.107 is the generalized Fourier coefficient. Similarly, another vector y ∈ H
can be written as:

y =
∑

m

dmbm =
∑

m

< y, bm > bm (2.109)

where dm =< y, bm >, then we have:

< x, y >=<
∑

n

cnbn,
∑

m

dmbm >=
∑

n

cn

∑

m

dm < bn, bm >

=
∑

n

cn

∑

m

dmδ[m− n] =
∑

n

cndn =
∑

n

< x, bn > < y, bn > (2.110)

This completes the proof.
In particular if x = y, then we have:

< x, x >=
∑

n

|cn|2 =
∑

n

| < x, bn > |2 (2.111)

The coefficients cn can be represented as vectors c = [· · · , cn, · · · ]T of finite or
infinite dimensions, and the equation above can also be written as:

||x||2 =< x, x >=< c, c >= ||c||2 (2.112)
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This is Parseval’s identity indicating that a signal vector x can be equivalently
represented by its Fourier coefficients with all its energy or information con-
served.

The above discussion for Hilbert space can be applied to any space such as
L2-space composed of all square integrable functions x(t) defined over a < t < b.
Assume φn(t) is a set of complete orthonormal basis functions of the space:

< φm(t),φn(t) >=
∫
φm(t)φn(t)dt = δ[m− n] (2.113)

then any continuous signal x(t) ∈ L2 can be represented as a generalized Fourier
expansion:

x(t) =
∑

n

cnφn(t) (2.114)

where the cn is the generalized Fourier coefficient which can be found as

cn =< x(t),φn(t) >=
∫

x(t)φn(t)dt (2.115)

and the squared norm of this function is:

||x(t)||2 =< x(t), x(t) >=
∫

x(t)x(t)dt =
∑

n

|cn|2 = ||c||2 (2.116)

2.2 Unitary Transformations and Signal Representation

2.2.1 Linear Transformations

Definition 2.17. Let V and W be two vector spaces. A transformation is a
function or mapping T : V →W that converts a vector x ∈ V to another vector
u ∈W .

If the transformation is invertible, then there exists an inverse transformation
T−1 that converts u ∈ W back to x ∈ V . The transformation and the inverse are
denoted as:

Tx = u, and x = T−1u (2.117)

TT−1 = T−1 = I is an identity operator that maps a vector to itself: TT−1u =
Iuu and T−1Tx = Ix = x.

A transformation T is linear if the following is true:

T (ax + by) = aTx + bTy (2.118)

for any scalars a, b ∈ C and any vectors x, y ∈ V .
If W = V , the linear transformation T is a linear operator.



48 Chapter 2. Vector Spaces and Signal Representation

For example, the derivative and integral of a continuous function x(t) are linear
operators:

Tdx(t) =
d

dt
x(t) = ẋ(t), Tix(t) =

∫
x(τ)dτ (2.119)

For another example, an M by N matrix A with elements amn ∈ C is a linear
transformation TA : CN → CM that maps x ∈ CN to y ∈ CM :

TAx = Ax = y (2.120)

or in component form:




y1

y2

...
yM





M×1

=





a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

. . .
...

aM1 aM2 · · · aMN





M×N





x1

x2

...
xn





N×1

(2.121)

If M = N , then x, y ∈ CN , and A becomes a linear operator.
The operation of translation Ttx = x + t is not a linear transformation:

Tt(ax + by) = ax + by + t $= aTtx + bTty = ax + by + (a + b)t (2.122)

Definition 2.18. For a linear operator T in space V , if there is an operator T ∗

so that

< Tx, y >=< x, T ∗y > (2.123)

for any x, y ∈ H, the T ∗ is called the adjoint (or Hermitian adjoint) of T . If a
linear operator T is its own adjoint, i.e.,

< Tx, y >=< x, Ty > (2.124)

then T is called a self-adjoint or Hermitian operator.

In particular, in a unitary space CN , let B = A∗ be the adjoint of matrix A,
then we have:

< Ax, y >=< x, By >, i.e. (Ax)T y = xT AT y = xT By (2.125)

Comparing the two sides of the last equal sign, we see that AT = B, i.e., the
adjoint matrix B = A∗ = A

T is the conjugate transpose of A:

A∗ = A
T (2.126)

If A = A∗ = A
T is self-adjoint, it is also called a Hermitian matrix. In particular,

when A = A is real, a self-adjoint matrix A = A∗ = AT is symmetric. Also note
that we have always used A∗ to denote the conjugate transpose of a matrix A,
but now we see that it is actually also the self-adjoint of A, and the notation T ∗

is more generally used to denote the self-adjoint of any operator T .
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In a function space, if T ∗ is the adjoint of a linear operator T , then the following
holds:

< Tx(t), y(t) >=
∫

Tx(t) y(t)dt =
∫

x(t) T ∗y(t)dt (2.127)

If T = T ∗, it is a self-adjoint or Hermitian operator.

2.2.2 Eigenvalue problems

Definition 2.19. If the application of an operator T to a vector x ∈ V results
in another vector λx ∈ V , where λ ∈ C is a scalar:

Tx = λx (2.128)

then the scalar λ is an eigenvalue of T and vector x is the corresponding eigen-
vector or eigenfunctions of T , and the equation above is called the eigenequation
of the operator T .

In a unitary space CN , an N by N matrix A is a linear operator and the
associated eigenequation is:

Aφn = λnφn, (n = 1, · · · , N) (2.129)

where λ and φ are the eigenvalue and the corresponding eigenvector of A, respec-
tively.

In a function space, the differential operator Dn = dn/dtn is a linear operator
with the following eigenequation:

Dn est =
dn

dtn
est = sn est (2.130)

where s is a complex scalar. Here the complex exponential function est is the
eigenfunction, and sn is the corresponding eigenvalue. More generally, we can
write an Nth order linear constant coefficient differential equation (LCCDE) as:

N∑

n=0

anDny(t) = x(t) (2.131)

where
∑N

n=0 anDn is a linear operator that is applied to function y(t), repre-
senting the output of a linear system in response to an input x(t). Obviously the
same complex exponential est is also the eigenfunction of this operator and the
corresponding eigenvalue is

∑n
k=0 aksk.

Perhaps the most well known eigenvalue problem in physics is the Schrodinger
equation, that describes a particle in terms of its energy and the DeBroglie wave
function:

[
− h̄2

2m

∂2

∂x2
+ V (x)

]
ψ(x) = Ĥψ(x) = Eψ(x) (2.132)
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where

Ĥ = − h̄2

2m

∂2

∂x2
+ V (x) (2.133)

is the Hamiltonian operator, E is its eigenvalue representing the energy of the
particle, and ψ(x) is the corresponding eigenfunction, also called eigenstate, rep-
resenting the wave function of the particle.

Theorem 2.4. A self-adjoint operator has the following properties:

1. All eigenvalues are real;
2. The eigenvectors corresponding to different eigenvalues are orthogonal;
3. The family of all eigenvectors forms a complete orthogonal system.

Proof: Let λ and µ be two different eigenvalues of a self-adjoint operator T ,
and x and y be the corresponding eigenvectors:

Tx = λx, Ty = µy (2.134)

As T is self-adjoint, i.e., T = T ∗, we have:

< Tx, x >=< x, T ∗x >=< x, Tx > (2.135)

Substituting Tx = λx we get

< λx, x >=< x,λx >, i.e. λ < x, x >= λ < x, x > (2.136)

As < x, x > $= 0, we have λ = λ is real. Next, consider

< Tx, y >=< x, Ty > (2.137)

Substituting Tx = λx and Ty = µy, we get

λ < x, y >= µ < x, y >= µ < x, y > (2.138)

As λ $= µ, we have < x, y >= 0, i.e., x and y are orthogonal. The proof of the
third property is omitted.

The third property tells us that the eigenvectors of a self-adjoint operator can
be used as an orthogonal basis of a vector space, so that any vector in the space
can be represented as a linear combination of these eigenvectors.

The Hamiltonian operator Ĥ in the Schrodinger equation is a self-adjoint oper-
ator with real eigenvalues E representing different energy levels corresponding to
different eigenstates of the particle.

In an N-D space CN , if A is Hermitian matrix, then is satisfies A = A∗ i.e.,
AT = A, and we have:

< Ax, y >= (Ax)T y = xT AT y = xT Ay =< x, Ay > (2.139)

Let λn and φn (n = 1, · · · , N) be the eigenvalues and the corresponding eigen-
vectors of A, then its eigenequation can be written as:

Aφn = λnφn (n = 1, · · · , N), (2.140)
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which can also be written as:

A[φ1, · · · ,φN ] = [φ1, · · · ,φN ]Λ, or AΦ = ΦΛ (2.141)

where Φ and Λ are two matrices defined as:

Φ = [φ1, · · · ,φN ], Λ =





λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN




(2.142)

As A is a self-adjoint operator, its eigenvalues λn are real, and their correspond-
ing eigenvectors φn are orthogonal:

< φm,φn >= φT
mφn = δ[m− n] (2.143)

and they form a complete orthogonal system to span the N-D unitary space.
Also Φ a unitary matrix satisfying:

Φ∗Φ = I, or Φ∗ = Φ−1 (2.144)

The eigenequation in Eq.2.141 can also be written in some other useful forms.
First, pre-multiplying both sides of the equation by Φ−1 = Φ∗, we get:

Φ−1AΦ = Φ∗AΦ = Λ (2.145)

i.e., the matrix A can be diagonalized by Φ. Alternatively, if we post-multiply
both sides of Eq.2.141 by Φ∗, we get:

A = ΦΛΦ∗ = [φ1,φ2, · · · ,φN ]





λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN









φ∗1
φ∗2
...
φ∗N




=

N∑

n=1

λnφnφ
∗
n

(2.146)
i.e., the matrix A can be series expanded to become a linear combination of N
eigen-matrices φnφ

∗
n.

2.2.3 Eigenvectors of D2 as Fourier Basis

Here we consider a particular example of the self-adjoint operators, the second-
order differential operator D2 = d2/dt2 in the function space, which is of impor-
tant significance as its orthogonal eigenfunctions form the basis used in the
Fourier transform.

First we show that D2 is indeed a self-adjoint operator:

< D2x(t), y(t) >=< x(t), D2y(t) > (2.147)

where x(t) and y(t) are two functions defined over a certain time interval such
as [0, T ] or [−T/2, T/2], and D2x(t) = ẍ(t) is the second derivative of function
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x(t). Using integration by parts, we can show that this equation does hold:

< D2x(t), y(t) > =
∫ T

0
ẍ(t)y(t)dt = ẋ(t)y(t)

∣∣T
0
−
∫ T

0
ẋ(t)ẏ(t)dt

= ẋ(t)y(t)
∣∣T
0
− x(t)ẏ(t)

∣∣T
0

+
∫ T

0
x(t)ÿ(t)dt =< x(t), D2y(t) >

(2.148)

Here we assume all functions satisfy x(0) = x(T ), ẋ(0) = ẋ(T ), so that

[ẋ(t)y(t)− x(t)ẏ(t)]
∣∣T
0

= 0 (2.149)

Next, we proceed to find the eigenvalues and eigenfunctions of D2 by solving
this equation:

{
D2φ(t) = λφ(t), i.e. φ̈(t)− λφ(t) = 0
subject to: φ(0) = φ(T ), φ̇(0) = φ̇(T )

(2.150)

We consider the following three cases:

1. λ = 0:
The equation becomes φ̈(t) = 0 with solution φ(t) = c1t + c2. Substituting
this φ(t) into the boundary condition, we have:

φ(0) = c2 = φ(T ) = c1T + c2 (2.151)

We get c1 = 0 and φ(t) = c2, i.e., the eigenfunction corresponding to λ = 0 is
any constant.

2. λ > 0:
We assume φ(t) = est and substitute it into the equation to get

(s2 − λ)est = 0, i.e. s = ±
√
λ (2.152)

The solution is φ(t) = c e±
√
λt. Substituting this into the boundary condition,

we have:

φ(0) = c = φ(T ) = c e±
√
λT (2.153)

Obviously the equation holds only if λ = 0, which is the same as the previous
case.

3. λ < 0:
We assume λ = −ω2, i.e.,

√
λ = ±jω, and the solution is

φ(t) = c e±
√
λt = c e±jωt (2.154)

Substituting this into the boundary condition, we have:

φ(0) = c = φ(T ) = c e±jωT , i.e. e±jωT = 1 (2.155)

which can be solved to get

ωT = 2kπ, i.e. ω =
2kπ

T
= 2kπf0 = kω0, (k = 0,±1,±2, · · · ) (2.156)
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where we have defined

f0 =
1
T

, ω0 = 2πf0 =
2π
T

(2.157)

Now the solution is

φn(t) = c e±j2nπ/T = c e±jnω0 , (n = 0,±1,±2, · · · ) (2.158)

which includes the solution φ(t) = c corresponding to the zero eigenvalue λ =
0.

Summarizing the above, we see that the self-adjoint operator D2 has infinitely
many eigenvalues each corresponding to a different eigenfunction φn(t):

D2φn(t) =
d2

dt2
φn(t) = λnφn(t), (n = 0,±1,±2, · · · ) (2.159)

where the nth eigenvalue is

λn = −(nω0)2 = −(2nπ/T )2 (2.160)

and the corresponding eigenfunction is:

φn(t) = ej2nπt/T = ej2nπf0t = ejnω0t (2.161)

all of which are periodic with period T :

φn(t + T ) = ej2nπ(t+T )/T = ej2nπt/T ej2nπ = φn(t) (2.162)

Here, the 0th eigenfunction φ0(t) = c is a zero-frequency constant, the first eigen-
function

φ1(t) = ejω0t = ej2πf0t = cos(2πf0t) + j sin(2πf0t) (2.163)

is a combination of two sinusoids of frequency f0 = 1/T or angular frequency
ω0 = 2πf0 = 2π/T , called fundamental frequency, and the nth (|n| > 1) eigen-
function

φn(t) = ejnω0t = ej2nπf0t = cos(2nπf0t) + j sin(2nπf0t) (2.164)

is a combination of two sinusoids of frequency nf0 or angular frequency nω0, n
times the fundamental frequency.

These eigenvalues and their corresponding eigenfunctions have the following
properties:! All eigenvalues are discrete, there is a gap between two consecutive eigenval-

ues:

(λn = λn+1 − λn (2.165)! All eigenfunctions are also discrete with a frequency gap between two consec-
utive eigenfunctions:

ω0 = 2πf0 = 2π/T (2.166)
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! All eigenfunctions φn(t) are periodic with period T :

φn(t + T ) = ej2nπ(t+T )/T = ej2nπt/T ej2nπ = ej2nπt/T = φn(t) (2.167)

According to the properties of self-adjoint operators discussed above, the eigen-
functions φn(t) of D2 form a complete orthogonal system. The orthogonality can
be easily verified:

< φm(t),φn(t) >=
∫ T

0
ejmω0te−jnω0tdt =

∫ T

0
ej2π(m−n)t/T dt

=
∫ T

0
cos(

2π(m− n)t
T

)dt + j

∫ T

0
sin(

2π(m− n)t
T

)dt =
{

T if m = n
0 m $= n

(2.168)

We could redefine

φn(t) =
1√
T

ej2nπt/T =
1√
T

ej2nπf0t (2.169)

these eigenfunctions become orthonormal:

< φm(t),φn(t) >=
1
T

∫ T

0
ej2π(m−n)t/T dt = δ[m− n] (2.170)

This is actually Eq.1.27.
As a complete orthogonal system, these orthogonal eigenfunctions form a basis

to span the function space over [0, T ], i.e., all periodic functions xT (t) = xT (t +
T ) can be represented as a linear combination of these basis functions:

xT (t) =
∞∑

n=−∞
Xnφn(t) =

∞∑

n=−∞
Xnej2nπf0t =

∞∑

n=−∞
Xnejnω0 (2.171)

where Xn (n = 0,±1,±2, · · · ) are the coefficients. This is the Fourier expansion
(no longer in the generalized sense as before), to be discussed in detail in the
next chapter.

So far we have only focused on periodic functions, but what about non-periodic
functions? What kind of basis functions can be used to represent a non-periodic
function? To address this question, we increase the period T , and note that at the
limit T →∞ a periodic function xT (t) will become non-periodic. At the limit,
the following also take place:! The discrete variables nω0 = 2nπ/T (n = 0,±1,±2, · · · ) becomes a continu-

ous variable −∞ < ω < ∞;! The gap between two consecutive eigenvalues becomes zero, i.e.,(λn → 0, the
discrete eigenvalues λn = −(2nπ/T )2 become a continuous eigenvalue function
λ = −ω2;! The frequency gap ω0 between two consecutive eigenfunctions becomes zero,
the discrete eigenfunctions φn(t) = ej2nπt/T (n = 0,±1,±2, · · · ) become a
uncountable set of non-periodic eigenfunctions φ(t, f) = ej2πft for all −∞ <
f < ∞.



Vector Spaces and Signal Representation 55

We see that the same self-adjoint operator D2 is now defined over a different
interval (−∞,∞) and correspondingly its eigenfunctions φ(t) = ejωt = ej2πft

form a complete orthogonal system that spans the function space of all non-
periodic functions, i.e., each non-periodic function x(t) can be represented as a
linear combination of these basis functions:

x(t) =
∫ ∞

−∞
X(f)φ(t, f)df =

∫ ∞

−∞
X(f)ej2πftdf (2.172)

The condition for this integral to converge is X(f) is square integrable. This is
the Fourier transform, to be discussed in detail in the next chapter.

2.2.4 Unitary Transformations

Definition 2.20. If a linear transformation T : V →W conserves inner prod-
ucts:

< Tx, Ty >=< x, y > (2.173)

then it is called a unitary transformation. In particularly, if V is real with sym-
metric inner product < x, y >=< y, x >, then U is an orthogonal transforma-
tion.

Theorem 2.5. A linear transformation T is unitary if and only if its adjoint
T ∗ is equal to its inverse T−1:

T ∗ = T−1, i.e. T ∗T = TT ∗ = I (2.174)

Proof: According to Eq.2.173, a unitary operator T satisfies:

< Tx, Ty >=< x, y > (2.175)

If we let Ty = z, i.e., y = T−1z, then the above becomes:

< Tx, z >=< x, T−1z > (2.176)

i.e., T−1 = T ∗. On the other hand, given T ∗ = T−1, we can immediately derive
Eq.2.175 from Eq.2.176. This completes the proof. Because of this theorem,
Eq.2.174 can also be used as an alternative definition of unitary operator.

Based on Eq.2.174 in the definition of a unitary transformation, we can imme-
diately conclude that:

1. A unitary transformation preserves any measurements based on the inner
product, such as the norm of a vector, the distance and angle between two
vectors, and the projection of one on the other.

2. Parseval’s identity holds for any unitary transformation c = Ux:

||c||2 = ||Ux||2 =< Ux, Ux >=< x, x >= ||x||2 (2.177)
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3. A unitary transformation can be interpreted as a rotation R : V → V in the
vector space. 2

4. A unitary transformation, a rotation, of an orthonormal basis {bn} spanning
a vector space is another orthonormal basis {Ubn} spanning the same space:

< Ubm, Ubn >=< bm, bn >= δ[m− n] (2.178)

A unitary transformation can be used for signal representation. Any given
signal (either continuous or discrete) can be considered as a vector x in a proper
vector space, represented under a certain basis. Then a unitary transformation
U can be applied:

{
c = U−1x = U ∗x
x = Uc

(2.179)

where the first equation is the forward transformation that maps the signal vector
x to a coefficient vector c, and the second equation is the inverse transformation
that reconstructs the signal from the coefficients. Here U−1 = U ∗ (Eq. 2.174)
is the inverse transformation of U , and as Uc = UU−1x = Ix = x, we see that
UU−1 = I is an identity operator.

The unitary transformation finds many applications in a wide variety of areas
where a large quantity of signal/data needs to be processed, analyzed, and/or
compressed. The motivation is to represent the signal in some suitable way so
that all these operations can be carried out effectively and easily. Here we first
high light some of the most general and fundamental ideas, which will be dis-
cussed in details in the following chapters for various specific methods.! Either a continuous signal or a discrete signal is always given initially as a

time function, which can be considered as a linear combination of a set of
weighted and shifted impulses, in the form of a vector x represented by the
standard basis of the vector space.! The signal vector can be alternatively represented by any of the infinitely
many orthogonal bases obtained by applying a specific rotation, a unitary
transformation, to the standard basis.! The signal vector is always represented as a set of coefficients of the basis
being used, either the standard basis implicitly used before the unitary trans-
formation, or some basis obtained by rotating the standard basis after the
transformation.! All of these different representations of the same signal are equivalent
in the sense that the vector norm, representing the total amount of
energy/information contained in the signal, is preserved by the unitary trans-
formations, due to Parseval’s identity.

2 Strictly speaking, a unitary transformation may also correspond to other norm-preserving
operations such as reflection and inversion, we here treat all such operations as rotations in
the general sense.
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! Depending on the specific signal processing task at hand, a proper transfor-
mation most suitable can be used.

2.2.5 Unitary Transformations in N-D Space

We consider specifically the unitary transformation in the N-D unitary space
CN , where a linear transformation from vector x to another vector y is realized
as a matrix multiplication y = Ax by an N by N matrix A. If we further assume
this is linear transformation preserves inner products, then it is unitary and the
corresponding matrix is called a unitary matrix.

Definition 2.21. A matrix U is unitary if it preserves inner products:

< Ux, Uy >=< x, y > (2.180)

Theorem 2.6. A matrix U is unitary if and only if UT U = I, i.e., the following
two statements are equivalent:

(a) < Ux, Uy >=< x, y > (2.181)

(b) U∗U = UU ∗ = I, i.e., U−1 = U∗ (2.182)

Proof: We first show if (b) then (a):

< Ux, Uy >= (Ux)T Uy = xT UT Uy = xT Iy =< x, y > (2.183)

Next we show if (a) then (b):

< Ux, Ux >=< x, x >, i.e., (Ux)T Ux = xT UT Ux = xT x (2.184)

The second equation can be written as:

x∗(U ∗U − I)x = 0 (2.185)

Since x is an arbitrary vector, we must have U ∗U − I = 0, i.e., U∗U = I. Post-
multiplying this equation by U−1, we get U ∗ = U−1. Premultiplying this new
equation by U , we get UU ∗ = I. This completes the proof.

As (a) or (b) in the theorem are equivalent, either of them can be used as the
definition of a unitary matrix. If a unitary matrix U = U is real, i.e., U−1 = UT ,
then it is called an orthogonal matrix.

A unitary matrix U has the following properties:! Unitary transformation Ux conserves vector norm, i.e., ||Ux|| = ||x|| for any
x ∈ CN ;! All eigenvalues {λ1, · · · ,λN} of U have an absolute value of 1: |λi| = 1, i.e.,
they lie on the unit circle in the complex plain.! The determinant of U has an absolute value of 1: |det(U)| = 1. This can be
easily seen as det(U) =

∏N
n=1 λn.
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Figure 2.7 Rotation of vectors and bases

Previously in Eq.2.81 we showed that any x ∈ CN can be represented in
terms of a set of orthonormal basis vectors that form a unitary matrix U =
[u1, · · · , uN ]:

{
c = U ∗x
x = Uc

(2.186)

We realize this is actually the special case of the unitary transformation in
Eq.2.179. Specifically here a discrete signal vector x = [x1, · · · , xN ]T , origi-
nally given under the implicit standard basis I = [e1, · · · , eN ]T is converted
to another vector c = [c1, · · · , cN ]T representing the coefficients of a new basis
U = [u1, · · · , uN ]T .

Also note that the property ||x||2 = ||Ux||2 = ||c||2 is actually Parseval’s iden-
tity in CN , indicating that a unitary transformation U ∗x = c or Uc = x always
conserves the vector norm, which representing the signal energy or information.
This unitary transformation can be considered as a rotation of the standard basis
I to become another basis U .

A unitary transformation can be considered as a rotation in the N-D unitary
space CN , by which the vector norm is obviously conserved. Let {an} be a basis
(not necessarily orthogonal) of the space, then any vector x can be represented
in terms of a set of coefficients {cn}:

x =
N∑

n=1

cnan (2.187)

Rotating this vector by a unitary matrix U , we get a new vector:

y = Ux = U

[
N∑

n=1

cnan

]
=

N∑

n=1

cnUan =
N∑

n=1

cna′n (2.188)

This equation indicates that the rotated vector y can still be represented by the
same set of coefficients {cn}, if the basis {an} is also rotated the same way to
become a′n = Uan, as illustrated in Fig.2.7(a).



Vector Spaces and Signal Representation 59

Figure 2.8 Rotation of coordinate system

Under the original basis {an}, the rotated vector y can be represented in terms
of a set of new coefficients {dn}:

y =
N∑

n=1

dnan = [a1, · · · , aN ]




d1

...
dN



 (2.189)

The N new coefficients dn can be obtained by solving this linear equation system
with N equations (with O(N3) complexity).

On the other hand, if we rotate y in the opposite direction by the inverse
matrix U−1 = U∗, of course we get x back:

U−1y = U−1

[
N∑

n=1

dnan

]
=

N∑

n=1

dnU−1an =
N∑

n=1

dnbn (2.190)

where bm = U−1am = U ∗am is a new basis obtained by rotating {am} in the
opposite direction. Now we have:

Pan(y) =< y, an >=< Ux, an >=< x, U ∗an >=< x, bn >= Pbn(x) (2.191)

We see that the projection of the new vector y = Ux onto the old basis an is the
same as the projection of old vector x onto the new basis bn = U−1a. In other
words, a rotation of the vector is equivalent to a rotation in the opposite direction
of the basis, as one would intuitively expect. This is illustrated in Fig.2.7(b). A
rotation in an N = 3 dimensional space is illustrated in Fig.2.8.

Example 2.6: Consider two orthonormal basis vectors that span a 2-D space:

a1 =
1
2

[√
3

1

]
, a2 =

1
2

[
−1√

3

]
(2.192)
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Under this basis a given vector x = [1, 2]T can be expressed as:

x =
[

1
2

]
= c1a1 + c2a2 =

c1

2

[√
3

1

]
+

c2

2

[
−1√

3

]
(2.193)

where the two coefficients c1 and c2 can be obtained as the projection of x onto
a1 and a2, respectively:

c1 = < x, a1 >= xT a1 =
1
2
[1, 2]

[√
3

1

]
=
√

3 + 2
2

c2 = < x, a2 >= xT a2 =
1
2
[1, 2]

[
−1√

3

]
=

2
√

3− 1
2

(2.194)

A counter clockwise rotation of θ = 30◦ is represented by a matrix:

R =
[

cos θ − sin θ
sin θ cos θ

]
=

1
2

[√
3 −1

1
√

3

]
(2.195)

Pre-multiplied by this matrix, x will be rotated to become:

y = Rx =
1
2

[√
3 −1

1
√

3

] [
1
2

]
=

1
2

[ √
3− 2

2
√

3 + 1

]
(2.196)

This rotated vector y can be represented under the same basis {a1, a2} by two
new coefficients:

d1 = < y, a1 >=
1
4
[
√

3− 2, 2
√

3 + 1]
[√

3
1

]
= 1

d2 = < y, a2 >=
1
4
[
√

3− 2, 2
√

3 + 1]
[
−1√

3

]
= 2 (2.197)

On the other hand, the basis {a1, a2} can be rotated in the opposite direction
−θ = −30◦ represented by:

R−1 = RT =
1
2

[√
3 1

−1
√

3

]
(2.198)

to become:

b1 = RT a1 =
1
4

[√
3 1

−1
√

3

] [√
3

1

]
=
[

1
0

]
= e1

b2 = RT a2 =
1
4

[√
3 1

−1
√

3

] [
−1√

3

]
=
[

0
1

]
= e2 (2.199)

Under this new basis {b1, b2} (which turns out to be the standard basis), the
vector x is expressed as:

x =
[

1
2

]
= d′1b1 + d′2b2 = 1b1 + 2b2 (2.200)

We see that d′1 = d1 = 1 and d′2 = d2 = 2, in other words, the representation
{d1, d2} of the rotated vector y under the original basis {a1, a2} is equivalent to
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Figure 2.9 Rotation of a basis

the representation {d′1, d′2} of the original vector x under the inversely rotated
basis {b1, b2}.

Example 2.7: In Example 2.2, a vector x = [1, 2]T = 1e1 + 2e2 is represented
under a different basis a1 = [1, 0]T and a2 = [−1, 2]T as

x = 1a1 + 2a2 = 2
[

1
0

]
+ 1
[
−1
2

]
=
[

1
2

]
(2.201)

This basis {a1, a2} can be rotated by θ = 45◦ with the rotation matrix:

R =
[

cos θ − sin θ
sin θ cos θ

]
= 0.707

[
1 −1
1 1

]
(2.202)

to become a new basis {b1, b2}:

b1 = Ra1 = R

[
1
0

]
= 0.707

[
1
1

]
, b2 = Ra2 = R

[
−1
2

]
= 0.707

[
−3

1

]

(2.203)
Under this new basis, x can be represented as:

x = c′1b1 + c′2b2 = c′1 0.707
[

1
1

]
+ c′2 0.707

[
−3

1

]
= 0.707

[
1 −3
1 1

] [
c′1
c′2

]
=
[

1
2

]

(2.204)
Solving this we get c′1 = 2.47 and c′2 = 0.35, i.e., x = 2.47b1 + 0.35b2. (Note that
in this case the coefficients c′1 and c′2 cannot be found as the projections of x
onto the basis vectors, as they are not orthonormal.) To conclude, we see that
the same vector x can be equivalently represented by different bases:

x = 1e1 + 2e2 = 2a1 + 1a2 = 2.47b1 + 0.35b2 (2.205)
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2.3 Projection Theorem and Signal Approximation

2.3.1 Projection Theorem and Pseudo-Inverse

A signal in a high dimensional space (possibly infinite dimensional) may need
to be approximated in a lower dimensional subspace, for various reasons such as
computational complexity reduction and data compression. Although all basis
vectors are necessary to represent any given vector in a vector space, it is still
possible to approximate the vector in a subspace if error is allowed. Also, a
continuous function may not be accurately representable in a finite dimensional
space, but it may still be desirable to approximate the function in such a space.
The issue in such approximation is how to minimize the error.

Let V be an N-D Hilbert space, and U ⊂ V be an M-D subspace spanned by
a set of M N-D basis vectors {a1, · · · , aM} (not necessarily orthogonal), and
assume a given vector x ∈ V is approximated by a vector x̂ ∈ U :

x̂ =
M∑

n=1

cnan (2.206)

An error vector is defined as

x̃ = x− x̂ = x−
M∑

n=1

cnan (2.207)

The least squares error of the approximation is defined as:

ε = ||x̃||2 =< x̃, x̃ > (2.208)

The goal is to find a set of coefficients {c1, · · · , cM} so that the error ε is mini-
mized. The following projection theorem will address this issue.

Theorem 2.7. (The projection theorem) The least squares error ε = ||x̃||2 of
the approximation by equation 2.206 is minimized if and only if the error vector
x̃ = x− x̂ is orthogonal to the subspace U :

x̃ ⊥ U, i.e., x̃ ⊥ an, (n = 1, · · · , M) (2.209)

Proof: Let x̂ and x̂′ be two vectors both in the subspace U , where x̂′ is
arbitrary but x̂ is the projection of x onto U , i.e., (x− x̂)⊥U . As x̂− x̂′ is
also a vector in U , we have (x− x̂)⊥(x̂− x̂′), i.e., < x− x̂, x̂− x̂′ >= 0. Now
consider the approximation error associated with x̂′:

||x− x̂′||2 = ||x− x̂ + x̂− x̂′||2

= ||x− x̂||2+ < x− x̂, x̂− x̂′ > + < x̂− x̂′, x− x̂ > +||x̂− x̂′||2

= ||x− x̂||2 + ||x̂− x̂′||2 (2.210)

We see that the error ||x− x̂||2 associated with x̂′ is always greater than the
error ||x− x̂||2 associated with x̂, unless x̂′ = x̂. In other words, the error is
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Figure 2.10 Projection theorem

minimized if and only if the approximation is x̂, the projection of x onto the
subspace U . This completes the proof.

This theorem can be understood intuitively as shown in Fig.2.10, where a
vector x in a 3-D space is approximated by a vector x̂ in a 2-D subspace
x̂ = c1a1 + c2a2. The error vector ε = ||x− x̂||2 is indeed minimum if x− x̂
is orthogonal to the 2-D plane spanned by the basis vectors a1 and a2, as any
other vector x̂′ in this plane would be associated with a larger error. In other
words, the optimal approximation x̂ is the projection of x onto the subspace U .
This theorem can be generalized to any inner product space.

The coefficients cn corresponding to the optimal approximation can be found
based on the projection theorem, which states that the minimum error vector x̃
has to be orthogonal to each of the basis vectors that span the subspace U :

< x̃, am >=< x−
M∑

n=1

cnan, am >

= < x, am > −
M∑

n=1

cn < an, am >= 0, (m = 1, · · · , M) (2.211)

i.e.

< x, am >=
M∑

n=1

cn < an, am >, (m = 1, · · · , M) (2.212)

These equations can be rewritten in matrix form:



< x, a1 >

...
< x, aM >





M×1

=




< a1, a1 > · · · < aM , a1 >

...
. . .

...
< a1, aM > · · · < aM , aM >





M×M




c1

...
cm





M×1
(2.213)
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Solving this system of M equations and M unknowns, we get the optimal coef-
ficients. The computational complexity for solving this linear system is O(M3).

In particular, if the basis vectors are orthogonal < am, an >= 0 for all m $= n,
then all off-diagonal components of the M by M matrix in the equation above
are zero, and each of the coefficients can be obtained independently:

cn =
< x, an >

< an, an >
=

< x, an >

||an||2
, (n = 1, · · · , M) (2.214)

Now the complexity for finding the m coefficients is O(M2), and the vector x
can approximated as:

x̂ =
M∑

n=1

cnan =
M∑

n=1

< x, an >

||an||2
an =

M∑

n=1

pan
(x) (2.215)

We see that x̂ is the vector sum of the projections of x onto each of the basis
vectors an (n = 1, · · · , M) of the subspace U . Moreover, if all basis vectors are
are orthonormal < am, an >= δ[m− n], i.e., ||an||2 = 1, then the coefficients
become:

cn =< x, an >, (n = 1, · · · , M) (2.216)

and the approximation becomes:

x̂ =
M∑

n=1

cnan =
M∑

n=1

< x, an > an (2.217)

The results above for a finite dimensional space can be generalized to an infinite
dimensional Hilbert space H, where a vector x ∈ H can be approximated in a
finite M-D subspace:

x̂M =
M∑

n=1

cnbn

where bn is a set of orthogonal basis vectors. We want to find the coefficients cn

corresponding to the minimum error. According to the projection theorem, the
approximation error is minimized if the error vector is orthogonal to the M-D
subspace spanned by bm (m = 1, · · · , M):

(x− x̂)⊥bm, (m = 1, · · · , M)

i.e.,

< (x− x̂), bm >=< (x−
M∑

n=1

cnbn), bm >=< x, bm > −
M∑

n=1

cn < bn, bm >

= < x, bm > −
M∑

n=1

cnδ[m− n] =< x, bm > −cm = 0
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We see that the coefficients cn corresponding to minimum error can be obtained
as the projection of x onto the basis vectors bn:

cn =< x, bn >, (n = 1, · · · , M) (2.218)

Now the approximation error becomes:

||x− x̂M ||2 =< x, x > − < x, x̂M > − < x̂M , x > + < x̂M , x̂M >

= ||x||2 −
M∑

n=1

< x, bn > cn −
M∑

n=1

cn < bn, x > +
M∑

n=1

|cn|2

= ||x||2 −
M∑

n=1

|cn|2 ≥ 0

In a Hilbert space, the sequence xM converges when M →∞:

lim
M→∞

x̂M = lim
M→∞

M∑

n=1

cnbn =
∞∑

n=1

cnbn = x (2.219)

i.e.,

lim
m→∞

||x− x̂M ||2 = ||x−
∞∑

n=1

cnbn||2 = 0 (2.220)

This is Parseval’s equality:

||x||2 =
∞∑

n=1

|cn|2 (2.221)

Consider specifically a unitary space CN spanned by a basis {a1, · · · , aN} (not
necessarily orthogonal). We want to express a given vector x = [x1, · · · , xN ]T in
an M-D subspace spanned by the first M basis vectors an, n = 1, · · · , M as:

x =
M∑

n=1

cnan = [a1, · · · , aM ]N×M





c1

c2

...
cM





M×1

= Ac (2.222)

This equation system is over-determined with only M unknowns {c1, · · · , cM}
but N equations, i.e., A is an N by M non-square matrix and is non-invertible,
therefore the system has no solution in general, indicating the impossibility of
representing an N-D vector in an M-D subspace. However, based on the pro-
jection theorem, we can still find an approximate solution by solving Eq.2.213.
In this unitary space, the inner products in the equation become dot products
< x, an >= a∗nx and < am, an >= a∗nam, and Eq. 2.213 can be written as:

A∗x = A∗Ac (2.223)

where A∗A is an M by M square matrix and therefore invertible. Premultiplying
its inverse (AT A)−1 on both sides, we can solve the over-determined equation
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system to obtain the optimal coefficient corresponding to the minimum least
square error:

c = (A∗A)−1A∗x = A−x (2.224)

where

A− = (A∗A)−1A∗ (2.225)

is an M by N matrix, known as the generalized inverse or pseudo-inverse of the
N by M matrix A, and we have: A−A = I. The pseudo-inverse in Eq.2.225 is
for the case where A has more columns than rows (M < N in this case). If A
has more rows than columns (M > N in this case), the pseudo-inverse becomes:

A− = A∗(AA∗)−1 (2.226)

If all N dimensions basis vectors can be used, then A becomes an N by N square
matrix and the pseudo-inverse becomes the regular inverse:

A− = A−1(A∗)−1A∗ = A−1 (2.227)

and the coefficients can be found simply by:

c = A−1x (2.228)

Example 2.8: Consider a 3-D Euclidean space R3 spanned by a set of three
linearly independent vectors:

a1 =




1
0
0



 , a2 =




1
1
0



 , a3 =




1
1
1





We want to find two coefficients c1 and c2 so that a given vector x = [1, 2, 3]T

can be optimally approximated as x̂ = c1a1 + c2a2 in the 2-D subspace spanned
by a1 and a2. First we construct a matrix composed of a1 and a2:

A = [a1, a2] =




1 1
0 1
0 0





Next we find the pseudo inverse of A:

A− = (AT A)−1AT =
[

1 −1 0
0 1 0

]

The two coefficients can then be obtained as:

c =
[

c1

c2

]
= A−x =

[
1 −1 0
0 1 0

]


1
2
3



 =
[
−1
2

]
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The optimal approximation is therefore

x̂ = c1a1 + c2a2 = −1




1
0
0



+ 2




1
1
0



 =




1
2
0





which is indeed the projection of x = [1, 2, 3]T onto the 2-D subspace spanned
by a1 and a2.

Alternatively if we want to approximate x by a2 and a3 as x̂ = c2a2 + c3a3,
we have:

A = [a2, a3] =




1 1
1 1
0 1



 , A− =
1
2

[
1 1 −2
0 0 2

]

and

c = A−x =
[
−1.5

3

]
, x̂ = c2a2 + c3a3 = −1.5




1
1
0



+ 3




1
1
1



 =




1.5
1.5

3





If all three basis vectors can be used, then the coefficients can be found as:

c = A−1x = [a1, a2, a3]−1x =




1 −1 0
0 1 −1
0 0 1








1
2
3



 =




−1
−1

3





and x can be precisely represented as:

x = c1a1 + c2a2 + c3a3 = Ac =




1
2
3





2.3.2 Signal Approximation

As shown before, a signal, either continuous or discrete, can be considered as a
vector in an inner product space, and represented by a set of coefficients with
respect to a specific basis that spans the space. As the space can also be spanned
by different bases, the signal can be equivalently represented by different sets of
coefficients each for one particular basis. Moreover, in an N-D vector space, any
two orthonormal bases are related by a rotation, and correspondingly the two sets
of coefficients for the same signal vector are related by an unitary transformation
representing the rotation between the two bases.

Although different bases are equivalent in terms of representing the entire
signal, they may differ drastically in term of what aspect of the signal each of
the coefficients represents. Sometimes certain advantages can be gained from one
particular basis compared to another, depending on the specific application. In
the following we consider two simple examples to illustrate such issues.



68 Chapter 2. Vector Spaces and Signal Representation

Example 2.9: Given a signal x(t) = t defined over 0 ≤ t < 2 (undefined outside
the range), we want to optimally approximate it in a subspace spanned by two
basis functions e1(t) and e2(t):

x̂(t) = c1e1(t) + c2e2(t)

where e1(t) and e2(t) are defined as:

e1(t) =
{

1, 0 ≤ t < 1
0, 1 ≤ t < 2

, e2(t) =
{

0, 0 ≤ t < 1
1, 1 ≤ t < 2

These two basis functions are obviously orthonormal:

< e1(t), e2(t) >=
∫ 2

0
ei(t)ej(t)dt = δ[i− j]

Following the projection theorem, the coefficients c1 and c2 can be found by
solving these two simultaneous equations:

c1

∫ 2

0
e1(t)e1(t)dt + c2

∫ 2

0
e2(t)e1(t)dt =

∫ 2

0
x(t)e1(t)dt

c1

∫ 2

0
e1(t)e2(t)dt + c2

∫ 2

0
e2(t)e2(t)dt =

∫ 2

0
x(t)e2(t)dt

As e1(t) and e2(t) are orthonormal, the above becomes

c1 =
∫ 2

0
x(t)e1(t)dt =

∫ 1

0
t dt = 0.5, c2 =

∫ 2

0
x(t)e2(t)dt =

∫ 2

1
t dt = 1.5

(2.229)
i.e., the two coefficients c1 and c2 can be obtained independently as the projec-
tions of x(t) onto each of the basis functions. Now the signal can be approximated
as:

x̂(t) = 0.5e1(t) + 1.5e2(t) =
{

0.5, 0 ≤ t < 1
1.5, 1 ≤ t < 2

(2.230)

Next, consider approximating this signal x(t) by two different basis functions
u1(t) and u2(t) that span the same subspace:

x̂(t) = d1u1(t) + d2u2(t) (2.231)

where

u1(t) =
1√
2

=
1√
2
[e1(t) + e2(t)]

u2(t) =
{

1/
√

2, 0 ≤ t < 1
−1/

√
2, 1 ≤ t < 2

=
1√
2
[e1(t)− e2(t)]

As these two basis functions are also orthonormal:

< ui(t), uj(t) >=
∫ 2

0
ui(t)uj(t)dt = δ[i− j] (i = 1, 2) (2.232)
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Figure 2.11 Approximation of a signal by different basis functions

the two coefficients d1 and d2 can be obtained independently as:

d1 =
∫ 2

0
x(t)u1(t)dt =

√
2 (2.233)

d2 =
∫ 2

0
x(t)u2(t)dt = − 1√

2
(2.234)

The approximation is:

x̂(t) =
√

2u1(t)−
1√
2
u2(t) =

{
0.5, 0 ≤ t < 1
1.5, 1 ≤ t < 2

(2.235)

The two approximations happen to be identical as shown in Fig.2.11.
We can make the following observations:! The first basis {e1(t), e2(t)} is the standard basis that represents the signal
x(t) in time domain, the two coefficients c1 and c2 are simply two time samples
of x(t).! The second basis {u1(t), u2(t)} represents the signal x(t) in a totally different
way. The first coefficient d1 represents the average of the signal (0 frequency),
while the second coefficient d2 represents the variation of the signal in terms of
the difference between the first half and the second. (In fact they correspond to
the first two frequency components in several orthogonal transforms, including
the discrete Fourier transform, discrete cosine transform, Walsh-Hadamard
transform, etc.)
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Figure 2.12 Representation of a signal vector under two different bases

! The second basis {u1(t), u2(t)} is a rotated version of the first basis
{e1(t), e2(t)}, and naturally they produce the same approximation x̂(t). Con-
sequently, the two sets of coefficients {c1, c2} and {d1, d2} are related by an
orthogonal matrix representing the rotation by an angle θ = −45◦:

[
d2

d1

]
=
[

cos θ sin θ
− sin θ cos θ

] [
c2

c1

]
=
[√

2/2 −
√

2/2√
2/2

√
2/2

] [
1/2
3/2

]
=
[
−1/

√
2√

2

]

(2.236)

Example 2.10: The temperature is measured every 3 hours to obtain 8 samples
for one particular day as shown below:

Time (hours) 0 3 6 9 12 15 18 21
Temperature (F) 65 60 65 70 75 80 75 70

These time samples can be considered as a vector x = [x1, · · · , x8]T =
[65, 60, 65, 70, 75, 80, 75, 70]T in an 8-D vector space, where the nth element xn is
the coefficient for the nth standard basis vector en = [0, · · · , 0, 1, 0, · · · , 0]T (all
elements are zero except the nth one), i.e.,

x =
8∑

n=1

xnen

! This 8-D signal vector x can be approximated as x̂ = c1b1 in a 1-D subspace
spanned by b1 = [1, 1, 1, 1, 1, 1, 1, 1]T . Here the coefficient can be obtained as:

c1 =
< x, b1 >

< b1, b1 >
=

560
8

= 70
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which represents the average or DC component of the daily temperature. The
approximation is:

x̂ = c1b1 = [70, 70, 70, 70, 70, 70, 70, 70]T

The error vector is x̃ = x− x̂ = [−5,−10,−5, 0, 5, 10, 5, 0]T and the error is
||x̃||2 = 300.! The signal can be better approximated in a 2-D subspace spanned by b1 and
b2 = [1, 1, 1, 1,−1,−1,−1,−1]T. As b2 is orthogonal to b1, its coefficients c2

can be found independently as

c2 =
< x, b2 >

< b2, b2 >
=
−40
8

= −5

which represents the temperature difference between morning and afternoon.
The approximation is:

x̂ = c1b1 + c2b2 = [65.65, 65, 65, 75, 75, 75, 75]T

The error vector is x̃ = x− x̂ = [0,−5, 0, 5, 0, 5, 0,−5]T and the error is
||x̃||2 = 100.! The approximation can be further improved if a third basis vector b3 =
[1, 1,−1,−1,−1,−1, 1, 1]T is added. Note that all three basis vectors are
orthogonal to each other. The coefficient c3 can also be independently obtained
as

c3 =
< x, b3 >

< b3, b3 >
=
−20
8

= −2.5

which represents the temperature difference between day-time and night-time.
The approximation can be expressed as:

x̂ = c1b1 + c2b2 + c3b3 = [62.5, 62, 5, 67.5, 67.5, 77.5, 77.5, 72.5, 72.5]T

The error vector is x̃ = x− x̂ = [2.5,−2.5,−2.5, 2.5,−2.5, 2.5, 2.5,−2.5]T and
the error is ||x̃||2 = 50.

We can make the following observations:! The original 8-D signal vector x can be approximated by k basis vectors
spanning a k-D subspace 1 ≤ k ≤ 8. As more basis vectors are included in the
approximation, the error becomes progressively smaller.! A typical signal contains both slow-varying or low-frequency components
and fast-varying or high-frequency components, and the former contain more
energy compared to the latter. In order to reduce error when approximating
the signal, low-frequency basis functions should be considered first.! When progressively more basis functions representing more details or subtle
variations in the signal are added in the signal approximation, their coefficients
are likely to be smaller compared to those for the slow-varying basis functions,
they are more likely to be affected by noise such as some random fluctuation,
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therefore they are less significant and could be neglected (filtered out) without
losing much essential information.! In fact, the above three basis vectors b1, b2 and b3 are the first three basis
vectors of the sequency-ordered Hadamard transform to be discussed in a later
chapter.

2.4 Frames and Biorthogonal Bases

2.4.1 Frames

Previously we considered the representation of a signal vector x ∈ H as some
linear combination of an orthogonal basis {un} that spans the space:

x =
∑

n

cnun =
∑

n

< x, un > un (2.237)

and Parseval’s identity ||x||2 = ||c||2 indicates that x is equivalently represented
by the coefficients c without any redundancy. However, sometimes it may not be
easy or even possible to identify a set of linearly independent basis vectors in the
space. In such cases we could still consider representing a signal vector x by a
set of vectors {fn} which are not linearly independent and therefore do not form
a basis of the space. A main issue though is the redundancy that exists among
such a set of vectors. For example, as it is now possible to find a set of coefficients
dn so that

∑
n dnfn = 0, an immediate consequence is that the representation

is not unique:

x =
∑

n

cnfn =
∑

n

cnfn +
∑

n

dnfn =
∑

n

(cn + dn)fn (2.238)

The consequence of the redundancy issue is that Parseval’s identify no longer
holds. The energy contained in the coefficients ||c||2 may be either higher or
lower then the actual energy ||x||2 in the signal. We obviously need to develop
some theory to address this issue when using non-independent vectors for signal
representation.

First, in order for the expansion x =
∑

n cnfn to be a precise representation
of the signal vector x in terms of a set of coefficients cn =< x, fn >, we need to
guarantee that for any vectors x, y ∈ H , the following always holds:

< x, fn >=< y, fn > iff x = y (2.239)

Moreover, these representations also need to be stable in the following two
aspects.! Stable representation:
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If the difference between two vectors is small, the difference between their
corresponding coefficients should also be small:

if ||x− y||2 → 0, then
∑

n

| < x, fn > − < y, fn > |2 → 0

i.e.,
∑

n

| < x, fn > − < y, fn > |2 ≤ B||x− y||2

where 0 < B < ∞ is a positive real constant which could be either greater or
smaller than 1. In particular if y = 0 and therefore < y, fn >= 0, we have:

∑

n

| < x, fn > |2 ≤ B||x||2 (2.240)

! Stable reconstruction:
If the difference between two sets of coefficients is small, the difference between
the reconstructed vectors should also be small:

if
∑

n

| < x, fn > − < y, fn > |2 → 0, then ||x− y||2 → 0

i.e.,

A||x− y||2 ≤
∑

n

| < x, fn > − < y, fn > |2

where 0 < A <∞ is also a positive real constant, either greater or smaller
than 1. Again if y = 0 and < y, fn >= 0, we have:

A||x||2 ≤
∑

n

| < x, fn > |2 (2.241)

Combining Eqs.2.240 and 2.241, we have the following definition:

Definition 2.22. A family of finite or infinite vectors {fn} in Hilbert space H
is a frame if there exist two real constants 0 < A ≤ B <∞, called the lower and
upper bounds of the frame, such that for any x ∈ H, the following holds:

A||x||2 ≤
∑

n

| < x, fn > |2 ≤ B||x||2 (2.242)

In particular, if A = B, i.e.,

A||x||2 =
∑

n

| < x, fn > |2 (2.243)

then the frame is tight.

2.4.2 Signal Expansion by Frames and Riesz Bases

Our purpose here is to represent a given signal vector x ∈ H as a linear combi-
nation x =

∑
n cnfn of a set of frame vectors {fn}. The process of finding the
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coefficients cn needed in the combination can be considered as a frame transfor-
mation, denoted by F ∗, that maps the given x to a coefficient vector c:

F ∗x = c = [· · · , cn, · · · ]T = [· · · , < x, fn >, · · · ]T (2.244)

where we defined cn =< x, fn > following the unitary transformation in Eq.2.83,
and F ∗ is the adjoint of another transformation F , which can be found from the
following inner product (Eq.2.123):

< c, F ∗x >=
∑

n

cn < x, fn > =
∑

n

cn < fn, x >=<
∑

n

cnfn, x >=< Fc, x >

(2.245)
where F is an transformation that generates a vector as a linear combination of
frame {fn} based on a given set of coefficients:

Fc =
∑

n

cnfn (2.246)

Note that in general Fc $= x. We further define an operator FF ∗:

FF ∗x = F (F ∗x) = Fc =
∑

n

< x, fn > fn (2.247)

Applying its inverse (FF ∗)−1 to both sides of the equation, we get:

x = (FF ∗)−1[
∑

n

< x, fn > fn] =
∑

n

< x, fn > (FF ∗)−1fn

=
∑

n

< x, fn > f̃n =
∑

n

cnf̃n (2.248)

where f̃n, called the dual vector of fn, is defined as:

f̃n = (FF ∗)−1fn, i.e. fn = (FF ∗)f̃n (2.249)

We recognize that (FF ∗)−1F = (F ∗)− is actually the pseudo-inverse of F ∗, and
define it as another operator F̃ = (F ∗)−. Now Eq.2.248 can also be written as:

x = F̃c = F̃ [· · · , cn, · · · ]T =
∑

n

cnf̃n =
∑

n

< x, fn > f̃n (2.250)

This is the reconstruction of vector x based on the coefficients c obtained in
Eq.2.244.

The adjoint of F̃ can be found from the following inner product (reversal of
the steps in Eq.2.245):

< F̃c, x >=<
∑

n

cnf̃n, x >=
∑

n

cn < f̃n, x >=
∑

n

cn < x, f̃n > =< c, F̃ ∗x >

(2.251)
where F̃ ∗ is the adjoint of F̃ :

F̃ ∗x = [· · · , < x, f̃n >, · · · ]T = [· · · , dn, · · · ]T = d (2.252)

and we have defined dn =< x, f̃n >.
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Theorem 2.8. A vector x ∈ H can be equivalently represented by either of the
two dual frames {fn} or {f̃n}:

x =
∑

n

< x, f̃n > fn =
∑

n

< x, fn > f̃n (2.253)

Proof: Consider the inner product < x, x >, with the first x replaced by the
expression in Eq.2.248:

< x, x > = <
∑

n

< x, fn > f̃n, x >=
∑

n

< x, fn >< f̃n, x >

= < x,
∑

n

< f̃n, x >fn >=< x,
∑

n

< x, f̃n > fn > (2.254)

Comparing the two sides of the equation, we get:

x =
∑

n

< x, f̃n > fn (2.255)

Combining this result with Eq.2.248, we get Eq.2.253. This completes the proof.
Note that Eq.2.255 can also be written as the following due to Eq.2.246:

x =
∑

n

< x, f̃n > fn =
∑

n

dnfn = Fd (2.256)

We can now combine Eqs.2.244 and 2.252 together with Eq.2.253 to form two
alternative frame transformation pairs based on either frame {fn} or its dual
{f̃n}:
{

cn =< x, fn >
x =

∑
n cnf̃n =

∑
n < x, fn > f̃n

{
dn =< x, f̃n >
x =

∑
n dnfn =

∑
n < x, f̃n > fn

(2.257)
These equations are respectively the forward and inverse frame transformation
of x based on frame and its dual, which can also be expressed (due to Eqs.2.250
and 2.256) more concisely as:

{
c = F ∗x
x = F̃c

,

{
d = F̃ ∗x
x = Fd

(2.258)

The frame transformation pairs in Eqs.2.258 and 2.257 can be considered as the
generalization of the unitary transformation given in Eq.2.179. From Eq.2.258
we also see that

F̃F ∗x = FF̃ ∗x = x (2.259)

i.e., F̃F ∗ = FF̃ ∗ = I is an identity operator, same as UU ∗ = UU−1 = I in the
unitary transformation.

In frame transformation, the signal energy is related to the coefficients by:

||x||2 =< x, x > = < F̃c, x >=< c, F̃ ∗x >=< c, d >

= < Fd, x >=< d, F̃ ∗x >=< d, c > (2.260)
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However, we see that Parseval’s identity is no longer valid:

||c||2 =< c, c >=< F ∗x, F ∗x >=< FF ∗x, x > $=< x, x >= ||x||2

||d||2 < d, d >=< F̃ ∗x, F̃ ∗x >=< F̃ F̃ ∗x, x > $=< x, x >= ||x||2 (2.261)

To find out how the signal energy is related to the energy contained in either of
the two sets of coefficients, we need to study further the operator FF ∗. Consider
the inner product of Eq.2.247 and a vector y:

< FF ∗x, y >=
∑

n

< x, fn >< fn, y >=< x,
∑

n

< fn, y >fn >

= < x,
∑

n

< y, fn > fn >=< x, FF ∗y > (2.262)

which indicates that FF ∗ is a self-adjoint operator. If we let {λn} and {φn} be
the eigenvalues and eigenvectors of FF ∗, i.e.,

FF ∗φn = λnφn, (for all n) (2.263)

then all {λn} are real, and all {φn} are orthogonal < φm,φn >= δ[m− n] and
they form a complete orthogonal system (Theorem 2.4). Now x can also be
expanded in terms of these eigenvectors as:

x =
∑

n

< x,φn > φn (2.264)

and the energy contained in x is:

||x||2 =< x, x >=<
∑

m

< x,φm > φm,
∑

n

< x,φn > φn >

=
∑

m

∑

n

< x,φm > < x,φn > < φm,φn >=
∑

n

| < x,φn > |2 (2.265)

Correspondingly for the dual frame transformation F̃ , we have:

F̃ F̃ ∗ = [(FF ∗)−1F ] [(FF ∗)−1F ]∗ = (FF ∗)−1FF ∗(FF ∗)−1 = (FF ∗)−1 (2.266)

whose eigenvalues and eigenvectors are respectively {1/λn} and φn, i.e.,:

F̃ F̃ ∗φn = (FF ∗)−1φn =
1
λn
φn, (for all n) (2.267)

Theorem 2.9. The frame transformation coefficients cn =< x, fn > and dn =<
x, f̃n > satisfy respectively the following inequalities:

λmin||x||2 ≤
∑

n

| < x, fn > |2 = ||c||2 = ||F ∗x||2 ≤ λmax||x||2 (2.268)

1
λmax

||x||2 ≤
∑

n

| < x, f̃n > |2 = ||d||2 = ||F̃ ∗x||2 ≤ 1
λmin

||x||2 (2.269)

where λmin and λmax are respectively the smallest and largest eigenvalues of
the self-adjoint operator FF ∗. When all eigenvalues are the same, then λmax =
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λmin = λ, and the the frame is tight:
∑

n

| < x, fn > |2 = λ||x||2,
∑

n

| < x, f̃n > |2 =
1
λ
||x||2 (2.270)

Proof: Applying (FF ∗)−1 to both sides of Eq.2.256 we get:

(FF ∗)−1x =
∑

n

< x, f̃n > (FF ∗)−1fn =
∑

n

< x, f̃n > f̃n (2.271)

This result and Eq.2.247 form a symmetric pair:

(FF ∗)x =
∑

n

< x, fn > fn (2.272)

(FF ∗)−1x =
∑

n

< x, f̃n > f̃n (2.273)

Taking the inner product of each of these equations with x, we get:

< (FF ∗)x, x > =
∑

n

< x, fn >< fn, x >=
∑

n

| < x, fn > |2 (2.274)

< (FF ∗)−1x, x > =
∑

n

< x, f̃n >< f̃n, x >=
∑

n

| < x, f̃n > |2 (2.275)

These two expressions represent the energy contained in each of the two sets
of coefficients < x, fn > and < x, f̃n >. On the other hand, applying operator
FF ∗ to x in Eq.2.264, we get:

FF ∗x = FF ∗(
∑

n

< x,φn > φn) =
∑

n

< x,φn > FF ∗φn

=
∑

n

< x,φn > λnφn (2.276)

and

< FF ∗x, x > = <
∑

n

< x,φn > λnφn, x >=
∑

n

< x,φn > λn < φn, x >

=
∑

n

λn| < x,φn > |2
{
≤ λmax||x||2
≥ λmin||x||2

(2.277)

The last step is due to Eq.2.265. Now replacing the left hand side by Eq.2.274,
we get:

λmin||x||2 ≤
∑

n

| < x, fn > |2 ≤ λmax||x||2 (2.278)

Similarly, we can also get:
∑

n

| < x, f̃n > |2 =
∑

n

1
λn

| < x, φ̃n > |2 (2.279)
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and
1

λmax
||x||2 ≤

∑

n

| < x, f̃n > |2 ≤ 1
λmin

||x||2 (2.280)

The proof is complete.
Comparing these results with Parseval’s identity ||Ux||2 = ||x||2 (Eq.2.177)

for a unitary transformation, we see that the frame transformation does not
conserve signal energy, due obviously to the redundancy of the non-independent
frame vectors. However, as shown in Eq.2.260, the energy is conserved in the
following fashion when both sets of coefficients are involved:

||x||2 =< c, d >=
∑

n

< x, fn > < x, f̃n > (2.281)

Theorem 2.10. Let λk and φk be the kth eigenvalue and the corresponding
eigenvector of operator FF ∗:

FF ∗φk = λkφk, (for all k) (2.282)

Then
∑

k

λk =
∑

n

||fn||2 (2.283)

Proof: As noted before, FF ∗ is self-adjoint and λk’s are real and < φk,φl >=
δ[k − l]. We have:

∑

k

λk =
∑

k

λk < φk,φk >=
∑

k

< FF ∗φk,φk >

=
∑

k

<
∑

n

< φk, fn > fn,φk >=
∑

k

∑

n

| < fn,φk > |2(2.284)

On the other hand:

||fn||2 = < fn, fn >=<
∑

k

< fn,φk > φk,
∑

k

< fn,φl > φl >

=
∑

k

∑

l

< fn,φk > < fn,φl > < φk,φl >=
∑

k

| < fn,φk > |2

(2.285)

Therefore we get
∑

n

||fn||2 =
∑

n

∑

k

| < fn,φk > |2 =
∑

k

λk (2.286)

The proof is complete.

Definition 2.23. If the vectors in a frame are linearly independent, the frame
is called a Riesz basis.
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Theorem 2.11. (biorthogonality of Riesz basis) A Riesz basis {fn} and its dual
{f̃n} form a pair of biorthogonal bases satisfying

< fm, f̃n >= δ[m− n], m, n ∈ Z (2.287)

Proof: We let x = fm in Eq.2.253 and get:

fm =
∑

n

< fm, f̃n > fn (2.288)

Since these vectors are linearly independent, i.e., fm cannot be expressed as a
linear combination of the rest of the frame vectors, the equation above has only
one interpretation: all coefficients < fm, f̃n > for m $= n are zero except the mth
one < fm, f̃m >= 1. In other words, these frame vectors are orthogonal to their
dual vectors, i.e., Eq.2.288 holds. This completes the proof.

Summarizing the discussion above, we see that signal representation by a
set of orthogonal and linearly independent basis vectors x =

∑
n cnφn =

∑
n <

x, bn > xn (Eq.2.76) is much generalized to a set of frame vectors, which are in
general neither linearly independent nor orthogonal. Now the signal can be rep-
resented in either of the two mutually dual frames, and the frame transformation
and its inverse are pseudo-inverse of each other. Moreover, now the signal energy
is no longer conserved by the transformation, as Parseval’s identity is invalid due
to the redundancy in the frame. Instead, the signal energy and the energy in the
coefficients are related by Eqs.2.268, 2.269, and 2.281.

On the other hand, if specially the eigenvalues of operator FF ∗ are all the same,
then A = B = λ and the fame is tight. Moreover, if all eigenvalues are λ = 1, then
FF ∗ = I becomes an identity operator, i.e., F becomes a unitary operator satis-
fying F ∗ = F−1. Now the pseudo-inverse F− = (FF ∗)−1F ∗ = F ∗ = F−1 becomes
a regular inverse, the frame and its dual become identical (Eq.2.249). Moreover,
the biorthogonality in Eq.2.287 becomes regular orthogonality, and Eqs.2.281
become Parseval’s identity.

2.4.3 Frames in Finite-Dimensional Space

Here we consider the frame transformation in an N-D unitary space CN . Let
F = [f1, · · · , fM ] be an N by M matrix composed of a set of M frame vectors
as its columns. We assume M > N , and the M frame vectors are obviously not
independent. Now a vector x ∈ CN can be represented by either the frame F
or its dual F̃ = [f̃1, · · · , f̃M ]. To obtain the M coefficients, we apply the frame
operator F ∗ to x and get:

c =




< x, f1 >

...
< x, fM >



 =




f ∗1x

...
f ∗Mx





M×1

=




f ∗1
...

f ∗M





M×N

xN×1 = F ∗x (2.289)



80 Chapter 2. Vector Spaces and Signal Representation

This is the forward frame transformation F ∗x = c, which is actually a multipli-
cation of x by matrix F ∗, the adjoint or conjugate transpose of F , which can be
obtained as the pseudo-inverse (F ∗)− of f ∗ (Eq.2.249):

F̃ = [f̃1, · · · , f̃M ] = (FF ∗)−1F = (F ∗)− (2.290)

As the M by N matrix F ∗ is not invertible, the inverse transformation for the
reconstruction of x from c is a multiplication by the pseudo-inverse (F ∗)−1:

x = (F ∗)−c = F̃
∗
c = [f̃1, · · · , f̃M ]




< x, f1 >

...
< x, fM >



 =
M∑

n=1

< x, fn > f̃n

(2.291)
Alternatively, x can also be represented by the dual frame F̃ with coefficients:

d = F̃
∗
x =




f̃
∗
1
...

f̃
∗
M



x =




< x, f̃1 >

...
< x, f̃M >



 (2.292)

and the signal is represented as:

x = Fd = [f1, · · · , fM ]




< x, f̃1 >

...
< x, f̃M >



 =
M∑

n=1

< x, f̃n > fn (2.293)

Theorem 2.12. If a frame F = [f1, · · · , fM ] in CN is tight, i.e., all eigenvalues
A = B = λ of FF ∗ are the same, and all frame vectors are normalized ||fn|| = 1,
then the frame bound is M/N .

Proof: As FF ∗ is an N by N matrix, it has N eigenvalues λk = λ for all
k = 1, · · · , N . Then Theorem 2.10 becomes:

N∑

k=1

λk = Nλ =
M∑

n=1

||fn||2 = M (2.294)

i.e., λ = M/N . The proof is complete.
In particular, if M = N linearly independent frame vectors are used, then they

form a Riesz basis in CN , and F = [f1, · · · , fN ] becomes an N by N invertible
matrix, and its pseudo-inverse is just a regular inverse, and Eq.2.290 becomes:

F̃ = [f̃1, · · · , f̃N ] = (F ∗)− = (F ∗)−1 (2.295)

We now have:



f ∗1
...

f ∗N



 [f̃1, · · · , f̃N ] = F ∗F̃ = F ∗(F ∗)−1 = I (2.296)
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which indicates that these Riesz vectors are indeed biorthogonal:

< fm, f̃n >= δ[m− n], (m, n = 1, · · · , N) (2.297)

Moreover, if these N vectors are also orthogonal, i.e., < fm, fn >= δ[m− n],
then F = [f1, · · · , fN ] becomes a unitary matrix U = [u1, · · · , uN ] satisfying
U ∗ = U−1, and Ũ = (U ∗)−1 = U , i.e., the vectors are the dual of their own, and
they form an orthonormal basis of CN . Now the frame transformation becomes
a unitary transformation U ∗x = c and the inverse is simply Uc = x. Also the
eigenvalues of UU∗ = I are all λn = 1, and ||un||2 = 1, Theorem 2.10 holds
trivially.

Example 2.11: Three normalized vectors in R2 form a frame:

F = [f1, f2, f3] =
[
−1 1/2 1/2

0
√

3/2 −
√

3/2

]

and we have:

FF T =
3
2

[
1 0
0 1

]
, (FF T )−1 =

2
3

[
1 0
0 1

]

The eigenvalues of these two matrices are obviously λ1 = λ2 = 3/2 and 1/λ1 =
1/λ2 = 2/3, respectively, indicating this is a tight frame A = B. The dual frame
F̃ can be found as the pseudo-inverse of F T :

F̃ = [f̃1, f̃2, f̃3] = (FF T )−1F =
2
3
F =

[
−2/3 1/3 1/3

0
√

3/3 −
√

3/3

]

Any x = [x1, x2]T can be expanded in terms of either of the two frames:

x =
3∑

n=1

cnfn =
3∑

n=1

< x, fn > f̃n =
3∑

n=1

dnfn =
3∑

n=1

< x, f̃n > fn

where

c1 = x1, c2 =
1
2
[x1 +

√
3x2], c3 =

1
2
[x1 −

√
3x2]

and

d1 = x1, d2 =
1
3
[x1 +

√
3x2], d3 =

1
3
[x1 −

√
3x2]

The energy contained in the coefficients c and d is respectively:

||c||2 =
3∑

n=1

| < x, fn > |2 =
3
2
||x||2 = λ||x||2

and

||d||2 =
3∑

n=1

| < x, f̃n > |2 =
2
3
||x||2 =

1
λ
||x||2
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Specifically if we let x = [1, 2]T , then

c = F T x =




fT

1

fT
2

fT
3



x =




< x, f1 >
< x, f2 >
< x, f3 >



 =




−1

1 +
√

3
1−

√
3





and

d = F̃
T
x =




f̃

T
1

f̃
T
2

f̃
T
3



x =




< x, f̃1 >
< x, f̃2 >
< x, f̃3 >



 =
2
3




−1

1 +
√

3
1−

√
3





Example 2.12: Consider a frame in R2 containing three vectors that form a frame
matrix:

F = [f1, f2, f3] =
[

1 −1 0
0 1 1

]

and we have:

FF T =
[

2 −1
−1 2

]

with eigenvalues λ1 = 1, and λ2 = 3, The dual frame is the pseudo-inverse of
F T :

F̃ = (F T )− = (FF T )−1F =
1
3

[
2 −1 1
1 1 2

]

For a given vector x = [1, 2]T , we can find the coefficient vectors:

c = F T x = [1, 1, 2], d = F̃
T
x =

1
3
[4, 1, 5]T

We can verify that indeed x can be reconstructed from these coefficients:

x =
3∑

n=1

cnf̃n =
3∑

n=1

dnfn = [1, 2]T

The signal energy is ||x||2 = 5, and the energy contained in the coefficients is
||c||2 = 6 and ||d||2 = 14/3, respectively, bounded by:

λmin||x||2 = 5 < ||c||2 = 6 < λmax||x||2 = 15

and
1

λmax
||x||2 =

5
3

< ||d||2 =
14
3

<
1

λmin
||x||2 =

15
3
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Example 2.13: Consider a frame in R2 containing two vectors that form a frame
matrix:

F = [f1, f2] =
[

2 −1
1 −2

]

As f1 and f2 are linearly independent, they form a Riesz basis. We have:

FF T =
[

5 4
4 5

]

with eigenvalues λ1 = 1, and λ2 = 9, The dual frame is the pseudo-inverse of
F T :

F̃ = (F T )− = (FF T )−1F =
1
3

[
2 1

−1 −2

]

For a given vector x = [2, 3]T , we can find the coefficient vectors:

c = F T x = [7,−8], d = F̃
T
x =

1
3
[1,−4]T

We can verify that indeed x can be reconstructed from these coefficients:

x =
3∑

n=1

cnf̃n =
3∑

n=1

dnfn = [2, 3]T

The signal energy is ||x||2 = 13, and the energy contained in the coefficients is
||c||2 = 113 and ||d||2 = 17/9, respectively, bounded by:

λmin||x||2 = 13 < ||c||2 = 113 < λmax||x||2 = 117

and
1

λmax
||x||2 =

13
9

< ||d||2 =
17
9

<
1

λmin
||x||2 =

117
9

In this case, we also have:

F ∗F̃ = I

i.e., the two sets of mutually dual frame vectors are biorthogonal.

Example 2.14: Vectors f1 and f2 form a basis that spans the 2-D space:

f1 =
[

1
0

]
, f2 =

[
1
1

]
, f = [f1, f2] =

[
1 1
0 1

]

ffT =
[

2 1
1 1

]
, (ffT )−1 =

[
1 −1
−1 2

]
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The dual frame can be found to be:

f̃ = (ffT )−1f =
[

1 0
−1 1

]
i.e. f̃1 =

[
1
−1

]
, f̃2 =

[
0
1

]

Obviously the biorthogonality condition in Eq.2.287 is satisfied by these two sets
of bases. Next, to represent a vector x = [0, 2]T by each of the two bases, we find
the coefficients as:

c1 =< x, f̃1 >= 2; c1 =< x, f̃2 >= −2

d1 =< x, f1 >= 0; d2 =< x, f2 >= −2

Now we have:

x = c1f1 + c2f2 = 2
[

1
0

]
− 2
[
1
1

]
=
[

0
−2

]
or x = d1f̃1 + d2f̃2 = −2

[
0
1

]
=
[

0
−2

]

Example 2.15: Given a basis in R3:

f1 =




1
0
0



 , f2 =




1
1
0



 , f3 =




1
1
1





Find its biorthogonal dual f̃1, f̃2, f̃3, and two sets of coefficients ck and dk

(k = 1, 2, 3) to represent a vector x = [1, 2, 3]T .
Solution: We need to find f̃ i that is orthogonal to all f j except i = j (i, j =

1, 2, 3).

f̃ = (ffT )−1f =




1 −1 0
−1 2 −1

0 −1 2








1 1 1
0 1 1
0 0 1



 =




1 0 0
−1 1 0

0 −1 1





f̃1 =




1
−1

0



 , f̃2 =




0
1
−1



 , f̃3 =




0
0
1





Find coefficients ci for f i by c = f̃
T
x, i.e.,

c1 =< x, f̃1 >= −1, c2 =< x, f̃1 >= −1, c3 =< x, f̃1 >= 3

Find coefficients di for f̃ i by d = fT x, i.e.,

d1 =< x, f1 >= 1, d2 =< x, f1 >= 3, d3 =< x, f1 >= 6

Now x can be expressed as:

x =
3∑

k=1

ckfk = −




1
0
0



−




1
1
0



+ 3




1
1
1



 =




1
2
3
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x =
3∑

k=1

dkf̃k =




1
−1

0



+ 3




0
1

−1



+ 6




0
0
1



 =




1
2
3





We can further verify that
3∑

k=1

< x, f̃k >< x, fk >= ||x||2 = 14

2.5 Kernel Function and Mercer’s Theorem

Definition 2.24. A kernel is a function K that maps two continuous variable
t, τ to a complex value K(t, τ). If the two variables are sampled to become discrete
tm, tn, then the kernel is K(tm, tn) = Kmn.

Definition 2.25. If K(t, τ) = K(τ, t) or Kmn = Knm, the kernel is Hermitian.

Definition 2.26. A kernel is positive definite if the following holds for any
function x(t) defined over [a, b]:

∫ ∫ b

a
x(t)K(t, τ)x(τ)dτ dt > 0 (2.298)

A kernel Kmn is positive definite if the following holds for any vector x =
[x1, · · · , xN ]:

N∑

m=1

N∑

n=1

xmKmnxn > 0 (2.299)

Definition 2.27. Associated with a continuous kernel K(t, τ) an operator TK

can be defined as:

TKx(t) =
∫ b

a
K(t, τ)x(τ)dτ = y(t) (2.300)

Associated with a discrete kernel Kmn an operator TK can be defined as a matrix:

T =





K11 K12 · · · K1N

K21 K22 · · · K2N

... · · ·
. . .

...
KN1 KN2 · · · KNN




(2.301)
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which can be applied to a vector x to generate:

TKx = Tx = y, or in component form:
N∑

m=1

Kmnxm = yn, (n = 1, · · · , N)

(2.302)

Theorem 2.13. The operator TK associated with a Hermitian kernel is self-
adjoint.

Proof: For operator TK associated with a continuous kernel, we have:

< TKx(t), y(t) >=
∫ b

a
TKx(t) y(t)dt =

∫ b

a
[
∫ b

a
K(t, τ)x(τ)dτ ] y(t)dt

=
∫ b

a
[
∫ b

a
K(τ, t)y(t)dt] x(τ)dτ =

∫ b

a
x(τ) TKy(τ)dτ =< x(t), TKy(t) >

(2.303)

For operator TK = T associated with a discrete kernel, we have:

< Tx, y >=
N∑

n=1

[
N∑

m=1

Kmnxm

]
yn =

N∑

m=1

xm

[
N∑

n=1

Kmnyn

]
=< x, Ty >

(2.304)

As a self-adjoint operator TK associated with a Hermitian kernel has all the
properties of a self-adjoint operator stated in Theorem 2.4. Specifically, let λn

be the nth eigenvalue of a self-adjoint operator TK and φn(t) or φn be the
corresponding eigenfunction or eigenvector:

∫ b

a
K(t, τ)φn(τ)dτ = λnφn(t), or TKφn = Tφn = λmφn (2.305)

then the following statements are true:

1. All eigenvalues λn are real;
2. All eigenfunctions/eigenvectors are mutually orthogonal:

< φm(t),φn(t) >=< φm,φn >= δ[m− n] (2.306)

3. All eigenfunctions/eigenvectors form a complete orthogonal system, i.e., they
form a basis that spans the function/vector space.

Theorem 2.14. (Mercer’s Theorem) Let K(t, τ) be a positive definite Hermitian
kernel, and λn and φn(t) (n = 1, 2, · · · ) be the nth eigenvalue and the correspond-
ing eigenfunction of the associated operator TK . Then the kernel can be expanded
to become:

K(t, τ) =
∞∑

n=1

λnφn(t)φn(τ) (2.307)
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The general proof of this theorem in Hilbert space is beyond the scope of
this book and therefore omitted. However, we can prove the special case of the
theorem in the N-D unitary space:

Theorem 2.15. Let K[m, n] be a positive definite Hermitian kernel, and λk and
φk (k = 1, 2, · · · ) be the kth eigenvalue and the corresponding eigenvector of the
associated operator T . Then the kernel can be expanded to become:

T =
N∑

k=1

λkφkφk (2.308)

Proof: Since the discrete kernel is Hermitian: K[m, n] = K[n, m] for all m, n =
1, · · · , N , they form Hermitian matrix matrix T = T ∗, which is a self-adjoint
operator in CN :

< Ax, y >=< x, Ay >

as previously shown in Eq.2.139. Also, we have shown in Eq.2.146 that this
self-adjoint operator T can be expanded:

T =
N∑

k=1

λkφkφ
∗
k (2.309)

i.e., the element in mth row and nth column of T is:

K[m, n] =
N∑

k=1

λkφmkφnk (m, n = 1, · · · , N) (2.310)

where φmk is the mth element of the mth eigenvector φk. This is the discrete
and finite version of Mercer’s theorem in an N-D unitary space. This completes
the proof.

We see that the result in Eq.2.305 can be easily derived from Eq.2.307:
∫ b

a
K(t, τ)φm(τ)dτ =

∫ b

a

[ ∞∑

n=1

λnφn(t)φn(τ)

]
φm(τ)dτ

=
∞∑

n=1

λnφn(t)
∫ b

a
φn(τ)φm(τ)dτ =

∞∑

n=1

λnφn(t)δ[m− n] = λmφm(t)

(2.311)

Mercer’s theorem will be used later in Chapter 8, and it also finds important
applications in machine learning as the foundation of a type of methods called
kernel trick.

As an example, consider a centered stochastic process x(t) with µx(t) = 0 for
all t. The covariance function is:

σ2
x(t, τ) = E[(x(t) − µx(t)) (x(τ) − µx(τ))] = E[x(t)x(τ)] = E[x(τ)x(t)] = σ2

x(τ, t)
(2.312)
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As this covariance function maps two variables t and τ to a real value, it can be
considered as a kernel K(t, τ) = σ2

x(t, τ), which is symmetric and also positive
definite, i.e., for any deterministic function f(t), we have:

∫ b

a

∫ b

a
f(t)σ2

xf(τ) dt dτ =
∫ b

a

∫ b

a
E[f(t)x(t) f(τ)x(τ)] dt dτ

= E

∫ b

a
f(t)x(t) dt

∫ b

a
f(τ)x(τ) dτ = E|

∫ b

a
f(t)x(t) dt|2 > 0 (2.313)

According to theorems above, the integral operator TK associated with this Her-
mitian kernel K(t, τ) is self-adjoint, its eigenequation can be written as:

Tkφk(t) =
∫ b

a
σ2

x(t, τ)φk(t)dt = λkφk(t), k = 1, 2, · · · (2.314)

where all eigenvalues λk > 0 are real and positive, and the eigenfunctions φk(t)
are orthogonal:

< φm(t),φn(t) >=
∫ b

a
φm(t)φn(t)dt = δ[m− n] (2.315)

If the stochastic process x(t) is truncated and sampled, it become a random
vector x = [x1, · · · , xN ]T . The covariance between any two components xm and
xn is

σ2
mn = E(xmxn) = E(xnxm) = σ2

nm, (m, n = 1, · · · , N) (2.316)

which is a discrete Hermitian kernel, and the associated operator is the N by N
covariance matrix of x:

Σx = E(xx∗) =





σ2
11 σ2

12 · · · σ2
1N

σ2
21 σ2

22 · · · σ2
2N

... · · ·
. . .

...
σ2

N1 σ
2
N2 · · · σ2

NN




(2.317)

The eigenequation of this operator is

Σxφn = λnφn, (n = 1, · · · , N) (2.318)

As Σ∗ = Σ is Hermitian (symmetric if x is real) and positive definite, its eigen-
values λk are all real positive, and the eigenvectors are orthogonal:

< φm,φn >= φT
mφn = δ[m− n], (m, n = 1, · · · , N) (2.319)

and they form a unitary matrix Φ = [φ1, · · · ,φN ] satisfying Φ−1 = Φ∗ i.e.,
Φ∗Φ = I. Eq.2.318 can also be written in the following forms:

ΣxΦ = ΦΛ, Φ∗ΣxΦ = Λ, Σx = ΦΛΦ∗ =
N∑

n=1

λnφnφ
∗
n (2.320)
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Theorem 2.16. (Karhunen-Loeve Theorem) Let x(t) be a centered stochastic
process x(t) with µx(t) = E[x(t)] = 0, and λk and φk(t) be respectively the kth
eigenvalue and the corresponding eigenfunction of the integral operator associated
with the covariance σ2

x(t, τ):

TKφk(t) =
∫ b

a
σ2

x(t, τ)φk(t)dt = λkφk(t), for all k (2.321)

Then x(t) can be series expanded:

x(t) =
∞∑

n=1

cnφn(t) (2.322)

where the cn is a random coefficient given by

cn =
∫ b

a
x(t)φn(t)dt, n = 1, 2, · · · (2.323)

which are centered (zero mean)

E(cn) = 0 (2.324)

and uncorrelated:

σ2
mn = Cov(cm, cn) = λm δ[m− n], i.e., σ2

n = V ar(cn) = λn (2.325)

Proof: We first show that Eq.2.323 can be obtained by taking an inner product
with φm(t) on both sides of Eq.2.322:

< x(t),φm(t) >=
∫ b

a
x(t)φn(t)dt =

∞∑

n=1

cn < φn(t),φm(t) >=
∞∑

n=1

cnδ[m− n] = cm

(2.326)
The expectation of this equation is indeed zero:

E(cm) = E[
∫ b

a
x(t)φm(t)dt] =

∫ b

a
E[x(t)] φm(t)dt = 0 (2.327)

Next we show that Eq.2.325 holds:

σ2
mn = Cov(cm, cn) = E(cmcn) = E[

∫ b

a
x(t)φm(t)dt

∫ b

a
x(τ)φn(τ)dτ ]

=
∫ b

a
[
∫ b

a
φn(τ)E[x(t)x(τ)]dτ ]φm(t)dt =

∫ b

a
[
∫ b

a
φn(τ)σ2

x(t, τ)dτ ] φm(t)dt

=
∫ b

a
λnφn(t)φm(t)dt = λn

∫ b

a
φl(t)φm(t)dt = λm δ[m− n] (2.328)

This completes the proof.
When the centered stochastic process x(t) is truncated and sampled to become

a finite random vector x = [x1, · · · , xN ]T with E(x) = µx = 0, the Karhunen-
Loeve theorem takes a discrete form. Given Eq.2.318, x can be series expanded
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to become a linear combination of the eigenvectors φn of its covariance matrix
Σx:

x =
N∑

n=1

cnφn = Φc (2.329)

where c = [c1, · · · , cN ]T is a random vector formed by the N coefficients. To
obtain these coefficients, we pre-multiply both sides by Φ−1 = Φ∗ to get:

Φ∗x = c (2.330)

i.e.,

cn =< x,φn >= φ∗nx, (n = 1, · · · , N) (2.331)

The mean vector of c is zero:

µc = E(c) = E(Φ∗x) = Φ∗E(x) = 0 (2.332)

and the covariance matrix of c is:

Σc = E(cc∗) = E[(Φ∗x)(Φ∗x)∗] = E[Φ∗xx∗Φ]
= Φ∗E(xx∗)Φ = Φ∗ΣxΦ = Λ (2.333)

The last equal sign is due to Eq.2.320. The covariance matrix Σc = Λ is diago-
nalized:

σ2
mn = λnδ[m− n], (m, n = 1, · · · , N) (2.334)

We see that the variance σ2
n of the nth coefficient cn is the nth eigenvalue λn

corresponding to the nth eigenvector φn, and the random signal x is decorrelated
by the transformation c = Φ∗x in Eq.2.330, as the components cm and cn of the
resulting random signal c are no longer correlated (σ2

mn = 0).
Comparing the generalized Fourier expansion in Eqs.2.114 and 2.115 with

this Karhunen-Loeve series expansion in Eqs.2.322 and 2.323, we see that they
are identical in form. However, we need to make it clear that the former is
for a deterministic signal with a set of pre-determined basis functions φn(t),
while the latter is for a stochastic signal, and the basis functions φn(t), as the
eigenfunctions of the integral operator associated with the covariance function
of the stochastic process, are completely dependent on the specific signal being
considered. Eqs.2.329 and 2.330 are simply the discrete version of Eqs.2.322 and
2.323, which correspond to the discrete version of the Fourier transform, as we
will see later.
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2.6 Summary

Let us summarize the most essential points discussed so far. These will appear
repeatedly in the following chapters during the specific discussion of various
orthogonal transform methods.! A time signal can be considered as a vector x ∈ H in a Hilbert space. Specifi-

cally, a continuous signal x(t) over time interval a ≤ t ≤ b is a vector x = x(t)
in a function space; and its discrete samples · · · , x[n− 1], x[n], x[n + 1], · · · is
a vector x = [· · · , x[n], · · · ]T in an N-D unitary space CN .! Under the basis {bn} that span the space H , a signal vector can be represented
by the following expansion:

x =
∑

n

cnbn =
∑

n

< x, bn > bn (2.335)

where cn =< x, bn > is the decomposition or analysis of the signal by which
the signal is decomposed into a set of components cnbn, and x =

∑
n cnbn

is the reconstruction or synthesis of the signal by which the signal is recon-
structed by its components.! The representation of the signal vector depends on the specific basis used.
A signal typically given in its original form x(t) or x = [· · · , x[n], · · · ]T is
represented as a sequence of weighted and shifted time impulses (Eqs.1.3 and
1.6). Specifically, a continuous signal is expressed as:

x(t) =
∫

x(τ)δ(t − τ)dτ, (for all t) (2.336)

while a discrete signal is expressed as:

x =
∑

n

x[n]en, or x[m] =
∑

n

x[n]emn =
∑

n

x[n]δ[m− n], (for all m)

(2.337)
where δ(t− τ) or emn = δ[m− n] can be considered as the standard basis
which is always implicitly used to represent a time signal. In other words, a
signal x(t) or x[n] is always given as a set of coefficients, or weights, for the
standard basis.! Alternatively, the same signal can also be represented under a different
orthonormal basis obtained by some unitary transformation or rotation of
the standard basis. For a continuous signal x(t), we have:

x(t) =
∫

c(f)φf (t) df, (for all t)

c(f) = < x(t),φf (t) >=
∫

x(t)φf (t) dt, (for all f) (2.338)

The first equation expresses the signal function x(t) as a linear combination
of a set of uncountable basis functions φf (t) (sometimes also expressed as
φ(t, f)). The second equation, also called an integral transform of x(t), gives
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the coefficient function c(f) of the linear combination as the projection of x(t)
onto the basis function φf (t), which is also called the kernel function of the
transform.
Similarly, for a discrete signal x = [· · · , x[n], · · · ]T , we have

x =
∑

m

cmbm, or x[n] =
∑

m

cmbnm, (for all n)

cm = < x, bm >=
∑

n

x[n]bnm, (for all m) (2.339)

where x[n] is the nth element of x, and bnm is the nth element of the mth
basis vector bm. The first equation expresses the signal vector as a linear
combination of a set of countable basis vectors bm (or in component form bnm)
for all m. The second equation gives the mth coefficient cm as the projection
of the signal x onto the corresponding basis vector bm.
Both of the two pairs of equations above are unitary (orthogonal if real)
transformations, which could be either continuous or discrete. In either case,
the second equation is the forward transform that converts the time signal
given under the implicit standard basis to a continuous coefficient function or
a set of discrete coefficients with respect to a new basis; while the first equation
is the inverse transform that represents the signal as a linear combination of
the new basis weighted by the coefficients.! A signal vector in its vector space can be represented in many different ways,
each corresponding to one of the infinitely many possible orthogonal bases all
spanning the same vector space. All these representations of the signal are
equivalent, in the sense that the total amount of energy or information con-
tained in the signal, represented by its norm of the vector, is conserved. This
is because any two orthogonal bases are always related by a unitary transfor-
mation, which preserves the norm of the vector according to the Parseval’s
equality.! The unitary transformation, a rotation, of a basis will result in another basis,
which needs a different set of coefficients for the representation of a given
signal. In particular, the signal originally given in the implicit standard basis
also corresponds to a special unitary transformation, the identity transform.
In an alternative but equivalent view, the signal vector itself, originally given
under the standard basis, can be rotated differently according to the transform
method used. The central theme of the book is to study the various orthogonal
transform methods, each corresponding to a different representation of the
same signal. Also an issue of interest is how to find the “optimal” transform
among all possible transforms according to some criteria.! The topics of interest in the future discussion include: why such an unitary
transformation is desirable to start with, and how to find a particular basis
most suitable for a specific task, so that the signal is represented in such a
way that it can be most effectively and conveniently processed, analyzed, com-
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pressed for transmission and storage, and the information of interest extracted.
These issues will be specifically discussed in the rest of the book.! We will discuss mostly orthogonal transforms based on orthogonal basis vec-
tor or functions. The inner product of any two such basis vectors or functions
is zero, indicating they each carry some independent information. However,
sometimes certain non-orthogonal basis functions will also be considered, such
as in the discussion of various wavelet transforms. In such cases, the inner
product of two basis functions may not be zero, i.e., one is correlated with
the other. In other words, there exists some redundancy in terms of the infor-
mation they each carry. Although such redundancy is obviously a drawback
in terms of data compression, it is not always necessarily bad in terms of
reconstruction of signals when noise is present.

2.7 Problems

1. Approximate a given 3-D vector x = [1, 2, 3]T in an 2-D subspace spanned
by the two standard basis vectors e1 = [1, 0, 0]T and e2 = [0, 1, 0]T . Of course
this approximation is trivial as the vector is originally given in terms of the
three standard basis vectors e1, e2 and e3. Now the two coefficients are simply
the projections of the vector x onto each of the two standard basis vectors of
the 2-D subspace:

c1 =< x, e1 >= 1, c1 =< x, e2 >= 2

The approximation is simply

x̂ = c1e1 + c2e2 = [1, 2, 0]T

and the error vector is

x̃ = x− x̂ = [1, 2, 3]T − [1, 2, 0]T = [0, 0, 3]T

which is of course orthogonal to both e1 = [1, 0, 0]T and e1 = [0, 1, 0]T .
Next, we use two different basis vectors to span a 2-D subspace:

a1 = [1, 0,−1]T , a2 = [−1, 2, 0]T

We need to find a vector in this 2-D subspace

x̂ = c1a1 + c2a2

so that the error ||x− x̂|| is minimized.
According to the projection theorem, to reach minimum error, the error vec-
tor x− x̂ has to be orthogonal to the basis functions a1 and a2 of the 2-D
subspace:

< x− x̂, ak >=< x− c1a1 − c2a2, ak >= 0, (k = 1, 2)
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i.e.,
{

c1 < a1, a1 > +c2 < a1, a2 >=< x, a1 >
c1 < a1, a2 > +c2 < a2, a1 >=< x, a2 >

This equation system can be expressed in matrix form:
[

< a1, a1 > < a2, a1 >
< a1, a2 > < a2, a2 >

] [
c1

c2

]
=
[

2 −1
−1 5

] [
c1

c2

]
=
[

< x, a1 >
< x, a2 >

]
=
[
−2

3

]

Solving this equation system we get c1 = −7/9 and c2 = 4/9. Of course we
could also directly use the pseudo inverse method to get the same results:

c = (aT a)−1aT x

=




[

1 0 −1
−1 2 0

]


1 −1
0 2

−1 0









−1 [
1 0 −1
−1 2 0

]


1
2
3



 =
1
9

[
−7

4

]

Having found c1 and c2, we further get

x̂ = c1a1 + c2a2 = −7
9




1
0

−1



+
4
9




−1

2
0



 =
1
9




−11

8
7





The error vector is:

x̃ = x− x̂ =




1
2
3



− 1
9




−11

8
7



 =
1
9




20
10
20





which is orthogonal to the 2-D plane spanned by a1 and a2:

< x̃, a1 >=< x̃, a2 >= 0

indicating that x̂ is indeed the optimal approximation of x in the 2-D sub-
space.
In particular, if two orthonormal basis vectors are used to span the 2-D sub-
space, then the off-diagonal elements of the 2 by 2 matrix above are zero, and
all elements on the main diagonal are one, and consequently the coefficients
c1 and c2 can be much more conveniently obtained the as length of the pro-
jections of x onto the two basis vectors, as can be illustrated in the following
example.

2. Use the Gram-Schmidt orthogonalization process to construct two new
orthonormal basis vectors b1 and b2 from the two old vectors a1 and a2

used in the previous example, so that they span the same 2-D space, and then
re-approximate the vector x = [1, 2, 3]T above. Now the coefficients c1 and c2

can be easily found without solving a linear equation system. This problem is
left for the reader as an exercise.
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First, let o1 = a1. Second, let

o2 = a2 − Po1(a2) = a2 −
< a1, a2 >

< a1, a1 >
a1 =




−1

2
0



+




0.5

0
−0.5



 =




−0.5

2
−0.5





The new basis vectors are indeed orthogonal: < o1, o2 >= 0 and the coeffi-
cients can be found to be:

c1 =
< x, o1 >

< o1, o1 >
= −1

c2 =
< x, o2 >

< o2, o2 >
= 4/9

and the approximation is

x̂ = c1a1 + c2a2 = −




1
0
−1



+
4
9




−0.5

2
−0.5



 =
1
9




−11

8
7





which is the same as what we got using a1 and a2 before.
3. Approximate a function x(t) = t2 defined over an interval [0, 1] in a 2-D space

spanned by two basis functions a1(t) and a1(t):

a1(t) = 1, a2(t) =
{

0 (0 ≤ t < 1/2)
1 (1/2 ≤ t < 1)

As < a1(t), a2(t) >=
∫

a1(t)a2(t)dt $= 0, the basis functions are not orthogonal
and we have to solve a linear equation system to find the coefficients c1 and
c2:

[
< a1(t), a1(t) > < a2(t), a1(t) >
< a1(t), a2(t) > < a2(t), a2(t) >

] [
c1

c2

]
=
[

< x(t), a1(t) >
< x(t), a2(t) >

]

All six inner products can be easily found by carrying out the following six
integrals:

∫ 1

0
a2
1(t)dt = 1,

∫ 1

0
a1(t)a2(t)dt =

∫ 1

0
a2
2(t)dt = 1/2,

∫ 1

0
x(t)a1(t)dt =

1
3
,

∫ 1

0
x(t)a2(t)dt =

7
24

Now we have
[

1 1/2
1/2 1/2

] [
c1

c2

]
=
[

1/3
7/24

]

Solving this we get c1 = 1/12 and c2 = 1/2, and

x̂(t) = c1a1(t) + c2a2(t) =
1
12

a1(t) +
1
2
a2(t) =

{
1/12 0 ≤ t < 1/5
7/12 1/5 ≤ 1

This result is shown in the plot on the left in Fig. 2.13.
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4. If we redefine the second basis function a2(t) as

a2(t) =
{
−1 (0 ≤ t < 1/2)

1 (1/2 ≤ t < 1)

it becomes orthogonal to the first function a1(t):

< a1(t), a2(t) >=
∫ 1

0
a1(t)a2(t)dt = 0

and they are actually the first two basis function of an orthogonal Walsh-
Hadamard transform (WHT) to be discussed in details later. we can find c′1
and c′2 from this equation system

[
< a1(t), a1(t) > 0

0 < a2(t), a2(t) >

] [
c′1
c′2

]
=
[

< x(t), a1(t) >
< x(t), a2(t) >

]

Note that all off-diagonal elements of the matrix equal to zero due to the
fact that the two basis functions are orthogonal. Moreover, as a2(t) is also
normalized as well as a1(t):

∫ 1

0
a2(t)a2(t)dt =

∫ 1

0
a1(t)a1(t)dt = 1

all elements along the mail diagonal are 1, i.e., the two coefficients can be
directly obtained as:

c′1 = < x(t), a1(t) >=
∫ 1

0
x(t)a1(t)dt =

1
3

c′2 = < x(t), a2(t) >=
∫ 1

0
x(t)a2(t)dt =

1
4

and the estimated signal is exactly the same as before:

x̂(t) =
1
3
a1(t) +

1
4
a2(t) =

{
1/12 0 ≤ t < 1/5
7/12 1/5 ≤ 1

5. Based on the previous example, we add one more basis function defined as:

a3(t) =






1 (0 ≤ t < 1/4)
−1 (1/4 ≤ t < 3/4)
1 (3/4 ≤ t < 1)

so that the 2-D space is expanded to a 3-D space spanned by a1(t), a2(t) and
a3(t), which are actually the first three basis functions of the Walsh-Hadamard
transform. In general, when adding a new basis function, the coefficients for
the previous basis function may need to be recalculated. However, in this case
the three basis function are orthonormal:

< am(t), an(t) >=
∫ 1

0
am(t)an(t)dt = δ[m− n]
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Figure 2.13 Approximation of x(t) = t2 in 2-D (left) and 3-D (right)

Figure 2.14 First three basis functions of WHT

the coefficients c1 = 1/3 and c2 = 1/4 obtained previously are still valid, and
the computation for the coefficient c3 can be carried out independently:

c3 =
∫

x(t)a3(t)dt =
∫ 1/4

0
t2dt−

∫ 3/4

1/4
t2(t)dt +

∫ 1

3/4
t2(t)dt =

1
16

and the optimal approximation becomes:

x̂(t) =
1
3
a1(t) +

1
4
a2(t) +

1
16

a3(t)

This result is shown in the plot on the right in Fig. 2.13. Also, the first three
basis functions of the Walsh-Hadamard transform used here are shown in Fig.
2.14.

6. Approximate the same function x(t) = t2 above in a 3-D space spanned by
three basis functions , defined over the same time period (0 ≤ t < 1):

a1(t) = cos(0πt) = 1; a2(t) =
√

2 cos(πt); a2(t) =
√

2 sin(2πt)

We leave his problem to the reader as an exercise.
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7. Approximate a function x(t) = t2 defined over an interval [0, 1] in a 2-D sub-
space spanned by two basis functions a0(t) and a1(t):

x̂(t) = c0a0(t) + c1a1(t)

a. Find the coefficients c0 and c1 for these basis functions:

a0(t) = 1, a1(t) =
{

0 (0 ≤ t < 1/2)
1 (1/2 ≤ t < 1)

Solution:
To find the coefficients c0 and c1, we need to solve a linear equation system:

[
< x(t), a0(t) >
< x(t), a1(t) >

]
=
[

< a0(t), a0(t) > < a1(t), a0(t) >
< a0(t), a1(t) > < a1(t), a1(t) >

] [
c0

c1

]

All six inner products can be easily found to be:

< x(t), a0(t) > =
∫ 1

0
x(t)a0(t)dt =

1
3

< x(t), a1(t) > =
∫ 1

0
x(t)a1(t)dt =

7
24

< a0(t), a0(t) > =
∫ 1

0
a2
1(t)dt = 1

< a0(t), a1(t) > = < a1(t), a0(t) >=< a1(t), a1(t) >=
1
2

Note that < a0(t), a1(t) > $= 0, i.e., they are not orthogonal. Now we have
[

1/3
7/24

]
=
[

1 1/2
1/2 1/2

] [
c0

c1

]

Solving this we get c0 = 1/12 and c1 = 1/2, and

x̂(t) =
1
12

a0(t) +
1
2
a1(t) =

{
1/12 0 ≤ t < 1/2
7/12 1/2 ≤ t < 1

b. Find the coefficients c0 and c1 for these basis functions:

a0(t) = 1, a1(t) =
{

1 (0 ≤ t < 1/2)
−1 (1/2 ≤ t < 1)

Compare the results with the first part.
Solution:
Note that they are orthogonal

< a0(t), a1(t) >=
∫ 1

0
a0(t)a1(t)dt = 0

The given function can now be approximated as

x̂(t) = c0a0(t) + c1a1(t)



Vector Spaces and Signal Representation 99

and c0 and c1 can be obtained from this equation system
[

< x(t), a0(t) >
< x(t), a1(t) >

]
=
[

< a0(t), a0(t) > 0
0 < a1(t), a1(t) >

] [
c0

c1

]

With all the off-diagonal elements of the matrix equal to zero, this equation
system can be easily solved to get:

c0 =
< x(t), a0(t) >

< a0(t), a0(t) >
=
∫ 1
0 x(t)1(t)dt
∫ 1
0 a1(t)a1(t)dt

=
1
3

c1 =
< x(t), a1(t) >

< a1(t), a1(t) >
=
∫ 1
0 x(t)a1(t)dt
∫ 1
0 a1(t)a1(t)dt

= −1
4

and

x̂(t) =
1
3
a0(t)−

1
4
a1(t) =

{
1/12 0 ≤ t < 1/2
7/12 1/2 ≤ t < 1

In particular, the coefficient c0 = 1/3 for the first basis function a0(t) = 1
is the average or the DC component of the signal x(t) = t2, i.e.,

c0 =
1
T

∫

T
x(t)dt

c. In order to better approximate the given function x(t) = t2, a third basis
function a2(t) is included in addition to the two basis functions a0(t) and
a1(t) used in the previous part:

a2(t) =






0 (0 ≤ t < 1/2)
1 (1/2 ≤ t < 3/4)
−1 (3/4 ≤ t < 1)

These three basis functions are three of the first four Haar transform basis
functions. Find the coefficient c0, c1 and c2 to optimally approximate x(t).
Solution: As a2(t) is orthogonal to both a0(t) and a1(t), we can find its
coefficient c2 independent of c0 and c1 obtained previously:

c2 =
< x(t), a2(t) >

< a2(t), a2(t) >
=
∫ 1
0 x(t)a2(t)dt
∫ 1
0 a2(t)a2(t)dt

= − 3
16

Now we have:

x̂(t) =
1
3
a0(t)−

1
4
a1(t)−

3
16

a2(t) =






1/12 0 ≤ t < 1/2
19/48 1/2 ≤ t < 3/4
37/48 3/4 ≤ t < 1

8. Approximate the same function x(t) = t2 above in a 3-D space spanned by
three basis functions a0(t) = 1, a1(t) =

√
2 cos(πt), and a2(t) =

√
2 cos(2πt),

defined over the same time period. These happen to be the first three basis
functions of the cosine transform.



100 Chapter 2. Vector Spaces and Signal Representation

Hint: The following integral may be needed:
∫

x2 cos(ax)dx =
2x cos(ax)

a2
+

a2x2 − 2
a3

sin(ax) + C

Solution:
First realize that these basis functions are orthonormal < ai(t), aj(t) >= δ[i−
j], therefore we simply have

c1 =
∫

x(t)a1(t)dt =
∫ 1

0
t2dt = 1/3

c2 =
∫

x(t)a2(t)dt =
√

2
∫ 1

0
t2 cos(πt)dt = −

√
8/π2 ≈ −0.29

c3 =
∫

x(t)a3(t)dt =
√

2
∫ 1

0
t2 cos(2πt)dt = 1/2π2 = 0.05

9. In Example 2.10 we approximated the temperature signal, a 8-D vector x =
[65, 60, 65, 70, 75, 80, 75, 70]T , in a 3-D subspace spanned by three orthogonal
basis vectors. This process can be continued by increasing the dimensionality
from 3 to 8, so that the approximation error will be progressively reduced to
reach zero, when eventually the signal vector is represented in the entire 8-D
vector space. Consider the 8 orthogonal basis vectors shown below as the row
vectors in this matrix (Walsh-Hadamard transform matrix):

Hw =
1√
8





1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1





Note that the first three rows are used in the example. Now approximate the
same signal by using 1 to all 8 rows as the basis vectors. Plot the original
signal and the approximation in k-D subspaces for k = 1, 2, · · · , 8, adding
one dimension at a time for more detailed variations in the signal. Find the
coefficients ck and the error in each case. Consider using some software tool
such as Matlab.

10. The same temperature signal in Example 2.10 x =
[65, 60, 65, 70, 75, 80, 75, 70]T can also be approximated using a set of
different basis vectors obtained by sampling the following cosine functions:

a0(t) = 1, a1(t) =
√

2 cos(πt), a2(t) =
√

2 cos(2πt)

at 8 equally points nk = 1/16 + n/8 = 0.0625 + n× 0.125, (n = 1, 2, · · · , 8).
The resulting vectors are actually used in the discrete cosine transform to be
discussed later. Find the coefficients ck and error for each approximation in a
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k-D subspace (k = 1, 2, · · · , 8), and plot the original signal together with the
approximation for each case. Use a software tool such as Matlab.
Solution:

a1 = [1, 1, 1, 1, 1, 1, 1, 1]T/8,

a2 = [1.387, 1.176, 0.786, 0.276,−0.276,−0.786,−1.176,−1.287]T/8,

a3 = [1.307, 0.541,−0.541,−1.307,−1.307,−0.541, 0.541, 1.307]T/8

c1 =< x, b1 >= 70; c1 =< x, b2 >= −4.72; c1 =< x, b3 >= −2.31

c1 is the average temperature, c2 = −4.72 indicates morning temperature is
4.71 degrees lower than afternoon, and c3 indicates night temperature is 2.31
degrees lower than day time temperature.



3 Continuous-Time Fourier
Transform

3.1 The Fourier Series Expansion of Periodic Signals

3.1.1 Formulation of The Fourier Expansion

As we have already seen in the previous chapter, the second-order differential
operator D2 over the interval [0, T ] is a self-adjoint operator, and its eigenfunc-
tions φk(t) = ej2kπf0t/

√
T (k = 0,±1,±2, · · · ) are orthonormal (Eq.1.27):

< φm(t),φn(t) >=
1
T

∫

T
ej2mπf0te−j2nπf0tdt =

1
T

∫

T
ej2(m−n)πf0tdt = δ[m− n]

(3.1)
where ω0 = 2πf0 = 2π/T . These eigenfunctions form a complete orthogonal sys-
tem that spans a function space over interval [0, T ], and any periodic signal
xT (t) = xT (t + T ) in the space can be expressed as a linear combination of these
basis functions:

xT (t) =
∞∑

k=−∞
X [k]φk(t) =

1√
T

∞∑

k=−∞
X [k]ej2kπf0t (3.2)

Note that at t = 0 and t = T the summation on the right hand side is always
equal to

∑∞
k=−∞ X [k]/

√
T , i.e., the condition in Eq. 2.149 is guaranteed. Conse-

quently at the end points t = 0 and t = T the reconstructed signal may not be
the same as the original signal xT (t) if xT (0) $= xT (T ).

Due to the orthogonality of these basis functions, the nth coefficient X [n] can
be found by taking an inner product with φn(t) = ej2nπf0t/

√
T on both sides of

the equation above:

< xT (t),φn(t) > = < xT (t), ej2nπf0t/
√

T >=
1
T

∞∑

k=0

X [k] < ej2kπf0t, ej2nπf0t >

=
∞∑

k=−∞
X [k]δ[k − n] = X [n] (3.3)

i.e., the nth coefficient X [n] is the projection of function xT (t) onto the nth basis
function φn(t):

X [n] =< xT (t),φn(t) >=
1√
T

∫

T
xT (t)e−j2nπf0tdt (3.4)

102
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Figure 3.1 Fourier series expansion of periodic signals

Equations 3.2 and 3.4 form a pair of the Fourier series expansion:

xT (t) =
1√
T

∞∑

k=−∞
X [k]ej2kπf0t

X [k] =
1√
T

∫

T
xT (t)e−j2kπf0tdt (3.5)

As the signal and the basis functions are both periodic, the integral above can
be over any interval of T , such as from 0 to T , or from −T/2 to T/2.

In practice, the constant scaling factor 1/
√

T in the equations above has little
significance, and the Fourier series expansion pair could be expressed in some
alternative forms such as:

xT (t) =
∞∑

k=−∞
X [k]ej2kπf0t =

∞∑

k=−∞
X [k]ejkω0t

X [k] =
1
T

∫

T
xT (t)e−j2kπf0tdt =

1
T

∫

T
xT (t)e−jkω0tdt (3.6)

Now X [0] =
∫

T xT (t)dt/T has a clear interpretation, the average or the DC com-
ponent of the signal.

In some literatures, angular frequency ω0 = 2πf0 = 2π/T is preferred to use.
But we will use either f0 or ω0 = 2πf0 = 2π/T interchangeably.

The Fourier series expansion is a unitary transformation that converts a
function xT (t) in the vector space of all periodic time functions into a vector
[· · · , X [−1], X [0], X [1], · · · ]T in another vector space. Moreover, the inner prod-
uct of any two functions xT (t) and yT (t) remains the same before and after the
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transformation:

< xT (t), yT (t) >=
∫

T
xT (t)yT (t)dt

=
1
T

∫

T

∞∑

k=−∞
X [k]ej2kπf0t

∞∑

l=−∞
Y [l]e−j2nπf0tdt

=
1
T

∞∑

k=−∞

∞∑

l=−∞
X [k]Y [l]

∫

T
ej2(k−l)πf0tdt

=
∞∑

k=−∞

∞∑

l=−∞
X [k]Y [l]δ[k − l] =

∞∑

k=−∞
X [k]Y [k] =< X, Y > (3.7)

In particular, if yT (t) = xT (t), the above becomes Parseval’s identity

||xT (t)||2 =< xT (t), xT (t) >=< X, X >= ||X||2 (3.8)

indicating that the total energy or information contained in the signal is pre-
served by the Fourier series expansion, therefore the signal can be equivalently
represented in either time or frequency domain.

3.1.2 Physical Interpretation

The Fourier series expansion of a periodic signal xT (t) can also be expressed in
terms of sine and cosine functions:

xT (t) =
∞∑

k=−∞
X [k]ejkω0t = X [0] +

∞∑

k=1

[X [−k]e−jkω0t + X [k]ejkω0t]

= X [0] +
∞∑

k=1

[X [−k](coskω0t− j sin kω0t) + X [k](cos kω0t + j sin kω0t)]

= X [0] +
∞∑

k=1

[(X [k] + X [−k]) coskω0t + j(X [k]−X [−k]) sinkω0t]

= X [0] + 2
∞∑

k=1

(ak cos kω0t + bk sinkω0t) (3.9)

where

ak =
X [k] + X [−k]

2
=

1
2T

∫

T
xT (t)[e−jkω0t + ejkω0t]dt =

1
T

∫

T
xT (t) cos kω0tdt

bk =
j(X [k]−X [−k])

2
=

j

2T

∫

T
xT (t)[e−jkω0t − ejkω0t]dt =

1
T

∫

T
xT (t) sin kω0tdt

(k = 1, 2, · · · ) (3.10)

This is an alternative form of the Fourier series expansion of xT (t). Here we have
used the Euler’s formula:

cos kω0 =
ejkω0 + e−jkω0

2
, sin kω0 =

ejkω0 − e−jkω0

2j
(3.11)
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In particular, if xT (t) is real as all physical signals in reality, we have

X [−k] =
1√
T

∫

T
xT (t)ej2kπf0tdt = X [k] (3.12)

i.e.,

Re[X [−k]] = Re[X [k]], Im[X [−k]] = −Im[X [k]] (3.13)

i.e., the real part of X [k] is even and the imaginary part is odd. Now we have:

ak =
X [k] + X [−k]

2
=

X [k] + X[k]
2

= Re[X [k]]

bk =
j(X [k]−X [−k])

2
=

j(X [k]−X[k])
2

= −Im[X [k]] (3.14)

and
{
|X [k]| =

√
a2

k + b2
k

$ X [k] = − tan−1 bk/ak

{
ak = |X [k]| cos $ X [k]
bk = −|X [k]| sin $ X [k]

(3.15)

Now the Fourier series expansion of a real signal xT (t) (Eq. 3.9) can be rewritten
as:

xT (t) = X [0] + 2
∞∑

k=1

(ak cos kω0t + bk sin kω0t)

= X [0] + 2
∞∑

k=1

|X [k]|(cos $ X [k] coskω0t− sin $ X [k] sinkω0t)

= X [0] + 2
∞∑

k=1

|X [k]| cos(kω0t + $ X [k])

(3.16)

In other words, a real periodic signal xT (t) can be constructed as a superposition
of infinite sinusoids of (a) different frequencies kω0, (b) different amplitudes
|X [k]|, and (c) different phases $ X [k]. In particular,! when k = 0, the coefficient X [0] =

∫
T xT (t)dt/T is the average or DC compo-

nent (offset) of the signal xT (t);! when k = 1, the sinusoid cos(ω0t + φ1) = cos(2πt/T + $ X [1]) has the same
period T as the signal xT (t) and is therefore called the fundamental frequency
of the signal;! when k > 1, the frequency of the sinusoidal function cos(kω0t + $ X [k]) is k
times the frequency of the fundamental and is called the kth harmonic of the
signal.

Example 3.1: In this example we show the Fourier series expansion of three
periodic signals. A family of sinusoids of different frequencies are shown on the
left of Fig.3.2 as the basis functions that span the function space. These basis
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Figure 3.2 Fourier expansion of square, triangle, and sawtooth waves

functions can be linearly combined with different weights, the Fourier coefficients,
to represent various functions in the space, such as the square wave, triangle
wave, and sawtooth wave shown in the figure. As can be seen, the accuracy of
the approximation of a signal is improved continuously as progressively more
basis functions of higher frequencies, the higher harmonics, are included so that
finer details (corresponding to rapid changes in time) can be better represented.
The actual Fourier coefficients used in these expansions will be derived later and
shown in Fig.3.3.

3.1.3 Properties of The Fourier Series Expansion

Here we discuss only a few of the properties of the Fourier series expansion. Let
xT (t) be a periodic signal with period T and X [k] be its Fourier series expansion
coefficients.! Time scaling: When xT (t) is scaled in time by a factor of a > 0 to become

x(at), its period becomes T/a and its fundamental frequency becomes a/T =
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af0. If a > 1, the signal is compressed by a factor a and the frequencies of its
fundamental and harmonics are a times higher; if a < 1, the signal is expanded
and the frequencies of its fundamental and harmonics are a times lower. But
in either case, the coefficients remain the same:

x(at) =
∞∑

k=−∞
X [k]ejkaω0t (3.17)

! Time shifting: A time signal x(t) shifted in time by t0 becomes y(t) =
x(t− t0). Defining t′ = t− t0 we can get its Fourier coefficient as:

Y [k] =
1
T

∫

T
x(t− t0)e−jkω0tdt =

1
T

∫

T
x(t′)e−jkω0(t′+t0)dt

= X [k]e−jkω0t0 = X [k]e−j2kπft0 (3.18)! Differentiation: The time derivative of x(t) is y(t) = d x(t)/dt its Fourier
coefficients can be found to be:

Y [k] =
1
T

∫

T

d

dt
x(t)e−jkω0tdt =

1
T

[
e−jkω0tx(t)

∣∣T
0

+ jkω0

∫

T
x(t)e−jkω0tdt

]

= jkω0X [k] = jk
2π
T

X [k] (3.19)! Integration: The time integration of x(t) is

y(t) =
∫ t

−∞
x(τ)dτ (3.20)

Note that y(t) is periodic only if the DC component or average of x(t) is zero,
i.e., X [0] = 0 (otherwise it would accumulate over time by the integration to
form a ramp). Since x(t) = y′(t), according to the differentiation property, we
have

X [k] = jk
2π
T

Y [k], i.e. Y [k] =
T

j2kπ
X [k] (3.21)

Note that Y [0] can not be obtained from this formula as when k = 0, both
the numerator and the denominator of Y [k] are zero. However, as the DC
component of y(t), Y [0] can be found by the definition:

Y [0] =
1
T

∫

T
y(t)dt (3.22)! Parseval’s theorem:

1
T

∫

T
|xT (t)|2dt =

∞∑

k=−∞
|X [k]|2 (3.23)
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This can be easily proven:

1
T

∫

T
|xT (t)|2dt =

1
T

∫

T
xT (t)xT (t)dt

=
1
T

∫

T

∞∑

k=−∞
X [k]ej2πkf0t

∞∑

l=−∞
X [l]e−j2πlf0tdt =

∞∑

k=−∞

∞∑

l=−∞
X [k]X[l]

1
T

∫

T
ej2πkf0te−j2πlf0tdt

=
∞∑

k=−∞

∞∑

l=−∞
X [k]X[l]δ[k − l] =

∞∑

k=−∞
|X [k]|2

Obviously the left-hand side of Eq.3.23 represents the average power in xT (t),
and similarly,

1
T

∫

T
|X [k]ej2πkf0t|2dt =

1
T

∫

T
|X [k]|2dt = |X [k]|2

represents the average power in the kth frequency component. Therefore
Eq.3.23 states that the average power in one period of the signal is the sum of
the average powers in all of its frequency components, i.e., the power in the
signal is conserved in either time or frequency domain.

3.1.4 The Fourier Expansion of Typical Functions! Constant:
A constant x(t) = c can be expressed as a complex exponential x(t) = ej0t

with arbitrary period T , i.e., it is a zero-frequency or DC (direct current)
component. The coefficient for this zero frequency is X [0] = c, while all other
coefficients for nonzero frequencies are zero. Alternatively, following the defi-
nition, we get

X [k] =
1
T

∫

T
ce−jkω0tdt =

{
c k = 0
0 k $= 0

(3.24)

The last equal sign is due to Eq.1.27! Complex exponential:
A complex exponential x(t) = ejω0t (with period T = 2π/ω0) with a coefficient
X [1] = 1. We can also find X [k] by definition:

ck =
1
T

∫

T
ejω0te−jkω0tdt =

1
T

∫

T
ejω0(1−k)tdt = δ[k − 1] =

{
1 k = 0
0 k $= 0! Sinusoids:
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The cosine function x(t) = cos(2πf0t) = (ej2πf0t + e−j2πf0t)/2 of frequency f0

is periodic with T = 1/f0, and its Fourier coefficients are

X [k] =
1
T

∫

T
cos(2πf0t)e−j2πkf0tdt

=
1
2
[
1
T

∫

T
e−j2π(k−1)f0tdt +

1
T

∫

T
e−j2π(k+1)f0tdt]

=
1
2
(δ[k − 1] + δ[k + 1]) (3.25)

In particular, when f0 = 0, x(t) = 1 and X [k] = δ[k], an impulse at zero, rep-
resenting the constant (zero frequency) value.
Similarly, the Fourier coefficient of x(t) = sin(2πf0t) is:

X [k] =
1
T

∫

T
sin(2πf0t)e−j2πkf0tdt

=
1
2j

[
1
T

∫

T
e−j2π(k−1)f0tdt− 1

T

∫

T
e−j2π(k+1)f0tdt]

=
1
2j

(δ[k − 1]− δ[k + 1]) (3.26)! Square wave:
Let x(t) be an odd square wave:

x(t) =
{

1 0 < t < τ
0 τ < t < T

(3.27)

The Fourier coefficients of this function are

X [k] =
1
T

∫ T

0
x(t)e−jkω0tdt =

1
T

∫ τ

0
e−jkω0tdt =

1
j2kπ

(1− e−jkω0τ ) (3.28)

In particular, as the DC component, X [0] = τ/T . A sinc function is commonly
defined as:

sinc(x) =
sin(πx)
πx

, and lim
x→0

sinc(x) = 1 (3.29)

and the expression above for X [k] can be written as:

X [k] =
e−jkπτ/T

kπ

1
2j

(ejkπτ/T − e−jkπτ/T )

=
e−jkπτ/T

kπ
sin(kπτ/T ) =

τ

T
sinc(kτ/T )e−jkπτ/T (3.30)

In particular, if τ = T/2, then X [0] = 1/2 and X [k] above becomes:

X [k] =
1

j2kπ
(1− e−jkπ) (3.31)

Moreover, since e±j2kπ = 1 and e±j(2k−1)π = −1, all even terms X [±2k] = 0
become zero and the odd terms become:

X [±(2k − 1)] = ±1/jπ(2k − 1), (k = 1, 2, · · · ) (3.32)
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and the Fourier series expansion of the square wave becomes a linear combi-
nation of sinusoids:

x(t) =
∞∑

k=−∞
X [k]ej2kπf0t

= X [0] +
∞∑

k=1

[
1

jπ(2k − 1)
ej(2k−1)ω0t +

1
−jπ(2k − 1)

e−j(2k−1)ω0t]

=
1
2

+
2
π

∞∑

k=1

sin((2k − 1)ω0t)
2k − 1

=
1
2

+
2
π

[
sin(ω0t)

1
+

sin(3ω0t)
3

+
sin(5ω0t)

5
+ · · · ] (3.33)

If we remove the DC component of x(t) by letting X [0] = 0, the square wave
become

x(t) =
{

1/2 0 < t < T/2
−1/2 T/2 < t < T

(3.34)

and the square wave is an odd function composed of odd harmonics of sine
functions (odd).
Homework problem:
If the square wave is shifted to the left by T/4, it becomes an even function:

xT (t) =
{

1 |t| < T/4
0 T/4 < |t| < T/2

(3.35)

Show that its Fourier series expansion becomes

x(t) =
∞∑

k=−∞
X [k]ejkω0t

=
1
2

+
2
π

[
cos(ω0t)

1
− cos(3ω0t)

3
+

cos(5ω0t)
5

+ · · · ] (3.36)

composed of odd harmonics of cosine functions (even).! Triangle wave: A triangle wave can be defined as:

x(t) = 2|t|/T, (|t| ≤ T/2) (3.37)

This triangle wave can be obtained as an integral of the square wave defined
in Eq. 3.27 with these modifications: (a) τ = T/2, (b) DC offset X [0] set to
zero, and (c) scaled by 4/T . Now according to the integration property, the
Fourier coefficients can be easily obtained as

X [k] =
4
T

T

j2kπ

e−jkπ/2

kπ
sin(kπ/2) =

2
j

sin(kπ/2)
(kπ)2

e−jkπ/2 (3.38)

The DC offset is X [0] = 1/2. According to the time shift property, the complex
exponential e−jkπ/2 corresponds to a right-shifted signal x(t− t0) by t0 = T/4.
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If we shift the signal left by T/4, then the complex exponential term in the
expression of the coefficients disappears.
The Fourier series expansion of such a triangle wave can be written as

x(t) =
∞∑

k=−∞
X [k]ej2kπf0t =

1
2

+
∞∑

k=1

[X [k]ej2kπf0t + X [−k]e−j2kπf0t]

=
1
2

+
∞∑

k=1

(
2
j

sin(kπ/2)
(kπ)2

ej2kπf0t − 2
j

sin(kπ/2)
(kπ)2

e−j2kπf0t)

=
1
2

+
4
π2

∞∑

k=1

sin(kπ/2)
k2

sin(2kπf0t)

=
1
2

+
4
π2

[sin(2πf0t)−
1
9

sin(6πf0t) +
1
25

sin(10πf0t)− · · · ] (3.39)! Sawtooth:
A sawtooth function is defined as

x(t) = t/T, (0 < t < T ) (3.40)

We first find X [0], the average or DC component:

X [0] =
1
T

∫

T

t

T
e−j0ω0tdt =

1
2

(3.41)

Next we find all remaining coefficients X [k] (k $= 0):

X [k] =
1
T

∫

T

t

T
e−jkω0tdt (3.42)

In general, this type of integrals can be found using integration by parts:
∫

teatdt =
1
a2

(at− 1)eat + C (3.43)

Here a = −jkω0 = −j2kπ/T $= 0 and we get

X [k] =
1

T 2(jkω0)2
[(−jkω0t− 1)e−jkω0t]T0 =

j

2kπ
(3.44)

The Fourier series expansion of the function is

x(t) =
1
2

+
∞∑

k=1

[
j

2kπ
ejω0t − j

2kπ
e−jω0t] =

1
2
− 1
π

∞∑

k=1

1
k

sin(kω0t) (3.45)

Note that this sawtooth wave is an odd function and therefore it is composed
of only odd sine functions.
Homework problem: Consider a different version of the sawtooth wave:

x(t) = t/T, (0 < |t| < T/2) (3.46)! Impulse Train:
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An impulse train, also called a comb function or sampling function, is a
sequence of infinite unit impulse separated by time interval T :

comb(t) =
∞∑

n=−∞
δ(t− nT ) (3.47)

As a periodic function with period T , an impulse train can be Fourier
expanded:

comb(t) =
∞∑

k=−∞
Comb[k] ej2kπt/T (3.48)

with coefficients:

Comb[k] =
1
T

∫ T/2

−T/2
comb(t)e−j2kπt/T dt =

1
T

∫ T/2

−T/2

∞∑

n=−∞
δ(t− nT )e−j2kπt/T dt

=
1
T

∫ T/2

−T/2
δ(0)e−j2kπt/T dt =

1
T

, (k = 0,±1,±2, · · · ) (3.49)

The last equation is due to Eq. 1.6. Substituting Comb[k] = 1/T back into
the Fourier series expansion of comb(t), we can also express the impulse train
as:

comb(t) =
∞∑

n=−∞
δ(t− nT ) =

1
T

∞∑

k=−∞
ej2kπt/T (3.50)

This is actually the same as Eq.1.28 shown before.

Fig.3.3 shows a set of periodic signals (on the left) and their corresponding
Fourier coefficients (on the right).

3.2 The Fourier Transform of Non-Periodic Signals

3.2.1 Formulation

The Fourier series expansion is not applicable if the given signal x(t) is non-
periodic. In order to still be able to process and analyze the signal in frequency
domain, the concept of the Fourier series expansion needs to be modified.

We first make some minor modification of the Fourier series expansion pair in
Eq. 3.5 by moving the factor 1/T from the second equation to the first one:

xT (t) =
∞∑

k=−∞

1
T

X [k]ejkω0t =
∞∑

k=−∞

1
T

X [k]ej2kπf0t

X [k] =
∫

T
xT (t)e−jkω0tdt =

∫

T
xT (t)e−j2kπf0tdt (3.51)
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Figure 3.3 Examples of Fourier series expansions

A set of periodic signals are shown on the left and their Fourier expansion coef-
ficients are shown on the right as a function of frequency f (real and imagi-
nary parts are shown in solid and dashed lines, respectively). The first three
rows show two sinusoids x1(t) = sin(2π3t) and x2(t) = cos(2π10t), and their sum
x1(t) + x2(t). The following four rows are for the impulse train, square wave, tri-
angle wave, and sawtooth wave, respectively.

Here the coefficient X [k] is redefined so that its value is scaled by T , and its
dimensionality becomes that of the signal xT (t) multiplied by time, or divided
by frequency (while the exponential term exp(±j2πf0t) is dimensionless).

Next we convert a periodic signal xT (t) into a non-periodic signal x(t) simply
by increasing its period T to approach infinity T →∞. At the limit the following
changes take place:
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! ω0 = 2πf0 = 2π/T → 0, and the discrete frequencies kω0 = 2kπf0 for all k =
−∞, · · · ,−1, 0, 1, · · · ,∞ can be replaced by a continuous variable −∞ < ω =
2πf <∞.! The discrete and periodic basis functions φk(t) = ej2kπt/T for all k become
uncountable and non-periodic φf (t) = ej2πft for all f , and they now span a
function space over (−∞,∞) containing all non-periodic functions x(t).! The coefficients X [k] for the discrete frequency components φk(t) = ej2kπf0t

for all k is replaced by a continuous weight function X(f) for the continuous
and uncountable frequency component function φf (t) = ej2πft for all f .! Define (f = 1/T , then (f → df , and the summation in the first equation in
Eq. 3.51 becomes an integral.

Due to the changes above, the two equations in Eq. 3.51 become

x(t) = lim
T→∞

[
1
T

∞∑

k=−∞
X [k]ej2kπf0t] =

∫ ∞

−∞
X(f)j2πftdf

X(f) = lim
T→∞

[
∫

T
x(t)e−j2kπf0tdt] =

∫ ∞

−∞
x(t)e−j2πftdt (3.52)

These two equations form the continuous-time Fourier transform (CTFT) pair:

X(f) = F [x(t)] =
∫ ∞

−∞
x(t)e−j2πftdt

x(t) = F−1[X(f)] =
∫ ∞

−∞
X(f)ej2πftdf (3.53)

The second equation, the inverse Fourier transform, represents a non-periodic
signal x(t) as a linear combination of an uncountable and infinite set of basis
functions φf (t) = ej2πft, weighted by a coefficient or weight function X(f), called
the frequency spectrum of x(t), which can be obtained as the projection of the
signal x(t) onto a basis function φf (t) representing frequency f :

X(f) = F [x(t)] =< x(t),φf (t) >=< x(t), ej2πft >=
∫ ∞

−∞
x(t)e−j2πftdt (3.54)

This is the first equation, the forward Fourier transform. As the dimension of
X(f) is that of the signal x(t) multiplied by time or divided by frequency, it is
actually a frequency density function, representing the distribution of energy or
information contained in the signal over frequency. This integral is also called
an integral transform, and φf (t) = ej2πft, a function of two variables t and f , is
called the kernel function of the transform.

The Fourier transform pair in Eq.3.53 can also be equivalently represented in
terms of the angular frequency ω = 2πf :

X(ω) = F [x(t)] =
∫ ∞

−∞
x(t)e−jωtdt

x(t) = F−1[X(ω)] =
1
2π

∫ ∞

−∞
X(ω)ejωtdω (3.55)
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In some literatures, the spectrum X(f) or X(ω) is also denoted by X(jω),
because it takes this form when considered as a special case of the Laplace
transform, to be considered in a later chapter. However, we note that all these
different forms of the spectrum are just some notational variations all represent-
ing essentially the same fact: the spectrum is simply a function of frequency f ,
or angular frequency f = 2πf . No confusion should be caused given the specific
context in the discussion. Moreover, when the spectrum is denoted by X(f), the
Fourier transform pair in Eq.3.53 appears symmetric so that the time-frequency
duality an be more clearly revealed. Therefore we will use X(f), X(ω) and (jω)
interchangeably, whichever is more convenient and suitable in each specific case.

In order for the integral in Eq.3.53 to converge, i.e., for X(f) to exist, the
signal x(t) needs to satisfy the following Dirichlet conditions:

1. x(t) is absolutely integrable:
∫ ∞

−∞
|x(t)|dt <∞ (3.56)

2. x(t) has finite number of maxima and minima within any finite interval;
3. x(t) has finite number of discontinuities within any finite interval.

Alternatively, a more strict condition for the convergence of the integral is that
x(t) is an energy signal x(t) ∈ L2(R), i.e., it is square-integrable (Eq. 2.33).
As some obvious examples, signals such as x(t) = t and x(t) = t2 grow without
bound as |t|→∞ and therefore their Fourier spectra do not exist. However,
we note that the Dirichlet conditions are sufficient but not necessary, as there
also exist some signals that do not satisfy such conditions but their Fourier
spectra still exist. For example, some important signals such x(t) = 1, x(t) =
u(t), and x(t) = δ(t) are neither square integrable nor absolutely integrable, but
their Fourier spectra can all be obtained, due to the use of the Dirac delta, a
non-conventional function containing a value of infinity. The integrals of these
functions can be considered to be marginally convergent.

Similar to the Fourier series expansion, the Fourier transform is also a unitary
transformation (Theorem 2.6):

< x(t), y(t) >=
∫ ∞

−∞
x(t)y(t)dt =

∫ ∞

−∞
[
∫ ∞

−∞
X(f)ej2πftdf ] [

∫ ∞

−∞
Y (f ′)e−j2πf ′tdf ′] dt

=
∫ ∞

−∞

∫ ∞

−∞
X(f)Y (f ′)[

∫ ∞

−∞
ej2π(f−f ′)tdt] df df ′ =

∫ ∞

−∞

∫ ∞

−∞
X(f)Y (f ′)δ(f − f ′)df df ′

=
∫ ∞

−∞
X(f)Y (f)df =< X(f), Y (f) > (3.57)

Here we have used the fact (Eq.1.26) that:
∫ ∞

−∞
ej2π(f−f ′)tdt = δ(f − f ′) (3.58)
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This equation has a major significance as it also illustrates that indeed the func-
tion family {φf (t) = ej2πft, (−∞ < f <∞)} forms an orthonormal basis that
spans the function space, and any function in the space can be expressed as a
linear combination of these basis functions. This is the very essence of the inverse
Fourier transform given in Eq.3.53.

Replacing y(y) by x(t) in Eq.3.57 above, we get Parseval’s equality:

||x(t)||2 =< x(t), x(t) >=< X(f), X(f) >= ||X(f)||2 (3.59)

As a unitary transformation, the Fourier transform can be considered as a rota-
tion of the basis functions of the function space. Before the Fourier transform,
the function is represented as a linear combination of a uncountable set of stan-
dard basis functions δ(t− τ), each for a particular time moment t = τ , weighted
by the coefficient function x(τ) for the signal amplitude at the time moment:

x(t) =
∫ ∞

−∞
x(τ)δ(t − τ)dτ (3.60)

After the transformation, the function is represented as a linear combination of
a different set of orthonormal basis functions φf (t) = ej2πft for all frequencies
f , weighted by the coefficient function X(f) for the amplitude of each frequency
component:

x(t) =
∫ ∞

−∞
X(f)ej2πftdf (3.61)

The representations of the signal in time domain by x(t) and in frequency domain
by X(f) are equivalent, in the sense that the total amount of energy or informa-
tion is preserved due to the Parseval’s equality ||x(t)|| = ||X(f)||, i.e.,

∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
|X(f)|2 df

Based on the discussion above, we conclude that the Fourier series expansion
is actually a special case of the general Fourier transform, when the time signal
is periodic and consequently the spectrum is discrete. When the period T →
∞ approaches infinity, the gap f0 = 1/T → 0 approaches zero, i.e., the Fourier
expansion becomes the Fourier transform.

Example 3.2: Consider the Fourier transform of a few special signals:! The Dirac delta or unit impulse function x(t) = δ(t):

F [δ(t)] =
∫ ∞

−∞
δ(t)e−j2πft = e−j2π0f = 1 (3.62)! Constant function x(t) = 1:

F [1] =
∫ ∞

−∞
e−j2πft = δ(f) (3.63)
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The second equal sign is due to Eq.1.26.! The sign function x(t) = sgn(t):

sgn(t) =






−1 t < 0
0 t = 0
1 t > 0

F [sgn(t)] = −
∫ 0

−∞
e−j2πftdt +

∫ ∞

0
e−j2πftdt =

∫ ∞

0
ej2πftdt +

∫ ∞

0
e−j2πftdt

Consider the first integral as the following limit when a > 0 approaches zero:

lim
a→0

∫ ∞

0
e−atej2πftdt = lim

a→0

−1
a− j2πf

e−(a−j2πf)t
∣∣∞
0

= lim
a→0

1
a− j2πf

=
1

j2πf

Similarly we get the same result for the second integral, therefore:

F [sgn(t)] =
1

jπf
(3.64)! The unit step function x(t) = u(t):

u(t) =
1
2
[1 + sgn(t)] =






0 t < 0
1/2 t = 0

1 t > 0

Due to the linearity of the Fourier transform, we have:

U(f) = F [u(t)] =
1
2
[F [1] + F [sgn(t)]] =

1
2
δ(f) +

1
j2πf

(3.65)

Alternatively, U(f) = F [u(t)] can also be obtained directly from the defini-
tion. However, note that as the unit step u(t) is not square-integrable, its
Fourier transform integral does not converge in the normal sense:

F [u(t)] =
∫ ∞

−∞
u(t)e−j2πftdt =

∫ ∞

0
e−j2πftdt

To overcome this difficulty, we consider u(t) as a special case of the exponential
decay function e−atu(t) when a = 0, so that U(f) = F [u(t)] can be obtained
the same as in Eq.3.65:

F [u(t)] = lim
a→0

F [e−atu(t)] = lim
a→0

a− jω

a2 + ω2
=

1
2
δ(f) +

1
j2πf

The proof of this result is left to the reader as a homework problem.
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Figure 3.4 Fourier transform of non-periodic and continuous signals

When the time signal is no longer periodic, its discrete spectrum represented by
the Fourier series coefficients becomes a continuous function.

3.2.2 Physical Interpretation

In general the spectrum X(f) of a time signal x(t) is complex and can be
expressed in either Cartesian or polar form:

X(f) = Xr(f) + jXj(f) = |X(f)|ej $ X(f) (3.66)

where
{
|X(f)| =

√
X2

r (f) + X2
j (f)

$ X(f) = tan−1Xj(f)/Xr(f)
,

{
Xr(f) = |X(f)| cos $ X(f)
Xj(f) = |X(f)| sin $ X(f)

(3.67)

If the signal x(t) is real, we have

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt =

∫ ∞

−∞
x(t)(cos 2πft− j sin 2πft)dt = Xr(f)− jXj(f)

(3.68)
where the real part Xr(f) is even and the imaginary part Xj(f) is odd:

Xr(f) =
∫ ∞

−∞
x(t) cos(2πft)dt = Xr(−f)

Xj(f) =
∫ ∞

−∞
x(t) sin(2πft)dt = −Xj(−f) (3.69)

therefore |X(f)| =
√

X2
r (f) + X2

j (f) is even. Now the signal can be expressed
as

x(t) =
∫ ∞

−∞
X(f)ej2πftdf =

∫ ∞

−∞
|X(f)|ej2πft+ $ X(f)df

=
∫ ∞

−∞
|X(f)| cos(2πft + $ X(f))df + j

∫ ∞

−∞
|X(f)| sin(2πft + $ X(f))df

= 2
∫ ∞

0
|X(f)| cos(2πft + $ X(f))df (3.70)

The last equation is due to the fact that the integrand of the real term is even and
that of the imaginary term is odd. We see that the Fourier transform expresses
a real time signal as a superposition of infinitely many uncountable frequency
components each with a different frequency f , magnitude |X(f)|, and phase
$ X(f).
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3.2.3 Relation to The Fourier Expansion

We consider how the Fourier transform of a periodic function is related to its
Fourier coefficients. The Fourier series expansion of a periodic function xT (t) is:

xT (t) =
∞∑

k=−∞
X [k]ej2kπt/T =

∞∑

k=−∞
X [k]ej2kπf0t (3.71)

where f0 = 1/T is the fundamental frequency and X [k] the expansion coefficient.
The Fourier transform of this periodic function xT (t) can be found to be:

X(f) =
∫ ∞

−∞
xT (t)e−j2πftdt =

∫ ∞

−∞
[
∞∑

k=−∞
X [k]ej2kπf0t]e−j2πftdt

=
∞∑

k=−∞
X [k]

∫ ∞

−∞
e−j2π(f−kf0)tdt =

∞∑

k=−∞
X [k]δ(f − kf0) (3.72)

Here we have used the result of Eq.1.31. It is clear that the spectrum of a periodic
function is discrete, in the sense that it is none-zero only at a set of discrete
frequencies f = kf0 where X(f) = X [k]δ(f − kf0). This result also illustrates
an important point: while the dimensionality of the Fourier coefficient X [k] is
the same as that of the function xT (t), i.e., [X [k]] = [xT (t)], the dimensionality
of the spectrum is

[X(f)] = [X [k]][t] =
[X [k]]

[f ]
(3.73)

i.e., X(f) is a density function over frequency, only when integrated over fre-
quency, will it become the coefficient:

∫ ∞

−∞
X [k]δ(f − kf0)df = X [k] (3.74)

When T →∞, x(t) becomes non-periodic and the gap f0 = 1/T between two
consecutive frequency components in its spectrum becomes zero, i.e., the discrete
spectrum becomes continuous.

Next, we consider how the Fourier spectrum X(t) of a signal x(t) can be related
to the Fourier series coefficients of its periodic extension defined as:

x′(t) =
∞∑

n=−∞
x(t + nT ) = x′(t + T ) (3.75)

As x′(t) is periodic, it can be Fourier expanded and the kth Fourier coefficient
is:

X ′[k] =
1
T

∫ T

0
x′(t)e−j2πkt/T =

1
T

∫ T

0
[

∞∑

n=−∞
x(t + nT ) ] e−j2πkt/T dt

=
1
T

∞∑

n=−∞

∫ T

0
x(t + nT )]e−j2πkt/T dt (3.76)
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If we define τ = t + nT , i.e., t = τ − nT , the above becomes:

X ′[k] =
1
T

∞∑

n=−∞

∫ (n+1)T

nT
x(τ)e−j2πkτ/T dτ e−j2πnk

=
1
T

∫ ∞

−∞
x(τ)e−j2πkτ/T dτ =

1
T

X(
k

T
) (3.77)

(Note that e−j2πnk = 1 as k and n are both integer.) This equation relates the
Fourier transform X(f) of a signal x(t) to the Fourier series coefficient X ′[k] of
the periodic extension x′(t) of the signal. Now the Fourier expansion of x′(t) can
be written as:

x′(t) =
∞∑

k=−∞
X ′[k]ej2πkt/T =

∞∑

k=−∞

1
T

X

(
k

T

)
ej2πkt/T (3.78)

This equation is called Poisson summation formula.

3.2.4 Properties of The Fourier Transform

Here we consider a set of properties of the Fourier transform, many of which
should look similar to those of the Fourier series expansion discussed before, sim-
ply because the Fourier expansion is just a special case of the Fourier transform,
they naturally share all of the properties. In the following, we always assume x(t)
and y(t) are two complex functions (real as a special case) and F [x(t)] = X(f)
and F [y(t)] = Y (f).! Linearity:

F [ax(t) + by(t)] = aF [x(t)] + bF [y(t)] (3.79)

The Fourier transform of a function x(t) is simply an inner product of the
function with a kernel function φf (t) = ej2πft (Eq.3.54). Therefore due to the
linearity of the inner product in the first variable, the Fourier transform is
also linear.! Time-frequency duality:

if F [x(t)] = X(f), then F [X(t)] = x(−f) (3.80)

Proof:

x(t) = F−1[X(f)] =
∫ ∞

−∞
X(f)ej2πftdf (3.81)

Defining t′ = −t, we have

x(−t′) = F−1[X(f)]
∫ ∞

−∞
X(f)e−j2πft′df (3.82)

Interchanging variables t′ and f , we get

x(−f) =
∫ ∞

−∞
X(t′)e−j2πft′dt′ = F [X(t)] (3.83)
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In particular, if x(t) = x(−t) is even, we have

if F [x(t)] = X(f), then F [X(t)] = x(f) (3.84)

This duality is simply the result of the definition of the forward and inverse
transforms in Eq. 3.53, which are highly symmetric between time and fre-
quency. Consequently, many of the properties and transforms of typical func-
tions have strong duality between the time and frequency domains.! Multiplication (Plancherel) theorem:

∫ ∞

−∞
x(t)y(t)dt =

∫ ∞

−∞
X(f)Y (f)df (3.85)

This is Eq. 3.57, indicating that the Fourier transform is a unitary transfor-
mation that conserves inner product. In particular, letting y(t) = x(t), we get
Parseval’s identity:
∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
x(t)x(t)dt =

∫ ∞

−∞
X(f)X(f)df =

∫ ∞

−∞
|X(f)|2df (3.86)

where |x(t)|2 represents how the signal energy is distributed over time, while
|X(f)|2 represents how the signal energy is distributed over frequency, and
|X(f)|2 = Sx(f) is defined as the power density spectrum (PDS).! Complex conjugate:

F [x(t)] = X(−f) (3.87)

Proof: Taking the complex conjugate of the inverse Fourier transform, we
get:

x(t) =
∫ ∞

−∞
X(f)ej2πftdf =

∫ ∞

−∞
X(f)e−j2πftdf

=
∫ ∞

−∞
X(−f ′)ej2πf ′tdf ′ = F−1[X(−f)] (3.88)

(3.89)

where we have defined f ′ = −f .! Symmetry:
Let us consider some symmetry properties of the Fourier transform in both
time and frequency domains. First note that:

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt =

∫ ∞

−∞
x(t) cos(2πft)dt− j

∫ ∞

−∞
x(t) sin(2πft)dt

= Xe(f) + jXo(f) (3.90)

where Xe(f) and Xo(f) are the even and odd components of X(f):

Xe(f) =
∫ ∞

−∞
x(t) cos(2πft)dt = Xe(−f) (3.91)

Xo(f) = −
∫ ∞

−∞
x(t) sin(2πft)dt = −Xo(−f) (3.92)
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We can also represent the spectrum in terms of its real and imaginary parts:

X(f) = Re[X(f)] + jIm[X(f)] = Xr(f) + jXj(f) (3.93)

Note, however, here Xr(f) and Xj(f) do not necessarily correspond to Xe(f)
and Xo(f), respectively, as x(t) is in general assumed to be complex.
Real signal:
If x(t) is real, then both Xe(f) and Xo(f) are real, and they become respec-
tively the real and imaginary parts of X(f):

{
Xe(f) = Xr(f) = Xr(−f)
Xo(f) = Xj(f) = −Xj(−f)

(3.94)

As the real part of X(f) is even, and the imaginary part is odd, i.e., the
spectrum X(f) of a real signal is a Hermitian function satisfying:

X(−f) = Xr(−f) + jXj(−f) = Xr(f)− jXj(f) = X(f) (3.95)

The symmetry property of spectrum X(f) indicates that in frequency domain,
only half of the data is independent (fifty percent redundancy), which is of
course the natural consequence of the fact that only half of the data in time
domain, the real part, is independent, as the imaginary part is all zero.
As the spectrum of a real signal symmetric (real part even and imaginary odd),
it can be reconstructed by inverse transform by only half of the spectrum for
f > 0:

x(t) =
∫ ∞

−∞
X(f)ej2πftdf =

∫ 0

−∞
X(f)ej2πftdf +

∫ ∞

0
X(f)ej2πftdf

=
∫ ∞

0
X(−f)e−j2πftdf +

∫ ∞

0
X(f)ej2πftdf

=
∫ ∞

0
[X(f)e−j2πft + X(f)ej2πft]df (3.96)

Moreover, depending on whether x(t) is even or odd, we have the following
results:
– If x(t) = x(−t) is even (Xj(f) = Xo(f) = 0), X(f) = Xr(f) = Xe(f) is

real and even;
– If x(t) = x(−t) is odd (Xj(f) = Xe(f) = 0), X(f) = Xj(f) = Xo(f) is

imaginary and odd.
Imaginary signal:
If x(t) is imaginary, then both Xe(f) and Xo(f) are imaginary, and they
become respectively the imaginary and real parts of X(f):

{
Xe(f) = Xj(f) = Xj(−f)
Xo(f) = Xr(f) = −Xr(−f)

(3.97)

and we have

X(−f) = Xr(−f) + jXj(−f) = −Xr(f) + jXj(f) = −X(f) (3.98)
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Table 3.1. Symmetry Properties of Fourier Transform

x(t) = xr(t) + jxi(t) X(f) = Xr(f) + jXj(f)
x(t) = xr(t) real Xr(f) = Xr(−f) even, Xj(f) = −Xj(−f) odd
xr(t) = xr(−t) real, even Xr(f) = Xr(−f) real, even
xr(t) = −xr(−t) real, odd Xj(f) = −Xj(f) imaginary, odd
x(t) = xj(t) imaginary Xr(f) = −Xr(−f) odd, Xj(f) = Xj(−f) even
xj(t) = xj(−t) imaginary, even Xj(f) = Xj(−f) imaginary, even
xj(t) = −xj(−t) imaginary, odd Xr(f) = −Xr(−f) real, odd

i.e., the spectrum of an imaginary signal is anti-Hermitian.
Moreover, depending on whether x(t) is even or odd, we have the following
results:
– If x(t) = x(−t) is even (Xr(f) = Xo(f) = 0), X(f) = Xj(f) = Xe(f) is

imaginary and even;
– If x(t) = −x(−t) is odd (Im[X(f)] = Xe(f) = 0), X(f) = Xr(f) = Xo(f)

is real and odd.! Time reversal:

F [x(−t)] = X(−f) (3.99)

i.e., if the signal x(t) is flipped in time with respect to the origin t = 0, its
spectrum X(f) is also flipped in frequency with respect to the origin f = 0,
Proof:

F [x(−t)] =
∫ ∞

−∞
x(−t)e−j2πftdt =

∫ ∞

−∞
x(t′)ej2πft′dt′ = X(−f) (3.100)

where we have assumed −t′ = t. In particular, when x(t) = x(t) is real,

F [x(−t)] = X(−f) =
∫ ∞

−∞
x(t)ej2πft =

∫ ∞

−∞
x(t)e−j2πft = X(f) (3.101)! Time and frequency scaling:

F [x(at)] =
1
|a|X(

f

a
) (3.102)

Proof: First we assume a positive scaling factor a > 0 and get

F [x(at)] =
∫ ∞

−∞
x(at)e−j2πftdt =

∫ ∞

−∞
x(u)e−j2πfu/ad(

u

a
) =

1
a
X(

f

a
)

where we have assumed u = at. Next we apply the previous property to this
result to get:

F [x(−at)] =
1
a
X(−f

a
)

Letting a′ = −a < 0, we get the following for a negative scaling factor:

F [x(a′t)] =
1
−a′

X(
f

a′
)
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Combining the above results for both positive and negative scaling factors,
we get Eq.3.102.
If |a| < 1, the signal is stretched and its spectrum is compressed and scaled
up. When |a|→ 0, x(at) is so stretched that it approaches a constant, and
its spectrum is compressed and scaled up to the extent that it approaches
an impulse. On the other hand, if |a| > 1, then the signal is compressed and
its spectrum is stretched and scaled down. When |a|→∞, we redefine the
signal as a x(at) with spectrum X(f/a), the signal becomes an impulse and
its spectrum X(f/a) becomes a constant.! Time and frequency shifting:

F [x(t ± t0)] = e±j2πft0X(f) (3.103)

F−1[X(f ± f0)] = e∓j2πf0tx(t) (3.104)

Proof: We first prove Eq.3.103:

F [x(t ± t0)] =
∫ ∞

−∞
x(t ± t0)e−j2πftdt (3.105)

Let t′ = t ± t0, then t = t′ ∓ t0, dt′ = dt, the above becomes

F [x(t ± t0)] =
∫ ∞

−∞
x(t′)e−j2πf(t′∓t0)dt′ = e±j2πft0X(f) (3.106)

A time shift t0 of the signal corresponds to a phase shift 2πft0 for every
frequency component ej2πft. Note that as the phase shift is proportional to the
frequency, a higher frequency component will shift more so that the relative
positions of the harmonics remain the same, and the shape of the signal as a
superposition of these harmonics remains the same when shifted.
The frequency shift property in Eq.3.104 can be then obtained by applying
the time-frequency duality to the time shift property in Eq.3.103.! Correlation:
The cross-correlation between two functions x(t) and y(t) is defined as

rxy(t) = x(t) & y(t) =
∫ ∞

−∞
x(τ)y(τ − t)dτ (3.107)

This property states:

F [rxy(t)] = F [x(t) & y(t)] = X(f)Y (f) (3.108)

Proof:
As F [x(τ)] = X(f) and F [y(τ − t)] = Y (f)e−j2πft, we apply the multiplica-
tion theorem to get:

rxy(t) =
∫ ∞

−∞
x(τ)y(τ − t)dτ =

∫ ∞

−∞
X(f)Y (f)ej2πftdf

=
∫ ∞

−∞
Sxy(f)ej2πfτdf = F−1[Sxy(f)] (3.109)
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where

Sxy(f) = X(f)Y (f) = F [rxy(t)] (3.110)

is defined as the cross power density spectrum Sxy(f) of the two signals. If both
signals x(t) = x(t) and y(t) = y(t) are real, i.e., X(f) = X(−f) and Y (f) =
Y (−f), then we have Sxy(f) = X(f)Y (−f). In particular, when x(t) = y(t),
we have:

rx(t) =
∫ ∞

−∞
x(τ)x(τ − t)dτ =

∫ ∞

−∞
Sxej2πfτdf = F−1[Sx(f)] (3.111)

where rx(t) is the auto-correlation and Sx(f) = X(f)X(f) = |X(f)|2 is the
power density spectrum of x(t).! Convolution theorem:
As discussed in the previous chapter, the convolution of two functions x(t)
and y(t) is defined as:

x(t) ∗ y(t) =
∫ ∞

−∞
x(τ)y(t − τ)dτ (3.112)

Note that if y(t) = y(−t) is even, then x(t) ∗ y(t) = x(t) & y(t) is the same as
the correlation. The convolution theorem states:

F [x(t) ∗ y(t)] = X(f) Y (f) (3.113)

F [x(t)y(t)] = X(f) ∗ Y (f) (3.114)

Proof:

F [x(t) ∗ y(t)] =
∫ ∞

−∞
[
∫ ∞

−∞
x(τ)y(t − τ)dτ ]e−j2πftdt

=
∫ ∞

−∞
x(τ)e−j2πfτ

∫ ∞

−∞
y(t− τ)e−j2πf(t−τ)dt dτ

=
∫ ∞

−∞
x(τ)e−j2πfτY (f)dτ = X(f)Y (f) (3.115)

Similarly, we can also prove:

F [x(t)y(t)] = X(f) ∗ Y (f) (3.116)

In particular, as shown in Eq.1.66 in Chapter 1, the output y(t) of an LTI
system can be found as the convolution of its impulse response h(t0 and the
input x(t) y(t) = h(t) ∗ x(t). Now according to the convolution theorem, the
output of the system can be more conveniently obtained in frequency domain
by a multiplication:

Y (f) = H(f)X(f) (3.117)

where X(f) and Y (f) are respectively the spectra of the input x(t) and
the output y(t), and H(f) = F [h(t)], the Fourier transform of the impulse
response function h(t), is the frequency response function (FRF) of the sys-
tem, to be discussed in details later.
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! Time derivative:

F [
d

dt
x(t)] = j2πfX(f) = jωX(ω) (3.118)

Proof:
d

dt
x(t) =

d

dt

∫ ∞

−∞
X(f)ej2πftdf =

∫ ∞

−∞
X(f)

d

dt
ej2πftdf

=
∫ ∞

−∞
j2πfX(f)ej2πftdf = F−1[j2πfX(f)] (3.119)

i.e., F [x′(t)] = j2πfX(f). Repeating this process we get

F [
dn

dtn
x(t)] = (j2πf)nX(f) (3.120)! Frequency derivative:

F [t x(t)] = j
d

df
X(f)

F [tnx(t)] = jn 1
(2π)n

dn

dfn
X(f) (3.121)

The proof is very similar to the above.! Time integration:
The Fourier transform of a time integration is:

F [
∫ t

−∞
x(τ)dτ ] =

1
j2πf

X(f) +
1
2
X(0)δ(f) (3.122)

Proof:
The integral of a signal x(t) can be considered as its convolution with u(t):

x(t) ∗ u(t) =
∫ ∞

−∞
x(τ)u(t − τ)dτ =

∫ t

−∞
x(τ)dτ (3.123)

Due to the convolution theorem, we have

F [
∫ t

−∞
x(τ)dτ ] = F [x(t) ∗ u(t)] = X(f)[

1
j2πf

+
1
2
δ(f)] =

1
j2πf

X(f) +
X(0)

2
δ(f)

(3.124)
Comparing Eqs.3.118 and 3.122, we see that the time derivative and integral
are the inverse operations of each other in frequency domain as well as in time
domain. However, the second term in Eq.3.122 is necessary for representing the
DC component in signal x(t), while Eq.3.118 does not have a corresponding
term as derivative operation is insensitive to DC component in the signal.

3.2.5 Fourier Spectra of Typical Functions! Unit impulse:
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The Fourier transform of the unit impulse function is given in Eq.3.62 accord-
ing to the definition of the Fourier transform:

F [δ(t)] =
∫ ∞

−∞
δ(t)e−j2πftdt = 1 (3.125)! Sign function:

The Fourier transform of the sign function sgn(t) is given in Eq.3.64:

F [sgn(t)] =
1

jπf
(3.126)

Moreover, based on the time-frequency duality property, we also get:

F
[
1
t

]
= −jπsgn(f) (3.127)! Exponential functions:

A right-sided exponential decay function is defined as e−atu(t) (a > 0), and
its Fourier transform can be found to be:

F [e−atu(t)] =
∫ ∞

0
e−ate−j2πftdt =

1
−(a + j2πf)

e−(a+j2πf)t
∣∣∞
0

=
1

a + j2πf
=

a− j2πf

a2 + (2πf)2
=

a− jω

a2 + ω2
(3.128)

Next consider a left-sided exponential decay function eatu(−t), the time-
reversal version of the right-sided decay function. According time reversal
property F [x(−t)] = X(−f), we get:

F [eatu(−t)] =
1

a− j2πf
=

a + j2πf

a2 + (2πf)2
=

a + jω

a2 + ω2
(3.129)

Finally, a two-sided exponential decay e−a|t| is the sum of the right-sided and
left-sided decay functions and according to the linearity property, its Fourier
transform can be obtained as:

F [e−a|t|] = F [e−atu(t)] + F [eatu(−t)] =
1

a + j2πf
+

1
a− j2πf

=
2a

a2 + (2πf)2
=

2a

a2 + ω2
(3.130)! Unit step functions:

The Fourier transform of a unit step is also given before in Eq.3.65:

U(f) = F [u(t)] =
1

j2πf
+

1
2
δ(f) (3.131)

As the unit step is the time integral of the unit impulse:

u(t) =
∫ t

−∞
δ(t)dt (3.132)

their Fourier spectra are related according the time integration property.
Moreover, due to the time reversal property F [x(−t)] = X(−f), we can also
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get the Fourier transform of a left-sided unit step:

F [u(−t)] =
1
2
δ(−f) +

1
−j2πf

=
1
2
δ(f)− 1

j2πf
(3.133)

(as δ(−f) = δ(f).)! Constant:
As a constant time function x(t) = 1 is not square-integrable, the integral of
its Fourier transform does not converge:

F [1] =
∫ ∞

−∞
e−j2πftdt

However, we realize that the constant time function is simply the sum of a
right-sided unit step and a left-sided unit step: x(t) = 1 = u(t) + u(−t), and
according to the linearity of the Fourier transform we have:

F [1] = F [u(t)] + F [u(−t)] =
1

j2πf
+

1
2
δ(f)− 1

j2πf
+

1
2
δ(f) = δ(f)

(3.134)
Alternatively, the Fourier transform of constant 1 can also be obtained accord-
ing to the property of time-frequency duality, based on the Fourier transform
of the unit impulse:

F [1] =
∫ ∞

−∞
e−j2πftdt = δ(f) (3.135)

Due to the property of time-frequency scaling, if the time function x(t) is
scaled by a factor of 1/2π to become x(t/2π), its spectrum X(f) will become
2πX(2πf) = 2πX(ω). Specifically in this case, if we scale the constant 1 as
a time function by 1/2π (still the same), its spectrum X(f) = δ(f) can be
expressed as a function of angular frequency X(ω) = 2πδ(ω).! Complex exponentials and sinusoids:
The Fourier transform of a complex exponential x(t) = ejω0t = ej2πf0t of fre-
quency f0 is:

F [ej2πf0t] =
∫ ∞

−∞
e−j2π(f−f0)tdt = δ(f − f0) (3.136)

and according to Euler’s formula, the Fourier transform of cosine function
x(t) = cos(2πf0t) is:

F [cos(2πf0t)] = F
[
1
2
(ej2πf0t + e−j2πf0t)

]
=

1
2
[δ(f − f0) + δ(f + f0)](3.137)

and similarly the Fourier transform of x(t) = sin(2πf0t) is:

F [sin(2πf0t)] =
1
2j

[δ(f − f0)− δ(f + f0)] (3.138)

Note that none of the step, constant, complex exponential and sinusoidal func-
tions considered above is square-integrable, and correspondingly their Fourier
transform integrals are only marginally convergent, in the sense that their
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transform functions X(f) all contain a delta function (δ(f), δ(f − f0), etc.)
with an infinite value at certain frequency.! Rectangular function and sinc function:
A rectangular function is defined as

rectτ (t) =
{

1 0 < |t| < τ/2
0 otherwise

(3.139)

which can be considered as the difference between two unit step functions:

rect(t) = u(t + τ/2)− u(t− τ/2) (3.140)

Due to the properties of linearity and time shift, the spectrum of rectτ (t) can
be found to be

F [rect(t)] = F [u(t + τ/2)]− F [u(t− τ/2)] =
ejπfτ

j2πf
− e−jπfτ

j2πf

=
τ

πfτ
sin(πfτ) = τ sinc(fτ) (3.141)

This spectrum is zero at f = k/τ for any integer k. If we let τ →∞, the
time function is a constant 1 and its spectrum an impulse function. If we
divide both sides of the equation above by τ and let τ → 0, the time function
becomes an impulse and its spectrum a constant.
On the other hand, in frequency domain, an ideal low-pass filter is defined as:

Hlp(f) =
{

1 |f | < fc

0 |f | > fc
(3.142)

then according to time-frequency duality, its time impulse response is

hlp(t) =
sin(2πfct)

πt
= 2fc sinc(2fct) (3.143)

Note that the impulse response hlp(t) is nonzero for t < 0, indicating that the
ideal low-pass filter is not causal (response before the input δ(0) at t = 0). In
other words, an ideal low-pass filter is impossible to implement in real-time,
but it can be trivially realized off-line in frequency domain.! Triangle function:

triangle(t) =
{

1− |t|/τ |t| < τ
0 |t| ≥ τ (3.144)

This triangle function (with width 2τ) is the convolution of two square func-
tions (with width τ) scaled by 1/τ :

triangle(t) =
1
τ

rect(t) ∗ rect(t) (3.145)
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its Fourier transform can be conveniently obtained based on the convolution
theorem:

F [triangle(t)] =
1
τ
F [rect(t) ∗ rect(t)] =

1
τ
τ sinc(f) τ sinc(f) = τsinc2(fτ)

(3.146)
Alternatively, the spectrum of the triangle function can be obtained by the
definition. As this is an even function, its Fourier transform is

F [triangle(t)] = 2
∫ τ

0
(1− t/τ) cos(2πft)dt

= 2[
∫ τ

0
cos(2πft)dt− 1

τ

∫ τ

0
t cos(2πft)dt] =

1
πf

[sin(2πfτ)− 1
τ

∫ τ

0
t d sin(2πft)]

=
1
πf

[sin(2πfτ)− t

τ
sin(2πft)

∣∣τ
0

+
1
τ

∫ τ

0
sin(2πft)dt] =

−1
2τ(πf)2

cos(2πft)
∣∣τ
0

=
1

2τ(πf)2
(1− cos(2πfτ)) = τ

sin2(πfτ)
(πfτ)2

= τ sinc2(fτ) (3.147)

This spectrum is zero at f = k/τ for any integer k.! Gaussian function:
Consider the Gaussian function x(t) = e−π(t/a)2/a. Note that in particular
when a =

√
2πσ2, x(t) becomes the normal distribution with variance σ2 and

mean µ = 0. The spectrum of x(t) is:

X(f) = F [
1
a
e−π(t/a)2 ] =

1
a

∫ ∞

−∞
e−π(t/a)2 e−j2πftdt =

1
a

∫ ∞

−∞
e−π((t/a)2+j2ft)dt

=
1
a
eπ(jaf)2

∫ ∞

−∞
e−π[(t/a)2+j2ft+(jaf)2]dt = e−π(af)2

∫ ∞

−∞
e−π(t/a+jaf)2d(t/a + jaf)

= e−π(af)2 (3.148)

The last equation is due to the identity
∫∞
−∞ e−πx2

dx = 1. We see that the
Fourier transform of a Gaussian function is another Gaussian function, and
the area underneath either x(t) or X(f) is unity. Moreover, If we let a→ 0,
x(t) will approach δ(t), while its spectrum e−π(af)2 approaches 1. On the other
hand, if we rewrite the above as

X(f) = F [x(t)] = F [e−π(t/a)2 ] = ae−π(af)2 (3.149)

and let a →∞, x(t) approaches 1 and X(f) approaches δ(f).! Impulse train:
As discussed before the impulse train is a sequence of infinite unit impulses
separated by a constant time interval T :

comb(t) =
∞∑

n=−∞
δ(t− nT ) (3.150)
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Figure 3.5 Impulse train and its spectrum

Figure 3.6 Generation of a periodic signal

Figure 3.7 A periodic signal and its spectrum

The Fourier transform of this function is:

F [comb(t)] =
∫ ∞

−∞
comb(t)e−j2πftdt =

∫ ∞

−∞

[ ∞∑

n=−∞
δ(t− nT )

]
e−j2πftdt

=
∞∑

n=−∞

∫ ∞

−∞
δ(t− nT )e−j2πftdt =

∞∑

n=−∞
e−j2πnfT

We let f0 = 1/T and apply Eq.1.28 to the equation above to get

F [comb(t)] =
∫ ∞

−∞
comb(t)e−j2πftdt = f0

∞∑

n=−∞
δ(f − nf0) =

1
T

∞∑

n=−∞
δ(f − n/T )

This equation, also called Poisson formula, is very useful in the discussion of
impulse trains.! Periodic signals:
As discussed before, a periodic signal xT (t + T ) = xT (t) can be expanded
into a Fourier series with coefficients X [k], as shown in Eq.3.6. We can also
consider this periodic signal as the convolution of a finite signal x(t) which
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is zero outside the interval 0 < t < T and an impulse train with the same
interval:

xT (t) = x(t) ∗
∞∑

n=−∞
δ(t− nT ) (3.151)

The Fourier transform of this periodic signal can be found to be:

F [xT (t)] = F [x(t) ∗
∞∑

n=−∞
δ(t− nT )] = X(f) F [

∞∑

n=−∞
δ(t− nT )] (3.152)

The second equal sign is due to the convolution theorem. Here the two Fourier
transforms on the right-hand side above are, respectively:

X(f) = F [x(t)] =
∫ T

0
x(t)e−j2πftdt (3.153)

and (Eq.1.28)

F [
∞∑

n=−∞
δ(t− nT )] =

1
T

∞∑

k=−∞
δ(f − k/T ) (3.154)

We now have:

F [xT (t)] = X(f) F [
∞∑

n=−∞
δ(t− nT )] =

∫ T

0
x(t)e−j2πftdt

1
T

∞∑

k=−∞
δ(f − k/T )

=
∞∑

k=−∞

1
T

∫ T

0
xT (t)e−j2πkt/T dt δ(f − k/T )

=
∞∑

k=−∞
X [k] δ(f − kf0) (3.155)

where f0 = 1/T is the fundamental frequency. This result indicates that the
periodic signal has a discrete spectrum, which can be represented as an
impulse train weighted by the Fourier coefficients X [k], same as those in
Eq.3.6. As an example, a square wave and its periodic version are shown
respectively on top and bottom of Fig.3.7. Their corresponding spectra are
shown on the right. We see that the spectrum of the periodic version is com-
posed of a set of impulses, weighted by the spectrum X(f) = F [x(t)].

Fig.3.8 shows a set of typical signals and their Fourier spectra.

Example 3.3: In radio and TV broadcasting, a carrier wave c(t) = cos(2πfct)
with radio frequency (RF) fc is first modulated by the audio or video signal
s(t) before it is transmitted. In particular, in amplitude modulation (AM), the
modulation is carried out as a multiplication by a modulator (mixer):

x(t) = s(t)c(t) = s(t) cos(2πfct) = s(t)
1
2
[ej2πfct + e−j2πfct] (3.156)
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Figure 3.8 Examples of continuous-time Fourier transforms

A set of signals are shown on the left and their Fourier spectra are shown on the
right (real and imaginary parts are shown in solid and dashed lines, respectively).
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Figure 3.9 AM modulation and demodulation

This multiplication in time domain corresponds to a convolution in frequency
domain:

X(f) = S(f) ∗ C(f) = S(f) ∗ 1
2
[δ(f − fc) + δ(f + fc)] =

1
2
[S(f − fc) + S(f + fc)]

(3.157)
We note that the bandwidth occupied by the signal is ∆f = 2fm, twice the
highest frequency contained in the signal.

This modulated signal with RF frequency is transmitted and then received by
a radio or TV receiver, where the audio or video signal needs to be separated from
the carrier wave by a demodulation process, which can be easily implemented by
another multiplication:

y(t) = x(t) cos(2πfct) = s(t) cos2(2πfct) =
s(t)
2

+
s(t) cos(4πfct)

2
(3.158)

The signal s(t) can then be obtained by a low-pass filter to remove the higher fre-
quency component at 2fc. Note that this demodulation method requires the sinu-
soid cos(2πfct) used in the demodulator of the receiver is synchronous with that
used in the modulator of the transmitter. If there is a phase difference between
the two, the trigonometry relation used in the equation above is no longer valid.
For this reason, alternative methods exist for the purpose of demodulation.

This process of both modulation and demodulation in frequency domain is
illustrated in Fig.3.9.
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3.2.6 The Uncertainty Principle

According to the property of time and frequency scaling (Eq.3.102), if a time
function x(t) is expanded (a < 1), its spectrum X(f) will be compressed, and,
conversely, if x(t) is compressed (a > 1), X(f) will be expanded. This property
indicates that if the energy of a signal is mostly concentrated with in a short
time range, then the energy in its spectrum is spread in a wide frequency range,
and vice versa. In particular, as two extreme examples, the Fourier transform of
an impulse F [δ(t)] = 1 is a constant, while the Fourier transform of a constant
F [1] = δ(f) is an impulse.

This general phenomenon can be further quantitatively stated by the uncer-
tainty principle. To do so, we need to borrow some concepts from probability
theory. First, for a given function x(t), we build another function:

px(t) =
|x(t)|2
||x(t)||2 =

|x(t)|2∫∞
−∞ |x(t)|2dt

(3.159)

As px(t) satisfies these conditions

px(t) > 0 and
∫ ∞

−∞
px(t)dt = 1 (3.160)

it can be considered as a probability density function over variable t, and how
the function x(t) spreads over time, or the dispersion of x(t), can be measured
as the variance of this probability density px(t):

σ2
t =
∫ ∞

−∞
(t− µt)2px(t)dt =

1
||x(t)||2

∫ ∞

−∞
(t− µt)2|x(t)|2dt (3.161)

where µt is the mean of px(t):

µt =
∫ ∞

−∞
tpx(t)dt =

1
||x(t)||2

∫ ∞

−∞
t|x(t)|2dt (3.162)

The dispersion of the spectrum of the signal can also be similarly measured as:

σ2
f =

1
||X(f)||2

∫ ∞

−∞
(f − µf )2|X(f)|2df (3.163)

with µf defined as:

µf =
1

||X(f)||2

∫ ∞

−∞
f |X(f)|2df (3.164)

Note that ||x(t)||2 = ||X(f)||2 due to Parseval’s identity. Now the uncertainty
principle can be stated as the following theorem:

Theorem 3.1. Let X(f) = F [x(t)] be the spectrum of a given function x(t).
Then we have

σ2
t σ

2
f ≥

1
16π2

(3.165)
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Proof:
Without loss of generality, we assume µt = µf = 0, and consider

σ2
t σ

2
f =

1
||x(t)||4

∫ ∞

−∞
|tx(t)|2dt

∫ ∞

−∞
|fX(f)|2df (3.166)

Due to the time derivative property (Eq.3.118) and the Parseval’s identity, we
have

1
j2π

F [x′(t)] = fX(f) (3.167)

and
∫ ∞

−∞
|fX(f)|2df =

1
4π2

∫ ∞

−∞
|x′(t)|2dt (3.168)

Now the above becomes

σ2
t σ

2
f =

1
4π2||x(t)||4

∫ ∞

−∞
|tx(t)|2dt

∫ ∞

−∞
|x′(t)|2dt (3.169)

Applying the Cauchy-Schwarz inequality (Eq.2.34), we get

σ2
t σ

2
f ≥

1
4π2||x(t)||4

[∫ ∞

−∞
tx(t)x′(t) dt

]2
(3.170)

But since

[ |x(t)|2 ]′ = [x(t)x(t)]′ = x′(t)x(t) + x′(t)x(t) = 2 Re[x′(t)x(t)] ≤ 2x′(t)x(t)
(3.171)

we can replace x(t)x′(t) in the integrand by [|x(t)|2]′/2 and get

σ2
t σ

2
f ≥

1
4 · 4π2||x(t)||4

[∫ ∞

−∞
t[|x(t)|2]′dt

]2
(3.172)

By integration by parts, the integral becomes
∫ ∞

−∞
t[|x(t)|2]′dt = t|x(t)|2 |∞−∞ −

∫ ∞

−∞
|x(t)|2dt = −

∫ ∞

−∞
|x(t)|2dt (3.173)

Here we have assumed lim|t|←∞ tx2(t) = 0. Substituting this back into the
inequality, we finally get

σ2
t σ

2
f ≥

1
4 · 4π2||x(t)||4

[∫ ∞

−∞
|x(t)|2dt

]2
=

1
16π2

(3.174)

This effect is referred to as the Heisenberg uncertainty, as it is analogous to the
fact in quantum physics that the position and momentum of a particle cannot
be accurately measured simultaneously, higher precision in one quantity implies
lower precision in the other.
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3.3 The Two-Dimensional Fourier Transform

3.3.1 Two-Dimensional Signals and Their Spectra

All signals considered so far are assumed to be one-dimensional time functions.
However, a signal could also be a function over a 1D space, with the spatial
frequency defined as the number of cycles in unit length (distance), instead of
in unit time. Moreover, the concept of frequency analysis can be extended to
various signals in two or three-dimensional spaces. For example, an image can
be considered as a 2-D signal, and computer image processing has been a very
active field of study for several decades with a wide variety of applications. Like
in one-dimensional case, the Fourier transform is also a powerful tool in two or
higher dimensional signals processing and analysis. We will consider the Fourier
transform of some generic 2-D continuous signal denoted by f(x, y), with x and
y for the two spatial dimensions.

The Fourier spectrum of a 2-D signal f(x, y) is:

F (u, v) =
∫ ∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dx dy (3.175)

This is the forward transform where u and v represent two spatial frequencies
(cycles per unit distance) along the directions of x and y in the 2-D space,
respectively. The signal can be reconstructed by the inverse transform:

f(x, y) =
∫ ∫ ∞

−∞
F (u, v)ej2π(ux+vy)du dv (3.176)

by which the signal is expressed as a linear combination of infinite number of
uncountable 2-D orthogonal basis functions φu,v(x, y) = ej2π(ux+vy), weighted by
the Fourier coefficient function F (u, v), the 2-D spectrum of the signal.

Same as the 1-D case, if a 2-D signal is periodic in each of the two dimensions,
i.e., f(x + X, y + Y ) = f(x, y), where X and Y are the periods in the two spatial
dimensions, it can be Fourier expanded to become:

fXY (x, y) =
∞∑

k=−∞

∞∑

l=−∞
F [k, l]e−j2π(xkuo+ylvo) (3.177)

Here F [k, l] is the kl-th coefficient that can be obtained as:

F [k, l] =
1

XY

∫ X

0

∫ Y

0
fXY (x, y)ej2π(kxuo+lyvo)dx dy (3.178)

where uo = 1/X and vo = 1/Y are the fundamental frequencies in x and y direc-
tions, which are also the intervals between any two consecutive frequency com-
ponents in the spatial frequencies u and v, respectively. This discrete spectrum
can also be represented as a 2-D function:

F (u, v) =
∞∑

k=−∞

∞∑

l=−∞
F [k, l]δ[u− ku0]δ[v − lv0] (3.179)
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When the periods X and Y become infinite: X →∞ and Y →∞, i.e., the signal
f(x, y) becomes non-periodic, correspondingly in spatial frequency domain, we
have u0 → 0 and v0 → 0, i.e., the spectrum becomes continuous.

3.3.2 Physical Interpretation

In the discussion of this subsection, we will always assume f(x, y) = f(x, y) is a
real 2-D signal. The integrand in the 2-D Fourier transform is composed of two
parts, the kernel function of the integral transform, which is also the orthogo-
nal basis functions φu,v(x, y) = ej2π(ux+vy), and the complex coefficient function
F (u, v). We first consider each of them individually.! Complex exponential basis function ej2π(ux+vy):

Let us define two vectors, one in the spatial domain, another in the spatial
frequency domain:
– Define a vector r associated with each spatial point (x, y):

r = [x, y]T (3.180)

– Define a vector w associated with each frequency point (u, v):

w = [u, v]T = w[u/w, v/w]T = wn (3.181)

where w =
√

u2 + v2 is the magnitude and n = [u/w, v/w]T is the unit
vector (||n|| = 1) along the direction of w.

Now the 2-D basis function φu,v(x, y) can be written as:

φu,v(x, y) = ej2π(xu+yv) = ej2πw(rT n) = cos(2πw(rT n)) + j sin(2πw(rT n))
(3.182)

where rT n is the projection of a spatial point r = [x, y]T onto the direction of
w. The value of the function cos(2π(xu + yv)) = cos(2πw(rT n)) is the same
for all spatial points r = (x, y) along each straight line perpendicular to the
direction n, as all such points have the same projection rT n.
In other words, the function cos(2π(ux + vy)) = cos(2πw(rT n)) represents a
planar sinusoid in the (x, y) plane with frequency w =

√
u2 + v2 and direc-

tion n with an angular difference θ = tan−1(v/u) from the positive horizontal
direction. The same argument can be made for the sine function of the imag-
inary part sin(2πw(rT n)).
Two 2-D sinusoid functions cos(2π(3x + 2y)) and cos(2π(2x + 3y)) are shown
in Fig.3.10.! Complex coefficient function F (u, v):
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Figure 3.10 Different propagation directions of 2-D sinusoid cos(2π(ux + vy))

In the plot on the left for cos(2π(3x + 2y)), we see u = 3 cycles per unit length
along x dimension (right side of plot) and v = 2 per unit length along y. In the
plot on the right for cos(2π(2x + 3y)), we see u = 2 cycles per unit length along
x and v = 3 along y.

As the 2-D signal f(x, y) is assumed real, its Fourier coefficient F (u, v) can
be written in terms of the real and imaginary parts:

F (u, v) =
∫ ∫ ∞

−∞
f(x, y)e−j2π(xu+yv)dx dy

=
∫ ∫ ∞

−∞
f(x, y) cos(2π(xu + yv))dx dy − j

∫ ∫ ∞

−∞
f(x, y) sin(2π(xu + yv))dx dy

= Fr(u, v) + jFj(u, v) (3.183)

where

Fr(u, v) =
∫ ∫ ∞

−∞
f(x, y) cos(2π(xu + yv))dx dy (3.184)

Fj(u, v) = −
∫ ∫ ∞

−∞
f(x, y) sin(2π(xu + yv))dx dy (3.185)

Alternatively F (u, v) can also be represented in polar form in terms of its
amplitude |F (u, v)| and phase $ F (u, v):

F (u, v) = |F (u, v)|ej $ F (u,v) (3.186)

where
{
|F (u, v)| =

√
F 2

r (u, v) + F 2
j (u, v)

$ F (u, v) = tan−1[Fj(u, v)/Fr(u, v)]
,

{
Fr(u, v) = |F (u, v)| cos($ F (u, v))
Fj(u, v) = |F (u, v)| sin($ F (u, v))

(3.187)
The real part Fr(u, v) is even and the imaginary part Fj(u, v) is odd:

Fr(−u,−v) = Fr(u, v), Fr(u,−v) = Fr(−u, v)

Fj(−u,−v) = −Fj(u, v), Fj(u,−v) = −Fj(−u, v) (3.188)
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The magnitude |F (u, v)| is even and the phase $ F (u, v) is odd:

|F (−u,−v)| = |F (u, v)|, |F (u,−v)| = |F (−u, v)|
$ F (−u,−v) = −$ F (u, v), $ F (u,−v) = −$ F (−u, v) (3.189)

Now a real signal f(x, y) can be expanded in terms of the 2-D basis functions
by the 2-D Fourier transform:

f(x, y) =
∫ ∞

−∞

∫ ∞

−∞
F (u, v)ej2π(xu+yv)du dv

=
∫ ∞

−∞

∫ ∞

−∞
[Fr(u, v) cos(2π(ux + vy))− Fj(u, v) sin(2π(ux + vy))]du dv

+ j

∫ ∞

−∞

∫ ∞

−∞
[Fr(u, v) sin(2π(ux + vy)) + Fj(u, v) cos(2π(ux + vy))]du dv

(3.190)

However, as f(x, y) is real, the imaginary part is zero, therefore we have:

f(x, y) =
∫ ∞

−∞

∫ ∞

−∞
|F (u, v)| cos(2π(ux + vy) + $ F (u, v))du dv

=
∫ ∞

−∞

∫ ∞

−∞
|F (u, v)| cos(2πwrT n + $ F (u, v))du dv (3.191)

We see that f(x, y) is represented as a superposition of a set of infinite and
uncountable 2-D spatial sinusoids |F (u, v)| cos(2πwrT n) + $ F (u, v)) with! frequency w =

√
u2 + v2 and direction n (θ = tan−1(v/u)) determined by

the position (u, v) of the coefficient F (u, v), and! amplitude |F (u, v)| =
√

Fr(u, v)2 + Fj(u, v) and phase $ F (u, v) =
tan−1(Fj(u, v)/Fr(u, v)) determined by the complex value of the coefficient
F (u, v).

Eq. 3.191 can be further modified to gain some insight of the expansion of a
2-D signal. First, according to the symmetry properties in Eq.3.189, we have! |F (u, v)| is even: |F (−u,−v)| = |F (u, v)| and |F (u,−v)| = |F (−u, v)|! $ F (u, v) is odd: $ F (−u,−v) = −$ F (u, v) and $ F (u,−v) = −$ F (−u, v)
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Now Eq. 3.191 can be rewritten as

f(x, y) =
∫ ∞

−∞

∫ ∞

−∞
|F (u, v)| cos(2π(ux + vy) + $ F (u, v))du dv

= 2
∫ ∞

0

∫ ∞

0
|F (u, v)| cos(2π(ux + vy) + $ F (u, v))du dv

+ 2
∫ 0

−∞

∫ ∞

0
|F (u, v)| cos(2π(ux− vy) + $ F (u,−v))du dv

= 2
∫ ∞

0

∫ ∞

0
|F (u, v)| cos(2πw(rT n) + $ F (u, v))du dv

+ 2
∫ 0

−∞

∫ ∞

0
|F (u, v)| cos(2πw(rT n′) + $ F (u,−v))du dv (3.192)

Here n is the unit vector in the direction determined by the angle tan−1(v/u) = θ,
while n′ is the unit vector in the direction determined by the angle (τ−1(−v/u) =
− tan−1(v/u) = −θ; and w =

√
u2 + v2 is the spatial frequency represented by

the coefficient F (u, v). This equation is the 2-D version of Eq. 3.70. The first
integral represents a superposition of sinusoids in the directions 0 < θ < 90◦ (NE
to SW), while the second integral represents a superposition of sinusoids in the
directions 0 > θ > −90◦ (NW to SE).

The DFT of a 2-D discrete and periodic signal x[m, n] can be similarly con-
sidered. First write the 2-D DFT coefficients in polar form:

X [k, l] = |X [k, l]|ej $ X[k,l] (3.193)

where
{
|X [k, l]| =

√
X2

r [k, l] + X2
j [k, l]

$ X [k, l] = tan−1[Xj [k, l]/Xr[k, l]]
and

{
Xr[k, l] = |X [k, l]| cos($ X [k, l])
Xj [k, l] = |X [k, l]| sin($ X [k, l])

(3.194)
Then the 2-D signal x[m, n] can be represented as a superposition of a set of pla-
nar sinusoids with different frequencies, directions, amplitudes and phase shifts:

x[m, n] =
1√

MN

N−1∑

l=0

M−1∑

k=0

X [k, l]ej2π( mk
M + nl

N )

=
1√

MN

M/2∑

−M/2+1

N/2∑

−N/2+1

|X [k, l]| cos(2π(
mk

M
+

nl

N
) + $ X [k, l]),

(m = 0, · · · , M − 1, n = 0, · · · , N − 1) (3.195)

3.3.3 Fourier Transform of Typical 2-D Functions! The function below represents a planar wave in 2-D space:

f(x, y) = cos(2π(3x− 2y)) =
1
2
[ej2π(3x−2y) + e−j2π(3x−2y)] (3.196)
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and its 2-D Fourier spectrum can be found to be:

F (u, v) =
∫ ∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dx dy

=
1
2

∫ ∫ ∞

−∞
[ej2π(3x−2y) + e−j2π(3x−2y)]e−j2π(ux+vy)dx dy

=
1
2

∫ ∫ ∞

−∞
e−j2π((u−3)x+(v+2)y)dx dy +

1
2

∫ ∫ ∞

−∞
e−j2π((u+3)x+(v−2)y)dx dy

=
1
2

∫ ∞

−∞
e−j2π(u−3)xdx

∫ ∞

−∞
e−j2π(v+2)ydy +

1
2

∫ ∞

−∞
e−j2π(u+3)xdx

∫ ∞

−∞
e−j2π(v−2)ydy

=
1
2
[δ(u − 3)δ(v + 2)] +

1
2
[δ(u + 3)δ(v − 2)] (3.197)

This signal and its spectrum are shown in Fig.3.11(a)! The function below is a 2-D signal composed of three frequency components:

f(x, y) = 3 cos(2π2x) + 2 cos(2π3y) + cos(2π5(x− y)); (3.198)

and its 2-D Fourier spectrum is given below. The signal and its spectrum are
shown in Fig.3.11(b).

F (u, v) =
∫ ∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dx dy

=
3
2
[δ(u− 2) + δ(u + 2)]δ(v) + δ(u)[δ(v − 3) + δ(v + 3)]

+
1
2
[δ(u− 5)δ(v + 5) + δ(u + 5)δ(v − 5)] (3.199)! The function below is a 2-D rectangular impulse:

f(x, y) =
{

1 if (−a
2 < x < a

2 , − b
2 < y < b

2 )
0 else

(3.200)

Note that this 2-D function can be separated to become f(x, y) = fx(x)fy(y),
where fx(x) and fy(y) are each a 1-D square impulse function. The spec-
trum is, not too surprisingly, the product of the spectra Fx(u) = F [fx(x)]
and Fy(v) = F [fy(y)], a 2-D sinc function. The signal and its spectrum are
shown in Fig.3.11(c).

F (u, v) =
∫ ∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dx dy =

∫ ∞

−∞
fx(x)e−j2πuxdx

∫ ∞

−∞
fy(y)e−j2πvydy

=
∫ a/2

−a/2
e−j2πuxdx

∫ b/2

−b/2
e−j2πvydy =

sin(πua)
πu

sin(πvb)
πv

(3.201)! This function has a cylindrical shape, which cannot be separated to become
a product of two 1-D functions:

f(x, y) =
{

1 x2 + y2 < R2

0 else
(3.202)
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To find the spectrum, it is more convenient to use polar coordinate system in
both spatial and frequency domains. Let

{
x = r cos θ, y = r sin θ
r =
√

x2 + y2, θ = tan−1(y/x)
(3.203)

dx dy = rdr dθ (3.204)

and
{

u = ρ cosφ, v = ρ sinφ
ρ =

√
u2 + v2, φ = tan−1(v/u)

(3.205)

du dv = ρdρ dφ (3.206)

then we have:

F (u, v) =
∫ ∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dx dy =

∫ R

0
[
∫ 2π

0
e−j2πrρ(cos θ cosφ+sinθ sinφ)dθ]rdr

=
∫ R

0
[
∫ 2π

0
e−j2πrρ cos(θ−φ)dθ]rdr =

∫ R

0
[
∫ 2π

0
e−j2πrρ cosθdθ]rdr (3.207)

To continue, we need to use the 0th order Bessel function J0(x) defined as

J0(x) =
1
2π

∫ 2π

0
e−jx cos θdθ (3.208)

which is related to the 1st order Bessel function J1(x) by

d

dx
(xJ1(x)) = xJ0(x) (3.209)

i.e.
∫ x

0
xJ0(x)dx = xJ1(x) (3.210)

Substituting 2πrρ for x, we have

F (u, v) = F (ρ,φ) =
∫ R

0
2πr J0(2πrρ)dr =

1
ρ
R J1(2πρR) (3.211)

We see that the spectrum F (u, v) = F (ρ,φ) is independent of angle φ and
therefore is central symmetric sinc-like function. This signal and its spectrum
are shown in Fig.3.11(d).! The function in Eq. 3.202 can also be defined in frequency domain as an ideal
low-pass filter:

F (u, v) =
{

1 u2 + v2 < R2

0 else
(3.212)

When the spectrum of a 2-D signal is multiplied by this filter, all its frequency
components inside the radius R from the DC component at the origin will be
kept, while all higher frequency components outside the circle are suppressed



144 Chapter 3. Continuous-Time Fourier Transform

to zero. The inverse transform of this ideal filter is the same 2-D sinc-like
function shown in Eq.3.211. The filtering effect of this ideal low-pass filter
will be discussed later.! The 1-D Gaussian function discussed in the previous chapter can be expanded
to become a 2-D Gaussian function, which is separable:

f(x, y) =
1
a2

e−π(x2+y2)/a2
=

1
a
e−π(x/a)2 1

a
e−π(y/a)2 (3.213)

The spectrum of this function can be found as:

F (u, v) =
∫ ∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dx dy

=
1
a

∫ ∞

−∞
e−π(x/a)2e−j2πuxdx

1
a

∫ ∞

−∞
e−π(y/a)2e−j2πvydy

= e−π(au)2e−π(av)2 (3.214)

The last equation is due to Eq.3.149. Now we see that the Fourier transform of
a 2-D Gaussian function is also a Gaussian, the product of two 1-D Gaussian
functions along directions of u and v, respectively. This 2-D Gaussian function
and its Gaussian spectrum are shown in Fig.3.11(e).

3.4 Some Applications of the Fourier Transform

3.4.1 Frequency Response Function of Continuous LTI Systems

In the discussions above, we mostly considered the Fourier transform applied to
a given signal x(t) to produce its spectrum F [x(t)] = X(f) that characterizes
the frequency contents of the signal. However, the Fourier transform can also
be used to characterize the LTI systems. Recall that the output of a continuous
LTI system can be found as the convolution of the input x(t) and the impulse
response function h(t) of the system (Eq. 1.66 in Chapter 1):

y(t) = O[x(t)] = h(t) ∗ x(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ (3.215)

and this convolution can also be more conveniently represented in frequency
domain as a multiplication (Eq.3.117):

Y (f) = H(f)X(f)

In particular, when the input be a complex exponential x(t) = ej2πft, then the
output becomes:

y(t) = O[ej2πft] =
∫ ∞

−∞
h(τ)ej2πf(t−τ)dτ = ej2πft

∫ ∞

−∞
h(τ)e−j2πfτdτ

= H(f) ej2πft = |H(f)|ej2πH(f)ej2πft = |H(f)|ej(2πtt+ $ H(f)) (3.216)
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Figure 3.11 Some 2-D signals (left) and their spectra (right)

Here H(f) happens to be the Fourier transform of the impulse response function
h(t), the frequency response function (FRF) of the system:

H(f) =
∫ ∞

−∞
h(t)e−j2πftdt = F [h(t)] (3.217)

This equation is an eigenequation indicating that the effect of the LTI system
applied to a sinusoidal input, the eigenfunction of the system, is the same as
a multiplication of the input by a constant H(f), the eigenvalue. Also, as the
complex exponential input x(t) = ej2πft is independent of any specific h(t)), it
is the eigenfunction of all LTI systems.
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Due to the linearity of the LTI system, the input-output relationship y(t) =
O[x(t)] = h(t) ∗ x(t) can be expressed as:

y(t) = yr(t) + jyj(t) = O[x(t)] = O[xr(t) + jxj(t)]

= O[xr(t)] + jO[xj(t)] = h(t) ∗ xr(t) + jh(t) ∗ xi(t) (3.218)

where xr(t) and xj(t) are the real and imaginary parts of x(t) and yr(t) and
yj(t) are the real and imaginary parts of y(t), respectively. Also, as the system
is always assumed to be real, i.e., its impulse response function h(t) is real, we
have:

yr(t) = O[xr(t)] = h(t) ∗ xr(t), and yj(t) = O[xj(t)] = h(t) ∗ jr(t)
(3.219)

i.e., the real (imaginary) part of the system output is its response of the real
(imaginary) part of the input. Now taking the real part on both sides of Eq.3.216,
we get:

O[Re[ej2πft]] = O[cos 2πft] = Re[ |H(f)|ej(2πft+ $ H(f)) ] = |H(f)| cos(2πft + $ H(f))
(3.220)

Similarly, taking the imaginary part of Eq.3.216, we get:

O[sin 2πft] = |H(f)| sin(2πft + $ H(f)) (3.221)

In other words, the response of any LTI system to a sinusoidal input is the same
sinusoid with its amplitude scaled by the magnitude |H(f)| of the FRF, and its
phase shifted by the phase angle $ H(f) of the FRF.

The results above can be summarized in Fig.3.12, by which the essential role
of the Fourier transform in LTI system analysis is illustrated. We see that an LTI
system can be described by its impulse response function h(t) in time domain,
or its frequency response function H(f) = F [h(t)] in frequency domain. Corre-
spondingly, the system’s response to a given input x(t) can be obtained as a con-
volution y(t) = h(t) ∗ x(t) in time domain, or as a product Y (f) = H(f)X(f) in
frequency domain, where Y (f) = F [y(t)], X(f) = F [x(t)], and H(f) = F [h(t)]
are the Fourier transforms of y(t), x(t), and h(t), respectively. Although both
the forward and inverse Fourier transforms are needed for the frequency domain
method, we gain some benefits not possible in time domain. Most obviously,
the response of an LTI system to an input x(t) can be much more conveniently
obtained in frequency domain by a multiplication, instead of the corresponding
convolution in time domain. For this reason, the Fourier transform is a powerful
tool in the analyze and design of LTI systems. Specifically, given any two of the
three variables X(f), H(f) and Y (f), the third can be obtained.

1. Find output Y (f) given input X(f) to the system H(f).
This operation can also be carried out equivalently as a convolution in time
domain.

2. Find system H(f) given input X(f) to output Y (f)



Continuous-Time Fourier Transform 147

Figure 3.12 Signal through system in time and frequency domains

This kind of problems are called system identification, by which an unknown
system H(f) can be identified from its input X(f) and output Y (f). This
process can also be applied to the design of a system H(f) (called a filter in
signal processing) given the input and desired output.

3. Find input X(f) given output Y (f) of the system H(f)
This kind of problems are called signal restoration, by which the original signal
X(f) is obtained based on the observed output Y (f) of a measuring system
H(f).

Note that it is rather difficult to carry out the last two operations in time domain.
As an example, consider a very important type of LTI systems that is described

by a linear constant-coefficient ordinary differential equation (LCCDE). Here the
input x(t) and output y(t) of the system are related by the differential equation
as:

n∑

k=0

ak
dk

dtk
y(t) =

m∑

k=0

bk
dk

dtk
x(t) (3.222)

If the input is assumed to be a complex exponential x(t) = ej2πft, then according
to Eq.3.216, the output is also a complex exponential y(t) = H(f)ej2πft with a
complex coefficient H(f), the FRF of the system. Note that the output here is
the steady state response of the system to the complex exponential input, when
the transient response is completely attenuated. Substituting such x(t) and y(t)
into the differential equation above we get:

H(f)
n∑

k=0

ak(j2πf)kej2πft =
m∑

k=0

bk(j2πf)kej2πft (3.223)

Now the frequency response function of the system can then be obtained as

H(f) =
∑m

k=0 bk(j2πf)k

∑n
k=0 ak(j2πf)k

=
N(f)
D(f)

(3.224)

where N(f) =
∑m

k=0 bk(j2πf)k and D(f) =
∑n

k=0 ak(j2πf)k are the numerator
and denominator of H(f), respectively.

More generally, consider an input x(t) = Xej2πft, here the complex coefficient
X = |X |ej $ X is called phasor that represents the amplitude |X(f)| and phase
$ X(f) (but not the frequency) of the input signal. The corresponding output
can also be assumed to be a complex exponential y(t) = Y ej2πft with a phasor
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coefficient Y = |Y |ej $ Y for the amplitude and phase of the output. Substituting
x(t) = Xej2πft and y(t) = Y ej2πft into the differential equation, we get

n∑

k=0

ak
dk

dtk
y(t) = Y

n∑

k=0

ak(j2πf)kej2πft =
m∑

k=0

bk(j2πf)kej2πft = X
m∑

k=0

bk
dk

dtk
x(t)

(3.225)
Now the same frequency response function of the system can be found as the
ratio between the output phasor Y and the input phasor X :

H(f) =
Y

X
=
∑m

k=0 bk(j2πf)k

∑n
k=0 ak(j2πf)k

=
N(f)
D(f)

(3.226)

This is the general definition of the frequency response function of a given LTI
system.

The result can be further generalized much beyond sinusoidal inputs to cover
any input so long as it can be expressed as a linear combination of a set of
sinusoids (inverse Fourier transform):

x(t) =
∫ ∞

−∞
X(f)ej2πftdf (3.227)

Here the weighting function X(f) = F [x(t)], the phasor for frequency component
ej2πft, is of course the Fourier spectrum of x(t). As the system is linear, we can
get the output as:

y(t) = O[x(t)] =
∫ ∞

−∞
X(f)O[ej2πft]df =

∫ ∞

−∞
X(f)H(f)ej2πftdf (3.228)

We see that the output y(t) happens to be the inverse Fourier transform of
H(f)X(f), i.e.,

y(t) = F−1[Y (f)] = F−1[H(f)X(f)] (3.229)

In other words, while in time domain the output is the convolution of the input
and the impulse response function y(t) = h(t) ∗ x(t), in frequency domain the
output is the product of the input and the frequency response function, i.e.,
Y (f) = H(f)X(f). This is, of course, the same as the conclusion of the convo-
lution theorem.

Similar result can also be obtained for a periodic input xT (t + T ) = xT (t) with
period T = 1/f0, which can be Fourier series expanded to become:

xT (t) =
∞∑

k=−∞
X [k]ej2kπf0t (3.230)

where the coefficient X [k], the phasor of the frequency component ej2kπf0t, is
the kth Fourier coefficient of the signal. The corresponding output can be found
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Figure 3.13 An RC circuit

to be:

y(t) = O[xT (t)] =
∞∑

k=−∞
X [k]O[ej2kπf0t] =

∞∑

k=−∞
X [k]H(kf0)ej2kπf0t =

∞∑

k=−∞
Y [k]ej2kπf0t

(3.231)
Of course this is the Fourier expansion of the output with phasor

Y [k] = H(kf0)X [k] (3.232)

where H(kf0) is the frequency response function H(f) of the system evaluated
at f = kf0.

Example 3.4: In a circuit composed of a resistor R and a capacitor C as shown
in Fig.3.13, the voltage across both R and C in series is the input x(t) = vin(t),
and the voltage across C is the output y(t) = vC(t). Find the impulse response
function and the frequency response function of the system.! Set up the differential equation for the system:

The current through both C and R is i(t) = C dvC(t)/dt = Cẏ(t). According
to Ohm’s law, the voltage across R is vR(t) = Ri(t) = RC ẏ(t). Also, accord-
ing to Kirchhoff’s voltage law, the input voltage x(t) is the sum of vR(t) and
vC(t):

vR(t) + vC(t) = RCẏ(t) + y(t) = vin(t) = x(t)

i.e.,

τ ẏ(t) + y(t) = x(t), or ẏ(t) +
1
τ
y(t) =

1
τ

x(t)

where τ = RC is the time constant of the system.! Find step response o a unit step input x(t) = u(t):
– Find homogeneous solution yh(t) when the right-hand side is zero:

Assume yh(t) = Aest and get ẏh(t) = sAest, now the homogeneous differ-
ential equation becomes:

(sτ + 1)Aest = 0, i.e., s = −1
τ

and we get yh(t) = Ae−t/τ .
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– Find the particular solution yp(t) when x(t) = u(t):
As the right-hand side is a constant 1/τ for t > 0, we assume the corre-
sponding output is also a constant yp(t) = C and ẏp(t) = 0. Substituting
these into the equation we get yp(t) = 1.

– Find the complete response to unit step input x(t) = u(t):

y(t) = yh(t) + yp(t) = Ae−t/τ + 1

We further assume initially y(t)
∣∣
t=0

= y(0) = y0 and get A = y0 − 1, and
the complete response to x(t) = u(t) is:

y(t) = [(y0 − 1)e−t/τ + 1]u(t) = [1− e−t/τ ]e−t/τ + y0e
−t/τ

The first term is the charging process of the capacitor due to the step input
and the second term represents the discharge of the initial voltage on the
capacitor. In particular, when y0 = 0, we have:

y(t) = (1− e−t/τ )u(t)! Find impulse response h(t) to an impulse input x(t) = δ(t):
Due to the linearity of the system y(t) = O[x(t)], and under zero initial con-
dition, we can take derivative on both sides to get ẏ(t) = O[ẋ(t)]. (Deriva-
tive ẋ(t) = lim(t=0[x(t +(t)− x(t)]/(t is a linear combination of x(t +(t)
and x(t).) Therefore, based on the previous result, we see that if the input is
ẋ(t) = dt u(t)/dt = δ(t), the corresponding output ẏ(t) is the impulse response
h(t):

h(t) =
d

dt
y(t) =

d

dt
[(1− e−t/τ )u(t)]

=
1
τ
e−t/τu(t) + (1− e−t/τ )δ(t) =

1
τ

e−t/τu(t)

Note that the second term is zero as 1− e−t/τ = 0 when t = 0.! Alternative approach to Find h(t):
As the system is causal, h(t) = 0 for all t < 0 when the input is zero, we can
assume

h(t) = f(t)u(t) =
{

f(t) t > 0
0 t < 0

and have:

ḣ(t) = ḟ(t)u(t) + f(t)u̇(t) = ḟ(t)u(t) + f(0)δ(t)

where f(t) is a function to be determined. Now the differential equation above
becomes:

τ ḟ(t)u(t) + τf(0)δ(t) + f(t)u(t) = δ(t)
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Separating terms containing u(t) and δ(t), we get two equations:
{
τ ḟ(t) + f(t) = 0
f(0) = 1/τ

This homogeneous equation with an initial condition can be solved to get

f(t) =
1
τ
e−t/τ

and the impulse response is

h(t) = f(t)u(t) =
1
τ

e−t/τu(t)! Find the frequency response function H(f):
When the input is a complex exponential x(t) = ej2πft, the output also
takes the form of a complex exponential y(t) = H(f)ej2πft and ẏ(t) =
j2πfH(f)ej2πft. Substituting these into the equation we get:

τ ẏ(t) + y(t) = H(f)(j2πfτ + 1)ej2πft = x(t) = ej2πft

Solving this we get the frequency response function:

H(f) =
1

j2πfτ + 1! Verify H(f) is the Fourier transform of h(t):

F [h(t)] =
∫ ∞

−∞
h(t)e−j2πftdt =

∫ ∞

−∞

1
τ

e−t/τu(t)e−j2πftdt

=
1
τ

∫ ∞

0
e−(j2πf+1/τ)tdt =

1
j2πfτ + 1

= H(f)

3.4.2 Signal Filtering in Frequency Domain

From the signal processing point of view, the process of a signal x(t) going
through an LIT system h(t), as either a convolution y(t) = h(t) ∗ x(t) in time,
or a multiplication Y (f) = H(f)X(f) in frequency domain, can be treated as
a filtering process, while the LTI system is treated as a filter. While the two
representations in time and frequency domains are equivalent in the sense that
the total amount of energy or information is conserved (the Parseval’s theorem),
the frequency representation has the benefit that the signal can be manipulated
by various filtering methods in frequency domain, which in many ways are more
advantageous and convenient than the manipulations in time domain. Due to the
frequency locality gained by the transform (with the cost of losing the temporal
locality), we can modify and manipulate the phase as well as the magnitude of
the frequency components of the signal:

|Y (f)| = |H(f)|X(f)|, and $ Y (f) = $ H(f)$ X(f) (3.233)
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We now consider the filtering effects in both aspects.
First, we consider various filtering schemes based on the magnitude of the

frequency response function |H(f)| of the filter. Typically, depending on which
part of the signal spectrum is enhanced or attenuated, a filters can be classified
as one of these different types: low-pass, high-pass, band-pass, and band-stop
filters, as illustrated in Fig.3.14. Moreover, sometimes it may also be the case
that |H(f)| = c is a constant independent of frequency f (although $ H(f) may
vary as a function of frequency), then H(f) is said to be an all-pass filter. Two
parameters are commonly used to characterize a filter:! Cutoff frequency

As the cutoff frequency fc the magnitude of H(f)| is reduced to 1/
√

2 of the
maximum magnitude:

|H(fc)| =
1√
2
|Hmax|, i.e. |H(fc)|2 =

1
2
|Hmax|2

where |Hmax| is the maximum magnitude of the frequency response function
H(f) at some peak frequency. (When the passing band of the filter is flat,
|H(f)| = |Hmmax| occurs within a range of frequencies.) In other words, at
the cutoff frequency fc, the power of the filtered signal (proportional to its
magnitude squared) is reduced to half of maximum power, and therefore the
cutoff frequency is also called the half-power frequency.! Bandwidth (f
The bandwidth is the interval between two cutoff frequencies of a bandpass
filter:

(f = fc1 − fc2

where fc1 and fc2 are the two cutoff frequencies on either side of the peak
frequency. When Bandwidth is used to describe a lowpass filter, the lower
cutoff frequency fc2 will be replace by 0 and (f = fc.

Next, we consider how the phase angle $ H(f) of the filter affects the filtering
process. We first consider a simple signal containing two sinusoidal components
of frequencies f1 = 2 and f2 = 4 Hz, respectively, as shown in the top panel of
Fig.3.15:

x(t) = cos(2πf1t) + cos(2πf2t) = cos(2π2t) + cos(2π4t)

Assume the filter H(f) is all-pass with a unity gain |H(f)| = 1 and a linear phase,
$ H(f) = −2πfτ , i.e., the phase shift of a frequency component is proportional
to its frequency f , then the phase shifts of the sinusoids of 2 and 4 Hz are 4πτ
and 8πτ , respectively, and their relative positions in time remain the same, and
consequently the shape of the signal remains the same before and after filtering,
except it delayed in time by a constant amount τ , as shown in the middle panel
of Fig.3.15.
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Figure 3.14 Illustration of four different types of filters (lowpass, highpass, bandpass
and bandstop)

This result can be generalized to any signal

x(t) =
∫ ∞

−∞
X(f)ej2πftdt

The output of the filter corresponding to any frequency component ej2πft of the
signal is:

O[ej2πft] = H(f)ej2πft = |H(f)|ej $ H(f)ej2πft = ej2πf(t−τ)

and the output corresponding to x(t) is the linear combination of all these out-
puts:

y(t) =
∫ ∞

−∞
X(f)ej2πf(t−τ)df = x(t− τ)

which is just a delayed version of the input. Of course we also realize this result
is actually stated by the time shift property of the Fourier transform:

F [x(t− τ)] = X(f)e−j2πfτ

We can also conclude that the time delay caused by a linear phase filter H(f)
can be simply obtained from its phase $ H(f) as:

τ = −
$ H(f)

f
= −2πfτ

f
(3.234)
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Figure 3.15 Filtering with linear and non-linear phase shift

The original signal containing two sinusoidal components (top panel) of fre-
quencies f1 = 2 and f2 = 4, respectively, is filtered linearly (middle panel) and
nonlinearly (bottom panel). Th signals before and after are plotted in solid lines
while the two frequency components are plotted in dashed lines.

This is called the phase delay of the linear phase filter.
On the other hand, when the phase of the filter is not a linear function of

frequency, the relative positions in time of the frequency components in the signal
will no longer remain the same, and the shape of the signal will be distorted by
the filtering. Again, in the example above, if the phase shift of the filter is 6πτ
for both frequencies f1 and f2 (i.e., −6πτ for −f1 and −f2), then the shape of
the filtered signal looks very different from the original, as shown in the bottom
panel of Fig.3.15. Another example is shown in Fig.3.16, where a square impulse
signal is filtered, first by a linear phase filter (top), which caused no distortion
but a pure time delay, and then by a constant-phase (non-linear) filter (bottom)
by which the signal is distorted.

Although the time delay caused by a non-linear phase filter varies as a function
of frequency, we can still find the time delay for any specific frequency f by:

τg = −d$ H(f)
df

(3.235)

This is defined as the group delay of the non-linear filter, representing approxi-
mately the time delay of a group of frequency components within a narrow band
around this frequency f .
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Figure 3.16 Filtering with linear and constant phase shift

The frequency response function H(f) can also be represented by the Bode
plot, where both the magnitude |H(f)| and phase angle $ H(f) are plotted in
base-10 logarithmic scale of the frequency f so that the range of frequencies
can be increased to several decades. Moreover, the magnitude of H(f) is also be
plotted in logarithmic scale, called log-magnitude defined as:

LmH(f) = 20 log10 |H(f)| (3.236)

The unit of the log-magnitude is decibel or dB.
Based on the log-magnitude representation, we have:

20 log10
|H(fc)|
|Hmax|

= 20 log10
1√
2

= −3.01 dB ≈ −3 dB (3.237)

In other words, the log-magnitude of H(fc) at the cutoff or half-power frequency
is 3 dB lower than the maximum log-magnitude.

One major convenience of using the log-magnitude is that the log-magnitude
plot of a frequency response function composed of multiple factors can be
obtained as the algebraic sum of the individual plots of these factors. For exam-
ple, if H(f) = N(f)/[D1(f)D2(f), then we can get:

LmH(f) = Lm

[
N(f)

D1(f)D2(f)

]
= LmN(f)− LmD1(f)− LmD2(f)

which becomes the same as the phase plot:

$ H(f) = $

[
N(f)

D1(f)D2(f)

]
= $ N(f)− $ D1(f)− $ D2(f)

Similarly, the Bode plot of a cascade of two filters can be found as the sum of
the their individual Bode plots.
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3.4.3 Hilbert Transform and Analytic Signals

The Hilbert transform of a time function x(t) is another time function, denoted
by x̂(t), defined as the following convolution with 1/πt:

H[x(t)] = x̂(t) = x(t) ∗ 1
πt

=
1
π

∫ ∞

−∞

x(τ)
t− τ dτ =

1
π

∫ ∞

−∞

x(t − τ)
τ

dτ (3.238)

As the integrand is not integrable due to its pole at τ = 0, the integral of the
Hilbert transform is defined in the sense of the Cauchy principal value of the
integral defined as:

H[x(t)] =
1
π

lim
ε→0

[
∫ −ε

−∞

x(t − τ)
τ

dτ +
∫ ∞

ε

x(t− τ)
τ

dτ ] (3.239)

In particular, if x(t) = c is a constant, the sum of the two integrals above is
zero, indicating the Hilbert transform, as a linear operator, will remove the DC
component of the signal.

The Hilbert transform can be much more conveniently discussed in frequency
domain as a multiplication corresponding to the time convolution in Eq.3.238. To
do so, we assume X(f) = F [x(t)] and find the spectrum of 1/πt by applying the
property of time-frequency duality to the Fourier transform of the sign function
sgn(t) (Eq.3.64):

F−1[
1
πt

] = −j Sgn(f) = −j






−1 (f < 0)
0 (f = 0)
1 (f > 0)

=






j (f < 0)
0 (f = 0)
−j (f > 0)

(3.240)

Now the Hilbert transform can be expressed in frequency domain as a multipli-
cation:

X̂(f) = F [x̂(t)] = −j Sgn(f)X(f) =






jX(f) (f < 0)
0 (f = 0)

−jX(f) (f > 0)
(3.241)

The effect of the Hilbert transform applied of a signal x(t) becomes very clear: it
multiplies the negative part of the signal spectrum X(f) by j = ejπ/2, (a rotation
of π/2 in complex plane) and the positive part by −j = e−jπ/2 (a rotation of
−π/2). Therefore the Hilbert transform is also called a quadrature filter.

As the Hilbert transform of a time function is still a time function, it can
be applied to a signal x(t) multiple times, and the result is most conveniently
obtained in frequency domain:

F [Hn[x(t)]] = [−j Sgn(f)]nX(f) (3.242)

In particular, as Sgn2(f) = 1, we have

[−j Sgn(f)]2 = −1, [−j Sgn(f)]3 = j Sgn(f), [−j Sgn(f)]4 = 1 (3.243)
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Correspondingly in time domain, we have:

H[x(t)] = x̂(t), H2[x(t)] = −x(t), H3[x(t)] = −x̂(t), H4[x(t)] = x(t)
(3.244)

In other words, applying the Hilbert transform to x(t) once we get H[x(t)] = x̂(t),
and applying the transform three more times we get the original signal back, i.e.,
this is the inverse Hilbert transform:

{
H[x(t)] = x(t) ∗ 1/πt = x̂(t)
H−1[x̂(t)] = H3[x̂(t)] = −H[x̂(t)] = x(t)

(3.245)

Example 3.5: Consider a simple sinusoid:

cos(2πf0t) =
ej2πf0t + e−j2πf0t

2
=

1
2
ej2πf0t +

1
2
e−j2πf0t (3.246)

Here the coefficients for f = f0 > 0 and f = −f0 < 0 are both 1/2. When the
Hilbert transform is applied to the signal, the coefficient 1/2 for f < 0 is rotated
by 90◦ to become ejπ/2/2 while the other 1/2 for f > 0 is rotated by −90◦ to
become e−jπ/2/2, i.e., the transformed signal becomes:

H[cos(2πft)] =
e−j2π

2
ej2πf0t +

ejπ/2

2
e−j2πf0t = sin(2πft) (3.247)

Similarly we have

H[sin(2πft)] = − cos(2πft), H[− cos(2πft)] = − sin(2πft), H[− sin(2πft)] = cos(2πft)
(3.248)

Next let us consider the concept of analytic signals. A real-valued signal xa(f)
is said to be analytic if its Fourier spectrum Xa(f) = F [xa(t)] is zero when
f < 0. Given a usual signal x(t), we can always construct an analytic signal by
multiplying its spectrum X(f) = F [x(t)] with a step function 2u(f) in frequency
domain:

Xa(f) = X(f)2u(f) =






0 (f < 0)
X(0) (f = 0)
2X(f) (f > 0)

(3.249)

and the corresponding analytic signal can be obtained as

xa(t) = F−1[Xa(f)] = F−1[X(f)] ∗ F−1[2u(f)] = x(t) ∗ [δ(t) +
j

πt
]

= x(t) + j x(t) ∗ 1
πt

= x(t) + j x̂(t) (3.250)

where the inverse Fourier transform of the unit step spectrum u(f) is

F−1[u(f)] =
1

−j2πt
+

1
2
δ(−t) =

j

2πt
+

1
2
δ(t) (3.251)
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which can be obtained by the time-frequency duality applied to the spectrum of
the unit step u(t) in time given in Eq.3.65.

Alternatively, an analytic signal can also be initially defined in time domain
by Eq.3.250, and if we take the Fourier transform on both sides, we have

Xa(f) = X(f) + j X̂(f) = X(f) + j






jX(f) (f < 0)
0 (f = 0)

−jX(f) (f > 0)
=






0 (f < 0)
X(0) (f = 0)
2X(f) (f > 0)

(3.252)
where X̂a(f) = F [x̂(t)].

When the signal x(t) is real, the real and imaginary parts of its spectrum are
even and odd, respectively (Xr(f) = Xr(−f) and Xj(f) = −Xj(−f)), i.e., its
spectrum X(f) is Hermitian:

X(f) = X(−f) (3.253)

This means that the corresponding analytic signal xa(t) = x(t) + j x̂(t) will still
contain the complete information in x(t), even though the negative half of its
spectrum is suppressed to zero. In fact the original spectrum X(f) can also be
reconstructed from Xa(f). When f > 0, obviously we get X(f) = Xa(f)/2 from
Eq.3.240. When f < 0, we have

X(f) = X(−f) = X(|f |) =
1
2
Xa(|f |) (3.254)

Combining these two cases, we have:

X(f) =
1
2

{
Xa(f) (f > 0)
Xa(|f |) (f < 0)

=
Xa(f) + Xa(−f)

2
(3.255)

the last equality is due to the fact that Xa(−f) = 0 when f > 0 and Xa(f) = 0
when f < 0.

Example 3.6: Given x(t) = cos(ω0t), we can construct an analytic signal

xa(t) = x(t) + j x̂(t) = cos(ω0t) + j sin(ω0t) = ejω0t (3.256)

with spectrum Xa(f) = δ(ω − ω0). Similarly, if y(t) = sin(ω0t), the correspond-
ing analytic signal is

ya(t) = y(t) + j ŷ(t) = sin(ω0t)− j cos(ω0t) = −jejω0t (3.257)

with spectrum Ya(f) = −jδ(ω − ω0). In both cases, the negative half of the spec-
trum is zero.

Example 3.7: From the previous discussion regarding the modulation and
demodulation in AM broadcasting, we see that the bandwidth ∆ω = 2ωm taken
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Figure 3.17 Single sideband modulation using Hilbert transform

by a transmission is twice of the highest frequency contained in the signal, one
sideband of ωm on each side of the carrier frequency ωc (double sideband). How-
ever, in order to efficiently use the broadcasting spectrum as a limited resource, it
is desirable to minimize the bandwidth needed for the radio or TV transmission.
And single-sideband modulation (SSB) is such a method by which the bandwidth
is reduced by half (from 2ωm to ωm). One way to implement SSB is to use the
idea of the Hilbert transform and analytic signals, taking advantage of the fact
that the negative half of the spectrum of an analytic signal is completely zero
and therefore does not need to be transmitted.

Specifically, an analytic signal is first constructed based on the real signal s(t)
to be transmitted:

sa(t) = s(t) + j ŝ(t) (3.258)

where ŝ(t) = H[x(t)] is the Hilbert transform of s(t). Using this analytic signal
to modulate a carrier frequency 2πfc, represented as an complex exponential
ej2πfc , we get sa(t)ej2πfct and then transmit its real part:

x(t) = Re[sa(t)ej2πfct] = Re[(s(t) + j ŝ(t)) (cos(2πfct) + j sin(2πfct))]

= s(t) cos(2πfct)− ŝ(t) sin(2πfct) = x0(t)− x1(t) (3.259)

where x0(t) = s(t) cos(2πfct) and x1(t) = ŝ(t) sin(2πfct) are two modulated RF
signals with 90◦ phase difference. The block diagram of the single sideband mod-
ulation is illustration in Fig.3.17. To show that the bandwidth of the modulated
signal x(t) indeed has only a single sideband spectrum, we consider this modu-
lation in frequency domain:

X(f) = S(f) ∗ 1
2
[δ(f − fc) + δ(f + fc)]− Ŝ(f) ∗ 1

2j
[δ(f − fc)− δ(f + fc)]

=
1
2
[S(f − fc) + S(f + fc)]−

1
2j

[Ŝ(f − fc)− Ŝ(f + fc)]

= X0(f)−X1(f) (3.260)
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Figure 3.18 Spectra

The spectra of the signals in the process are shown in Fig.3.18. We can also
confirm this result by considering the following four cases:

f − fc < 0(f < fc) : Ŝ(f − fc) = jS(f − fc), X(f − fc) = 0
f − fc > 0(f > fc) : Ŝ(f − fc) = −jS(f − fc), X(f − fc) = 2S(f − fc)
f + fc < 0(f < −fc) : Ŝ(f + fc) = jS(f + fc), X(f + fc) = 2S(f + fc)
f + fc > 0(f > −fc) : Ŝ(f + fc) = −jS(f + fc), X(f + fc) = 0.

(3.261)
It is therefore clear that the bandwidth of this modulated signal x(t) is indeed
reduced by half.

3.4.4 Radon Transform and Image Restoration from Projections

The Radon transform is an integral transform that integrates a 2-D function
f(x, y) along a certain direction t specified by an angle θ from the positive x
direction to obtain a 1-D function gθ(s), where s is a variable along the direction
perpendicular to t. The function gθ(s) can be considered as a projection of f(x, y)
onto the direction of s. In particular, if the direction is along either x or y
(corresponding to θ = 0 or θ = π/2), we get:

g(y) =
∫ ∞

−∞
f(x, y) dx, or g(x) =

∫ ∞

−∞
f(x, y) dy

If such projections is available for all directions θ, the resulting projections can
be considered as a 2-D function g(s, θ), and the original 2-D function can be
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reconstructed by the inverse Radon transform. Therefore the forward and inverse
Radon transforms can be expressed as:

{
g(s, θ) = R[f(x, y)]
f(x, y) = R−1[g(s, θ)]

(3.262)

The Radon transform is widely used in X-ray computerized tomography (CT)
to get the image of a cross section, a slice, of certain part of the body. Moreover,
a 3-D image can also be obtained based on a sequence of such slices along one
particular direction. Let Io denote the intensity of the source X-ray and f(x, y)
denote the absorption coefficient of the tissue at position (x, y), then the detected
intensity I can be obtained according to this simple model:

I = Ioexp

(
−
∫

L
f(x, y) dt

)

Here t is the integral variable along the pathway L of the X-ray through the
tissue. Given I, the cross section of the tissue can be obtained as:

f(x, y) = ln (Io/I)

We first formulate the forward Radon transform. The straight line L along
which the projection of a 2-D function is obtained can be specified by the fol-
lowing equation:

x cos θ + y sin θ − s = 0 (3.263)

with two parameters s for the distance between L to the origin and θ for the
angle between the normal direction of L and the horizontal axis of the space, as
shown in Fig.3.20 (left).

The forward Radon transform: The Radon transform of a given 2-D func-
tion f(x, y) is defined as a 1-D integral along such a straight line:

g(s, θ) = R[f(x, y)] =
∫ ∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − s) dx dy (3.264)

where −∞ < s <∞ and 0 ≤ θ < 2π. We see that the Radon transform converts
a 2-D spatial function f(x, y) into a function g(s, θ) in a 2-D parameter space.

A new coordinate system (s, t) of the 2-D space can be obtained by rotating
the (x, y) coordinate system by an angle θ:

{
s = x cos θ + y sin θ
t = −x sin θ + y cos θ

or
{

x = s cos θ − t sin θ
y = s sin θ + t cos θ

(3.265)

Note that x2 + y2 = s2 + t2. In this new (s, t) system, the Radon transform can
be expressed as a 1-D integral along the direction of t:

g(s, θ) = R[f(x, y)] =
∫ ∞

−∞
f(s cos θ − t sin θ, s sin θ + t cos θ) dt (3.266)

Projection-slice theorem: The 1-D Fourier transform of the Radon trans-
form g(s, θ) = R[f(x, y)] with respective to s is equal to the slice of the 2-D
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Figure 3.19 Radon transform

Fourier transform F (u, v) = F [f(x, y)] through the origin along the direction θ:

G(w, θ) = F [g(s, θ)] = Fθ(u, v) (3.267)

where Fθ(u, v) denotes a slice of F (u, v) through the origin along direction θ.
Proof: Consider the 1-D Fourier transform of the Radon transform g(s, θ) =

R[f(x, y)] with respect to s:

G(w, θ) = F [g(s, θ)] =
∫ ∞

−∞
g(s, θ)e−j2πws ds

where w is the spatial frequency of f(x, y) along the direction of s, and θ is
treated as a parameter in the Fourier transform. Substituting the expression of
g(s, θ) in Eq.3.264 into the above equation, we get:

G(w, θ) =
∫ ∞

−∞

[∫ ∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − s) dx dy

]
e−j2πws ds

=
∫ ∫ ∞

−∞
f(x, y)

[∫ ∞

−∞
δ(x cos θ + y sin θ − s) e−j2πws ds

]
dx dy

=
∫ ∫ ∞

−∞
f(x, y) e−j2πw(x cosθ+y sinθ) dx dy

= F (w cos θ, w sin θ) = Fθ(u, v)

where F (w cos θ, w sin θ) = Fθ(u, v) is the 2-D Fourier transform F (u, v) of the
signal f(x, y) evaluated at u = w cos θ and v = w sin(theta), along the direction
of θ, thus Eq.3.267 is proved.
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Figure 3.20 Radon transform and projection-slice theorem

The inverse Radon transform: Given its Radon transform g(s, θ), the
original 2-D signal f(x, y) can be reconstructed by the inverse transform:

f(x, y) = R−1[g(s, θ)] =
1

2π2

∫ π

0

∫ ∞

−∞

[
∂

∂s
g(s, θ)

]
1

x cos θ + y sin θ − s
ds dθ

(3.268)
Or in polar form:

f(r,φ) =
1

2π2

∫ π

0

∫ ∞

−∞

[
∂

∂s
g(s, θ)

]
1

r cos(φ − θ)− s
ds dθ (3.269)

where
{

x = r cosφ
y = r sinφ

or
{

r =
√

x2 + y2

φ = tan−1(y/x)

Proof:
The inverse Fourier transform

f(x, y) =
∫ ∫ ∞

−∞
F (u, v)ej2π(ux+vy) du dv

can also be expressed in polar form. We let
{

u = w cos θ
v = w sin θ

or
{

w =
√

u2 + v2

θ = tan−1(v/u)

then the Fourier spectrum F (u, v) can be written as F (w, θ) and the inverse
transform above becomes:

f(x, y) =
∫ 2π

0

∫ ∞

0
F (w, θ)ej2πw(x cos θ+y sinθ) w dw dθ

=
∫ π

0

∫ ∞

−∞
F (w, θ)ej2πw(x cosθ+y sinθ) |w|dw dθ

But according to the projection-slice theorem, F (w, θ) in the inner integral with
respect to w, a slice of F (u, v) along the direction θ, is equal to the Fourier
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transform of the Radon transform of f(x, y), i.e,

F (w, θ) = G(w, θ) = F [g(s, θ)]

then the equation above becomes:

f(x, y) =
∫ π

0

[∫ ∞

−∞
|w|G(w, θ)ej2πw(x cos θ+y sin θ) dw

]
dθ

=
∫ π

0
g′(x cos θ + y sin θ, θ) dθ (3.270)

Here we have defined g′(s, θ) as the inverse Fourier transform of |w|G(w, θ):

g′(s, θ) = g′(x cos θ + y sin θ, θ) = F−1[|w|G(w, θ)]

=
∫ ∞

−∞
|w|G(w, θ)ej2πw(x cos θ+y sinθ) dw

As |w|G(w, θ) can be considered as a filtering process of g(s, θ) by a filter |w| (a
high-pass filter) in frequency domain, and g′(s, θ) is a simply a filtered version
of g(s, θ). The absolute value |w| can be written as w multiplied by the sign
function sgn(w): |w| = w sgn(w), and due to convolution theorem of the Fourier
transform and Eq.3.118 and 3.127, we have:

g′(s, θ) = F−1[wG(w, θ)] ∗ F−1[sgn(w)]

=
[

1
j2π

d

ds
g(s, θ)

]
∗
[

1
−jπs

]
=

1
2π2

∫ ∞

−∞

[
d

dt
g(t, θ)

]
1

s− t
dt (3.271)

Comparing this expression with the definition of the Hilbert transform in
Eq.3.238, we see that the filtered version g′(s, θ) is also the Hilbert transform of
∂g(s, θ)/partials/2π:

g′(s, θ) = H[
1
2π

∂

∂s
g(s, θ)]

Substituting this result back into the equation above for f(x, y), we get

f(x, y) =
1

2π2

∫ π

0

∫ ∞

−∞

[
d

dt
g(t, θ)

]
1

s− t
dt dθ

Replacing s by x cos θ + y sin θ and then t by s, we get Eq.3.268. This completes
the proof.

In practice, the inverse Radon transform can be carried out based on Eq.3.270,
instead of Eq.3.268 or 3.269, in the following steps:

1. Fourier transform of g(s, θ) with respect to s for all directions θ:

G(w, θ) = F [g(s, θ)]

2. Filtering in frequency domain by |w|:

G′(w, θ) = |w|G(w, θ)
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3. Inverse Fourier transform:

g′(s, θ) = F−1[G′(w, θ)]

4. Summation of g′(x cos θ + y sin θ, θ) over all directions θ (called “back projec-
tion”):

f(x, y) =
∫ π

0
g′(s, θ) dθ =

∫ π

0
g′(x cos θ + y sin θ, θ) dθ

We make two additional comments:! The filtering in step 2 above can also be carried out in spatial domain by
convolution.! For most signals, their higher frequency components contain little energy and
are therefore more susceptible to noise (lower signal-to-noise ratio). On the
other hand, as the magnitude of the filter |w| increases linearly as a function
of frequency, it has the effect of amplifying noise. For this reason, the filter
is typically modified so that its magnitude is reduced in the high frequency
range.

Here we show two examples of Radon transform, both forward transform for
projection and the inverse transform for reconstruction. The first example is a
shape in black-white image, while the second example is a gray scale image, as
shown in Fig.3.21. In both cases, the projections g(s, θ) (2nd from left) of all 180
projections, one degree apart, of the image f(x, y) (1st on the left) are obtained.
The image is then reconstructed, first without filtering by |w| (3rd from left)
and then with filtering (right). We see that the binary shape and the gray scale
image are both almost perfectly reconstructed.

Example 3.8: First consider the Radon transform of a 2-D Gaussian function
f(x, y) = e−(x2+y2) = e−(s2+t2):

g(s, θ) =
∫ ∞

−∞
e−(s2+t2)dt = e−s2

∫ ∞

−∞
e−t2dt =

√
π e−s2

We see that g(s, θ) is a 1-D Gaussian function of s, independent of θ, as a 2-D
Gaussian function is central symmetric.

Next consider the Radon transform of a plane wave

f(x, y) = cos(2π(2x + 3y)) =
1
2
[ej2π(2x+3y) + e−j2π(2x+3y)]

which propagates along the direction of φ = tan−1(3/2) (with respect to the
horizontal direction). As the Radon transform is obviously linear, we can find
the transforms of ej2π(2x+3y) and e−j2π(2x+3y) separately. The first term can be
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Figure 3.21 Forward and inverse Radon transform

From left to right: Original image f(x, y), Radon projections g(s, θ), Back project
without filtering, Back projection with filtering.

expressed in terms of the rotated coordinate system (s, t):

ej2π(2x+3y) = ej2π2xej2π3y = ej2π(2(s cosθ−t sinθ))ej2π(3(s sin θ+t cosθ))

= ej2π2(2 cos θ+3sinθ)ej2πt(−2 sin θ+3cosθ)

Its Radon transform is:

G[ej2π(2x+3y)] = ej2πs(2 cosθ+3sin θ)

∫ ∞

−∞
ej2πt(−2 sinθ+3cosθ)dt

= ej2πs(2 cosθ+3sin θ)δ(−2 sin θ + 3 cos θ) (3.272)

Similarly we can get:

G[e−j2π(2x+3y)] = e−j2πs(2 cosθ+3sin θ)δ(2 sin θ − 3 cos θ)

Adding these two results we get

G[cos(2π(2x + 3y))] = cos(2πs(2 cos θ + 3 sin θ))δ(2 sin θ − 3 cos θ)

We see that this Radon transform is zero except when 2 sin θ = 3 cos θ or
θ = tan−1(3/2) = φ, i.e., the straight line L for the Radon transform is per-
pendicular to the propagation direction of the plane wave. In this case the the
Radon transform is a delta function (due to the infinite integral of a constant
along the direction of L), weighted by a sinusoidal function of s along the direc-
tion of propagation. When θ $= φ, the integrand in Eq.3.272 along L is a sinusoid
with frequency 3 cos θ − 2 sin θ, and the infinite integral is always zero.
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Before consider the inverse Radon transform, we first define an back-projection
operator as:

b(x, y) = B[g(s, θ)] =
∫ π

0
g(s, θ)dθ =

∫ π

0
g(x cos θ + y sin θ, θ)dθ (3.273)

The back-projection can also be expressed in polar form:

b(r,φ) = B[g(s, θ)] =
∫ π

0
g(r cos(θ − φ), θ)dθ (3.274)

where r =
√

x2 + y2 and φ = tan−1(y/x), or equivalently, x = r cosφ and y =
r sinφ.

The Matlab code for both forward and inverse Radon transforms is listed
below. The projection directions are given in vector theta in degrees.

function proj = Radon(im,theta) % forward Radon transform
K=length(theta); % number of projection directions
[m,n]=size(im); % size of image
d=fix(sqrt(2)*max(m,n)); % diagonal of image
tmp=zeros(d); % size of projection, d=1.414*n
i=(d-m)/2;
j=(d-n)/2;
tmp(i:i+m-1,j:j+n-1)=im; % copy input image to tmp
proj=zeros(d,K); % K projections of length d
for k=1:K % for all directions

a=theta(k); % rotation angle
proj(:,k)=sum(imrotate(tmp,a,’bilinear’,’crop’));

% image rotation and projection
end

end

function im=iRadon(proj,theta) % inverse Radon transform
[d,K]=size(proj); % diagonal of image
n=ceil(d/sqrt(2)); % size of image
im=zeros(n);
n2=n/2;
d2=d/2;
v=pi/180; % for radian/degree conversion
F=zeros(d,1); % filter in frequency domain
d1=ceil((d-1)/2);
for i=2:d1+1; % setup filter

F(i)=i-1;
F(d+2-i)=i-1;

end
for k=1:K % for all directions
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g=proj(:,k); % g(s,theta)
G=fft(g); % Fourier transform of g
G=G.*F; % filtering by F in frequency domain
g=real(ifft(G)); % inverse Fourier transform
c=cos(v*theta(k)); % cos(theta)
s=sin(v*theta(k)); % sin(theta)
for i=1:n

for j=1:n % for all pixels in image
y=i-n2;
x=j-n2; % origin of x-y plane is in image center
t=fix(x*c+y*s)+d2;
im(i,j)=im(i,j)+g(t); % back projection

end
end

end
end

3.5 Problems

1. Show that the Fourier transform of the step function u(t) same as in Eq.3.65
can be obtained by:

F [u(t)] = lim
a→0

F [e−atu(t)] = lim
a→0

a

a2 + ω2
+ lim

a→0

−jω

a2 + ω2

Hint: The first term approaches δ(f)/2, i.e.,

lim
a→0

a

a2 + ω2
=
{
∞ f = 0
0 f $= 0

and
∫ ∞

−∞

a

a2 + ω2
df =

1
2

You may need to use this integral:
∫

dx

a2 + x2
=

1
a

tan−1
(x

a

)

Solution:

F [u(t)] = lim
a→0

F [e−atu(t)] = lim
a→0

a

a2 + ω2
+ lim

a→0

−jω

a2 + ω2

= lim
a→0

a

a2 + ω2
+

1
jω

Consider the first term:

lim
a→0

a

a2 + ω2
=
{
∞ ω = 0
0 ω $= 0
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and its integral is 1/2 independent of a:
∫ ∞

−∞

a

a2 + ω2
df =

a

2π

∫ ∞

−∞

1
a2 + ω2

dω =
1
2π

tan−1
(ω

a

) ∣∣∞
−∞ =

1
2π

[
π

2
− (−π

2
)] =

1
2

where we have used the integral formula:
∫

dx

a2 + x2
=

1
a

tan−1 x

a

The first term is therefore a delta function:

lim
a→0

a

a2 + ω2
=

1
2
δ(f)

and we have:

F [u(t)] =
1
2
δ(f) +

1
j2πf

2. Consider the same RC circuit in Example 3.4 (Fig.3.13), with an input voltage
x(t) = vin(t) across the two components in series, but the output y(t) = VR(t)
is the voltage across resistor R.
The impulse response of the system can be most easily obtained based on the
result of Example 3.4 and the Kirchhoff’s voltage law: vin(t) = vC(t) + vR(t):

vR(t) = vin(t)− vC(t) = δ(t)− 1
τ

e−t/τu(t)

However, let us solve this system independently without using the previous
result by following the following steps:
– Set up the differential equation of the system
– Find the impulse response function h(t) in two methods when x(t) = δ(t):

(a) vR(t) = vin(t)− vC(t). When vin(t) = δ, vR(t) = h(t) and vC(t) is
obtained in Example 3.4.
(b) Solve the differential equation for y′(t) = f(t)u(t) when x′(t) = u(t).
Then find h(t) = y(t) = ẏ′(t) corresponding to x(t) = ẋ(t) = δ(t).

– Find the frequency response function H(ω) by assuming x(t) = ejωt.
– Verify that H(ω) = F [h(t)].
Solution:
– Set up the differential equation for the system:

The voltage across R is vR(t) = i(t)R and the voltage across C is

vC(t) =
1
C

∫
i(t)dt =

1
C

∫
vR(t)

R
dt =

1
τ

∫
vR(t)dt

According to Kirchhoff’s voltage law, we have

vR(t) + vC(t) = vR(t) +
1
τ

∫
vR(t)dt = vin(t)

Taking derivative on both sides we get:

ẏ(t) +
1
τ

y(t) = ẋ(t)
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Here x(t) = vin(t) is the input while y(t) = vR(t) is the corresponding out-
put.

– Find impulse response y(t) = h(t) to an impulse input x(t) = δ(t):
In Example 3.4, when x(t) = vin(t) = δ(t), the output is vC(t) = h(t) =
e−t/τ/τ , i.e., vR(t) = vin(t)− vC(t) = δ(t)− e−t/τ/τ , which is the impulse
response of the system when the output is y(t) = vR(t).
Alternatively, we can also solve the system for y(t) = h(t) when x(t) = δ(t).
However, for convenience, we first obtain the response y′(t) to an input
x′(t) = u(t):

ẏ′(t) +
1
τ
y′(t) = ẋ′(t) = u̇(t) = δ(t)

Assume y′(t) = f(t)u(t) and ẏ′(t) = ḟ(t)u(t) + f(0)δ(t). Substituting these
into the equation we get:

ḟ(t)u(t) + f(0)δ(t) +
1
τ

f(t)u(t) = δ(t)

Separating terms containing u(t) and δ(t) we get:
{

ḟ(t) + f(t)/τ = 0
f(0) = 1

Solving this homogeneous equation we get f(t) = e−t/τ and y′(t) =
f(t)u(t) = e−t/τu(t). Taking time derivative on both input x′(t) and output
y′(t) we get the impulse input x(t) = ẋ′(t) = u̇(t) = δ(t) and the impulse
response:

h(t) = y(t) = ẏ′(t) = −1
τ
e−t/τu(t) + e−t/τδ(t) = δ(t)− 1

τ
e−t/τu(t)

– Find the frequency response function H(ω):
When the input is a complex exponential x(t) = ejωt, we have ẋ(t) =
jωejωt, and the output also takes the form of a complex exponential
y(t) = H(ω)ejωt and ẏ(t) = jωH(ω)ejωt. Substituting these into the equa-
tion we get:

ẏ(t) + y(t) = [jω +
1
τ

]H(ω)ejωt = jωejωt

Solving this we get the frequency response function:

H(ω) =
jωτ

jωτ + 1

– Now we verify that H(ω) is indeed the Fourier transform of the impulse
response function:

F [h(t)] =
∫ ∞

−∞
h(t)e−jωtdt =

∫ ∞

−∞
[δ(t)− 1

τ
e−t/τu(t)]e−jωtdt

= 1− 1
τ

∫ ∞

0
e−(jω+1/τ)tdt = 1− 1

jωτ + 1
=

jω

jωτ + 1



4 Discrete-Time Fourier Transform

4.1 Discrete-Time Fourier Transform

4.1.1 Fourier Transform of Discrete Signals

To use the modern digital technology to process a time signal x(t), an analog
to digital (A to D or A/D) converter is needed to sample the continuous signal
and convert it into a discrete signal composed of a set of time samples x[m] =
x(mt0) = x(m/F ) (m = · · · ,−1, 0, 1, · · · ), where t0 is the sampling period, the
time interval between two consecutive samples, and F = 1/t0 is the sampling
frequency. Mathematically the sampled signal xs(t) can be represented as the
product of the time signal and an impulse train, the sampling function (also
called a comb function):

xs(t) = x(t) comb(t) = x(t)
∞∑

m=−∞
δ(t−mt0) =

∞∑

m=−∞
x[m]δ(t−mt0) (4.1)

where x[m] = x(mt0) is the mth sample, the signal x(t) evaluated at t = mt0.
The Fourier transform of this sampled signal can be found as

Xs(f) =
∫ ∞

−∞
xs(t)e−j2πftdt =

∫ ∞

−∞
[

∞∑

m=−∞
x[m]δ(t−mt0)]e−j2πftdt

=
∞∑

m=−∞
x[m]

∫ ∞

−∞
δ(t−mt0)e−j2πftdt =

∞∑

m=−∞
x[m]e−j2mπft0 (4.2)

This is the spectrum of the discrete signal x[m] (m = · · · ,−1, 0, 1, · · · ), which
can also be expressed in terms of angular frequency ω = 2πf :

Xs(ω) =
∞∑

m=−∞
x[m]e−jmωt0 (4.3)

This spectrum is periodic with the sampling frequency F = 1/t0 as the period:

X(f + F ) =
∞∑

m=−∞
x[m]e−j2mπ(f+F )t0dt =

∞∑

m=−∞
x[m]e−j2mπft0e−j2mπFt0dt = X(f)

(4.4)
where e−j2mπFt0 = e−j2mπ = 1 as F = 1/t0. We can therefore express this peri-
odic spectrum as XF (f), just as xT (t) representing a periodic time signal with
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period T . This spectrum could also be expressed as XΩ(ω + Ω) in terms of angu-
lar frequency ω = 2πf and period Ω = 2πF .

Figure 4.1 Fourier transform of discrete signals

To get the time samples of the discrete signal back from its spectrum XF (f),
we multiply ej2nπft0/F on both sides of Eq. 4.2 and integrate over period F :

1
F

∫ F

0
X(f)ej2nπft0df =

1
F

∞∑

m=−∞
x[m]

∫ F

0
e−j2(m−n)πft0df

=
∞∑

m=−∞
x[m]δ[m− n] = x[n] (4.5)

Here we have used Eq.1.27 (with different variables). This is the inverse Fourier
transform. Equations 4.2 and 4.5 form a pair of the Fourier transform of a discrete
signal, called the discrete-time Fourier transform (DTFT):

XF (f) =
∞∑

m=−∞
x[m]e−j2mπf/F

x[m] =
1
F

∫ F

0
XF (f)ej2mπf/F df (4.6)

which can also be expressed in terms of ω = 2πf as:

XΩ(ω) =
∞∑

m=−∞
x[m]e−jmωt0

x[m] =
1
Ω

∫ F

0
XΩ(ω)ejmωt0dω (4.7)

The discrete-time Fourier transform can be considered as the representation of
a signal vector x = [· · · , x[m], · · · ]T (m = −∞, · · · ,−1, 0, 1, · · · ,∞) in an vec-
tor space, as a linear combination (an integral) of a set of orthonormal basis
(uncountable) vectors φ(f) = [· · · , ej2πmf/F , · · · ]T /

√
F (0 < f < F ) that spans

the space:

x =
1√
F

∫

F
X(f)φ(f)df (4.8)
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The component form of this integral is the inverse DTFT (with a different scaling
factor):

x[m] =
1
F

∫ F

0
X(f)ej2mπf/F df =

1√
F

∫ F

0
X(f)ej2mπt0fdf, (for all m)

(4.9)
The coefficient function X(f) can be found by multiplying both sides by
e−j2πmt0f ′/

√
F and taking a summation:

1√
F

∞∑

m=−∞
x[m]ej2πmt0f ′ =

∫ F

0
X(f)

1
F

∞∑

m=−∞
ej2mπt0(f−f ′)df

=
∫ F

0
X(f)

∞∑

k=−∞
δ(f − f ′ − kF )df = X(f ′) (4.10)

Here we have used the result in Eq.1.28. This is the forward DTFT (with a
different scaling factor), which also indicates that the coefficient function X(f)
has a period F .

We further consider the inner product of two signals x and y before the trans-
form and that of their spectra after the transform:

< x, y > =
∞∑

m=−∞
x[m]y[m] =

∞∑

m=−∞
x[m]y[m]

=
∞∑

m=−∞

1√
F

∫

F
X(f)ej2πmt0fdf

1√
F

∫

F
Y (f ′)e−j2πmt0f ′df ′

=
∫

F

∫

F
X(f)Y (f ′)

1
F

∞∑

m=−∞
e−j2πmt0(f−f ′)dfdf ′

=
∫

F

∫

F
X(f)Y (f ′)δ(f − f ′ − kF )dfdf ′ =

∫

F
X(f)Y (f)df

= < X(f), Y (f) > (4.11)

As inner product is preserved by the discrete-time Fourier transform, it is a
unitary transformation. In particular, if we let x = y, we get Parseval’s identity:

∞∑

m=−∞
|x[m]|2 =

∫

F
|X(f)|2df (4.12)

indicating that the energy or information contained in the signal is preserved by
the DTFT.

Comparing this pair of equations to the Fourier series expansion of a periodic
signal xT (t) in Eq. 3.5:

X [k] =
1
T

∫

T
xT (t)e−jkω0tdt =

1
T

∫

T
xT (t)e−j2kπt/T dt

xT (t) =
∞∑

k=−∞
X [k]ejkω0t =

∞∑

k=−∞
X [k]ej2kπt/T
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we see a perfect duality between time and frequency domains:! When a time signal is periodic with period T , its spectrum is discrete with a
frequency interval f0 = 1/T between two consecutive frequency components
(the fundamental and its harmonics).! When a time signal is discrete with time interval t0 between two consecutive
samples, its spectrum is periodic with period F = 1/t0.

This duality between time and frequency should not be a surprise, due to the
symmetry of the definition of the forward and inverse Fourier transforms in Eq.
3.53.

Once a continuous signal is sampled to become a set of discrete values, the
sampling period t0 may not be of interest anymore during the subsequent digital
signal processing, and can be assumed to be unit t0 = 1 and the sampling fre-
quency is also unit F = 1/t0 = 1, and the Fourier transform pair of the discrete
signal can be simply expressed as:

X(f) =
∞∑

m=−∞
x[m]e−j2mπf , or X(ω) =

∞∑

m=−∞
x[m]e−jmω

x[m] =
∫ 1

0
X(f)ej2mπfdf =

1
2π

∫ 2π

0
X(f)ejmωdω (4.13)

In some literatures, the Fourier spectrum of a discrete signal is also denoted
by X(ejω), because it takes this form when considered as a special case of the
z-transform, to be discussed in the next chapter. However, we note that all these
different forms of the spectrum are just some notational variations all represent-
ing essentially the same fact: the spectrum is simply a function of frequency f
or angular frequency ω = 2πf . No confusion should be caused given the specific
context of the discussion. In the following, we will use X(f), X(ω) as well as
X(ejω) interchangeably for the spectrum of a discrete signal, whichever is more
convenient and suitable in each specific case.

Example 4.1: Consider the Fourier transform of a few special signals:! The Kronecker delta or unit impulse function:

F [δ[m]] =
∞∑

m=−∞
δ[m]e−j2mπf = e−j2π0f = 1 (4.14)

! Constant function (an impulse train in time domain):

F [x[m] = F [1] =
∞∑

m=−∞
ej2mπf =

∞∑

n=−∞
δ(f − n) (4.15)

The last equal sign is due to Eq.1.28. This is an impulse train in frequency
domain.
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! The sign function:

sgn[m] =






−1 m < 0
0 m = 0
1 m > 0

F [sgn[m]] = −
−1∑

m=−∞
e−j2mπf +

∞∑

m=1

e−j2mπf = −
∞∑

m=1

ej2mπf +
∞∑

m=1

e−j2mπf

Consider the first summation as the following limit when a real parameter
|a| < 1 approaches zero:

− lim
a→1

∞∑

m=1

(a ej2πf )m = 1− lim
a→1

∞∑

m=0

(a ej2πf )m = lim
a→1

−aej2πf

1− aej2πf
=

−ej2πf

1− ej2πf

Similarly the second integral can be found to be:
∞∑

m=1

e−j2mπf =
e−j2πf

1− e−j2πf

Now we get:

F [sgn[m]] =
−ej2πf

1− ej2πf
+

e−j2πf

1− e−j2πf
=

1 + e−j2πf

1− e−j2πf
=

j sin(2πf)
cos(2πf)− 1

(4.16)! Unit step function:

u[m] =
1
2

[1 + δ[m] + sgn[m]] =
{

1 n ≥ 0
0 n < 0

Note that u[0] = 1, unlike in the continuous case u(0) = 1/2, it can be con-
structed as the sum of three functions:

u[m] =
1
2

[1 + δ[m] + sgn[m]] (4.17)

As the Fourier transform is obviously linear, we have:

F [u[m]] =
1
2

[F [1] + F [δ[m]] + F [sgn[m]] ] =
1
2

[ ∞∑

n=−∞
δ(f − n) + 1 +

1 + e−j2πf

1− e−j2πf

]

=
1

1− e−j2πf
+

1
2

∞∑

n=−∞
δ(f − n) (4.18)

4.1.2 The Properties

As a special case of the generic form of the Fourier transform, the discrete-
time Fourier transform shares many of the properties discussed considered in
previous chapter, but in different forms. Here we assume X(f) = F [x[m]] and
Y (f) = F [y[m]]. Proofs of many of these properties are not given as they can
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be easily derived from the definition. (Many of these can be left for homework
problems.)! Linearity

F [ax[m] + by[m]] = aX(f) + bY (f) (4.19)! Periodicity

X(f + k) = X(f) (4.20)

where k is an integer.
Proof:

X(f + k) =
∞∑

m=−∞
x[m]e−j2mπ(f+k) =

∞∑

m=−∞
x[m]e−j2mπfe−j2mkπ = X(f)

as e−j2mkπ = 1.! Complex conjugate

F [x[m]] = X(−f) (4.21)! Parseval’s identity
∞∑

m=−∞
|x[m]|2 =

∫ 1

0
|X(f)|2df (4.22)

! Time reversal

F [x[−m]] = X(−f) (4.23)

If x[m] = x[m] is real, then

F [x[−m]] = X(−f) = X(f) (4.24)! Time and frequency shifting

F [x[m ± m0]] = e±j2m0fX(f) (4.25)

F [e∓j2mπf0x[m] = X(f ± f0) (4.26)! Correlation
The cross-correlation between two functions x[m] and y[m] is defined as

rxy[m] = x[m] & y[m] =
∑

n

x[n]y[n−m] (4.27)

This property states:

F [x[m] & y[m]] = X(f)Y (f) (4.28)
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Proof:

F [x[m] & y[m]] =
∑

m

[
∑

n

x[n]y[n−m]]e−j2mπf =
∑

n

x[n][
∑

m

y[n−m]e−j2mπf ]

=
∑

n

x[n][
∑

m′

y[m′]e−j2(n−m′)πf ] =
∑

n

x[n]e−j2nπf
∑

m′

y[m′]ej2m′πf

= X(f)Y (f) = Sxy(f) (4.29)

where we have assumed m′ = n−m, and Sxy(f) = X(f)Y (f) is the cross
power density spectrum of the two signals. In particular, if both signals x[m] =
x[m] and y[m] = y[m] are real, we have

F [x[m] & y[m]] = X(f)Y (−f) (4.30)! Time and frequency convolution

F [x[m] ∗ y[m]] = X(f)Y (f), F [x[m]y[m]] = X(f) ∗ Y (f) (4.31)

Proof:

F [x[m] ∗ y[m]] =
∑

m

∑

n

x[n]y[m− n]e−j2mπf =
∑

n

x[n]
∑

m

y[m− n]e−j2mπf

=
∑

n

x[n]
∑

m′

y[m′]e−j2(m′+n)πf =
∑

n

x[n]
∑

m′

y[m′]e−j2(m′)πfe−j2(n)πf

= X(f)Y (f)

where we have assumed m′ = m− n. Also, the second equation can be derived:

F [x[m]y[m]] =
∑

m

[∫ 1

0
X(f ′)ej2mπf ′df ′

]
y[m]e−j2mπf =

∫ 1

0
X(f ′)

[
∑

m

y[m]e−j2mπ(f−f ′)

]
df ′

=
∫ 1

0
X(f ′)Y (f − f ′)df ′ = X(f) ∗ Y (f)

Note that both X(f + 1) = X(f) and Y (f + 1) = Y (f) are periodic, and their
convolution is called periodic convolution.! Time differencing
Corresponding to the first order derivative of a continuous signal, the first
differencing of a discrete signal is simply defined as x[m]− x[m− 1]. Based
on the time shifting property, we have:

F [x[m]− x[m− 1]] = (1− e−j2πf )X(f) (4.32)! Time accumulation
Similar to the integral a continuous signal, the accumulation of a discrete
signal is a summation of all its samples x[m] from m = −∞ up to m = n, and
its Fourier transform is:

F
[

m∑

n=−∞
x[n]

]
=

1
1− e−j2πf

X(f) +
X(0)

2

∞∑

n=−∞
δ(f − n) (4.33)
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Proof: The accumulation can be expressed as a convolution:
m∑

n=−∞
x[n] =

∞∑

n=−∞
u[m− n]x[n] = u[m] ∗ x[m]

whose Fourier transform can be easily found according to the time convolution
property:

F
[

m∑

n=−∞
x[n]

]
= F [u[m] ∗ x[m]] = F [u[m]] F [x[m]]

=

[
1

1− e−j2πf
+

1
2

∞∑

n=−∞
δ(f − n)

]
X(f) =

1
1− e−j2πf

X(f) +
X(0)

2

∞∑

n=−∞
δ(f − n)

Here we have used the fact that X(f) is periodic and X(k) = X(0). Comparing
Eqs.4.32 and 4.33, we see that differencing and accumulation are the inverse
operations of each other, just like the continuous time derivative and integral
which are also the inverse operations of each other (Eqs.3.118 and 3.122). The
second term of the right-hand side in Eq.4.33 represents the DC component
in the signal x[m], which is not needed in Eq.4.32 as differencing operation is
insensitive to DC component.! Modulation
Here modulation means every odd sample of the signal x[m] is negated.

F [(−1)mx[m]] = X

(
f +

1
2

)
(4.34)

Proof:
∞∑

n=−∞
x[n](−1)me−j2mπf =

∞∑

n=−∞
x[n]e−jmπe−j2mπf

=
∞∑

n=−∞
x[n]e−jm2π(f+1/2) = X

(
f +

1
2

)
(4.35)

! Up-sampling (time expansion)

F [x(k)[m]] = X(kf) (4.36)

Here x(k)[m] is defined as:

x(k)[m] =
{

x[m/k] if m is a multiple of k
0 else

(4.37)

i.e. x(k)[m] is obtained by inserting k − 1 zeros between every two consecutive
samples of x[m]. Correspondingly its spectrum X(kf) in frequency domain is
compressed k times with the same magnitude. Note that this up-sampling is
quite different from the time scaling of a continuous signal in Eq.3.102 with
a = 1/k:

F [x(t/k)] = kX(kf)
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in which case the signal x(t) is expanded k times (without any gap), and
consequently the magnitude of its Fourier spectrum X(f) is scaled up also k
times.
Proof:

F [x(k)[m]] =
∞∑

m=−∞
x[m/k]e−j2mπf =

∞∑

n=−∞
x[n]e−j2knπf/k = X(kf) (4.38)

Note that the change of the summation index from m to n = m/k has no
effect as the terms skipped are all zeros.! Down-sampling

F [x(2)[m]] = F [x[2m]] =
1
2

[
X

(
f

2

)
+ X

(
f + 1

2

)]
(4.39)

Here the down-sampled version x(2)[m] of a signal x[m] is composed of all the
even terms of the signal with all odd terms dropped, i.e., x(2)[m] = x[2m].
Down-sampling of a discrete signal corresponds to the compression of a con-
tinuous signal (Eq.3.102 with a = 2):

F [x(2t)] =
1
2
X

(
f

2

)

Proof:

F [x(2)[m]] =
∞∑

m=−∞
x[2m]e−j2πmf =

∑

n=··· ,−2,0,2,···
x[n]e−jπnf

=
1
2
[

∞∑

n=−∞
x[n]e−jπnf +

∞∑

n=−∞
(−1)nx[n]e−jπnf ]

=
1
2
[

∞∑

n=−∞
x[n]e−jπnf +

∞∑

n=−∞
x[n]e−jπn(f+1)]

=
1
2

[
X

(
f

2

)
+ X

(
f + 1

2

)]
(4.40)

Conceptually, the down-sampling of a given discrete signal x[m] can be real-
ized in the following three steps:
– Obtain its modulation x[m](−1)m = x[m]ejmπ . Due to the frequency shift

property, this corresponds to the spectrum shifted by 1/2:

F [(−1)mx[m]] = F
[
ejmπx[m]

]
= X(f + 1/2)

– Obtain the average of the signal and its modulation in both time and
frequency domains:

F
[
1
2
[x[m] + x[m](−1)m]

]
=

1
2

[
X(f) + X

(
f +

1
2

)]
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– Remove odd samples of the average to get x(2)[m]. In frequency domain,
this corresponds to replacing f by f/2:

F
[
x(2)[m]

]
=

1
2

[
X

(
f

2

)
+ X

(
f + 1

2

)]

Example 4.2: Here we consider the up-sampling, modulation and down-sampling
of a discrete signal of square wave x[m] with seven non-zero samples, as shown
in Fig.4.2.! The square wave and its spectrum, a sinc function, are shown in the first

row of the figure. Note that the DC component is 7, the number of non-zero
samples in the signal x[m].! The up-sampled version x(2)[m] of the signal in both time and frequency
domains are shown in the second row. Note that unlike time expansion of
continuous signals, here the magnitude of the spectrum is not scaled by up-
sampling.! The up-sampled version x(3)[m] of the signal in both time and frequency
domains are shown in the third row.! The modulation of the signal is shown in the fourth row. Note that all odd-
numbered samples are negated and the spectrum is shifted by 1/2, and its DC
component is -1 (3 positive samples and 4 negative samples in time domain).! The average of the signal and its modulation are shown in the fifth row.
Note that the odd numbered sampled becomes zero. In frequency domain, the
averaged spectrum is no longer a sinc function, but a sinusoid (due to the two
time samples at m = −2 and m = 2 with a DC component 1 (due to the time
sample at m = 0.! Finally as shown in the last row, the time signal is compressed by a factor 2
with all odd numbered samples (all of value zero) dropped. Correspondingly,
the spectrum is expanded by a factor of 2.

Example 4.3: Here we consider the convolution of two finite discrete signals x[m]
of length M and h[m] of size N , i.e., x[m] is zero outside the range 0 ≤ m ≤
M − 1; and h[m] is zero outside the range 0 ≤ m ≤ N − 1. Their convolution is:

y[m] = x[m] ∗ h[m] =
∞∑

n=−∞
x[n]h[m− n]

Note that the range for h[m− n] is 0 ≤ m− n < N , i.e., n ≤ m < N + n. But
as 0 ≤ n ≤M − 1, we get the range 0 ≤ n ≤ m ≤ N + n− 1 ≤ N + M − 1 for
y[m] outside which y[m] = 0. Specifically, let:

x = [1 2 3 4 5 6 7 8]T , h = [1 2 3]T
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Figure 4.2 Modulation, up and down-sampling

The square wave and its modulation, up and down sampling versions on the left,
and their spectra (showing three periods) on the right.

Here M = 8, N = 3, and the length of the result of this convolution is M +
N − 1 = 8 + 3− 1 = 10, any y[m] outside the range of 0 < m < 9 is zero. This
convolution can be illustrated below:

n · · · −1 0 1 2 3 4 5 6 7 8 9 10 · · ·
x[n] · · · 0 1 2 3 4 5 6 7 8 0 0 0 · · ·

h[0− n] · · · 2 1 · · ·
h[1− n] · · · 3 2 1 · · ·
h[2− n] · · · 3 2 1 · · ·
h[3− n] · · · 3 2 1 · · ·
h[4− n] · · · 3 2 1 · · ·
h[5− n] · · · 3 2 1 · · ·
h[6− n] · · · 3 2 1 · · ·
h[7− n] · · · 3 2 1 · · ·
h[8− n] · · · 3 2 1 · · ·
h[9− n] · · · 3 2 1 · · ·
h[10− n] · · · 3 2 1 · · ·

y[m] · · · 0 1 4 10 16 22 28 34 40 37 24 0 · · ·
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4.1.3 Discrete Time Fourier Transform of Typical Functions! Constant: If we let x[m] = 1 in Eq.4.1, we get an impulse train in time
domain:

xs(t) = comb(t) =
∞∑

m=−∞
δ(t−mt0) =

∞∑

m=−∞
δ(t−mt0) (4.41)

whose discrete-time Fourier transform is also an impulse train in frequency
domain:

F [x[m] = F [1] =
∞∑

m=−∞
ej2mπf =

∞∑

n=−∞
δ(f − n) (4.42)

The last equal sign is due to Eq.1.28.! Complex exponential
Applying frequency shift property to the result above we get:

F [ej2mπf0 ] =
∞∑

n=−∞
δ(f − f0 − n) (4.43)

! Sinusoids

F [cos(2mπf0)] =
1
2
[F [ej2mπf0 ] + F [e−j2mπf0 ]]

=
1
2

[ ∞∑

n=−∞
δ(f − f0 − n) +

∞∑

n=−∞
δ(f + f0 − n)

]
(4.44)

Similarly we have:

F [sin(2mπf0)] =
1
2j

[F [ej2mπf0 ]− F [e−j2mπf0 ]]

=
1
2j

[ ∞∑

n=−∞
δ(f − f0 − n)−

∞∑

n=−∞
δ(f + f0 − n)

]
(4.45)

! Kronecker delta

F [δ[m]] =
∞∑

m=−∞
δ[m]ej2mπf = ej0 = 1 (4.46)

! Sign function

F [sgn[m]] =
−ej2πf

1− ej2πf
+

e−j2πf

1− e−j2πf
=

1 + e−j2πf

1− e−j2πf

This is given in Eq.4.16.
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! Unit step function

F [u[m]] =
1

1− e−j2πf
+

1
2

∞∑

n=−∞
δ(f − n)

This is given in Eq.4.18.! Exponential function
First consider a right-sided exponential function:

x[m] = amu[m], (|a| < 1)

F [amu[m]] =
∞∑

m=0

(ae−j2πf )m =
1

1− ae−j2πf
(4.47)

Next consider the two-sided version:

x[m] = a|m| = amu[m] + a−mu[−m− 1], (|a| < 1)

The transform of the first term is the same as before, while the transform of
the second term is:

F
[
a−mu[−m− 1]

]
=

−1∑

m=−∞
a−me−j2mπf =

∞∑

m=0

(aej2πf )m − 1

=
aej2πf

1− aej2πf
(4.48)

The over all transform is:

F
[
a|m|
]

=
1

1− ae−j2πf
+

aej2πf

1− aej2πf
=

1− a2

1 + a2 − 2a cos(2πf)
(4.49)! Square wave

x[m] =
{

1 |m| ≤ N
0 |m| > N

The Fourier transform of this square wave of width 2N + 1 can be found to
be:

F [x[m]] =
N∑

m=−N

e−jmω =
0∑

m=−N

e−jmω +
N∑

m=0

e−jmω − 1

=
1− ej(N+1)ω

1− ejω
+

1− e−j(N+1)ω

1− e−jω
− 1 =

ej(N+1)ω − e−jNω

ejω − 1
e−jω/2

e−jω/2

=
ej(2N+1)ω/2 − e−j(2N+1)ω/2

ejω/2 − e−jω/2
=

sin((2N + 1)ω/2)
sin(ω/2)

(4.50)! Triangle wave

x[m] =
{

1− |m|/N |m| ≤ N
0 |m| > N
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This triangle wave function with width 2N + 1 can be constructed as the
convolution of two square wave functions of width N , scaled down by N ,
therefore its transform can be found by convolution property to be:

F [x[m]] =
1
N

[
sin(Nω/2)
sin(ω/2)

]2
(4.51)

Fig.4.3 shows a set of typical discrete signals and their discrete-time Fourier
transforms.

4.1.4 The Sampling Theorem

An important issue in sampling is the determination of the sampling frequency.
On the one hand, We want to minimize the sampling frequency to reduce the
data size for lower computational complexity of the digital signal processing and
less space and time needed to storage and transmission. On the other hand, we
also want to avoid losing information contained in the signal which may happen
if the sampling frequency is too low.

According to Parseval’s identity, a continuous signal x(t) can be transformed
to its spectrum X(f) = F [x(t)] and vice versa without any energy loss, and
the original signal x(t) can be perfectly recovered from its spectrum X(f) by the
inverse transform x(t) = F−1[X(f)]. However, if x(t) is sampled, it is represented
by its samples x[m] (m = 0,±1,±2, · · · ), or the spectrum XF (f) of these discrete
samples, can x(t) still be recovered?

To answer this question, consider how the spectrum XF (f) of the samples
x[m] is related to the spectrum X(f) of the continuous signal x(t). As shown in
Eq. 4.1), the sampled signal xs(t) can be obtained as the product of the signal
and an impulse train, the comb function:

xs(t) = x(t) comb(t) = x(t)
∞∑

m=−∞
δ(t−mt0) (4.52)

Due to the convolution theorem, this multiplication of two functions in time
domain corresponds to the convolution of their spectra in frequency domain:

XF (f) = X(F ) ∗ Comb(f) (4.53)

where Comb(f) is the spectrum of the comb function given in Eg. 3.2.5:

Comb(f) =
1
T

∞∑

k=−∞
δ(f − k/T ) (4.54)
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Figure 4.3 Examples of discrete-time Fourier transforms

A set of discrete signals are shown on the left and their DTFT spectra (showing
three periods) are shown on the right (real and imaginary parts are shown in
solid and dashed lines, respectively).

Substituting this in the equation for XF (f), we get:

XF (f) = X(f) ∗ 1
t0

∞∑

k=−∞
δ(f − k/t0) =

∫ ∞

−∞
X(f − f ′)

1
t0

∞∑

k=−∞
δ(f ′ − k/t0)df ′

=
1
t0

∞∑

k=−∞
X(f − k/t0) = F

∞∑

k=−∞
X(f − kF ) (4.55)
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We see that the spectrum XF (f) of the sampled signal is a superposition of
infinitely many shifted and scaled (both by F ) replicas of the spectrum X(f)
of x(t). Obviously if X(f) can be recovered from XF (f), then x((t) can be
recovered.

Consider the following two cases, also illustrated in Fig.4.4, where the maxi-
mum non-zero frequency component in X(f) is assumed to be fmax.! If F/2 > fmax, the neighboring replicas in XF (f) are separated (second plot)

and the original spectrum X(f) (first plot) can be recovered by a filtering
process:

X(f) = HlpXF (f) (4.56)

where Hlp(f) is an ideal low-pass filter defined as

Hlp(f) =
{

1/F |f | < fc = F/2
0 otherwise

(4.57)

This filter scales XF (f) by 1/F = t0 but suppresses any frequency higher than
the cut-off frequency fc = F/2 to zero.! If F/2 < fmax, aliasing occurs as the replicas in XF (f) are no longer separable,
and it is no longer possible to recover X(f), as the output of the ideal filter
(last plot) is distorted due to the overlapping replicas in XF (f) (third plot).

Figure 4.4 Reconstruction of time signal in frequency domain
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The above result leads to the well known sampling theorem, also called the
Nyquist-Shannon theorem:

Theorem 4.1. A signal can be completely reconstructed from its samples taken
at a sampling frequency F if it contains no frequencies higher than F/2, referred
to as the Nyquist frequency:

fmax < fNyquist = F/2 (4.58)

where fmax is the highest frequency contained in the signal. This is also referred
to as the Nyquist condition for perfect signal reconstruction.

Now we can answer the original question regarding the proper sampling fre-
quency. The lowest sampling frequency F at which the signal can be sampled
without losing any information must be higher than twice the maximum fre-
quency of the signal F > 2fmax, otherwise aliasing occurs and the original signal
can not be perfectly recovered. In practice, however, it is often the case that the
signal to be sampled contains frequency components higher than the Nyquist
frequency. In such cases, one can still avoid aliasing by anti-aliasing low-pass
filtering to remove all frequencies higher than the Nyquist frequency before sam-
pling.

To fully understand the sampling theorem we consider the following two exam-
ples which serve to illustrate the various effects of the sampling process, when
the Nyquist condition is either satisfied or dissatisfied.

Example 4.4: The sampling of a sinusoidal signal x(t) = sin(2πf0t) with a sam-
pling rate of F = 4 samples per second (sampling period t0 = 1/F = 1/4). This
process can also be modeled by the observation of an object rotating at f0 cycles
per second when illuminated by a strobe light at a fixed rate of F = 4 flashes per
second, or a wagon wheel in a movie with F frames per second (F = 24 frames
per second), as illustrated in Fig.4.5.

We consider the following five cases where the signal frequency f0 takes a set
of different values. The sampling process can be represented in time domain as
well as in frequency domain by the time samples of the signal:

x[m] = x(t)
∣∣
t=mt0

= x(mt0) = x(m/F ) = x(m/4) (4.59)! f0 = 1 < F/2 = 2 Hz:

x[m] = x(m/4) =
1
2j

[ej2mπ/4 − e−j2mπ/4] = sin(2mπ/4) (4.60)

The two frequency components f = ±1 Hz are both inside the period −2 <
f < 2. However, note that as X(f ± 4) = X(f) is periodic, these two frequency
components also appear at f = ±1 ± 4k for all integer k. In the model the
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object is rotating at a rate of f0 = 1 cycles per second or 90◦ per flash counter
clockwise, as shown in the first row of Fig.4.5.! f0 = 2 = F/2 = 2 Hz:

x[m] = x(m/4) =
1
2j

[ej2mπ2/4 − e−j2mπ2/4] =
1
2j

[ejmπ − e−jmπ ] = 0 (4.61)

The signal is sampled two times per period and in this case both samples
happen to be zero, same as samples from a all zero signal x(t) = 0. In the
model, the object is rotating at a rate of 180◦ per flash, when the vertical
displacement of the object happen to be zero, as if it is not moving, as shown
in the second row of Fig.4.5.! f0 = 3 > F/2 = 2 Hz:

x[m] = x(m/4) =
1
2j

[ej2mπ3/4 − e−j2mπ3/4] =
1
2j

[ej2mπ(4−1)/4 − e−j2mπ(4−1)/4]

=
1
2j

[e−j2mπ/4 − ej2mπ1/4] = − sin(2mπ/4) (4.62)

As the signal is under-sampled, its samples are identical to those obtained
from a different signal − sin(2πt) = sin(−2πt) at a frequency f0 = −1 Hz.
In frequency domain, the two frequency components at f = ±3 Hz are both
outside the central period −2 < f < 2, but their replicas f = 3− 4 = −1 and
f = 3 + 4 = 1 appear inside the central period with opposite polarity. This
effect is called folding. In the model, the object is rotating at a rate of 270◦

per flash but it appears to be rotating at a lower rate of 90◦ per flash in the
opposite (clockwise) direction, as shown in the third row of Fig.4.5.! f0 = 4 = F Hz:

x[m] = x(m/4) =
1
2j

[ej2mπ4/4 − e−j2mπ4/4] =
1
2j

[ej2mπ − e−j2mπ] = 0

(4.63)
The signal is sampled once per period, the samples are necessarily constant,
which are all zero in this case. In frequency domain, the replicas of f0 = ±4
both appear at the origin at f = 0 Hz. In the model, the rotating object stays
in the same position when illuminated, and its vertical displacement is always
zero, i.e., it appears to be standing still, as shown in the 4th row of Fig.4.5.! f0 = 5 > F/2 = 2 Hz,

x[m] = x(m/4) =
1
2j

[ej2mπ5/4 − e−j2mπ5/4] =
1
2j

[ej2mπ(4+1)/4 − e−j2mπ(4+1)/4]

=
1
2j

[ej2mπ/4 − e−j2mπ/4] = sin(2mπ/4) (4.64)

The samples are identical to those from a different signal sin(2πt) with
frequency f0 = 1 Hz. In frequency domain, the two frequency components
f = ±5 Hz are both outside the central period −2 < f < 2, but their replicas
of appear inside the central period at f = 5− 4 = 1 and f = −5 + 4 = 1 Hz
with the same polarity. This effect is called aliasing. In the model, the object
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rotating 450◦ per flash appears to rotate 90◦ per flash in the same counter
clockwise direction, as shown in the last row of Fig.4.5.

Note that in all these cases, the observed frequency f is always the replicas of
the lowest frequency inside the central period −F/2 < f < F/2 in the spectrum,
which is the same as the true signal frequency f = f0 only when f0 < F/2. Oth-
erwise, aliasing or folding occurs and the apparent frequency is always lower than
the true frequency. In general, even if we know in theory the object could have
rotated an angle of φ± 2kπ per flash, the perceived frequency is always either φ
or φ− 2π = −(2π − φ) per flash, depending on which has a lower absolute value.
In the latter case, as the polarity is changed, not only is the frequency appears
to be lower, but also the direction is reversed.

Figure 4.5 Aliasing and folding in time and frequency domains

Model of rotating object illuminated by a strobe light (left, only the first flash is
shown), sampling of the vertical displacement (middle), and the aliased frequency
(perceived rotation) (right)

In the marginal case where the signal frequency f0 = F/2 is equal to the
Nyquist frequency, the sampled signal may appear zero, as shown above, but
this is not necessarily the case in general. Consider the same signal as above
with a phase shift x(t) = sin(2πf0t + φ). When it is sampled at rate F = 2f0,
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the values of its samples depend on the phase φ:

x[m] = x(m/F ) = sin(2mπf0/F + φ) = sin(mπ + φ) (4.65)

This is indeed zero when φ = 0 as shown before. However, when φ $= 0, we have:

x[m] = sin(mπ + φ) =
{

sinφ if m is even
− sinφ if m is odd

(4.66)

i.e., the sign of x[m] alternates for any phase φ $= 0 and φ $= π. In other words,
in the marginal case f0 = F/2, the frequency f0 of x(t) can be accurately rep-
resented, but its amplitude is scaled by sinφ, and its phase φ is not reflected.
This is shown in Fig.4.6. In particular when φ = π/2, x[m] = 1 if m is even and
x[m] = −1 if m is odd, i.e., the amplitude of the signal is accurately represented
by its samples.

Figure 4.6 Marginal sampling: signal frequency equals Nyquist frequency f0 = F/2

Example 4.5: This example further illustrates the effect of sampling and alias-
ing/folding. Consider a continuous signal

x(t) = cos(2πft + φ) =
1
2
[ej(2πft+φ) + e−j(2πft+φ)] = c1e

j2πft + c−1e
−j2πft

where c1 = ejφ/2 and c−1 = e−jφ/2 are respectively the two non-zero coefficients
for the frequency components ej2πft and e−j2πft. When this signal is sampled at
a rate of F = 1/t0, it becomes a discrete signal:

x[m] = cos(2πfmt0 + φ) = cos(2πfm/F + φ) =
ejφ

2
ej2πfm/F +

e−jφ

2
e−j2πfm/F

= c1e
−j2πfm/F + c−1e

−j2πfm/F

Fig.4.7 shows the signal being sampled at F = 6 samples per second, while its
frequency f increases from 1 to 12 Hz with 1 Hz increment. In time domain (left),
the original signal (solid line) and the reconstructed one (dashed line) are both
plotted. In frequency domain (right), the spectrum of the sampled version of the
signal is periodic with period F = 6, and three periods are shown including two
neighboring periods on both the positive and negative sides as well as the middle
one. However, note that the signal reconstruction by inverse Fourier transform,
and also by human eye, is only based on the information in the middle period.
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! When f = 1 < F/2 = 3, the two non-zero frequency components ej2πft and
e−j2πft are inside the middle period −3 ∼ 3 Hz of the spectrum, based on
which the signal can be perfectly reconstructed.! When f = 2 < F/2 = 3, e2πft and e−j2πft will move outward for a higher
frequency of ±2 Hz, which are still inside the middle period.! When f = 3 = F/3, the signal is marginally aliased. Depending on the relative
phase difference between the signal and the sampling process, the signal is
distorted to different extent. In the worst case, when the two samples happen
to be taken at the zero-crossings of the signal, they are both zero and the
signal x(t) = cos(2π4f + φ) is aliased to a zero signal x(t) = 0.! When f = 4 > F/2 = 3, the two coefficients for f = ±4 are out of the middle
period, but the replica of f = 4 Hz on the negative side moves from the left
into the middle period to appear as 4− 6 = −2 Hz, and the replica of f = −4
Hz on the positive side moves from right into the middle period to appear
as −4 + 6 = 2 Hz. The reconstructed signal based on these folded frequency
components is x′(t) = cos(2π2t− φ), different from the original signal x(t) =
cos(2π4t + φ).! When f = 5 >= F/2 = 3, similar folding occurs and the reconstructed signal
is x′(t) = cos(2πt− φ).! When f = 6 = F , one sample is taken per period, the aliased frequency is
zero, and the reconstructed signal is x′(t) = cos(φ)! When f = 7 = F + 1, the two coefficients for f = ±7 are out of the middle
period, but the replica of f = −7 Hz on the negative side moves from the left
into the middle period to appear as −7 + 6 = −1 Hz, and the replica of f = 7
on the positive side moves from the right into the middle period to appear as
7− 6 = 1 Hz. Based on these aliased frequency components, the reconstructed
signal is x′(t) = cos(2πft), which appears to be the same as the non-aliased
cases when f = 1.! When f = 8 = F + 2, similar aliasing occurs and the reconstructed signal is
x′(t) = cos(2π2t), which appears the same as the non-aliased case of f = 2.! When f = 9 = F + F/2, marginal aliasing occurs same as the case of f = 3.! When f = 10 = F + 4 and f = 11 = F + 5, folding occurs similar to the cases
when f = 4 and f = 5, respectively.! When f = 12 = 2F , same as in the case of f = 6 = F , one sample is taken
per period and the aliased frequency is zero.

We see that only when f < F/2 (the first two cases) can the signal be perfectly
reconstructed. After that the cycle of folding and aliasing will repeat as the signal
frequency f increases continuously. This pattern is illustrated in Fig.4.8.
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Figure 4.7 Aliasing in time and frequency domains
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Figure 4.8 Aliasing-folding cycle as signal frequency increases

4.1.5 Reconstruction by Interpolation

The reconstruction of a continuous signal x(t) from its sampled version xs(t) is
a low-pass (LP) filtering process in frequency domain:

X̂(f) = H(f)Xs(f) (4.67)

Here H(f) is an ideal low-pass filter that preserves all frequency components
inside the central period −F/2 < f < F/2 of the periodic spectrum Xs(f), while
completely suppressing all their replicas at higher frequencies outside this period.
After such an ideal low-pass filtering, we get X̂(f) = X(f), i.e., the signal x(t) is
perfectly reconstructed. In practice, as the ideal LP filter is hard to implement, a
non-ideal LP filter is often used and the reconstructed signal is an approximation
of the real one.

If the sampling frequency F is lower than the Nyquist frequency, any signal
components with frequency f > F/2 will be outside the central period and there-
fore filtered out. However, it is possible for such frequency components to have
some periodic replicas inside the central period, but they will appear to be at
some lower frequencies, i.e., aliasing occurs.

In time domain, the reconstruction of the continuous signal x(t) from its sam-
pled version xs(t) is an interpolation process that fills the gaps between samples.
The interpolation can be considered as a convolution of xs(t) with a certain
function h(t):

x̂(t) = h(t) ∗ xs(t) (4.68)

Let us consider the following reconstruction methods based on different h(t)
functions:! Zero-order hold

The impulse response of a zero-order hold filter is:

h0(t) =
{

1 0 ≤ t < t0
0 otherwise

(4.69)
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which is the rectangular function discussed before (Eq. 3.139) shifted by t0/2.
Based on h0(t), a continuous signal x̂0(t) can be generated by:

x̂0(t) = h0(t) ∗ xs(t) (4.70)

which is a series of square impulses with their heights modulated by x[m].
The interpolation corresponds a low-pass filtering in frequency domain by

H0(f) = F [h0(t)] =
1
πf

sin(πft0)e−j2πft0/2 (4.71)

(Eq. 3.141 with an exponential factor corresponding to the time shift of t0/2)! First-order hold
The impulse response of a first-order hold filter is:

h1(t) =
{

1− |t|/t0 |t| < t0
0 otherwise

(4.72)

which is the triangle function discussed before (τ = t0 in Eq. 3.144). A con-
tinuous signal x̂1(t) can be generated by:

x̂1(t) = h1(t) ∗ xs(t) (4.73)

which is the linear interpolation of the sample train x[m] (a straight line
connecting every two consecutive samples). This interpolation corresponds a
low-pass filtering in frequency domain by the following (Eq. 3.147)

H1(ω) = F [h1(t)] =
1

(πf)2t0
sin2(πft0) (4.74)! Ideal reconstruction

The reconstructed signals x̂0(t) and x̂1(t) are just approximations of the origi-
nal signal x(t), as these interpolations correspond to non-ideal low-pass filters.
To find the interpolation function for a perfect reconstruction of x(t), we have
to use an ideal low-pass filter (scaled by t0) in frequency domain:

Hlp(f) =
{

t0 |f | < fc

0 else
(4.75)

with time domain impulse response (Eq. 3.143):

hlp(t) = F [Hlp(f)] = t0
sin(2πfct)

πt
(4.76)

The reconstruction of the continuous signal X(f) is realized by applying this
ideal low-pass filter to the sampled signal Xs(f):

X̂(f) = Hlp(f) Xs(f) (4.77)

If fmax < F/2, then the cut-off frequency fc can be higher than fmax but lower
than F − fmax, so that the central portion of Xs(f) is extracted and scaled by
factor t0, while all other replicas beyond the cut-off frequency are suppressed
to zero, and the original signal is perfectly reconstructed: X̂(f) = X(f).
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This ideal low-pass filtering corresponds to the convolution in time domain:

hlp(t) ∗ xs(t) = t0
sin(2πfct)

πt
∗

∞∑

m=−∞
x[m]δ(t −mt0)

=
t0
π

∞∑

m=−∞
x[m]

∫ ∞

−∞
δ(τ −mt0)

sin(2πfc(t− τ))
t− τ dτ

=
t0
π

∞∑

m=−∞
x[m]

sin(2πfc(t−mt0))
π(t−mt0)

(4.78)

4.1.6 Frequency Response Function of discrete LTI Systems

Recall that the output of a discrete LTI system y[n] = O[x[n]] can be found as
the convolution of the input x[n] and the impulse response function h[n] of the
system (Eq. 1.83 in Chapter 1):

y[n] = O[x[n]] = h[n] ∗ x[n] =
∞∑

ν=−∞
x(ν)h(n − ν) =

∞∑

ν=−∞
h(ν)x(n − ν) (4.79)

In particular, let the input be a complex exponential x[n] = ejωn = cosωn +
j sinωn, then the output becomes

y[n] = O[ejωn] =
∞∑

ν=−∞
h[ν]ejω(n−ν) = ejωn

∞∑

ν=−∞
h[ν]e−jων = ejωn H(ejω)

(4.80)
where H(ejω) is defined as

H(ejω) =
∞∑

ν=−∞
h[ν]e−jων = F [h[n]] (4.81)

which happens to be the discrete Fourier transform of the impulse response
function h[n], and is called the frequency response function (FRF) of the discrete
LTI system. We see that this equation is an eigenequation indicating that the
effect of the LTI system applied to a sinusoidal input, the eigenfunction of the
system, is the same as a multiplication of the input by a constant H(ejω), the
eigenvalue. Also, as the sinusoidal input x[n] = ejωn is independent of any specific
h[n]), it is the eigenfunction of all discrete LTI systems.

Equation 4.80 can be further written as

y[n] = H(ω) ejωn = |H(ω)|ej $ H(ω) ejωn = |H(ω)|ej(ωn+ $ H(ω)) (4.82)

Due to the linearity of the LTI system, we can also get its response to any
sinusoidal input x[n] = cos(ωn) = Re[ejωn] as

y[n] = O[cosωn] = Re[ |H(ejω)|ej(ωn+ $ H(ejω )) ] = |H(ω)| cos(ωn + $ H(ω))
(4.83)
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In other words, the response of any discrete LTI system to a sinusoidal input is
the same sinusoid with its amplitude scaled by the magnitude |H(ejω)| of the
FRF, and its phase shifted by the phase angle $ H(ejω) of the FRF.

As an example, consider an important class of LTI systems which can be
described by a linear constant-coefficient difference equation. Here the input
x[n] and output y[n] of the system are related by the difference equation as:

N∑

k=0

aky[n− k] =
M∑

k=0

bkx[n− k] (4.84)

When the input is a complex exponential x[n] = ejωn, we can assume the out-
put is also a complex exponential y[n] = Y ejωn with a complex coefficient Y .
Comparing this output y[n] with Eq.4.80, we see that the coefficient Y is simply
the FRF H(ejω). Substituting these x[n] and y[n] into the differential equation
above we get:

Y
N∑

k=0

ak(ejω)kejωn =
M∑

k=0

bk(ejω)kejωn (4.85)

and the frequency response function can then be obtained as

H(ejω) = Y =
∑M

k=0 bk(ejω)k

∑N
k=0 ak(ejω)k

=
N(ejω)
D(ejω)

(4.86)

where N(ejω) =
∑M

k=0 bk(ejω)k and D(ejω) =
∑N

k=0 ak(ejω)k are the numerator
and denominator of H(ejω), respectively.

More generally, if the input is x[n] = Xejωn with a complex coefficient X =
|X |ej $ X , we can still assume an output y[n] = Y ejωn, and have

N∑

k=0

aky[n− k] = Y
N∑

k=0

ak(ejω)kejωn =
M∑

k=0

bk(ejω)kejωn = X
M∑

k=0

bkx[n− k]

(4.87)
Now the frequency response function can be found as the ratio between the
complex coefficients Y and X :

H(ejω) =
Y

X
=
∑M

k=0 bk(ejω)k

∑N
k=0 ak(ejω)k

=
N(ejω)
D(ejω)

(4.88)

The result above is of essential significance in the analysis of discrete LTI systems,
as it can be extended much beyond sinusoidal inputs to cover any input so long as
it can be expressed as a linear combination of a set of sinusoids (inverse Fourier
transform):

x[n] =
1∑

0

X(f)ej2πftdf =
1
2π

∫ 2π

0
X(ejω)ejωtdω (4.89)

Here the weighting function X(ejω) = F [x[n]] is of course the spectrum of x[n]
obtained by the discrete-time Fourier transform. As the system is linear, we can
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get the output as:

y[n] = O[x[n]] =
1
2π

∫ 2π

0
X(ejω)O[ejωt]dω =

1
2π

∫ 2π

0
X(ejω)H(ejω)ejωtdω

(4.90)
We see that the output y[n] happens to be the inverse discrete-time Fourier
transform of H(ejω)X(ejω), i.e.,

y[n] = F−1[Y (ejω)] = F−1[H(ejω)X(ejω)] (4.91)

In other words, in frequency domain the output is the product of the input and
the frequency response function:

Y (ejω) = H(ejω)X(ejω) (4.92)

while in time domain, the output is the convolution of the input and the impulse
response function:

y[n] = h[n] ∗ x[n] =
∞∑

ν=−∞
h[ν]x[n− ν] (4.93)

Of course, we realize this result is the same as the conclusion of the convolution
theorem discussed before. Similar result can also be obtained for a periodic input
which can be Fourier series expanded.

Summarizing the results above, we see the Fourier transform method is of
essential significance in system analysis, as we can analyze and design an LTI
system in Frequency domain to enjoy many benefits not possible in time domain.
First, most obviously, the response of an LTI system to an input x(t) can be much
more conveniently obtained in frequency domain by a multiplication Y (ω) =
H(ω)X(ω), instead of the corresponding convolution y(t) = h(t) ∗ x(t) in time
domain. Moreover, in many applications, it may only be possible to carry out
certain system analysis and design task in frequency domain. For example, if
we need to design a system so that it will generate a desired response y(t) to a
certain input x(t). In time domain, given x(t) and y(t), it is difficult to obtain
the impulse response function h(t) that satisfies y(t) = h(t) ∗ x(t). However, in
frequency domain, given X(ω) and Y (ω), it is relatively straight forward to find
the frequency response function H(ω) = F [h(t)] by a simple division H(ω) =
Y (ω)/X(ω).

Figure of block diagram...

4.2 Discrete Fourier Transform (DFT)

4.2.1 Formulation of DFT

In practice, most time signals are continuous and non-periodic, and their analyt-
ical expressions are not available in general. In order to obtain its spectrum in
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frequency domain, which is non-periodic and continuous, by a digital computer,
the signal needs to be modified in two ways:! First, we need to truncate the signal so that it has a finite time duration from 0

to T , with the underlying assumption that the signal repeats itself outside the
interval 0 < t < T , i.e., it becomes a periodic with period T . Correspondingly,
its spectrum becomes discrete. The Fourier transform of this periodic signal
is the Fourier series expansion discussed before! Second, we need to sample the signal with some sampling frequency F so that
it becomes discrete to be processed by a digital computer. Correspondingly,
the spectrum of the signal becomes periodic.

We can also reverse the order so that the continuous signal is sampled before
truncated. In either case, only when the signal is both finite and discrete, can we
apply the discrete Fourier transform (DFT) to find its spectrum, which is also
discrete and finite.

Figure 4.9 From continuous Fourier transform to discrete Fourier transform

To formulate the discrete Fourier transform, let us first recall the two different
types of Fourier transform discussed before. First, when the time signal is peri-
odic xT (t + T ) = xT (t), the coefficients X [n] of its Fourier expansion form its dis-
crete spectrum (Eq. 3.72), where the interval between two neighboring harmonics
is the fundamental frequency f0 = 1/T . Second, when the signal x[m] is discrete
as a sequence of values of a continuous signal x(t) sampled at a rate of Fs, with
t0 = 1/F between two consecutive samples, its spectrum XF (f + F ) = XF (f)
is periodic (Eq. 4.4). It is therefore obvious that if a signal is both periodic
with period T and discrete with interval t0 between two consecutive samples, its
spectrum should be both discrete with interval f0 = 1/T between two frequency
components, and periodic with frequency period F = 1/t0.
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In time domain, if the number of samples in a period T is

N = T/t0 (4.94)

then in frequency domain, the number of frequency components in a period F
is:

F

f0
=

1/t0
1/T

=
T

t0
= N (4.95)

i.e., the number of independent variables, or degrees of freedom (DOF), in either
time or frequency domain is preserved by the DFT. This fact should not be
surprising from the view point of information conservation of the transform.
Moreover, we also have the following relations that are useful later:

TF =
T

t0
= N, f0t0 =

t0
T

=
1
N

(4.96)

Now consider a continuous signal which has already been truncated with dura-
tion T and assumed to be periodic xT (t + T ) = xT (t). The sampling of this signal
can be represented mathematically by multiplying the signal by the sampling (or
comb) function comb(t):

xT (t) comb(t) = xT (t)
∞∑

m=−∞
δ(t−mt0) =

∞∑

m=−∞
x[m]δ(t−mt0) (4.97)

where x[m] = xT (mt0) is the kth sample of the signal. Note that x[m] is periodic
with period N :

x[m + N ] = xT ((m + N)t0) = xT (mt0 + T ) = xT (mt0) = x[m] (4.98)

The Fourier coefficient of this sampled version of the signal can be found as:

X [n] =
1
T

∫

T
[

∞∑

m=−∞
x[m]δ(t−mt0)] e−j2πnf0tdt

=
1
T

N−1∑

m=0

x[m]
∫

T
δ(t−mt0)e−j2πnf0tdt =

1
T

N−1∑

m=0

x[m]e−j2πnf0mt0

=
1
T

N−1∑

m=0

x[m]e−j2πnm/N , (n = 0, 1, · · · , N − 1) (4.99)

The number of terms in the summation is reduced from infinity to N for those
inside the integral range of T , as all those terms outside this range make no
contribution to the integral. Note that X [n + N ] = X [n] is also periodic with
period N :

X [n + N ] =
1
T

N−1∑

m=0

x[m]e−j2π(n+N)m/N

=
1
T

N−1∑

m=0

x[m]e−j2πnm/Ne−j2mπ = X [n] (4.100)
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The inverse transform can be found by multiplying both sides of Eq.4.99 by
ej2πµn/N/F , and taking summation with respect to n from 0 to N − 1:

1
F

N−1∑

n=0

X [n]ej2πµn/N =
1
F

N−1∑

n=0

[
1
T

N−1∑

m=0

x[m]e−j2πmn/N ]ej2πµn/N

=
N−1∑

m=0

x[m]
1
N

N−1∑

n=0

ej2πn[µ−m]/N =
N−1∑

m=0

x[m]δ[µ−m]

= x[µ], (µ = 0, 1, · · · , N − 1) (4.101)

Here we have used Eq.1.29 shown before.
Now we put Equations 4.99 and 4.101 together to form the DFT pair:

X [n] =
1
T

N−1∑

m=0

x[m]e−j2πmn/N , (n = 0, 1, · · · , N − 1)

x[m] =
1
F

N−1∑

n=0

X [n]ej2πmn/N , (m = 0, 1, · · · , N − 1) (4.102)

The first equation is the forward DFT while the second one the inverse DFT (note
the summation index µ is replaced by m). As both x[m] and X [n] are periodic
with period N , the summation in either the forward or inverse transform can be
over any consecutive N points, such as from −N/2 to N/2− 1. We now make
a trivial modification of the transform above by redefining the coefficient as
X [n]/F , then the above DFT pair becomes:

X [n] =
1
N

N−1∑

m=0

x[m]e−j2πmn/N (n = 0, 1, · · · , N − 1)

x[m] =
N−1∑

n=0

X [n]ej2πmn/N (m = 0, 1, · · · , N − 1) (4.103)

Actually the scaling factor has little significance in practice. The factor 1/N can
be moved from the first equation (forward DFT) to the second (inverse DFT)
transform (such as in the Matlab implementation of DFT).

However, we prefer to put a scaling factor 1/
√

N in front of both forward and
inverse transforms:

X [n] =
1√
N

N−1∑

m=0

x[m]e−j2πmn/N (n = 0, 1, · · · , N − 1)

x[m] =
1√
N

N−1∑

n=0

X [n]ej2πmn/N (m = 0, 1, · · · , N − 1) (4.104)

for the reason that now a set of N orthonormal vectors can be defined as:

φn =
1√
N

[ej2π0m/N , · · · , ej2π(N−1)m/N ]T , (n = 0, · · · , N − 1) (4.105)
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which satisfy

< φn,φn′ >= φT
nφn′ =

1
N

N−1∑

m=0

ej2π(n−k)m/N = δ[n− n′] (4.106)

Similar to the kth basis function φk(t) = ej2πfkt for the Fourier series expansion,
which corresponds to a continuous sinusoidal function of frequency fk = kf0 =
k/T (k cycles per period of T seconds), here the kth basis vector φk = ej2πmk/N

corresponds to a discrete sinusoidal function of frequency fk = k/N (k cycles
per period of N samples). N such vectors of different frequencies fk = k/N
(k = 0, · · · , N − 1) form a complete basis that spans the space CN . Any signal
vector originally given as x = [x[0], · · · , x[N − 1]]T under the standard basis en

can now be represented under the DFT basis φn as

x =
N−1∑

n=0

X [n]φn (4.107)

which can also be expressed in component form as:

x[m] =
1√
N

N−1∑

n=0

X [n]ej2πmn/N , (m = 0, · · · , N − 1) (4.108)

This is the inverse DFT where the coefficient X [n] can be obtained by taking
the inner product with φn′ on both sides of Eq.4.107:

< x,φn′ > = <
N−1∑

n=0

X [n]φn, φn′ >=
N−1∑

n=0

X [n] < φn, φn′ >

=
N−1∑

n=0

X [n]δ[n− n′] = X [n′] (4.109)

We see that X [n] is simply the projection of the signal vector x onto the nth
basis vector φn:

X [n] =< x,φn >=
1√
N

N−1∑

m=0

x[m]e−j2πmn/N , (n = 0, · · · , N − 1) (4.110)

This is the forward DFT.
As here both the signal and its spectrum are discrete and periodic, and there-

fore finite as only one period is needed in the computation, the DFT is the only
form of Fourier transform that can be actually carried out by a digital computer.
Moreover, due to the Fast Fourier Transform (FFT) algorithm to be discussed
later,

It is important to know how to obtain meaningful data and properly inter-
pret the result. The Fourier coefficients X [n] obtained by the DFT are obviously
related to, but certainly not equal to, the spectrum X(f) of the continuous sig-
nal x(t) originally give, as the truncation and sampling process has significantly
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modified the signal before the DFT can be carried out. First, due to the trun-
cation and the assumed periodicity, the signal may no longer be continuous and
smooth. Discontinuity is most likely to occur at the point between two periods
of the duration T . Second, due to the sampling process, aliasing may occur if
the sampling rate F is not higher than the Nyquist frequency, twice the highest
frequency component in the signal. The spectrum may be contaminated by var-
ious artifacts, most likely some faulty high frequency components corresponding
to the discontinuities, together with some aliased faulty frequencies caused by
sampling. It is therefore important to pay special attention to the truncation
and sampling process in order to minimize such artifacts. For example, we can
use some windowing technique to smooth the truncated signal, as well as low-
pass filtering to reduce the high frequency components before sampling to reduce
aliasing. Only then, can the DFT generate meaningful data representative of the
actual signal of interest.

Example 4.6: Consider a sinusoid of frequency k/N (k cycles per N points)...

x[m] = cos(m
2π
5

) =
1
2
[ej2πm/5 + e−j2πm/5] (4.111)

with ω0 = 2π/5, or period N = 5. Comparing this expression with the DFT
expansion:

x[m] =
n=4∑

n=0

X [n]ej2πmn/5 (4.112)

we see that X [1] = X [−1] = 1/2. Alternatively, following the DFT we can also
get the nth Fourier coefficient as:

X [n] =
1
N

N−1∑

m=0

x[m]e−j2πmn/N =
1
10

2∑

m=−2

[e−j2πm/5e−j2πmn/5 + e−j2πm/5e−j2πmn/5]

=
1
10

2∑

m=−2

[e−j2πm(1−n)/5 + e−j2πm(1+m)n/5] =
1
2
[δ[n + 1] + δ[n− 1]] (4.113)

Example 4.7: Consider a symmetric square wave with a period of N samples:

x[m] =
{

1 |m| ≤ N1

0 N1 < |m| ≤ N/2
(4.114)
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For convenience, we choose the limits of the Fourier transform summation from
−N/2 to N/2− 1, instead of from 0 to N − 1 to get

X [n] =
N/2−1∑

m=−N/2

x[m]e−j2πmn/N =
N1∑

m=−N1

e−j2πmn/N (4.115)

Let m′ = m + N1, we have m = m′ −N1 and

X [n] =
2N1∑

m′=0

e−j2πm′n/Nej2πN1n/N

= ej2πN1n/N 1− e−j2π(2N1+1)n/N

1− e−j2πn/N

= ej2πN1n/N e−jπ(2N1+1)n/N (ejπ(2N1+1)n/N + e−jπ(2N1+1)n/N )
e−jπn/N (ejπn/N − e−jπn/N )

=
sin((2N1 + 1)nπ/N)

sin(nπ/N)
(4.116)

4.2.2 Four different forms of Fourier transform

Various forms of the Fourier transform for periodic/non-periodic and continu-
ous/discrete signals discussed in this chapter and the previous one can be consid-
ered as four different variations of the same Fourier transform as shown below.! I. Non-periodic continuous signal, continuous, non-periodic spec-

trum
This is the most general form of the Fourier transform of a continuous and
non-periodic signal x(t), considered as a function in a function space spanned
by a set of uncountable basis functions φf (t) = ej2πft (−∞ < f < ∞) that
are orthonormal according to Eq.1.26:

< φf (t),φf ′(t) >=
∫ ∞

−∞
ej2π(f−f ′)tdt = δ(f − f ′)

The signal x(t) can therefore be expressed as a linear combination (integral)
of these uncountable basis functions as:

x(t) =
∫ ∞

−∞
X(f)φf (t)df =

∫ ∞

−∞
X(f)ej2πftdf

This is the inverse transform and the weighting coefficient function X(f) can
be obtained as the projection of the signal onto each basis function:

X(f) =< x(t),φf (t) >=< x(t), ej2πft >=
∫ ∞

−∞
x(t)e−j2πftdt

This is the forward transform.! II. Periodic continuous signal, discrete non-periodic spectrum
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This is the Fourier series expansion of a continuous and periodic signal xT (t +
T ) = xT (t), considered as a function in the space of or periodic functions
spanned by a set of countable basis functions φn(t) = ej2πnt/T /

√
T (for all

integer n) that are orthonormal according to Eq.1.27:

< φm(t),φn(t) >=
∫

T
ej2π(m−n)t/T dt = δ[n− n′]

The signal xT (t) can therefore be expressed as a linear combination (summa-
tion) of these basis functions as:

xT (t) =
∞∑

n=−∞
X [n]φn(t) =

∞∑

n=−∞
X [f ]ej2πnt/T

This is the inverse transform and the weighting coefficient X [n] can be
obtained as the projection of the signal onto the nth basis function:

X [n] =< xT (t),φn(t) >=< xT (t),
1√
T

ej2πnt/T >=
1√
T

∫

T
xT (t)e−j2πnt/T dt

This is the forward transform. As two consecutive frequency components are
separated by f = 1/T , the spectrum of the periodic signal can be expressed
as a continuous function:

X(f) =
∞∑

n=−∞
X [n]δ(f − nf0)

! III. Non-periodic discrete signal, continuous periodic spectrum
This is the discrete-time Fourier transform of a discrete and non-periodic
signal

x(t) =
∞∑

m=−∞
x[m]δ(t −mt0)

These signal samples x[m] (for all integer m) form an infinite dimensional
vector x = [· · · , x[m], · · · ]T in the vector space of all such vectors spanned
by an uncountable set of basis vectors φf = [· · · , ej2πnf/F /

√
F , · · · ]T (for all

0 < f < F ) that are orthonormal according to Eq.1.28:

< φf ,φf ′ >=
1
F

∞∑

m=−∞
ej2πm(f−f ′) =

∞∑

k=−∞
δ(f − f ′ − nF )

The signal x can therefore be expressed as a linear combination (integral) of
these uncountable basis vectors as:

x =
∫

F
X(f)φfdf

or in component form:

x[m] =
1√
F

∫

F
X(f)ej2πmf/F df



Discrete-Time Fourier Transform 205

This is the inverse transform, and the weighting coefficient function X(f) can
be obtained as the projection of the signal onto each basis function:

X(f) =< x,φf ) >=
1√
F

∞∑

m=−∞
x[m]e−j2πmf/F

This is the forward transform. Here X(f + F ) = X(f) is periodic.! IV. Periodic discrete signal, discrete periodic spectrum
This is the discrete Fourier transform (DFT) of a discrete and periodic
signal x[m], m = 0, · · · , N − 1. The N samples form an N-D vector x =
[x[0], · · · , x[N − 1]]T in a N-D unitary space spanned by a set of N N-D vec-
tors φn = [ej2π0n/N , · · · , ej2π(N−1)n/N ]T /

√
N that are orthonormal according

to Eq.1.29:

< φn,φn′ >=
1
N

N−1∑

k=0

ej2πk(n−n′)/N = δ[n− n′]

The signal vector can therefore be expressed as a linear combination (sum-
mation) of the N basis vectors:

x =
N−1∑

n=0

X [n]φn

or in component form:

x[m] =
1√
N

N−1∑

n=0

X [n]ej2πmn/N , (m = 0, 1, · · · , N − 1)

This is the inverse transform, and the weighting coefficient X [n] can be
obtained as the projection of the signal onto each basis function:

X [n] =< x,φn >=
1√
N

N−1∑

m=0

x[m]e−j2πmn/N , (n = 0, 1, · · · , N − 1)

As the previous two cases, the discrete time samples can be considered as a
special continuous function:

xT (t) =
N−1∑

m=0

x[m]δ(t−mt0) (4.117)

and the discrete frequency coefficients can be considered as a special contin-
uous spectrum:

XF (f) =
N−1∑

n=0

X [n]δ(f − nf0) (4.118)

The four forms of Fourier transform can be summarized as below:
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The signal x(t) The spectrum X(f)
I Continuous, Non-periodic Non-periodic, Continuous

x(t) =
∫∞
−∞X(f)ej2πftdf X(f) =

∫∞
−∞ x(t)e−j2πftdt

II Continuous, Periodic (T ) Non-periodic, Discrete (f0 = 1/T )
xT (t) =

∑∞
n=−∞ X [n]ej2πnf0t X [n] =

∫
T xT (t)e−j2πnf0tdt/T

X(f) =
∑∞

n=−∞ X [n]δ(f − nf0)
III Discrete (t0), Non-periodic Periodic (F = 1/t0), Continuous

x(t) =
∑∞

m=−∞ x[m]δ(t−mt0)
x[m] =

∫
F XF (f)ej2πfmt0df/F XF (f) =

∑∞
m=−∞ x[m]e−j2πfmt0

IV Discrete (t0), Periodic (T ) Periodic (F = 1/t0), Discrete (f0 = 1/T )
xT [m] =

∑N−1
n=0 X [n]ej2πnm/N XF [n] =

∑N−1
m=0 x[m]e−j2πmn/N

xT (t) =
∑N−1

m=0 x[m]δ(t−mt0) XF (f) =
∑N−1

n=0 X [n]δ(f − nf0)
T/t0 = N F/f0 = T/t0 = N

Figure 4.10 Four different forms of Fourier transform

All four forms of the Fourier transform share the same properties, discussed
above mostly thoroughly for the continuous and non-periodic case, although they
may take different forms for each of the four cases.
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4.2.3 Physical Interpretation of DFT

Computationally, given N values x[m] (m = 0, · · · , N − 1), any DFT code can
generate N complex values X [n] (n = 0, · · · , N − 1). But how should these N
values interpreted? What does each of them mean specifically? How should they
be manipulated to achieve certain data processing goals such as filtering? We
will address these issues here.

In reality, a time signal x[m] = xr[m] is real (xj [m] = 0), and it can be
expanded as:

x[m] = xr[m] = Re[
1√
N

N−1∑

n=0

X [n]ej2πmn/N ] (4.119)

=
1√
N

N−1∑

n=0

[Xr[n] cos(2πmn/N)−Xj[n] sin(2πmn/N)]

=
1√
N

N−1∑

n=0

|X [n]| cos(2πmn/N + $ X [n]) (4.120)

where
{
|X [n]| =

√
X2

r [n] + X2
j [n]

$ X [n] = tan−1(Xj [n]/Xr[n])
,

{
Xr[n] = |X [n]| cos $ X [n]
Xj[n] = |X [n]| sin $ X [n]

(4.121)

As both X [n] and cos(2πmn/N) are periodic with period N , the summation
above can be changed to be from −N/2 + 1 to N/2:

x[m] =
1√
N

N/2−1∑

n=−N/2

|X [n]| cos(2πmn/N + $ X [n]) (4.122)

Consider the different types of terms in this summation:! n = 0:
X [0] is the DC component, which is real (zero phase);! n = N/2:
X [N/2] is the coefficient for the highest frequency component cos(mπ) =
(−1)m, which is real without phase shift;! n = 1, · · · , N/2− 1:
These are (N − 2)/2 sinusoids |X [n]| cos(2πmn/N + $ X [n]) with frequency
n, amplitude |X [n]| and phase shift $ X [n];! n = −N/2 + 1, · · · ,−1:
This range for index n is equivalent to a range (1, · · · , N/2− 1) for index
−n, and, as Xr[−n] = Xr[n] is even and Xj [−n] = −Xj [n] is odd, we know
|X [−n]| = |X [n]| is even and $ X [−n] = $ X [n] is odd. Now each term in this
range becomes identical to a corresponding term in the previous range n =
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1, · · · , N/2− 1:

|X [−n]| cos(−2πmn/N + $ X [−n]) = |X [n]| cos(−2πmn/N − $ X [−n])

= |X [n]| cos(2πmn/N + $ X [n]), (n = 1, · · · , N/2− 1) (4.123)

Now the real signal x[m] can be expanded as:

x[m] =
1√
N

[X [0] + 2
N/2−1∑

n=1

|X [n]| cos(2πmn/N + $ X [n]) + X [N/2] cos(mπ)]

(4.124)
This is the discrete version of Eq. 3.70 in the case of the continuous Fourier
transform.

In general, the N complex coefficients generated by any DFT code (e.g., Mat-
lab, or C-code) are indexed from 0 to N − 1 (or sometimes from 1 to N), with
the DC component X [0] at the front end and the coefficient X [N/2] for the high-
est frequency component in the middle. On the other hand, it is conventional
conceptually for the DC component to be in the middle, i.e., the coefficients are
indexed from −N/2 to N/2− 1. To convert the actual output of a DFT code to
fit this convention, one could rearrange the N output data points in frequency
domain so that they are shifted by N/2. Alternatively, according to the fre-
quency shift property of the Fourier transform, if we multiply each data point
x[m] in time domain by e(j2πmN/2)/N = ejmπ = (−1)m, i.e., negate the sign of
every other time sample, the corresponding spectrum in frequency domain will
be shifted by N/2.

Now in frequency domain, various filtering (e.g., low, band or high-pass/stop)
can be carried out by modifying (increasing or reducing) the coefficients corre-
sponding to different frequency components, before inverse transforming back to
time domain.

4.2.4 Array Representation

A set of N-dimensional vectors can be defined based on the complex exponential
functions e±j2πmn/N appearing in the DFT:

wn = [w0n, · · · , wN−1,n]T , (n = 0, · · · , N − 1) (4.125)

where wmn = ej2πkn/N/
√

N . (Here we assume a scaling factor 1/
√

N in front of
both forward and inverse DFT .) These vectors are orthonormal:

< wm, wn > = wT
mwn =

1
N

N−1∑

k=0

ej2πmk/N e−j2πnk/N

=
1
N

N−1∑

k=0

ej2π(m−n)k/N = δ[m− n] (4.126)

and they therefore form a complete orthogonal system that span an N-
dimensional unitary space, of which the vectors containing the discrete signal
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samples as well as their Fourier coefficients are members:

x = [x[0], · · · , x[N − 1]]T , X = [x[0], · · · , x[N − 1]]T (4.127)

Now a signal vector can be expressed by these basis vectors:

x = WX = [w0, · · · , wN−1]




X [0]

...
X [N − 1]



 =
N−1∑

n=0

X [n]wn (4.128)

where W is an N ×N unitary matrix composed of N orthonormal vectors:

W = [w0, · · · , wN−1] =
1√
N





ej2π00/N ej2π01/N · · · ej2π0(N−1)/N

ej2π10/N ej2π11/N · · · ej2π1(N−1)/N

...
...

. . .
...

ej2π(N−1)0/N ej2π(N−1)1/N · · · ej2π(N−1)(N−1)/N





(4.129)
and the element in the mth row and nth column is w[m, n] = ej2πmn/N = w[n, m],
i.e., W = W T is a symmetric unitary matrix: W−1 = W . Left multiplying
W−1 = W on both sides of Eq. 4.128, we get

Wx = WWX = X (4.130)

If we write W in terms of its row vectors:

W =




wT

0
...

wT
N−1



 (4.131)

then Eq.4.130can be written as

X =




X [0]

...
X [N − 1]



 = Wx =




wT

0
...

wT
N−1



x (4.132)

where the Nth coefficient

X [n] = wT
nx =< x, wn > (4.133)

can be considered as the projection of the signal vector x onto the nth basis
vector wn of the N-D unitary space.

Equations 4.128 and 4.130 form the DFT pair in matrix form:
{

X = Wx (forward)
x = WX (inverse)

(4.134)

The component form of these two equations are the same as Eq. 4.103 (except
now the scaling constant 1/

√
N appears on both equations).

As a unitary transformation in the N-dimensional unitary space, the DFT can
be considered as a rotation represented by the unitary matrix W . A signal vector
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x = [x[0], · · · , x[N − 1]]T composed of N samples is originally given under the
standard basis

x =
N−1∑

m=0

x[m]em = Ix (4.135)

but it can also be expressed in terms of a different set of basis vectors wn

(n = 0, · · · , N − 1), obtained by rotating the standard basis vectors en by the
rotation matrix W , therefore

x = WX, or X = Wx (4.136)

As rotation does not change the norm of a vector (Parseval’s equality) the norm
of the signal is conserved ||x|| = ||X||, i.e., either the original signal x in time
domain or its Fourier coefficients X in frequency domain contains the same
among of energy or information.

Consider the following three examples for N=2, 4 and 8. First when N = 2,
the element of the mth row and nth column of the 2-point DFT matrix is

w[m, n] = w[n, m] =
1√
2
(ej2π/N )mn =

1√
2
(ejπ)mn =

1√
2
(−1)mn, (m, n = 0, 1)

(4.137)
and the DFT matrix can be found to be:

W 2×2 =
1√
2

[
1 1
1 −1

]
(4.138)

Now the DFT of the given 2-point signal x = [x[0], x[1]]T can be easily found to
be

X =
[

X [0]
X [1]

]
= Wx =

1√
2

[
1 1
1 −1

] [
x[0]
x[1]

]
=

1√
2

[
x[0] + x[1]
x[0]− x[1]

]
(4.139)

We see that the first component X [0] is proportional to the sum of the two signal
samples x[0] + x[1] representing the average or DC component of the signal, and
second X [1] is proportional to the difference between the two samples x[0]− x[1].

When N = 4, the element of the mth row and nth column of the 4-point DFT
matrix is

w[m, n] = w[n, m] =
1√
N

(ej2π/N )mn =
1
2
(ejπ/2)mn = jmn, (m, n = 0, · · · , 3)

(4.140)
The 4 by 4 DFT matrix can be found to be:

W 4×4 =
1
2





1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j



 (4.141)

We can easily verify that W = W T and WW = I.
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When N = 8, the real and imaginary parts of the DFT matrix W = W r +
jW j are respectively:

W r =
1√
8





1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 0.7 0.0 -0.7 -1.0 -0.7 0.0 0.7
1.0 0.0 -1.0 0.0 1.0 0.0 -1.0 -0.0
1.0 -0.7 0.1 0.7 -1.0 0.7 0.0 -0.7
1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0
1.0 -0.7 0.0 0.7 -1.0 0.7 0.0 -0.7
1.0 0.0 -1.0 0.0 1.0 0.0 -1.0 -0.0
1.0 0.7 0.0 -0.7 -1.0 -0.7 0.0 0.7





(4.142)

and

W j =
1√
8





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 -0.7 -1.0 -0.7 0.0 0.7 1.0 0.7
0.0 -1.0 0.0 1.0 0.0 -1.0 0.0 1.0
0.0 -0.7 1.0 -0.7 0.0 0.7 -1.0 0.7
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.7 -1.0 0.7 0.0 -0.7 1.0 -0.7
0.0 1.0 0.0 -1.0 0.0 1.0 0.0 -1.0
0.0 0.7 1.0 0.7 0.0 -0.7 -1.0 -0.7





(4.143)

The DFT can be considered as the discrete version of the Fourier series expan-
sion by sampling both the continuous signal and the basis functions at a rate of
N samples per period T . However, the physical interpretation of the nth basis
vector φn[m] = ej2πmn/N in the DFT (Eq. 4.103) is different from that of the
nth basis function φn(t) = ej2πnf0t in the Fourier series expansion (Eq. 3.6). The
frequency of φn(t) is nf0, which grows without limit as n increases, but the
frequency of φn[m] does not grow without limit. For example, the frequency cor-
responding to φN−1[m] = ej2π(N−1)m/N is not N − 1/N per period T , but 1/N
one cycle per T . This is because φn[m] is the discrete version of φn(t) obtained
by sampling it at a rate of N per period T , and any frequency n > N/2 per
period T is aliased to appear as nN .

Now let us consider the real and imaginary parts of the first N = 8 basis
functions φn(t) = ej2πnt/N (n = 0, · · · , 7) for the Fourier series expansion are
shown in Fig.4.11, together with the N discrete samples (the circles) for each
of the basis vectors for the DFT, which are also given in Eqs. 4.142 and 4.143.
Note that φ1(t), φ2(t) and φ3(t) represent, respectively, frequencies of 1, 2 and 3
cycles per period T , but φ5(t), φ6(t), and φ7(t) actually represent frequencies of
3, 2 and 1 cycles per period (the dashed lines in the figure), instead of 5, 6 and
7 cycles per period, due to aliasing. Also, in particular, the 0th basis function
φ0(t) = 1 is a constant representing the DC component of the signal, while the
4th basis function φ4(t) has the highest frequency of N/2 = 4 cycles per period
T .
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Figure 4.11 The basis vectors of 8-point DFT (n = 0, · · · , 7 top-down, real on the left,
imaginary on the right)

The DFT and inverse DFT can be implemented easily in either Matlab or C
language.

function X=dft(x)
N=length(x);
X=[exp(j*2*pi*[0:N-1]’*[0:N-1]/N)/sqrt(N)]*x;

function x=idft(X)
N=length(x);
x=[exp(j*2*pi*[0:N-1]’*[0:N-1]/N)/sqrt(N)]*X;

Here the signal x and its spectrum X are assumed to be column vectors (same
as in the text). If they are row vectors, we can simply reverse the order of the
two expressions in the multiplication. The C source code for DFT and inverse
DFT is listed below:

void dft(xr,xi,N,forward)
float *xr,*xi;
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int N,forward;
{ int i,j,k,m,n;

float arg,s,c,*yr,*yi;
yr=(float *)malloc(N*sizeof(float));
yi=(float *)malloc(N*sizeof(float));
for (n=0; n<N; n++) {
yr[n]=yi[n]=0;
for (m=0; m<N; m++) {
arg=pi*m*n/N;
if (forward) arg=-arg;
yr[n]=yr[n]+cos(arg)*xr[m]-sin(arg)*xi[m];
yi[n]=yi[n]+cos(arg)*xi[m]+sin(arg)*xr[m];

}
}
for (n=0; n<N; n++) {
xr[n]=yr[n]/sqrt(N); xi[n]=yi[n]/sqrt(N);

}
free(yr);
free(yi);

}

This function carries out DFT if forward=1, or inverse DFT otherwise. Note that
all these implementations have the same computational complexity of O(N2).

Example 4.8: Find the DFT of a real signal of N = 8 samples: [0, 0, 2, 3, 4, 0, 0, 0],
which is represented as a complex vector with zero imaginary part:

x = [(0, 0), (0, 0), (2, 0), (3, 0), (4, 0), (0, 0), (0, 0), (0, 0)]T (4.144)

The element in the mth row and nth column of the 8 by 8 DFT matrix is

w[m, n] =
1√
N

e−j2πmn/N =
1√
8
(e−jπ/4)mn =

1√
8
[cos(

πmn

4
)− j sin(

πmn

4
)]

(4.145)
The real and imaginary parts of the 8-point DFT matrix W are given in Eqs.
4.142 and 4.143. Carrying out the DFT matrix multiplication:

X = Wx (4.146)

we get the N = 8 DFT coefficients X = Xr + jXj :

Xr =
[
3.18, −2.16, 0.71, −0.66, 1.06, −0.66, 0.71, −2.16

]T

Xj =
[
0.0, −1.46, 1.06, −0.04, 0.0, 0.04, −1.06, 1.46

]T (4.147)

The real and imaginary parts of these complex coefficients are shown in Fig.4.12.
As the time signal is real, its DFT is symmetric. The real part is even Xr[1] =
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Xr[7], Xr[2] = Xr[6], Xr[3] = Xr[5], and the imaginary part is odd: Xj [1] =
−Xj[7], Xj [2] = −Xj [6], Xj [3] = −Xj [5]. However, note that Xr[0] $= Xr[4], and
Xj [0] = Xj [4] = 0.

Figure 4.12 A discrete signal x[m] and its DFT spectrum X[n]

The signal x[m] can also be reconstructed by the inverse DFT from its DFT
coefficients X [n]:

x =




x[0]

...
x[7]



 = WX = [w0, · · · , w7]




X [0]

...
X [7]



 =
7∑

n=0

X [n]wn (4.148)

Here the signal x is expressed as a linear combination of the column vectors of
the DFT matrix W , which, as a set of 8 orthonormal basis vectors, span an 8-D
vector space.

Consider specifically what these 8 complex values X [n] = Xr[n] + jXj [n] (n =
0, · · · , 7) represent:! Xr[0] is proportional to the sum of all signal samples x[m], therefore it rep-

resents the average of the signal. This is a real value as Xj [0] = 0.! The three pairs of terms corresponding to n = 1, 7, n = 2, 6 and n =
3, 5 represent respectively three sinusoids of frequency fn = n/N or ωn =
2πfn = 2nπ/N , with amplitude |X [n]| =

√
X2

r [n] + X2
j [n] and phase $ X [n] =

tan−1(Xj [n]/Xr[n]):
– n = 1, 7: f1 = 1/8, ω1 = 0.79, |X [1]| = 2.61/8, $ X [1] = −2.55 rad/sec.
– n = 2, 6: f2 = 2/8, ω2 = 1.57, |X [2]| = 1.28/8, $ X [2] = 0.98 rad/sec.
– n = 3, 5: f3 = 3/8, ω3 = 2.36, |X [3]| = 0.67/8, $ X [3] = −3.08 rad/sec.! Xr[4] = 3/8 is the amplitude of the highest frequency component with f4 =
4/8 or ω4 = 3.14. As Xj [4] = 0, the phase shift is zero.



Discrete-Time Fourier Transform 215

Now the signal can be expanded as (Eq. 4.124):

x[m] =
1√
N

[X [0] + 2
3∑

n=1

|X [n]| cos(
2πmn

N
+ $ X [n]) + X [4] cos(mπ)]

=
1√
8
[3.18 + 2(2.61 cos(0.79m− 2.55) + 1.28 cos(1.57m + 0.98)

+ 0.67 cos(2.36m− 3.08)) + 1.06 cos(3.14m)], (m = 0, · · · , 7)(4.149)

To illustrate the reconstruction of this 8-point discrete signal, we consider it as
the discrete version of the corresponding Fourier series expansion of a continuous
signal, which can be reconstructed as a linear combination of the its frequency
components with progressively more frequency components with higher frequen-
cies, as shown In Fig. 4.13.

Figure 4.13 Reconstruction of the signal

From the top down, the number of components included in the reconstruction is
increased with progressively higher frequencies from f0 = 0 (DC component) to
f4 (highest frequency). The perfect reconstruction is obtained when all frequency
components are included.
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In the discrete spectrum shown in Eq. 4.147, the DC is on the left (n = 0) while
the highest frequency component is in the middle (n = N/2 = 4). One may want
to shift the spectrum by half of its length N/2 so that the DC component in the
middle while the higher frequencies are farther away from it on both sides. This
can also be easily realized in time domain due to the frequency-shift property
(Eq. 4.153):

F−1[X [n−N/2]] = x[m]ej2πmN/2/N = x[m]emπ = x[m](−1)m (4.150)

i.e., if we negate every other sample in time domain, its spectrum is shifted by
half of the length to become:

Xr =
[
1.06, −0.66, 0.71, −2.61, 3.18, −2.16, 0.71, −0.66

]T

Xj =
[
0.0, 0.04, −1.06, 1.46, 0.0, −1.46, 1.06, −0.04,

]T (4.151)

Once the signal is decomposed by the DFT into different frequency components
in frequency domain, various filtering processing can be carried out as needed
for the specific application, for example, low, band and high-pass (or stop), by
manipulating the coefficients for different frequency components.

4.2.5 Properties of DFT

As a special case of the Fourier transform, the DFT shares all the properties of
the Fourier transform discussed previously, although they are in different forms.
We consider only a few of the properties here.! Time and frequency shifting

F [x[m ± m0]] = X [n]e±j2πm0n/N (4.152)

and

F [x[m]e∓j2πmn0/N ] = X [n± n0] (4.153)

These results can be most straightforwardly proven from the definition.! Symmetry
The DFT is complex transform which can be separated into real and imaginary
parts:

X [n] =
N−1∑

m=0

x[m]e−j2πmn/N =
N−1∑

m=0

(xr [m] + jxi[m])[cos(
2πmn

N
)− j sin(

2πmn

N
)]

= Xr[n] + jXj [n] (4.154)
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where

Xr[n] =
N−1∑

m=0

xr[m] cos(
2πmn

N
) +

N−1∑

m=0

xj [m] sin(
2πmn

N
)

Xj[n] =
N−1∑

m=0

xj [m] cos(
2πmn

N
)−

N−1∑

m=0

xr[m] sin(
2πmn

N
) (4.155)

In particular, if x[m] = xr[m] is real (xj [m] = 0), then Xr[n] is even

Xr[n] =
N−1∑

m=0

xr[m] cos(
2πmn

N
) = Xr[−n] (4.156)

and Xj [n] is odd

Xj[n] = −
N−1∑

m=0

xr[m] sin(
2πmn

N
) = −Xj[−n] (4.157)

Specially, Xr[0] represents the DC offset of the signal (zero frequency):

Xr[0] =
N−1∑

m=0

xr[m] cos(
2πm0

N
) =

N−1∑

m=0

xr[m] (4.158)

and Xr[N/2] represents the highest frequency component:

Xr[N/2] =
N−1∑

m=0

xr[m] cos(
2πmN/2

N
) =

N−1∑

m=0

xr[m](−1)m (4.159)

When n = 0 and n = N/2, the imaginary parts Xj[0] = Xj [N/2] = 0 are zero
because sin(0) = sin(mπ) = 0.! Convolution theorem
The convolution of two discrete and periodic signals x[m + N ] = x[m] and
h[m + N ] = h[m] (m = 0, · · · , N − 1) is defined as

y[m] = h[m] ∗ x[m] =
N−1∑

n=0

h[m− n]x[n], (m = 0, · · · , N − 1) (4.160)

As both x[m] and h[m] are assumed to be periodic with period N , it is obvious
that the result y[m] of the convolution is also periodic: y[m + N ] = y[m]. The
convolution is therefore also referred to as a circular convolution.
The convolution theorem states:

F [h[m] ∗ x[m]] = H [n]X [n] (a) (4.161)

F [h[m]x[m]] = H [n] ∗X [n] (b) (4.162)
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Proof of (a):

F [x[m] ∗ h[m]] =
N−1∑

m=0

[
N−1∑

k=0

x[k]h[m− k]]e−j2πmn/N

=
N−1∑

k=0

x[k]
N−1∑

m=0

h[m− k]e−j2π(m−k)n/N e−j2πkn/N

=
N−1∑

k=0

x[k]H [n]e−j2πkn/N = X [n]H [n] (4.163)

Note that due to periodicity of the signal y[m− k], the second summation
is still for the same N samples over one period, and therefore is the Fourier
transform of signal y. The proof of (b) is very similar to the above.! Diagonalization of circulant matrix
Based on one of the vectors h[n] of the convolution above, an N by N matrix H
can be constructed with its element in the mth row and nth column defined
as h[m, n] = h[m− n], so that the circular convolution in Eq.4.160 can be
expressed as a matrix multiplication:

y =





y[0]
y[1]
...

y[N − 2]
y[N − 1]




= Hx =





h[0] h[N − 1] · · · h[2] h[1]
h[1] h[0] · · · h[3] h[2]

...
...

. . .
...

...
h[N − 2] h[N − 3] · · · h[0] h[N − 1]
h[N − 1] h[N − 2] · · · h[1] h[0]









x[0]
x[1]

...
x[N − 2]
x[N − 1]





(4.164)
Such a matrix H is called a circulant matrix where each row is rotated one
element to the right relative to the previous row.
We now show that the nth DFT coefficient H [n] of h[m] and the nth column
vector wn of the DFT matrix W are the eigenvalue and eigenvector of the
matrix H , respectively:

Hwn = H [n]wn, (n = 0, · · · , N − 1) (4.165)

where wn = [wj2π0n/N , · · · , wj2π(N−1)n/N ]T is the Nth column vector of W
and H [n] is the nth DFT coefficient:

H [n] =
1√
N

N−1∑

m=0

h[m]e−j2πmn/N (4.166)

Consider the lth element of the left hand side of Eq.4.165:
N−1∑

k=0

h[l, k]wj2πkn/N =
N−1∑

k=0

h[l − k]wj2πkn/N (4.167)
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We let l − k = m′, i.e., k = l −m′, and the above becomes:
N−1∑

m′=0

h[m′]w−j2πm′n/Nwj2πnl/N = H [n]wj2πnl/N (4.168)

This turns out to be the lth element of the right hand side of Eq.4.165. We
can now see that the circulant matrix H can be diagonalized by the DFT
matrix W = [w0, · · · , wN−1]:

HW = WD, i.e. W−1HW = WHW = D (4.169)

where D is a diagonal matrix composed of all N DFT coefficients along the
main diagonal:

D = diag(H [0], · · · , H [N − 1]) (4.170)

Taking the DFT on both sides of y = Hx in Eq.4.164 by pre-multiplying W ,
we get:

Wy = Y = WHx = WHW Wx = DX (4.171)

i.e.,




Y [0]
Y [1]

...
Y [N − 1]




=





H [0] 0 · · · 0
0 H [1] · · · 0
...

...
. . .

...
0 0 · · · H [N − 1]









X [0]
X [1]

...
X [N − 1]




(4.172)

The nth element of this vector equation is:

Y [n] = H [n]X [n] (4.173)

This is of course consistent with the conclusion of the discrete convolution
theorem.

Example 4.9:

x = [1 2 3 4 5 6 7 8]T , h = [1 2 3 0 0 0 0 0]T

We want to find their convolution:

y[m] = h[m] ∗ x[m] =
∑

n

h[m− n]x[n], (m = 0, · · · , N − 1)

Different from the convolution in Example 4.3, here y[m] = h[m] ∗ x[m] is a cir-
cular convolution as both x and h are assumed to be periodic with period N = 8,
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and, consequently, their convolution is also periodic, as shown below:

n · · · −2 −1 0 1 2 3 4 5 6 7 8 9 · · ·
x[n] · · · 7 8 1 2 3 4 5 6 7 8 1 2 · · ·

h[0− n] · · · 3 2 1 · · ·
h[1− n] · · · 3 2 1 · · ·
h[2− n] · · · 3 2 1 · · ·
h[3− n] · · · 3 2 1 · · ·
h[4− n] · · · 3 2 1 · · ·
h[5− n] · · · 3 2 1 · · ·
h[6− n] · · · 3 2 1 · · ·
h[7− n] · · · 3 2 1 · · ·
h[8− n] · · · 3 2 1 · · ·
h[9− n] · · · 3 2 1 · · ·
h[10− n] · · · 3 2 · · ·

y[m] · · · 34 40 38 28 10 16 22 28 34 40 38 28 · · ·

For example, when m = 2, we have:

y[2] =
∑

n

h[2− n]x[n] = h[2]x[0] + h[1]x[1] + h[0]x[2] = 3× 1 + 2× 2 + 1× 3 = 10

We see that the resulting y[m + 8] = y[m] is indeed periodic.
Next, we show that this discrete convolution can also be carried out by

DFT. We find the 8-point DFTs X = DFT [x] and H = DFT [h] and also
their element-wise product Y = [Y [0], · · · , Y [7]]T , where Y [n] = H [n]X [n] (n =
0, · · · , 7):

X =





36
−4 + 9.657j
−4 + 4j

−4 + 1.657j
−4

−4− 1.657j
−4− 4j

−4− 9.657j





, H =





6
2.414− 4.414j
−2− 2j

−0.414 + 1.586j
2

−0.414− 1.586j
−2 + 2j

2.414 + 4.414j





, Y =





216
32.971 + 40.971j

16
−0.971− 7.029j

−8
−0.971 + 7.029j

16
32.971− 40.971j





The convolution y[m] = h[m] ∗ x[m] can be obtained by inverse DFT to be:

y = DFT−1[Y ] = [38 28 10 16 22 28 34 40]T

4.2.6 DFT Computation and Fast Fourier Transform

The Fourier transform of a signal can be carried out on a digital computer only
if the signal is (a) discrete and (b) finite, i.e., out of all different forms of the
Fourier transform, only DFT can actually be carried out.
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Listed below is the C code for both the forward and inverse DFT based on
the simple array multiplications in Eq.4.134. This function dft takes a com-
plex data vector for the time signal as the input and returns its complex DFT
coefficients. This is an in-place algorithm, i.e., the input vector xr[m] + j xi[m]
(m = 0, · · · , N − 1) for the time signal will be overwritten by the output, its
DFT coefficients. The same function is also used for the inverse DFT, in which
case the input is the DFT coefficients while the output is the reconstructed signal
vector in time domain. The function carries out forward DFT when the argument
inv=0, or inverse DFT when inv=1.

void dft(xr,xi,N,inv)
float *xr, *xi; // real and imaginary parts of data
int N; // size of data
int inverse; // inv=0 for forward DFT, inv=1 for inverse DFT

{ int k,m,n;
float arg,s,c,*yr,*yi;
yr=(float *) malloc(N*sizeof(float));
yi=(float *) malloc(N*sizeof(float));
for (n=0; n<N; n++) { // for all N frequency components
yr[n]=yi[n]=0;
for (m=0; m<N; m++) { // for all N data samples
arg=2*Pi*m*n/N;
if (!inv) arg=-arg; // minus sign needed for forward DFT
c=cos(arg); s=sin(arg);
yr[n]+=xr[m]*c-xi[m]*s;
yi[n]+=xi[m]*c+xr[m]*s;

}
}
arg=1.0/sqrt((float)N);
for (n=0; n<N; n++)

{ xr[n]=arg*yr[n]; xi[n]=arg*yi[n]; }
free(yr); free(yi);

}

The computational complexity of this algorithm is O(N2), due obviously to the
two nested for loops each of size N , i.e., it takes O(N) operations to obtain each
of the N coefficients X [n]. If the signal contains N = 103 = 1000 samples, the
computational complexity is O(N2) = O(106). Due to such a high computational
complexity, the actual application of the DFT is quite limited in practice.

To speed up the computation, a revolutionary fast Fourier transform (FFT)
algorithm was developed in 1960’s that can reduce the complexity of a DFT from
O(N2) to O(N log2 N). Due to this significant improvement in computational
efficiency, the Fourier transform became highly valuable not only theoretically
but also practically.
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The FFT algorithm is based on the following properties of the elements of the
matrix W . We first define

wN = e−j2π/N (4.174)

and note the following properties of wN :

1.

wkN
N = e−j2kπN/N = e−j2kπ = 1 (4.175)

2.

w2k
2N = e−j2k2π/2N = e−jk2π/N = wk

N (4.176)

3.

wN
2N = e−j2Nπ/2N = e−jπ = −1 (4.177)

Let N = 2M , an N-point DFT can be written as

X [n] =
N−1∑

m=0

x[m]ej2πmn/N =
N−1∑

m=0

x[m]wmn
N

=
M−1∑

m=0

x[2m]w2mn
2M +

M−1∑

m=0

x[2m + 1]w(2m+1)n
2M (4.178)

This is only for the first half of the coefficients X [n] for n = 0, · · · , M − 1. The
second half will be considered later. The first summation in this expression
includes all the even terms and the second all the odd ones. Due to the 2nd
property of wM , the above can be rewritten as

X [n] =
M−1∑

m=0

x[2m]wmn
M +

M−1∑

m=0

x[2m + 1]wmn
M wn

2M = Xeven[n] + Xodd[n]wn
2M

(4.179)
where we have defined:

Xeven[n] =
N−1∑

m=0

x[2m]wmn
M , and Xodd[n] =

N−1∑

m=0

x[2m + 1]wmn
M (4.180)

which are two N/2-point DFTs. The coefficients X [n] in the second half can be
obtained by replacing n in Eq. 4.179 by n + N :

X [n + M ] = Xeven[n + M ] + Xodd[n + M ]wn+M
2M (4.181)

Due to the first property of wM , we have

Xeven[n + M ] =
M−1∑

m=0

x[2m]wm(n+M)
M =

M−1∑

m=0

x[2m]wmn
M = Xeven[n] (4.182)

and similarly we have

Xodd[n + M ] = Xodd[n] (4.183)
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Also, due to the 3rd property of wM , we have

wn+M
2M = wn

2MwM
2M = −wn

2M (4.184)

Now the coefficients in the second half of the DFT can be found as

X [n + M ] = Xeven[n]−Xodd[n]wn
2M (4.185)

The N-point DFT can now be obtained from Eqs. 4.179 and 4.185 with complex-
ity of O(N), once Xever[n] and Xodd[n] are available. But Xeven[n] and Xodd[n]
are themselves two N/2-point DFTs, which can be obtained exactly the same
way. Now we can see that an N-point DFT can be carried out recursively in
log2 N levels, each time the DFT size is reduced by half, until eventually the
size becomes 1, the DFT coefficient is the same as the signal sample. As the
complexity at each level is O(N), the total complexity for the N-point DFT is
O(N log2N), as symbolically illustrated by the diagram in Fig. 4.14 For the same
example of a signal containing 1000 samples, the number of operations needed by
the FFT algorithm is in the order of 104 (1000× log21000 ≈ 1000× 10), instead
of 106 without using FFT.

Figure 4.14 The fast Fourier transform algorithm

The C code for the FFT algorithm is given below. The function fft takes a
complex data vector for the time signal as the input and returns its complex
DFT coefficients. Here the total number of vector elements N is assumed to be a
power of 2, so that the FFT algorithm can be conveniently implemented. This is
an in-place algorithm, i.e., the input vector xr[m] + j xi[m] (m = 0, · · · , N − 1)
for the time signal will be overwritten by the output, its DFT coefficients. This
function is also used for the inverse DFT, in which case the input will be the
DFT coefficients while the output is the reconstructed signal vector in time
domain. The function carries out forward DFT when the argument inv=0, or
inverse DFT when inv=1. The main body of the function is composed of an
outer loop of size log2N , the total number of stages, and an inner loop of size N
for the computation for each stage. The computational complexity is therefore
O(Nlog2N).
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void fft(xr,xi,N,inv)
float *xr,*xi; // real and imaginary parts of data
int N; // size of data
int inv; // inv=0 for FFT, inv=1 for IFFT

{ int i,i1,j,k,l,m,n;
float arg,s,c,w,tmpr,tmpi;
m=log2f((float)N);
for (i=0; i<N; ++i) { // for all N elements of data
j=0;
for (k=0; k<m; ++k)
j=(j<<1) | (1&(i>>k)); // bit reversal

if (j < i) { // swap x[i] and x[j]
w=xr[i]; xr[i]=xr[j]; xr[j]=w;
w=xi[i]; xi[i]=xi[j]; xi[j]=w;

}
}
for (i=0; i<m; i++) { // for log2(N) stages
n=pow(2.0,(float)i); // length of section in current stage
w=Pi/n;
if (!inv) w=-w; // include minus sign needed for forward FFT
k=0;
while (k<N-1) { // for N elements in a stage
for (j=0; j<n; j++) { // for all points in each section

arg=j*w; c=cos(arg); s=sin(arg);
l=k+j;
tmpr=xr[l+n]*c-xi[l+n]*s;
tmpi=xi[l+n]*c+xr[l+n]*s;
xr[l+n]=xr[l]-tmpr;
xi[l+n]=xi[l]-tmpi;
xr[l]=xr[l]+tmpr;
xi[l]=xi[l]+tmpi;

}
k=k+2*n; // move on to next section

}
}
arg=1.0/sqrt((float)N);
for (i=0; i<N; i++)
{ xr[i]*=arg; xi[i]*=arg; }

}

The DFT computation can be further cut in half if multiple real signals need
to be transformed. In general, the Fourier transform is an operator in a unitary
space in which all vectors are complex. On the other hand, all physical signals
are real, i.e., the imaginary part of a signal vector need to be filled with zeros,
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subsequently wasting half of the computation. This waste of time can be avoided
if more than one real signal vector need to be transformed, by the following
method based on the symmetry properties of the Fourier transform (table 3.1).

Recall that if x(t) is real, the real part of its spectrum is even Xr(f) = Xr(−f),
and the imaginary part is odd Xj(f) = −Xj(−f). But if x(t) is imaginary, the
real part of its spectrum is odd Xr(f) = −Xr(−f), and the imaginary part is
odd Xj(f) = −Xj(−f).

We also note that an arbitrary function f(x) can be decomposed into the even
and odd components fe(x) and fo(x):

{
fe(x) = [f(x) + f(−x)]/2 = fe(−x)
fo(x) = [f(x)− f(−x)]/2 = −fo(−x)

(4.186)

This result can be verified:

fe(x) + fo(x) = f(x) (4.187)

Two real signals x1[m] and x2[m] (m = 0, · · · , N − 1) can be transformed
simultaneously in the following steps:

1. Construct a complex vector composed of x1[m] as its real part and x2[m] as
its imaginary part:

x[m] = x1[m] + jx2[m], (m = 0, · · · , N − 1) (4.188)

2. Obtain the DFT of x[m]:

X [n] = Xr[n] + jXj [n], (n = 0, · · · , N − 1) (4.189)

3. Obtain F [x1] = X1 = X1r + jX1j .
As x1 is real, the real part of its spectrum X1r is even and the imaginary part
X1j is odd, i.e.,

X1[n] = X1r[n] + jX1j [n] =
Xr[n] + Xr[−n]

2
+ j

Xj[n]−Xj [−n]
2

(4.190)

4. Obtain F [x2] = X2 = X2r + jX2j .
As jx2 is imaginary, the real part of its spectrum jX2r is odd and the imagi-
nary part jX2j is even, i.e.,

jX2[n] = jX2r[n] + j(jX2j [n]) =
Xr[n]−Xr[−n]

2
+ j

Xj [n] + Xj [−n]
2

(4.191)
Dividing both sides by j, we get the spectrum X2 of real signal x2:

X2[n] = X2r[n] + jX2j [n] =
Xj [n] + Xj [−n]

2
− j

Xr[n]−Xr[−n]
2

(4.192)
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4.3 Two-Dimensional Fourier Transform

4.3.1 Four Forms of 2-D Fourier Transform

All signals considered so far are assumed to be one-dimensional time functions.
However, a signal could also be a function over a 1D space, with the spatial
frequency defined as the number of cycles in unit length, instead of in unit time.
Moreover, the concept of frequency analysis can be extended to various signals
in two or three-dimensional spaces. In particular, images are also a typical 2-D
signal, and computer image processing has been a very active field of study for
several decades with a wide variety of applications. Like in 1D situation, the
Fourier transform is also a powerful tool in signals processing and analysis in
two or higher dimensional space.

Same as in the 1D case, there also exist four different forms of 2-D Fourier
transform, depending on whether the given 2-D signal f(x, y) is periodic or non-
periodic, and whether it is discrete or continuous.! Non-periodic continuous signal, continuous non-periodic spectrum

F (u, v) =
∫ ∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dx dy (4.193)

f(x, y) =
∫ ∫ ∞

−∞
F (u, v)ej2π(ux+vy)du dv (4.194)

where u and v represent two spatial frequencies along the directions of x and y
in the 2-D space, respectively. In the inverse transform the 2-D signal f(x, y)
is represented by a linear combination (the double integral) of infinite number
of uncountable 2-D orthogonal basis functions φu,v(x, y) = ej2π(ux+vy), where
u and v are the frequencies in directions x and y, respectively. Each basis
function φu,v(x, y) is weighted by the Fourier coefficient function F (u, v), the
2-D spectrum of the signal, which is obtained in the forward transform as the
projection of the signal f(x, y) onto each of the basis functions φu,v(x, y).! Non-periodic discrete signal, continuous periodic spectrum
The spatial signal f [m, n] is discrete with spatial intervals xo and yo between
consecutive signal samples in the x and y directions, respectively.

FUV (u, v) =
∞∑

m=−∞

∞∑

n=−∞
f [m, n]e−j2π(umxo+vnyo) (4.195)

f [m, n] =
1

UV

∫ U

0

∫ V

0
F (u, v)ej2π(umxo+vnyo)du dv (4.196)

The spectrum FUV (u, v) = F (u + U, v + V ) is periodic with periods (the sam-
pling frequencies) U = 1/xo and V = 1/yo in the two directions.! Periodic continuous signal, discrete non-periodic spectrum
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The spatial signal fXY (x, y) = fXY (x + X, y + Y ) is periodic with periods X
and Y in x and y directions of the 2-D space, respectively.

F [k, l] =
1

XY

∫ X

0

∫ Y

0
fXY (x, y)ej2π(kxuo+lyvo)dx dy (4.197)

fXY (x, y) =
∞∑

k=−∞

∞∑

l=−∞
F [k, l]e−j2π(xkuo+ylvo) (4.198)

The 2-D spectrum is discrete with intervals uo = 1/X and vo = 1/Y between
consecutive frequency components F [k, l] in spatial frequency directions u and
v, respectively.! Periodic discrete signal, discrete periodic spectrum
This is the 2-D discrete Fourier transform (2-D DFT). The spatial signal
is discrete with intervals x0 and y0 between consecutive samples in the x
and y directions, respectively, and it is also periodic with period X and Y .
The 2-D signal has X/x0 = M and Y/y0 = N samples along each of the two
spatial directions and can be represented as an M ×N array x[m, n] (m =
0, · · · , M − 1, n = 0, · · · , M − 1). The 2-D DFT pair is

X [k, l] =
1√

MN

N−1∑

n=0

M−1∑

m=0

x[m, n]e−j2π( mk
M + nl

N )

x[m, n] =
1√

MN

N−1∑

l=0

M−1∑

k=0

X [k, l]ej2π( mk
M + nl

N )

(0 ≤ m, k ≤M − 1, 0 ≤ n, l ≤ N − 1) (4.199)

The spectrum is both discrete and periodic with periods (sampling rates) U =
1/x0 and V = 1/y0 and intervals u0 = 1/X and v0 = 1/Y between consecutive
frequency components F [k, l] along u and v, respectively. The signal is periodic
x[m + M, n + N ] = x[m, n], and so it its DFT X [k + M, l + N ] = X [k, l].

Note that the 2-D kernel function of the 2-D transform is separable, in the sense
that it can be expressed as a product of two 1-D kernel functions in each of the
two dimensions. For example, the continuous kernel function can be written as:

φu,v(x, y) = ej2π(ux+vy) = ej2πuxej2πvy = φu(x)φv(y) (4.200)

Therefore the 2-D transform can be carried out as:

F (u, v) =
∫ ∫ ∞

−∞
f(x, y)e−j2πuxe−j2πvydx dy

=
∫ ∞

−∞

[∫ ∞

−∞
f(x, y)e−j2πux dx

]
e−j2πvy dy

=
∫ ∞

−∞
F ′(u, y)e−j2πvy dy (4.201)
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where F ′(u, y) is an intermediate result obtained by a 1-D transform in the
dimension of x:

F ′(u, y) =
∫ ∞

−∞
f(x, y)e−j2πux dx

and the 2-D spectrum F (u, v) can be obtained by another 1-D transform in the
dimension of y. In other words, the 2-D transform can be carried out in two steps
each for one of the two dimensions. Obviously the order of the two steps can be
reversed.

Among all four forms of 2-D Fourier transform, only the discrete 2-D Fourier
transform with finite and discrete signal samples and frequency components can
be actually carried out. As in the case of 1D Fourier transform, the scaling factor
1/MN is of little significance.

4.3.2 Computation of 2-D DFT

A 2-D discrete signal x[m, n] can be considered as an M by N matrix consisting
of N M-dimensional column vectors, or M N-dimensional row vectors. And, as
discussed before, as the kernel function is separable, the 2-D DFT for this signal
can be carried out in two steps: N 1D DFTs of the N columns, followed by M
1D DFTs of the M rows of the matrix obtained in step 1. The order of the two
steps can be reversed. Specifically, we have

X [k, l] =
1√

MN

N−1∑

n=0

[
M−1∑

m=0

x[m, n]e−j2πmk
M ]e−j2π nl

N

=
1√
N

N−1∑

n=0

X ′[k, n]e−j2π nl
N (k = 0, · · · , M − 1, l = 0, · · · , N − 1)

(4.202)

where X ′ is an intermediate result obtained by column transforms in the first
step:

X ′[k, n] =
1√
M

M−1∑

m=0

x[m, n]e−j2πmk
M (n = 0, 1, · · · , N − 1) (4.203)

The summation above is with respect to the row index m and the column index
n can be treated as a parameter. This 1D DFT of the nth column of the 2-D
signal matrix can be written in column vector (vertical) form as:

X ′
n = W Mxn, (n = 0, · · · , N − 1) (4.204)

where X ′T = [X [0, n], · · · , X [N − 1, n]]T is an N-D vector and W M is a M ×
M Fourier transform matrix with the mn-th element w[m, n] = ej2πmn/M/

√
M ,

similar to the matrix in Eq. 4.129. Putting all these N columns together, we can
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write

[X ′
0, · · · , X ′

N−1] = W M [x0, · · · , xN−1] (4.205)

We define two M ×N matrices X ′
M×N = [X ′

0, · · · , X ′
N−1] and xM×N =

[x0, · · · , xN−1], so that the above can be more concisely written as

X ′
M×N = W M xM×N (4.206)

In the second step, a 1D DFT is carried out for each of the M rows of the
intermediate matrix X ′:

XT
k = (W NX ′

k)T = X ′T
k W

T
N = X ′T

k W N , (k = 0, · · · , M − 1) (4.207)

where XT
k is the kth row vector of matrix X, and W N is a N ×N Fourier

transform matrix with the mn-th element ej2πmn/N/
√

N , which is symmetric
W

T
N = W N . Putting all these M rows together, we can write




XT

0
...

XT
M−1



 =




X

′T
0
...

X
′T
M−1



W N (4.208)

The equation above can be more concisely expressed as:

XM×N = X ′
M×NW N = W M xM×NW N (4.209)

This is the 2-D DFT in matrix form.
Similarly, the inverse 2-D DFT can be written as

xM×N = W M XM×N W N (4.210)

We rewrite these two equations as a 2-D DFT pair:
{

XM×N = W M xM×N W N , (forward)
xM×N = W M XM×N W N , (inverse)

(4.211)

As before, the DFT matrix W can be expressed in terms of its column vectors
(same as its row vectors as W T = W ), and the inverse transform can be written
as:

x = [w0, · · · , wM−1]




X [0, 0] · · · X [0, N − 1]

...
. . .

...
X [M − 1, 0] · · · X [M − 1, N − 1]








wT

0
...

wT
N−1





= [w0, · · · , wM−1]





∑N−1
l=0 X [0, l]wT

l
...∑N−1

l=0 X [M − 1, l]wT
l





=
M−1∑

k=0

wk

N−1∑

l=0

X [k, l]wT
l =

M−1∑

k=0

N−1∑

l=0

X [k, l]wkwT
l =

M−1∑

k=0

N−1∑

l=0

X [k, l]Bkl

(4.212)
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Now the 2-D signal x is expressed as a linear combination of a set of MN
2-D (M by N) basis functions Bkl = wkwT

l , each weighted by X [k, l] (k =
0, · · · , M − 1, l = 0. · · · , N − 1), which can be obtained by the forward 2-D DFT.
The equation above also shows that the kl-th 2-D DFT basis function Bkl can
be found by this inverse 2-D DFT if all elements of the coefficient array are zero
except X [k, l] = 1. When M = N = 8, the M ×N = 64 such 2-D basis functions
are shown in Fig.4.15.

Figure 4.15 The M ×N = 8× 8 = 64 basis functions of the 2-D DFT

The left half of the image shows the real part of the 8 by 8 2-D basis functions,
while the right half shows the corresponding imaginary parts. The DC component
is at the top-left corner of the real part, and the highest frequency component
in both horizontal and vertical directions is in the middle of the real part.

The coefficients X [k, l] in the above expression for x can be obtained by the
forward transform:

X =




wT

0
...

wT
M−1



x[w0, · · · , wN−1] (4.213)

and the kl-th coefficient is

X [k, l] = wT
k




x[0, 0] · · · x[0, N − 1]

...
. . .

...
x[M − 1, 0] · · · x[M − 1, N − 1]



wl

=
M−1∑

m=0

N−1∑

n=0

x[m, n]Bkl[m, n] =< x, Bkl > (4.214)

This is the inner product of two 2-D arrays x and Bkl (Eq.2.24), representing
the projection of the signal x onto the kl-th basis function Bkl.

The C code for both the forward and inverse 2-D DFT is listed below:

fft2d(xxr,xxi,m,n,inverse) // 2D DFT
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float **xxr, **xxi;
int m,n,inverse;

{ float *xr, *xi;
int i,j,k;
k=m; if (n>m) k=n;
xr = (float *) malloc(k*sizeof(float));
xi = (float *) malloc(k*sizeof(float));
printf("\nRow xform...\n");
for (j=0; j<n; j++) {
for (i=0; i<m; i++) {
xr[i]=xxr[i][j]; xi[i]=xxi[i][j];

}
fft(xr,xi,m,inverse);
for (i=0; i<m; i++)

{ xxr[i][j]=xr[i]; xxi[i][j]=xi[i]; }
}

printf("\nColumn xform...\n");
for (i=0; i<m; i++) {
for (j=0; j<n; j++)

{ xr[j]=xxr[i][j]; xi[j]=xxi[i][j]; }
fft(xr,xi,n,inverse);
for (j=0; j<n; j++)

{ xxr[i][j]=xr[j]; xxi[i][j]=xi[j]; }
}

free(xr); free(xi);
}

Example 4.10: Consider the 2-D DFT of a real 8× 8 2-D signal (imaginary part
is zero):

xr =





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 70.0 80.0 90.0 0.0 0.0 0.0
0.0 0.0 90.0 100.0 110.0 0.0 0.0 0.0
0.0 0.0 110.0 120.0 130.0 0.0 0.0 0.0
0.0 0.0 130.0 140.0 150.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0





(4.215)

The 8-point DFT matrix W 8 is the same as the one shown in Eqs. 4.142 and
4.143. After carrying out the 2-D DFT X = W 8 x W 8, we get the coefficient
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matrix X = Xr + jXj :

Xr =





165.0 -98.9 10.0 -21.1 55.0 -21.1 10.0 -98.9
-63.1 -11.3 27.7 13.2 -21.0 1.6 -32.7 85.7
15.0 0.0 -5.0 -2.9 5.0 0.0 5.0 17.1

-41.9 16.8 2.7 6.3 -14.0 4.3 -7.7 33.4
15.0 -8.5 0.0 -1.5 5.0 -1.5 0.0 -8.5

-41.9 33.4 -7.7 4.3 -14.0 6.3 2.7 16.8
15.0 -17.1 5.0 0.0 5.0 -2.9 -5.0 0.0

-63.1 85.7 -32.7 1.6 -21.0 13.2 27.7 -11.3





(4.216)
and

Xj =





0.0 -88.9 55.0 11.1 0.0 -11.1 -55.0 88.9
-90.5 89.2 -27.1 6.9 -30.2 16.8 15.0 19.9
15.0 -17.1 5.0 0.0 5.0 -2.9 -5.0 0.0

-15.5 31.9 -15.0 -0.8 -5.2 4.9 12.9 -13.2
0.0 -8.5 5.0 1.5 0.0 -1.5 -5.0 -8.5

15.5 13.2 -12.9 -4.9 5.2 0.8 15.0 -31.9
-15.0 0.0 5.0 2.9 -5.0 0.0 -5.0 17.1
90.5 -19.9 -15.0 -16.8 30.2 -6.9 27.1 -89.2





(4.217)

As the signal x[m, n] is real, the real part of its spectrum is 2-D even: Xr[k, l] =
Xr[M − k, N − l], Xr[k, N − l] = Xr[M − k, l], while the imaginary part is 2-
D odd: Xj[k, l] = −Xj [M − k, N − l], Xj[k, N − l] = −Xj[M − k, l], as can be
observed. Also note that the real parts of four coefficients Xr[0, 0], Xr[0, N/2],
Xr[M/2, 0] and Xr[M/2, N/2] are not paired with any other coefficients,
and their imaginary parts are all zero Xj [0, 0] = Xj [0, N/2] = Xj [M/2, 0] =
Xj [M/2, N/2] = 0.

Consider the 2-D sinusoids corresponding to each of the coefficients:! X [0, 0] = Xr[0, 0] is the amplitude of the DC offset (average) of the signal,
Xj [0, 0] = 0, the phase is zero;! X [M/2, N/2] = Xr[M/2, N/2] is the amplitude of the highest frequency com-
ponent (−1)m+n contained in the signal, X [M/2, N/2] = 0, the phase is zero;! X [0, N/2] = Xr[0, N/2] is the amplitude of the highest frequency component
in horizontal direction (−1)n, Xj [0, N/2] = 0, the phase is zero. contained in
the signal, X [M/2, N/2] = 0, the phase is zero;! X [M/2, 0] = Xr[M/2, 0] is the amplitude of the highest frequency component
in vertical direction (−1)m, Xj [M/2, 0] = 0, the phase is zero.! When k = 0, l = 1, · · · , N/2− 1, X [0, l] pairs up with X [0, N − l] to repre-
sent the amplitude and phase of a planar sinusoid |X [0, l]| cos(2π(nl/N)) +
$ X [0, l])) in horizontal direction;! When k = 1, · · · , M/2− 1, l = 0, X [k, 0] pairs up with X [M − k, 0] to repre-
sent the amplitude and phase of a planar sinusoid |X [k, 0]| cos(2π(mk/M)) +
$ X [k, 0])) in vertical direction;
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The coefficients in the rest of the array X [k, l] can be divided into four quadrants
with the top-left paired up with the low-right to represent sinusoids in NW-SE
directions, while the top-right paired up with the low-right to represent sinusoids
in NE-SW directions.

Also note that as the signal is real, half of the data points carries no informa-
tion. In the spatial domain, the imaginary part of the signal is all zero; while in
the spatial frequency domain, both the real and imaginary parts are symmetric.
(More specifically, the real part has MN/2 + 2 independent variables, the imag-
inary part has MN/2− 2 independent variables. This fact indicates that half of
the data is redundant and an algorithm can be designed based on the symmetry
of the discrete spectrum to cut the computation of a 2-D DFT of a real signal
by half.

From the previous example, we see that the high frequency components are
around the center (M/2, N/2) of the 2-D spectrum array, while the low frequency
components are around the corners, such as the DC component is at the upper-
left corner. Sometime it is preferable to centralize the spectrum so that the DC
component and the low frequency components are in the middle of the spectrum
array, and high frequency components are around the corners. This centralization
of the DC component corresponding to shifting the 2-D discrete spectrum in both
dimensions by half of the length, which can be realized by negating every other
spatial samples, similar to 1D case discussed before:

F−1[X [k −M/2, l−N/2]] = x[m, n]ej2π( mM/2
M + nN/2

N )

= x[m][n]ejπ(m+n) = x[m](−1)m+n (4.218)

If we negate the sign of any spatial sample x[m, n] with m + n being odd, i.e.




x[0, 0] −x[0, 1] x[0, 2] · · ·
−x[1, 0] x[1, 1] −x[1, 2] · · ·

x[2, 0] −x[2, 1] x[2, 2] · · ·
...

...
...
. . .




(4.219)

then the resulting 2-D Fourier spectrum will be centralized with DC component
in the middle and high frequency components around the four edges. For the
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example above, the centralized spectrum becomes

Xr =





5.0 -1.5 0.0 -8.5 15.0 -8.5 0.0 -1.5
-14.0 6.3 2.7 16.8 -41.9 33.4 -7.7 4.3

5.0 -2.9 -5.0 0.0 5.0 -17.1 5.0 0.0
-21.0 13.2 27.7 -11.3 -63.1 85.7 -32.7 1.6
55.0 -21.1 10.0 -98.9 165.0 -98.9 10.0 -21.1

-21.0 1.6 -32.7 85.7 -63.1 -11.3 27.7 13.2
5.0 0.0 5.0 17.1 15.0 0.0 -5.0 -2.9

-14.0 4.3 -7.7 33.4 -41.9 16.8 2.7 6.3





(4.220)
and

Xj =





0.0 -1.5 -5.0 -8.5 0.0 -8.5 5.0 1.5
5.2 0.8 15.0 -31.9 15.5 13.2 -12.9 -4.9
-5.0 0.0 -5.0 17.1 -15.0 0.0 5.0 2.9
30.2 -6.9 27.1 -89.2 90.5 -19.9 -15.0 -16.8
0.0 -11.1 -55.0 88.9 0.0 -88.9 55.0 11.1

-30.2 16.8 15.0 19.9 -90.5 89.2 -27.1 6.9
5.0 -2.9 -5.0 0.0 15.0 -17.1 5.0 0.0
-5.2 4.9 12.9 -13.2 -15.5 31.9 -15.0 -0.8





(4.221)

4.4 Fourier Filtering

4.4.1 1-D Filtering

A given time signal x(t) or its spectrum X(f) = F [x(t)] can be filtered by a filter,
which can be considered as an LTI system represented by the impulse response
function h(t) in time domain or the frequency response function H(f) = F [h(t)]
in frequency domain. Correspondingly the filtering process can be represented
as a convolution in time domain or a multiplication in frequency domain:

Y (f) = H(f)X(f), or y(t) = h(t) ∗ x(t) (4.222)

As will be seen in the examples below, the impulse response function h(t) of a
filter may not be causal, i.e., it may not satisfy the condition of causality h(t) = 0
for all t < 0. In other words, such a non-causal filter cannot be actually imple-
mentable in real time. However, this non-causality does not prevent the filter
from being applied to off-line, recorded data in a wide variety of applications.

There exist many different types of filters, such as low-pass (LP), high-pass
(HP), band-pass (BP), band-stop (BS). But to start with, let us first consider
the low-pass filters of four different shapes and their filtering effects when applied
to a specific signal, a square impulse train, shown in the top row of Fig.4.17.! The moving average LP-filter is a filtering process in time domain that replaces

each sample in the discrete signal by the average of a sequence of samples in
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the neighborhood of the sample in question. Actually this operation of moving
average is the convolution of the signal x(t) with a window function h(t). In
frequency domain, the moving average filtering is a multiplication of the signal
spectrum X(f) and frequency response function H(f), a sinc function (Eq.
3.141). This filter and its filtering effect are shown in the 2nd and 3rd rows of
Fig.4.17.! The ideal LP-filter is more conveniently defined in frequency domain as:

H(f) =
{

1 |f | < fc

0 |f | > fc
(4.223)

where fc is the cut-off frequency. As shown in Eq.3.143, the impulse response
of the ideal filter is a sinc function:

h(t) =
sin(2πfct)

πt
= 2fc sinc(2fct) (4.224)

After filtering all frequency components outside the passing band are totally
removed while those within the passing band are preserved. The ideal filter
and its effect are shown respectively in the 4th and 5th rows of Fig.4.17. Note
that the ideal LP-filter causes some strong ringing artifacts in the filtered
signal, due to the convolution of the signal in time domain with the impulse
response function of the filter, a sinc function h(t) = F−1[H(f)].! The nth-order Butterworth LP-filter is defined as:

H(f) =
1√

1 + (f/fc)2n
=






1 f = 0
1/
√

2 f = fc

0 f = ∞
(4.225)

where fc is the cut-off frequency at which H(f) = H(fc) = 0.5, and n is a
positive integer representing the order of the filter. By adjusting the order of
the filter one can control the shape of the filter and thereby making a proper
tradeoff between the rigging effects and how accurately the passing band can
be specified. Specifically, as shown in Fig.4.16, when the order is low, the shape
of the filter is smooth (low frequency accuracy) but with little ringing; when
the order is high, the filter becomes sharper (higher frequency accuracy) but
much stronger ringing effect will be caused. When n →∞, the Butterworth
filter becomes an ideal filter. The Butterworth filter and its effect are shown
respectively in the 6th and 7th rows of Fig.4.17.! The Gaussian filter can be defined in either frequency or time domain as
(3.148):

H(f) = e−π(f/fc)2 , or h(t) =
1
c
e−π(fct)2 (4.226)

Here the width of the passing band can be controlled by the cut-off fre-
quency fc. Obviously the Gaussian filter is smooth in both time and frequency
domains without any ringing effect. The Butterworth filter and its effect are
shown respectively in the 8th and 9th rows of Fig.4.17.
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Figure 4.16 Butterworth filters of different orders in both time (left) and frequency
right) domains

The plot in the last row compares all five filters of different orders.

Inspecting the filtered signal in time domain, we see that as expected, the sharp
corners of the square impulses corresponding to the high frequency components
are smoothed by all four low-pass filters. However, these filters each have different
filtering effects. Most noticeably, the ringing effect caused by the ideal filter (also
high order Butterworth filters) is obviously some undesirable artifact. To prevent
such artifact, a filter that is smooth in frequency domain should be used, such
as low-order Butterworth, Gaussian and other smooth filters based on cosine
functions (e.g., Hamming and Hann filters).

Based on LP-filters, other types of high-pass, band-pass and band-stop filters
can also be obtained. Specifically, if Hlp(f) is a LP-filter with Hlp(0) = 1, then
a HP-filter can be obtained as:

Hhp(f) = 1−Hlp(f) (4.227)

Also a band-pass filter can be obtained as the difference between two LP-filters
Hlp1(f) and Hlp2(f) with their corresponding cut-off frequencies satisfying f1 >
f2:

Hbp(f) = Hlp1(f)−Hlp2(f) (4.228)

Finally, a band-stop filter is obtained simply as

Hbs(f) = 1−Hbp(f) (4.229)

Examples of such filters based on a 4th order Butterworth LP-filters are shown
in Fig.4.18.
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Figure 4.17 1-D low-pass filters in both time (left) and frequency (right) domains

A signal x(t), a square impulse train, and its spectrum X(f) are shown in the top
row. Following that there are four pairs of plots showing each of the four types
of filters (moving average, ideal, Butterworth and Gaussian) and their filtering
effects. The left column shows in time domain the impulse response function
h(t) of each of the filters and the filtered time signal y(t) = h(t) ∗ x(t), while the
right column shows in frequency domain the corresponding frequency response
function H(f) of the filter and the filtered signal spectrum Y (f) = H(f)X(f).

Example 4.11: The annual precipitation in Los Angeles area in the N = 126
years from 1878 to 2003 is considered as a discrete time signal x[m], and its
spectrum X [n] can be obtained by the DFT, as show in the top row of Fig.4.19.
Here the average of the data is removed, i.e., the DC component in the middle
of the spectrum is zero, so that other frequency components with much smaller
magnitudes can be better seen.
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Figure 4.18 The frequency response functions H(f) for the LP, HP, BP and BS filters
in frequency domain (right) and their corresponding impulse response functions h(t)
in time domain (right)

Also shown in the figure are four Butterworth filters including a LP-filter
(2nd row), and three BP-filters with different passing bands (4th, 6th and 8th
rows), and the signals filtered by the corresponding filter (3rd, 5th, 7th and 9th
rows). For each filter, its frequency response function H(f) and the filtered signal
spectrum Y (f) = H(f)X(f) are shown on the right, and its impulse response
function h(f) and the filtered time signal y(t) = h(t) ∗ x(t) are shown on the left.

A filter bank can be formed by these four filters. Due to the specific arrange-
ment of the passing bands and the bandwidths of these filters, the filter bank is
an all-pass (AP) filter, in the sense that component filters Hk(f) (k = 1, · · · , 4)
add up approximately to a constant 1 through out all frequencies, i.e., the com-
bined outputs of the filter bank contain approximately all information in the
signal. These result is further confirmed by the last (10th) row in Fig.4.19 where
the filtered signals in both time and frequency domain are added up and com-
pared to the original signal. As expected, the difference between the sum of the
filtered signal and the original one is negligible, i.e., the filtered signals, when
combined, contain all information in the signal.

Example 4.12: A two-dimensional shape in an image can be described by
all the pixels along its boundary, in terms of there coordinates (x[m], y[m]),
(m = 1, · · · , N), where N is the total number of pixels along the boundary. The
coordinates x[m] and y[m] can be treated, respectively, as the real and imag-
inary components of a complex number z[m] = x[m] + j y[m], and the Fourier
transform can be carried out to obtain the Fourier coefficients, called the Fourier
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Figure 4.19 Annual precipitation from 1878 to 2003 (left) and its spectrum (right)

Here only the magnitude of each spectrum is shown while the phase is neglected.

descriptors in the field of image process: of the shape:

Z[n] =
1√
N

N∑

m=1

z[m]e−j2πmn/N , n = 1, · · · , N (4.230)

Based on these coefficients Z[n], the original shape can be reconstructed by
inverse Fourier transform:

z[m] =
1√
N

N∑

n=1

Z[n]ej2πmn/N , m = 1, · · · , N (4.231)
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The inverse Fourier transform using all N coefficients will perfectly reconstruct
the original one. While this result is not surprising at all, it is interesting to
observe the reconstructed shape using only the first M < N low frequency com-
ponents. Note that since the Fourier transform is a complex transform with
both negative frequencies as well as positive ones in the frequency spectrum,
the inverse transform with M components needs to contain both positive and
negative terms symmetric to the DC component in the middle:

ẑ[m] =
M/2∑

k=−M/2

Z[k]ej2πmk/N (m = 1, · · · , N) (4.232)

As an example, the shape of Gumby as shown in Fig.4.20 is represented by
a chain of N = 1, 157 pixels along the boundary, in terms of their coordinates
{x[m], y[m]} (m = 0, 1, · · · , N − 1 = 1156), which are then Fourier transformed
to obtain the same number of Fourier coefficients as the Fourier descriptors of
the Gumby figure.

Figure 4.20 Gumby (left) and its boundary pixels (right)

The two different representations of the shape, z[m] in spatial domain and
Z[n] in frequency domain are plotted in Fig. 4.21. Note that as the magnitudes
of a small number of complex coefficients for to DC and some low frequency
components are much larger than the rest of the coefficients, a mapping y = x0.5

is applied to the absolute value of the magnitudes of all DFT coefficients, so
that those coefficients with small magnitudes do not appear to be zero in the
plots. The original shape of Gumby can be reconstructed by the inverse DFT
using M ≤ N coefficients. As the DFT is a complex transform with negative as
well as positive frequency components in the spectrum, the inverse DFT needs
to contain both positive and negative terms on both sides of the DC component
in the middle:

ẑ[m] =
M/2∑

k=−M/2

Z[k]ej2πmk/N (m = 1, · · · , N) (4.233)

The reconstructed shapes are shown in Fig. 4.22. The first row shows the recon-
structions based on the first 1 to 4 low frequency components, while the second
row shows the reconstructions using the first 5 to 8 components. Finally the last
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Figure 4.21 The vertical and horizontal components of 2-D shape (top) and its Fourier
descriptors (bottom)

row shows reconstructions using the first 10, 20, 30 and all N=1,257 coefficients,
respectively. In particular, it is interesting to compare the last figure, perfectly
reconstructed using all N=1157 frequency components with the second to the
last, reconstructed using only 30 components. They look almost identical, except
the last one may have some very minor details of the shape, such as the sharper
corners. This result shows that the remaining 1127 frequency components contain
little information, and can therefore be ignored (treated as zero) in the inverse
DFT with little effect in terms of the quality of the reconstruction. Moreover, it
is all likely that some high frequency components may contain random noise. In
this sense, the reconstruction without using many of the higher frequency com-
ponents is actually a low-pass filtering process desirable for removing unwanted
noise.

Some observations can be made based on the results discussed above:! Fourier transform tends to compact signal energy
The values of a few coefficients representing mostly low frequency components
have significantly higher values than the rest of the coefficients, indicating
that most of the energy contained in a signal is concentrated around the low
frequency region. This phenomenon is common in various applications, due
to the fact that in most physical signals relatively slow changes over time or
space are much more significant compared to rapid and sudden changes. In
other words, most natural signals are continuous and smooth.! Fourier transform tends to decorrelate a signal
The plots of the x and y-coordinates in space are much smoother compared to
the real and imaginary parts of the Fourier coefficients. Given a signal value
x[m] at position m, one can estimate the value x[m + 1] at the next position
with reasonable confidence. However, the same thing can not be said in the
spatial frequency domain, as the magnitudes of the DFT coefficients seem
random. Given X [n], one has little idea about the next value X [n + 1]. In
other words, the signal is highly correlated in spatial domain but significantly
decorrelated in frequency domain after the Fourier transform.
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Figure 4.22 Reconstruction of a 2-D shape

! As most of the signal energy is concentrated in a small number of low fre-
quency components, little error will result if only M < N of the coefficients
corresponding to low frequencies are used in the inverse DFT for the recon-
struction of the figure in space. Such a low-pass filtering may also have the
effect of removing unwanted high frequency noise.

This example illustrates the general applications of the Fourier transform,
namely, information extraction and data compression. Useful features contained
in a signal, such as the basic shape of a figure in an image, may be extracted
by keeping a small number of the Fourier coefficients with most of the others
ignored. By doing so, we could process, store and transmit only a small portion
of the data without losing much information (30 out of 1,157 coefficients used in
this example is a impressive compression ratio).

Moreover, the observations made here for the Fourier transform are also valid
in general for all other orthogonal transforms, as they will appear repetitively in
our future discussions in the following chapters.

4.4.2 2-D Filtering and Compression

In the spatial frequency domain, the discrete spectrum F [k, l] of a 2-D spatial
signal x[m, n] (e.g., an image) can be easily manipulated according to the specific
application. Most commonly a filter function H [k, l] is used to modify the discrete
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spectrum:

F ′[k, l] = H [k, l]F [k.l], (k, l = 0, · · · , N − 1) (4.234)

and the filtered spectrum can then be inverse transformed back to spatial domain
to get the filtered signal:

x′[m, n] = F−1[F ′[k, l]] (4.235)

Typical filters include various high, band, and low pass or stop filters. We will
only consider a few commonly used filters below, which suppress the frequency
components around the corners and edges of the array for the 2-D discrete spec-
trum, while keeping the frequency components around the central area of the
array unchanged. Such filters can be used for either low-pass or high-pass fil-
tering, depending on whether the discrete spectrum is centralized with low fre-
quency components in the middle or not.

We assume the 2-D signal is an N by N array x[m, n] and so is its 2-D discrete
spectrum X [k, l]. We define dk = k −N/2, dl = l −N/2 as the distances of a
point [k, l] of the 2-D spectrum to the center (N/2, N/2) in vertical and horizontal
directions, respectively. The spatial frequency represented by a coefficient F [k, l]
is
√

k2 + l2/N proportional to the distance
√

d2
k + d2

l . Here we consider some
typical 2-D filters.! Ideal filter

Hideal[k, l] =
{

1
√

d2
k + d2

l < D0

0 otherwise
(4.236)

where 0 < D0 < N/2 corresponds to a cut-off frequency. Ideal filter completely
removes any frequency components outside the circle determined by the cut-
off frequency.! Gaussian low-pass filter

Hgauss[k, l] = exp[−a(d2
k + d2

l )/D2
0] (4.237)

where D0 is the cut-off frequency at which (d2
k + d2

l = D2
0) the magnitude is

attenuated to exp(−a), and a and c are two parameters.! Butterworth filter

Hbutterworth[k, l] =
1

1 + ((d2
k + d2

l )/D2
0)n

(4.238)

In particular, when dk = dl = 0, H = 1, when d2
k + d2

l = D2
0, H = 0.5. Butter-

worth filter is also a smooth low-pass filter with a parameter n. When n →∞,
the Butterworth filter becomes an ideal filter.! Hamming filter

Hhamming =
{

0.5(1 + cos(π
√

u2 + v2/D0)) 0 <
√

u2 + v2 < D0

0 otherwise
(4.239)
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These filters can be represented in both spatial and frequency domains, as shown
in Fig.4.23. When in frequency domain the spectrum of a 2-D signal is multiplied
by the filter (left in the figure), correspondingly in time domain the 2-D signal
is convolved with the inverse Fourier transform of the filter (right in the figure).

As these filters are all central symmetric (with respect to the center at
(N/2, N/2), when both the real and imaginary parts of the signal spectrum
are identically multiplied by the filter, the symmetry property of the spectrum
is not changed. If the 2-D signal is real, the inverse transform of the filtered
spectrum is guaranteed to be also real.

Whether these filters H [k, l] are low-pass or high-pass filters depends on
whether or not the discrete 2-D spectrum is centralized with DC component
in the center. If so, the low frequency components around the center (N/2, N/2)
will be kept, while high frequency components farther away from the center will
be reduced. But if the spectrum is not centralized, the high frequency compo-
nents will be around the middle region and therefore kept, the filters become
high-pass. Alternatively, corresponding to each filter Hlp, another filter can be
obtained by

Hhp = 1−Hlp (4.240)

which will turn a low-pass filter to high pass, and vice versa.

Example 4.13: We first consider the 2-D Fourier transform of an image, a typical
2-D signal, as show in Fig.4.24. An image of a panda (left) is treated as the real
part of a 2-D signal and the imaginary part is set to zero, and then the even
real part (middle) and odd imaginary part (right) of its Fourier spectrum are
obtained. As the signal energy is in general always highly concentrated in a small
number of low frequency components around DC, which show up as a bright spot
in the center area of the spectrum image, while the rest of the image looks dark.
In order to visualize other frequency components with small magnitudes away
from the center, the pixel values of the image is transformed by a nonlinear
function y = xα, where α is a fraction such as 0.2, 0.3, etc. so that the low pixel
values representing the frequency components with low magnitudes are relatively
enhanced and become visible in the image.

Alternatively, the spectrum can also be represented in terms of its magnitude
and phase, as shown in Fig.4.25. The bottom row shows the magnitude and
phase of the spectrum of another image of cat. Both images can be perfectly
reconstructed by the inverse Fourier transform based on the real and imaginary
parts, or equivalently, the magnitude and phase of its spectrum.

While it is obvious that the real and imaginary parts of the spectrum are
equally important in terms of the amount of signal information they each carry,
are the magnitude and phase components of the frequency components also
equally important? To answer this question, two images are reconstructed based
on the magnitude of the spectrum of one image but the phase of the other, the
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Figure 4.23 2-D filters in both spatial and frequency domains

results are shown on the right in Fig.4.25. It is obvious that the phases play a
more significant and dominant role than the magnitudes, as the reconstructed
image always looks similar to whichever image whose phase is used in the recon-
struction.

Based on this simple observation, we see that during the filtering process in
frequency domain, the real Re[X ] and imaginary Im[X ] parts of the spectrum
need to be treated identically so that the phase angle φ = tan−1 Im[X ]/Re[X ] of
each frequency component remains the same after filtering, so that the relative
positions of different frequency components also remain the same.

Example 4.14: In this example we illustrate the effect of the Fourier filtering an
image shown in the previous example in Fig. 4.24. Different types of filtering of
this image can be carried out in the frequency domain. First, the effects of ideal
filtering are shown in Fig. 4.26, including the filter (left), and the two resulting
images after low-pass (middle) and high-pass (right) filtering. The top row shows
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Figure 4.24 An image (left) and its 2-D Fourier transform

Figure 4.25 Magnitude and phase of Fourier spectra

Given the magnitude and phase components (middle two) of the spectra of two
images, two images are reconstructed (right) based on the phase of one but the
magnitude of the other (phase of panda but magnitude of cat on top, phase of
cat but magnitude of panda at the bottom).

the spectrum in frequency domain while the bottom row shows the corresponding
image in spatial domain. In the case of ideal low-pass filtering, all frequency com-
ponents are suppressed to zero except those low frequency components inside the
circle corresponding to a cut-off frequency, which remain unchanged. Inversely, in
the case of high-pass filtering, all low frequency components inside the circle are
suppressed to zero while other components outside the circle remain unchanged

Corresponding to such filtering in frequency domain shown in the top row,
the original image in spatial domain is convolved with a 2-D sinc function, the
inverse DFT of the ideal low-pass filter (Eq.3.211), as shown in the bottom row.
Note that the resulting low-pass and high-pass filtered images have some obvious
ringing effect, due to the shape of the sinc function.

To avoid this artifacts caused by the sharp edge of the ideal low-pass filter,
we can instead use a Butterworth filter without sharp edges, shown in Fig. 4.27,
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so that the ringing effect in spatial domain can be significantly reduced. As seen
in the bottom row of the figure, the low-pass and high-pass filtered images no
longer suffer from the artifacts seen before in Fig. 4.26.

Moreover, in 2-D filtering we can also modify the coefficients for different
frequency components in terms of their spatial directions as well as their spatial
frequencies. For example, in Fig. 4.28, the 2-D spectrum of the image of panda
is low-pass filtered in four different directions: N-S, NW-SE, E-W, and NE-SW
(top row). In the corresponding images reconstructed by the inverse transform
of each directionally low-passed spectrum (bottom row), the image features in
the orientation favored by the directional filtering are emphasized.

Figure 4.26 Ideal filtering (from left to right, ideal filter, low-pass, high-pass)

Example 4.15: The simple example shown in Fig. 4.29 illustrates why the Fourier
transform can also be used for data compression. The image of panda and its
2-D Fourier spectrum are shown in the lower and upper left panels, respectively.
Then 80% of the DFT coefficients (corresponding mostly to some high frequency
components) with magnitudes less than a certain threshold value were surprised
to zero as shown in the upper right panel (black in the image). The image is
then reconstructed by the inverse transform based only on the remaining 20%
of the DFT coefficients but containing over 99% of the signal energy. As can be
seen in the lower right panel, the reconstructed image looks very much the same
as the original one except some very fine details (e.g., the fur on the left arm)
corresponding to those high frequency components which were suppressed.
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Figure 4.27 Butterworth filtering (from left to right, ideal filter, low-pass, high-pass)

Figure 4.28 Directional low-pass filtering

Why can we throw away 80% of the coefficients but still keep over 99% of the
energy in frequency domain, while it is highly unlikely for us to do so in spa-
tial domain? This is obviously due to the two general properties of the Fourier
transform (as well as all orthogonal transforms): (a) decorrelation of signal com-
ponents, and (b) compaction of signal energy. Of course this is an over-simplified
example only to illustrate the basic ideas in transform based data compression.
In practice, the compression process also includes many other components such
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as the quantization and encoding of frequency components. Interested reader can
do some further reading about image compression standards, such as JPEG.

Figure 4.29 Image Compression based on DFT

An image (lower left) and its 2-D DFT spectrum (upper left) and the recon-
structed image (lower right) based on 20% of its DFT coefficients containing
99% of the total energy (upper right).



5 The Laplace and Z Transforms

The Laplace and Z transforms are the natural generalization of the continuous
and discrete-time Fourier transforms, respectively, and both find a wide variety
of applications in many fields of science and engineering in general, and in signal
processing and system analysis/design in particular. Due to some of its most
favorable properties, such as the conversion of ordinary differential and differ-
ence equations into easily solvable algebraic equations, a problem presented in
time domain can be much more conveniently tackled in s-domain or z-domain.
While different forms of the Fourier transform are used mostly for continuous and
discrete signal processing and filtering, the Laplace and Z-transforms are par-
ticularly useful for the analysis and design of various linear and time-invariant
(LTI) systems.

5.1 The Laplace Transform

5.1.1 From Fourier Transform to Laplace Transform

The Laplace transform of a signal x(t) can be considered as the generalization
of the continuous-time Fourier transform (CTFT) of the signal:

F [x(t)] =
∫ ∞

−∞
x(t)e−jωtdt = X(jω) (5.1)

Here we adopt the notation X(jω) for the CTFT spectrum, instead of X(f)
or X(ω) used previously, for some reason which will become clear later. The
above transform is based on the underlying assumption that the signal x(t) is
square integrable so that the integral converges and the spectrum exists. How-
ever, this assumption is not valid for signals such as x(t) = t, x(t) = x2, and
x(t) = eat, all of which grow without a bound when |t|→∞ and are not square
integrable. In such cases, we could still consider the Fourier transform of a mod-
ified version of the signal x′(t) = x(t)e−σt, where e−σt is an exponential factor
with a real parameter σ, which can force the given signal x(t) to decay exponen-
tially for properly chosen value of σ (either positive or negative). For example,
x(t) = eatu(t) (a > 0) does not converge when t→∞, therefore its Fourier spec-

250
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trum does not exist. However, if we choose Re[s] = σ > a, the modified version
e−(σ−a)tu(t) will converge as t→∞.

In general, the Fourier transform of the modified signal is:

F [x′(t)] =
∫ ∞

−∞
x(t)e−σte−jωtdt =

∫ ∞

−∞
x(t)e−(σ+jω)tdt =

∫ ∞

−∞
x(t)e−stdt (5.2)

where s is a complex variable defined as s = σ + jω. If the integral above con-
verges, it results in a complex function X(s), which is called the bilateral Laplace
transform of x(t), formally defined as:

X(s) = L[x(t)] =
∫ ∞

−∞
x(t)φ(t, s)dt =

∫ ∞

−∞
x(t)e−stdt (5.3)

Same as the continuous-time Fourier transform, the Laplace transform can also
be considered as an integral transform with a kernel function:

φ(t, s) = e−st = e−(σ+jω)t = e−σte−jωt (5.4)

which is a modified version of the kernel function φ(t, f) = ej2πft for the Fourier
transform. However, different from the parameter f for frequency in the Fourier
kernel function, the parameter s = σ + jω in the Laplace kernel is complex with
real and imaginary parts Re[s] = σ and Im[s] = ω, and the transform X(s) is
a complex function defined in a 2-D complex plane, called s-plane, represented
by its Cartesian coordinates of σ for the real (horizontal) axis and jω for the
imaginary (vertical) axis.

The Laplace transform X(s) exists only inside a certain region of the s-plane,
called the region of convergence (ROC), composed of all s values that guarantee
the convergence of the integral in Eq. 5.3. Due to the introduction of the expo-
nential decay factor e−σt, we can properly choose the parameter σ so that the
Laplace transform can be applied to a broader class of signals than the Fourier
transform.

If the imaginary axis s = jω (corresponding to Re[s] = σ = 0) is inside the
ROC, then we can evaluate the 2-D function X(s) along the imaginary axis with
respect to ω from ω = −∞ to ω =∞ to obtain the Fourier transform X(jω) of
x(t). We see that the 1-D Fourier spectrum of the signal can be found as the cross
section of the 2-D complex function X(s) = X(σ + jω) along the imaginary axis
s = jω. In other words, the continuous-time Fourier transform is just a special
case of the Laplace transform when σ = 0 and s = jω:

F [x(t)] = L[x(t)]
∣∣
s=jω

= X(s)
∣∣
s=jω

= X(jω) (5.5)

This is the reason why sometimes the Fourier spectrum is also denoted by X(jω).
Given the Laplace transform X(s) = L[x(t)], the time signal x(t) can be

obtained by the inverse Laplace transform, which can be derived from the cor-
responding Fourier transform:

L[x(t)] = X(s) = X(σ + jω) =
∫ ∞

−∞
x(t)e−(σ+jω)tdt = F [x(t)e−σt] (5.6)
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Taking the inverse Fourier transform of the above, we get

x(t)e−σt = F−1[X(σ + jω)] =
1
2π

∫ ∞

−∞
X(σ + jω)ejωtdω (5.7)

Multiplying both sides by eσt, we get:

x(t) =
1
2π

∫ ∞

−∞
X(σ + jω)e(σ+jω)tdω (5.8)

To further represent this inverse transform in terms of s (instead of ω), we note

ds = d(σ + jω) = j dω, i.e., dω = ds/j (5.9)

The integral over −∞ < ω < ∞ with respect to ω corresponds to the integral
with respect to s over σ − j∞ < s < σ + j∞:

x(t) = L−1[X(s)] =
1

j2π

∫ σ+j∞

σ−j∞
X(s)estds (5.10)

Now we get the forward and inverse Laplace transform pair:

X(s) = L[x(t)] =
∫ ∞

−∞
x(t)e−stdt

x(t) = L−1[X(s)] =
1

j2π

∫ σ+j∞

σ−j∞
X(s)estds (5.11)

which can also be more concisely represented as

x(t) L←→ X(s) (5.12)

In practice, we hardly need to carry out the integral in the inverse transform with
respective to the complex variable s, as the Laplace transform pairs of most of
the signals of interest can be obtained in some other ways and made available in
table form.

As we will see later, in some applications the Laplace transform is a rational
function as a ratio of two polynomials:

X(s) =
N(s)
D(s)

=
∑m

k=0 bksk

∑n
k=0 aksk

=
bm

an

∏m
k=1(s− zk)∏n
k=1(s− pk)

(5.13)

where the roots zk, (k = 1, 2, · · · , m) of the numerator polynomial N(s) of order
m are called the zeros of X(s), and the roots pk, (k = 1, 2, · · · , n) of the denom-
inator polynomial D(s) of order n are called the poles of X(s). The last equal
sign in the equation above is due to the fundamental theorem of algebra, which
states that an nth order polynomial has n roots (some of which may be repeated
with multiplicity greater than 1). Obviously we have:

X(zk) = 0, and X(pk) = ∞ (5.14)

Moreover, if n > m, then X(∞) = 0, i.e., z =∞ is a zero. On the other hand,
if m > n, then X(∞) = ∞, i.e, z = ∞ is a pole. In general, we always assume
m < n, as otherwise we can carry out the long division for N(s)/D(s) to expand
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X(s) into multiple terms so that m < n is true for each term. The locations of the
zeros and poles of X(s) in the s-plane is of great importance as they characterize
some most essential properties of a signal x(t), such as whether it is right or
left-sided, whether it grows or decays over time, as to be discussed later.

5.1.2 The Region of Convergence

The region of convergence plays an important role in the Laplace transform. A
Laplace transform X(s) always needs to be associated with the corresponding
ROC, without which the inverse transform x(t) = L−1[X(s)] cannot be mean-
ingfully carried out. This point can be best illustrated in the following example.

Example 5.1:

1. A right-sided signal x(t) = e−atu(t):

X(s) =
∫ ∞

0
e−ate−stdt =

∫ ∞

0
e−ate−(σ+jω)tdt =

∫ ∞

0
e−(a+σ)te−jωtdt (5.15)

where a is a real constant. For this integral to converge, it is necessary to have
a + σ > 0, i.e. the ROC is Re[s] = σ > −a, inside which the above becomes:

X(s) =
1

−(a + σ + jω)
e−(a+σ+jω)t

∣∣∣∣
∞

0

=
1

(σ + a) + jω
=

1
s + a

(5.16)

In particular, if a = 0, x(t) = u(t) and we have

U(s) = L[u(t)] =
1
s
, σ > 0 (5.17)

If we let σ → 0, then U(s) is evaluated along the imaginary axis s = jω and
becomes U(jω) = 1/jω, which is seemingly the Fourier transform of u(t).
However this result is actually invalid, as σ = 0 is not inside the ROC R[s] > 0.
Comparing this result with the real Fourier transform of u(t) in Eq.3.65:

F [u(t)] =
1
2
δ(f) +

1
jω

(5.18)

we see that an extra term δ(f)/2 in the Fourier spectrum which reflects the
fact that the integral is only marginally convergent when s = jω.

2. A left-sided signal x(t) = −e−atu(−t):

X(s) = −
∫ 0

−∞
e−ate−stdt = −

∫ 0

−∞
e−(a+σ+jω)tdt (5.19)

where a is a real constant. For this integral to converge, it is necessary that
a + σ < 0, i.e., the ROC is Re[s] = σ < −a, inside which the above becomes:

X(s) =
1

a + σ + jω
e−(a+σ+jω)t

∣∣0
−∞ =

1
a + σ + jω

=
1

s + a
, σ < −a

(5.20)
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When a = 0, x(t) = −u(−t) we have

L[−u(−t)] =
1
s
, σ < 0 (5.21)

We see that the Laplace transforms of two different signals e−atu(t) and
−e−atu(−t) are identical, but their corresponding ROCs are different.

3. A two-sided signal x(t) = e−a|t| = e−atu(t) + eatu(−t):
As the Laplace transform is linear, the transform of this signal is the sum of
the transforms of the two individual terms. According to the results in the
previous two cases, we get:

X(s) =
1

s + a
− 1

s− a
=

−2a

s2 − a2
, σ > −a, σ < a (5.22)

provided the intersection of the two individual ROCs is non-empty, i.e., −a <
σ < a, which is possible only if a > 0, i.e., x(t) decays when |t|→∞. However,
if a < 0, the intersection of the two ROCs is an empty set, and the Laplace
transform does not exist, reflecting the fact that x(t) grows without bound
when |t|→∞.

Based on the examples above we summarize a set of properties of the ROC:! If a signal x(t) of finite duration is absolutely integrable then its transform
X(s) exists for any s, i.e., its ROC is the entire s-plane.! The ROC does not contain any poles because by definition X(s) does not
exist at any pole.! Two different signals may have identical transform but different ROCs. The
inverse transform can be carried out only if an associated ROC is also specified.! Only the real part Re[s] = σ of s determines the convergence of the integral in
the Laplace transform and thereby the ROC. The imaginary part Im[s] has
no effect on the convergence. Consequently the ROC is always bounded by
two vertical lines parallel to the imaginary axis s = jω, corresponding to two
poles p1 and p2 with Re[p1] < Re[p2]. It is possible that Re[p1] = −∞ and/or
Re[p2] = ∞.! The ROC of a right-sided signal is the right-sided half plane to the right of the
rightmost pole; The ROC of the transform of a left-sided signal is a left-sided
half plane to the left of the leftmost pole. If a signal is two-sided, its ROC
is the intersection of the two ROCs corresponding to its two one-sided parts,
which can be either a vertical strip or an empty set.! The Fourier transform X(jω) of a signal x(t) exists if the ROC of the corre-
sponding Laplace transform X(s) contains the imaginary axis Re[s] = 0, i.e.,
s = jω.

The zeros and poles of the Laplace transform X(s) = L[x(t)] of a signal dictate
the most essential properties such as whether it is right or left-sided, whether it
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grows or decays over time. Moreover, the zeros and poles of the transfer function
H(s) = L[h(t)] of an LTI system dictate its stability and filtering effects. All
such properties and behaviors can be qualitatively characterized based on the
locations of the zeros and poles of in the s-plane, as we will see in the later
discussions.

5.1.3 Properties of the Laplace Transform

The Laplace transform has a set of properties most of which are in parallel
with those of the Fourier transform. The proofs of most of these properties
are ommitted as they are similar to that of their counterparts in the Fourier
transform. However, here we need to pay special attention to the ROCs. In the
following, we always assume:

L[x(t)] = X(s), L[y(t)] = Y (s) (5.23)

with ROCs Rx and Ry, respectively.! Linearity

L[ax(t) + by(t)] = aX(s) + bY (s), ROC ⊇ (Rx ∩Ry) (5.24)

It is obvious that the ROC of the linear combination of x(t) and y(t) should
be the intersection Rx ∩Ry of their individual ROCs in which both X(s)
and Y (s) exist. However, note that in some cases the ROC of the linear
combination may be larger than Rx ∩Ry. For example, L[u(t)] = 1/s and
L[u(t− τ)] = e−sτ/s have the same ROC Re[s] > 0, but their difference u(t)−
u(t− τ) has finite duration and the corresponding ROC is the entire s-plane.
Also when zero-pole cancellation occurs the ROC of the linear combination
may also be larger than Rx ∩Ry. For example, let

X(s) = L[x(t)] =
1

s + 1
, Re[s] > −1 (5.25)

and

Y (s) = L[y(t)] =
1

(s + 1)(s + 2)
, Re[s] > −1 (5.26)

then

L[x(t) − y(t)] =
1

s + 1
− 1

(s + 1)(s + 2)
=

s + 1
(s + 1)(s + 2)

=
1

s + 2
, Re[s] > −2

(5.27)! Time shifting

L[x(t − t0)] = e−t0sX(s), ROC = Rx (5.28)! Time reversal

L[x(−t)] = X(−s), ROC = −Rx (5.29)
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! s-Domain shifting

L[e−s0tx(t)] = X(s + s0), ROC = Rx + Re[s0] (5.30)

Note that the ROC is shifted by s0, i.e., it is shifted vertically by Im[s0] (with
no effect on ROC) and horizontally by Re[s0].! Time scaling

L[x(at)] =
1
|a|X(

s

a
), ROC =

Rx

a
(5.31)

Note that the ROC is horizontally scaled by 1/a, which could be either positive
(a > 0) or negative (a < 0) in which case both the function x(t) and the ROC
of its Laplace transform are horizontally flipped.! Conjugation

L[x∗(t)] = X∗(s∗), ROC = Rx (5.32)! Convolution

L[x(t) ∗ y(t)] = X(s)Y (s), ROC ⊇ (Rx ∩Ry) (5.33)

Note that the ROC of the convolution could be larger than the intersection
of Rx and Ry, due to the possible pole-zero cancellation caused by the con-
volution, similar to the linearity property. For example, assume

X(s) = L[x(t)] =
s + 1
s + 2

, Re[s] > −2 (5.34)

Y (s) = L[y(t)] =
s + 2
s + 1

, Re[s] > −1 (5.35)

then

L[x(t) ∗ y(t)] = X(s)Y (s) = 1 (5.36)

with an ROC of the entire s-plane.! Differentiation in time domain

L[
d

dt
x(t)] = sX(s), ROC ⊇ Rx (5.37)

This is an important property based on which the Laplace transform finds a
lot of applications in system analysis and design. This property can be proven
by differentiating the inverse Laplace transform:

d

dt
x(t) =

1
j2π

∫ σ+j∞

σ−j∞
X(s)

d

dt
estds =

1
j2π

∫ σ+j∞

σ−j∞
sX(s)estds (5.38)

Again, multiplying X(s) by s may cause pole-zero cancellation and there-
fore the resulting ROC may be larger than Rx. For example, let x(t) = u(t)
and X(s) = L[u(t)] = 1/s with ROC Re[s] > 0, then we have L[dx(t)/dt] =
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L[δ(t)] = sX(s) = 1, but its ROC is the entire s-plane. Repeating this prop-
erty we get:

L[
dn

dtn
x(t)] = snX(s) (5.39)

In particular, when x(t) = δ(t), we have

L[
dn

dtn
δ(t)] = sn, ROC = entire s-plane (5.40)! Differentiation in s-Domain

L[tx(t)] = − d

ds
X(s), ROC = Rx (5.41)

This can be proven by differentiating the Laplace transform:

d

ds
X(s) =

∫ ∞

−∞
x(t)

d

ds
e−stdt =

∫ ∞

−∞
(−t)x(t)e−stdt (5.42)

Repeat this process we get

L[tnx(t)] = (−1)n dn

dsn
X(s), ROC = Rx (5.43)! Integration in time domain

L[
∫ t

−∞
x(τ)dτ ] =

X(s)
s

, ROC ⊇ (Rx ∩ {Re[s] > 0}) (5.44)

This can be proven by realizing that

x(t) ∗ u(t) =
∫ ∞

−∞
x(τ)u(t − τ)dτ =

∫ t

−∞
x(τ)dτ (5.45)

and therefore by convolution property we have

L[x(t) ∗ u(t)] = X(s)
1
s

(5.46)

As the ROC of L[u(t)] = 1/s is the right half plane Re[s] > 0, the
ROC of X(s)/s is the intersection Rx ∩ {Re[s] > 0}, except when pole-
zero cancellation occurs. For example, when x(t) = dδ(t)/dt with X(s) = s,
L[
∫ t
−∞ x(τ)dτ ] = s/s = 1 with the ROC being the entire s-pane.

5.1.4 Laplace Transform of Typical Signals! δ(t), δ(t− τ)
L[δ(t)] =

∫ ∞

−∞
δ(t)e−stdt = e0 = 1, ROC: entire s plane (5.47)

Moreover, due to time shifting property, we have

L[δ(t− τ)] = e−sτ , ROC: entire s plane (5.48)
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As the Laplace integration converges for any s, the ROC is the entire s-plane.! u(t), t u(t), tn u(t)
Due to the property of time domain integration, we have

L[u(t)] = L
[∫ t

−∞
δ(τ)dτ

]
=

1
s
, Re[s] > 0 (5.49)

Applying the s-domain differentiation property to the above, we have

L[tu(t)] = − d

ds

[
1
s

]
=

1
s2

, Re[s] > 0 (5.50)

and in general

L[tn u(t)] =
n!

sn+1
, Re[s] > 0 (5.51)! e−at u(t), te−at u(t)

Applying the s-domain shifting property to

L[u(t)] =
1
s
, Re[s] > 0 (5.52)

we have

L[e−atu(t)] =
1

s + a
, Re[s] > −a (5.53)

Applying the same property to

L[tnu(t)] =
n!

sn+1
, Re[s] > 0 (5.54)

we have

L[tne−atu(t)] =
n!

(s + a)n+1
, Re[s] > −a (5.55)! e−jω0tu(t), sin(ω0t)u(t), cos(ω0t)u(t)

Letting a = ±jω0 in

L[e−atu(t)] =
1

s + a
, Re[s] > −Re[a] (5.56)

we get

L[e−jω0tu(t)] =
1

s + jω0
and L[ejω0tu(t)] =

1
s− jω0

Re[s] > 0 (5.57)

and therefore

L[cos(ω0t)u(t)] =
1
2
L[ejω0t + e−jω0t] =

1
2
[

1
s− jω0

+
1

s + jω0
] =

s

s2 + ω2
0

(5.58)
and

L[sin(ω0t)u(t)] =
1
2j

L[ejω0t − e−jω0t] =
1
2j

[
1

s− jω0
− 1

s + jω0
] =

ω0

s2 + ω2
0

(5.59)
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! t cos(ω0t)u(t), t sin(ω0t)u(t)
Letting a = ±jω0 in

L[te−atu(t)] =
1

(s + a)2
, Re[s] > −a (5.60)

we get

L[te−jω0tu(t)] =
1

(s + jω0)2
, L[tejω0tu(t)] =

1
(s− jω0)2

, Re[s] > −a

(5.61)
Based on these we have:

L[t cos(ω0t)u(t)] =
1
2
L[t (ejω0t + e−jω0t)] =

1
2
[

1
(s− jω0)2

+
1

(s + jω0)2
]

=
s2 − ω2

0

(s2 + ω2
0)2

(5.62)

and

L[t sin(ω0t)u(t)] =
1
2j

L[t (ejω0t − e−jω0t)] =
1
2j

[
1

(s− jω0)2
− 1

(s + jω0)2
]

=
2sω0

(s2 + ω2
0)2

(5.63)! e−atcos(ω0t)u(t), e−atsin(ω0t)u(t)
Applying s-domain shifting property to

L[cos(ω0t)u(t)] =
s

s2 + ω2
0

, and L[sin(ω0t)u(t)] =
ω0

s2 + ω2
0

(5.64)

we get, respectively

L[e−atcos(ω0t)u(t)] =
s + a

(s + a)2 + ω2
0

(5.65)

and

L[e−atsin(ω0t)u(t)] =
ω0

(s + a)2 + ω2
0

(5.66)

Below we give a few more examples:

Example 5.2: The Laplace transform of the following function

x(t) = [e−2t + etcos(3t)]u(t) = [e−2t +
1
2
e−(1−j3)t +

1
2
e−(1+j3)t]u(0) (5.67)
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can be found as

X(s) =
∫ ∞

0
[e−2t +

1
2
e−(1−j3)t +

1
2
e−(1+j3)t]e−stdt

=
∫ ∞

0
e−2te−stdt +

1
2

∫ ∞

0
e−(1−j3)te−stdt +

1
2

∫ ∞

0
e−(1+j3)te−stdt

=
1

s + 2
+

1/2
s + (1− j3)

+
1/2

s + (1 + j3)

Following the examples above, we see that the conditions for the three integrals
to converge are, respectively,

Re[s] > −2, Re[s] > −1, Re[s] > −1 (5.68)

i.e., the ROC corresponding to this transform X(s) is Re[s] > −1 that satisfies
all three conditions. This X(s) can be further written as a rational function, a
ratio of two polynomials:

X(s) =
1

s + 2
+

1/2
s + (1− j3)

+
1/2

s + (1 + j3)
=

2s2 + 5s + 12
(s2 + 2s + 10)(s + 2)

, Re[s] > −1

(5.69)

Example 5.3:

X(s) =
s2 − 3
s + 2

(5.70)

As the order of the numerator M = 2 is higher than that of the denominator
N = 1, we expand it into the following terms by partial fraction expansion:

X(s) =
s2 − 3
s + 2

= A + Bs +
C

s + 2
(5.71)

and get

s2 − 3 = (A + Bs)(s + 2) + C = Bs2 + (A + 2B)s + (2A + C) (5.72)

Equating the coefficients for terms sk (k = 0, 1, · · · , M) on both sides, we get

B = 1, A + 2B = 0, 2A + C = −3 (5.73)

Solving this equation system, we get coefficients

A = −2; B = 1, C = 1 (5.74)

and

X(s) = s− 2 +
1

s + 2
(5.75)

Alternatively, the same result can be obtained by carrying out a long division
(s2 − 3) ÷ (s + 2).
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Example 5.4: Let x(t) = u(−1)− u(1), then

X(s) =
∫ 1

−1
estdt =

1
s
(es − e−s) (5.76)

As X(s) = ∞ when s = ∞ or s = −∞, neither of these two s values is included
in the ROC. However, note that s = 0 is inside the ROC as X(0) = 2.

Example 5.5: Let x(t) be a two-sided function x(t) = e−a|t| = e−atu(t) +
eatu(−t) The transform of the first term is:

X1(s) =
∫ ∞

0
e−ate−stdt =

1
s + a

, Re[s] > −a (5.77)

The transform of the second term is:

X2(s) =
∫ 0

−∞
eate−stdt = − 1

s− a
, Re[s] < a (5.78)

The Laplace transform of the two components is:

X(s) = X1(s) + X2(s) =
1

s + a
− 1

s− a
=

−2a

s2 − a2
, −a < Re[s] < a (5.79)

Whether X(s) exists or not depends on a. If a > 0, i.e., x(t) decays exponentially
as |t|→∞, then the ROC is the strip between −a and a and X(s) exists. But if
a < 0, i.e., x(t) grows exponentially as |t|→∞, then the ROC is an empty set
and X(s) does not exist.

Example 5.6: Given the following Laplace transform, find the corresponding
function:

X(s) =
1

(s + 1)(s + 2)
=

1
s + 1

− 1
s + 2

(5.80)

Given the two poles p1 = −1 and p2 of the expression, there are three possible
associated ROCs:! The half plane to the right of the rightmost pole p2 = −1, with the corre-

sponding right-sided time function

x(t) = e−tu(t)− e−2tu(t) (5.81)! The half plane to the left of the leftmost pole p1 = −2, with the corresponding
left-sided time function

x(t) = −e−tu(−t) + e−2tu(−t) (5.82)
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! The vertical strip between the two poles −1 < Re[s] < −2, with the corre-
sponding two sided time function

x(t) = −e−tu(−t)− e−2tu(t) (5.83)

In particular, note that only the first ROC includes the jω-axis and the corre-
sponding time function has a Fourier transform. Fourier transform of the other
two functions do not exist.

5.1.5 Analysis of LTI Systems by Laplace Transform

The Laplace transform is a convenient tool for the analysis and design of con-
tinuous LTI systems whose output y(t) is the convolution of the input x(t) and
its impulse response function h(t):

y(t) = O[x(t)] = h(t) ∗ x(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ (5.84)

In particular, if the input is an impulse x(t) = δ(t), then the out is the impulse
response function:

y(t) = O[δ(t)] = h(t) ∗ δ(t) =
∫ ∞

−∞
h(τ)δ(t − τ)dτ = h(t) (5.85)

If the input is a complex exponential x(t) = est = eσ+jω , then the output can be
found to be

y(t) = O[est] =
∫ ∞

−∞
h(τ)es(t−τ)dτ = est

∫ ∞

−∞
h(τ)e−sτdτ = H(s)est (5.86)

where H(s) is the transfer function of the system, first defined in Eq.1.70 in
Chapter 1, which is actually the Laplace transform of the impulse response h(t)
of the system:

H(s) =
∫ ∞

−∞
h(t)e−stdt (5.87)

Note that Eq.5.86 is the eigenequation of any continuous LTI system, where
the transfer function H(s) is the eigenvalue, and the complex exponential input
x(t) = est is the corresponding eigenfunction. In particular, if we let σ = 0, i.e.,
s = jω, then the transfer function H(s) becomes the Fourier transform of the
impulse response h(t) of the system:

H(s)
∣∣
s=jω

= H(jω) =
∫ ∞

−∞
h(t)e−jωtdt = F [h(t)] (5.88)

This is the frequency response function of the LTI system first defined in Eq.3.217
of Chapter 3. If the input x(t) = ejω0t has a certain frequency ω0, the response
can be obtained by multiplying the input by the frequency response H(jω) eval-
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uated at ω = ω0:

y(t) = H(jω0)ejω0t (5.89)

Moreover, due to its convolution property of the Laplace transform, the con-
volution in Eq.5.84 can be converted to a multiplication in s-domain:

y(t) = h(t) ∗ x(t) L−→ Y (s) = H(s)X(s) (5.90)

Based on this relationship the transfer function H(s) can also be found in s-
domain as the ratio of the output Y (s) and input X(s):

H(s) =
Y (s)
X(s)

(5.91)

which can be used as an alternative definition of the transfer function of an LTI
system.

The ROC and poles of the transfer function H(s) of an LTI system dictate
the behaviors of system, such as its causality and stability.! Stability

Also as discussed in Chapter 1, an LTI system is stable if to any bounded
input |x(t)| < B its response y(t) is also bounded for all t, and its impulse
response function h(t) needs to be absolutely integrable (Eq.1.78):

∫ ∞

−∞

∣∣h(τ)
∣∣dτ < ∞ (5.92)

i.e., the frequency response function F [h(t)] = H(jω) = H(s)
∣∣
s=jω

exists. In
other words, an LTI system is stable if and only if the ROC of its transfer
function H(s) includes the imaginary axis s = jω.! Causality
As discussed in Chapter 1, an LTI system is causal if its impulse response h(t)
is a consequence of the impulse input δ(t), i.e., h(t) comes after δ(t):

h(t) = h(t)u(t) =
{

h(t) t ≥ 0
0 t < 0

(5.93)

and its output is (Eq.1.79):

y(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ =

∫ ∞

0
h(τ)x(t − τ)dτ (5.94)

We see that the ROC of H(s) is a right sided half plane. In particular, when
H(s) is rational, the system is causal if and only if its ROC is the right half
plane to the right of the rightmost pole, and the order of numerator is no
greater than that of the denominator so that s =∞ is not a pole (H(∞)
exists).

Combining the two properties above, we see that a causal LTI system with a
rational transfer function H(s) is stable if and only if all poles of H(s) are in the
left half of the s-plane, i.e., the real parts of all poles pk are negative: Re[pk] < 0.
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Example 5.7: The transfer function of an LTI is

H(s) =
1

a + s
(5.95)

As shown before, without specifying the ROC, this H(s) could be the Laplace
transform of one of the two possible impulse response functions:! If ROC is Re[s] > −a, the system h(t) = e−atu(t) is causal.

– If a < 0, i.e., imaginary axis Re[s] = 0 can be included in the ROC, the
system is stable;

– If a > 0, i.e., imaginary axis Re[s] = 0 cannot be included in the ROC,
system is unstable;! If ROC is Re[s] < −a, the system h(t) = −e−atu(−t) is anti-causal.

– If a < 0, i.e., imaginary axis Re[s] = 0 cannot be included in the ROC, the
system is unstable;

– If a > 0, i.e., imaginary axis Re[s] = 0 can be included in the ROC, system
is stable;

Example 5.8: The transfer function of an LTI is

H(s) =
esτ

s + 1
Re[s] > −1 (5.96)

Realizing that this is a time-shifted version of L[e−tu(t)] = 1/(s + 1), we can get
the corresponding impulse response

h(t) = e−(t+τ)u(t + τ) (5.97)

As this h(t) is not zero in time interval −τ < t < 0, the system is not causal,
although its ROC is a right half plane. This example serves as a counter example
that not all right half plane ROC corresponds to causal system, while all causal
systems’ ROCs are right half planes. However, if X(s) is rational, then the system
is causal if and only if its ROC is a right half plane.

Many LTI systems can be characterized by a linear constant-coefficient differ-
ential equation (LCCDE):

n∑

k=0

ak
dk

dtk
y(t) =

m∑

k=0

bk
dk

dtk
x(t) (5.98)

Taking the Laplace transform of this equation, we get an algebraic equation:

Y (s)[
n∑

k=0

aksk] = X(s)[
m∑

k=0

bksk] (5.99)
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The transfer function of such a system is rational:

H(s) =
Y (s)
X(s)

=
∑m

k=0 bksk

∑n
k=0 aksk

=
bm

an

∏m
k=0(s− zk)∏n
k=0(s− pk)

=
N(s)
D(s)

(5.100)

where zk, (k = 1, 2, · · · , m) are the roots of the numerator polynomial N(s) =
Y (s), and pk, (k = 1, 2, · · · , n) are the roots of the denominator polynomial
D(s) = X(s), they are also respectively the zeros and poles of H(s).

The output y(t) of the LTI system can be found by solving the differential
equation Eq.5.98. Alternatively, it can also be found first in s-domain as Y (s) =
H(s)X(s), and then in time domain by an inverse Laplace transform:

y(t) = L−1Y (s) = L−1[H(s)X(s)] (5.101)

Obviously this approach is more convenient and therefore preferred as it is car-
ried out algebraically without solving the original differential equation. This is
one of the main applications of the Laplace transform. However, note that y(t)
obtained this way is only the particular solution due to the input x(t), but the
homogeneous solution due to initial conditions y(k)(0) cannot be obtained as the
non-zero initial conditions are not represented by the bilateral Laplace trans-
form. This problem will be addressed by the unilateral Laplace transform to be
discussed later, by which the initial conditions will be taken into consideration.

The rational transfer function H(s) in Eq.5.100 can be converted to a sum-
mation by partial fraction expansion:

H(s) =
N(s)
D(s)

=
∑m

k=0 bksk

∑n
k=0 aksk

=
n∑

k=1

ck

s− pk
(5.102)

The impulse response function can be found by inverse transform (the LTI system
described by Eq.5.98 is causal):

h(t) = L−1[H(s)] = L−1

[
n∑

k=1

ck

s− pk

]
=

n∑

k=1

ckL−1

[
1

s− pk

]
=

n∑

k=1

ckepktu(t)

(5.103)
According to the fundamental theorem of algebra, if all coefficients ak of the
polynomial D(s) are real, its solutions p′ks are either real or complex conjugate
pairs, corresponding to the following system behaviors in time domain:! If at least one of the poles is on the right half s-plane, e.g., Re[pk] > 0, then

the corresponding term ckepktu(t) grows exponentially without bounds, and
the system is unstable. In other words, for the system to be stable, all poles
should be on the left half s-plane.! If all poles are on the left half s-plane, Re[pk] < 0 for all 1 < k < n, then all
terms in the summation above decay to zero exponentially so that h(t) is
absolutely integrable and the system is stable.! If the system has two complex conjugate poles p1,2 = σ ± jω, then we have:

ep1t + ep2t = eσ[ejωt + e−jωt] =
1
2
eσ cos(ωt) (5.104)
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Figure 5.1 Different pole locations and the corresponding waveforms in time domain

This is sinusoid with frequency ω, which either decays exponentially if σ < 0,
or grows exponentially if σ > 0, corresponding to either a stable or unsta-
ble system. When σ = 0, p1,2 are on the imaginary axis and the system is
marginally stable.! If 0 < Re[p2]9 Re[p1], then ep1t grows much more rapidly then ep2t, i.e., the
pole p1 farther away from the origin dominates the behavior of the system
more than the pole p2 which is closer. On the other hand, if Re[p2]9 Re[p1] <
0, then ep2t = e−|p2|t decays to zero much more rapidly then ep1t, i.e., the pole
p1 closer to the origin dominates the behavior of the system more than the
p2 which is farther away. Based on this observation, it may be possible to
estimate the behavior of the system based on only its dominant poles.

These different pole locations in s-plane and the corresponding waveforms in
time domain are further illustrated in Fig.5.1 and summarized in the table below:

Pole locations in s-plane Waveforms in time domain
1 single real pole: p > 0 exponential growth: h(t) = ept

2 complex conjugate poles: exponentially growing sinusoid:
p1,2 = σ ± jω (σ > 0) h(t) = cos(ωt)eσt

3 complex conjugate poles: sinusoid:
p1,2 = ±jω h(t) = cos(ωt)

4 complex conjugate poles: exponentially decaying sinusoid:
p1,2 = σ ± jω (σ < 0) h(t) = cos(ωt)e−|σ|t

5 single real pole: p < 0 exponential decay: h(t) = e−|p|t

An LTI system can be considered as a filter characterized by the magnitude
and phase of its frequency response function H(jω) = H(s)

∣∣
s=jω

. This filter can
also be determined based on the locations of the zeros and poles of its transfer
function H(s). The magnitude and phase of the frequency response function can
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be written as:

|H(jω)| =
∏m

k=1 |jω − zk|∏n
k=1 |jω − pk|

=
∏m

k=1 |uk|∏n
k=1 |vk|

$ H(jω) =
∑m

k=1
$ (jω − zk)∑n

k=1
$ (jω − pk)

=
∑m

k=1
$ uk∑n

k=1
$ vk

(5.105)

where each factor uk = jω − zk or vk = jω − pk is a vector in s-plane connecting
a point jω on the imaginary axis and each of the poles and zeros. Then the The
filtering effects can be qualitatively determined by observing how |H(jω)| and
$ H(jω) change when ω increase along the imaginary axis from 0 toward ∞.

In the following, we will consider two specific systems H(s) = N(s)/D(s)
where D(s) is either a first order (n = 1) or a second order (n = 2) polynomial.

5.1.6 First order system

In the transfer function H(s) of a first order LTI system, the denominator polyno-
mial D(s) has an order n = 1, and H(s) is conventionally written in the following
canonic form:

H(s) =
N(s)
D(s)

=
N(s)
s− p

=
N(s)

s + 1/τ
(5.106)

where p = −1/τ is the root of denominator D(s), and the pole of H(s), and τ
is the system parameter called the time constant. In practice, τ > 0 is always
positive and the pole p = −1/τ < 0 is on the left side of the s-plane, i.e., the
system is stable. Depending on the order m of the numerator N(s), the system
is expressed in either of the following two canonical forms:

1. m = 0: N(s) = 1/τ is a constant:

H(s) =
1/τ

s + 1/τ
=

1
sτ + 1

(5.107)

2. m = 1: N(s) = s:

H(s) =
s

s + 1/τ
=

sτ

sτ + 1
(5.108)

To illustrate the essential properties of the first order system, we reconsider the
RC circuit in Example 3.4 in Chapter 3. The input is the voltage x(t) = vin(t)
applied across R and C in series, and the output can be either the voltage vC(t)
across C or the voltage vR(t) across R. First, we let the output be y(t) = vC(t),
the system can be described by a differential equation:

RCẏ(t) + y(t) = x(t), i.e., ẏ(t) +
1
τ
y(t) =

1
τ

x(t) (5.109)
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where τ = RC is the time constant of the system. Now we solve this LCCDE by
taking the Laplace transform on both sides of this equation to get:

[
s +

1
τ

]
Y (s) =

1
τ

X(s), i.e., HC(s) =
Y (s)
X(s)

=
1/τ

s + 1/τ
(5.110)

We can also get the impulse response hR(t) when vR(t) is treated as output
based on Kirchhoff’s voltage law:

hR(t) = δ(t)− hC(t) (5.111)

Taking the Laplace transform on both sides, we get:

HR(s) = 1−HC(s) = 1− 1/τ

s + 1/τ
=

s

s + 1/τ
(5.112)

We now consider both the impulse and step responses as well as the filtering
effects of these first order systems.

1. Impulse response function:
Taking the inverse Laplace transform on both sides of Eqs.5.110 and 5.112,
we get:

hC(t) = L−1[HC(s)] =
1
τ

e−t/τu(t) (5.113)

and

hR(t) = L−1[HR(s)] = δ(t)− 1
τ

e−t/τu(t) (5.114)

2. Step response:
The response of this systems to a step input x(t) = u(t) or X(s) = 1/s can
also be found in s-domain as:

Y (s) = HC(s)X(s) =
1/τ

s(s + 1/τ)
=

1
s
− 1

s + 1/τ
(5.115)

Taking inverse transform we get the step response:

vC(t) = y(t) = (1− e−t/τ )u(t) (5.116)

The step response of the system when the voltage vR(t) across R is treated
as output can be obtained based on Kirchhoff’s voltage law:

vR(t) = u(t)− vC(t) = u(t)− (1− e−t/τ )u(t) = e−t/τu(t) (5.117)

The impulse and step response functions for the two first order systems are
shown in Fig.5.2.

3. First order systems as filters:
The filtering effects of the two first order systems are characterized by the mag-
nitudes and phases of their frequency response functions H(jω) = H(s)

∣∣
s=jω

:

|HC(jω)| =
∣∣∣∣

1/τ

jω + 1/τ

∣∣∣∣ =
1√

(ωτ)2 + 1
, $ HC(jω) = −$ (jω + 1/τ) = − tan−1 ωτ

(5.118)
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Figure 5.2 Impulse (left) and step (right) responses of first order systems

and

|HR(jω)| =
∣∣∣∣

jω

jω + 1/τ

∣∣∣∣ =
ωτ√

(ωτ)2 + 1
, $ HR(jω) = $ (jωτ)− $ (jωτ + 1) =

π

2
− tan−1(ωτ)

(5.119)
Both the linear and Bode plots of the two systems are given in Fig.5.3, where
the magnitudes of the two frequency response functions are plotted for τ =
0.01 (top) and τ = 0.1 (bottom), and in both linear scale (left) and Bode plots
for their magnitudes (middle) and phases (right) are also plotted. We see that
HC and HR respectively attenuate high and low frequencies, and are therefore
correspondingly low and high-pass filters.
The bandwidth ∆ω of the low-pass filter HC(jω) is defined as the interval
between zero frequency at which the output power reaches its peak value and
the cutoff frequency ωc at which the output power is half of the peak power.
As the output power is proportional to |HC(jω)|2 and HC(0) = 1, we have

|HC(jωc)|2

|HC(0)|2 =
1

(ωcτ)2 + 1
=

1
2

(5.120)

Solving for ωc, we get the cutoff frequency ωc = 1/τ . Equivalently we also have
|H(jωc)| = 1/

√
2 = 0.707 and Lm H(jωc) = 20 log10 |HC(jωc)| ≈ −3 dB.

The filtering effects can also be determined based on the locations of the zero
and pole of the system. For each point jω along the imaginary axis, we define
two vectors corresponding to the zero sz = 0 of HR(s) and the common pole
of both HC(s) and HR(s) as shown in Fig.5.4:

u = jω, v = jω + 1/τ (5.121)

Now the magnitudes of HC(jω) and HR(jω) can be expressed as:

|HC(jω)| = 1/τ |v|, |HR(jω)| = |u|/|v| (5.122)
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Figure 5.3 Filtering effects of first order systems

Figure 5.4 Qualitative determination of filtering behavior of first order systems

Based on the following two extreme cases:
– When ω = 0, |u| = 0 and |v| = 1/τ , we have HC(0) = 1 and HR(0) = 0;
– When ω = ∞, |v| = |u| = ∞, we have HC(j∞) = 0 and HR(j∞) = 1.
we conclude that HC(jω) and HR(jω) are low and highpass filters, respec-
tively.

5.1.7 Second order system

In the transfer function H(s) of a second order LTI system, the denominator
polynomial D(s) has an order n = 2, and H(s) is conventionally written in the
following canonic form:

H(s) =
N(s)
D(s)

=
N(s)

s2 + 2ζωns + ω2
n

=
N(s)

(s− p1)(s− p2)
(5.123)

The order of the numerator N(s) can be m = 0, m = 1, or m = 2, and ωn and ζ
in D(s) are two system parameters called respectively natural frequency, which
is always positive, and damping coefficient. The two poles p1 and p2 of H(s) are
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the two roots of the denominator quadratic function D(s) = s2 + 2ζωns + ω2
n:

{
p1 = (−ζ +

√
ζ2 − 1)ωn = (−ζ + j

√
1− ζ2)ωn

p2 = (−ζ −
√
ζ2 − 1)ωn = (−ζ − j

√
1− ζ2)ωn

(5.124)

If |ζ| ≥ 1, both poles are real, else when |ζ| < 1, they form a complex conjugate
pair located on a circle in the s-plane with radius ωn:

p1,2 = (−ζ ± j
√

1− ζ2)ωn = |p| e±j $ p = ωne±jφ (5.125)

where

|p| = ωn, $ p = tan−1

(√
1− ζ2
ζ

)
(5.126)

The positions of the poles on the circle are determined by the angle φ.
When the value of ζ increases from −∞ to ∞, the pole locations change along

the root locus in the s-plane, as shown in Fig.5.5 from which we see that each of
the two poles follows its own root locus when ζ moves from −∞ to ∞:! Locus of p1: ∞ =⇒ ωn =⇒ jωn =⇒ −ωn =⇒ 0! Locus of p2: 0 =⇒ ωn =⇒−jωn =⇒ −ωn =⇒ −∞

The root locus is further summarized in the table below:

ζ p1, p2 comments
ζ = −∞ ∞, 0

−∞ < ζ < −1 (−ζ ±
√
ζ2 − 1)ωn real poles 0 < p2 < p1

ζ = −1 ωn repeated real poles 0 < p1 = p2 = ωn

−1 < ζ < 0 (−ζ ± j
√

1− ζ2)ωn complex conjugate pair in quadrants I, VI
ζ = 0 ±jωn imaginary poles

0 < ζ < 1 (−ζ ± j
√

1− ζ2)ωn complex conjugate pair in quadrants II, III
ζ = 1 −ωn repeated real poles p1 = p2 = −ωn < 0

1 < ζ <∞ (−ζ ±
√
ζ2 − 1)ωn real poles p2 < p1 < 0

ζ = ∞ 0, −∞

We see that only when ζ > 0, will the two poles be in the left half of the s-
plane and the system is stable. When ζ = 0, the poles are on the imaginary axis
and system is marginally stable, and when ζ < 0 the poles are on the right half
plane and the system is unstable.

The behavior of a second order system in terms of its impulse response function
h(t) is determined by the two system parameters ωn and ζ, which are directly
associated with the locations of the poles of the transfer function H(s). In the
following, we show how h(t) can be determined by inverse Laplace transform of
H(s), based on the given pole locations in the s-plane. Here we assume N(s) = 1
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Figure 5.5 Root locus of the poles of a second order system

so that the transfer function is:

H(s) =
1

s2 + 2ζωns + ω2
n

=
1

(s− p1)(s− p2)
(5.127)

If ζ = ±1, we have

H(s) =
1

s2 ± 2ωns + ω2
n

=
1

(s ± ωn)2
(5.128)

where ±ωn are repeated poles of H(s), then we have:

H(s) =
1

(s ± ωn)2
, and h(t) = L−1[Y (s)] = t e±ωntu(t) (5.129)

If |ζ| $= 1, then p1 $= p2, and H(s) can be written the following by partial fraction
expansion:

H(s) =
1

p1 − p2

[
1

s− p1
− 1

s− p2

]
(5.130)

and the impulse response can be found by inverse Laplace transform:

h(t) = L−1[H(s)] =
1

p1 − p2

[
ep1t − ep2t

]
u(t) = C

[
ep1t − ep2t

]
u(t) (5.131)

where

C =
1

p1 − p2
=

1
2ωn

√
ζ2 − 1

=
1

2jωn

√
1− ζ2

(5.132)

In the following we consider specifically how h(t) varies when the value of ζ
changes from −∞ to ∞.! −∞ < ζ < −1, both poles p1 > 0 and p2 > 0 are on the real axis on the right

side of the s-plane, and both terms ep1t and ep2t grow exponentially as t→∞,
so does their difference:

h(t) = C
[
ep1t − ep2t

]
u(t), (p1 > p2) (5.133)

The system is unstable.
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! ζ = −1, p1 = p2 = −ζωn = ωn are two repeated poles still on the right side of
the s-plane. We have:

h(t) = t eωntu(t) (5.134)

which grows without bound when t→∞, the system stays unstable.! −1 < ζ < 0, now the two poles become a conjugate pair in quadrants I and
IV, respectively:

p1,2 = (−ζ ± j
√

1− ζ2)ωn = −ωnζ ± jωd (5.135)

where

ωd = ωn

√
1− ζ2 < ωn (5.136)

is called the damped natural frequency. Now we have:

h(t) =
1

2jωn

√
1− ζ2

e−ζωnt[ejωdt − e−jωdt]u(t)

=
e−ζωnt

ωd
sin(ωdt)u(t) (5.137)

As ζ < 0 and therefore −ζωnt > 0, h(t) is an exponentially growing sinusoid,
the system is still unstable.! ζ = 0, p1,2 = ±jωn are on the imaginary axis, and the system is marginally
stable:

h(t) =
1

2jωn
[ejωnt − e−jωnt]u(t) =

1
ωn

sin(ωnt) u(t) (5.138)

In particular, when the frequency of the input x(t) = ejωnt is the same as the
system’s natural frequency ωn, the output can be found to be (Eq.5.86):

y(t) = H(jω)
∣∣
ω=ωn

ejωnt =
1

(jω)2 + ω2
n

∣∣∣∣
ω=ωn

ejωnt =
ejωnt

ω2
n − ω2

n
=∞ (5.139)

The response of the system becomes infinity, i.e., resonance occurs.! 0 < ζ < 1, p1,2 = (−ζ ± j
√

1− ζ2)ωn form a complex conjugate pair in quad-
rants II and III, respectively. Similar to the case when −1 < ζ < 0, we have
the same expression for h(t):

h(t) =
e−ζωnt

ωd
sin(ωdt)u(t) (5.140)

However, as now ζ > 0, p1 and p2 are on the left half plane, and the impulse
response h(t) is an exponentially decaying sinusoid with frequency ωd, the
system is underdamped and stable.! ζ = 1, p1 = p2 = −ζωn = −ωn < 0 are two repeated poles on the left side, the
system is critically damped and stable.

h(t) = t e−ωntu(t) (5.141)
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! 1 < ζ < ∞, both poles p1 < 0 and p2 < 0 are on the real axis on the left of the
s-plane, the impulse response is the difference of two exponentially decaying
functions:

h(t) = C(e−|p1|t − e−|p2|t)u(t), (|p1| < |p2|) (5.142)

which decays to zero in time. The system is overdamped and stable.

All seven cases considered above are summarized in the table below:

ζ H(s) = 1
s2+2ζωns+ω2

n
h(t) = C(ep1t − ep2t) Comments on h(t)

ζ < −1 C(ep1t − ep2t)u(t) exponential growth
ζ = −1 1/(s− ωn)2 t eωntu(t) exponential growth

−1 < ζ < 0 e−ζωnt

ωd
sin(ωdt)u(t) exponentially growing sinusoid

ζ = 0 1/(s2 + ω2
n) 1

ωn
sin(ωnt) u(t) constant sinusoid

0 < ζ < 1 e−ζωnt

ωd
sin(ωdt)u(t) exponentially decaying sinusoid

ζ = 1 1/(s + ωn)2 t e−ωnt u(t) critically damped
ζ > 1 C(e−|p1|t − e−|p2|t)u(t) exponential decay

These different impulse response functions h(t) corresponding to different val-
ues of ζ are plotted in Fig.5.6. Note in particular the following two cases:! ζ 9 −1, we have 0 < p2 9 p1 and

h(t) = C(ep1t − ep2t)u(t) ≈ Cep1t (5.143)

i.e., p1 which is farther away from the origin dominates the system behavior.! ζ : 1, we have p2 9 p1 < 0 and

h(t) = C(e−|p1|t − e−|p2|t)u(t) ≈ Ce−|p1|t (5.144)

i.e., p1 which is closer to the origin dominates the system behavior.

In either case, when the non-dominant pole can be neglected, the behavior of the
second order system can be approximated by a first order system with a single
pole p = −1/τ .

As a typical example of the second order system, consider a circuit composed
of a resistor R, a capacitor C and an inductor L connected in series. A voltage
x(t) is applied as the input to the series combination of the three elements and
the output y(t) is the voltage across one of the three elements. The system can
be described by a differential equation in time domain:

x(t) = vL(t) + vR(t) + vC(t) = L
d

dt
i(t) + R i(t) +

1
C

∫ t

−∞
i(τ)dτ (5.145)
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Figure 5.6 Impulse response of 2nd order system for different ζ

Taking Laplace transform on both sides, we get an algebraic equation in s-
domain:

X(s) = VL(s) + VR(s) + VC(s) =
[
sL + R +

1
sC

]
I(s)

= [ZL + ZR + ZC ]I(s) = Z(s)I(s)

Here ZL, ZR and ZC are the impedances of the circuit elements L, R and C,
respectively, defined as:

ZL(s) = sL =
VL(s)
I(s)

, ZR = R =
VR(s)
I(s)

, ZC(s) = 1/sC =
VC(s)
I(s)

(5.146)

In general, the impedance of an element is the ratio Z(s) = V (s)/I(s) of the
voltage across and current through the element in s-domain (sometimes s = jω
with σ = 0), similar to the resistant R = v(t)/i(t) defined by Ohm’s law as the
ratio between the voltage across and current through a resistor R in time domain.
The total impedance Z(s) of the three elements in series is the sum of the
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individual impedances:

Z(s) =
V (s)
I(s)

= sL + R +
1

sC
= ZL + ZR + ZC (5.147)

capacitor C resistor R inductor L

time domain vC(t) =
∫

i(t)dt/C vR(t) = Ri(t) vL(t) = Li′(t)
s-domain VC = I/Cs VR = RI VL = IsL

impedance Z = V/I 1/sC R sL

The transfer function H(s) is the ratio of the output and input voltages, where
the output voltage across any one of the three elements (VL, VR, or VC) can be
found by treating the series circuit as a voltage divider:! Output is voltage across the capacitor vC(t)

HC(s) =
VC(s)
V (s)

=
ZC(s)
Z(s)

=
1/sC

Ls + R + 1/sC
=

ω2
n

s2 + 2ζωns + ω2
n

(5.148)! Output is voltage across the resistor vR(t)

HR(s) =
VR(s)
V (s)

=
ZR(s)
Z(s)

=
R

Ls + R + 1/sC
=

2ζωns

s2 + 2ζωns + ω2
n

(5.149)! Output is voltage across the inductor vL(t)

HL(s) =
VL(s)
V (s)

=
ZL(s)
Z(s)

=
sL

Ls + R + 1/sC
=

s2

s2 + 2ζωns + ω2
n

(5.150)

Here we have converted the denominator D(s) into the canonical second order
form:

D(s) = s2 + (R/L)s + (1/LC) = s2 + 2ζωns + ω2
n (5.151)

where the damping coefficient ζ and natural frequency ωn are defined as:

ζ =
R

2

√
C

L
> 0, ωn =

1√
LC

> 0 (5.152)

In the following, we further consider some important characteristics of the
second order systems in both time and frequency domains.

1. Impulse response function:

hC(t) = L−1[HC(s)] = ω2
nL−1

[
1

(s− p1)(s− p2)

]
(5.153)

Depending on the specific value of ζ (0 < ζ < 1, ζ = 1, or ζ > 1), h(t) takes
one of the three forms in Eqs.5.140, 5.141, 5.142.

2. Step response:
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In s-domain, the response to a step input X(s) = L[u(t)] = 1/s is:

Y (s) = HC(s)X(s) =
ω2

n

s2 + 2ζωns + ω2
n

1
s

=
1

p1p2

[
1
s
− p2

p2 − p1

1
s− p1

+
p1

p2 − p1

1
s− p2

]
(5.154)

Specifically, if we assume 0 < ζ < 1, the two poles are:

p1,2 = (−ζ ± j
√

1− ζ2)ωn = −ζωn ± jωd (5.155)

We also have:

p1p2 = ω2
n, p2 − p1 = −2jωn

√
1− ζ2 (5.156)

and the step response in time domain can be obtained by inverse transform:

y(t) = L−1[Y (s)] =
1
ω2

n

[
1−
(

p2

p2 − p1
ep1t − p1

p2 − p1
ep2t

)]

=
1
ω2

n

[
1−
(
ζ + j

√
1− ζ2

2j
√

1− ζ2
e(−ζωn+jωd)t − ζ − j

√
1− ζ2

2j
√

1− ζ2
e(−ζωn−jωd)t

)]

=
1
ω2

n

[
1− e−ζωnt

√
1− ζ2

(
ζ + j

√
1− ζ2

2j
ejωdt − ζ − j

√
1− ζ2

2j
e−jωdt

)]

=
1
ω2

n

[
1− e−ζωnt

√
1− ζ2

(
ejφejωdt − e−jφe−jωdt

2j

)]

=
1
ω2

n

[
1− e−ζωnt

√
1− ζ2

sin(ωdt + φ)

]
(5.157)

where angle φ = tan−1(
√

1− ζ2/ζ) as defined in Eq.5.126. This step response
function is plotted in Fig.5.7.

3. Second order systems as filters:
The filtering effects of the three second order systems HC(s), HR(s) and
HL(s) are characterized by the magnitudes and phases of their frequency
response functions HC(jω), HR(jω), and HL(jω), as plotted in Fig.5.8, based
on assumed parameters ωn = 2π1000 and ζ = 0.1 (top) and ζ = 1/

√
2 = 0.707

(bottom). Here the magnitudes of the three frequency response functions are
plotted in linear scale (left), together with their Bode plots of both magnitudes
(middle) and phases (right). We see that when ζ = 0.1 < 0.707, both HC(jω)
and HL(jω) behave like a bandpass filter similar to HR(jω) (top row), but
when ζ ≥ 0.707, they behave respectively as low-pass and high-pass filters
without any peak (bottom row).
Also, the filtering effects of the three systems can be qualitatively estimated
based on the location of the zeros and poles of their corresponding transfer
functions. We first define the following vector one for each of the poles and
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Figure 5.7 Step response of 2nd order system for different ζ

Step responses corresponding to five different values of ζ: 0, 0.05, 0.5, 1, and
2. The envelop of the step response for ζ = 0.05 is also plotted to show the
exponential decay of the sinusoid.

Figure 5.8 Linear and Bode plots of frequency response functions HC(jω), HR(jω),
and HL(ω)

zeros in s-plane:

u = jω, v1 = jω − p1, v2 = jω − p2 (5.158)

and then observe how each of the three frequency response functions below
changes when ω increase from 0 toward ∞, as illustrated in Fig.5.9:
– HC(s) = ω2

n/D(s) with two poles but no zero:

|HC(jω)| =
ω2

n

|jω − p1||jω − p2|
=

ω2
n

|v1||v2|
(5.159)
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Figure 5.9 Qualitative determination of filtering behavior of second order systems

which is some constant when ω = 0 but approaches 0 when ω →∞ causing
both |v1|→∞ and |v2|→∞, i.e., the system is a low-pass filter.

– HR(s) = 2ζωns/D(s) with two poles and one zero:

|HR(jω)| =
2ζωn |jω|

|jω − p1||jω − p2|
=

2ζωn |u|
|v1||v2|

(5.160)

which is zero when ω = 0 or ω →∞, but greater than 0 when 0 < ω <∞,
i.e., the system is a band-pass filter.

– HL(s) = s2/D(s) with two poles and two repeated zeros (corresponding to
two vectors u1 = u2 = u):

|HL(jω)| =
|jω|2

|jω − p1||jω − p2|
=

|u|2
|v1||v2|

(5.161)

which is zero when ω = 0, but approaches constant 1 when ω →∞, i.e.,
the system is a high-pass filter.

4. Peak frequency of second order filters:
The peak frequency ωp of a filter H(jω) is the frequency at which |H(jωp)| =
|Hmax| is maximized. To simplify the algebra, we first define a variable
u = (ω/ωn)2 (where ω/ωn can be considered as the frequency normalized by
the natural frequency ωn) so that the squared magnitudes of the frequency
response functions can be expressed as:

|HC(jω)|2 =
∣∣∣∣

ω2
n

(jω)2 + 2ζωnjω + ω2
n

∣∣∣∣
2

=
1

(u − 1)2 + 4ζ2u

|HR(jω)|2 =
∣∣∣∣

2ζωnjω

(jω)2 + 2ζωnjω + ω2
n

∣∣∣∣
2

=
4ζ2u

(u − 1)2 + 4ζ2u

|HL(jω)|2 =
∣∣∣∣

(jω)2

(jω)2 + 2ζωnjω + ω2
n

∣∣∣∣
2

=
u2

(u − 1)2 + 4ζ2u
(5.162)

To find the value up at which each of these functions is maximized, we take
derivative of each of the functions with respect to u, set the results to zero,
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and then solve the resulting equations to get:





upC = 1− 2ζ2

upR = 1
upL = 1/(1− 2ζ2)

i.e.






ωpC = ωn
√

upC = ωn

√
1− 2ζ2

ωpR = ωn
√

upR = ωn

ωpL = ωn
√

upL = ωn/
√

1− 2ζ2
(5.163)

We see that the three peak frequencies are different:

ωCp ≤ ωRp ≤ ωLp (5.164)

Substituting these peak frequencies into Eq.5.162, we get the peak values of
the three filters:

|HmaxR | = |H(jωpR)| = 1

|HmaxC | = |H(jωpC )| = |HmaxL | = |H(jωpL)| =
1

2ζ
√

1− ζ2
(5.165)

Also note that for HC(jω) and HL(jω) to behave as a band-pass filter that
reaches a peak value at respectively ωpC and ωpL given in Eq.5.163, ζ has to
satisfy the following (for the peak frequency to be real):

1− 2ζ2 > 0, i.e., ζ < 1/
√

2 = 0.707 (5.166)

If ζ ≥ 1/
√

2 this condition is not satisfied, then |HC(jω)| is a low-pass filter
that reaches its maximum of 1 at ω = 0, and |HL(jω)| is a high-pass filter
that reaches its maximum of 1 at ω =∞. These two cases have already been
illustrated in Fig.5.8.

5. Bandwidth of second order bandpass filter:
In general, the bandwidth ∆ω = ω1 − ω2 of a bandpass filter H(jω) is defined
as the interval between two cutoff frequencies ω1 and ω2 at which the output
power is half of that at the peak frequency ωp:

|H(jω1)|2 = |H(jω2)|2 =
1
2
|H(jωp)|2 =

1
2
|Hmax|2 (5.167)

Specifically, for the bandpass filter HR(jω), Hmax(0) = 1, and at the two
cutoff frequencies we have:

|HR(jω)|2
|HmaxR |2

= |HR(jω)|2 =
4ζ2u

(u− 1)2 + 4ζ2u
=

1
2

(5.168)

Solving this quadratic equation we get two solutions:

u1,2 = 1 + 2ζ2 ± 2ζ
√

1 + ζ2 (5.169)

the corresponding cutoff frequencies are:

ω1,2 = ωn

√
1 + 2ζ2 ± 2ζ

√
1 + ζ2 (5.170)

and the bandwidth is:

∆ωR = ω1 − ω2 = 2ζωn (5.171)
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Based on this result, the denominator of the second order transfer function
can also be written as:

D(s) = s2 + ∆ωns + ω2
n (5.172)

5.1.8 The Unilateral Laplace Transform

The bilateral Laplace transform can be applied to left-sided signals (or anti-
causal systems) as well as right-sided ones (or causal systems). Also, we have seen
that it is a convenient tool for solving differential equations (LCCDEs). However,
the bilateral Laplace transform also has some drawbacks, e.g., it can only find
the particular solutions of a differential equations, as the initial conditions are
not taken into consideration. This problem can be overcome by the unilateral
or one-sided Laplace transform, which can solve a given LCCDE to find the
homogeneous solution due to non-zero initial conditions as well as the particular
solution due to the input on the right-hand side of the equation.

The unilateral Laplace transform of a given signal x(t) is defined as

UL[x(t)] = X(s) =
∫ ∞

0
x(t)e−stdt (5.173)

When the unilateral Laplace transform is applied to a signal x(t), it is always
assumed that the signal starts at time t = 0, i.e., x(t) = 0 for all t < 0. When
it is applied to the impulse response function h(t) of an LTI system to find
the transfer function H(s) = UL[h(t)], it is always assumed that its impulse
response h(t) = 0 for t < 0, i.e., the system is causal. In either case, the all poles
have to be on the left half s-plane, i.e., the ROC is always in the right half s-
plane. Obviously, the unilateral Laplace transform of any signal x(t) = x(t)u(t)
is identical to its bilateral Laplace transform. However, when x(t) $= x(t)u(t),
the two Laplace transforms are different.

The unilateral Laplace Transform shares all of the properties of the bilateral
Laplace transform, although some of the properties may be expressed in different
forms. Here we will not repeat all the properties except the following, which are
most relevant to solving the LCCDE of an LTI system.! Time derivative

UL[
d

dt
x(t)] = UL[ẋ(t)] = sX(s)− x(0) (5.174)

Proof:

UL[
d

dt
x(t)] =

∫ ∞

0
ẋ(t)e−stdt =

∫ ∞

0
e−std[x(t)] = x(t)e−st

∣∣∞
0
−
∫ ∞

0
x(t)d(e−st)

= −x(0) + s

∫ ∞

0
x(t)e−stdt = sX(s)− x(0) (5.175)

We can further get the transform of the 2nd derivative of x(t):

UL[ẍ(t)] = sUL[ẋ(t)]− ẋ(0) = s2X(s)− sx(0)− ẋ(0) (5.176)
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and in general we have:

UL[x(n)(t)] = snX(s)−
n−1∑

k=0

skx(n−1−k)(0) (5.177)

! The initial value theorem:
If a right-sided signal x(t) containing no impulse or higher order singularities
at t = 0, its initial value x(0+) (t → 0 from t > 0) can be found to be:

x(0+) = lim
t→0

x(t) = lim
s→∞

sX(s) (5.178)

Proof: Consider the Laplace transform of a time derivative:

L[
d

dt
x(t)] =

∫ ∞

0
[
d

dt
x(t)]e−stdt = x(t)e−st

∣∣∞
0
−
∫ ∞

0
x(t)d(e−st)

= −x(0) + s

∫ ∞

0
x(t)e−stdt = sX(s)− x(0) (5.179)

At the limit s → 0, the equation becomes:

lim
s→0

∫ ∞

0

d

dt
x(t)e−stdt =

∫ ∞

0
dx(t) = x(∞)− x(0) = lim

s→0
[sX(s)− x(0)]

(5.180)
i.e.,

lim
s→0

sX(s) = x(∞) (5.181)! The final value theorem:
If a right-sided signal x(t) has a finite limit as t→∞, this final value can also
be found to be:

x(∞) = lim
t→∞

x(t) = lim
s→0

sX(s) (5.182)

Proof: At the limit s →∞, Eq.5.179 becomes:

lim
s→∞

∫ ∞

0

d

dt
x(t)e−stdt = 0 = lim

s→∞
[sX(s)− x(0)] (5.183)

i.e.,

lim
s→∞

sX(s) = x(0) (5.184)

Due to these properties, the unilateral Laplace transform is a powerful tool
for solving LCCDEs with non-zero initial conditions.

Example 5.9: We consider Example 3.4 in Chapter 3 one more time, where the
LCCDE of the first order system is:

τ ẏ(t) + y = x (5.185)
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Taking the unilateral Laplace transform on both sides, we get:

τ(s− y0)Y (s) = X(s), i.e. Y (s) =
X(s)
sτ + 1

+
τy0

sτ + 1
(5.186)

where y0 = y(t) is the initial condition. Now we consider two cases:! When x(t) = u(t), i.e., X(s) = 1/s, the output is:

Y (s) =
1
s

1
sτ + 1

+
τy0

sτ + 1
=

1
s
− τ

sτ + 1
+

τy0

sτ + 1
(5.187)

Taking inverse transform we get:

y(t) = [1 + (y0 − 1)e−t/τ ]u(t) = (1− e−t/τ )u(t) + y0e
−t/τu(t) (5.188)

These two terms represent respectively the charge of the capacitor C by the
input x(t) = u(t) and the discharge of the initial voltage y(0) = y0 (superpo-
sition property of linear systems).! When x(t) = δ(t), i.e., X(s) = 1, the output is:

Y (s) =
1

sτ + 1
+

τy0

sτ + 1
(5.189)

Taking inverse transform we get:

y(t) =
[

1
τ

+ y0

]
e−t/τu(t) (5.190)

This result represents the discharge of the total voltage across the capacitor,
including the instantly charged voltage u(t)/τ and the initial voltage y(0) =
y0. In particular, under zero initial condition y(0) = y0 = 0, we get the impulse
response:

y(t)
∣∣
y0=0

= h(0) =
1
τ
e−t/τu(t) (5.191)

All these results are consistent with Example 3.4.

Example 5.10: A 2nd-order system is described by this LCCDE:

d2

dt2
y(t) + 3

d

dt
y(t) + 2y(t) = x(t) = αu(t) (5.192)

with initial conditions

y(0) = β, ẏ(0) = γ (5.193)

To find y(t), we first apply unilateral Laplace transform to the differential equa-
tion to get

s2Y (s)− βs− γ + 3sY (s)− 3β + 2Y (s) = (s2 + 3s + 2)Y (s)− βs− γ − 3β = α/s
(5.194)
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Solving this algebraically for Y (s) we get:

Y (s) =
α

s(s + 1)(s + 2)
+

β(s + 3)
(s + 1)(s + 2)

+
γ

(s + 1)(s + 2)
= Yp(s) + Yh(s)

(5.195)
This is the general solution of the LCCDE which is composed of two parts:! The homogeneous (zero-input) solution due to the nonzero initial con-

ditions y(0) $= 0 and ẏ(0) $= 0 with zero input x(t) = 0:

Yh(s) =
β(s + 3)

(s + 1)(s + 2)
+

γ

(s + 1)(s + 2)
(5.196)! The particular (zero-state) solution due to the nonzero input x(t) $= 0

but with zero initial conditions y(0) = ẏ(0) = 0:

Yp(s) =
α

s(s + 1)(s + 2)
(5.197)

Given specific values for α, β and γ such as α = 2, β = 3 and γ = −5 and using
the method of partial fraction expansion, we can write Y (s) as:

Y (s) = Yp(s) + Yh(s) =
[

2
s(s + 1)(s + 2)

+
3(s + 3)

(s + 1)(s + 2)

]
− 5

(s + 1)(s + 2)

=
[
1
s
− 2

s + 1
+

1
s + 2

]
+
[

1
s + 1

+
2

s + 2

]

Taking the inverse Laplace transform on both sides we get the solution in time
domain solution:

yp(t) = UL−1[Yp(s)] = UL−1

[
1
s
− 2

s + 1
+

1
s + 2

]
= [1− 2e−t + e−2t]u(t)

yh(t) = UL−1[Yh(s)] = UL−1

[
1

s + 1
+

2
s + 2

]
= [e−t + 2e−2t]u(t)

and

y(t) = yh(t) + yp(t) = [1− e−t + 3e−2t]u(t) (5.198)

If bilateral Laplace transform is applied to the same LCCDE, we get

s2Y (s) + 3sY (s) + 2Y (s) = (s2 + 3s + 2)Y (s) =
α

s
=

2
s

(5.199)

Solving this for Y (s) and taking inverse transform, we get:

Y (s) =
2

s(s + 1)(s + 2)
, y(t) = [e−t + 2e−2t]u(t) (5.200)

This is the particular solution above with zero initial conditions. From this we
see that bilateral Laplace transform can only solve an LCCDE system of zero
initial conditions. When the initial conditions of the system are not all zero,
unilateral Laplace transform has to be used.
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5.2 The Z-Transform

Similar to the Laplace transform, the Z-transform is also a powerful tool widely
used in many fields, especially in digital signal processing and discrete system
analysis/design. Much of the discussion below is similar to and in parallel with
the previous discussions for the Laplace transform, with the only essential dif-
ference that all signals and systems considered here are discrete in time.

5.2.1 From Discrete Time Fourier Transform to Z-Transform

The Z-transform of a discrete signal x[m] can be considered as the generalization
of the discrete-time Fourier transform (DTFT) of the signal:

F [x[m]] =
∞∑

m=−∞
x[m]e−jmω = X(ejω) (5.201)

Here we adopt the notation X(ejω) for the DTFT spectrum, instead of X(f) or
X(ω) used previously, for some reason which will become clear later. Note that
this transform is based on the underlying assumption that the signal x[m] is
square summable so that the summation converges and X(ejω) exists. However,
this assumption is not true for signals such as x[m] = m, x[m] = m2, and x[m] =
eam, all of which grow without a bound when |m|→∞, and are not square
summaable. In such cases, we could still consider the Fourier transform of a
modified version of the signal x′[m] = x[m]e−σm, where e−σm is an exponential
factor with a real parameter σ, which can force the given signal x[m] to decay
exponentially for some properly chosen value of σ (either positive or negative).
For example, x[m] = eamu[m] (a > 0) does not converge when m →∞, therefore
its Fourier spectrum does not exist. However, if we choose Re[s] = σ > a, the
modified version e−(σ−a)mu[m] will converge as m →∞.

In general, the Fourier transform of the modified signal is:

F [x′[m]] =
∞∑

m=−∞
x[m]e−σmejmω =

∞∑

m=−∞
x[m]e−m(σ+jω) =

∞∑

m=−∞
x[m]z−m

(5.202)
where z is a complex variable defined as

z = es = eσ+jω = eσ ejω = |z|$ z (5.203)

which can be represented most conveniently in polar form in terms of its mag-
nitude |z| = eσ and angle $ z = ω. If the summation above converges, it results
in a complex function X(z), which is called the bilateral Z-transform of x[m],
formally defined as:

X(z) = Z[x[m]] =
∞∑

m=−∞
x[m]z−m (5.204)
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Here X(z) is a function defined over a 2-D complex z-plane typically represented
in polar coordinates of |z| and $ z. Similar to the Laplace transform, here the
Z-transform X(z) exists only inside the corresponding region of convergence in
the z-plane, composed of all z values that guarantee the convergence of the
summation in Eq. 5.204. Due to the introduction of the exponential decay factor
e−σm, we can properly choose the parameter σ so that the Z-transform can be
applied to a broader class of signals than the Fourier transform.

If the unit circle |z| = eσ = 1 (when σ = 0 and s = jω) is inside the ROC, we
can evaluate the 2-D function X(z) along the unit circle with respect to z = ejω

from ω = 0 to ω = 2π to obtain the Fourier transform of x[m]. We see that
the 1-D Fourier spectrum X(ejω) of the discrete signal x[m] is simply the cross
section of the 2D function X(z) = X(|z|ejω) along the unit circle z = ejω , which
is obviously periodic with period 2π. In other words, the discrete-time Fourier
transform is just a special case of the Z-transform when σ = 0 and z = ejω :

F [x[m]] = Z[x[m]]
∣∣
z=ejω = X(z)

∣∣
z=ejω = X(ejω) (5.205)

This is the reason why sometimes the discrete-time Fourier spectrum is also
denoted by X(ejω).

Given the Z-transform X(z) = Z[x[m]], the time signal x[m] can be found by
the inverse Z-transform, which can be derived from the corresponding Fourier
transform of discrete signals:

Z[x[m]] = X(z) = X(eσ+jω) =
∞∑

m=−∞
x[m]e−(σ+jω)m = F [x[m]e−σm] (5.206)

Taking the inverse Fourier transform of the above, we get

x[m]e−mσ = F−1[X(eσ+jω)] =
1
2π

∫ 2π

0
X(eσ+jω)ejmωdω (5.207)

Multiplying both sides by emσ, we get:

x[m] =
1
2π

∫ 2π

0
X(eσ+jω)e(σ+jω)mdω (5.208)

To further represent the inverse Z-transform in terms of z (instead of ω), we note

dz = d(eσ+jω) = eσjejωdω = jzdω, i.e., dω = z−1dz/j (5.209)

The integral of the inverse transform with respect to ω from 0 to 2π becomes an
integral with respect to z along a circle of radius eσ:

x[m] =
1
2π

∮
X(z)zmz−1dz/j =

1
2πj

∮
X(z)zm−1dz (5.210)



The Laplace and Z Transforms 287

Now we get the forward and inverse Z-transform pair:

X(z) = Z[x[m]] =
∞∑

m=−∞
x[m]z−m

x[m] = Z−1[X(z)] =
1

2πj

∮
X(z)zm−1dz (5.211)

which can also be more concisely represented as

x[m] Z←→ X(z) (5.212)

In practice, we hardly need to carry out the integral in the inverse transform
with respect to the complex variable z, as the Z-transform pairs of most of the
signals of interest can be obtained in some other ways and made available in
table form.

As shown in Eq.5.203, the Z-transform is related to the Laplace transform by
an analytic function z = es which maps a complex variable s in the s-plane to
another complex variable z in the z-plane and vice versa. This function is called
a conformal mapping as it preserves the angle formed by any two curves through
each point in the complex plane. For example, a vertical line Re[s] = σ0 in the
s-plane is mapped to a circle |z| = eσ0 centered at the origin in the z-plane, a
horizontal line Im[s] = jω0 in the s-plane is mapped to a ray $ z = ω0 in the
z-plane from the origin in the direction determined by angle ω0, and the right
angle formed by the pair of vertical and horizontal lines in the s-plane is mapped
to the right angle formed by the circle and ray in the z-plane, i.e., the right angle
is preserved by the mapping z = es.

The following three mapping pairs are of particular interest:! The imaginary axis Re[s] = σ = 0 in the s-plane is mapped to the unit circle
|z| = eσ = 1 in the z-plane. In particular, the origin s = σ + jω = 0 of the
s-plane is mapped to z = es = e0 = 1 on the real axis in the z-plane;! The vertical line corresponding to Re[s] = σ = −∞ in the s-plane is mapped
to the origin |z| = eσ = 0 in the z-plane;! The vertical line corresponding to Re[s] = σ = ∞ in the s-plane is mapped to
a circle with infinite radius |z| = eσ =∞ in the z-plane.

Note that the continuous-time Fourier spectrum X(jω) = F [x(t)] is a non-
periodic function defined over the entire imaginary axis s = jω of the s-plane
in the infinite range −∞ < ω <∞. But when the signal x(t) is sampled to
become a discrete signal x[m], the corresponding discrete-time Fourier spectrum
X(ejω) = F [x[m]] becomes a periodic function over a finite range 0 ≤ ω < 2π
around the unit circle z = ejω in the z-plane. These results are of course consis-
tent with those obtained in the previous chapters.
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In some applications the Z-transform takes the form of a rational function as
a ratio of two polynomials:

X(z) =
N(z)
D(z)

=
∑m

k=0 bkzk

∑n
k=0 akzk

=
bm

an

∏m
k=1(z − zk)∏n
k=1(z − pk)

(5.213)

where the roots zk, (k = 1, 2, · · · , m) of the numerator polynomial N(z) of order
m are the zeros of X(z), and the roots pk, (k = 1, 2, · · · , n) of the denominator
polynomial D(z) of order n are the poles of X(z). Some of these roots may be
repeated. Obviously we have:

X(zk) = 0, and X(pk) = ∞ (5.214)

Moreover, if n > m, then X(∞) = 0, i.e., z =∞ is a zero. On the other hand,
if m > n, then X(∞) = ∞, i.e, z = ∞ is a pole. In general, we always assume
m < n, as otherwise we can expand X(z) into multiple terms so that m < n is
true for each term. Same as in the case of the Laplace transform, the locations
of the zeros and poles of X(z) characterize some essential properties of a signal
x[m].

5.2.2 Region of Convergence

Same as in the Laplace transform, the region of convergence plays an important
role in the Z-transform. Here we consider Z-transform of a set of signals which
are in parallel with those in Example 5.1 of the Laplace transform:

Example 5.11:

1. A right-sided discrete signal x[m] = a−mu[m]:

X(z) =
∞∑

m=−∞
x[m]z−m =

∞∑

m=0

(az)−m (5.215)

where a is a real constant. This summation is a geometric series which does
not converge unless |(az)−1| < 1, i.e., the region of convergence (ROC) can
be specified as |z| > 1/|a|, which is the entire region outside the circle with
radius |z| = 1/|a|. Now the summation of the Z-transform above can be further
written as:

X(z) =
∞∑

m=0

(az−1)m =
1

1− (az)−1
if |z| > 1/|a| (5.216)

Specially when a = 1, we have x[m] = u[m] and

U(z) = Z[u[m]] =
1

1− z−1
, if |z| > 1 (5.217)

If we let Re[s] = σ → 0, i.e., |z| = 1, U(z) will be evaluated along the unit
circle z = ejω and become Z[u[m]] = 1/(1− e−jω), which is seemingly the
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Fourier spectrum of u(t). However this result is actually invalid, as |z| = 1
is not inside the ROC |z| > 1. Comparing this result with the real Fourier
transform of u[m] in Eq.4.18:

F [u[m]] =
1

1− e−j2πf
+

1
2

∞∑

n=−∞
δ(f − n) (5.218)

we see that an extra term
∑∞

n=−∞ δ(f − n)/2 in the Fourier spectrum which
reflects the fact that the summation is only marginally convergent when |z| =
1.

2. A left-sided signal x[m] = −a−mu[−m− 1]:

X(z) = −
∞∑

n=−∞
a−mu[−m− 1]z−m = −

−1∑

m=−∞
(az)−m = 1−

∞∑

n=0

(az)n

(5.219)
where we have assumed n = −m. We see that only when |az| < 1, i.e., z is
inside the circle |z| < 1/|a| will this summation converge and X(z) exist:

X(z) = 1− 1
1− az

=
1

1− (az)−1
, if |z| < 1/|a| (5.220)

3. A two-sided signal x[m] = a−|m| = a−mu[m] + amu[−m− 1]:
The transform of this signal is the sum of the transforms of the two individual
terms. According to the results in the previous two cases, we get:

X(z) =
1

1− (az)−1
− 1

1− az−1
, |z| > 1/|a|, |z| < |a| (5.221)

provided the intersection of the two individual ROCs is non-empty, i.e.,
1/|a| < |z| < |a|, which is possible only if |a| > 1, i.e., x[m] decays when
|m|→∞. However, if |a| < 1, the intersection of the two ROCs is an empty
set, and the Z-transform does not exist, reflecting the fact that x[m] grows
without bound when |m|→∞.

Based on the examples above we summarize a set of properties of the ROC:! If a signal x[m] of finite duration is absolutely summable then its transform
X(z) exists for any z, i.e., its ROC is the entire z-plane.! The ROC does not contain any poles because by definition X(z) does not
exist at any pole.! Two different signals may have identical transform but different ROCs. The
inverse transform can be carried out only if an associated ROC is also specified.! Only the magnitude |z| = eσ of z determines the convergence of the summa-
tion in the z-transform and thereby the ROC. The angle $ z has no effect on
the convergence. Consequently the ROC is always bounded by two concen-
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tric circles centered at the origin corresponding to two poles p1 and p2 with
|p1| < |p2|. It is possible that |p1| = 0 and/or |p2| =∞.! The ROC of a right-sided signal is outside the outermost pole; The ROC of a
left-sided signal is inside the innermost pole. If a signal is two-sided, its ROC
is the intersection of the two ROCs corresponding to its two one-sided parts,
which can be either a ring between two circles or an empty set.! The Fourier transform X(ejω) of a signal x[m] exists if the ROC of the cor-
responding Z-transform X(z) contains the unit circle |z| = 1, i.e., z = ejω.

The zeros and poles of X(z) = Z[x[m]] dictate the ROC and thereby the most
essential properties of the corresponding signal x[m], such as whether it is right
or left-sided, whether it grows or decays over time. Moreover, the zeros and poles
of the transfer function H(z) = Z[h[m]] of an LTI system dictate its stability and
filtering effects. All such properties and behaviors can be qualitatively charac-
terized based on the locations of the zeros and poles of in the z-plane, as we will
see in the later discussions.

Example 5.12: Find the time signal corresponding to the following Z-transform:

X(z) =
1

(1 − 1
3z−1)(1 − 2z−1)

= − 1/5
1− 1

3z−1
+

6/5
1− 2z−1

(5.222)

This function has two poles: p1 = 1/3 and p2 = 2. Now consider three possible
ROCs corresponding to three different time signals:! |z| > 2: The ROC is outside the outermost pole p2 = 2, both terms of X(z)

correspond to right-sided time functions:

x[m] = −1
5
(
1
3
)mu[m] +

1
5
(
1
3
)mu[m] (5.223)! |z| < 1/3: The ROC is inside the innermost pole p1 = 1/3, both terms of X(z)

correspond to left-sided time functions:

x[m] =
1
5
(
1
3
)mu[−m− 1]− 1

5
(
1
3
)mu[−m− 1] (5.224)! 1/3 < |z| < 2: The ROC is a ring between the two poles, the two terms cor-

respond to two different types of functions, one right-sided while the other
left-sided:

x[m] = −1
5
(
1
3
)mu[m]− 1

5
(
1
3
)mu[−m− 1] (5.225)

In particular, note that only the last ROC includes the circle |z| = 1 and the
corresponding time function x[m] has a discrete Fourier transform. Fourier trans-
form of the other two functions do not exist.
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Example 5.13:! Let x[m] = 0 for all m except m = −1, 0, 1, then

X(z) =
1∑

m=−1

z−m =
1
z

+ 1 + z (5.226)

As z−m = ∞ when z = ∞ or z = 0, neither of these two z values is included
in the ROC.!

x[m] = b|m| = bmu[m] + b−mu[−m− 1] (5.227)

For the right-sided part:

Z[bmu[m]] =
∞∑

m=0

bmz−m =
∞∑

m=0

(bz−1)m =
1

1− bz−1
|z| > b (5.228)

For the left-sided part:

Z[b−mu[−m− 1]] =
−1∑

m=−∞
b−mz−m =

∞∑

m=0

(bz)m − 1

=
1

1− bz
− 1 =

−1
1− (bz)−1

|z| < 1/b

The ROC for both parts combined is the intersection of the individual ROCs:

b < |z| < 1/b (5.229)

When b < 1, x[m] decays on both sides as m →∞ and its ROC is a ring.
But when b > 1, x[m] grows on both sides and it is not absolutely summable,
correspondingly its ROC is an empty set, i.e., its Z-transform does not exist.

5.2.3 Properties of the Z-Transform

The Z-transform has a set of properties many of which are in parallel with
those of the discrete-time Fourier transform. The proofs of such properties are
therefore ommitted as they are similar to that of their counterparts in the Fourier
transform. However, here we need to pay special attention to the ROCs. In the
following, we always assume:

Z[x[m]] = X(z), Z[y[m]] = Y (z) (5.230)

with Rx and Ry as their corresponding ROCs. If a property can be easily derived
from the definition, the proof is not provided.! Linearity

Z[ax[m] + by[m]] = aX(z) + bY (z) ROC ⊇ (Rx ∩Ry) (5.231)
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Similar to the case of the Laplace transform, the ROC of the linear combina-
tion of x[m] and y[m] may be larger than the intersection of their individual
ROCs Rx ∩Ry, due to reasons such as zero-pole cancellation.! Time shifting

Z[x[m−m0]] = z−m0X(z), ROC = Rx (5.232)! Time reversal

Z[x[−m]] = X(1/z), ROC = 1/Rx (5.233)

Proof:

Z[x[−m]] =
∞∑

m=−∞
x[−m]z−m =

∞∑

n=−∞
x[n](

1
z
)−n = X(1/z) (5.234)

where n = −m.! Modulation

Z[(−1)mx[m]] = X(−z) (5.235)

Here modulation means every other sample of the signal is negated.
Proof:

Z[(−1)mx[m]] =
∞∑

m=−∞
x[m](−1)mz−m =

∞∑

m=−∞
x[m](−z)−m = X(−z)

(5.236)! Down-sampling

Z[x(2)[m]] =
1
2
[X(z1/2) + X(−z1/2)] (5.237)

Here the down-sampled version x(2)[m] of a signal x[m] is composed of all the
even terms of the signal with all odd terms dropped, i.e., x(2)[m] = x[2m].
Proof:

Z[x(2)[m]] =
∞∑

m=−∞
x[2m]z−m =

∑

n=··· ,−2,0,,2,···
x[n](z1/2)−n

=
1
2
[

∞∑

n=−∞
x[n](z1/2)−n +

∞∑

n=−∞
x[n](−z1/2)−n]

=
1
2
[X(z1/2) + X(−z1/2)] (5.238)

where we have assumed n = 2m. The second equal sign is due to the fact that
the sum of the two terms is zero when n = · · · ,−3,−1, 1, 3, · · · is odd.! Up-sampling

Z[x(k)[m]] = X(zk) (5.239)
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Here x(k)[m] is defined as:

x(k)[m] =
{

x[m/k] if m is a multiple of k
0 else

(5.240)

i.e. x(k)[m] is obtained by inserting k − 1 zeros between every two consecutive
samples of x[m].
Proof:

Z[x(k)[m]] =
∞∑

m=−∞
x[m/k]z−m =

∞∑

n=−∞
x[n]z−kn = X(zk) (5.241)

Note that the change of the summation index from m to n = m/k has no
effect as the terms skipped are all zeros.! Convolution

Z [x[m] ∗ y[m]] = X(z)Y (z), ROC ⊇ (Rx ∩Ry) (5.242)

The ROC of the convolution could be larger than the intersection of Rx and
Ry, due to the possible pole-zero cancellation caused by the convolution.! Autocorrelation

Z
[
∑

k

x[k]x[k − n]

]
= X(z)X(z−1) (5.243)

Proof:
The autocorrelation of a signal x[n] is the convolution of the signal with its
time reversed version. Applying the properties of time reversal and convolu-
tion, the above can be proven.! Time difference

Z [x[m]− x[m− 1]] = (1 − z−1)X(z), ROC = Rx (5.244)

Proof:

Z[x[m]− x[m− 1]] = X(z)− z−1X(z) = (1− z−1)X(z) (5.245)

Note that due to the additional zero z = 1 and pole z = 0, the resulting ROC
is the same as Rx except the possible deletion of z = 0 caused by the added
pole and/or addition of z = 1 caused by the added zero which may cancel an
existing pole.! Time accumulation

Z
[

n∑

k=−∞
x[k]

]
=

1
1− z−1

X(z) (5.246)

Proof: First we realize that the accumulation of x[m] can be written as its
convolution with u[m]:

u[m] ∗ x[m] =
∞∑

k=−∞
u[m− k]x[k] =

m∑

k=−∞
x[k] (5.247)
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Applying the convolution property, we get

Z
[

m∑

k=−∞
x[k]

]
= Z[u[m] ∗ x[m]] =

1
1− z−1

X(z) (5.248)

as Z[u[m]] = 1/(1− z−1).! Scaling in Z-domain

Z [zm
0 x[m]] = X

(
z

z0

)
, ROC = |z0|Rx (5.249)

Proof:

Z [zm
0 x[m]] =

∞∑

m=−∞
x[m]

(
z

z0

)−1

= X

(
z

z0

)
(5.250)

In particular, if z0 = ejω0 , the above becomes

Z
[
ejmω0x[m]

]
= X(e−jω0z), ROC = Rx (5.251)

The multiplication by e−jω0 to z corresponds to a rotation by angle ω0 in
the z-plane, i.e., a frequency shift by ω0. The rotation is either clockwise
(ω0 > 0) or counter clockwise (ω0 < 0) corresponding to, respectively, either
a left-shift or a right shift in s-domain. The property is essentially the same
as the frequency shifting property of discrete Fourier transform.! Conjugation

Z [x∗[m]] = X∗(z∗), ROC = Rx (5.252)

Proof: Complex conjugate of the Z-transform of x[m] is

X∗(z) =

[ ∞∑

m=−∞
x[m]z−m

]∗
=

∞∑

m=−∞
x∗[m](z∗)−m (5.253)

Replacing z by z∗, we get the desired result.! Differentiation in z-Domain

Z [mx[m]] = − d

dz
X(z), ROC = Rx (5.254)

Proof:

d

dz
X(z) =

∞∑

m=−∞
x[m]

d

dz
(z−m) =

∞∑

n=−∞
(−m)x[m]z−m−1 (5.255)

i.e.,

Z [mx[m]] = −z
d

dz
X(z) (5.256)

Example 5.14: Consider the following examples:
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Figure 5.10 Down and up sampling

! The Z-transform of a modulated, time-reversed and shifted signal (−1)nx[k −
n] is

Z[(−1)nx[k − n]] =
∞∑

n=−∞
(−1)nx[k − n]z−n =

∞∑

n=−∞
x[k − n](−z)−n

=
∞∑

m=−∞
x[m](−z)m−k = (−z)−k

∞∑

m=−∞
x[m](−z−1)−m = (−z)−kX(−z−1)

(5.257)

where m = k − n.! The Z-transform of a signal x[n] first down-sampled then up-sampled is

X ′(z) =
1
2
[X(z) + X(−z)] (5.258)

which can be obtained by applying the properties of down-sampling and up-
sampling in Eqs.5.237 and 5.239. To verify this result, we apply the property
of modulation in Eq.5.235 to the second term and get:

x′[n] = Z−1[X ′(z)] =
1
2
[Z−1[X(z)] + Z−1[X(−z)]]

=
1
2
[x[n] + (−1)nx[n]] =

{
x[n] even n
0 odd n

(5.259)! Taking derivative of the right side of

Z[amu[m]] =
1

1− az−1
, |z| > a (5.260)
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we get

d

dz
[

1
1− az−1

] =
−az−2

(1− az−1)2
(5.261)

Due to the property of differentiation in z-domain, we have

Z[mamu[m]] =
az−1

1− az−1
, |z| > a (5.262)

Note that for a different ROC |z| < a, we have

Z[−mamu[−m− 1]] =
az−1

1− az−1
, |z| < a (5.263)

5.2.4 Z-Transform of Typical Signals! δ[m], δ[m− n]

Z[δ[m]] =
∞∑

m=−∞
δ[m]z−m = 1, for all z (5.264)

Due to the time shifting property, we also have

Z[δ[m− n]] = z−n, for all z (5.265)! u[m], amu[m], mamu[m]

Z[u[m]] =
∞∑

m=0

z−m =
1

1− z−1
, |z| > 1 (5.266)

Due to the scaling in z-domain property, we have

Z[amu[m]] =
1

1− (z/a)−1
=

1
1− az−1

, |z| > a (5.267)

Applying the property of differentiation in z-Domain to the above, we have

Z[mamu[m]] = −z
d

dz
[

1
1− az−1

] = −z
−az−2

(1− az−1)2
=

az−1

(1− az−1)2
, |z| > a

(5.268)! e±jmω0u[m], cos[mω0]u[m], sin[mω0]u[m]
Applying the scaling in z-domain property to Z[u[m]] = 1/(1− z−1), we have

Z[ejmω0u[m]] =
1

1− (ejω0z)−1
=

1
1− e−jω0z−1

, |z| > 1 (5.269)

and similarly, we have

Z[e−jmω0u[m]] =
1

1− ejω0z−1
, |z| > 1 (5.270)
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Moreover, we have

Z[cos(mω0)u[m]] = Z[
ejmω0 + e−jmω0

2
u[m]] =

1
2
[

1
1− ejω0z−1

+
1

1− e−jω0z−1
]

=
2− (ejω0 + e−jω0)z−1

2[1− (ejω0 + e−jω0)z−1 + z−2]

=
1− cosω0z−1

1− 2cosω0z−1 + z−2
|z| > 1 (5.271)

Similarly we have

Z[sin(mω0)u[m]] =
sinω0z−1

1− 2 cosω0z−1 + z−2
, |z| > 1 (5.272)! rmcos[mω0]u[m], rmsin[mω0]u[m]

Applying the z-domain scaling property to the above, we have

Z[rmcos(mω0)u[m]] =
1− r cosω0z−1

1− 2r cosω0z−1 + r2z−2
, |z| > r (5.273)

and

Z[rm sin(mω0)u[m]] =
r sinω0z−1

1− 2r cosω0z−1 + r2z−2
, |z| > r (5.274)

5.2.5 Analysis of LTI Systems by Z-Transform

The Z-transform is a convenient tool for the analysis and design of discrete LTI
systems whose output y[m] is the convolution of the input x[m] and its impulse
response function h[m]:

y[m] = O[x[m]] = h[m] ∗ x[m] =
∞∑

k=−∞
h[k]x[m− k] (5.275)

In particular, if the input is an impulse x[m] = δ[m], then the out is the impulse
response function:

y[m] = O[δ[m]] = h[m] ∗ δ[m] =
∞∑

n=−∞
h[n]δ[m− n] = h[m] (5.276)

If the input is a complex exponential x[m] = esm = zm where z = es = eσ+jω ,
then the output is:

y[m] = O[zm] =
∞∑

k=−∞
h[k]zm−k = zm

∞∑

k=−∞
h[k]z−k = H(z)zm (5.277)

where H(z) is the transfer function of the system, first defined in Eq.1.88 in
Chapter 1, which is actually the Z-transform of the impulse response h[m] of the
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system:

H(z) =
∞∑

k=−∞
h[k]z−k (5.278)

Note that Eq.5.277 is the eigenequation of any discrete LTI system, where the
transfer function H(z) is the eigenvalue, and the complex exponential input
x[m] = esm = zm is the corresponding eigenfunction. In particular, if we let σ =
0, i.e., z = ejω, then the transfer function H(z) becomes the discrete-time Fourier
transform of the impulse response h[m] of the system:

H(z)
∣∣
s=jω

= H(ejω) =
∞∑

m=−∞
h[m]e−jωm = F [h[m]] (5.279)

This is the frequency response function of the discrete LTI system first defined
in Eq.4.81 of Chapter 3.

Moreover, due to its convolution property of the Z-transform, the convolution
in Eq.5.275 can be converted to a multiplication in z-domain:

y[m] = h[m] ∗ x[m] Z−→ Y (z) = H(z)X(z) (5.280)

Based on this relationship the transfer function H(z) can also be found in z-
domain as the ratio of the output Y (z) and input X(z):

H(z) =
Y (z)
X(z)

(5.281)

The ROC and poles of the transfer function H(s) of an LTI system dictate
the behaviors of system, such as its causality and stability.! Stability

Also as discussed in Chapter 1, a discrete LTI system is stable if to any
bounded input |x[m]| < B its response y[m] is also bounded for all m, and its
impulse response function h[m] needs to be absolutely summable (Eq.1.96):

∞∑

m=−∞

∣∣h[m]
∣∣ <∞ (5.282)

i.e., the frequency response function F [h[m]] = H(ejω) = H(z)
∣∣
z=ejω exists.

In other words, an LTI system is stable if and only if the ROC of its transfer
function H(z) includes the unit circle |z| = 1.! Causality
As discussed in Chapter 1, a discrete LTI system is causal if its impulse
response h[m] is a consequence of the impulse input δ[m], i.e., h[m] comes
after δ[m]:

h[m] = h[m]u[m] =
{

h[m] m ≥ 0
0 m < 0

(5.283)
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and its output is (Eq.1.97):

y[m] =
∞∑

n=−∞
h[n]x[m− n] =

∞∑

m=0

h[n]x[m− n] (5.284)

We see that the ROC of H(z) is the exterior of a circle. In particular, when
H(z) is rational, the system is causal if and only if its ROC is the exterior of
a circle outside the outermost pole, and the order of numerator is no greater
than that of the denominator so that z =∞ is not a pole (H(∞) exists).

Combining the two properties above, we see that a causal LTI system with a
rational transfer function H(z) is stable if and only if all poles of H(z) are inside
the unit circle of the z-plane (the magnitudes of all poles are smaller than 1).

Many LTI system can be described by a linear constant-coefficient difference
equation (LCCDE) in time domain

N∑

k=0

aky[m− k] =
M∑

k=0

bkx[m− k] (5.285)

Taking Z-transform of this equation, we get an algebraic equation in the z
domain:

Y (z)[
N∑

k=0

akz−k] = X(s)[
M∑

k=0

bkz−k] (5.286)

The transfer function of such a system is rational:

H(z) =
Y (z)
X(z)

=
∑M

k=0 bkz−k

∑N
k=0 akz−k

=
N(z)
D(z)

=
bM

aN

∏M
k=1(z − z0k)
∏N

k=1(z − z0k)
(5.287)

where zk, (k = 1, 2, · · · , M) are the roots of the numerator polynomial N(z),
and pk, (k = 1, 2, · · · , N) are the roots of the denominator polynomial D(z),
they are also respectively the zeros and poles of H(z).

Note that just as the LCCDE alone does not completely specify the relation-
ship between x[m] and y[m] (additional information such as the initial conditions
is needed), the transfer function H(z) does not completely specify the system.
For example, the same H(z) with different ROCs will represent different systems
(e.g., causal or anti-causal).

Example 5.15: The input and output of an LTI system are related by

y[m]− 1
2
y[m− 1] = x[m] +

1
3
x[m− 1] (5.288)

Note that without further information such as the initial condition, this equation
does not uniquely specify y[m] when x[m] is given. Taking Z-transform of this
equation and using the time shifting property, we get

Y (z)− 1
2
z−1Y (z) = X(z) +

1
3
z−1X(z) (5.289)
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and the transfer function can be obtained

H(z) =
Y (z)
X(z)

=
1 + 1

3z−1

1− 1
2z−1

=
1

1− 1
2z−1

(1 +
1
3
z−1) (5.290)

Note that the causality and stability of the system is not provided by this equa-
tion, unless the ROC of this H(z) is specified. Consider these two possible ROCs:! If ROC is |z| > 1/2, it is outside the pole zp = 1/2 and includes the unit circle.

The system is causal and stable:

h[m] = (
1
2
)mu[m] +

1
3
(
1
2
)m−1u[m− 1] (5.291)! If ROC is z| < 1/2, it is inside the pole zp = 1/2 and does not include the

unit circle. The system is anti-causal and unstable:

h[m] = −(
1
2
)mu[−m− 1]− 1

3
(
1
2
)m−1u[−m] (5.292)

5.2.6 The Unilateral Z-Transform

Same as the bilateral Laplace transform, the bilateral Z-transform does not take
initial condition into consideration while solving difference equations, and this
problem can be resolved by the unilateral Z-transform defined below:

UZ[x[n]] = X(z) =
∞∑

m=−∞
x[m]u[m]z−m =

∞∑

m=0

x[m]z−m (5.293)

When the unilateral Z-transform is applied to a signal x[m], it is always assumed
that the signal starts at time m = 0, i.e., x[m] = 0 for m < 0; when it is applied
to the impulse response function of a LTI system to find the transfer function
H(z) = UZ[h[m]], it is always assumed that the system is causal, i.e., h[m] = 0
for m < 0. In both cases, the ROC is always the exterior of a circle.

By definition, the unilateral Z-transform of any signal x[m] = x[m]u[m] is iden-
tical to its bilateral Z-transform. However, when x[m] $= x[m]u[m], the two Z-
transforms are different. Some of the properties of the unilateral Z-transform
different from the bilateral Z-transform are listed below.! Time advance

UZ[x[m + 1]] =
∞∑

m=0

x[m + 1]z−m = z
∞∑

n=1

x[n]z−n

= z[
∞∑

n=0

x[n]z−n − x[0]] = zX(z)− zx[0] (5.294)

where n = m + 1.
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! Time delay

UZ[x[m− 1]] =
∞∑

m=0

x[m− 1]z−m = z−1
∞∑

n=−1

x[n]z−n

= z−1[
∞∑

n=0

x[n]z−n + zx[−1]] = z−1X(z) + x[−1] (5.295)

where n = m− 1. Similarly, we have

UZ[x[m− 2]] =
∞∑

m=0

x[m− 2]z−m = z−2
∞∑

n=−2

x[n]z−n

= z−2[
∞∑

n=0

x[n]z−n + zx[−1] + z2x[−2]] = z−2X(z) + x[−1]z−1 + x[−2]

(5.296)

where n = m− 2. In general, we have

UZ[x[m−m0]] = z−m0X(z) +
m0−1∑

k=0

z−kx[k −m0] (5.297)

! Initial value theorem
If x[m] = x[m]u[mn], i.e., x[m] = 0 for m < 0, then

x[0] = lim
z→∞

X(z) (5.298)

Proof:

lim
z→∞

X(z) = lim
z→∞

[
∞∑

m=0

x[m]z−m] = x[0] (5.299)

All terms with n > 0 become zero as z−m = 1/zm → 0 as z →∞, except the
first one which is always x[0].! Final value theorem
If x[m] = x[m]u[m], i.e., x[m] = 0 for m < 0, then

lim
m→∞

x[m] = lim
z→1

(1− z−1)X(z) (5.300)

Proof:

Z[x[m]− x[m− 1]] = X(z)−X(z)z−1 =
∞∑

m=0

[x[m]− x[m− 1]]z−m (5.301)

i.e.

(1− z−1)X(z) = lim
N→∞

N∑

m=0

[x[m]− x[m− 1]]z−m (5.302)
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Letting z → 1 in the above, we get

lim
z→1

(1− z−1)X(z) = lim
N→∞

N∑

m=0

[x[m]− x[m− 1]]

= lim
N→∞

{
N−1∑

m=0

[x[m]− x[m]] + x[N ]− x[−1]} = lim
N→∞

x[N ]

as x[−1] = 0.

Due to these properties, the unilateral Z-transform is a powerful tool for solving
LCCDEs with non-zero initial conditions.

Example 5.16: A system is described by this LCCDE

y[m] + 3y[m− 1] = x[m] = αu[m] (5.303)

Taking unilateral Z-transform of the DE, we get

Y (z) + 3Y (z)z−1 + 3y[−1] = X(z) =
α

1− z−1
(5.304)! The particular (zero-state) solution

If the system is initially at rest, i.e., y[−1] = 0, the above equation can be
solved for the output Y (z) to get

Y (z) = H(z)X(z) =
1

1 + 3z−1

α

1− z−1
=

3α/4
1 + 3z−1

+
α/4

1− z−1
(5.305)

where H(z) = 1/(1 + 3z−1) is the system’s transfer function. In time domain
this is the particular (or zero-state) solution (caused by the input with zero
initial condition):

yp[m] = α[
1
4

+
3
4
(−3)m]u[m] (5.306)! The homogeneous (zero-input) solution

When the initial condition is nonzero

y[−1] = β (5.307)

but the input is zero x[m] = 0, the Z-transform of the difference equation
becomes

Y (z) + 3Y (z)z−1 + 3β = 0 (5.308)

Solving this for Y (z) we get

Y (z) =
−3β

1 + 3z−1
(5.309)
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In time domain, this is the homogeneous (or zero-input) solution (caused by
the initial condition with zero input):

yh[m] = −3β(−3)mu[m] (5.310)

When neither y[−1] nor x[m] is zero, we have

Y (z) + 3Y (z)z−1 + 3β = X(z) =
α

1− z−1
(5.311)

Solving this algebraic equation in z-domain for Y (z) we get

Y (z) =
α

(1 + 3z−1)(1 − z−1)
− 3β

1 + 3z−1
(5.312)

The first term is the particular solution caused by the input alone and the second
term is the homogeneous solution caused by the initial condition alone. The Y (z)
can be further written as

Y (z) =
1

1 + 3z−1
(
3
4
α− 3β) +

α

4
1

1− z−1
(5.313)

and in time domain, we have the general solution

yg[m] = [(
3
4
α− 3β)(−3)m +

α

4
]u[m] = yh[m] + yp[m] (5.314)

which is the sum of both the homogeneous and particular solutions.
Note that bilateral Z-transform can also be used to solve LCCDEs. However,

as bilateral Z-transform does not take initial condition into account, it is always
implicitly assumed that the system is initially at rest. If this is not the case,
unilateral Z-transform has to be used.

Example 5.17: The input to an LTI is

x(t) = e−3tu(t) (5.315)

and the output is

y(t) = h(t) ∗ x(t) = (e−t − e−2t)u(t) (5.316)

We want to identify the system by finding h(t) and H(s). In s-domain, input
and output signals are

X(s) =
1

s + 3
Re[s] > −3 (5.317)

and

Y (s) = H(s)X(s) =
1

s + 1
− 1

s + 2
=

1
(s + 1)(s + 2)

Re[s] > −1 (5.318)

The transfer function can therefore be obtained

H(s) =
Y (s)
X(s)

=
s + 3

(s + 1)(s + 2)
=

s + 3
s2 + 3s + 2

(5.319)
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This system H(s) has two poles p1 = −1 and p2 = −2 and therefore three possi-
ble ROCs: Re[s] < −2, −2 < Re[s] < −1 and Re[s] > −1 corresponding to left-
sided (anti-causal), two-sided and right-sided (causal) system, respectively. To
determine which of these ROCs the system has, recall that the ROC of a convo-
lution Y (s) = H(s) ∗X(s) should be no less than the intersection of the ROCs
of H(s) and X(s), i.e., the ROC of H(s) must be Re[s] > −1, i.e., the system
is causal and stable. The inverse Laplace transform of Y (s) = H(s)X(s) is the
LCCDE of the system:

d2

dt2
y(t) + 3

d

dt
y(t) + 2y(t) =

d

dt
x(t) + 3x(t) (5.320)

Example 5.18: Find the inverse of the given Z-transform

X(z) = 4z2 + 2 + 3z−1 (5.321)

Comparing this with the definition of Z-transform:

X(s) =
∞∑

m=−∞
x[m]z−m = · · ·x[−2]z2 + x[−1]z1 + x[0] + x[1]z−1 + x[2]z−2 + · · ·

(5.322)
we get

x[m] = 4δ[m + 2] + 2δ[m] + 3δ[m− 1] (5.323)

In general, we can use the time shifting property

Z[δ[m + m0]] = zm0 (5.324)

to inverse transform the X(z) given above to x[m] directly.

///—-
The Z-transform is also widely used to characterize discrete, linear, and time-

invariant (LTI) systems. In fact, the transfer function H(z) of a discrete LIT
system defined in Eq.1.88 in Chapter 1 is just the Z-transform of the impulse
response function h[m] of the system:

H(z) =
∞∑

m=−∞
h[m]z−m = Z[h[m]] (5.325)

In particular, if we let Re[s] = σ = 0, i.e., z = ejω, the above becomes the
discrete-time Fourier transform of h[m]:

H(z)
∣∣
z=ejω = H(ejω) =

∞∑

m=−∞
h[m]e−jωm = F [h[m]] (5.326)
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This is the frequency response function of the LTI system defined in Eq.4.81 of
Chapter 4.

Example 5.19:

x(t) = e−a(t+1)u(t + 1) (5.327)

This signal is right-sided starting at t = −1 (i.e., x(t) $= x(t)u(t)). By definition,
the bilateral Laplace transform of x(t) is

L[x(t)] =
∫ ∞

−1
e−a(t+1)e−stdt = e−a

∫ ∞

−1
e−(a+s)tdt

=
e−a

−(a + s)
e−(a+s)t

∣∣∞
−1

=
es

a + s
, Re[s] > −a

The unilateral Laplace transform of this signal is

UL[x(t)] =
∫ ∞

0
e−a(t+1)e−stdt = e−a

∫ ∞

0
e−(a+s)tdt

=
e−a

−(a + s)
e−(a+s)t

∣∣∞
0

=
e−a

a + s
, Re[s] > −a

Example 5.20:

x[m] = a−(m+1)u[m + 1] (5.328)

This signal is right-sided starting at m = −1 (i.e., x[m] $= x[m]u[m]). By defini-
tion, the bilateral Z-transform of x[m] is

Z[x[m]] =
∞∑

m=−1

a−(m+1)z−m = z + a−1
∞∑

m=0

a−mz−m = z +
a−1

1− (az)−1
=

z

1− (az)−1

(5.329)
It was assumed that |z| > a. The unilateral Z-transform of this signal is

UZ[x[m]] =
∞∑

m=0

a−(m+1)z−m = a−1
∞∑

m=0

(az)−m =
a−1

1− (az)−1
(5.330)

If we assume zero initial condition y[−1] = 0,



6 Fourier Related Orthogonal
Transforms

6.1 The Hartley Transform

6.1.1 Continuous Hartley Transform

Similar to the cosine transform considered previously, the Hartley transform is
also a real integral transform that is closely related to the Fourier transform.
Specifically, the kernel function of the Hartley transform is:

φf (t) = cas(2πft) = cos(2πft) + sin(2πft)

=
√

2 sin(2πft +
π

4
) =

√
2 cos(2πft− π

4
), (−∞ < t, f < ∞) (6.1)

This kernel function φf (t) = cas(2πft) is the cosine-and-sine function defined
as:

φf (t) = cas(2πft) = cos(2πft) + sin(2πft) = φt(f) (6.2)

which is symmetric with respect to f and t. We can show that this is a set of
uncountable orthonormal functions satisfying:

< φf (t),φf ′(t) >= δ(f − f ′), and < φt(f),φt′(f) >= δ(t− t′) (6.3)

Proof:

< φf (t),φf ′(t) >=
∫ ∞

−∞
φf (t)φf ′(t) dt

=
∫ ∞

−∞
[cos(2πft) + sin(2πft)] [cos(2πf ′t) + sin(2πf ′t)] dt

=
∫ ∞

−∞
[cos(2πft) cos(2πf ′t) + sin(2πft) sin(2πf ′t)] dt

+
∫ ∞

−∞
[cos(2πft) sin(2πf ′t) + sin(2πft) cos(2πf ′t)] dt

=
∫ ∞

−∞
cos(2π(f − f ′)t) dt +

∫ ∞

−∞
sin(2π(f + f ′)t) dt (6.4)

Here the first term is a Dirac delta δ(f − f ′) according to Eq.1.30, while the
second integral can be dropped as its integrand sin(2π(f + f ′)t) is odd with
respect to t, so that the integral over all time is zero. Now the inner product
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above becomes

< φf (t),φf ′(t) >= δ(f − f ′) (6.5)

As φf (t) = φt(f) is symmetric with respect to t and f , we also have:

< φt(f),φt′(f) >= δ(t− t′) (6.6)

The Hartley transform can now be similarly defined as the Fourier trans-
form. Based on the kernel function φf (t) = ej2πft = cos(2πft) + j sin(2πft), the
Fourier transform is defined as:

XF (f) = F [x(t)] =< x(t),φf (t) >=
∫ ∞

−∞
x(t)φf (t) dt

=
∫ ∞

−∞
x(t)e−j2πft dt =

∫ ∞

−∞
x(t)[cos(2πft)− j sin(2πft)] dt

Based on a different kernel function φf (t) = cos(2πft) + sin(2πft), the Hartley
transform is defined as:

XH(f) = H[x(t)] =< x(t),φf (t) >=
∫ ∞

−∞
x(t)φf (t) dt

=
∫ ∞

−∞
x(t)[cos(2πft) + sin(2πft)] dt (6.7)

Here the transform XH(f) is a function of frequency f and is therefore called
the Hartley spectrum of the signal x(t), similar to its Fourier spectrum XF (f).

The inverse Hartley transform can be obtained by taking an inner product
with φf (t′) = φt′(f) on both sides of the forward transform above:

< XH(f),φt′(f) > =
∫ ∞

−∞
XH(f)φ(t

′)(f) df =
∫ ∞

−∞

[∫ ∞

−∞
x(t)φf (t) dt

]
φ(t

′)(f) df

=
∫ ∞

−∞
x(t)
[∫ ∞

−∞
φf (t)φ(t

′)(f) df

]
dt

=
∫ ∞

−∞
x(t)δ(t− t′) dt = x(t′) (6.8)

We can write both the forward and inverse Hartley transform as the following
pair of equations:

XH(f) = H[x(t)] = < x(t),φf (t) >=
∫ ∞

−∞
x(t) [cos(2πft) + sin(2πft)] dt

x(t) = H−1[XH(f)] = < XH(f),φt(f) >=
∫ ∞

−∞
XH(f) [cos(2πft) + sin(2πft)] df

(6.9)

As φf (t) = φt(t) is symmetric, the inverse transform H is identical to the forward
transform H−1:

x(t) = H−1[XH(f)] = H[XH(f)] = H[ H[x(t)] ] (6.10)
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6.1.2 Properties of the Hartley Transform! Relation to Fourier transform:
Here we assume the signal x(t) = x(t) is real. First, if a signal x(t) = x(−t)
is even, its Fourier spectrum is real and therefore its the same as its Hartley
spectrum; on the other hand, if a signal x(t) = −x(−t) is odd, its Fourier
spectrum is imaginary and its Hartley spectrum is the negative version of its
Fourier spectrum. Second, we consider the general case where the signal is
neither even nor odd. Then its Hartley spectrum is:

XH(f) = H[x(t)] =
∫ ∞

−∞
x(t)[cos(2πft) + sin(2πft)] dt

=
∫ ∞

−∞
x(t) cos(2πft) dt +

∫ ∞

−∞
x(t) sin(2πft) dt

= Xe(f)] + Xo(f) (6.11)

where Xe(f) and Xo(f) are respectively the even and odd components of the
Hartley spectrum XH(f):

Xe(f) =
1
2
[XH(f) + XH(−f)] =

∫ ∞

−∞
x(t) cos(2πft) dt

Xo(f) =
1
2
[XH(f)−XH(−f)] =

∫ ∞

−∞
x(t) sin(2πft) dt

On the other hand, the Fourier spectrum of x(t) is:

XF (f) = F [x(t)] =
∫ ∞

−∞
x(t)e−j2πft dt =

∫ ∞

−∞
x(t)[cos(2πft)− j sin(2πft)] dt

=
∫ ∞

−∞
x(t) cos(2πft) dt− j

∫ ∞

−∞
x(t) sin(2πft) dt

= Xe(f)− j Xo(f) (6.12)

We see that both the Hartley and Fourier spectra of a real signal x(t) are
composed of the same even and odd components Xe(f) and Xo(f), which are
also the real and imaginary parts (negative version) of the Fourier spectrum
XF (f):

Xe(f) = Re[XF (f)], Xo(f) = −Im[XF (f)]

Now the Hartley spectrum can be obtained as a linear combination of the real
and imaginary parts of the Fourier spectrum:

XH(f) = Xe(f) + Xo(f) = Re[XF (f)]− Im[XF (f)] (6.13)! Convolution in both time and frequency domains:
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Let z(t) = x(t) ∗ y(t) be the convolution of x(t) and y(t), then the Hartley
spectrum ZH(f) = H[z(t)] is:

ZH(f) = H[x(t) ∗ y(t)]

=
1
2

[XH(f)YH(f)−XH(−f)YH(−f) + XH(f)YH(−f) + XH(−f)YH(f)]

(6.14)

where XH(f) = H[x(t)] and YH(f) = H[y(t)] are the Hartley spectra of x(t)
and y(t), respectively.
Proof:
According to the convolution theorem of the Fourier transform (Eq.3.113),
the Fourier spectrum ZF (f) = F [z(t)] is the product of the spectra XF (f) =
F [x(t)] and YF (f) = F [y(t)]:

ZF (t) = XF (f) YF (f) = [Xe(f)− j Xo(f)] [Ye(f)− j Yo(f)]

= [Xe(f)Ye(f)−Xo(f)Yo(f)]− j [Xo(f)Ye(f) + Xe(f)Yo(f)]

= Ze(f)− j Zo(f) (6.15)

where Xe(f), Xe(f) and Ye(f), Ye(f) are the even and odd components of
XH(f) and YH(f), respectively:

Xe(f) =
1
2
[XH(f) + XH(−f)], Xo(f) =

1
2
[XH(f)−XH(−f)]

Ye(f) =
1
2
[YH(f) + YH(−f)], Yo(f) =

1
2
[YH(f)− YH(−f)]

and Ze(f) and Zo(f) are the even and odd components of ZH(f) (note that
the product of two even or odd functions is even, and the product of an even
function and an odd function is odd):

Ze(f) = Xe(f)Ye(f)−Xo(f)Yo(f) =
1
2
[XH(f)YH(−f) + XH(−f)YH(f)]

Zo(f) = Xe(f)Yo(f) + Xo(f)Ye(f) =
1
2
[XH(f)YH(f)−XH(−f)YH(−f)](6.16)

Substituting these into ZH(f) = Ze(f) + Zo(f), we get Eq.6.14.
Also, based on Eq.3.114, we can similarly prove the Hartley spectrum of the
product of two functions z(t) = x(t) y(t) is:

ZH(t) = H[x(t) y(t)]

=
1
2

[XH(f) ∗ YH(f)−XH(−f) ∗ YH(−f) + XH(f) ∗ YH(−f) + XH(−f) ∗ YH(f)]

(6.17)! Correlation:
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Let z(t) = x(t) & y(t) be the correlation of x(t) and y(t), then the Hartley
spectrum ZH(f) = H[z(t)] is:

ZH(f) = H[x(t) & y(t)]

=
1
2

[XH(f)YH(f) + XH(−f)YH(−f) + XH(f)YH(−f)−XH(−f)YH(f)]

(6.18)

In particular, when x(t) = y(t), i.e., XH(f) = YH(f), then the odd part Zo(f)
of its spectrum is zero, and the correlation x(t) & y(t) = x(t) & x(t) becomes
autocorrelation, the Eq.6.18 becomes:

H[x(t) & x(t)] =
1
2
[X2

H(f) + X2
H(−f)] (6.19)

Proof:
According to the correlation property of the Fourier transform (Eq.3.108),
the Fourier spectrum ZF (f) = F [z(t)] is the product of the spectra XF (f) =
F [x(t)] and YF (f) = F [y(t)]:

ZF (t) = XF (f) Y F (f) = [Xe(f)− j Xo(f)] [Ye(f) + j Yo(f)]

= [Xe(f)Ye(f) + Xo(f)Yo(f)]− j [Xo(f)Ye(f)−Xe(f)Yo(f)]

= Ze(f)− j Zo(f) (6.20)

where Xe(f), Xe(f) and Ye(f), Ye(f) are the even and odd components of
XH(f) and YH(f), respectively:

Xe(f) =
1
2
[XH(f) + XH(−f)], Xo(f) =

1
2
[XH(f)−XH(−f)]

Ye(f) =
1
2
[YH(f) + YH(−f)], Yo(f) =

1
2
[YH(f)− YH(−f)]

and Ze(f) and Zo(f) are the even and odd components of ZH(f):

Ze(f) = Xe(f)Ye(f) + Xo(f)Yo(f) =
1
2
[XH(f)YH(f) + XH(−f)YH(−f)]

Zo(f) = Xo(f)Ye(f)−Xe(f)Yo(f) =
1
2
[XH(f)YH(−f)−XH(−f)YH(f)]

Substituting these into ZH(f) = Ze(f) + Zo(f), we get Eq.6.18.

6.1.3 Hartley Transform of Typical Signals

As the Hartley transform is closely related to the Fourier transform, the Hartley
spectra of many signals are similar to or the same as their Fourier spectra. We
consider a few examples:

Example 6.1:



Fourier Related Orthogonal Transforms 311

!
x(t) = cos(2πf0t + θ) =

1
2
[ej2πf0tejθ + e−j2πf0te−jθ]

and its Fourier transform is

XF (f) =
1
2
[δ(f − f0)ejθ + δ(f + f0)e−jθ ]

=
1
2
[δ(f − f0)(cos θ + j sin θ) + δ(f + f0)(cos θ − j sin θ)]

=
1
2
[δ(f − f0) cos θ + δ(f + f0) cos θ] +

j

2
[δ(f − f0) sin θ − δ(f + f0) sin θ]

Its Hartley transform is

XH(f) = Re[XF (f)]− Im[XF (f)]

=
1
2
[δ(f − f0)(cos θ − sin θ) + δ(f + f0)(cos θ + sin θ)]

In particular, if θ = 0, we have x(t) = cos(2πf0t), and its Hartley spectrum
becomes:

XH(f) = H[cos(2πf0t)] =
1
2
[δ(f − f0) + δ(f + f0)]

which is the same as the Fourier spectrum XF (f). Also if θ = −π/2, we have
x(t) = cos(2πf0t− π/2) = sin(2πf0t), and its Hartley spectrum becomes:

XH(f) = H[sin(2πf0t)] =
1
2
[δ(f − f0)− δ(f + f0)]

which is the negative version of imaginary part of the Fourier spectrum

XF (f) =
1
2j

[δ(f − f0)− δ(f + f0)] =
j

2
[−δ(f − f0) + δ(f + f0)]

For a specific example, consider a signal:

x(t) = 1 + 3 cos(2π32t) + 2 sin(2π128t) + 2 cos(2π256t + pi/3)

In Fig.6.1 this signal is plotted (top) together with both of its Hartley (mid-
dle) and Fourier (bottom) spectra. Also, in the top panel, the reconstruction
of the signal (dashed line) from its spectrum is plotted. We see that the recon-
struction is perfect as its plot is right on top of that of the original signal.
We also see that the DC and cosine component (without phase shift) appear
the same in the two spectra. The sine component appears in the two spectra
as the negative version of each other. When there is a phase shift of π/3, the
Hartley spectrum is the difference between the real and imaginary parts of
the Fourier spectrum.!

x(t) = e−atu(t)

This exponential decay function together with its Hartley and Fourier spectra
are shown respectively in top, middle and bottom panels of Fig.6.2.
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Figure 6.1 The Hartley and Fourier spectra of sinusoidal components of a signal

Figure 6.2 The Hartley and Fourier spectra of exponential decay

6.1.4 Discrete Hartley Transform

When a continuous signal x(t) is truncated to have a finite duration 0 < t < T
and sampled with sampling rate F = 1/t0, it becomes a set of M = T/t0 samples
that form an M-D vector x = [x[0], · · · , x[M − 1]]T . Correspondingly the Hartley
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transform also becomes discrete based on a discrete kernel:

φk[m] =
1√
M

cas(2π
(

mk

M

)
)

=
1√
M

[
cos(2π

(
mk

M

)
) + sin(2π

(
mk

M

)
)
]

(6.21)

which form a set of basis vectors φk = [cas(2π 0k/M), · · · , cas(2π (M −
1)k/M)]T (k = 0, · · · , M − 1) that span an M-D vector space. Following the
proof of Eq.1.29, we can show that these vectors are orthogonal:

< φk,φk′ > =
1
M

M−1∑

m=0

cas(2πmk/M)cas(2πmk′/M)

=
1
M

[
M−1∑

m=0

cos(2πm(k − k′)/M) +
M−1∑

m=0

sin(2πm(k − k′)/M)

]

=
1
M

M−1∑

m=0

cos(2πm(k − k′)/M) = δ[k − k′] (6.22)

The discrete Hartley transform of a signal vector x is then defined as:

XH [k] = H[x[m]] =
M−1∑

m=0

x[m]cas

(
2π

mk

M

)

=
1√
M

M−1∑

m=0

[
cos
(

2π
mk

M

)
+ sin

(
2π

mk

M

)]
(6.23)

Here XH [k] (k = 0, · · · , M − 1) are M frequency components of the signal, sim-
ilar to the case of the discrete Fourier transform. Due to the orthogonality of
φk and following the same method used to derive Eq.6.8, we get the inverse
transform by which the signal can be reconstructed:

x[m] = H−1[XH [k]] =
1√
M

M−1∑

k=0

X [k]cas

(
2π

mk

M

)
(6.24)

Same as in the continuous case in Eq.6.13, the discrete Hartley transform is
closely related to the discrete Fourier transform:

XF [k] = F [x[m]] =
1√
M

M−1∑

m=0

x[m]e−j2πmk/M =
1√
M

M−1∑

m=0

[
cos
(

2π
mk

M

)
− j sin

(
2π

mk

M

)]

= Xe[k]− j Xo[k], (k = 0, · · · , M − 1)

where

Xe[k] = Re[XF [k]] =
1√
M

M−1∑

m=0

x[m] cos
(

2π
mk

M

)

Xo[k] = −Im[XF [k]] =
1√
M

M−1∑

m=0

x[m] sin
(

2π
mk

M

)
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and the discrete Hartley spectrum can also be obtained from the discrete Fourier
transform:

XH [k] = H[x[m]] = Xe[k] + Xo[k] = Re[XF [k]− Im[XF [k]]] (6.25)

Example 6.2: As considered before, the DFT of a 8-D signal vector x =
[0, 0, 2, 3, 4, 0, 0, 0]T is (Eq.4.147) X = Xr + jXj where:

Xr =
[
3.18, −2.16, 0.71, −0.66, 1.06, −0.66, 0.71, −2.16

]T

Xj =
[
0.0, −1.46, 1.06, −0.04, 0.0, 0.04, −1.06, 1.46

]T (6.26)

The discrete Hartley transform of this signal vector is:

XH = Xr −Xj = [3.18,−0.71,−0.35,−0.62, 1.06,−0.71, 1.77,−3.62]T

The inverse Hartley transform will convert this spectrum XH back to the original
signal.

6.1.5 2-D Hartley Transform

Similar to the 2-D Fourier transform, the 2-D Hartley transform of a signal array
x[m, n] (0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1) can be defined as:

X [k, l] = H[x[m, n]] =
M−1∑

m=0

N−1∑

n=0

x[m, n]φk,l[m, n] (6.27)

where φk,l[m, n] is a discrete 2-D kernel function. There exist two different def-
initions for the 2-D Hartley transform depending on which of the following 2-D
kernel function is assumed:

φ′k,l[m, n] = cas(2π(mk/M + nl/N))/
√

MN (6.28)

φ′′k,l[m, n] = cas(2πmk/M) cas(2πnl/N)/
√

MN (6.29)

Note that the second kernel is separable, i.e., it is a product of two 1-D kernels
one for each of the two dimensions, while the first one is inseparable. As shown
below, these two different kernel functions are very similar to each other:

cas(2πmk/M) cas(2π nl/N)

= [cos(2πmk/M) + sin(2πmk/M)] [cos(2π nl/N) + sin(2π nl/N)]
= [cos(2πmk/M) cos(2π nl/N) + sin(2πmk/M) sin(2π nl/N)]

[sin(2πmk/M) cos(2π nl/N) + cos(2πmk/M) sin(2π nl/N)]

= cos(2π(mk/M − nl/N)) + sin(2π(mk/M + nl/N))

$= cos(2π(mk/M + nl/N)) + sin(2π(mk/M + nl/N))

= cas(2π(mk/M + nl/N)) (6.30)
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We see that the only difference between the two kernels is the sign of the argu-
ment of the cosine function. Both of these kernel functions satisfy the orthogo-
nality:

M−1∑

m=0

N−1∑

n=0

φk,l[m, n]φk′,l′ [m, n] = δ[k − k′, l − l′] (6.31)

therefore either of which can be used for the 2-D Hartley transform.! First we consider φ′k,l[m, n] = cas(2π(mk/M + nl/N)). The forward trans-
form is:

X ′
H [k, l] =

1√
MN

M−1∑

m=0

N−1∑

n=0

x[m, n]cas(2π(mk/M + nl/N))

=
1√

MN

M−1∑

m=0

N−1∑

n=0

x[m, n][cos(2π(mk/M + nl/N)) + sin(2π(mk/M + nl/N))]

(6.32)

This Hartley transform can be compared with the 2-D Fourier transform:

XF [k, l] =
1√
MN

M−1∑

m=0

N−1∑

n=0

x[m, n]e−2π(mk/M+nl/N)

=
1√
MN

M−1∑

m=0

N−1∑

n=0

x[m, n][cos(2π(mk/M + nl/N))− j sin(2π(mk/M + nl/N))]

= Xe[k, l]− jXo[k, l] = Re[Xe[k, l]] + jIm[Xo[k, l]] (6.33)

where

Xe[k, l] = Re[XF [k, l]] =
1√

MN

M−1∑

m=0

N−1∑

n=0

x[m, n] cos(2π(mk/M + nl/N))

Xo[k, l] = −Im[XF [k, l]] =
1√

MN

M−1∑

m=0

N−1∑

n=0

x[m, n] sin(2π(mk/M + nl/N))

are respectively the 2-D even and odd components of XF [k, l]. We can see the
same relationship between the Hartley and Fourier transforms as in 1-D case:

X ′
H [k, l] = Xe[k, l] + Xo[k, l] = Re[XF [k, l]]− Im[XF [k, l]] (6.34)

Extending the orthogonality in Eq.6.22 from 1-D to 2-D, we get:

1
MN

M−1∑

m=0

N−1∑

n=0

cas(2π(mk/M + nl/N))cas(2π(mk′/M + nl′/N)) = δ[k − k′, l − l′]

(6.35)
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Based on this orthogonality and following the same method used to derive
Eq.6.24, we get the inverse transform by which the signal can be reconstructed:

x[m, n] =
1√
MN

M−1∑

m=0

N−1∑

n=0

X ′
H [k, l]cas(2π(mk/M + nl/N)) (6.36)

! Next we consider φ′′k,l[m, n] = cas(2πmk/M)cas(2π nl/N), which is is separa-
ble, same as the 2-D Fourier kernel ej2π(mk/M+nl/N) = ej2π(mk/M)ej2π(nl/N),
therefore the 2-D transform can also be carried out in two stages of 1-D trans-
forms for each of the two dimensions:

X ′′
H [k, l] =

1√
MN

N−1∑

n=0

M−1∑

m=0

x[m, n]cas(2π mk/M)cas(2π nl/N)

=
1√
N

N−1∑

n=0

[
1√
M

M−1∑

m=0

x[m, n]cas(2πmk/M)

]
cas(2π nl/N)

(6.37)

According to Eq.6.30, this transform can be further written as:

X ′′
H [k, l] =

1√
MN

M−1∑

m=0

N−1∑

n=0

x[m, n][cos(2π(mk/M − nl/N)) + sin(2π(mk/M + nl/N))]

= Xe[k,−l] + Xo[k, l] = Re[XF [k,−l]]− Im[XF [k, l]] (6.38)

Similarly the inverse transform can also be carried out in two stages

x[m, n] =
1√
MN

M−1∑

m=0

N−1∑

n=0

X ′′
H [k, l]cas(2πmk/M)cas(2π nl/N)

=
1√
N

M−1∑

m=0

[
1√
M

N−1∑

n=0

X ′′
H [k, l]cas(2πmk/M)

]
cas(2π nl/N)(6.39)

Note again that the inverse transform in either Eq.6.36 or Eq.6.39 is identical
to the forward transform. Also, to better compare the two versions of the 2-D
Hartley transform, we put Eqs.6.34 and 6.38 side by side:

X ′
H [k, l] = Xe[k, l] + Xo[k, l] = Re[XF [k, l]]− Im[XF [k, l]]

X ′′
H [k, l] = Xe[k,−l] + Xo[k, l] = Re[XF [k,−l]]− Im[XF [k, l]]

We see that the difference between the two methods is simply the sign of the
argument in the even term, it is either Xe[k, l] or Xe[k,−l] = Xe[−k, l] (even).
As Xe[k + M, l + N ] = Xe[k, l] are periodic, we have Xe[k,−l] = Xe[k, N − l].
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Figure 6.3 The 8 by 8 basis functions for the 2-D Hartley transform

The left half of the image shows the basis functions based on the separable kernel
φ′′k,l[m, n], and the right half based on the inseparable kernel φ′k,l[m, n]. The DC
component is at the top-left corner, and the highest frequency component in
both horizontal and vertical directions is at the middle, same as the 2-D Fourier
basis.

Example 6.3: Given a 2-D signal array:

x =





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 70.0 80.0 90.0 0.0 0.0 0.0
0.0 0.0 90.0 100.0 110.0 0.0 0.0 0.0
0.0 0.0 110.0 120.0 130.0 0.0 0.0 0.0
0.0 0.0 130.0 140.0 150.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0





The Hartley spectrum corresponding to inseparable kernel φ′k,l[m, n] is:

X ′ =





165.0 -10.0 -45.0 -32.2 55.0 -10.0 65.0 -187.8
27.4 -100.5 54.8 6.3 9.1 -15.2 -47.7 65.8
0.0 17.1 -10.0 -2.9 0.0 2.9 10.0 -17.1

-26.4 -15.2 17.7 7.1 -8.8 -0.5 -20.6 46.6
15.0 0.0 -5.0 -2.9 5.0 0.0 5.0 -17.1

-57.4 20.2 5.3 9.2 -19.1 5.5 -12.3 48.7
30.0 -17.1 0.0 -2.9 10.0 -2.9 0.0 -17.1

-153.6 105.5 -17.7 18.4 -51.2 20.2 0.6 77.9
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Figure 6.4 The Hartley and Fourier filtering of an image

The image and its Fourier and Hartley spectra before and after a low-pass filter-
ing are shown in the top and bottom rows, respectively. The second and third
panel of each row are the real and imaginary parts of the Fourier spectrum, while
the forth panel is for the Hartley spectrum.

The Hartley spectrum corresponding to separable kernel φ′′k,l[m, n] is:

X ′′ =





165.0 -10.0 -45.0 -32.2 55.0 -10.0 65.0 -187.8
27.4 -3.5 -5.6 -5.4 9.1 -3.5 12.7 -31.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-26.4 1.5 7.3 5.2 -8.8 1.5 -10.3 30.0
15.0 0.0 -5.0 -2.9 5.0 0.0 5.0 -17.1
-57.4 3.5 15.6 11.2 -19.1 3.5 -22.7 65.4
30.0 0.0 -10.0 5.9 10.0 0.0 10.0 -34.1

-153.6 8.5 42.7 30.0 -51.2 8.5 -59.8 174.9





In either case, the signal is perfectly reconstructed by the inverse transform
(identical to the forward transform) corresponding to each of the two kernels.

Example 6.4: An image and both of its Fourier and Hartley spectra are shown
in the top row of Fig.6.4. The real and imaginary parts of the Fourier spectrum
are shown respectively in the second and third panels, and the Hartley spectrum
is shown in the forth. These spectra are then low-pass filtered and then inverse
transformed as shown in the bottom row of the figure. The Hartley filtering effect
is identical to that of the Fourier filtering, shown in the first panel of the bottom
row.



Fourier Related Orthogonal Transforms 319

6.2 The Discrete Cosine Transform

In general, the discrete Fourier transform (DFT) converts a complex signal into
its complex spectrum. If the signal is real, as in most of the applications, the
imaginary part of the signal is all zero, and its spectrum is symmetric (real part
is even and imaginary part odd), i.e., half of the data is redundant in frequency
domain as well as in time domains. Consequently, half of the computational time
and storage space in the transform is unnecessary.

Such redundancy can be avoided in the discrete cosine transform (DCT) which
transforms a real signal into its real spectrum. Also, as the DCT can be derived
from the DFT, the fast algorithm FFT can still be used for the DCT computa-
tion.

6.2.1 Fourier Cosine Transform

Let us first review the Fourier transform of a real signal x(t):

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt =

∫ ∞

−∞
x(t)[cos(2πft)− j sin(2πft)]dt

= Xr(f)− jXj(f) (6.40)

where the real part of the spectrum Xr(f) is even and the imaginary part Xj(f)
is odd:

Xr(f) =
∫ ∞

−∞
x(t) cos(2πft)dt = Xr(−f)

Xj(f) =
∫ ∞

−∞
x(t) sin(2πft)dt = −Xj(−f) (6.41)

Moreover, if we can further assume the signal is even, i.e., x(t) = x(−t), then
Xj(f) = 0 as the integral of the odd integrand x(t) sin(2πft) is zero. Now the
Fourier transform becomes a real cosine transform:

X(f) =
∫ ∞

−∞
x(t) cos(2πft)dt = 2

∫ ∞

0
x(t) cos(2πft)dt = X(−f) (6.42)

The second equal sign is due to the fact that the integrand x(t) cos(2πft) is even
with respect to t. This spectrum X(f) is real and even with respect to f . The
inverse transform becomes:

x(t) =
∫ ∞

−∞
X(f)ej2πftdf =

∫ ∞

−∞
X(f) cos(2πft)df + j

∫ ∞

−∞
X(f) sin(2πft)df

= 2
∫ ∞

0
X(f) cos(2πft)df (6.43)

The last equal sign is due to the fact that the integrands X(f) cos(2πft) and
X(f) sin(2πft) are even and odd respectively. We see that now both the forward
and inverse cosine transforms involve only real operations. As a real transform,
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the cosine transform is computationally more advantageous compared to the
Fourier transform.

Of course this cosine transform is valid only if the signal of interest is even.
However, if the signal is not even but it is known to be zero before a certain
moment, i.e., x(t) = x(t)u(t), we can construct an even signal:

x′e(t) =
{

x(t) t ≥ 0
x(−t) t ≤ 0

so that the cosine transform can still be used.
Obviously if we can assume or construct an odd signal x(t) = −x(−t), we can

also derive in a similar manner the sine transform.
The consideration above for the continuous signals can be extended to discrete

signals of a finite duration. The corresponding cosine transform is called the
discrete cosine transform (DCT). However, different from the continuous case,
here we have more than one way to construct an even signal based on a set of
finite data samples x[0], · · · , x[N − 1]. For example, by assuming x[−m] = x[m],
we can obtain a sequence of 2N − 1 samples that is even with respect to the
point m = 0. Alternatively, we could also let x[−m] = x[m− 1], i.e., x[−1] = x[0],
x[−2] = x[1], and x[−N ] = x[N − 1] to get a sequence of 2N samples that is
even with respect to the point m = −1/2. Moreover, there may be different
ways to assume the periodicity beyond these 2N − 1 or 2N data samples. In the
following, we will take the second approach to construct a sequence of 2N points
and assume it is periodic beyond its two ends. Then the DCT can be derived by
applying the DFT to this even sequence of 2N points.

6.2.2 From Discrete Fourier Transform to Discrete Cosine Transform

We now derive the DCT of an N-point discrete signal, based on the 2N-
point DFT, as described above. First, given an N-point real signal sequence
x[0], · · · , x[N − 1], we construct a new sequence of 2N points:

x′[m] =
{

x[m] (0 ≤ m ≤ N − 1)
x[−m− 1] (−N ≤ m ≤ −1)

(6.44)

This 2N-point sequence x′[m] is assumed to repeat itself outside the range −N ≤
n ≤ N − 1, i.e., it is periodic with period 2N :

x′[m] = x′[−m− 1] = x′[2N −m− 1] (6.45)

In the following we simply denote this constructed sequence by x[m]. Note that
this signal x′[m] is even with respect to the point m = −1/2. If we shift it to the
right by 1/2, or, equivalently, if we define a new index m′ = m + 1/2, i.e., m =
m′ − 1/2, then the function x[m] = x[m′ − 1/2] is even with respect to m′ = 0.

Fig. 6.5 shows a discrete signal of N = 4 data points x[0], · · · , x[3]. A
new signal is then constructed by including N = 4 additional points x[−1] =
x[0], · · · , x[−4] = x[3]. This signal of 2N = 8 points is even with respect to
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Figure 6.5 Formulation of DCT

m = 1/2. After define m′ = m + 1/2, these points x[m′ − 1/2] (from −N + 1/2 =
−3.5 to N − 1/2 = 3.5) are even with respect to m′ = 0.

Now we can apply a 2N-point DFT to this constructed even signal of 2N points
and get:

X [n] =
1√
2N

N−1/2∑

m′=−N+1/2

x[m′ − 1
2
]e−j2πm′n/2N

=
1√
2N

N−1/2∑

m′=−N+1/2

x[m′ − 1
2
] cos

(
2πm′n

2N

)

− j√
2N

N−1/2∑

m′=−N+1/2

x[m′ − 1
2
] sin

(
2πm′n

2N

)
(n = 0, · · · , 2N − 1)(6.46)

Note that as cos(2πm′n/2N) and sin(2πm′n/2N) are even and odd, respectively,
and x[m′ − 1/2] is even, all with respect to m′ = 0, the terms in the first summa-
tion are even while those in the second summation are odd. Consequently, the
first summation of 2N terms is equal to twice the sum of the first N terms, and
the second summation is simply zero, and we have

X [n] =
√

2
N

N−1/2∑

m′=1/2

x[m′ − 1
2
] cos

(
2πm′n

2N

)
(n = 0, · · · , 2N − 1) (6.47)

Note that X [n] = X [−n] is real, even (as cos(−2πm′n/2N) = cos(2πm′n/2N)),
and periodic with period 2N . Specifically, we have X [N + n] = X [N + n−
2N ] = X [−N + n] = X [N − n], indicating a point X [N + n] in the second half
of the 2N coefficients is equal to its corresponding point X [N − n] in the first
half, for all n = 0, 1, · · · , N − 1. In other words, the range for the index n in the
equation above can be from 0 to N − 1, as the second half is redundant and
can therefore be dropped. Finally, replacing m′ by m + 1/2, we get the discrete
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cosine transform (DCT):

X [n] =
√

2
N

N−1∑

m=0

x[m] cos
(

(2m + 1)nπ
2N

)
, (n = 0, · · · , N − 1) (6.48)

We compare the DCT discussed above with the DFT considered in previous
chapters to realize the following advantages:! The DCT is a real transform with better computational efficiency than the

complex DFT as no complex operations are needed.! The DCT does not introduce discontinuity while truncating and imposing
periodicity on the time signal. To perform the DFT of a physical signal,
it needs to be truncated to have a finite duration 0 ≤ t ≤ T , and assumed
periodic with period T beyond this range. In this process, discontinuity is
inevitably introduced in time domain and some corresponding artifacts, most
likely some high frequency components, are introduced in frequency domain.
But as even symmetry is assumed in the case of DCT while truncating the
time signal, no discontinuity and related artifacts are introduced in DCT.! The DCT coefficient X [n] given in Eq.6.48 corresponds to a sinusoid
cos(2πfn(m + 1/2)) of frequency fn = n/2N , which is half of the frequency
fn = n/N represented by the nth DFT coefficient:

X [n] =
N−1∑

m=0

x[m]exp(j2πmn/N) =
N−1∑

m=0

x[m][cos(2πfnm) + j sin(2πfnm)]

Both the DCT and DFT spectra contain N coefficients. However, half of the
N DFT coefficients represents the negative frequencies of the complex expo-
nentials, while each of the N DCT coefficients represents a different frequency
of a sinusoid. Both DCT and DFT spectra represent the same frequency range
but the resolution of the DCT spectrum is twice that of the DFT.

6.2.3 Discrete Cosine Transform in Matrix Form

An N by N DCT matrix C can be constructed by defining its element of the
mth row and nth column as:

c[m, n] = cos(
(2m + 1)nπ

2N
) = cos(

(m + 1/2)nπ
N

), (m, n = 0, 1, · · · , N − 1)
(6.49)

This matrix can also be expressed in terms of its N column vectors

C =




c[0, 0] · · · c[0, N − 1]

...
. . .

...
c[0, N − 1] · · · c[N − 1, N − 1]



 = [c0 · · · cN−1] (6.50)



Fourier Related Orthogonal Transforms 323

where the nth column cn of this matrix is:

cn =
[
cos
( nπ

2N

)
, cos

(
3nπ

2N

)
, cos

(
5nπ

2N

)
, · · · , cos

(
(2N − 1)nπ

2N

)]T

(6.51)

We can show that all column vectors of C are orthogonal:

< ck, cn >= 0, for any n $= k (6.52)

We first show the following is true:
N−1∑

m=0

cos(
(2m + 1)kπ

2N
) =
{

N k = 0
0 k $= 0

(6.53)

Obviously when k = 0, all N cosine functions are zero and the summation is
indeed N . We only need to show the summation is zero when k $= 0. Consider:

N−1∑

m=0

cos(
(2m + 1)kπ

2N
) =

1
2

N−1∑

m=0

[ej(2m+1)kπ/2N + e−j(2m+1)kπ/2N ]

=
1
2
[ejkπ/2N

N−1∑

m=0

(ejkπ/N )m + e−jkπ/2N
N−1∑

m=0

(e−jkπ/N )m]

=
1
2
[ejkπ/2N 1− ejkπ

1− ejkπ/N
+ e−jkπ/2N 1− e−jkπ

1− e−jkπ/N
] (6.54)

Here we have used the identity
∑N−1

m=0 xm = (1− xN )/(1− x). When k is even,
ejkπ = e−jkπ = 1 and the numerators of both fractions are zero. When k is odd,
ejkπ = e−jkπ = −1, and the above becomes:

1
2
[

2
e−jkπ/2N (1− ejkπ/N )

+
2

ejkπ/2N (1− e−jkπ/N )
]

=
1

e−jkπ/2N − ejkπ/2N
+

1
ejkπ/2N − e−jkπ/2N

= 0 (6.55)

Now we can consider the inner product of the kth and nth columns of C:

< ck, cn >=
N−1∑

m=0

c[m, k]c[m, n] =
N−1∑

m=0

cos(
(2m + 1)kπ

2N
) cos(

(2m + 1)nπ
2N

)

=
1
2

N−1∑

m=0

cos(
(2m + 1)(k + n)π

2N
) +

1
2

N−1∑

m=0

cos(
(2m + 1)(k − n)π

2N
) (6.56)

Here we have used the trigonometric identity cosα cosβ = [cos(α + β) + cos(α−
β)]/2. When k $= n, both terms are zero according to Eq. 6.53, i.e., the inner
product is zero, indicating the column vectors of C are orthogonal. When n = k,
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the inner product becomes the nth column’s norm squared:

< cn, cn >= ||cm||2 =
1
2

N−1∑

m=0

cos(
(2m + 1)2nπ

2N
) +

1
2

N−1∑

m=0

cos(
(2m + 1)0π

2N
)

=
{

N if n = 0
N/2 otherwise

(6.57)

This is because the first term is either N/2 zero if n = 0 or zero if n $= 0, while
the second term is always N/2. In order to make all columns of C normalized,
we define a coefficient a[n]:

a[n] =
{√

1/N if n = 0√
2/N otherwise

(6.58)

and multiply C by a[n], so that the columns of the modified version of the DCT
matrix, still denoted by C, are orthonormal:

< ck, cn >= δ[k − n] =
{

1 k = n
0 k $= n

(6.59)

and they can therefore used as a basis of the N-D space RN , and the modified
DCT matrix C becomes orthogonal:

CT = C−1, i.e. CT C = I (6.60)

Expressing both the discrete signal x[m] (m = 0, 1, · · · , N − 1) and its DCT
transform coefficients X [n] (n = 0, 1, · · · , N − 1) as vectors:

x = [x[0], · · · , x[N − 1]]T , X = [X [0], · · · , X [N − 1]]T (6.61)

we can represent the forward DCT as a matrix multiplication:

X = CT x =




cT
0
...

cT
N−1



x (6.62)

The nth component X [n] of X is actually the projection of the signal vector x
onto the nth basis vector cn:

X [n] = < cn, x >= cT
nx =

N−1∑

m=0

c[n, m]x[m]

= a[n]
N−1∑

m=0

x[m] cos(
(2m + 1)nπ

2N
), (n = 0, · · · , N − 1) (6.63)

which is the same as Eq. 6.48 derived previously as a[n] =
√

2/N for all n =
1, · · · , N − 1, except when n = 0 we have a different scaling constant a[0] =
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1/
√

N :

X [0] =
N−1∑

m=0

c[0, m]x[m] =
1√
N

N−1∑

m=0

x[m] (6.64)

representing the DC component of the signal.
The inverse DCT can be obtained by pre-multiplying C on both sides of Eq.

6.62 for the forward DCT. As CCT = CC−1 = I, we get

x = CX = [c0, · · · , cN−1]




X [0]

...
X [N − 1]



 =
N−1∑

n=0

X [n]cn (6.65)

i.e., the signal vector x is expressed as a linear combination of the basis vectors
cn, (n = 0, 1, · · · , N − 1). The inverse DCT can also be expressed in component
form for x[m] (m = 0, · · · , N − 1):

x[m] =
N−1∑

n=0

c[m, n]X [n] =
N−1∑

n=0

X [n]a[n] cos(
(2m + 1)nπ

2N
) (6.66)

Putting Eqs. 6.63 and 6.66 together, we have the DCT pairs:

X [n] = a[n]
N−1∑

m=0

x[m] cos(
(2m + 1)nπ

2N
), (n = 0, · · · , N − 1)

x[m] =
N−1∑

n=0

X [n]a[n] cos(
(2m + 1)nπ

2N
), (m = 0, · · · , N − 1) (6.67)

In matrix form, the DCT pair can be written as:
{

X = CT x (forward)
x = CX (inverse)

(6.68)

As a specific example, consider the 2-point DCT matrix:

CT
2×2 =

[
cT
0

cT
2

]
=
[ √

1/2
√

1/2
cos(π/4) cos(3π/4)

]
= 0.707

[
1 1
1 −1

]
(6.69)

This matrix is composed of two row vectors cT
0 = [1 1]/

√
2 and cT

1 = [1 − 1]/
√

2
and is identical to the 2-point DFT matrix W 2×2 discussed before. The DCT of
a 2-point signal x = [x[0], x[1]]T is

X =
[

X [0]
X [1]

]
= 0.707

[
1 1
1 −1

] [
x[0]
x[1]

]
= 0.707

[
x[0] + x[1]
x[1]− x[1]

]
(6.70)

The first component X [0] is proportional to the sum x[0] + x[1] of the two signal
samples representing the average or DC component of the signal, and the second
component X [1] is proportional to the difference x[0]− x[1] between the two
samples.
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When N = 4, the 4-point DCT matrix is:

CT
4×4 =





cT
0

cT
1

cT
2

cT
3



 =





0.50 0.50 0.50 0.50
0.65 0.27 −0.27 −0.65
0.50 −0.50 −0.50 0.50
0.27 −0.65 0.65 −0.27



 (6.71)

which is composed of four row vectors, corresponding to four sinusoids with
progressively higher frequencies.

Example 6.5: Find the DCT of a real 8-point signal: x = [0, 0, 2, 3, 4, 0, 0, 0]T .
First we find the 8-point matrix CT :

CT
8×8 =




cT
0
...

cT
7



 =





0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.49 0.42 0.28 0.10 −0.10 −0.28 −0.42 −0.49
0.46 0.19 −0.19 −0.46 −0.46 −0.19 0.19 0.46
0.42 −0.10 −0.49 −0.28 0.28 0.49 0.10 −0.42
0.35 −0.35 −0.35 0.35 0.35 −0.35 −0.35 0.35
0.28 −0.49 0.10 0.42 −0.42 −0.10 0.49 −0.28
0.19 −0.46 0.46 −0.19 −0.19 0.46 −0.46 0.19
0.10 −0.28 0.42 −0.49 0.49 −0.42 0.28 −0.10





(6.72)

The N = 8 values of the nth row vector cT
n (n = 0, 1, · · · , 7) can be consid-

ered as eight samples of the corresponding continuous cosine function bn(t) =
a[n] cos((2t + 1)nπ)/2N) shown in the left column in Fig.6.6, with progressively
higher frequencies as the index n increases. The the DCT of x can be found by
a matrix multiplication:

X = CT x = [3.18, 0.46,−3.62,−0.70, 1.77,−0.22,−0.42, 1.32]T. (6.73)

The interpretation of these DCT coefficients is very straight forward. X [0] rep-
resents the DC component or the average of the signal, while the subsequent
coefficients X [n] represent the magnitudes of progressively high frequency com-
ponents contained in the signal.

The inverse DCT represents the signal vector as a linear combination of the
eight column vectors of C = [c0, · · · , c7], which form a set of orthonormal basis
vectors that span the 8-D vector space:

x =




x[0]

...
x[7]



 = CX = [c0, · · · , c7]




X [0]

...
X [7]



 =
7∑

n=0

X [n]cn (6.74)

The reconstruction of the signal by the linear combination of the eight vectors
is shown in Fig. 6.6
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Figure 6.6 Basis functions of 8-point DCT and reconstruction of a signal

The left column shows the 8 continuous and discrete basis DCT functions
while the right column shows how a discrete signal can be reconstructed by
the inverse DCT as a linear combination of these basis functions weighted by
WHT coefficients (Eq.6.73). From the top down, the plots on the right show the
reconstructed signal as progressively more components of higher frequencies are
included.

6.2.4 Fast DCT algorithm

If the DCT is implemented as a matrix multiplication, the computational com-
plexity is O(N2) (O(N) for each of the N coefficients X [n]. However, as the DCT
is closely related to the DFT, it can also be implemented by the FFT algorithm
with complexity O(N log2 N).
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We first define a new sequence y[0], · · · , y[N − 1] based on the given signal
x[0], · · · , x[N − 1]:

{
y[m] = x[2m]
y[N − 1−m] = x[2m + 1]

(m = 0, · · · , N/2− 1) (6.75)

Note that the first half of y[m] contains all the even components of x[m], while
the second half of y[m] contains all the odd ones but in reverse order. The N-point
DCT of the given signal x[m] now becomes:

X [n] =
N−1∑

m=0

x[m]cos(
(2m + 1)nπ

2N
)

=
N/2−1∑

m=0

x[2m]cos(
(4m + 1)nπ

2N
) +

N/2−1∑

m=0

x[2m + 1]cos(
(4m + 3)nπ

2N
)

=
N/2−1∑

m=0

y[m]cos(
(4m + 1)nπ

2N
) +

N/2−1∑

m=0

y[N − 1−m]cos(
(4m + 3)nπ

2N
)(6.76)

For simplicity, we temporarily dropped the scaling factor a[n]. Here the first
summation is for all even terms and second all odd terms. We define m′ = N −
1−m and rewrite the second summation as:

N−1∑

m′=N/2

y[m′]cos(2nπ − (4m′ + 1)nπ
2N

) =
N−1∑

m′=N/2

y[m′]cos(
(4m′ + 1)nπ

2N
) (6.77)

Now the two summations in the expression of X [n] can be combined to become

X [n] = a[n]
N−1∑

m=0

y[m]cos(
(4m + 1)nπ

2N
) (6.78)

We next consider the DFT of y[m]:

Y [n] =
N−1∑

m=0

y[m]e−j2πmn/N (6.79)

If we multiply both sides by e−jnπ/2N and take the real part of the result, we
get:

Re[e−jnπ/2NY [n]] = Re[
N−1∑

m=0

y[m]e−j2πmn/Ne−jnπ/2N ] = Re[
N−1∑

m=0

y[m]e−j(4m+1)nπ/2N ]

= Re[
N−1∑

m=0

y[m] [ cos(
(4m + 1)nπ

2N
)− j sin(

(4m + 1)nπ
2N

)] ]

=
N−1∑

m=0

y[m] cos(
(4m + 1)nπ

2N
) (6.80)
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Note that the second term of the sine function is imaginary (as y[m] is real) and
has been dropped. As the right-hand side of this equation is identical to that of
Eq. 6.78, we have

X [n] = Re[ e−jnπ/2NY [n] ], (n = 0, · · · , N − 1) (6.81)

The DCT coefficient X [n] for signal x[m] can be obtained once the DFT coef-
ficient Y [n] for y[m] is computed using the FFT algorithm with complexity
O(N log2 N).

In summary, the fast algorithm for forward DCT can be implemented in 3
steps:! Step 1: Generate a sequence y[m] from the given sequence x[m]:

{
y[m] = x[2m]
y[N − 1−m] = x[2m + 1]

(m = 0, · · · , N/2− 1) (6.82)

! step 2: Obtain DFT Y [n] of y[m] by FFT. As y[m] is real, Y [n] is symmetric
and only half of the data points need be computed.

Y [n] = F [y[m]], (n = 0, · · · , N − 1) (6.83)! step 3: Obtain DCT X [n] from Y [n] (n = 0, · · · , N − 1):

X [n] = a[n] Re[ e−jnπ/2NY [n] ]

= a[n] [Yr[n] cos(nπ/2N) + Yi[n] sin(nπ/2N)] (6.84)

where Yr[n] and Yi[n] are the real and imaginary part of Y [n], respectively.

Note that the DCT scaling factor a[n] is included in the third step, and no scaling
factor (either 1/N or 1/

√
N) is used during the DFT of y[m].

Next we consider the inverse DCT. The most obvious way to do inverse DCT
is to reverse the order and the mathematical operations of the three steps for
the forward DCT:! step 1: Obtain Y [n] from X [n] by solving the N equations in Eq. 6.84. There

are N equations but 2N variables (both Yr[n] and Yi[n]). However, note that
as y[m] is real, Yr[n] is even (N+1 independent variables) and Yi[n] is odd
(N-1 independent variables with Yi[0] = Yi[N/2] = 0). So there are only N
independent variables which can be obtained by solving the N equations.! step 2: Obtain y[m] from Y [n] by inverse DFT also using FFT in N log2N
complexity.

y[m] = F−1[Y [n]] (6.85)! step 3: Obtain x[m] from y[m] by
{

x[2m] = y[m]
x[2m + 1] = y[N − 1−m]

(i = 0, · · · , N/2− 1) (6.86)
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However, there is a more efficient way to do the inverse DCT without the need
to solve an equation system. First consider the real part of the inverse DFT of a
sequence a[n]ejnπ/2NX [n] (n = 0, · · · , N − 1):

Re [ej2πmn/N
N−1∑

n=0

a[n]X [n]ejnπ/2N = Re [
N−1∑

n=0

a[n]X [n]ej(4m+1)nπ/2N ]

=
N−1∑

n=0

a[n]X [n]cos(
(4m + 1)nπ

2N
) = x[2m], (m = 0, · · · , N − 1) (6.87)

The first half of these m values are the N/2 even samples x[2m], (m =
0, · · · , N/2− 1). To obtain the odd samples, recall that x[m] = x[2N −m− 1]
(Eq. 6.45), and the N/2 odd samples are actually the second half of the previous
equation in reverse order:

x[2m + 1] = x[2N − (2m + 1)− 1] = x[2(N −m− 1)], (m = 0, · · · , N/2− 1)
(6.88)

In summary, we have these steps for the inverse DCT:! step 1: Generate a sequence Y [n] from the given DCT coefficients X [n]:

Y [n] = a[n]X [n]ejnπ/2N , (n = 0, · · · , N − 1) (6.89)! step 2: Obtain y[m] from Y [n] by inverse DFT by FFT. (Only the real part
need be computed.)

y[m] = Re[F−1[Y [n]]] (6.90)! Step 3: Obtain x[m]′s from y[m]′s by
{

x[2m] = y[m]
x[2m + 1] = y[N − 1−m]

(i = 0, · · · , N/2− 1) (6.91)

These three steps are mathematically equivalent to the steps of the first method.
Also note that no scaling factor (either 1/N or 1/

√
N) is used during the inverse

DFT of Y [n]. Now both the forward or inverse DCT are implemented as a slightly
modified DFT which can be carried out by the FFT algorithm with much reduced
computational complexity of O(N log2N).

The C code for for the fast DCT algorithm is given below. The DCT function
takes a data vector x[m] (m = 0, · · · , N − 1) and converts it to the DCT coeffi-
cients X [k]. This is an in-place algorithm, i.e., the input data will be overwritten
by the output. This function is also used used for the inverse DCT, in which
case the input is the DCT coefficients while the output is the reconstructed sig-
nal vector in time domain. The function carries out the forward DCT when the
argument inv=0, or inverse DCT when inv=1.

fdct(x,N,inverse)
float *x;
int N,inv;
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{
int m,n,N2=N/2;
float a,u,v,w, *yr,*yi;
w=3.14159265/2/N;
a=sqrt(2.0/N);
yr=(float *)malloc(N*sizeof(float)); // allocate memory for two
yi=(float *)malloc(N*sizeof(float)); // temperary vector variables
if (inv) { // for IDCT
for (n=0; n<N; n++) x[n]=x[n]*a;
x[0]=x[0]/sqrt(2.0);
for (n=0; n<N; n++) {
yr[n]=x[n]*cos(n*w);
yi[n]=x[n]*sin(n*w);

}
} // for DCT
else {
for (m=0; m<N2; m++) {
yr[m]=x[2*m];
yr[N-1-m]=x[2*m+1];
yi[m]=yi[N2+m]=0;

}
}
fft(yr,yi,N,inv); // call FFT function
if (inv) { // for IDCT
for (m=0; m<N2; m++) {
x[2*m]=yr[m];
x[2*m+1]=yr[N-1-m];

}
}
else { // for DCT
for (n=0; n<N; n++)
x[n]=cos(n*w)*yr[n]+sin(n*w)*yi[n];

for (n=0; n<N; n++) x[n]=x[n]*a;
x[0]=x[0]/sqrt(2.0);

}
free(yr); free(yi);

}

6.2.5 DCT Filtering

As a real-valued transform, the computation of the DCT filtering is more straight
forward compared to the DFT filtering. A simple example is illustrated in the
example below.
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Figure 6.7 DCT Filtering

Example 6.6: The signal shown in the top-left panel of Fig.6.7 is a signal with
three frequency components: the DC, we well as two sinusoids at frequencies of
8 Hz and 19 Hz. Moreover, the signal (solid line) is also contaminated by some
white noise (dashed line). The DCT spectrum of the signal is shown in the top-
right panel in which the three frequency components are clearly seen (solid line),
together with the white noise whose energy is spread over all frequencies (dashed
line), therefore the name white noise. The lower-right panel of the figure shows
the filtered DCT spectrum containing only the frequency component at 8 Hz,
and the lower-left panel shows the filtered signal obtained by inverse transform
of the filtered spectrum. We can see clearly that only the 8-Hz sinusoid remains
while all other components in the original signal are filtered out (solid line),
which is compared with the original signal (dashed line). If we assume this 8-Hz
sinusoid is the signal of interest and all other components are interference and
noise, then this filtering process has effectively extracted the signal by removing
the interference and suppressing the noise.

Example 6.7: Here we compare two different types of signals and their DCTs.
Shown in Fig.6.8 are images of two natural scenes, the clouds on the left and the
sand on the right, with very different textures. Specifically, In the cloud image,
the value of a pixel is very likely to be similar to those of its neighbors, i.e.,
they are highly correlated, while in the sand image, the values of neighboring
pixels are not likely to be related, i.e., they are much less correlated. Such a
difference can be quantitatively described by the auto-correlation of the signal
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Figure 6.8 Two types of natural scenes: clouds and sand

From left to right and then top to bottom:

defined before in Eq.3.111:

rx(t) =
∫ ∞

−∞
x(τ)x(τ − t)dτ =

∫ ∞

−∞
|X(f)|2ej2πfτdf = F−1[Sx(f)]

where X(f) = F [x(t)] is the Fourier spectrum of signal x(t) and Sx(f) = |X(f)|2
is the power density spectrum of signal.

To compare the two types of signals, we take one row of each of the two
images as a 1-D signal and consider the auto-correlations of the signal as well
as its DCT, as shown in Fig.6.9. The four panels on the left are for the clouds
showing the signal (1st) and its DCT (3rd), together with their auto-correlation
(2nd and 4th). Note that the original signal is highly correlated, and the closer
two samples of the signal the more they are correlated. But after the DCT, the
frequency components are not correlated at all. (Note that the auto-correlations
look symmetric due to the periodicity assumed by the DCT.) In the same manner,
the four panels on the right show the signal of the sand and its DCT together
with their auto-correlations. In this case, the signal is hardly correlated, and the
frequency components in its DCT spectrum are even less so.

In general, all natural signals are correlated to different degrees, depending on
their specific natures. Most signals are highly correlated, such as the example
of clouds, although some exceptions are less so, such as the sand. But in either
case, the components in the spectrum of the signal after DCT, or any other
orthogonal transform for this matter, are much less correlated. This example
illustrates that signal decorrelation is an important feature of all orthogonal
transforms, by which the autocorrelation of a typical signal will be significantly
reduced.

These two very different types of signals of high and low correlations will be
reconsidered in the future discussion regarding the statistical properties of the
signals (Chapter 10).
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Figure 6.9 Decorrelation of cloud and sand signals

6.2.6 Two-Dimensional DCT and Filtering

The DCT of a 2-D signal x[m, n] (m = 0, · · · , M − 1, n = 0, · · · , N − 1) such as
an image, and the inverse DCT are defined respectively as:

X [k, l] = a[k]a[l]
N−1∑

n=0

M−1∑

m=0

x[m, n] cos(
(2m + 1)kπ

2M
) cos(

(2n + 1)lπ
2N

),

x[m, n] =
N−1∑

l=0

a[l]
M−1∑

k=0

a[k]X [k, l] cos(
(2m + 1)kπ

2M
) cos(

(2m + 1)lπ
2N

),

(m, k = 0, · · · , M − 1, n, l = 0, · · · , N − 1) (6.92)

The inverse DCT (second equation) expresses the given signal as a linear combi-
nation of a set of M by N 2-D basis functions, a product of two sinusoidal func-
tions in horizontal and vertical directions, respectively. Each of these basis func-
tion is weighted by the corresponding coefficient X [k, l], which can be obtained
by the forward DCT (first equation) as the projection of the signal onto the cor-
responding basis function. These 2-D basis functions can be visualized as shown
in Fig.6.10 for M = N = 8.

Similar to the 2-D DFT, the two summations in either the forward or inverse
DCT in Eq. 6.92 can be carried separately in two separate steps, First, we can
carry out N M-point 1-D DCTs for each of the N columns of the 2-D signal array
(the inner summation with respect to m in Eq.6.92), and then carry out M N-
point 1-D DCTs for each of the M rows of the resulting array after the first step
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Figure 6.10 The basis functions for the 2-D DCT (M = N = 8)

The DC component is at the top-left corner, and the highest frequency com-
ponent in both horizontal and vertical directions is at the lower-right corner.

(the outer summation with respect to n in Eq.6.92). Of course we can also carry
out the row DCTs first and then the column DCTs. In matrix multiplication
form, the forward and inverse 2-D DCT can be represented as

{
XM×N = CT

MxM×NCN (forward)
xM×N = CMXM×NCT

N (inverse)
(6.93)

Here CM = [c0, · · · , cM−1] is an M by M matrix for the column transform and
CN = [c0, · · · , cN−1] is an N by N matrix for the row transform. The DCT
spectrum of a 2-D signal, e.g., an image, is a real matrix composed of the M
by N coefficients X [k, l] representing the magnitudes of the corresponding basis
functions. Different from the Fourier transform, the phases of the basis functions
are not of interest in the DCT.

The DCT matrix C can be expressed in terms of its column vectors and the
inverse transform can be written as:

x = [c0, · · · , cM−1]




X [0, 0] · · · X [0, N − 1]

...
. . .

...
X [M − 1, 0] · · · X [M − 1, N − 1]








cT
0
...

cT
N−1





=
M−1∑

k=0

N−1∑

l=0

X [k, l]ckcT
l =

M−1∑

k=0

N−1∑

l=0

X [k, l]Bkl (6.94)

Here we have defined Bkl = ckcT
l , where ck is the kth column vector of the M

by M DCT matrix for the row transforms and cl is the lth column vector of
the N by N DCT matrix for the column transforms. We see that the 2-D signal
xM×N is now expressed as a linear combination of a set of MN 2-D (M ×N)
DCT basis functions Bkl (k, l = 0. · · · , N − 1), which can be obtained from the
equation above for the inverse transform when all elements of X are zero except
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Figure 6.11 An image and its DCT spectrum

X [k, l] = 1. When M = N = 8, the 8× 8 = 64 such 2-D DCT basis functions are
shown in Fig.6.10. Any 8 by 8 2-D signal can be expressed as a linear combination
of these 64 2-D orthogonal basis functions.

In the equation above, each basis function Bkl is weighted by the kl-th DCT
coefficients X [k, l], which can be obtained by the forward transform:

X =




CT

0
...

cT
M−1



x[c0, · · · , cN−1] (6.95)

and the kl-th coefficient X [k, l] is the projection of the 2-D signal x onto the
kl-th basis function, i.e., their inner product:

X [k, l] = cT
k




x[0, 0] · · · x[0, N − 1]

...
. . .

...
x[M − 1, 0] · · · x[M − 1, N − 1]



 cl

=
M−1∑

m=0

N−1∑

n=0

x[m, n]Bkl[m, n] =< x, Bkl > (6.96)

Same as in the 2-D DFT case (Eq.4.214), the coefficient X [k, l] can be found as
the projection of the signal x onto the kl-th DCT basis function Bkl.

Example 6.8: An image and its DCT spectrum are shown in Fig. 6.11. Different
from the complex DFT, the DCT is a real transform and a 2-D DCT spectrum is a
array of real elements representing the magnitudes of the frequency components,
unlike a 2-D DFT spectrum which contains both the real and imaginary parts,
representing the magnitudes and phases for the frequency components.

Various types of filtering, such as high-pass (LP) and low-pass (HP) filtering,
can be carried out in the frequency domain by modifying the spectrum of the
signal. Fig.6.12 shows some HP and LP results using two different types of fil-
ters, the ideal filter and the Butterworth filter. In the case of an ideal filter, all
frequency components higher than a cut-off frequency, i.e., farther away from
the DC component (top-left corner of the spectrum) than a distance correspond-
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Figure 6.12 LP and HP filtering of an image

Similar to the Fourier transform, DCT also suffers from the ringing artifacts
caused by the ideal filters (first and third), which can be avoided by the smooth
Butterworth filter.

ing to the cut-off frequency, are suppressed to zero with all other components
unchanged. The modified spectrum and the resulting low-pass filtered image
after inverse DCT are shown in the figure at top-left and bottom-left, respec-
tively. Similar to the case of the DFT, some obvious ringing artifacts can be
observed in the ideal-filtered image. To avoid this, the Butterworth filter with-
out sharp edges can be used, as shown by the pair of images second from the
left. The same ideal and Butterworth filters can also be used for HP filtering, as
shown by the other two pairs of images on the right. Again, note that the ringing
artifacts due to the ideal filter is avoided by Butterworth filtering.

Example 6.9: The example shown in Fig. 6.13 illustrates why the DCT can also
be used for data compression. In this particular case, 90% of the DCT coefficients
(corresponding mostly to some high frequency components) with magnitudes less
than a certain threshold value were surprised to zero (black in the image). The
image is then reconstructed based on the remaining 10% of the coefficients but
containing over 99.6% of the signal energy. As can be seen in the figure, the
reconstructed image, with only 0.4% energy lost, looks very much the same as
the original one except some very fine details corresponding to high frequency
components which were suppressed.
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Figure 6.13 Image Compression based on DCT

An image and its DCT spectrum (left) and the reconstructed image (right) based
on 10% of the coefficients but 99.6% of the total energy.

We can throw away 90% of the coefficients but still keep over 99% of the
energy only in the frequency domain, but not in the spatial domain, due to the
two general properties of all orthogonal transforms: (a) decorrelation of signals
and (b) compaction of signal energy. In this example, the effect of energy com-
paction of the DCT is stronger than that of the DFT discussed before. For this
reason, DCT is widely used in image compression, most noticeably in the image
compression standards, such as JPEG (http://en.wikipedia.org/wiki/JPEG).



7 The Walsh-Hadamard, Slant and
Haar Transforms

7.1 The Walsh-Hadamard Transform

The Walsh-Hadamard Transform (WHT) is yet another real orthogonal trans-
form which can also be closely related to the discrete cosine transform (DCT),
although they are defined totally differently.

7.1.1 Hadamard Matrix

Let us first consider an operation between two matrices. The Kronecker product
of two matrices A = [aij ]m×n and B = [bij ]k×l is defined as

A⊗B =




a11B · · · a1nB
· · · · · · · · ·
am1B · · · amnB





mk×nl

(7.1)

In general, A⊗B $= B ⊗A. Now the Hadamard Matrix is defined recursively
as:

H1 =
1√
2

[
1 1
1 −1

]
(7.2)

Hn = H1 ⊗Hn−1 =
1√
2

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
(7.3)

Note that the dimensionality of matrix Hn is 2n by 2n. For example, when n = 2,
we have

H2 = H1 ⊗H1 =
1√
2

[
H1 H1

H1 −H1

]
=

1√
4





1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



 (7.4)

339
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Figure 7.1 The basis functions for the WHT

and if n = 3, we have

H3 = H1 ⊗H2 =
1√
2

[
H2 H2

H2 −H2

]
=

1√
8





1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1





0 0
1 7
2 3
3 4
4 1
5 6
6 2
7 5
(7.5)

The first column to the right of the array is the index numbers k of the N = 8
rows, and the second column represents the sequency s, the number of zero-
crossings or sign changes in each row. As can be seen, the index numbers cor-
responding to sequencies s = 0, 1, 2, 3, 4, 5, 6, 7 are k = 0, 4, 6, 2, 3, 7, 5, 1, respec-
tively.

Similar to frequency, sequency also measures the rate of changes in a signal.
But, different from frequency, sequency can be used to measure non-periodical
signals as well as periodic ones.

Alternatively, a Hadamard matrix H can also be defined in terms of its element
h[k, m] in the kth row and mth column as below (for simplicity, the scaling factor
1/
√

N is neglected for now):

h[k, m] = (−1)
Pn−1

i=0 kimi =
n−1∏

i=0

(−1)kimi = h[m, k] (k, m = 0, 1, · · · , N − 1)

(7.6)
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where

k =
n−1∑

i=0

ki2i = (kn−1kn−2 · · ·k1k0)2 (ki = 0, 1) (7.7)

m =
n−1∑

i=0

mi2i = (mn−1mn−2 · · ·m1m0)2 (mi = 0, 1) (7.8)

i.e., (kn−1kn−2 · · ·k1k0)2 and (mn−1mn−2 · · ·m1m0)2 are the binary representa-
tions of k and m, respectively. Obviously, we need n = log2N bits in these binary
representations. For example, when n = 3 and N = 2n = 8, the element h[k, l] in
row k = 2 = (010)2 and column m = 3 = (011)2 of H3 is (−1)0+1+0 = −1.

It is easy to show that this alternative definition of the Hadamard matrix is
actually the same as the previous recursive definition given in Eqs. 7.2 and 7.3.
First, when n = 1 and N = 2n = 2, the two rows and columns indexed by a single
bit of k0 and m0, respectively, and the product k0m0 of the two bits has four pos-
sible values, 0× 0 = 0, 0× 1 = 0, 1× 0 = 0 and 1× 1 = 1, and they correspond
to the four elements of the matrix, i.e., h[0, 0] = h[0, 1] = h[1, 0] = (−1)k0m0 =
(−1)0 = 1 and h[1, 1] = (−1)k0m0 = (−1)1 = −1. This is actually Eq. 7.2.

Next, when n is increased by 1, the size N = 2n of the matrix is doubled,
and one more bit kn−1 and mn−1 (the most significant bit) is needed for the
binary representations of k and m, respectively. The product of these two most
significant bits kn−1mn−1 determines the four quadrants of the new matrix Hn.
The first three quadrants (upper-left, upper-right and lower-left) corresponding
to kn−1mn−1 = 0 are therefore identical to Hn−1, while the lower-right quadrant
corresponding to kn−1mn−1 = 1 is the negation of Hn−1. This is the recursion
in Eq. 7.3.

Obviously H is real and symmetric, and we can easily show that it is also
orthogonal:

H = H∗ = HT = H−1 (7.9)

To do so, we first note that H1H1 = I. Next we assume Hn−1Hn−1 = In−1,
and consider

HnHn =
1√
2

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
1√
2

[
Hn−1 Hn−1

Hn−1 −Hn−1

]

=
1
2

[
2Hn−1Hn−1 0

0 2Hn−1Hn−1

]
=
[

In−1 0
0 In−1

]
= In (7.10)

therefore the matrix is orthogonal for all n:

H = H−1 (7.11)
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7.1.2 Hadamard Ordered Walsh-Hadamard Transform (WHTh)

The orthogonal Hadamard matrix can be written in terms of its columns:

H = [h0, · · · , hN−1] (7.12)

As these N vectors are orthonormal

< hm, hn >= hT
mhn = δ[m− n] (7.13)

they form a complete basis that spans the N-dimensional vector space, and the
Hadamard matrix H can be used to define an orthogonal transform, called
Hadamard ordered Walsh-Hadamard transform (WHTh):

{
X = Hx (forward)
x = HX (inverse)

(7.14)

Here x = [x[0], · · · , x[N − 1]]T is an N-point signal vector and X =
X [0], · · · , X [N − 1]]T is its WHT spectrum vectors. Note that, interestingly, as
H−1 = H , the forward (first equation) and inverse (second equation) transforms
are identical. Also, note that the WHT can be carried out by additions and sub-
tractions alone.

The inverse transform (IWHTh) can be written as:

x = [h0, · · · , hN−1]




X [0]

...
X [N − 1]



 =
N−1∑

k=0

X [k]hk (7.15)

i.e., the signal vector is expressed as a linear combination of the N basis vectors
hk weighted by the WHT coefficients X [k] (k = 0, · · · , N − 1), which can be
written by the forward WHT:

X = Hx = [h0, · · · , hN−1]x (7.16)

or in component form:

X [k] =< x, hk >= hT
k x, (k = 0, · · · , N − 1) (7.17)

i.e., the coefficient X [k] is the projection of the signal vector x onto the kth basis
vector hk, which can also be written as

X [k] =
N−1∑

m=0

h[k, m]x[m] =
N−1∑

m=0

x[m]
n−1∏

i=0

(−1)miki (7.18)

7.1.3 Fast Walsh-Hadamard Transform Algorithm

The complexity of WHT implemented as a matrix multiplication X = Hx is
O(N2). However, similar to the FFT algorithm, we can also derive a fast WHT
algorithm with complexity of O(Nlog2N) as shown below. We assume n = 3 and
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N = 2n = 8, and write the WHTh of an 8-point signal x as:

X = H3x =





X [0]
...

X [3]
X [4]

...
X [7]





=
[

H2 H2

H2 −H2

]





x[0]
...

x[3]
x[4]

...
x[7]





(7.19)

This equation can be separated into two parts. The first half of vector X can be
obtained as





X [0]
X [1]
X [2]
X [3]



 = H2





x[0]
x[1]
x[2]
x[3]



+ H2





x[4]
x[5]
x[6]
x[7]



 = H2





x1[0]
x1[1]
x1[2]
x1[3]



 (7.20)

where we have defined

x1[i] = x[i] + x[i + 4] (i = 0, · · · , 3) (7.21)

Similarly the second half of vector X can be obtained as




X [4]
X [5]
X [6]
X [7]



 = H2





x[0]
x[1]
x[2]
x[3]



−H2





x[4]
x[5]
x[6]
x[7]



 = H2





x1[4]
x1[5]
x1[6]
x1[7]



 (7.22)

where we have defined

x1[i + 4] = x[i]− x[i + 4] (i = 0, · · · , 3) (7.23)

What we did above is to convert an 8-point WHT into two 4-point WHTs. This
process can be carried out recursively. We next rewrite Eq. 7.20 as:





X [0]
X [1]
X [2]
X [3]



 =
[

H1 H1

H1 −H1

]




x1[0]
x1[1]
x1[2]
x1[3]



 (7.24)

which can again be separated into two halves. The first half is
[

X [0]
X [1]

]
= H1

[
x1[0]
x1[1]

]
+ H1

[
x1[2]
x1[3]

]
= H1

[
x2[0]
x2[1]

]
=
[

1 1
1 −1

] [
x2[0]
x2[1]

]
=
[

x2[0] + x2[1]
x2[0]− x2[1]

]

(7.25)
where

x2[i] = x1[i] + x1[i + 2] (i = 0, 1) (7.26)

and

X [0] = x2[0] + x2[1], X [1] = x2[0]− x2[1] (7.27)
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Figure 7.2 The fast WHT algorithm

The second half is
[

X [2]
X [3]

]
= H1

[
x1[0]
x1[1]

]
−H1

[
x1[2]
x1[3]

]
= H1

[
x2[2]
x2[3]

]
=
[

1 1
1 −1

] [
x2[2]
x2[3]

]
=
[

x2[2] + x2[3]
x2[2]− x2[3]

]

(7.28)
where

x2[i + 2] = x1[i]− x1[i + 2] (i = 0, 1) (7.29)

and

X [2] = x2[2] + x2[3], X [3] = x2[2]− x2[3] (7.30)

Similarly the coefficients X [4] through X [7] in the second half of the transform
in Eq. 7.22 can be obtained by the same process. Summarizing the above steps
of Equations 7.21, 7.23, 7.26, 7.27, 7.29, 7.30, we get the fast WHT algorithm as
illustrated in Fig. 7.2.

7.1.4 Sequency Ordered Walsh-Hadamard Matrix (WHTw)

The rows in the WHT matrix x are not arranged in order of their sequencies,
while it makes better physical sense if the elements of the WHT spectrum X =
[X [0], X [1], · · · , X [N − 1]]T are arranged according to their sequencies so that
they represent different components contained in the signal in a low-to-high
order, such as in the Fourier transform. To do so, we can re-order the rows
(or columns) of the Hadamard matrix H according to their sequencies. We first
consider the conversion of a given sequency number s into the corresponding row
index number k in Hadamard order, which can be down in the following three
steps:
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1. represent s in binary form:

s = (sn−1 · · · s0)2 =
n−1∑

i=0

si2i (7.31)

2. convert this n-bit binary number to an n-bit Gray code:

g = (gn−1 · · · g0)2, where gi = si ⊕ si+1 (i = 0, · · · , n− 1) (7.32)

Here ⊕ represents exclusive OR of two bits and sn = 0 is defined as zero.
3. bit-reverse the Gray code bits gi’s:

ki = gn−1−i = sn−1−i ⊕ sn−i (7.33)

Now row index k can be obtained:

k = (kn−1 kn−2 · · ·k1 k0)2 =
n−1∑

i=0

sn−1−i ⊕ sn−i2i =
n−1∑

j=0

sj ⊕ sj+12n−1−j

(7.34)
where j = n− 1− i or equivalently i = n− 1− j.

For example, when n = log2N = log28 = 3, we have

s 0 1 2 3 4 5 6 7
binary 000 001 010 011 100 101 110 111

Gray code 000 001 011 010 110 111 101 100
bit-reverse 000 100 110 010 011 111 101 001

k 0 4 6 2 3 7 5 1

(7.35)

Now the sequency-ordered (also called Walsh-ordered) Walsh-Hadamard matrix
can be obtained as

Hw =
1√
8





1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1





0 0
1 4
2 6
3 2
4 3
5 7
6 5
7 1

(7.36)

Here a subscript w is included to indicate the row vectors of this matrix H
is sequency-ordered (or Walsh-ordered). The two columns to the right of the
matrix are the indices of the row vectors in the sequency order (first column) and
the original Hadamard order (second column). Note that this sequency-ordered
matrix is still symmetric: HT

h = Hw.
Now the sequency-ordered Walsh-Hadamard transform (WHTw) can be car-

ried out as

X = Hwx (7.37)
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Figure 7.3 The basis functions for the WHT (sequency ordered)

or in component form:

X [k] =
N−1∑

m=0

hw[k, m]x[m] (7.38)

where hw[k, m] is the element in the kth row and nth column of Hw.

7.1.5 Fast Walsh-Hadamard Transform (Sequency Ordered)

The sequency ordered Walsh-Hadamard transform (WHTw can be obtained by
first carrying out the fast WHTh and then reordering the components of X as
shown above. Alternatively, we can use the following fast WHTw directly with
better efficiency.

Similar to the WHT shown in Eq.7.18, the sequency ordered WHT of x[m]
can be represented as:

X [k] =
N−1∑

m=0

hw[k, m]x[m] =
N−1∑

m=0

x[m]
n−1∏

j=0

(−1)(kn−1−j+kn−j)mj

=
N−1∑

m=0

x[m]
n−1∏

i=0

(−1)(ki+ki+1)mn−1−i (7.39)

Here N = 2n and kn = 0. The second equal sign is due to the conversion of index
k from Hadamard order to sequency order (Eq.7.34). Here we have also defined
i = n− 1− j and note that (−1)ki⊕ki+1 = (−1)ki+ki+1 , where mi, ki = 0, 1.
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In the following, we assume n = 3, N = 23 = 8, and we represent m and k in
binary form as m = (m2m1m0)2 and k = (k2k1k0)2 respectively:

m =
n−1∑

i=0

mi2i = 4m2 + 2m1 + m0, k =
n−1∑

i=0

ki2i = 4k2 + 2k1 + k0 (7.40)

Here kn = k3 = 0 is defined to be zero. This 8-point WHTw can be carried out
in these steps:! As the first step of the algorithm, we rearrange the order of the samples x[m]

by bit-reversal to define:

x0[4m0 + 2m1 + m2] = x[4m2 + 2m1 + m0] for m = 0, 1, · · · 7 (7.41)

Now Eq.7.39 can be written as:

X [k] =
1∑

m2=0

1∑

m1=0

1∑

m0=0

x0[4m0 + 2m1 + m2]
2∏

i=0

(−1)(ki+ki+1)mn−1−i

=
1∑

l0=0

1∑

l1=0

1∑

l2=0

x0[4l2 + 2l1 + l0]
2∏

i=0

(−1)(ki+ki+1)li (7.42)

Here we have defined li = mn−1−i.! Expanding the 3rd summation into two terms for l2 = 0 and l2 = 1, we get

X [k] =
1∑

l0=0

1∑

l1=0

1∏

i=0

(−1)(ki+ki+1)li [x0[2l1 + l0] + (−1)k2+k3x0[4 + 2l1 + l0]]

=
1∑

l0=0

1∑

l1=0

1∏

i=0

(−1)(ki+ki+1)lix1[4k2 + 2l1 + l0] (7.43)

where x1 is defined as

x1[4k2 + 2l1 + l0] = x0[2l1 + l0] + (−1)k2+k3x0[4 + 2l1 + l0] (7.44)! Again, expanding the 2nd summation into two terms for l1 = 0 and l1 = 1,
we get

X [k] =
1∑

l0=0

(−1)(ki+ki+1)l0 [x1[4k2 + l0] + (−1)k1+k2x1[4k2 + 2 + l0]]

=
1∑

l0=0

(−1)(ki+ki+1)l0x2[4k2 + 2k1 + m0] (7.45)

where x2 is defined as

x2[4k2 + 2k1 + l0] = x1[4k2 + l0] + (−1)k1+k2x1[4k2 + 2 + l0] (7.46)! Finally, expanding the 1st summation into two terms for l0 = 0 and l0 = 1,
we have

X [k] = x2[4k2 + 2k1] + (−1)k0+k1x2[4k2 + 2k1 + 1] (7.47)
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Figure 7.4 The fast WHT algorithm (sequency ordered)

Summarizing the above steps, we get the fast WHTw algorithm composed of
the bit-reversal and the three equations (11), (12), and (13), as illustrated in
Fig.7.4. In general, the algorithm has log2 N stages each with complexity O(N),
the total complexity is O(N log2 N).

The C code for the fast WHT algorithm is given below. The WHT function
takes a data vector x[m] (m = 0, · · · , N − 1) and converts it to WHT coefficients
X [k] (k = 0, · · · , N − 1), which are Hadamard ordered if the argument sequency
sequency=0, or sequency ordered if sequency=1. This is an in-place algorithm,
i.e., the input data will be overwritten by the output. The function can be used
for both forward and inverse WHT transforms as they are identical.

wht(x,N,sequency)
float *x;
int N,sequency;

{ int i,j,k,j1,m,n;
float w,*y,t;

m=log2f((float)N);
y=(float *)malloc(N*sizeof(float));
for (i=0; i<m; i++) { // for log2 N stages
n=pow(2,m-1-i); // length of section
k=0;
while (k<N-1) { // for all sections in a stage
for (j=0; j<n; j++) { // for all points in a section

j1=k+j;
t=x[j1]+x[j1+n];
x[j1+n]=x[j1]-x[j1+n];
x[j1]=t;
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}
k+=2*n; // move on to next section

}
}
w=1.0/sqrt((float)N);
for (i=0; i<N; i++) x[i]=x[i]*w;
if (sequency) // converting to sequency (Walsh) order
{
for (i=0; i<N; i++) { j=h2w(i,m); y[i]=x[j]; }
for (i=0; i<N; i++) x[i]=y[i];

}
free(y);

}

where h2w is a function that converts a sequency index i to Hadamard index j:

int h2w(i,m) // converts a sequency index i to Haramard index j
int i,m;

{ int j,k;
i=i^(i>>1);
j=0;
for (k=0; k<m; ++k)
j=(j << 1) | (1 & (i >> k)); // bit-reversal

return j;
}

Example 7.1: The sequency ordered WHT of an 8-point signal vector x =
[0, 0, 2, 3, 4, 0, 0, 0]T can be obtained by matrix multiplication:

X = Hwx = [3.18, 0.35,−3.18,−0.35, 1.77,−1.06,−1.77, 1.06]T (7.48)

where Hw is given in Eq.7.36. The inverse transform (which is identical to the
forward transform as H−1

w = Hw) represents the signal vector as a linear com-
bination of a set of square waves of different sequencies:

x = HwX = [h0, · · · , h7]X =
7∑

n=0

X [n]hn[0, 0, 2, 3, 4, 0, 0, 0]T (7.49)

This example is illustrated in Fig.7.5.



350 Chapter 7. The Walsh-Hadamard, Slant and Haar Transforms

Figure 7.5 The WHT of a 8-point signal

The left column shows the 8 basis WHT functions (both continuous and discrete),
while the right column shows how a signal can be reconstructed by the inverse
WHT (Eq.7.49) as a linear combination of these basis functions weighted by
WHT coefficients obtained by the forward WHT (Eq.7.48). The plots on the right
show the reconstructed signal using progressively more components of higher
sequencies (from DC component alone to all 8 sequency components).

7.2 The Slant Transform

7.2.1 Slant Matrix

Like the Hadamard matrix, the matrix for the slant transform (ST) can also be
generated recursively. Initially when n = 1, the slant transform matrix of size
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N = 2n = 2 is defined the same as H1 for the Hadamard matrix (Eq.7.2):

S1 =
1√
2

[
1 1
1 −1

]
(7.50)

The recursive definition for matrix Sn of size N = 2n is:

Sn = Rn [S1 ⊗ Sn−1] =
1√
2
Rn

[
Sn−1 Sn−1

Sn−1 −Sn−1

]
(7.51)

where Rn is a size N = 2n rotation matrix by which the N/4-th row and N/2-th
row are rotated by an angle θn:

Rn =





1
. . .

1
cos θn − sin θn

1
. . .

1
sin θn cos θn

1
. . .

1





(2n−2 = N/4)th row

(2n−1 = N/2)th row

(7.52)

where

cos θn =
(

22n−2 − 1
22n − 1

)1/2

=
√

3N2

4N2 − 4

sin θn =
(

22n−2 − 22n−2

22n − 1

)1/2

=
√

N2 − 4
4N2 − 4

(7.53)

Note that indeed we have sin2
n + cos2n = 1. For example, when n = 1, 2, 3 we

have:

n N cos θn sin θn
1 2 0 1
2 4 1/

√
5 2/

√
5

3 8
√

5/21 4/
√

21

The N row vectors of the identity matrix In of size N = 2n can be considered
as a set of N standard basis vectors ek (k = 0, · · · , N − 1) of an N-D vector
space. Similarly, the N vectors of matrix Rn also form a set of basis vectors, of
which N − 2 are the same standard vectors as those in In, except rows number
N/4 and number N/2 which are rotated by an angle θn. As rotation is a unitary
transformation, the rotation matrix is unitary, i.e.,

RT
nRn = In
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Without the rotation, i.e., if θn = 0 and Rn = In, Eq.7.51 for slant matrix
becomes the same as Eq.7.3 for Hadamard matrix.

The slant transform matrix Sn is obviously real but not symmetric, and we
can also show that it is orthogonal:

ST
n = S−1

n , i.e., ST
nSn = In (7.54)

Proof:
This is a proof by induction. First, when n = 1, it is trivial to show that R1

is orthogonal:

ST
1 S1 =

1
2

[
1 1
1 −1

] [
1 1
1 −1

]
=
[

1 0
0 1

]
= I1

Next, we assume ST
n−1Sn−1 = In−1, and consider:

ST
nSn =

1
2

[
Sn−1 Sn−1

Sn−1 −Sn−1

]T

RT
nR

[
Sn−1 Sn−1

Sn−1 −Sn−1

]
=

1
2

[
ST

n−1 ST
n−1

ST
n−1 −ST

n−1

] [
Sn−1 Sn−1

Sn−1 −Sn−1

]

=
1
2

[
2ST

n−1Sn−1 0n−1

0n−1 2ST
n−1Sn−1

]
=
[

In−1 0n−1

0n−1 In−1

]
= In (7.55)

As a slant matrix Sn is closely related to a Hadamard matrix Hn, the sequen-
cies of their corresponding rows are the same. The same re-ordering method given
in Eq. 7.35 can be used to rearrange the rows in Sn in ascending order of their
sequencies. Based on the recursive definition in Eq.7.51, and after conversion to
sequency order, the slant matrices of the next two levels for n = 2 and n = 3 can
generate:

S2 =
1
2





1.00 1.00 1.00 1.00
1.34 0.45 −0.45 −1.34
1.00 −1.00 −1.00 1.00
0.45 −1.34 1.34 −0.45





and

S3 =
1√
8





1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.53 1.09 0.65 0.22 −0.22 −0.65 −1.09 −1.53
1.34 0.45 −0.45 −1.34 −1.34 −0.45 0.45 1.34
0.68 −0.10 −0.88 −1.66 1.66 0.88 0.10 −0.68
1.00 −1.00 −1.00 1.00 1.00 −1.00 −1.00 1.00
1.00 −1.00 −1.00 1.00 −1.00 1.00 1.00 −1.00
0.45 −1.34 1.34 −0.45 −0.45 1.34 −1.34 0.45
0.45 −1.34 1.34 −0.45 0.45 −1.34 1.34 −0.45





(7.56)

We can make the following observations of the slant matrix:! In particular, the second row with sequency of 1 has a negative linear slop,
thereby the name “slant” matrix.
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! Unlike the Walsh-Hademard matrix, the slant matrix ST $= S is not symmet-
ric;! Like the Walsh-Hadamard matrix, the sequency of the row and column vectors
of the slant matrix increases from 0 of the first row/column to the last one;
However, we prefer to treat the row vectors as the orthogonal basis vectors
that span a vector space, i.e,

Sn =




sT
0
...

sT
N−1





7.2.2 Fast Slant Transform

Given an orthogonal matrix Sn, an orthogonal transform of an N-D vector x
can be defined as:

X =




X [0]

...
X [N − 1]



 = Sx =




sT
0
...

sT
N−1



x, (7.57)

or in component form:

X [k] = sT
k x =< sk, x >

i.e., X [k] is the projection of the signal vector x onto the kth basis vector sk.
The inverse transform reconstructs the signal from its transform coefficients:

x = ST X = [s0, · · · , sN−1]




X [0]

...
X [N − 1]



 =
N−1∑

k=0

X [k]sk (7.58)

Like the Walsh-Hadamard transform, the slant transform also has a fast algo-
rithm with computational complexity of O(N log2 N) instead of O(N2). This
algorithm can be explained in the following example of n = 3. The slant trans-
form of a vector x of size N = 23 = 8 is:

X = S3x =
1√
2
R3

[
S2 S2

S2 −S2

]





x[0]
...

x[3]
x[4]

...
x[7]





=
1√
2
R3

[
S2x1

S2x2

]
(7.59)
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Figure 7.6 A comparison of slant (solid lines) and Hadamard (dashed lines) matrices

where

x1 =




x[0]

...
x[3]



+




x[4]

...
x[7]



 , x2 =




x[0]

...
x[3]



−




x[4]

...
x[7]





We see that an 8-point slant transform is converted into two 4-point slant trans-
forms, each of which can be in turn converted to two 2-point transforms. This
recursive process is illustrated in the diagram in Fig.7.7. The three nested boxes



The Walsh-Hadamard, Slant and Haar Transforms 355

Figure 7.7 A recursive algorithm of fast slant transform

The three nested boxes (dashed line) are for 8, 4 and 2-point transforms, respec-
tively. Letter c and s represents cos θn and sin θn for the rotation for each of the
transforms (except for N = 2).

(dashed line) represent three levels of recursion for the 8-point, 4-point and
2-point transforms, respectively. In general, an N-point transform can be imple-
mented by this algorithm in log2 N stages each requiring O(N) operations, i.e.,
the total complexity is O(N log2 N). This algorithm is almost identical to the
WHT algorithm shown in Fig.7.4, except an additional rotation for two of the
rows at each level.

While the algorithm can be implemented in a manner very similar to the WHT
code discussed previously, here we present an alternative implementation based
on recursion, which fits the algorithm most naturally.

slantf(float *x, int N)
{

int i,j,k,l,m,n;
float c,s,u,v,w,*y1,*y2;
y1=(float*)malloc(N/2 * sizeof(float));
y2=(float*)malloc(N/2 * sizeof(float));
if (N==2) { // 2-point transform
u=x[0]; v=x[1];
x[0]=(u+v)/Sqrt2;
x[1]=(u-v)/Sqrt2;

}
else {
for (n=0; n<N/2; n++) {
y1[n]=x[n]+x[N/2+n];
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y2[n]=x[n]-x[N/2+n];
}
slantf(y1,N/2); // recursion
slantf(y2,N/2);
for (n=0; n<N/2; n++) {
x[n]=y1[n]/Sqrt2;
x[N/2+n]=y2[n]/Sqrt2;

}
w=4*N*N-4;
c=sqrt(3*N*N/w);
s=sqrt((N*N-4)/w);
u=x[N/4]; v=x[N/2];
x[N/4]=c*u-s*v; // rotation
x[N/2]=s*u+c*v;

}
free(y1); free(y2);

}

The inverse transform can be implemented by reversing the steps and opera-
tions both mathematically and order-wise in the forward transform:

slanti(float *x, int N)
{
int i,j,k,l,m,n;
float c,s,u,v,w,*y1,*y2;
y1=(float*)malloc(N/2 * sizeof(float));
y2=(float*)malloc(N/2 * sizeof(float));
if (N==2) { // 2-point transform
u=x[0]; v=x[1];
x[0]=(u+v)/Sqrt2;
x[1]=(u-v)/Sqrt2;

}
else {
w=4*N*N-4;
c=sqrt(3*N*N/w);
s=sqrt((N*N-4)/w);
u=x[N/4]; v=x[N/2];
x[N/4]=c*u+s*v; // rotation
x[N/2]=c*v-s*u;
for (n=0; n<N/2; n++) {
y1[n]=x[n]*Sqrt2;
y2[n]=x[N/2+n]*Sqrt2;

}
slanti(y1,N/2); // recursion
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slanti(y2,N/2);
for (n=0; n<N/2; n++) {
x[n]=(y1[n]+y2[n])/2;
x[N/2+n]=(y1[n]-y2[n])/2;

}
}
free(y1); free(y2);

}

Example 7.2: The sequency ordered WHT of an 8-point signal vector x =
[0, 0, 2, 3, 4, 0, 0, 0]T can be obtained by matrix multiplication:

X = S3x = [3.18, 0.39,−3.64,−0.03, 1.77,−1.06,−0.16, 1.11]T (7.60)

where S3 is given in Eq.7.56. The inverse transform will bring the original signal
x back:

S−1
3 X = ST

3 X = x = [0, 0, 2, 3, 4, 0, 0, 0]T (7.61)

7.3 The Haar Transform

7.3.1 Continuous Haar Transform

Similar to the Walsh-Hadamard transform, the Haar transform is yet another
orthogonal transform defined by a set of rectangular shaped basis functions.
However, compared to all orthogonal transform methods considered so far, the
Haar transform has some unique significance in the sense that it is also a special
type of the wavelet transforms to be discussed in a later chapter.

The family of Haar functions hn(t), (n = 0, 1, 2, · · · ) are defined on the interval
0 ≤ t ≤ 1. Except h0(t) = 1 defined as a constant 1, the shape of the nth function
hn(t) for n > 0 are determined by two parameters p and q, which are related to
k by:

n = 2p + q − 1 (7.62)

For any given n > 0, p and q are uniquely determined so that 2p is the largest
power of 2 contained in n, i.e., 2p < n or 0 ≤ p < log2k, and q − 1 is the remain-
der, i.e., q − 1 = n− 2p or 1 ≤ q ≤ 2p. For example, the values of p and q corre-
sponding to n = 1, · · · , 15 are shown in the table:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3
q 1 1 2 1 2 3 4 1 2 3 4 5 6 7 8

(7.63)
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Figure 7.8 The 8 basis functions for the Haar transform

Now the family of Haar functions can be defined in terms of p and q as:! When n = 0:

h0(t) = 1, (0 ≤ t < 1) (7.64)! When n > 0,

hk(t) =






2p/2 (q − 1)/2p ≤ t < (q − 0.5)/2p

−2p/2 (q − 0.5)/2p ≤ t < q/2p

0 otherwise
(7.65)

The first N = 8 Haar functions are shown in Fig. 7.8. We see that the Haar
functions hn(t) for all n > 0 contain a single prototype shape composed of a
square wave followed by its negative copy, with the two parameters p specifying
the magnitude and width (or scale) of the shape and q specifying the position
(translation) of the shape. For example, if n = 3, then p = 1, q = 2, and we have

h3(t) =






√
2 0.5 ≤ t < 0.75

−
√

2 0.75 ≤ t < 1
0 0 ≤ t < 0.5

(7.66)

These Haar functions are obviously orthonormal:

< hn(t), hν(t) >=
∫ 1

0
hn(t)hν(t)dt = δ[n− ν] =

{
1 n = ν
0 n $= ν

(7.67)

and they can be used as the basis functions to span a function space over 0 ≤ t <
1. A signal function x(t) in this space can be expressed as a linear combination
of these Haar functions:

x(t) =
∞∑

n=0

X [n]hn(t) (7.68)

where the nth coefficient X [n] can be obtained as the projection of x(t) onto the
nth basis function hn(t):

X [n] =< x(t), hn(t) >=
∫ 1

0
x(t)hn(t)dt (7.69)
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This is the continuous Haar transform of the signal x(t). Let us further consider
what each coefficient X [n] represents. First, when n = 0, the coefficient

X [0] =
∫ 1

0
x(t)h0(t)dt =

∫ 1

0
x(t)dt (7.70)

represents the average or DC component of the signal, same as all orthogonal
transforms discussed before. Next, each of the coefficients X [n] for n > 0 repre-
sents two specific aspects of the signal characteristics, determined by p and q,
respectively:! certain detailed feature of the signal, in the form of the difference between

two consecutive segments of the signal, at different time scales! and when the detailed feature occurs in time.

For example, a large value (either positive or negative) of the coefficient X [3] for
the basis function h3(t)) would indicate that the signal value has some significant
variation in the second half of its duration.

In light of these two characteristics, especially the second one, it is inter-
esting to compare the Haar transform with all the orthogonal transforms dis-
cussed before, including Fourier transform, cosine transform, Walsh-Hadamard
transform. What all of these transforms, including the Haar transform, have in
common is that their coefficients represent some type of details contained in
the signal, in terms of different frequencies (Fourier transform and cosine trans-
form), sequencies (Walsh-Hadamard transform), or scales (Haar transform), in
the sense that more detailed information is represented by coefficients for higher
frequency/sequency/scales. However, none of these transforms is able to indicate
when in time such details occur, except the Haar transform, which can represent
not only the details of different scales, but also their temporal positions. It is
this feature that distinguishes the Haar transform from all of other orthogonal
transforms, and for this reason, the Haar transform is also a special form of the
wavelet transform to be discussed later.

7.3.2 Discrete Haar Transform (DHT)

The discrete Haar transform (DHT) is defined based on the family of Haar
functions. Specifically, by sampling each of the first N Haar functions hn(t)
(n = 0, · · · , N − 1) at time moments t = m/N (m = 0, 1, 2, · · · , N − 1), we get
N orthogonal vectors. Moreover, if a scaling factor 1/

√
N is included, these

vectors become orthonormal:

< hn, hν >= hT
n hν = δ[m− n] (7.71)

These N orthonormal vectors form a basis that spans the N-dimensional vector
space, and they form an N by N DHT matrix H (not to be confused with the
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WHT matrix):

H = [h0, · · · , hN−1], or HT =




hT

0
...

hT
N−1



 (7.72)

which is obviously real and orthogonal:

H = H∗, H−1 = HT , i.e. HT H = I (7.73)

As some examples, the DHT matrices corresponding to N = 2, 4, 8 are listed
below.! When N = 2, the 2× 2 DHT matrix is identical to the transform matrices for

all other discrete transforms including DFT, DCT and WHT:

HT
1 =

1√
2

[
1 1
1 −1

]
=
[

0.71 0.71
0.71 −0.71

]
(7.74)

The first row represents the average of the signal, while the second represents
the difference between the first and second halves of the signal, same for all
transform methods.! When N = 4

HT
2 =

1
2





1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2



 =





0.50 0.50 0.50 0.50
0.50 0.50 −0.50 −0.50
0.71 −0.71 0.00 0.00
0.00 0.00 0.71 −0.71



 (7.75)

In comparison, the transform matrices C and Hw for the other two real
transforms DCT and WHT are also listed below:

CT =





0.50 0.50 0.50 0.50
0.65 0.27 −0.27 −0.65
0.50 −0.50 −0.50 0.50
0.27 −0.65 0.65 −0.27



 , HT
w =





0.50 0.50 0.50 0.50
0.50 0.50 −0.50 −0.50
0.50 −0.50 −0.50 0.50
0.50 −0.50 0.50 −0.50





(7.76)
Here a subscript w is included in the WHT matrix Hw to tell it apart from
the DHT matrix H. We see that all three matrices have identical first rows
representing the DC component of the signal, and the elements of their sec-
ond rows have the same polarities, although different values, representing the
difference between the the first and second halves of the signal. However, the
third and forth rows are quite different. In the case of DCT and WHT, they
represent progressively higher frequency/sequency components in the signal,
but in the case of DHT, these rows represent the same level of details in signal
variation, and their different temporal locations (either in the first or second
half), at a finer scale than the second row.
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! When N = 8, we have

HT
3 =

1√
8





1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2
√

2 −
√

2 −
√

2 0 0 0 0
0 0 0 0

√
2
√

2 −
√

2 −
√

2
2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2





ϕ0(t)
ψ0(t)
ψ1,0(t)
ψ1,1(t)
ψ2,0(t)
ψ2,1(t)
ψ2,2(t)
ψ2,3(t)

(7.77)

It is obvious that the additional four rows represent signal variations and their
temporal positions at a finer still scale than the previous two rows. Note that
each row is also labeled as a function (ϕ(t) for the first row and ψ(t) for the
rest) on the right. The significance of these labelings will be clear in the future
when we discuss discrete wavelet transforms.

Now any N-point signal vector x = [x[0], · · · , x[N − 1]]T ] can be expressed as
a linear combination of the column vectors hn (n = 0, · · · , N − 1) of the DHT
matrix H :

x = HX = [h0, · · · , hN−1]




X [0]

...
X [N − 1]



 =
N−1∑

n=0

X [n]hn (7.78)

This is the inverse discrete Haar transform (IDHT), where X [n] is the coefficient
for the nth vector hn, which can be obtained as the projection of the signal
vector x onto the nth basis vector hn:

X [n] =< x, hn >= hT
nx (n = 0, 1, · · · , N − 1) (7.79)

or in matrix form:

X = H−1x = HT x =




hT

0
...

hT
N−1



x (7.80)

This is the forward discrete Haar transform (DHT), which can also be obtained
by pre-multiplying H−1 on both sides of the IDHT equation above. The DHT
pair can be written as:

{
X = HT x (forward)
x = HX (inverse)

(7.81)

Example 7.3: The Haar transform coefficients of an 8-point signal x =
[0, 0, 2, 3, 4, 0, 0, 0]T can be obtained by the DHT as:

X = HT x = [3.18, 0.35,−2.50, 2.0, 0.0,−0.71, 2.83, 0.0]T (7.82)
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where the 8-point Haar transform matrix is given in Eq.7.77. Here, same as
in DCT, WHT and ST, X [0] = 3.18 and X [1] = 0.35 represent respectively the
average and the difference between the first and second halves of the signal.
However, the interpretations of the remaining DHT coefficients are quite different
from the DCT and WHT. X [2] = −2.5 represents the difference between the
first and second quarters in the first half of the signal, while X [3] = 2 represents
the difference between the third and forth quarters in the second half of the
signal. Similarly, X [4], · · · , X [7] represent the next level of details in terms of
the difference between two consecutive eighths of the signal in each of the four
quarters of the signal.

The signal vector is reconstructed by the inverse transform IDHT which
expresses the signal as a linear combination of the basis functions, as shown
in Eq.7.78.

7.3.3 Computation of discrete Haar transform

The computational complexity of an N-point discrete Haar transform imple-
mented as a matrix multiplication is O(N2). However, a fast algorithm with
linear complexity O(N) exists for both DHT and IDHT, as illustrated in Fig.7.9
for the for an N = 8 point DHT transforms. The forward transform X = HT

3 x
can be written in matrix form as:





X [0]
X [1]
X [2]
X [3]
X [4]
X [5]
X [6]
X [7]





=
1√
8





1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2
√

2 −
√

2 −
√

2 0 0 0 0
0 0 0 0

√
2
√

2 −
√

2 −
√

2
2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2









x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]





=





(1 1 1 1 1 1 1 1) /
√

23

(1 1 1 1 −1 −1 −1 −1) /
√

23

(1 1 −1 −1 0 0 0 0) /
√

22

(0 0 0 0 1 1 −1 −1) /
√

22

(1 −1 0 0 0 0 0 0) /
√

2
(0 0 1 −1 0 0 0 0) /

√
2

(0 0 0 0 1 −1 0 0) /
√

2
(0 0 0 0 0 0 1 −1) /

√
2









x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]





(7.83)

By inspection of this matrix multiplication of this forward transform, we see
that each of the last four coefficients X [4], · · · , X [7] in the second half of vector
X can be obtained as the difference between a pair of two signal samples, e.g.,
X [4] = (x[0]− x[1])/

√
2. Similarly, each of the last two coefficients X [2] and X [3]
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Figure 7.9 The fast Haar transform algorithm

The forward DHT transform shown on the left of the diagram converts the signal
x to it DHT coefficients X in the middle, which is then inverse transformed back
to time domain by the IDHT shown on the right of the diagram.

of the first half of X can be obtained as the difference between two sums of two
signal components, e.g., X [2] = ((x[0] + x[1])− (x[2] + x[3]))/2. This process can
be carried out recursively as shown on the left of Fig.7.9, each performing some
additions and subtractions on the first half of the data points produced in the
previous stage, and in log2 8 = 3 consecutive stages, the N DHT coefficients
X [0], · · · , X [7] can be obtained. Moreover, if the results of each stage are divided
by
√

2, the normalization of the transform can also be taken care of.
The inverse transform x = H3X can also be written in matrix form:





x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]





=
1√
8





1 1
√

2 0 2 0 0 0
1 1

√
2 0 −2 0 0 0

1 1 −
√

2 0 0 2 0 0
1 1 −

√
2 0 0 −2 0 0

1 −1 0
√

2 0 0 2 0
1 −1 0

√
2 0 0 −2 0

1 −1 0 −
√

2 2 0 0 2
1 −1 0 −

√
2 0 0 0 −2









X [0]
X [1]
X [2]
X [3]
X [4]
X [5]
X [6]
X [7]





=





1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1









X [0]/
√

23

X [1]/
√

23

X [2]/
√

22

X [3]/
√

22

X [4]/
√

2
X [5]/

√
2

X [6]/
√

2
X [7]/

√
2





(7.84)
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By inspection we see that this matrix multiplication can also be carried out in
log2 8 = 3 stages as shown on the right of the diagram in Fig.7.9. Again, the
output of each stage needs to be divided by

√
2.

Following this example for N = 8, we see that in general an N-point DHT can
be carried out in log2 N stages, and the number of operations for each stage is
always half of that of the previous stage (i.e., N, N/2, · · · , 2), therefore the total
number of operations for the DHT is

N

1
+

N

2
+

N

4
+

N

8
+ · · · + 2 = N

n−1∑

k=0

(
1
2

)k

= 2N(1− 1
2n

) < 2N (7.85)

i.e., the computational complexity of this DHT algorithm is O(N), much more
efficient compared to the typical complexity of O(N log2 N) for most of other
transforms such as FFT, DCT and WHT. The C code for both the forward and
inverse discrete Haar transform is listed below:

dht(x,N,inverse)
float *x;
int N,inverse;

{ int i,n;
float *y,r2=sqrt(2.0);
y=(float *)malloc(N*sizeof(float));
if (inverse) {
n=1;
while(n<N) {
for (i=0; i<n; i++) {

y[2*i] =(x[i]+x[i+n])/r2;
y[2*i+1]=(x[i]-x[i+n])/r2;

}
for (i=0; i<n*2; i++) x[i]=y[i];
n=n*2;

}
}
else {
n=N;
while(n>1) {
n=n/2;
for (i=0; i<n; i++) {

y[i] =(x[2*i]+x[2*i+1])/r2;
y[i+n]=(x[2*i]-x[2*i+1])/r2;

}
for (i=0; i<n*2; i++) x[i]=y[i];

}
}
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free(y);
}

7.3.4 Filter bank implementation

The fast algorithm of the Haar transform can also be viewed as a special case of
the filter bank algorithm for general wavelet transforms, to be discussed later.
Here we briefly discuss such an implementation as a preview of the filter bank
idea. To see how this algorithm works, we first consider the convolution of a
signal sequence x[n] with some convolution kernel h[n]:

x′[n] = x[n] ∗ h[n] =
∑

m

h[m]x[n−m] (7.86)

In particular, for the Haar transform, we consider four different 2-point convo-
lution kernels:! h0[0] = h0[1] = 1/

√
2! h1[0] = 1/

√
2, h1[1] = −1/

√
2! g0[0] = g0[1] = 1/

√
2! g1[0] = −1/

√
2, h1[1] = 1/

√
2

Note that gi[n] is the time-reversed version of hi[n] (i = 0, 1), i.e., the order of
the elements in the 2-point sequence is reversed (the two elements of g0 and h0

are identical). Depending on the kernel, the convolution above can be considered
as either a highpass or lowpass filter. Specifically, if the kernel is h0 (or g0), we
have

y[n] = x[n] ∗ h0[n] =
1∑

m=0

h0[m]x[n−m] =
1√
2
(x[n− 1] + x[n]) (7.87)

This can be considered as a lowpass filter as the output y[n] represents the
average of any two consecutive data points x[n− 1] and x[n] (corresponding to
some low frequencies). On the other hand, if the kernel is h1, then

y[n] = x[n] ∗ h1[n] =
1∑

m=0

h0[m]x[n−m] =
1√
2
(x[n− 1]− x[n]) (7.88)

This can be considered as a highpass filter as the output y[n] represents the
difference of the two consecutive data points (corresponding to some high fre-
quencies). Finally, if the kernel is g1, the convolution is also a highpass filter:

y[n] = x[n] ∗ g1[n] =
1√
2
(x[n]− x[n− 1]) = −x[n] ∗ h1[n] (7.89)

Due to the convolution theorem of Z-transform, these convolutions can also be
represented as multiplications in Z-domain:

Y (z) = Hi(z)X(z), Y (z) = Gi(z)X(z), (i = 0, 1) (7.90)
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Now the forward transform of the fast DHT shown on the left of Fig. 7.9 can
be considered as a recursion of the following two operations:! Operation A (average or approximation): a lowpass filter implemented as

y[n] = x[n] ∗ h0[n], followed by downsampling (every other point in y[n] is
eliminated);! Operation D (difference or detail): a highpass filter implemented as y[n] =
x[n] ∗ h1[n], also followed by downsampling.

For example, operation A applied to a set of 8-point sequence x[0], · · · , x[7] will
generate a 4-point sequence containing x[0] + x[1], x[2] + x[3], x[4] + x[5], and
x[6] + x[7] (all divided by

√
2) representing the local average (or approximation)

of the signal. When operation D is applied to the same input, it will generate
a different 4-point sequence containing x[0]− x[1], x[2]− x[3], x[4]− x[5], and
x[6]− x[7] (all divided by

√
2) representing the local difference (or details) of

the signal.
In this filter bank algorithm, this pair of operations A and D is applied first to

the N -point signal x[n] (n = 0, · · · , N − 1), and then recursively to the output
of operation A in the previous recursion. As the data size is reduced by half
by each recursion, this process can be carried out log2 N times to generate all
N transform coefficients. This is the filter bank implementation of the DHT, as
illustrated on left of Fig.7.10.

The inverse transform of the fast algorithm (right half of Fig. 7.9) can also be
viewed as a recursion of two operations:! Operation A: a lowpass filter implemented as y[n] = x[n] ∗ g0[n], applied to

the upsampled version of the data (with a zero inserted between every two
consecutive data points, also in front of the first sample and after the last
one);! Operation D: a highpass filtered by y[n] = x[n] ∗ g1[n], applied to the upsam-
pled input data.

For example, when operation A is applied to X [0], it will first be upsampled
to become 0, X [0], 0, which is then convolved with g0[n] to generate a sequence
with two elements X [0], X [0]. Also, when operation D is applied to X [1], it will
be upsampled to become 0, X [1], 0, which is convolved with g1[n] to generate a
sequence X [1],−X [1]. The corresponding elements of these two sequences are
then added to generate a new sequence X [0] + X [1], X [0]−X [1]. In the next
level of recursion, operation A will be applied to this 2-point sequence, while
operation D is applied to the next two data points X [2], X [3], and their outputs,
two 4-point sequences, are added again. This recursion is also carried out log2 N
times until all N data points x[0], · · · , x[N − 1] are reconstructed. This is the
filter bank implementation of the IDHT, as illustrated on the right of Fig.7.10.
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Figure 7.10 Filter bank implementation of DHT

Here H0 and G0(z) are lowpass filters and H1 and G1 are highpass filters. The
up and down arrows represent upsampling and downsampling, respectively.

7.4 Two-dimensional Transforms

Same as the discrete Fourier and cosine transforms, all three of the trans-
form methods discussed above can also be applied to a 2-D signal x[m, n]
(m = 0, · · · , M − 1, n = 0, · · · , N − 1), such as an image, for purposes such as
feature extraction, filtering and data compression. For convenience, in the fol-
lowing we will represent any of the three orthogonal matrices considered above
for the Walsh-Hadamard, slant and Haar transforms by a generic orthogonal
matrix A. The forward and inverse 2-D transform of a 2-D signal are defined
respectively as:

{
XM×N = AT

MxM×NAN (forward)
xM×N = AMXM×NAT

N (inverse)
(7.91)

where x and X are respectively the 2-D M by N signal matrix and its trans-
form coefficient matrix, and AN and AN are respectively M by M matrix for the
column transforms and N by N matrix for the row transforms. The inverse trans-
form (second equation) expresses the given 2-D signal x as a linear combination
of a set of N2 2-D basis functions:

x = [a0, · · · , aM−1]




X [0, 0] · · · X [0, N − 1]

...
. . .

...
X [M − 1, 0] · · · X [M − 1, N − 1]








aT

0
...

aT
N−1





=
M−1∑

k=0

N−1∑

l=0

X [k, l]akaT
l =

M−1∑

k=0

N−1∑

l=0

X [k, l]Bkl (7.92)

where Bkl = akaT
l is the kl-th 2-D (M by N) basis function, weighted by the

corresponding coefficient X [k, l]. Also, same as in the cases of DFT (Eq.4.214)
and DCT (Eq.6.96), this coefficient can be obtained as the projection (inner
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Figure 7.11 The basis functions for different 2-D orthogonal transforms

DCT (top left), WHT (top right), ST (lower left), and DHT (lower right). In
all cases the DC component is at the top-left corner, and the farther away from
the corner, the higher frequency/sequency contents or scales of details are rep-
resented. Specially, the spatial positions, as well as different levels of scales, are
also represented in the Haar basis.

product) of x onto the kl-th basis function Bkl:

X [k, l] = aT
k




x[0, 0] · · · x[0, N − 1]

...
. . .

...
x[M − 1, 0] · · · x[M − 1, N − 1]



al

=
M−1∑

m=0

N−1∑

n=0

x[m, n]Bkl[m, n] =< x, Bkl > (7.93)

We see that this coefficient is the projection of the 2-D signal x onto the 2-
D basis function. When M = N = 8, the 8× 8 = 64 such 2-D basis functions
corresponding to Walsh-Hadamard, slant, and Haar are shown in Fig.7.11. For
comparison, the basis functions corresponding basis functions for discrete cosine
transform are also shown.

All of these transform methods can be used for filtering. Fig.7.12 shows both
the low-pass and high-pass filtering effects in both spatial domain and spatial
frequency domain for each of the transform methods. We can also see that all of
these transforms have the general property of compacting the signal energy into
a small number of low frequency/sequency components. In the low-pass filtering
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Figure 7.12 Low-pass and high-pass filtering based on different 2-D transforms

The spectrum of each of the transform methods (from left to right: DCT, WHT,
ST and DHT) after filtering is given in the first (low-pass) and third (high-pass)
row, and the corresponding filtered image is given directly below each spectrum.

examples, only about one percent of the transform coefficients are kept after
filtering in the transform domain of DCT, WHT, ST and DHT, but they carry,
respectively, 96.4%, 94.8%, 95.5% and 93% of the total signal energy. Therefore
all of these transform methods lend themselves to data compression, same as the
Fourier transform.

On the other hand, these transform methods use different basis functions,
which may be suitable for different types of signals. Most obviously, like the
DFT, the DCT has sinusoidal basis functions and is therefore suitable for rep-
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resenting signals that are smooth in nature. However, it is also possible that in
some specific applications other transform methods may be more suitable, as the
signals of interest may be more effectively represented by a particular type of
basis functions other than sinusoids. For example, if the signals are square wave
like in nature, then the WHT may be more suitable to use, as the signal may
be most effectively represented by a small subset of the basis functions, so that
corresponding transform coefficients may contain most of the signal energy.

Also we make some special note regarding the Haar transform. Same as all
other 2-D transforms, the first basis function, the top-left corner in Fig.7.11,
is a constant representing the DC component of the 2-D signal. However, the
rest of the basis functions are quite different. For example, the lower-right quar-
ter of the image shows the last 16 basis functions representing not only the
details in the signal at the highest scale level, but also their spatial positions.
This contrasts strongly with the spectra of all other transforms, which represent
progressively higher spatial frequencies/sequencies (for signal details at different
levels) without any indication in terms of their spatial positions. It is this unique
characteristic that makes the Haar transform also a special case of the wavelet
transform, as we will see in a later chapter.



8 Karhunen-Loeve Transform and
Principal Component Analysis

8.1 Stochastic Signal and Signal Correlation

8.1.1 Signals as Stochastic Processes

In all of our previous discussions, a signal x(t) is assumed to take a deterministic
value x(t0) at any given moment t = t0. However, in practice, many signals of
interest, such as weather parameters (temperature, precipitation, etc.), are not
deterministic, in the sense that multiple measurements of the same variable may
be similar but not identical. While such probabilistic nature of these signals
could be caused by some inevitable measurement errors, we also realize that
many natural processes are affected by a large number of factors which are
simply impossible to model precisely in terms of how they affect the variables of
interest. Consequently the measured signals seem to be contaminated by some
random noise.

The time signal x(t) of such a non-deterministic variable can be considered as
a stochastic process or random process, of which each time sample can be treated
as a random variable with certain probability distribution. In this chapter, we
will consider an spectial orthogonal transform that can be applied to stochastic
signals, similar to the way all orthogonal transforms discussed previously are
applied to deterministic signals, so that the subsequent signal processing and
analysis can be carried out more effectively and conveniently.

First let us review the following concepts of a stochastic process x(t).! The mean function of x(t) is the expectation of the stochastic process:

µx(t) =
∫

x(t)p(xt)dx = E[x(t)] (8.1)

where p(xt) is the probability density function of the variable x(t). If µx(t) = 0
for all t, then x(t) is a zero-mean or centered stochastic process, which can
be easily obtained by subtracting the mean function µx(t) from the original
process x(t). Therefore, without loss of generality, we can always assume that
a given process x(t) is centered with µx(t) = 0.

371
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! The auto-covariance function of x(t) is defined as

Covx(t, τ) = σ2
x(t, τ) =

∫ ∫
(x(t) − µx(t)) (x(τ)− µx(τ))p(xt, xτ )dt dτ

= E[(x(t)− µx(t)) (x(τ) − µx(τ))] = E[x(t)x(τ)] − µx(t)µx(τ)

where p(xt, xτ ) is the joint probability density function of x(t) and x(τ). When
t = τ , the covariance σ2(t, t) = Covx(t) = V arx(t) = E[|x(t)|2] becomes the
variance of the signal at t. Without loss of generality, we can always assume
x(t) to be centered with µx(t) = 0, and the covariance σ2

x(t, τ) becomes:

σ2
x(t, τ) = E[x(t)x(τ)] =< x(t), x(τ) > (8.2)

which can be considered as an inner product of the two variables x(t) and
x(τ) (Eq.2.27 in Chapter 2). In particular, if σ2

x(t, τ) =< x(t), x(τ) >= 0, the
two variables are orthogonal to each other.! The autocorrelation function of x(t) is defined as the covariance σ2

x(t, τ) nor-
malized by σx(t) and σx(τ):

rx(t, τ) =
σ2

x(t, τ)√
σ2

x(t) σ2
x(τ)

=
< x(t), x(τ) >√

< x(t), x(t) >< x(τ), x(τ) >
(8.3)

Due to the Cauchy-Schwarz inequality: | < x, y > |2 ≤< x, x >< y, y >, we see
that |rx(t, τ)| ≤ 1, and rx(t, τ) = 1 if and only if t = τ . This results indicates
that the similarity between any two different variables x(t) and x(τ) is always
smaller than that of a variable x(t) to itself, which is always 1 or one hundred
percent.

Moreover, if the joint probability density function of the random process x(t)
does not change over time, then x(t) is called a stationary process, and the
following hold for any τ :

µx(t) = µx(t− τ), σ2
x(t, τ) = σ2

x(t− τ), rx(t, τ) = rx(t− τ) (8.4)

If these equations still hold while the joint density function may not be neces-
sarily invariant over time, then x(t) is called weak-sense stationary or wide-sense
stationarity (WSS).

Same as a deterministic signal, a random process x(t) can also be
truncated and sampled to become a finite set of N random vari-
ables x[i] = x(ti) (i = 0, · · · , N − 1), which can be represented by a ran-
dom vector x = [x[0], · · · , x[N − 1]]T . Correspondingly, the mean and auto-
covariance/autocorrelation functions above become a vector and matrix, respec-
tively:! The mean vector of a random vector x is its expectation:

µx = E(x) = [µ[0], · · · , µ[N − 1]]T (8.5)

where µ[i] = E(x[i]) is the mean of x[i] (i = 0, · · · , N − 1). Also, without loss
of generality, we can always assume x is centered with µ = 0.
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! The covariance matrix of a random vector x is defined as:

Σx = E[(x− µx)(x− µx)∗] = E[xx∗]− µxµ∗x =





σ2
0 · · · σ2

0(N−1)
...

. . .
...

σ2
(N−1)0 · · · σ2

N−1





(8.6)
where the element σ2

ij is the covariance of two x[i] and x[j]:

σ2
ij = E[(x[i]− µ[i])(x[j]− µ[j])] = E(x[i]x[j])− µ[i]µ[j], (i, j = 0, · · · , N − 1)

(8.7)
When µx = 0, we have σij = E(x[i]x[j]) =< x[i], x[j] >. The ith component
on the main diagonal is the variance σ2

i = E[|x[i]− µ[i]|2] of the ith variable
x[i]. Note that this covariance matrix Σ∗x = Σx is Hermitian and positive
definite.! The correlation coefficient between two random variables x[i] and x[j] is
defined as the covariance σ2

ij normalized by σi and σj :

rij =
σ2

ij√
σ2

i σ
2
j

=
< x[i], x[j] >√

< x[i], x[i] > < x[j], x[j] >
, (i, j = 0, · · · , N − 1)

(8.8)
which measures the similarity between the two variables. In matrix form, we
have the correlation matrix composed of all correlation coefficients:

Rx =




r0 · · · r0(N−1)
...

. . .
...

r(N−1)0 · · · rN−1



 (8.9)

where |rij | ≤ 1 for all i $= j, and rii = ri along the main diagonal of Rx is 1.

The true mean vector µx and covariance matrix Σx of a random vector x
are difficult to obtain as they depend on the joint probability density func-
tion p(x), which is unlikely to be available in practice. However, µx and Σx

can be estimated if enough samples of the random vector can be obtained. Let
{xk, (k = 1, · · · , K)} be a set of K samples of the N-D random vector x, then
the mean vector and covariance matrix can be estimated as:

µ̂x =
1
K

K∑

k=1

xk, and Σ̂x =
1
K

K∑

k=1

(xk − µx)(xk − µx)∗ (8.10)

As we can always trivially subtract the mean vector from each of the K samples
so that they all have zero mean (centered), we can assume µx = 0 without loss
of generality. Moreover, we further define a K by N matrix D = [x1, · · · , xK ]T

composed of the K sample vectors of zero mean as its row vectors, then the
estimated covariance matrix can be expressed as:

Σ̂x =
1
K

[DT D∗]N×N (8.11)
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8.1.2 Signal Correlation

Signal correlation is an important concept in signal processing in general, and in
the context of the KLT transform in particular. As the measurement of a variable
associated with a certain physical system, a signal tend to be continuously and
relatively evenly distributed in either time or space, in the sense that any two
near by samples of such a temporal or spatial signal are likely to be highly
correlated. For example, given the current temperature as the signal sample
x(t), one could predict with reasonable confidence the temperature x(t + τ) in
the near future (small τ) as the next sample to be fairly similar, in contrast
with the temperature in the far future (large τ). In other words, the two signal
samples x(t) and x(t + τ) are highly correlated, i.e., σ2

x(t, t + τ) has a large value
or rx(t, t + τ) is close to 1.

This common sense in everyday life is due to the general phenomenon that the
energy associated with a system tends to be distributed smoothly and evenly over
both time and space in the physical world governed by the principle of minimum
energy and maximum entropy, which dictates that locally (strictly speaking, in a
closed system), concentrated energy tends to disperse over time, and differences
in physical quantities (temperature, pressure, or density) tend to even out. In
this physical world, any disruption or discontinuity, typically associated with
some kind of energy surge, is a relatively rare and unlikely event.

On the other hand, we also observe that when the spatial or temporal interval
between two signal samples increases, their correlation tends to reduce. While
predicting the future temperature x(t + τ) based on the current one x(t), one
would be less confident when τ becomes larger. The correlation between two
signal samples will eventually be totally diminished when they are so far apart
from each other that they are not related anymore.

The signal characteristics of local correlation is reflected in the correlation
matrix Rx of the signal. All elements along the main diagonal take the maximum
value 1, representing the maximal self-correlation of each signal sample, and
all off-diagonal elements rij < 1 takes a smaller value representing the cross-
correlation between two signal samples x[i] and x[j]. Moreover, due to local
correlation, elements rij close to the main diagonal (small |i− j|) tends to take
large values (close to 1) than those which are farther away from the main diagonal
(large |i− j|). If we consider the correlation matrix as a landscape, then there is
a ridge along its main diagonal.

Based on this observation, the signal can be modeled by a stationary first
order Markov process (a memoryless random process) with correlation 0 ≤ r ≤ 1
between two consecutive samples. In general, the correlation between any two
samples x[i] and x[j] is rij = r|i−j|, i.e., the correlation will reduce exponentially
as a function of the distance between two samples. The correlation matrix of this
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Markov chain is:

Rx =





1 r r2 · · · rN−1

r 1 r · · · rN−2

r2 r 1 · · · rN−3

...
...

...
. . .

...
rN−1 rN−2 rN−3 · · · 1





N×N

(8.12)

This is a Toeplitz matrix with all elements along each diagonal being the same.
This first-order Markov chain model will be used later.

We next consider a set of simple examples to illustrate intuitively the correla-
tion rxy between two random variables x and y. In each of the following cases,
we first assume an experiment concerning two random variables x and y is car-
ried out K = 3 times with different outcomes as listed in the tables, and then
calculate their correlation rxy based on the estimated means and covariances:

µ̂x =
1
K

K∑

k=1

x(k), µ̂y =
1
K

K∑

k=1

y(k) (8.13)

σ̂2
xy =

1
K

K∑

k=1

x(k)y(k) − µ̂xµ̂y, r̂xy =
σ̂2

xy√
σ̂2

x σ̂2
y

(8.14)

1.

k 1st 2nd 3rd
x(k) 1 2 3
y(k) 1 2 3

(8.15)

We have µ̂x = µ̂y = 2, σ̂2
xy = σ̂2

x = σ̂2
y = 2/3 and

r̂xy =
σ̂2

xy√
σ̂2

x σ̂2
y

=
2/3√
(2/3)2

= 1 (8.16)

i.e., x and y are maximally correlated (Fig.8.1(a)).
2.

k 1st 2nd 3rd
x(k) 2 4 6
y(k) 3 6 9

(8.17)

These values of x and y are the scaled version of the previous ones by 2 and
3, respectively, and we have:

µ̂x = 4, µ̂y = 6, σ̂2
x = 8/3, σ̂2

y = 6, σ̂2
xy = 4 (8.18)

and

r̂xy =
σ̂2

xy√
σ̂2

x σ̂
2
y

= 1 (8.19)
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We see that the two variables x and y are scaled differently but their correla-
tion, the normalized covariance, remains the same without being affected by
the variable scaling.

3.

k 1st 2nd 3rd
x(k) 1 2 3
y(k) 3 2 1

(8.20)

Same as before, we have µ̂x = µ̂y = 2 and σ̂2
x = σ̂2

y = 2/3, but σ̂2
xy = −2/3.

Then correlation becomes r̂xy = −1, indicating that the two variables are
negatively or inversely correlated (Fig.8.1(b)).

4.

k 1st 2nd 3rd
x(k) 1 2 3
y(k) 2 2 2

(8.21)

We have µ̂x = µ̂y = 2, σ̂2
xy = 0, and r̂xy = 0, indicating that the two variables

are completely uncorrelated (Fig.8.1(c)).
5.

k 1st 2nd 3rd
x(k) 2 2 2
y(k) 1 2 3

(8.22)

Same as before, the two variables are completely uncorrelated (Fig.8.1(d)).
6.

k 1st 2nd 3rd 4th 5th
x(k) 1 2 2 2 3
y(k) 2 1 2 3 2

(8.23)

This is the combination of the outcomes of the previous two cases when the
experiment is repeated K = 5 times. Now we still have µ̂x = µ̂y = 2, σ̂2

xy = 0
and r̂xy = 0, indicating that the two variables are completely uncorrelated.

In the examples above the variances σ2
x and σ2

y represent the dynamic energy
or information contained in the two variables x and y, and the covariance σ2

xy

represents how much the two variables x and y are similar or in common, i.e.,
how much they are correlated. If σ2

xy > 0, they are positively correlated, but if
σ2

xy < 0 they are negatively correlated, and if σ2
xy = 0, they are not correlated

at all. Specifically, in the first case above, the two variables x and y contain the
same amount energy σ2

x = σ2
y , and they are maximally correlated with rxy = 1,

i.e., the information they carry are redundant. On the other hand, in cases 4 and
5, rxy = 0, indicating the two variables are not correlated at all, i.e., there is no
redundancy among the two variables. Also, as variables y in case 4 and x in case
5 contain zero energy and therefore carry no information, they can be omitted
to reduce data without losing any information. Comparing these two situations



Karhunen-Loeve Transform and Principal Component Analysis 377

Figure 8.1 Different correlations between x and y

it becomes clear, from the signal processing point of view, that the latter cases
4 and 5 are much more preferred than the first one. In general we want to avoid
high signal correlation and even energy distribution, it is therefore desirable
to convert the given data in such a way that (1) the signal components are
minimally correlated with little redundancy and (2) the total energy contained
in the components is mostly contained in a small number of them so that those
that carry little information can be omitted. These properties are commonly
desired for many data processing applications such as information extraction,
noise reduction and data compression. We will next consider such a transform
method that can achieve these goals in an optimal way.

8.2 Karhunen-Loeve theorem (KLT)

8.2.1 Continuous Karhunen-Loeve theorem (KLT)

As discussed previously, a deterministic time signal x(t) can be represented by
an orthogonal transform as a linear combination of a set of orthonormal basis
functions:

{
x(t) =

∑
k ckφk(t)

ck =< x(t),φk(t) >=
∫

x(t)φk(t)dt
(8.24)

Similarly, as a stochastic process, a random signal can also be represented in
exactly the same form according to the Karhunen-Loeve theorem (Theorem
2.16). As discussed in section 2.5, the covariance σ2

x(t, τ) of a centered stochastic
process x(t) is Hermitian kernel, and the associated integral operator is a self-
adjoint and positive definite with real positive eigenvalues λi > 0 and orthogonal
eigenfunctions φk(t):

< φk(t),φl(t) >=
∫
φk(t)φl(t)dt = δ[k − l] (8.25)

Based on this result we obtained the Karhunen-Loeve theorem, which states that
a stochastic process x(t) can also be expressed as a linear combination of the
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orthogonal basis functions φk(t) (Eq.2.322):

x(t) =
∞∑

k=1

ckφk(t) (8.26)

where the coefficients can be obtained as (Eq.2.323):

ck =< x(t),φk(t) >=
∫

x(t)φk(t)dt (8.27)

These two equations for the series expansion of the stochastic signal x(t) can
also be considered as an orthogonal transform by which the time domain signal
is converted into a set of coefficients ck for the series in the transform domain.
Although Eqs.8.26 and 8.27 appear to be identical to Eq.8.24, these two sets of
equations are significantly different as the former is for deterministic signals while
the latter is for random signals. The coefficients ck in Eq.8.24 for a deterministic
signal are constants, but the coefficients ck in Eqs.8.26 and 8.27 are random vari-
ables. The random nature of a stochastic signal, when series expanded to become
x(t) =

∑
k ckφk(t), is reflected by the random coefficients ck in the expansion.

However, the orthogonal functions φk(t) of the expansion are deterministic, and
they form a specific basis that spans the function space.

8.2.2 Discrete Karhunen-Loeve Transform

We now consider the discrete version of the KLT. When a stochastic process
x(t) is truncated and sampled, it becomes a random vector composed of N
random variables x = [x[0], · · · , x[N − 1]]T . For convenience and without loss of
generality, we will always assume in the following that the signal is centered
with µx = 0, and its covariance matrix is Σx = E(xx∗) with its ij-th element
being σ2

ij = E(x[i]x[j]) =< x[i], x[j] >. As Σx is a positive definite Hermitian
matrix its eigenvalues λi are real and positive, and its eigenvectors φi form a
set of orthogonal basis vectors that span the N-dimensional vector space. Any
given N-D random vector in the space can therefore be represented as a linear
combination of these basis vectors. This is the discrete KLT.

Let φi (i = 0, · · · , N − 1) be the eigenvector corresponding to the ith eigen-
value λi of the covariance matrix Σx, i.e.,

Σxφi = λiφi (i = 0, · · · , N − 1) (8.28)

The matrix Φ = [φ0, · · · ,φN−1] formed by these N orthogonal eigenvectors is
unitary, i.e.,Φ−1 = Φ∗, orΦ∗Φ = ΦΦ∗ = I, and the N eigenequations in Eq.8.28
can be combined to become:

ΣxΦ = ΦΛ (8.29)

where Λ is a diagonal matrix Λ = diag(λ0, · · · ,λN−1). If we pre-multiply Φ∗ =
Φ−1 on both sides, the covariance matrix Σx is diagonalized:

Φ∗ΣxΦ = Φ∗ΦΛ = Λ (8.30)
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The discrete Karhunen-Loeve Transform of a given random signal vector x can
now be defined as:

X =




X [0]

...
X [N − 1]



 = Φ∗x =




φ∗0
...

φ∗N−1



x (8.31)

where the ith component X [i] of the vector X in transform domain is the pro-
jection of x onto the ith basis vector φi:

X [i] = φ∗ix =< x,φi > (8.32)

Pre-multiplying Φ on both sides of equation 8.31, we get the inverse KLT trans-
form:

x = ΦX = [φ0, · · · ,φN−1]




X [0]

...
X [N − 1]



 =
N−1∑

i=0

X [i]φi (8.33)

Eqs. 8.33 and 8.31 can be rewritten as a pair of the discrete KLT transform:
{

X = Φ∗x
x = ΦX

(8.34)

The first equation is the forward transform that gives the random coefficient X [i]
as the projection of the random vector x onto the ith deterministic basis vector
φi (i = 0, · · · , N − 1), while the second equation is the inverse transform that
represents the random vector x as a linear combination of the N eigenvectors
φi (i = 0, · · · , N − 1) of Σx weighted by the random coefficients X [i]. Note that
Eqs. 8.33 and 8.31 for the discrete KLT correspond to Eqs.8.26 and 8.27 for the
continuous KLT.

8.2.3 The Optimality of the KLT

As discussed previously, all orthogonal transforms considered in previous chap-
ters (e.g., DFT, DCT, WHT, Haar transform, etc.) exhibit to various extents
the properties of signal decorrelation and energy compaction. For example, in
frequency domain after the Fourier transform, most of the signal energy is con-
centrated in a small number of low frequency components while little energy
is contained in high frequency components. Moreover, while the signal is typ-
ically locally correlated in time domain in the sense that given the value of a
time sample x[m] of the signal one could predict the value of the next sample
x[n + 1] to be similar, this is certainly no longer the case in frequency domain in
which knowing the value of one frequency component X [n] would provide little
information regarding the value of the next frequency component X [n + 1]. Such
tendencies are generally true for all other transform methods.

Now we will show that as far as the properties of signal decorrelation and
energy compaction are concerned, the KLT is the optimal transform as
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1. The KLT completely decorrelates any given signal and
2. The KLT maximally compacts the signal energy.

The first property is simply due to the definition of the KLT transform by
which the covariance matrix ΣX of the resulting vector X = Φ∗x is diagonalized
(Eq.8.30):

ΣX = E(XX∗) = E[(Φ∗x)(Φ∗x)∗] = Φ∗E(xx∗)Φ = Φ∗ΣxΦ = Λ (8.35)

After KLT the covariance ΣX = Λ becomes a diagonal matrix with all off-
diagonal element E(X [i]X[j]) =< X [i], X [j] >= 0, indicating that the correla-
tion between any two different components X [i] and X [j] (i $= j) is indeed com-
pletely decorrelated, i.e., the signal components become orthogonal to each other.
Also, the trace of the covariance matrix remains the same:

trΣX = tr(Φ∗ΣxΦ) = tr(Φ∗ΦΣx) = trΣx (8.36)

(recall tr(AB) = tr(BA)), indicating that the total signal energy is conserved
by the KLT:

N−1∑

i=0

E(|x[i]|2) =
N−1∑

i=0

E(|X [i]|2) =
N−1∑

i=0

λi (8.37)

This result corresponds to the Parseval’s identity for the deterministic signals
indicating that the signal energy is conserved by any orthogonal transform.

Next we prove the second property of the KLT, i.e., it redistributes the energy
contained in all N signal components in such a way that the energy is optimally
compacted into a minimum number of components. Let A = [a0, · · · , aN−1] =
(A∗)−1 be an arbitrary unitary matrix, based on which an orthogonal transform
can be defined as X = A∗x, with the ith element of X being X [i] = a∗ix. The
energy contained in the first M < N components after this transform is the sum
of the first M elements along the main diagonal of ΣX :

EM (A) =
M−1∑

i=0

E(|X [i]|2) (8.38)

We now prove the second property above by showing that EM (A) is maximized
if and only if the transform matrix is A = Φ for the KLT, i.e.,

EM (Φ) ≥ EM (A) (8.39)

We first rewrite the expression for EE(A) above as:

EM (A) =
M−1∑

i=0

E(|X [i]|2) =
M−1∑

i=0

E(|a∗ix|2) =
M−1∑

i=0

E[(a∗ix) (x∗ai)∗]

=
M−1∑

i=0

E(a∗ix x∗ai) =
M−1∑

i=0

a∗iE(xx∗)ai =
M−1∑

i=0

a∗iΣxai
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The task of finding the optimal matrix A that maximizes EM (A) can now be
formulated as a constrained optimization problem:

EM (A) =
M−1∑

i=0

a∗iΣxai → max

subject to: a∗iai = 1 (i = 0, · · · , M − 1) (8.40)

Here the constraint a∗iai = 1 is to guarantee that A is indeed an orthogonal
matrix with orthonormal column vectors. This problem can be solved using
the method of Lagrange multipliers. Specifically, we set the following partial
derivative with respect to aj to zero and solve the resulting equation for aj

(j = 0 · · · , M − 1):

∂

∂aj
[EM (A)−

M−1∑

i=0

λi(a∗iai − 1)] =
∂

∂aj
[
M−1∑

i=0

(a∗iΣxai − λia
∗
iai + λi)]

=
∂

∂aj
[a∗jΣxaj − λja

∗
jaj ] = 2Σxaj − 2λjaj = 0 (8.41)

The second to the last equal sign is due to the derivative of a scalar function f(a)
with respect to its vector argument a, see appendix A). This result indicates aj

must be the eigenvector of Σx:

Σxaj = λjaj (j = 0, · · · , M − 1) (8.42)

Comparing this to Eq.8.28, we see that aj = φi, i.e., we have thus proved that
the optimal transform matrix is indeed the KLT matrix Φ. The energy contained
in the M components is

EM (Φ) =
M−1∑

i=0

φ∗iΣxφi =
M−1∑

i=0

λi (8.43)

where the ith eigenvalue λi represents the average energy contained in the ith
component of the signal. We see that this EM (Φ) can be maximized if we choose
the M eigenvectorsφi corresponding to the M largest eigenvalues. The percentage
of energy kept in the M components is

∑M−1
i=0 λi/

∑N−1
i=0 λi.

Due to its optimality of signal decorrelation and energy compaction, the KLT
can be used to reduce the dimensionality of a given data set while preserving
maximum signal energy in various applications such as information extraction
and data compression. The signal components X [i] after the KLT are called the
principal components, and the data analysis method based on the KLT transform
is called principal component analysis (PCA), which is widely used in a large
variety of fields. Specifically the PCA can be carried out in the following steps:

1. Estimate the mean vector µx of the given random signal vector x. Subtract
µx from x so that it becomes centered with zero mean.

2. Estimate the covariance matrix Σx of the centered signal.
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3. Find all N eigenvalues and sort then in descending order:

λ0 ≥ · · · ≥ λN−1 (8.44)

4. Determine a reduced dimensionality M < N so that the percentage of energy
contained

∑M−1
i=0 λi/

∑N−1
i=0 λi is no less than a preset threshold (e.g., 99%).

5. Construct an N ×M transform matrix composed of the M eigenvectors cor-
responding to the M largest eigenvalues of Σx:

ΦM = [φ0, · · · ,φM−1]N×M (8.45)

and carry out the KLT based on this ΦM :

XM =




X [0]

...
X [M − 1]





M×1

= Φ∗Mx =




φ∗0
...

φ∗M−1





M×N




x[0]

...
x[N − 1]





N×1

(8.46)

where the kth element is X [i] = φ∗ix =< x,φi >. As the dimensionality M of
X is less than the dimensionality N of x, data compression is achieved. This is
a lossy compression with the error representing the percentage of information
lost:

∑N−1
i=M λi/

∑N−1
i=0 λi. But as these λi’s in the numerator summation are

the smallest eigenvalues, the error is minimum (e.g., 1%).
6. Carry out analysis needed in the M-dimensional space, and inverse KLT for

reconstruction if needed (e.g., for compression):

x̂ = ΦMXM = ΦMΦ∗Mx (8.47)

or in component form:

x̂ =




x̂[0]

...
x̂[N − 1]



 =
[
φ0 · · ·φM−1

]



X [0]

...
X [M − 1]



 =
M−1∑

k=0

X [k]φk (8.48)

=
[
φ0 · · ·φM−1

]



φ∗0
...

φ∗M−1



x =

[
M−1∑

k=0

φkφ
∗
k

]

N×N

x (8.49)

Here Eq.8.48 indicates that x̂ is a linear combination of the first M of the
N eigenvectors that span the N-D space, while Eq.8.49 indicates that x̂ is a
linear transformation of x by an N ×N matrix formed as the sum of the M
outer products φkφ

∗
k (k = 0, · · · , M − 1). In particular when M = N , this matrix

becomes ΦNΦ∗N = IN×N and x̂ = x is a perfect reconstruction.
Although the KLT is optimal among all orthogonal transforms, other orthogo-

nal transforms are still widely used for two reasons. First, by definition the KLT
transform is for random signals and it depends on the specific data being ana-
lyzed. The transform matrix Φ = [φ0, · · · ,φN−1] is composed of the eigenvectors
of the covariance matrix Σx of the signal x, which can be estimated only when
enough data are available. Second, the computational cost of the KLT transform
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is much higher than other orthogonal transforms. The computational complex-
ity of the eigenvalue problem of the N-D covariance matrix is O(N3), while the
complexity for any other orthogonal transform based on a predetermined trans-
form matrix is no worse than O(N2). Moreover, fast algorithms with complexity
O(N log2N) exist for many transforms such as DFT, DCT, and WHT. For these
reasons, the DFT, DCT or some other transforms may be the preferred method
in many applications. The KLT can be used when the covariance matrix of the
data can be estimated and computational cost is not critical. Also the KLT as
the optimal transform can be used to serve as a standard against which all other
transform methods can be compared and evaluated.

8.2.4 Geometric Interpretation of KLT

Assume the N random variables in a signal vector x = [x[0], · · · , x[N − 1]]T have
a normal joint probability density:

p(x) = N(x, µx,Σx) =
1

(2π)N/2
|Σx|1/2 exp[−1

2
(x− µx)TΣ−1

x (x− µx)]

(8.50)
As always, we can assume µx = 0 without loss of generality. The shape of this
normal distribution in the N-dimensional space can be represented by an iso-
value hyper-surface in the space determined by:

N(x, µx,Σx) = c (8.51)

where the constant is chosen to be c = (2π)−N/2 |Σx|1/2 e−1/2 so that:

(x− µx)TΣ−1
x (x− µx) = xTΣ−1

x x = 1 (8.52)

In particular, when N = 2, this equation becomes:

xTΣ−1
x x = [x[0], x[1]]

[
a b/2

b/2 c

] [
x[0]
x[1]]

]
= ax2[0] + bx[0]x[1] + cx2[1] = 1

(8.53)
where we have assumed:

Σ−1
x =

[
a b/2

b/2 c

]
(8.54)

As Σx is positive definite and so is Σ−1
x , we have

∣∣Σ−1
x

∣∣ = ac− b2/4 > 0 and the
above quadratic equation represents an ellipse (instead of other quadratic curves
such as hyperbola or parabola) centered at the origin (or at µx if it is not zero). In
general when N > 2, the equation N(x, µx,Σx) = 1 represents a hyper-ellipsoid
in the N-D space. The spatial distribution of this ellipsoid is determined by Σx.
When x is completely decorrelated by KLT X = ΦT x, the covariance matrix
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becomes diagonalized:

ΣX = Λ =





λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λN−1




=





σ2
X [0] 0 · · · 0
0 σ2

X [1] · · · 0
...

...
. . .

...
0 0 · · · σ2

X [N − 1]




(8.55)

and the quadratic equation becomes:

XTΣ−1
X X =

N−1∑

i=0

X2[i]
λi

=
N−1∑

i=0

(
X [i]
σX [i]

)2

(8.56)

This equation represents a standard hyper-ellipsoid in the N-D space. In other
words, the KLT transform X = Φ∗x rotates the coordinate system in such a way
that the semi-principal axes of the hyper-ellipsoid associated with the normal
distribution of x are in parallel with φi (i = 0, · · · , N − 1), the basis vectors of
the new coordinate system. Moreover, the ith semi-principal axis is equal to the
square root of the corresponding eigenvalue

√
λi.

The 2-D KLT is illustrated in Fig.8.2. A given signal x = [x[0], x[1]]T is origi-
nally represented under the standard basis vectors e0 and e1:

x =
[

x[0]
x[1]

]
= x[0]e0 + x[1]e1 = x[0]

[
1
0

]
+ x[2]

[
0
1

]
(8.57)

We see that the two components x[0] and x[1] are maximally correlated with
r01 = 1 and equal energy σ2

x[0] = σ2
x[1], i.e., the energy is evenly distributed

among both components. The KLT of the signal is a process of three stages: (1)
subtract the mean µx from x so that it is centered, (2) carry out the rotation
X = Φ∗x, and (3) add back the mean vector in the rotated space µX = Φ∗µx.
After the KLT rotation, the signal is represented as X = Φ∗x:

x = ΦX = [φ0 φ1]
[

X [0]
X [1]

]
= X [0]φ0 + X [1]φ1 (8.58)

Now the signal is represented by two new basis vectors φ0 and φ1, which are
just rotated version of e0 and e1. In this space spanned by φ0 and φ1, the ellipse
representing the joint probability density p(x) becomes standardized with major
semi-axis λ0 = σ2

X [0] and minor semi-axes λ1 = σ2
X [1], in parallel with the new

basis vectors φ0 and φ1, respectively. We see that the two components X [0] and
X [1] are completely decorrelated with r01 = 0, and λ0 > λ1 indicating that the
energy is maximally compacted into X [0] while X [1] contains minimal energy.
We see that this KLT rotation is optimal in terms of both signal decorrelation
and energy compaction, as no other rotation can do any better in these regards.

8.2.5 Comparison with Other Orthogonal Transforms

To illustrate the optimality of the KLT transform in terms of the two desirable
properties of signal decorrelation and energy compaction discussed above, we
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Figure 8.2 Geometric interpretation of KLT

Figure 8.3 An image of clouds and covariance matrices after various transforms

compare the performance of the KLT with a set of other orthogonal transforms
considered in previous chapters including identity transform (no transform),
discrete Fourier transform DFT, discrete cosine transform DCT, and Walsh-
Hadamard transform WHT, in the following examples.

Each row of a 256× 256 image of clouds (left panel in Fig.8.3) is treated as an
instantiation of a random vector x (with 256 components). Different orthogonal
transforms X = A∗x are carried out and the corresponding covariance matrices
ΣX are obtained and compared to see how well each transform decorrelates the
signal and compacts its energy. Fig.8.3 shows the original image (left panel)
together with three covariance matrices corresponding to identify transform IT,
DCT, and KLT. As the behaviors of DFT and WHT are very similar to that
of DCT, they are not considered here. The pixel intensities of the images for
covariance matrices are rescaled by a mapping y = x0.3 so that those low values
can still be seen.

In the second panel of Fig.8.3 showing the covariance matrix of the original
signal without any transform, there exist quite a lot bright areas off the main
diagonal, indicating that many signal components are highly correlated (σ2

ij > 0).
In the third panel of Fig.8.3 showing the covariance matrix after a DCT, the
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Figure 8.4 Signal energy distribution after various transforms

values of the off-diagonal elements are much reduced, indicating that the signal
components are significantly decorrelated. Finally, in the last panel of the figure
showing the covariance matrix after the KLT, all off-diagonal elements are zero,
i.e., the signal components are completely decorrelated.

The effect of energy compaction is also represented in the figure by the bright-
ness of the elements along the main diagonal, which is gradually reduced from
top-left to bottom-right. This effect is more clearly shown in Fig.8.4 where the
energy distribution among the N elements is plotted. The flat curve is the orig-
inal energy distribution (no transform), indicating the energy is pretty evenly
distributed without any transform. The remaining curves for energy distribution
after the DCT, WHT and KLT all show some very steep descent (high on the left
and low on the right), indicating that the signal energy is mostly concentrated in
a small number of signal components. In particular, the curve with the steepest
descent corresponds to the KLT with optimal energy compaction.

The effect of energy compaction is also illustrated by the table below, showing
the number of components needed in order to keep certain percentage of the total
signal energy (information) in data compression. For example, if it is tolerable
to lose 5% of the signal energy/information, out of the total 256 components we
need to keep 230 without any transform, 22 after DCT, but only 13 after KLT.
In the optimal case of KLT, we can achieve a compression rate of 13/256 ≈ 0.05,
i.e., 5% of the components contain keep 95% of the signal energy/information.

Percentage: 90% 95% 99% 100%
no transform: 209 230 250 256
DCT: 10 22 97 256
KLT: 7 13 55 256

Next we apply the same analysis process to a different image of sands, shown
in the left panel of Fig.8.5. As the color of a grain of sand is irrelevant to that of



Karhunen-Loeve Transform and Principal Component Analysis 387

Figure 8.5 Image of sands and covariance matrices after various transforms

Figure 8.6 Signal energy distribution after various transforms

the neighboring grains, the texture of the sand is drastically different from that
of the clouds in the previous case, and the pixel values are much less correlated
in comparison to the pixels in the image of clouds. Again, the row vectors of
the image are treated as different instantiations of a random vector and its
covariance matrix is shown in the second panel. We see that all off-diagonal
elements have very low values, indicating the pixels are hardly correlated. The
signal correlation after the DCT is approximately the same, as indicated by
signal covariance matrix after the DCT shown in the third panel. However, after
the KLT the signal is again completely decorrelated as indicated by the diagonal
covariance matrix shown in the last panel of the figure.

The energy distribution plots shown in Fig.8.6 indicate that DCT does not
make much improvement in term of energy compaction, compared to the original
signal (the two very similar flat plots), but KLT still maximally compact the
energy, as shown by the curve high on the left low on the right.

From the two examples above, several observations can be made.! All orthogonal transforms tend to decorrelate a natural signal and compact
its energy, and KLT does it optimally. Typically, after an orthogonal trans-
form, consecutive signal components in the transform domain are much less
correlated, and the signal energy tends to be compacted into a small num-
ber of signal components. For example, after DFT or DCT, two consecutive
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frequency components in the spectrum are not likely to be correlated, and
most of the signal energy is concentrated in a small number of low frequency
components as well as the DC component, while most of the high frequency
components carry little energy. These are essentially the reasons why orthog-
onal transforms are widely used in data processing.! The general claim that orthogonal transforms tend to reduce signal correlation
and compact signal energy is based on the the implicit assumption that time
or spatial signals in most applications are mostly continuous and smooth due
to the nature of underlying physics. However, this assumption may not be
necessarily true in every single case. In fact, the effects of signal decorrelation
and energy compaction depend on the nature of the specific signal at hand.
These effects may not be obvious in some unlikely cases where the signal is
not correlated to start with, such as the image of sands.! The KLT is optimal among all orthogonal transforms in terms of signal decor-
relation and energy compaction. However, in many cases the performance of
other transforms, such as the DCT, are not too different from that of the KLT.
Although suboptimal, such a transform is often used due to its fast algorithm
for much reduced computational complexity.

8.2.6 Approximation of KLT by DCT

Although no fast algorithm exists for the KLT, it can be approximated by the
discrete cosine transform DCT if the signal is locally correlated and therefore
can be modeled as a first-order Markov process with Toeplitz correlation matrix
R (Eq.8.12). Specifically, we will show that when the correlation r of Markov
process approaches r = 1, its KLT transform approaches the DCT. The proof is
a two-step process: (1) find the KLT matrix for the Markov process by solving
the eigenvalue problem of its correlation matrix R, and (2), let r → 1, and show
that the KLT matrix approaches the DCT matrix.

The KLT matrix is the eigenvector matrix Φ of the Toeplitz R which can be
obtained by solving the eigenvalue problem:

RΦ = ΦΛ, i.e., ΦT RΦ = Λ (8.59)

As R is symmetric (self-adjoint), all λn are real and all φn are orthogonal. It can
be shown 1 that Φ and Λ for a Toeplitz correlation matrix R take the following
forms:! The nth eigenvalue is:

λn =
1− r

1− 2r cosωn + r2
, (n = 0, · · · , N − 1) (8.60)

1 Ray, W.D. and Driver, R.M., Further decomposition of the Karhunen-Loeve series represen-
tation of a stationary process, IEEE Transaction on Information Theory, 16(6), November
1970
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! The mth element φmn of the nth eigenvector φn = [· · · ,φmn, · · · ]T is:

φmn =
(

2
N + λn

)1/2

sin
(
ωn(m− N − 1

2
) + (n + 1)

π

2

)
, (0 ≤ m, n ≤ N − 1)

(8.61)! In the above, ωn (n = 0, · · ·N − 1) are the N real roots of the following equa-
tion:

tan(Nω) = − (1− r2) sinω
(1 + r2) cosω − 2r

(8.62)

The proof for these expressions is lengthy and therefore omitted here.
Next we consider the three expressions given above when r → 1. First, Eq.8.62

simply becomes:

tan(Nω) =
0

2(1− cosω)
= 0 (8.63)

Solving this for ω we get:

ωn = nπ/N (8.64)

However, note that when n = 0, ω0 = 0 and cosω0 = 1, and Eq.8.63 becomes an
indeterminate form 0/0. But applying L’Hopital’s rule twice yields:

lim
ω→0

tan(Nω) = lim
ω→0

0
2 cosω

= 0 (8.65)

i.e., ω0 = 0 is still a valid root for Eq.8.62. Having found ωn = nπ/N for all
0 ≤ n ≤ N − 1, we can further find the eigenvalues λn in Eq.8.60 when r → 1.
For n > 0, ωn $= 0 and cosωn $= 1, we have:

λn = lim
r→1

1− r

1− 2r cosωn + r2
= 0, (1 ≤ n ≤ N − 1) (8.66)

We also get λ0 = N by noting that the second equation in Eq.8.59 is a similarity
transformation of R which conserves its trace:

trR = N = trΛ =
N−1∑

n=0

λn = λ0 (8.67)

We can now find the elements φmn in the eigenvector φn. For all n > 0, we have
λn = 0 and ωn = nπ/N , Eq.8.61 becomes:

φmn =
√

2
N

sin
(

nπ

N
(m− N − 1

2
) + (n + 1)

π

2

)
=
√

2
N

sin
( nπ

2N
(2m + 1) +

π

2

)

=
√

2
N

cos
( nπ

2N
(2m + 1)

)
, (0 ≤ m ≤ N − 1, 1 ≤ n ≤ N − 1) (8.68)

When n = 0, ω0 = 0 and λ0 = N , and Eq.8.61 becomes:

φm0 =
√

1
N

sin
(π

2

)
=
√

1
N

, (0 ≤ m ≤ N − 1) (8.69)
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This is the DCT transform matrix derived in section 6.2.3, and we can therefore
conclude that the KLT of a first order Markov process approaches the DCT when
r → 1.

However, we also note that at the limit of r = 1, all elements of the correlation
matrix R become 1 and its eigenvectors are no longer unique. While the column
vectors of the DCT matrix are indeed its eigenvectors as shown above, so are
the column vectors of any other orthogonal transform matrix A considered in
the previous chapters (e.g., DFT, WHT, etc.), i.e.,

AT RA = Λ = diag[N, 0, · · · , 0] (8.70)

where A = [a0, · · · , aN−1] and the first column a0 is composed of N constant
1/
√

N (representing the DC component). Note that as all columns are orthogo-
nal, all other columns an (n $= 0) sum up to zero:

< an, a0 >= aT
na0 =

1√
N

N−1∑

m=0

a[m, n] = 0, (1 ≤ n $= N − 1) (8.71)

Now we see that the mnth element of the matrix in Eq.8.70 is zero:

aT
mRan = aT

m





1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1




an = 0, (m $= 0, n $= 0) (8.72)

except when m = n = 0, the top-left element is

aT
0 Ra0 =

1
N

[1, 1, · · · , 1]





1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1









1
1
...
1




= N (8.73)

As an example, Fig.8.7 shows the first 8 of the N = 128 basis vectors of the
KLT of a Markov process with r = 0.9 in comparison to the corresponding DCT
basis vectors. Note that the KLT vectors match the DCT very closely and the
similarity will increase when r approaches 1. Also note that as the eigenvector
of R, a KLT vector φn can have either a positive or negative sign, i.e., the
corresponding transform coefficients of the KLT and DCT may have opposite
polarity. However, this does not affect the transform as the reconstructed signal
will be the same.

The result above has important significance. As most signals of interest in
practice are likely to be locally correlated and can therefore modeled by a first
order Markov process, we can always expect the results of the DCT transform
are close to the optimal transform of KLT. Furthermore, as the basis vectors
of the KLT are the eigenvectors of the signal covariance Σx corresponding to
the eigenvalues arranged in descending order, they are actually arranged accord-
ing the energy contained in signal components (represented by the eigenvalues).
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Figure 8.7 Comparison of the first 8 basis vectors of the DCT and KLT of 1st order
Markov process

Consequently, as the KLT is approximated by the DCT, its first principal compo-
nent corresponding to the DC component contains the largest amount of energy,
and the subsequent components corresponding to progressively higher frequen-
cies in the DCT contain progressively lower energy. This approximation is valid
in general for all locally correlated signals.

To illustrate this fact, we reconsider a dataset of annual temperatures in Los
Angeles area collected over the period of 1878-1997, shown in the top panel of
Fig.8.8. To obtain the covariance of a sequence of n = 8 samples of the data,
we truncate the signal into a set of segments of n samples each, and treat these
segments as random samples from a stochastic process. We next obtain the n
by n covariance matrix of this data, as shown in the lower left panel of the
figure. We see that the elements around the main diagonal of the matrix have
high values, indicating that the signal samples are highly correlated when they
are close to each other (taken within a short duration), but the values of the
elements farther away from the main diagonal are much reduced, indicating that
the signal samples are much less correlated when they are far apart (separated
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by a long period of time). This kind of behavior can be modeled by a first-order
Markov chain of n points whose covariance is shown in the lower right panel
of the same figure (correlation between two consecutive samples assumed to be
r = 0.5), which looks similar to the covariance of the actual signal, in the sense
that the correlation is gradually reduced between signal samples when they are
farther apart.

Next we further consider the KLT transform of the signal and its approxima-
tion by the DCT. The KLT transform matrix is composed of the n eigenvectors
of the signal covariance, shown in the panels on the left of Fig.8.9, which are com-
pared to the eigenvectors of the covariance of the Markov model (solid curves)
shown in the panels on the right of the figure. These two sets of curves look
similar in terms of the general wave forms and their frequencies (not necessarily
in the same order). Moreover, comparing the eigenvectors based on the Markov
model with the rows of the DCT transform matrix, also shown in the panels on
the right (dashed curves), we see that they match very closely (except certain
phase shifts).

We can make the following observations based on this example:! The temperature time function, as one of the weather parameters represent-
ing a natural process, confirms the general assumption that the correlation
between signal samples tends to decay as they are farther apart.! The signal correlation can be indeed closely modeled by a first order Markov
chain model with a correlation r and the only parameter.! The eigenvectors of the covariance matrix above can be closely matched by
the row vectors of the DCT transform matrix.! Based on the observations above, we conclude that the KLT transform of a
typical natural signals can be approximately carried out as a DCT transform.! In particular, the first eigenvector φ0 corresponding to the largest eigenvalue
is approximated by the first row of the DCT matrix composed of all constants,
representing the first principal component y0 =< x,φ0 >= φ∗0x is the average
(DC component) of all elements in signal x.

8.3 Applications of the KLT Transform

8.3.1 Image processing and analysis

The KLT can be carried out on a set of N m× n images for various purposes
such as feature extraction and data compression. There are two alternative ways
to carry out the KLT on the N images, depending on how a random vector is
defined. We can treat each of the K = m× n pixels of the N images as a sample
of an N-D random vector, the N images form a K by N matrix D each of whose
row is for such an N-D random vector, whose covariance matrix can be estimated
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Figure 8.8 Covariances of natural signal and 1st order Markov chain

Figure 8.9 KLT of signal (left) compared with KLT of Markov model and DCT (right)
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as (Eq.8.11):

Σ̂x =
1
K

[DT D]N×N (8.74)

Alternatively, each image can be converted into a K = m× n dimensional vector
by concatenating the rows (or columns). Each of these N vectors from the N
images can be treated as a sample of a K-D random vector, represented by a
columns of D defined above, or a row of DT , and the covariance matrix can be
estimated as:

Σ̂x =
1
N

[DDT ]K×K (8.75)

We now show that the eigenvalue problems of these two different treatments are
equivalent. We first assume the eigenequations for DT D and DT D are:

DT Dφ = λφ, DDTψ = µψ (8.76)

Pre-multiplying DT on both sides of the second equation we get:

DT D[DTψ] = µ[DTψ] (8.77)

which is actually the same as the first eigenequation with the same eigenvalue
µ = λ, and the same eigenvector DTψ = φ (when both sides are normalized).
Although the dimensionalities of DT D and DT D are respectively N and K, the
two matrices must have the same rank min(N, K) and therefore the same number
of non-zero eigenvalues. Consequently, the KLT can be carried out based on either
DT D or DT D with essentially the same effects in terms of signal correlation and
energy compaction. In the likely case where the number of image pixels is greater
than the number of images, i.e., K = mn > N , we will take the first approach
above to treat the same pixel (e.g., ith row and jth column) of the N images as a
sample of the N-D random signal vector and carry out the KLT based on the N
by N covariance matrix Σx = DT D/K. Each of the K pixels represented by a
vector x is then transformed to a new vector X = Φ∗x corresponding to the same
pixel of a set of N eigen-images, as illustrated in Fig.8.10. Due to the nature of
the KLT, most of the energy/information contained in the N images, representing
the variations among the images, is now concentrated in the first M eigen-images
(M < N), so that the remaining N −M eigen-images can be omitted without
losing much energy/information. This is the foundation for various KLT-based
image feature extraction/classification and image compression algorithms, all of
which could be carried out in a much lower dimensional space.

Consider, as an example, a sequence of N=8 frames from a video of a mov-
ing escalator shown on top of Fig.8.11. The covariance matrix and the energy
distribution plot both before and after the KLT are shown in Fig.8.12. We see
that due to the local correlation of the video frames, the covariance matrix (left)
indeed closely resemble the correlation matrix R of a first order Markov process
(bottom right in Fig.8.9) (consequently the KLT basis is very much similar to
the DCT basis as shown in Eq.8.13). The covariance after the KLT (middle)
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Figure 8.10 KLT of a set of images

is completely decorrelated and its energy highly compacted. The comparison of
the energy distribution before and after the KLT is shown in the plots (right).
Also, the eigen-images after the KLT are shown in the bottom half of Fig.8.11.
It is interesting to observe that the first principal component represents mostly
the static scene of the video frames, while the subsequent eigen-images represent
mostly the motion in the video, the variation between the frames. For example,
the motion of the people on the escalator is mostly reflected by the first few
eigen-images following the first one, while the motion of the escalator steps is
mostly reflected in the subsequent eigen-images.

As another example, consider a set of N=20 face images shown on top in
Fig.8.14 (credit to AT&T Laboratories Cambridge). The KLT is carried out on
these images to obtain the eigen-images, called in this case eigen-faces (middle).
It can be seen that the first few eigenfaces capture the most essential common
features shared by all faces. Specifically, the first eigen-face represents a generic
face in the dark background, while the second eigen-face represents the darker
hair versus the brighter face. The rest of the eigenfaces represent some other fea-
tures with progressively less significance. The table below shows the percentage
of energy contained in each component:

# of components 1 2 3 4 5 6 7 8 9 10
% energy 48.5 11.6 6.1 4.6 3.8 3.7 2.6 2.5 1.9 1.9
accumulative 48.5 60.1 66.2 70.8 74.6 78.3 81.0 83.5 85.4 87.3

11 12 13 14 15 16 17 18 19 20
1.8 1.6 1.5 1.4 1.3 1.2 1.1 1.1 0.9 0.8
89. 90.7 92.2 93.6 94.9 96.1 97.2 98.2 99.2 100.0

Reconstructed faces using 95% of the total information are also shown in the
figure. The method of eigenfaces is used in facial recognition and classification.
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Figure 8.11 Video frames (top) and the eigen-images (bottom)

Figure 8.12 Covariance matrix before and after KLT

The covariance matrices before and after the KLT are shown as images (left and
middle), while the energy distributions among the N components before and
after the transform are also plotted (right).

8.3.2 Feature extraction for pattern recognition

In the field of machine learning, pattern recognition and classification is a general
method that classifies a set of objects of interest into different categories or classes
and recognizes any given object as a member of one of these classes. Specifically,
each object is represented as an N-D vector, known as a pattern, based on a
set of N features that can be observed and measured to characterize the object.
Then a pattern recognition/classification algorithm can be carried out in the
N-D space, called feature space, in which all patterns reside. The classification
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Figure 8.13 KLT basis vectors compared with DCT basis

The basis vectors of the KLT of the video frames closely resemble the DCT basis
vectors.

is essentially the partitioning of the feature space into a set of regions each
corresponding to one particular class. A given pattern is recognized as a member
of the class corresponding to the region in which it resides. There are in general
two types of pattern classification algorithms, depending on whether certain a
priori knowledge or information regarding the classes is available. An algorithm
is supervised if it is based on the assumed availability of a set of patterns with
known classes, called training samples. When such training samples can not be
be obtained, an unsupervised algorithm has to be used. The KLT is an effective
tool in the process called feature extraction, for extracting a set of pertinent
features from the patterns to be classified.

For example, KLT is used in remote sensing, where the images of the sur-
face of Earth or other planets such as Mars are taken by orbiting satellites, for
various studies in fields such as geology, geography and agriculture. The cam-
era system on the satellite has a set of N sensors each sensitive to a different
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Figure 8.14 Original faces (top), Eigenfaces (middle), and Reconstructed faces
(bottom)

wavelength band in the visible and infrared range of the electromagnetic spec-
trum. Depending on the number of sensors N , the image data collected are either
multi-spectral (N < 10) or hyper-spectral (N is up to 200 or greater). At each
position in the image, a set of N pixel values each produced by one of the N
sensors form an N-D vector in the feature space, representing the spectral sig-
natures of the surface material. As different types of materials on the ground
surface have different spectral signatures, a typical application of the multi or
hyper-spectral image data is to classify all patterns in the N-D feature space,
each for a pixel in the image, into different classes corresponding to different
types of surface materials of interest. For hyper-spectral data with large N , the
KLT can be used to reduce the dimensionality from N to M << N without loss
of essential information. Now the classification can be carried out in the M-D
space corresponding to the first M eigen-images, thereby significantly reducing
the computational complexity.

In many applications the patterns to be classified are given in image form, such
as an object in an image. Extracting from the image a set of suitable features to
represent the patterns may be a challenging task as it requires specific knowledge
regarding the objects of interest. Alternatively, a more straightforward way of
representing such image objects is simply to use all the pixels of the image. The
shortcoming of this method, however, is that (1) the pixels are not particularly
pertinent to the specific objects in the image, and (2) the dimensionality N ,
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the total number of pixels in the image, is typically unnecessarily high for the
classification algorithm. In such case the KLT can be used.

Consider the feature extraction of a supervised classification problem for the
recognition of hand-written characters, such as the 26 English letters or the 10
digits from 0 to 9, represented in image form by N = 16× 16 = 256 pixels. We
assume a set of training samples with known classes is available based on which
we need to come up with M features that represent the patterns of different
classes most effectively. To so, we could use the KLT to extract a set of M¡N
features from the N pixels, by first converting each image containing an object
into an N-D vector by concatenating its rows (or columns) one after another,
and then carrying out the KLT based on the covariance matrix of these vectors,
independent of the classes of the objects they contain. However, we realize that
the resulting features of this generic KLT are not specifically pertinent to the
classification of the objects in the images, as they are extracted from all patterns
without indiscriminating their classes.

Alternatively, to obtain M features most pertinent to the classification task by
the KLT method, we can come up with a different covariance matrix containing
the information directly reflecting the differences among the classes to be distin-
guished. We first let {x(k)

i , (i = 1, · · · , nk)} be a set of nk N-D vectors for the
training samples of class k, where k = 1, · · · , K for all K classes. Based on these
training samples we then define the following scatter matrices:! Scatter or covariance matrix of class k for the variation or scatteredness within

the class:

Sk =
1
nk

nk∑

i=1

(x(k)
i −mk)(x(k)

i −mk)T , (k = 1, · · · , K) (8.78)

where mk is the mean vector of the kth class:

mk =
1
nk

nk∑

i=1

x(k)
i , (k = 1, · · · , K) (8.79)

! Within-class scatter matrix for the average within-class scatteredness of all K
classes:

Sw =
K∑

k=1

pkSk =
1
n

K∑

k=1

nkSk, (8.80)

where n =
∑K

k=1 nk is the total number of training samples of all K classes,
and pk = nk/n.! Between-class scatter matrix for the separability, or the variation between all
K classes:

Sb =
K∑

k=1

pk(mk −m)(mk −m)T , (8.81)
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where m is the mean vector of all n training samples of all K classes:

m =
1
n

∑

x

x =
1
n

k∑

k=1

nk
1
nk

nk∑

i=1

x(k)
i =

k∑

k=1

pkmk (8.82)

! Total scatter or covariance matrix for the total variation among all n samples
of the K classes:

St =
1
n

∑

x

(x−m)(x−m)T

=
1
n

K∑

k=1

nk∑

i=1

(x(k)
i −mk + mk −m)(x(k) −mk + mk −m)T

=
1
n

K∑

k=1

nk∑

i=1

(x(k)
i −mk)(x(k)

i −mk)T +
1
n

K∑

k=1

nk∑

i=1

(mk −m)(mk −m)T

= Sw + Sb (8.83)

The second to the last equal sign is due to the fact that
K∑

k=1

nk∑

i=1

(x(k)
i −mk)(mk −m)T = 0 (8.84)

The equation St = Sw + Sb indicates that the total scatteredness St of the n
samples is due to the contributions of the total within-class scatteredness Sw

and the total between-class scatteredness Sb, as one would intuitively expect.
Now we can carry out the KLT based on the between-class scatter matrix Sb,
so that most of the energy or information specifically representing the separa-
bility of the K classes will be compacted into a small number of M components
after the transform. The classification/recognition can then be carried out in
the resulting M-D feature space containing most of the information relevant to
the classification (separability) with much reduced computational complexity, by
certain classification algorithm. As a simple example, we could classify a given
pattern x to the class with minimum distance D(x, mk) between its mean and
the pattern x:

x belongs to class k iff D(x, mk) ≤ D(x, ml), (l = 1, · · · , K) (8.85)

Moreover, it may be desirable to be able to visualize the data, for intuitive
assessment of the distribution of the patterns in the feature space. However,
visualization of is obviously impossible when N > 3. In such cases the KLT
transform based on the overall covariance matrix of the data can be used to
project the data points from the original N-D space to a 2 or 3-D space in which
most of the information characterizing the spatial distribution of the data points
is conserved for visualization.

To illustrate the method, we now consider a specific example of classification
of the 10 digits from 0 to 9, each written multiple times by different people, in
the form of a 16 by 16 image, as shown in top-left panel of Fig.8.15. Each pattern
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can be simply represented by the N = 256 = 16× 16 pixels in the image, which
can be converted to an N-D vectors obtained by concatenating the rows of its
image. Based on Sb representing the separability of the 10 classes, the KLT can
be carried out. The energy distribution plots both before and after the KLT are
shown in the two right panels in Fig.8.15. Different from the KLT based on the
covariance matrix of the data as discussed previously, here the KLT is based on
the between-class scatter matrix Sb, and consequently the energy in question
represents specifically the separability information most pertinent to the classi-
fication of the 10 digits. From the distribution plots we see that before the KLT,
the energy is relatively evenly distributed through out most of the 256 pixels with
high local correlation in the same row (each corresponding to one of the 16 peaks
in the plot), but after the KLT, the energy is highly compacted into the first 9
principal components, while the remaining 256− 9 = 247 components contain
little energy and therefore can be omitted. The classification is then carried out
in the M=9 dimensional feature space with much reduced computational cost.
Also, in order to visualize the information contained in the 9-D space used in the
classification, we can carry out the inverse KLT to reconstruct the images based
on the 9 components (Eq.8.47), as shown in bottom-left panel of the figure. We
see that these images contain most of the information pertinent to the classifi-
cation, in that the within-class variation is minimized while the between-class
variation is maximized.

Figure 8.15 KLT of image pattern classification based on between-class scatter matrix
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8.4 Singular Value Decomposition Transform

8.4.1 Singular Value Decomposition

The singular value decomposition (SVD) of an M by N matrix A of rank
R ≤ min(M, N) is based on the following eigenvalue problems of an M by M
symmetric matrix AAT and an N by N symmetric matrix AT A:

AAT ui = λiui, (i = 1, · · · , M)

AT Avi = λivi, (i = 1, · · · , N) (8.86)

As both AAT and AT A are symmetric (self-adjoint), there eigenvalues λi are
real and their eigenvector ui and vi (i = 1, · · · , R) are orthogonal:

uT
i uj = vT

i vj = δ[i− j] (8.87)

and they form two orthogonal matrices U = [u1, · · · , uN ]M×M and V =
[v1, · · · , vN ]N×N that satisfy:

UUT = UT U = IM×M

V V T = V T V = IN×N (8.88)

The two AAT and AT A can be diagonalized by U and V respectively:

UT (AAT )U = ΛM×M = diag[λ1, · · · ,λR, 0, · · · , 0]

V T (AT A)V = ΛN×N = diag[λ1, · · · ,λR, 0, · · · , 0] (8.89)

Note that as the rank of A is R, there exist only R non-zero eigenvalues.
The theorem of singular value decomposition states that any M by N matrix

A can be diagonalized by U and V :

UT AV = Λ1/2 = diag[
√
λ1, · · · ,

√
λR, 0, · · · , 0] = diag[s1, · · · , sR, 0, · · · , 0]

(8.90)
Here si =

√
λi (i = 1, · · · , R) is defined as the ith singular value of matrix A. This

equation can be considered as the forward SVD transform. By pre-multiplying
U and post-multiplying V T on both sides of the equation above, we get inverse
transform:

A = UΛ1/2V T =
R∑

k=1

√
λi[ukvT

k ] =
R∑

k=1

sk[ukvT
k ] (8.91)

by which represents the original matrix A is decomposed into a linear combina-
tion of R matrices [uivT

i ] weighted by
√
λi (i = 1, · · · , R). We can rewrite both

the forward and inverse SVD transform as a pair:
{
Λ1/2 = UT AV
A = UΛ1/2V T (8.92)

The matrix A can be considered as a 2-D signal, such as an image, which can
be forward SVD transformed to obtain a set of coefficients si =

√
λi for the
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components [uivT
i ] (i = 1, · · · , R), which can also be called eigen-images, and

2-D signal A can also be expressed by the inverse SVD transform as a linear
combination of R SVD components weighted by the singular values.

Same as all orthogonal transforms discussed previously, the SVD transform
also conserves the signal energy. The total energy contained in the M by N matrix
A is simply the sum of the energy contained in each of its M ×N elements aij ,
which is equal to the trace of either AAT and AT A:

E =
M∑

i=1

N∑

j=1

|aij |2 = tr(AAT ) = tr(AT A) (8.93)

Moreover, as trace is conserved by an orthogonal transform, we take trace on
both sides of Eq.8.89 to get:

tr[UT (AAT )U ] = tr(AAT ) = trΛ =
R∑

i=1

λi

tr[V T (AT A)V ] = tr(AT A) = trΛ =
R∑

i=1

λi (8.94)

This result indicates that the energy contained in the signal A is the same as
the sum of all singular value squared representing the signal energy in transform
domain after the SVD transform.

We can further show that the degrees of freedom (DOF), the number of inde-
pendent variables in the representation of the signal, is also conserved by the
SVD transform, indicating that no information is lost or generated, i.e., the sig-
nal information is conserved. If, for simplicity, we assume M = N = R, then the
DOF of AN×N before the transform is N2. In the transform domain, the signal is
represented in terms of U , V , and λ. The DOF of both U and V is (N2 −N)/2
for the following reason. The DOF of the first column with N elements is N − 1
due to the constraint of normalization, and the DOF of the second column is
N − 2 due to the constraints of being orthogonal to the first one as well as being
normalized. In general, the DOF of a column is always one less than that of the
previous one, and the total DOF of all N vectors of U is:

(N − 1) + (N − 2) + · · · + 1 = N(N − 1)/2 = (N2 −N)/2 (8.95)

The same is true for V . Together with the DOF of N for Λ, the total DOF in
the transform domain is 2 (N2 −N)/2 + N = N2, same as that of A before the
SVD transform.

8.4.2 Application in Image Compression

The SVD transform has various applications including image processing and
analysis. We now consider how it can be used for data compression. For simplicity
we consider an N by N image matrix AN×N = [a1, · · · , aN ] where ai is the ith
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column vector of A. Image compression can be achieved by using only the first
K eigen-images of A:

AK =
K∑

i=1

√
λiuiv

T
i (8.96)

The energy contained in Ak is:

tr [AT
KAK ] = tr[

K∑

i=1

√
λiviu

T
i ][

K∑

j=1

√
λjujv

T
j ]

= tr[
K∑

i=1

(
K∑

j=1

√
λi

√
λjviu

T
i ujv

T
j )] = tr[

K∑

i=1

λiviv
T
i ]

=
K∑

i=1

λitr [viv
T
i ] =

K∑

i=1

λiv
T
i vi =

K∑

i=1

λi

The percentage of energy contained in the compressed image AK is:
K∑

i=1

λi/
R∑

i=1

λi (8.97)

Obviously if we use the K components corresponding to the K largest eigenvalues,
the energy contained in AK is maximized.

Next we consider the compression rate in terms of the DOF of AK . The DOF
in the K orthogonal vectors {ui i = 1, · · · , K} is:

(N − 1) + (N − 2) + · · · + (N −K) = NK −K(K + 1)/2 (8.98)

The same is true for {vi i = 1, · · · , K}. Including the DOF of K in {λi, i =
1, · · · , K}, we get the total DOF:

2NK −K(K + 1) + k = 2NK −K2 (8.99)

and the compression ratio is

2NK −K2

N2
=

2K

N
− K2

N2
≈ 2K

N
(8.100)

We consider a specific example of the image of Lenna (M = N = R = 128)
shown in Fig.8.16 (left) together with its SVD matrices U and V (middle and
right). The singular values si =

√
λi in descending order and the energy λi con-

tained are also plotted respectively in the top and bottom panels of Fig.8.17.
The reconstructed images using different number K of the SVD eigen-images are
shown in Fig.8.18, where the top two rows show the SVD eigen-images (1st row)
corresponding to the first (largest) 10 singular values, and the corresponding par-
tial sums (2nd row) for the reconstruction. The bottom two rows show the rest
of the eigen-images and the corresponding reconstructions, when the number K
is increased by 10 each time (K = 10, 20, 30, · · · ).
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We see that the reconstructed images approximate the original image pro-
gressively closely as K is increased to include more eigen-images in the partial
sum. This effect can be quantitatively explained by the energy distribution over
the total 128 SVD components, shown in the lower panel of Fig.8.17. The dis-
tribution curve is obtained by simply squaring the singular value curve in the
top panel so that it represents the energy contained in each of the eigen-images.
As most of the signal energy is contained in the first few SVD components, all
eigen-images for K > 20 in the 3rd row contain little information, correspond-
ingly, the reconstructed images in the 4th row closely approximate the original
image, which is perfectly reconstructed only if all M = N = 128 eigen-images
are used.

Figure 8.16 Original image (left), matrices U (middle) and V (right)

Figure 8.17 Singular values si =
√

λi (top) and their energy distribution λi (bottom)
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Figure 8.18 SVD components (top) and the corresponding partial reconstructions
(bottom)



9 Continuous and Discrete-time
Wavelet Transforms

9.1 Why Wavelet?

9.1.1 Short-time Fourier transform and Gabor transform

A time signal x(t) contains the complete information in time domain, i.e., the
amplitude of the signal at any given moment t. However, no information is explic-
itly available in x(t) in terms of its frequency contents. On the other hand, the
spectrum X(f) = F [x(t)] of the signal obtained by the Fourier transform (or
any other orthogonal transform such as discrete cosine transform) is extracted
from the entire time duration of the signal, it contains complete information in
frequency domain in terms of the magnitudes and phases of the frequency com-
ponent at any given frequency f , but there is no information explicitly available
in the spectrum regarding the temporal characteristics of the signal, such as
when in time certain frequency contents appear. In this sense, neither x(t) in
time domain nor X(f) in frequency domain provides complete description of the
signal. In other words, we can have either temporal or spectral locality regarding
the information contained in the signal, but never both.

To address this dilemma, the short-time Fourier transform (STFT), also called
windowed Fourier transform, can be used. The signal x(t) to be Fourier analyzed
is first truncated by a time window function before it is transformed to the
frequency domain. Now any characteristics appearing in the spectrum will be
known to be from within this particular time window.

Let us first consider using a simple rectangular window with width T to trun-
cate the signal:

wr(t) =
{

1 0 < t < T
0 otherwise

(9.1)

If a particular segment τ < t < τ + T of the signal x(t) is of interest, the signal
is first truncated by multiplication of the window wr(t) shifted by τ , and then
Fourier transformed:

Xr(f, τ) = F [x(t)wr(t− τ)] =
∫ ∞

−∞
x(t)wr(t− τ)e−j2πftdt =

∫ τ+T

τ
x(t)e−j2πftdt

(9.2)

407
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Based on the time-shift and frequency convolution properties of the Fourier trans-
form, the spectrum of this windowed signal can also be expressed as:

Xr(f, τ) = X(f) ∗ [Wr(f)e−2πfτ ] (9.3)

where Wr(f) = F [wr(t)] is the Fourier transform of the rectangular window
wr(t), a sinc function. While certain temporal locality can be achieved in the
transform domain, the STFT spectrum Xr(f) in frequency domain is severely
distorted due to the convolution with the ringing sinc function Wr(f) = F [wr(t)].

In order to overcome this drawback, a smooth window such as a bell-shaped
Gaussian function can be used:

wg(t) = e−π(t/σ)2 (9.4)

where the parameter σ controls the width of the window. Again the signal is
first multiplied by a shifted version of the Gaussian window wg(t− τ), and then
Fourier transformed to get:

Xg(f, τ) = F [x(t)wg(t− τ)] =
∫ ∞

−∞
x(t)e−(t−τ)2/σ2

e−j2πftdt (9.5)

This Fourier transform of the Gaussian windowed signal is called the Gabor
transform of the signal, from which the original time signal can be obtained by
the inverse Gabor transform. Multiplying ej2πfτ on both sides of the equation,
and then integrating with respect to f , we get the inverse transform:
∫ ∞

−∞
Xg(f, τ)ej2πfτdf =

∫ ∞

−∞
[
∫ ∞

−∞
x(t)e−(t−τ)2/σ2

e−j2πftdt ] ej2πfτdf

=
∫ ∞

−∞
x(t)e−(t−τ)2/σ2

[
∫ ∞

−∞
e−j2πftej2πfτdf ] dt =

∫ ∞

−∞
x(t)e−(t−τ)2/σ2

δ(t− τ)dt

= x(τ) (9.6)

Similar to the case of rectangular windowing in Eq.9.3, due to the frequency
shift and the convolution properties of the Fourier transform, the Gabor spec-
trum in Eq.9.5 can also be written as:

Xg(f, τ) = [Wg(f)e−j2πfτ ] ∗X(f) (9.7)

Different from the rectangular windowing, here the Fourier transform of the
Gaussian window is also a Gaussian function (Eq. 3.149):

Wg(f) = F [wg(t)] = σe−π(σf)2 (9.8)

i.e., the spectrum X(f) is now convolved with a smooth function Wg(f), instead
of a ringing sinc function Wr(f) as in the previous case, therefore the Gabor
spectrum Xg(f) will not be distorted as severely as in the previous case.
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9.1.2 The Heisenberg Uncertainty

The STFT methods in general, either with rectangular or Gaussian windowing,
suffer from a more profound difficulty, namely, an increased time resolution will
necessarily result in a decreased frequency resolution. The frequency resolution
of STFT spectrum, either Xr(f, τ) or Xg(f, τ), is a blurred version of the true
Fourier spectrum X(f), due to the convolution in Eqs.9.3 or 9.7. For example,
in the case of the Gabor transform, as the width of Wg(f) (1/σ) in frequency
domain is inversely proportional to the width of wg(t) (σ) in time domain, a
narrower time window wg(t) for higher temporal resolution will necessarily cause
a wider Wg(f) and thereby a more blurred Gabor spectrum Xg(f).

This issue could be more clearly illustrated if we further assume the trun-
cated signal x(t) repeats itself outside a finite window of width T , i.e., the sig-
nal x(t + T ) = x(t) becomes periodic. Correspondingly, its spectrum becomes
discrete, composed of an infinite set of discrete frequency components X [k]
(k = 0,±1,±2, · · · ), with a gap of f0 = 1/T between any two consecutive compo-
nents X [k] and X [k + 1]. Obviously this discrete spectrum provides no informa-
tion in the gaps. Moreover, the higher temporal resolution we achieve by reducing
T , the lower frequency resolution will result due to the larger gap f0 = 1/T in
frequency domain.

Another drawback the general STFT approach also suffers from is that the
window width is fixed through out the analysis, independent of the specific signal
being analyzed, while there may be a whole variety of different characteristics
of varying time scales in the signal. For example, the signal may contain some
random and sparse spikes, and bursts of rapid oscillation, which can be localized
only if the time window used is very narrow. On the other hand, there may be
some totally different features in the signal, such as some slow changing drifts
and trends, which can be captured only if the time window has much wider
width. Therefore it would be very difficult for the STFT method to detect and
represent at the same time all such signal characteristics that are potentially of
great importance and interest.

We see that it is fundamentally impossible to have the complete information of
a given signal in both time and frequency domains at the same time, as increasing
the resolution in one domain will necessarily reduce that in the other. This effect
is referred to as the Heisenberg uncertainty, as previously discussed in Chapter3
and clearly demonstrated by Eq.3.165.

If the temporal features of interest in a signal do not change much over time, i.e,
the signal is stationary, then the Fourier transform is sufficient for the analysis of
the signal in terms of characterizing these features in frequency domain. However,
in many applications it is the transitory or non-stationary aspects of the signal
such as drifts, trends, and abrupt changes that are of most concern. In such
cases, Fourier analysis is unable to detect them in terms of when such events
has taken place, therefor unsuitable to describe or represent such signal features
which may be of most interest.
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Figure 9.1 Comparisons of temporal and frequency locality in Fourier and wavelet
transforms

In order to overcome this limitation of the Fourier analysis and to gain localized
information in both frequency and time domains, a different kind of transform,
called the wavelet transform can be used. The wavelet transform can be viewed as
a trade-off between time and frequency domains. Unlike the Fourier transform
which converts a signal between time (or space) and frequency domains, the
coefficients of the wavelet transform represent signal details of different scales
(corresponding to different frequencies in the Fourier analysis), and also their
temporal (or spatial) locations. Different scale levels from lowest to the highest
can reveal events of different scales.

The discussion above can be summarized by the Heisenberg Box (Cell) shown
in Fig.9.1, which illustrates the issue of resolution or locality in both time and
frequency in the Fourier transform, short-time Fourier transform and wavelet
transform.

The first figure is the time signal with full time resolution but zero frequency
resolution. The second is its Fourier spectrum with full frequency resolution but
zero frequency resolution. The third one is the short-time Fourier transform with
a fixed window size and inversely proportional resolutions in time and frequency
domains. The last one is for the wavelet transform with varying scale levels
and their corresponding time resolution, i.e., at a low scale level (less details
corresponding to low frequencies) the window size a large, while at a high scale
level (more details corresponding to high frequencies) the window size is small.
In other words, local information in both time and frequency domains can be
represented in this transform scheme.

9.2 Continuous-Time Wavelet Transform (CTWT)

9.2.1 Mother and daughter wavelets

All continuous orthogonal transforms previously discussed, such as the Fourier
transform, are integral transforms that can be expressed as an inner product of
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the signal x(t) with a transform kernel function φf (t):

X(f) =< x(t),φf (t) >=
∫

x(t)φf (t)dt (9.9)

where the kernel function φf (t) represents the fth member of a family of complete
basis functions that span the space in which the signal x(t) exist. For example,
in the case of Fourier transform, the kernel function is a complex exponential
φf (t) = ej2πft with a parameter f representing a specific frequency. Similarly,
the continuous wavelet transform (CWT) is also an integral transform based
on a set of kernel functions, sometimes referred to as the daughter wavelets, all
derived from a mother wavelet ψ(t) that satisfies the following conditions:! ψ(t) should have a compact support, i.e., ψ(t) $= 0 only inside a bounded range

a < t < b.! ψ(t) has zero mean or zero DC component:
∫ ∞

−∞
ψ(t)dt = 0, i.e. Ψ(f)

∣∣
f=0

= Ψ(0) = 0 (9.10)

where Ψ(f) = F [ψ(t)] is the Fourier transform of ψ(t). In other words, the
DC component of the mother wavelet is zero. This condition is needed in the
future discussion of wavelet transforms.! ψ(t) ∈ L2 is square integrable:

∫ ∞

−∞
|ψ(t)|2dt < ∞ (9.11)! ψ(t) can be normalized (same as all orthogonal transforms with normalized

basis vectors):

||ψ(t)||2 =
∫ ∞

−∞
|ψ(t)|2dt = 1 (9.12)

Qualitatively, a mother wavelet ψ(t) has two properties. First, it is non-zero
only within a finite range (first condition), i.e., it is “small”. Second, it has a
zero mean (second condition), i.e., it is a “wave” that takes both positive and
negative values around zero. In other words, ψ(t) is a small wave, therefore the
name “wavelet”. Obviously this is essentially different from all other continuous
orthogonal transforms, such as the Fourier and cosine transforms, whose kernel
functions are sinusoidal waves defined over the entire time axis.

Based on the mother wavelet, a family of kernel functions ψs,τ (t), the daughter
wavelets, can be generated by scaling and translating the mother wavelet by s
and τ , respectively:

ψs,τ (t) =
1√
s
ψ(

t− τ
s

) (9.13)

where τ is the time translation (τ > 0 for right shift and τ < 0 for left shift)
and s > 0 is a scaling factor (s > 1 for expansion and s < 1 for compression).
Unlike the kernel function φf (t) = ej2πft of the Fourier transform with only one
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parameter f for frequency, the CWT kernel ψs,τ (t) has two parameters τ and
s for translation and scaling, respectively, this is the reason why the wavelet
transform is capable of representing localized information in time domain as
well as in different scale levels (corresponding to different frequencies), while the
Fourier transform is only capable of representing localized frequency information.

The factor 1/
√

s is included in the wavelet ψs,τ (t) so that it is also normalized
as the mother wavelet, independent of the scaling factor s:

||ψs,τ (t)||2 =
∫ ∞

−∞
|ψs,τ (t)|2dt =

1
s

∫ ∞

−∞
|ψs,τ (

t− τ
s

)|2dt

=
∫ ∞

−∞
ψ2

s,τ (t
′)sdt′ =

∫ ∞

−∞
ψ2(t)dt = ||ψ(t)||2 = 1 (9.14)

Here we have assumed t′ = (t− τ)/s and therefore dt′ = dt/s.
If we obtain the Fourier spectrum of the mother wavelet Ψ(f) = F [ψ(t)], the

Fourier spectrum of each kernel function ψs,τ (t) can be found according to the
time-shift and scaling properties of the Fourier transform: (Eqs.3.103, 3.102):

Ψs,τ (f) = F [ψs,τ (t)] = F [
1√
s
ψ(

t− τ
s

)] =
√

sΨ(sf)e−j2πfτ (9.15)

9.2.2 The forward and inverse wavelet transforms

First we consider the forward continuous wavelet transform. Given a mother
wavelet ψ(t) and all her daughter wavelets ψs,τ (t) for different s and τ , we can
define the continuous wavelet transform (CWT) X(s, τ) of a time signal x(t) as
an integral transform: 1

X(s, τ) = W [x(t)] =< x(t),ψs,τ (t) >=
∫ ∞

−∞
x(t)ψs,τ (t)dt

=
1√
s

∫ ∞

−∞
x(t)ψ(

t− τ
s

)dt = x(τ) & ψs,0(τ) (9.16)

As indicated by the last equality, the wavelet transform of x(t) can also be
considered as the correlation of the signal x(t) and a wavelet function ψs,0(t) =
ψ(t/s)/

√
s. Therefore, according to property of the correlation (Eq.3.108), the

Fourier spectrum of the CWT X(s, τ) can be obtained in frequency domain as
a multiplication:

X̂(s, f) = F [X(s, τ)] = X(f)Ψs,0(f), (9.17)

where X(f) = F [x(t)] and Ψs,0(f) = F [ψs,0(t)] are the Fourier spectra of the
signal x(t) and the wavelet ψs,0(t), respectively. Also, according to Eq.9.15, we

1 Various notations have been used for the continuous wavelet transform of a signal x(t), such
CWTx(s, τ) and Wx(s, τ). However, in this chapter a notation X(s, τ) is used in consistence
with X(f) = F [x(t)] for the Fourier transform of x(t).
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have

Ψs,0(f) = Ψs,τ (f)
∣∣
τ=0

=
√

sΨ(sf)e−j2πfτ
∣∣
τ=0

=
√

sΨ(sf) (9.18)

Now the CWT can be readily found as the inverse Fourier transform of X̂(s, f):

X(s, τ) = F−1[X̂(s, f)] = F−1[X(f)Ψs,0(f)] (9.19)

Next we consider the inverse wavelet transform (ICWT) by which the original
time function x(t) can be reconstructed based on its CWT X(s, τ):

x(t) = W−1[X(s, τ)] =
1

Cψ

∫ ∞

0

∫ ∞

−∞
X(s, τ)ψs,τ (t)dτ

ds

s2

=
1

Cψ

∫ ∞

0

1√
s

∫ ∞

−∞
X(s, τ)ψ(

t− τ
s

)dτ
ds

s2
(9.20)

where Cψ is defined as

Cψ =
∫ ∞

0

|Ψ(f)|2
f

df < ∞ (9.21)

Eq.9.21 is referred to as the admissibility condition, which is necessary for the
inverse CWT to exist. Note that in order for this condition to hold, we must
have Ψ(f)f=0 = Ψ(0) = 0, i.e., the wavelet ψ(t) has zero mean, as one of the
conditions specified before (Eq.9.10). Consequently, Eq.9.19 will produce the
same result for different X(0) values (as it is always multiplied by Ψ(0) = 0). In
other words, CWT is insensitive to the DC component X(0) of the signal x(t).

Now we prove the inverse CWT given in Eq.9.20. Multiplying Ψs,0(f) on both
sides of Eq.9.17, we get

X̂(s, f)Ψs,0(f) = X(f)Ψs,0(f)Ψs,0(f) = X(f) |Ψs,0(f)|2 (9.22)

and then divide both sides by s2 and integrate with respect to s:
∫ ∞

0
X̂(s, f)Ψs,0(f)

ds

s2
= X(f)

∫ ∞

0
|Ψs,0(f)|2 ds

s2
= X(f)

∫ ∞

0

|Ψ(sf)|2
s

ds

(9.23)
The last equal sign is due to Eq.9.18. We further consider the integral on the
right-hand side:

∫ ∞

0

|Ψ(sf)|2
s

ds =
∫ ∞

0

|Ψ(sf)|2
sf

d(sf) =
∫ ∞

0

|Ψ(f ′)|2
f ′

df ′ = Cψ

(9.24)

where we have assumed f ′ = sf , and the last equal sign is due to the definition
of Cψ in Eq.9.21. Now Eq.9.23 can be written as:

X(f) =
1

Cψ

∫ ∞

0
X̂(s, f) Ψs,0(f)

ds

s2
(9.25)
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Now the time signal can be obtained by taking the inverse Fourier transform on
both sides:

x(t) = F−1[X(f)] =
1

Cψ

∫ ∞

0
F−1[X̂(s, f) Ψs,0(f)]

ds

s2

=
1

Cψ

∫ ∞

0
X(s, t) ∗ ψs,0(t)

ds

s2

=
1

Cψ

∫ ∞

0

1√
s

∫ ∞

−∞
X(s, τ)ψ(

t− τ
s

)dτ
ds

s2
(9.26)

Here we have used the convolution theorem of the Fourier transform. The inverse
wavelet transform given in Eq.9.20 is thereby proven.

As a side product, we note that the result of Eq.9.24 indicates a very interesting
fact. For any given function f(x), the integral of its scaled version f(sx)/s over
all scale s is a constant, over the entire domain of x. This result has some
important significance, as we will see later in the discussion of the discrete-time
wavelet transform.

In summary, the continuous wavelet transform in Eq.9.16 converts a 1-D con-
tinuous time signal x(t) into a 2-D function X(s, τ) of two arguments s for scale
and τ for translation, and by the inverse transform in Eq.9.20, the signal can
be reconstructed based on its CWT coefficients X(s, τ). Although this pair of
forward CWT and inverse CWT is similar to all previously discussed orthogonal
transforms such as the Fourier transform, there are some essential differences.
Most obviously, the Fourier spectrum X(f) of a time signal x(t) is a 1-D function
of frequency f , but the CWT coefficient X(s, τ) is a 2-D function of two variables
s and τ . Also, unlike the Fourier transform or any othter transforms, the CWT
is not an orthogonal transform, as its kernel functions ψs,τ (t) are not orthogonal
to each other, i.e., they do not form an orthonormal basis of the function space.
We will consider in more details in terms of such differences between the CWT
and other orthogonal transforms.

9.3 Properties of CTWT

! Linearity:

W [ax(t) + by(t)] = aW [x(t)] + bW [y(t)] (9.27)

The wavelet transform of a function x(t) is simply an inner product of the
function with a kernel function ψs,τ (t) (Eq. 9.16). Therefore due to the lin-
earity of the inner product in the first variable, the wavelet transform is also
linear.! Time shift: If W [x(t)] = X(s, τ), then W [x(t− t′)] = X(s, τ − t′).

W [x(t− t′)] =
1√
s

∫ ∞

−∞
x(t− t′)ψ(

t− τ
s

)dt (9.28)
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Let u = t− t′, i.e., t = u + t′ and dt = du, the above becomes:

W [x(t− t′)] =
1√
s

∫ ∞

−∞
x(u)ψ(

u− (τ − t′)
s

)du = X(s, τ − t′) (9.29)! Time scaling: If W [x(t)] = X(s, τ), then W [x(t/a)/
√

a] = X(s/a, τ/a).

W [x(t/a)/
√

a] =
1√
as

∫ ∞

−∞
x(t/a)ψ(

t− τ
s

)dt (9.30)

Let u = t/a, i.e., t = au and dt = adu, the above becomes:

W [x(t/a)/
√

a] =
a√
as

∫ ∞

−∞
x(u)ψ(

au− τ)
s

)du

=
1√
s/a

∫ ∞

−∞
x(u)ψ(

u− τ/a)
s/a

)du = X(s/a, τ/a) (9.31)

! Localization Property:
Consider the scaling and translation of a mother wavelet ψ(t) in frequency
domain as well in time domain. Assume its center is at t = t0 and its width
is ∆t, and the center and width of its Fourier transform Ψ(f) are f0 and ∆f .
Then the center of the scaled and translated wavelet function ψs,τ (Eq. 9.13)
is at t = at0 + τ and its width is

∆ts,τ = s∆t (9.32)

The Fourier transform of ψs,τ (t) is Ψs,τ (f) =
√

sΨ(sf)e−j2πfτ and its center
fs,τ and width ∆fs,τ are:

fs,τ =
1
2
f0

∆fs,τ =
1
s
∆f (9.33)

We can now make two observations:
– The product of the window widths of the wavelet function ψs,τ (t) in time

and frequency domains is constant, independent of s and τ .

∆ts,τ∆fs,τ = s∆t
1
s
∆f = ∆t∆f (9.34)

– If we consider a wavelet function ψs,τ (t) as a band-pass filter Ψs,τ (f) with
a quality factor Q defined as the ratio of its bandwidth and the center
frequency, then we have

Q =
∆f

f0
(9.35)

i.e., the quality factor Q of the filter is constant, independent of the scaling
factor s.! Multiplication theorem:
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Let X1(f) = F [x1(t)] and X2(f) = F [x2(t)] be the Fourier transforms of x1(t)
and x2(t), respectively. Then, according to Eq.9.19, we have:

Xi(s, τ) =
√

s

∫ ∞

−∞
Xi(f),Ψ(sf)ej2πfτdf, (i = 1, 2) (9.36)

We substitute these expressions into the inner product of X1(s, τ) and X2(s, τ)
defined as:

< X1(s, τ), X2(s, τ) >=
∫ ∞

0

∫ ∞

−∞
X1(s, τ)X2(s, τ) dτ

ds

s2

=
∫ ∞

0

∫ ∞

−∞
[
∫ ∞

−∞
X1(f)

√
sΨ(sf)ej2πfτdf ] [

∫ ∞

−∞
X2(f ′)

√
sΨ(sf ′)e−j2πf ′τdf ′] dτ

ds

s2

=
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
[X1(f)X2(f ′)sΨ(sf)Ψ(sf ′)

∫ ∞

−∞
ej2π(f−f ′)τdτ ] df ′ df

ds

s2

=
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
X1(f)X2(f ′)sΨ(sf)Ψ(sf ′)δ(f − f ′)df ′ df

ds

s2

=
∫ ∞

−∞
X1(f)X2(f)[

∫ ∞

0

|Ψ(sf)|2
s

ds] df = Cψ

∫ ∞

−∞
X1(f)X2(f) df (9.37)

Note that the integral with respect to s inside the brackets is Cψ. Now due
to the multiplication theorem of the Fourier transform < x1(t), x2(t) >=<
X1(f), X2(f) >, we have:

< X1(s, τ), X2(s, τ) >= Cψ

∫ ∞

−∞
X1(f)X2(f) df = Cψ < x1(t), x2(t) >

(9.38)
This is the multiplication theorem of the CWT. In particular, when x1(t) =
x2(t) = x(t), we have < X(s, τ), X(s, τ) >= Cψ < x(t), x(t) >, i.e.,

∫ ∞

−∞
|x(t)|2dt =

1
Cψ

∫ ∞

−∞
|X(s, τ)|2dτ ds

s2
(9.39)

This is Parseval’s identity (energy conservation) for the CWT.! Non-orthogonality
All previously considered orthogonal transforms, such as the Fourier trans-
form, convert a 1-D time signal x(t) into another 1-D function in transform
domain, such as the spectrum X(f) in frequency domain. All basis functions
that span the vector space containing the signal x(t) are orthogonal

< φf (t),φf ′(t) >= 0, (f $= f ′) (9.40)

indicating that they are completely uncorrelated and there exists no redun-
dancy among these basis functions. In other words, every single point f in the
transform domain makes its unique contribution to the reconstruction of the
time signal by the inverse transform.
However, this is no longer the case for the continuous wavelet transform, which
converts a 1-D time signal x(t) to a 2-D function X(s, τ) defined over a half
plane −∞ < τ < ∞ and s > 0. Consequently, there exists a large amount of
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redundancy in the 2-D transform domain in terms of the information needed
for reconstruction of the time signal x(t). The redundancy between any two
points (s, τ) and (s′, τ ′) in the transform domain can be measured by the
reproducing kernel, defined as the inner product of the two corresponding
kernel functions (basis functions) ψs,τ (t) and ψs′,τ ′(t):

K(s, τ, s′, τ ′) =< ψs,τ (t),ψs′,τ ′(t) >=
∫ ∞

−∞
ψs,τ (t)ψs′,τ ′(t)dt $= 0 (9.41)

The fact that this inner product is not zero indicates a major difference
between the CWT and all orthogonal transforms considered before, i.e., the
CWT is not an orthogonal transform anymore. This reproducing kernel can
be considered as the correlation between the two kernel functions ψs,τ (t) and
ψs′,τ ′(t), representing the redundancy between them.
On the other hand, if X(s, τ) is a CWT coefficient of a signal x(t), X(s′, τ ′) at
any other point in the (s, τ) plane may not also be a CWT coefficient of x(t)
unless it is a linear combination of all those true coefficients, each weighted
by the corresponding reproducing kernel K(s, τ, s′, τ ′):

X(s′, τ ′) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
K(s, τ, s′, τ ′)X(s, τ)dτ

ds

s2
(9.42)

This identity can be easily proved. For X(s′, τ ′) to be a CWT coefficient of
x(t), it has to satisfy the CWT definition:

X(s′, τ ′) =< x(t),ψs′,τ ′(t) >=
∫ ∞

−∞
x(t)ψs′,τ ′(t)dt (9.43)

Substituting the reconstructed x(t) in Eq.9.20 into this equation, we get:

X(s′, τ ′) =
∫ ∞

−∞

[
1

Cψ

∫ ∞

0

∫ ∞

−∞
X(s, τ)dτ

ds

s2

]
ψs,τ (t)ψs′,τ ′(t)dt

=
1

Cψ

∫ ∞

0

∫ ∞

−∞
X(s, τ)

[∫ ∞

−∞
ψs,τ (t)ψs′,τ ′(t)dt

]
dτ

ds

s2

=
1

Cψ

∫ ∞

0

∫ ∞

−∞
K(s, τ, s′, τ ′)X(s, τ)dτ

ds

s2
(9.44)

9.4 Typical Mother Wavelet Functions

In the discussion of the wavelet transform, the waveform of the mother wavelet
function is not specifically defined. Here we consider some commonly used mother
wavelets.! Shannon wavelet
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This wavelet can be more conveniently defined in frequency domain as an
ideal band-pass filter:

Ψ(f) =
{

1 f1 < |f | < f2

0 otherwise
(9.45)

The Shannon wavelet in time domain can be obtained by inverse Fourier
transform as:

ψ(t) = F−1[Ψ(f)] =
∫ ∞

−∞
Ψ(f)ej2πftdf =

∫ −f1

−f2

ej2πftdf +
∫ f2

f1

ej2πftdf

=
1
πt

[sin(2πf2t)− sin(2πf1t)] (9.46)

Note that while the Shannon wavelet has very good locality in frequency
domain, it has relatively poor locality in time domain. However, this wavelet
has some significant importance for the discussion of an algorithm for the
reconstruction of the time signal from its wavelet coefficients, to be considered
in the next section.! Morlet wavelet
As shown in Fig.9.3, a Morlet wavelet is a complex exponential ejω0t =
cos(jω0t) + j sin(jω0t) modulated by a normalized Gaussian function
e−t2/2/

√
2π:

ψ(t) =
1√
2π

ejω0te−t2/2 =
1√
2π

[cos(ω0t)e−t2/2 + j sin(ω0t)e−t2/2] (9.47)

According to the frequency shift property of the Fourier transform (Eq.3.104),
the spectrum of the Morlet wave is another Gaussian function shifted by −ω0,
as shown in the bottom panel of Fig.9.3:

Ψ(ω) = F [ψ(t)] =
∫ ∞

−∞
ψ(t)e−jωtdt =

1√
2π

∫ ∞

−∞
e−t2/2ej(ω−ω0)tdt

= e−(ω−ω0)2/2 = e−(2π(f−f0))2/2 (9.48)

Note that when ω0 = 0, Ψ(0) = e−ω
2
0/2 > 0, violating the requirement needed

for the admissibility condition. However, when ω0 is large enough, e.g., when
f0 = 1 Hz, ω0 = 2π, Ψ(0) = e−6.282/2 = 2.7× 10−9 is small enough to be
neglected.
As the Fourier spectrum Ψ(ω) of the Morlet wavelet is zero when ω < 0, it is
an analytic signal according to the definition discussed in chapter 1.! Derivative of Gaussian
This wavelet is the first order derivative of a normalized Gaussian function
g(t) = e−π(t/a)2/a:

ψ(t) =
d

dt
g(t) =

d

dt
[
1
a
e−π(t/a)2 ] = −2πt

a3
e−π(t/a)2 (9.49)
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Figure 9.2 Shannon wavelets of different scale levels and their spectra

Note that the Gaussian function is normalized
∫ ∞

−∞
g(t)dt = 1 (9.50)

and the parameter a is related to the standard deviation σ by a =
√

2πσ2. The
Fourier transform of this derivative of Gaussian can be easily found according
to the time derivative property of the Fourier transform (Eq. 3.118) to be

Ψ(f) = F [ψ(t)] = j2πfte−π(af)2 (9.51)! Marr wavelet (Mexican hat)
This wavelet is the negative version of the second derivative of the Gaussian
function g(t) = e−π(t/a)2/a. As we have

d2

dt2
g(t) =

d

dt
[−2πt

a3
e−π(t/a)2 ] = −2π

a3
(1− 2π

a2
)e−π(t/a)2 (9.52)
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Figure 9.3 Morlet wavelets of different scale levels and their Spectra

the Marr wavelet is:

ψ(t) =
2π
a3

(1− 2π
a2

)e−π(t/a)2 (9.53)

If we let a =
√

2πσ2, the Gaussian function g(t) is normalized
∫

g(t) = 1, and
the Marr wavelet becomes:

ψ(t) =
1√

2πσ3
(1− t2

σ2
)e−t2/2σ2

(9.54)

The Marr wavelet function is also referred to as the Mexican hat function due
to its shape. The Fourier transform of the Gaussian function is also Gaussian
(Eq.3.148):

F [
1
a
e−π(t/a)2 ] = e−π(af)2 (9.55)
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Figure 9.4 Marr wavelets of different scale levels and their spectra

and according to the time derivative property of the Fourier transform
(Eq.3.118), we get the Fourier transform of the Marr wavelet

Ψ(f) = F [ψ(t)] = −(j2πft)2e−π(af)2 = 4π2f2e−π(af)2 (9.56)

The Marr wavelet and its Fourier transform are shown in Fig.9.4. Note that
as this wavelet function is real, its Fourier spectrum is symmetric with respect
to zero frequency.! Difference of Gaussians
As the name suggests, this wavelet is simply the difference between two Gaus-
sian functions with different parameters a1 > a2 (representing the variance):

ψ(t) = g1(t)− g2(t) =
1
a1

e−π(t/a1)2 − 1
a2

e−π(t/a2)2 (9.57)

The spectrum of this function is the difference between the spectra of the two
Gaussian functions, which are also Gaussian:

Ψ(f) = G1(f)−G2(f) = e−π(a1f)2 − e−π(a2f)2 (9.58)
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Figure 9.5 Difference of Gaussians and its spectrum

Note that Ψ(0) = 1− 1 = 0. As can be seen in Fig.9.5, the difference of Gaus-
sians looks very much like the second derivative of Gaussian (Marr) wavelet,
and both functions could be brieviated as DoG. But note that they are two
different types of functions.

9.5 Discrete-time wavelet transform (DTWT)

9.5.1 Discretization of wavelet functions

In order to actually obtain the wavelet transform X(s, τ) of a given signal x(t) by
a computer, we need to discretize not only both the signal x(t) and the wavelet
functions ψs,τ (t), but also the scaling factor s. Then the discrete version of the
wavelet transform, referred to as the discrete-time wavelet transform (DTWT),
can be carried out numerically.

Specifically, by sampling both the signal x(t) and the mother wavelet ψ(t), we
get N samples for each functions: x[m] and ψ[m] (m = 0, · · · , N − 1), together
with their DFT F [x[m]] = X [n] and F [ψ[m]] = Ψ[n], where n is for all frequency
components. Also, based on the mother wavelet, we generate a set of K wavelet
functions ψsk,0[m] = ψ[m/sk], each scaled by a different factor sk:

sk = s02k/r = s0(21/r)k, (k = 0, · · · , K) (9.59)

Here s0 is the base scale factor and r is a parameter that determines the total
number of scale levels K = r log2(N/s0). When the mother wavelet ψ[m] is scaled
by sk, it becomes ψsk,0[m] = ψ[m/sk], and, correspondingly, its DFT becomes
Ψsk,0 = Ψ[skn]. When k = 0, the mother wavelet is scaled minimally by a factor
s0. When k > 0, the scale factor becomes sk = s02k/r > s0, and the wavelet
ψsk,0[m] = ψ[m/sk] is expanded in time domain and its DFT Ψsk,0[n] = Ψ[skn]
is compressed in frequency domain. In the extreme case when k = K, the mother
wavelet is maximally stretched by a factor of sK = N , and its N-point Fourier
spectrum ΨsK ,0[n] = Ψ[sKn] is maximally compressed to become a single point.
Moreover, if r > 1, the base of the exponent is reduced from 2 to 21/r < 2,
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consequently we get a finer scale resolution with smaller step size between two
consecutive scale levels. For example, when r = 2, the base of the exponent in
Eq.9.59 is reduced from 2 to

√
2 = 1.442, and the total number of scale levels is

correspondingly doubled and the scale resolution is increased.

9.5.2 The forward and inverse transform

Now the DTWT of a discrete signal x[m] can be obtained according to Eq.9.16
as a correlation of the signal and the wavelet function ψsk,0[m]:

X [k, m] = x[m] & ψsk,0[m] (9.60)

Alternatively, similar to the continuous case in Eq.9.19, this transform can also
be carried out as a multiplication in frequency domain:

X̂[k, n] = F [X [k, m]] = X [n]Ψsk,0[n] (9.61)

where X̂[k, n] is the DFT spectrum of the DTWT coefficients X [k, m] of the
signal x[m]. Now the DTWT can be readily obtained by the inverse DFT:

X [k, m] = F−1
[
X̂[k, n]

]
= F−1

[
X [n]Ψsk,0[n]

]
(9.62)

The inverse DTWT can also be more conveniently obtained in frequency
domain, similar to the derivation of the inverse transform in the continuous
case in Eq. 9.26. We first multiply both sides of Eq.9.61 by Ψsk,0[n] and then
sum both sides over all K scale levels to get:

K∑

k=0

X̂[k, n]Ψsk,0[n] =
K∑

k=0

[X [n]Ψsk,0[n]] Ψsk,0[n] = X [n]
K∑

k=0

|Ψsk,0[n]|2 (9.63)

But according to Eq.9.24, the summation of the daughter wavelets squared over
all scales is a constant, i.e., in discrete case we have:

K∑

k=0

|Ψsk,0[n]|2 = C (9.64)

Now the above equation becomes:

X [n] =
1
C

K∑

k=0

X̂[k, n]Ψsk,0[n] (9.65)

Taking inverse DFT on both sides we get the inverse DTWT by which the original
time signal x[m] is reconstructed:

x[m] = F−1[X [n]] = F−1

[
1
C

K∑

k=0

X̂[k, n]Ψsk,0[n]

]
(9.66)
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9.5.3 A fast inverse transform

Next we consider a fast algorithm for the inverse DTWT, under the condition
that the sum of the DFTs of the wavelet functions over all scales is constant:

K∑

k=0

Ψsk,0[n] =
K∑

k=0

Ψ[skn] =
K∑

k=0

Ψ[s02k/r n] = C, (for all n $= 0) (9.67)

where the constant C is not the same as that in Eq.9.64. This equation holds
for all n representing different frequency components, independent of the specific
function Ψ[n].

To prove this result, we first consider the corresponding situation in the contin-
uous case, the integral of an arbitrarily given function f(x), scaled exponentially
by a factor s = bu:

∫ ∞

−∞
f(bux)du =

∫ ∞

−∞
f(sx)d(logb s) =

1
ln b

∫ ∞

0

f(sx)
s

ds

=
1

ln b

∫ ∞

0

f(sx)
sx

d(sx) =
1

ln b

∫ ∞

0

f(s′)
s′

ds′ = C (9.68)

Here we have assumed s′ = sx, and that the integral converges to a constant
C. This result indicates that the summation of all exponentially scaled versions
of any function f(x) is a constant over the entire domain x of the function,
independent of the specific form of the function. Now we see that the summation
in Eq.9.67 above is simply the discrete approximation of the integral in the
continuous case. If the parameter r takes a large enough value, then the resolution
for the different scales should be fine enough, and the summation will be a valid
approximation of the integral in Eq.9.68, therefore it should also converge to a
constant. For example, as shown Fig.9.6, the differently scaled Morlet and Marr
wavelets in frequency domain do indeed add up to a constant over the entire
horizontal axis for frequency.

We are now ready to consider the fast algorithm for the inverse DTWT. Based
on the result in Eq.9.67, we see that the same should also hold for Ψsk,0[n] (in fact
the DFTs of all typical wavelets discussed above are real Ψsk,0[n] = Ψsk,0[n]),
i.e., they also add up to a constant

∑K
k=0 Ψsk,0[n] = C. We can show that the

inverse DTWT can be carried out simply by summing all the DTWT coefficients
obtained by Eq.9.62:

K∑

k=0

X [k, m] =
K∑

k=0

F−1
[
X [n]Ψsk,0[n]

]
=

K∑

k=0

[
N−1∑

n=0

X [n]Ψsk,0[n]ej2πmn/N

]

=
N−1∑

n=0

X [n]

[
K∑

k=0

Ψsk,0[n]

]
ej2πmn/N = C

N−1∑

n=0

X [n]ej2πmn/N = C x[m] (9.69)

Therefore the original time signal can be reconstructed by the inverse DTWT:

x[m] =
1
C

K∑

k=0

X [k, m], where C =
K∑

k=0

Ψsk,0[n] (9.70)
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Figure 9.6 Summations of the spectra of Morlet wavelets (top) and Marr (Mexican
hat) wavelets (bottom)

This fast algorithm for inverse DTWT can also be illustrated as an all-pass
filter bank. We first consider the case of the DTWT based on the Shannon
wavelet, whose spectrum Ψ(f) is an ideal band-pass filter in frequency domain
(Eq.9.45). As the magnitude of this filter is 1 within a finite passing band ∆f =
f2− f1, but 0 elsewhere, it preserves all signal information inside the passing
band while suppressing to zero all frequency components of the signal outside the
passing band. Moreover, as we choose the scale levels in such a way that these
band-pass filters Ψsk(f) corresponding to all K different scales form a filter
bank that completely covers the entire frequency range without any overlap or
gap, Eq.9.67 is satisfied. These ideal band-pass filters in the filter bank form an
all-pass filter with a collective frequency response equal to 1 at all frequencies
n $= 0, except at zero frequency where all Ψsk,0[0] = 0 (Eq.9.10), as required by
the admissibility condition. In frequency domain, the outputs of these filters are
simply the DFTs of the DTWT coefficients X̂[k, n] = X [n] Ψsk,0[n], and when
combined together, they carry the complete information contained in the signal
x(t), except its DC component. Therefore it becomes clear that the original
signal x(t) can be perfectly reconstructed as the sum of the outputs from all
filters of the all-pass filter bank, as indicated in Eq.9.70. As a specific example,
eight Shannon wavelets and their spectra as ideal band-pass filters are shown
in Fig.9.2, and a filter bank composed of these band-pass filters is illustrated in
Fig.9.7. This filter bank can therefore be considered as the inverse DTWT.

Due to the result in Eq.9.70, the discussion above for the Shannon wavelets
applies to all other wavelet functions, such as Morlet and Marr wavelets, as
they can all form a all-pass filter bank due to the result of Eq.9.67, also shown
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Figure 9.7 All-pass filter bank composed of band-pass wavelets

in Fig.9.6. Although their spectra corresponding to different scale levels are no
longer ideal band-pass filters and their passing bands have significant overlaps,
these filters still add up to a constant over all frequencies, and their outputs also
carry collectively the complete information of the signal, which can therefore be
reconstructed as the sum of the outputs of all these band-pass filters.

For example, consider the wavelet transform of a sawtooth time signal of
N = 128 samples, shown in Fig.9.8. Here we choose to use Morlet wavelets of
K = 8 different scale levels, corresponding to the same number of band-pass fil-
ters. These wavelets ψs(t) in time domain and their spectra Ψs(f) in frequency
domain have already been shown in Fig. 9.3. The DTWT coefficients X [k, m]
corresponding to different scale levels sk are shown on the left of Fig.9.8, and
their partial sums are shown on the right, where the kth panel is the partial sum
of the first k scale levels. We see that the partial sums as the approximation of
the original sawtooth signal x[m] improves progressively as more scale levels are
included, until eventually a perfect reconstruction of the signal is obtained when
all K scale levels are included.

9.6 Wavelet Transform Computation

Here we give a few segments of C code needed to implement the DTWT algorithm
discussed above.! Scale levels

r=2; // scale resolution
s0=1; // smallest scale
K=r*log2((float)N/s0); // total number of scale levels
scale=alloc1df(K); // allocate memory for K scales
for (k=0; k<K; k++) {
scale[k]=s0*pow(2.0,k/r); // kth scale s_k

}
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Figure 9.8 The reconstruction of a sawtooth signal (right) as the sum of its DTWT
coefficients over K = 8 scale levels (left)

In the panels on the left, the solid curves are for the real part of the DTWT and
the dashed curves for the imaginary part. In the panels on the right, the solid
curves are for the partial sums of the DTWT coefficients, in comparison with
the original signal shown by the dashed curves.

The scales corresponding to three different sets of parameters are plotted in
Fig.9.9 to show how the resolution r and base scale s0 affect the scales sk.! Wavelet functions:
As both forward and inverse DTWT can be more conveniently carried out in
frequency domain, the spectra of the wavelet functions will be specified and
used in the code. First we show the code for generating Morlet wavelets of K
scales:

f0=0.6; // wavelet parameter
for (k=0; k<K; k++) { // for all K scale levels
for (n=0; n<N; n++) { // for all N frequencies
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Figure 9.9 Scales sk versus k = 0, · · · , K corresponding to different parameters r and
s0 for DTWT of a signal with N = 512 samples

The circles represent K = 9 scales corresponding to r = 1 and s0 = 1; the squares
represent K = 13 scales corresponding to r = 1 and s0 = 0.05; and the diamonds
represent K = 18 scales corresponding to r = 2 and s0 = 1.

wavei[k][n]=0; // imaginary part is zero
v=2*Pi*(scale[k]*((float)(n-N/2)/N)-f0); // DC in middle
waver[k][n]=exp(-v*v/2); // real part of spectrum

}
}

In the code “waver” and “wavei” are two 2-D arrays for the real and imaginary
parts of the wavelet spectrum for N samples (frequencies) and K scales. Also
shown below is the code for generating Mexican hat wavelets of K scales:

a=2; // wavelet parameter
for (k=0; k<K; k++) { // for all K scale levels
for (n=0; n<N; n++) { // for all N frequencies

wavei[k][n]=0; // imaginary part is zero
v=a*scale[k]*(n-N/2)/N; // DC in middle
waver[k][n]=4*Pi*Pi*v*v*exp(-Pi*v*v); // real part of spectrum

}
}

! Forward DTWT:
Here we assume the real and imaginary parts of the time signal are stored in
two N × 1 arrays xr and xi, respectively, and the real and imaginary parts of
the DTWT of the time signal are stored in two K ×N arrays Xr and Xi for
wavelet coefficients of K scales and N time translations:

dft(xr,xi,N,0); // DFT of time signal to get spectrum
for (k=0; k<K; k++) { // for all K scale levels
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for (n=0; n<N; n++) { // for all N frequencies
Xr[k][n]=xr[n]*waver[k][n]+xi[n]*wavei[k][n];
Xi[k][n]=xi[n]*waver[k][n]-xr[n]*wavei[k][n];

}
dft(Xr[k],Xi[k],N,1); // inverse DFT to go back to time domain

}

! Inverse DTWT:
Listed below is the code for the inverse DTWT algorithm based on Eq.9.66.
Again, the real and imaginary parts of the DTWT coefficients are stored in
the two K ×N arrays Xr and Xi, and the real and imaginary parts of the
reconstructed time signal are in two N × 1 arrays yr and yi, respectively.

for (n=0; n<N; n++)
yr[n]=yi[n]=0; // initialization
for (k=0; k<K; k++) { // for all K scale leves

dft(Xr[k],Xi[k],N,0); // DFT of DTWT coefficients to frequency domain
for (n=0; n<N; n++) {
yr[n]=yr[n]+Xr[k][n]*waver[k][n]-Xi[k][n]*wavei[k][n];
yi[n]=yi[n]+Xr[k][n]*wavei[k][n]+Xi[k][n]*waver[k][n];

}
dft(yr,yi,N,1); // inverse DFT to go back to time domain

}

The code based on Eq.9.70 is trivial and not listed.

As some examples of the DTWT, a set of typical signals as well as their
DTWT transforms are shown in Fig.9.10 qualitatively in image forms. All of
these DTWTs are based on the Morlet wavelets. These signals include sinusoids
and their combinations, a chirp signal (a sinusoid with continuously changing
frequency), square, sawtooth, and triangle waves, impulse train and random
noise.

9.7 Filtering Based on Wavelet Transform

Here we consider some examples to illustrate the filtering effects of the wavelet
transform in comparison with that based on the Fourier transform.

Example 9.1: The monthly Dow Jones Industrial Average (DJIA) from 1999 to
2008 and its Fourier spectrum are plotted in top two panels of Fig.9.11. The LP-
filtered spectrum is plotted in panel 3. Similar LP-filtering can also be carried
out based on the wavelet transform, as shown in Fig.9.12. The LP-filtered data
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Figure 9.10 Typical signals and their DTWT transforms

Eight typical signals x(t) (left) and their DTWT (Morlet) coefficients X [k, m] as
a 2-D image (right), with the real part is in the upper part and the imaginary
in the lower part.

obtained from both the Fourier and wavelet transforms are re-plotted as the solid
and dashed curves in panel 4, in comparison with the original one as the dotted
curve. We see that the LP-filtered curves by both transform methods are very
similar to each other, and, as expected, they are both much smoother than the
original one.
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Figure 9.11 Monthly Dow Jones Industrial Average (DJIA) from 1999 to 2008

The four panels are, respectively, the DJIA index, its Fourier transform, the
LP-filtered spectrum, and the LP-filtered data by both the Fourier and wavelet
transforms.

Figure 9.12 Wavelet transform or DJIA and its filtering

The top panel shows the wavelet transform coefficients and the bottom panel
shows the LP-filtered version of the same spectrum. All coefficients for higher
scales are suppressed to zero (gray in the image).
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Example 9.2: In this example we compare the filtering effects of an exponen-
tial chirp signal based on the Fourier transform and the wavelet transform. In
general, a chirp is a signal whose frequency increases or decreases with time. If
the frequency increases linearly in time, the signal is a linear chirp, if the fre-
quency increases exponentially in time, the signal is an exponential chirp. As
the frequency changes continuously over time, it may seem that filtering out
certain frequency should only affect the signal locally during the time interval
corresponding to the frequency removed. However, this is not actually the case
if the filtering is carried out in Fourier domain.

As shown in Fig.9.13, the original signal (top panel) is first Fourier trans-
formed to get its spectrum (2nd panel), then certain frequency components in
the signal spectrum are completely suppressed to zero by an ideal band-pass
filter (3rd panel), and finally the signal is reconstructed by the inverse Fourier
transform of the filtered version of the spectrum (bottom). Note that although
only a relatively narrow frequency band is suppressed, the entire time signal is
affected, including the slow changing portion on the very left, as well as the time
interval (roughly from 150 to 250) corresponding to the frequency components
that are suppressed. This is due to the nature of the Fourier transform that
the frequency information is extracted from the entire time span of the signal,
and the suppressed frequency components also contribute to the slow changing
portion of the signal as well.

On the other hand, the filtering based on the wavelet transform demonstrate
some different effect, as shown in Fig.9.14, where the same chirp signal and its
DTWT coefficients are shown in the top two panels, and the filtering in transform
domain and the filtered time signal are shown respectively in the 3rd and 4th
panels. Similar to the Fourier filtering, here the DTWT coefficients inside a
certain band of scale levels are suppressed to zero. However, different from the
Fourier filtering, in the reconstructed signal, only a local portion (also roughly
from 150 to 250) of the signal corresponding to the scale levels being suppressed is
significantly affected, while the rest of the signal has been affected little. This very
different filtering effect is due to the fact that the wavelet transform maintains
the local information in time as well as in different scales levels.

Example 9.3: One of the weaknesses of the Fourier transform is that it is insensi-
tive to non-stationary characteristics in the signal because all frequency informa-
tion is extracted from the entire signal duration without temporal locality. Here
we consider a signal before and after it is contaminated by some spiky noise, and
shown on the top and bottom panels on the left in Fig.9.15, and the correspond-
ing Fourier spectrum shown on right. As we can see, the spiky noise has a very
wide-spread spectrum in frequency domain, consequently all frequency compo-
nents of the signal are affected by the noise. In particular, some of the weaker
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Figure 9.13 FT filtering of chirp signal

Figure 9.14 CWT filtering of chirp signal

frequency components in the signal are completely overwhelmed by the noise,
and it is obvious that separating the noise from the signal by Fourier filtering is
extremely difficult.

The same problem can also be addressed by the wavelet filtering, as shown in
Fig.9.16. The top, middle and bottom panels on the left show the original signal
and its reconstructions after high-pass and low-pass filtering, respectively, and
their corresponding wavelet coefficients are shown in the panels on the right. We
see that it is possible to separate the noise from the signal by wavelet filtering
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Figure 9.15 A noise-contaminated signal and its Fourier spectrum

Figure 9.16 Separation of the signal and noise by wavelet filtering

Time signals are shown on the left, and their wavelet coefficients are shown on
the right. The original signal and its reconstructions after HP and LP filtering
are shown in the top, middle and bottom rows, respectively.

(top-left panel), due obviously to the temporal locality of the wavelet transform.
The signal is reasonably recovered after low-pass filtering (bottom left), while
the spiky noise is separated out by high-pass filtering (middle left).
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Figure 9.17 Annual temperature in LA area from 1878 to 1997

Example 9.4: Here we consider the annual average temperature in Los Angeles
area from 1878 to 1997 (from NOAA National Weather Service Center in the
US), as shown in the top panel of Fig.9.17 (solid curve). The data clearly shows
a upward trend of the annual temperature. In fact there is a 5.57◦ F annual
temperature rise during these 120 years, with an average annual increase of
0.0464◦ F.

If needed, the upward drift in the data can be removed in either time domain
or some transform domain. In time domain, we can first find the linear regression
of the curve in terms of the slope and the intercept representing the trend, and
then subtract it from the data. The result is shown as the dashed curve in the
top panel of Fig.9.17. We next consider if and how this could be done by filtering
in either the Fourier or wavelet transform domain.

The Fourier spectra of the temperature data with and without the upward
drift are shown in the 2nd and 3rd panel of Fig.9.17. We see that their real parts
are the same, but their imaginary parts differ significantly at the low frequency
region. The positive and negative peaks in the imaginary part of the spectrum
for the original data (2nd panel) represent the slow-changing upward trend (an
odd function), which no longer exist in the spectrum of the data when this trend
is removed (3rd panel). As the frequency components for the slow-changing trend
are mixed with those for the more rapid variations, it is hard to separate out the
trend from the rest of the signal by filtering in frequency domain.
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Figure 9.18 Wavelet transform of LA temperature data

The top panel shows the wavelet transform of the original data. In comparison,
the middle panel shows the transform of the same data but with the upward trend
removed. The bottom panel shows the filtering in wavelet transform domain by
suppressing to zero (grey) the coefficients representing the low-scale (frequency)
components in the signal.

On the other hand, the wavelet transform generates some different result in its
transform domain, as shown in Fig.9.18. The wavelet transforms of the original
data with and without the upward trend are shown in the top two panels, while
in the bottom panel the coefficients for the trend are filtered out. After the
inverse wavelet transform, the temperature signal is reconstructed, as shown in
the bottom panel of Fig.9.17. Indeed the upward trend is removed by wavelet
filtering.
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Provide a platform, a toolbox for a wide variety of data processing and analysis
methods based on orthogonal transforms.



10 Multiresolution Analysis and
Discrete Wavelet Transform

Similar to the Fourier and other orthogonal transforms, the continuous wavelet
transform (CWT) discussed in the previous chapter also converts a signal x(t)
into the transform domain by an integral transform based on a kernel func-
tion, the wavelet function ψs,τ (t) in this case. However, different from all those
transforms, the CWT of a 1-D signal x(t) is a 2-D function X(s, τ) with high
redundancy. Moreover, unlike all transforms discussed before, the CWT is not an
orthogonal transform, as its transform kernel functions do not form an orthogonal
basis to span the function space containing the signal functions x(t) (Eq.9.41).
As the result, CWT, or its discrete version DTWT, with some favorable features
in filtering, is not suitable for data compression.

In this chapter, we will consider the concept of multiresolution analysis (MRA),
also called multi-scale approximation (MSA), based on which a set of orthogonal
wavelet functions can be constructed to span the function space L2(R), same as
all the orthogonal transforms discussed before. The discrete implementation of
this method is called the discrete wavelet transform (DWT), not to be confused
with the discrete-time wavelet transform discussed (DTWT) in the previous
chapter.

Specifically, the two parameters s and τ of a wavelet function considered pre-
viously

ψs,τ (t) =
1√
s
ψ(

t− τ
s

) (10.1)

are discretized in a binary fashion to become:

ψj,k(t) =
1√
2−j

ψ(
t− 2−jn

2−j
) = 2j/2ψ(2jt− k), (j, k ∈ Z = {· · · ,−1, 0, 1, · · · })

(10.2)
where Z = {· · · ,−1, 0, 1, · · · } is the set of all integers. This function is either an
expanded (dilated) version of the mother wavelet ψ(t) if j < 0, or a compressed
version of ψ(t) if j > 0. In either case, it is also translated by an integer amount
in time to the right if k > 0 or to the left if k < 0. While constructing the
specific mother wavelet function ψ(t), we will further impose the orthogonality
requirement so that all daughter wavelets ψj,k(t) are orthogonal with respect to
not only integer translations (in terms of k), but also binary scaling (in terms of
j). In other words, for a given j, these functions form an orthogonal basis that

438
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Figure 10.1 The nested Vj spaces for MRA

spans a space of a certain scale level j, and all bases across different scale levels
are also orthogonal to each other. In the following, we will develop the necessary
theory for the construction of such a set of orthogonal wavelet functions.

10.1 Multiresolution Analysis

10.1.1 Scale spaces

Definition 10.1. The multiresolution analysis is based on a sequence of nested
scale spaces Vj ⊂ L2(R):

{0} ⊂ · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R) (10.3)

that satisfies the following requirements:! Completeness: the union of the nested spaces is the entire function space and
their intersection is a set containing 0 as its only member:

∪j∈ZVj = L2(R), ∩j∈ZVj = {0} (10.4)! Self-similarity in scale:

x(t) ∈ V0 iff x(2jt) ∈ Vj , j ∈ Z (10.5)! Self-similarity in translation and scale:

x(t) ∈ V0 iff x(t− k) ∈ V0, k ∈ Z (10.6)! Existence of a basis, called Riesz basis, θk(t) (k ∈ Z) that spans V0:

V0 = span(θk, k ∈ Z) (10.7)

Note that although Eq.10.6 is only for self-similarity in V0, i.e., any x(t) ∈ V0

translated by integer k is still in V0, we can generalize this result to Vj . To do
so, we replace t by 2jt in 10.6 and combine it with Eq.10.5 to get:

x(t) ∈ V0 iff x(2jt) ∈ Vj iff x(2jt− k) ∈ Vj (10.8)
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If we define a new function y(t) = x(2−jt), the relationship above can also be
expressed as

y(t) ∈ Vj iff y(t− 2−jk) ∈ Vj (10.9)

which indicates that any function in Vj translated by 2−jk is still in Vj .
The significance of this set of nested scale spaces Vj (j ∈ Z) is that any given

function x(t) ∈ L2(R) can be approximated at a different level of details in each
subspace Vj ⊂ L2(R). We consider the following two cases:! First, a space Vj (j > 0) is spanned by the basis functions that are time-

compressed versions of θk(t) in V0. As the width of these basis function
becomes 2j times narrower, they are capable of representing variations of
smaller scales or more detailed information in a given signal x(t) than the
basis functions θk(t) of V0, i.e., V0 ⊂ Vj . In particular, when j →∞, the basis
functions of Vj is maximally compressed to become an impulse function with
a zero width and infinite height (for finite energy), and the space they span
becomes the entire L2(R) space capable of representing all details in a signal,
as indicated by Eq.1.5 at the beginning of the book:

∫ ∞

−∞
x(τ)δ(t − τ)dτ = x(t) ∈ L2(R) (10.10)! Second, a space V−j (j > 0) is spanned by the basis functions which are time-

expanded versions of θk(t) in V0. As the width of these basis function becomes
2j times wider, they can only represent variations of larger scales or less
detailed information in a given signal x(t) than the basis functions θk(t) of
V0, i.e., V−j ⊂ V0. In particular, when j →∞, the basis function is expanded
to have an infinite width but zero height, a constant 0 for all t, and the
corresponding space becomes {0}, a set containing 0 as its only member.

Based on the Riesz basis θ(t), a set of orthogonal scaling functions φ(t), also
called father wavelet, can be constructed in frequency domain:

Φ(f) = F [φ(t)] =
Θ(f)

[
∑

k |Θ(f − k)|2]1/2
(10.11)

where Θ(f) = F [θ(t)] is the spectrum of θ(t). We now show that this scaling
function φ(t) is indeed orthogonal to itself translated by any integer amount:

< φ(t− k),φ(t) >=
∫ ∞

−∞
φ(t− k)φ(t)dt = δ[k] (10.12)

We first represent this orthogonality in frequency domain. As the inner product
in the equation is actually the self-correlation of φ(t) evaluated at t = k for all
k ∈ Z, it can be expressed as the product of the self-correlation rφ(t) and an
impulse train with unity interval, and the equation above becomes:

rφ(τ)
∣∣
τ=k∈Z =

∫ ∞

−∞
φ(t− τ)φ(t)dt

∣∣
τ=k∈Z = rφ(τ)

∑

k∈Z
δ(τ − k) = δ[k] (10.13)
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This product in time domain corresponds to a convolution in frequency domain
of the spectrum of the correlation rφ(t) (Eq.3.111) and that of the impulse train
(Eq.3.2.5):

|Φ(f)|2 ∗
∑

k∈Z
δ(f − k) =

∑

k∈Z
|Φ(f − k)|2 (10.14)

Also, as the Fourier transform of δ[k] on the right-hand side of the equation
above is 1, we have:

∑

k∈Z
|Φ(f − k)|2 = 1 (10.15)

Obviously this condition for orthogonality is satisfied by the father wavelet Φ(f)
constructed in Eq.10.11, i.e., the scaling functions translated by different integer
k φk(t) = φ(t− k) form an orthonormal basis that spans V0. We denote these
functions by φ0,k(t) and write

V0 = span(φ0,k(t), k ∈ Z) (10.16)

This result can be generalized to space Vj . Replacing t in Eq.10.12 with 2jt we
get:

∫ ∞

−∞
φ(2jt− k)φ(2jt)d(2jt) =

∫ ∞

−∞

√
2jφ(2jt− k)

√
2jφ(2jt)dt

= < φj,k(t),φj,0(t) >= δ[k] (10.17)

where we have defined

φj,k(t) =
√

2jφ(2jt− k) = 2j/2φ(2jt− k) ∈ Vj , k ∈ Z (10.18)

which, according to Eq.10.8, is in Vj , i.e., they form an orthogonal basis in Vj :

Vj = span(φj,k(t), k ∈ Z) (10.19)

For j > 0, functions φj,k(t) are compressed in time (shorter duration) but
scaled up in value (larger amplitude), and therefore they span a space Vj ⊃ V0

that can better approximate a given function.
The scaling functions in spaces Vj of different levels are related. Specifically,

the scaling functions φ(t) ∈ V0 ⊂ V1 can be expressed in terms of the orthonormal
basis φ1,k(t) =

√
2φ(2t− k) of V1:

φ(t) =
∑

k∈Z
h0[k]φ1,k(t) =

√
2
∑

k∈Z
h0[k]φ(2t− k) (10.20)

where the coefficients h0[k] can be found as the projection of φ(t) onto the kth
basis function φ1,k(t) =

√
2φ(2t− k):

h0[k] =< φ(t),
√

2φ(2t− k) >=
√

2
∫ ∞

−∞
φ(t)φ(2t− k)dt (10.21)
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Next, this relationship between V0 and V1 can be generalized to Vj and Vj+1.
Replacing t in Eq.10.20 with 2jt− l, we get:

φ(2jt− l) =
√

2
∑

k∈Z
h0[k]φ(2(2jt− l)− k) =

√
2
∑

k∈Z
h0[k]φ(2j+1t− (2l + k))

(10.22)
But due to Eq.10.18, we have

φj,l(t) =
∑

k∈Z
h0[k]φj+1,2l+k(t) =

∑

k′∈Z
h0[k′ − 2l]φj+1,k′(t) (10.23)

where we have assumed k′ = 2l + k, i.e., k = k′ − 2l. This relationship can also
be described in frequency domain. Taking the Fourier transform of Eq.10.20, we
get

Φ(f) =
∫ ∞

−∞
φ(t)e−j2πftdt =

√
2
∑

k∈Z
h0[k]

∫ ∞

−∞
φ(2t− k)e−j2πftdt

=
√

2
∑

k∈Z
h0[k]

∫ ∞

−∞
φ(t′)e−j2πf(t′+k)/2d(

t′

2
)

=
1√
2

∑

k∈Z
h0[k]e−jkπf

∫ ∞

−∞
φ(t′)e−j2πft′/2dt′

=
1√
2
H0(

f

2
)Φ(

f

2
) (10.24)

where we have assumed t′ = 2t− k, and H0(f) is the discrete-time Fourier trans-
form of the coefficients h0[k] for the scaling filter:

H0(f) =
∑

k∈Z
h0[k]e−j2kπf (10.25)

Note that for As h0[k] is discrete with sampling frequency F = 1 by assumption,
H0(f ± 1) = H0(f) is periodic with a period of F = 1. Eq.10.24 can be further
recursively expanded to become:

Φ(f) =
1√
2
H0(

f

2
)[

1√
2
H0(

f

4
)Φ(

f

4
)] = · · · =

∞∏

j=1

1√
2
H0(

f

2j
)φ(0) =

∞∏

j=1

1√
2
H0(

f

2j
)

(10.26)
The last equal sign is based on the assumption that φ(t) is normalized, i.e., its
DC component is 1:

φ(0) =
∫ ∞

−∞
φ(t)e−j2π0tdt = 1 (10.27)

The summation index in the discussion above always takes values in the set of
integers, e.g., k ∈ Z = {−∞, · · · ,−1, 0, 1, · · · ,∞}. In the following, for simplic-
ity, we will only indicate the summation index without explicitly specifying the
range of values it takes.
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Example 10.1: Consider a square impulse function defined as:

φ(t) =
{

1 0 < t < 1
0 otherwise

(10.28)

This function is orthogonal to itself translated by any integer amount:

< φ(t),φ(t − k) >=
∫ ∞

−∞
φ(t)φ(t − k)dt = δ[k], (k, l ∈ Z) (10.29)

Based on this function, we can construct a set of scaling functions φ0,k(t) that
spans V0. Any function x(t) ∈ L2(R) can be approximated in this space V0 as:

x(t) ≈
∑

k

ckφ0,k(t) =
∑

k

ckφ(t − k) (10.30)

Replacing t in φ0,k(t) = φ(t − k) by 2jt and including a normalization factor
2j/2, we get another set of orthonormal functions:

φj,k(t) = 2j/2φ(2jt− k), k ∈ Z (10.31)

As φ(t) = 1 when its argument satisfies 0 < t < 1, we see that φj,k(t) = φ(2jt−
k) = 1 when its argument satisfies:

0 < 2jt− k < 1, i.e.,
k

2j
< t <

k

2j
+

1
2j

(10.32)

i.e., φj,k(t) = φ(2jt− k) is a square impulse of height
√

2j and width 1/2j, and
it is shifted k times its width. Obviously these functions are also orthonormal
and they span space Vj :

< φj,k(t),φj,l(t) >= δ[k − l] (10.33)

The basic ideas above are illustrated in Fig.10.2. The first two panels show two
scaling functions φ(t) = φ0,0(t) and φ0,1(t) = φ(t− 1) both in space V0, the next
two panels show another two scaling functions φ1,0(t) =

√
2φ(2t) and φ1,1(t) =√

2φ(2t− 1) in space V1. Panel 5 shows a function x(t) ∈ V1 represented as a
linear combination of the scaling functions φ1,k(t):

x(t) = 0.5φ1,0(t) + φ1,1(t)− 0.25φ1,4(t) (10.34)

Finally panel 6 shows that a scaling function φ0,0(t) in V0 can also be represented
as a linear combination of the basis functions φ1,k(t) in V1 (Eq.10.23):

φ0,l(t) = h0[0]φ1,2l(t) + h0[1]φ1,2l+1(t) =
1√
2
φ1,2k(t) +

1√
2
φ1,2k+1(t) (10.35)

where the coefficients h0[0] = h0[1] = 1/
√

2 are obtained according to Eq.10.21.
The ideas illustrated in this example are still valid if the square impulses are

replaced by any family of functions with finite support (with non-zero function
values over a finite time duration).
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Figure 10.2 Square impulses used as scaling functions

Figure 10.3 The nested Vj and Wj spaces for MRA

10.1.2 Wavelet spaces

Previously we constructed a sequence of nested scale spaces Vj ⊂ Vj+1 in which
a given function x(t) ∈ L2(R) can be approximated at different levels of details,
i.e., the approximation in Vj+1 contains more detailed information in the signal
than that in Vj . In other words, certain functions in Vj+1 are not representable
in Vj . All such functions are contained in the difference space between Vj+1 and
Vj , define the wavelet space Wj . As Wj ⊂ Vj+1, Vj ⊂ Vj+1, and Wj ∩ Vj = {0},
Wj is the complementary space of Vj , i.e., Vj+1 is the direct sum of Vj and Wj :

Vj+1 = Wj ⊕ Vj = Wj ⊕Wj−1 ⊕ Vj−1 = · · · (10.36)

This relationship can be further expanded recursively for all j ∈ Z, and according
to Eq.10.3, have:

L2(R) = ⊕j∈ZWj (10.37)

This result indicates that the L2 space is the direct sum of all the wavelet spaces
Wj . In other words, any function x(t) ∈ L2(R) can be considered as a combina-
tion of infinitely many approximations of different levels of details.
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Same as a scale space Vj which is spanned by a set of orthogonal scaling
functions φj,k(t), a wavelet space Wj can also be spanned by a set of orthogonal
wavelet functions ψj,k(t), defined similarly to the scale functions φj,k(t). These
wavelet functions are further required to be orthogonal to the scaling functions,
i.e., the following should hold for all integer shifts k, l ∈ Z at all levels j ∈ Z:

< ψj,k(t),ψj,0(t) >= δ[k] (10.38)

< φj,k(t),ψj,l(t) >= 0 (10.39)

Specifically at scale level j = 0, the orthogonalities above can be written as:

< φ(t− k),ψ(t) >=
∫ ∞

−∞
φ(t− k)ψ(t)dt = δ[k]

< φ(t− k),ψ(t) >=
∫ ∞

−∞
φ(t− k)ψ(t)dt = 0 (10.40)

Following the same process for the derivation of Eq.10.15 from Eq.10.12 for
the orthogonality of the scaling functions, we can also represent these required
orthogonalities for the wavelet functions in frequency domain:

∑

k

|Ψ(f − k)|2 = 1

∑

k

Φ(f − k)Ψ(f − k) = 0 (10.41)

Consequently, spaces Wj and Vj spanned respectively by ψj,k(t) and φj,l(t)
are orthogonal, i.e., Wj⊥Vj . Moreover, as Vj = Wj−1 ⊕ Vj−1, it follows that
Wj⊥Wj−1 and Wj⊥Vj−1 for all j ∈ Z. The fact that Wj⊥Wj−1 also indicates
that the wavelet functions ψj,k(t) are orthogonal with respect to j for different
scale levels as well as to k for different integer translations in each scale level. Note
that in contrast, the scaling functions φj,k(t) are not orthogonal across different
scale levels. Further more, since all wavelet spaces Wj are spanned by ψj,k(t), the
entire function space L2(R) = ⊕jWj , as the direct sum of these wavelet spaces,
is also spanned by these orthogonal wavelet functions:

L2(R) = span(ψj,k(t), (j, k ∈ Z) (10.42)

In the following we will construct such wavelet functions that satisfy Eq.10.39.
We first consider the case when j = 0 and how corresponding wavelet function

ψ(t) = ψ0,0(t), called mother wavelet, is related to the scaling functions. Similar
to the representation of the father wavelet φ(t) ∈ V1 in Eq.10.20, the mother
wavelet ψ(t) ∈ V1 can also be expressed as a linear combination of the basis
φ1,k(t) =

√
2φ(2t− k) of V1:

ψ(t) =
√

2
∑

k

h1[k]φ1,k(t) =
√

2
∑

k

h1[k]φ(2t− k) (10.43)

The coefficients h1[k] are obviously different from but certainly related to the
coefficients h0[k] for φ(t), for the wavelet functions ψ(t) to be orthogonal to the
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scaling functions φ(t), as to be discussed later. We next replace t by 2jt− l in
the equation above to get

ψ(2jt− l) =
√

2
∑

k

h1[k]φ(2(2jt− l)− k) =
√

2
∑

k

h1[k]φ(2j+1t− (2l + k))

=
√

2
∑

k′

h1[k′ − 2l]φ(2j+1t− k′) (10.44)

But due to Eq.10.18,

φ(2j+1t− k) = 2−(j+1)/2φj+1,k(t) (10.45)

the above equation becomes:

ψj,l(t) = 2j/2ψ(2jt− l) =
∑

k

h1[k − 2l]φj+1,k(t) (10.46)

which defines the wavelet functions ψj,l(t) that span Wj .
Eq.10.43 above for the wavelet function can be equivalently represented in

frequency domain, similar to Eq.10.24 for the scaling functions:

Ψ(f) = F [ψ(t)] =
√

2
∑

k

h1[k]F [φ(2t− k)]

=
1√
2

∑

k

h1[k]e−jkπΦ(
f

2
) =

1√
2
H1(

f

2
)Φ(

f

2
) (10.47)

where H1(f) is the discrete-time Fourier transform for the wavelet filter:

H1(f) =
∑

k

h1[k]e−j2kπf (10.48)

Note that H1(f ± 1) = H1(f) is periodic with period 1. Again, same as in
Eq.10.26, the wavelet filter can also be recursively expanded to become:

Ψ(f) =
1√
2
H1(

f

2
)
∞∏

j=2

1√
2
H0(

f

2j
) (10.49)

Also recall that in order to satisfy the admissibility condition (Eq.9.21), the
integral of the wavelet ψ(t) needs to be zero (Eq.9.10), i.e., its DC component
should be zero:

Ψ(0) =
∫ ∞

−∞
ψ(t)e−j2π0tdt =

∫ ∞

−∞
ψ(t)dt = 0 (10.50)

For the wavelet functions to be orthonormal and also orthogonal to the scaling
functions as required, they obviously need to satisfy certain conditions in terms of
the coefficients h1[k] or equivalently the wavelet filter H1(f). Now we consider the
how to construct the wavelet functions that satisfy the required orthogonalities.
To do so, we first prove the theorem below, and then construct a wavelet function
accordingly.
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Theorem 10.1. The wavelet functions ψ(t) defined in Eq.10.43 are orthogonal
to the scaling functions φ(t− k), i.e., Eqs.10.40 and 10.41 hold, if and only if
the wavelet filter H1(f) is related to the scaling filter H0(f) by the following:

H0(f)H1(f) + H0(f −
1
2
)H1(f −

1
2
) = 0 (10.51)

Note that as Hi(f ± 1) = Hi(f) is periodic, Hi(f − 1
2 ) = Hi(f + 1

2 ) for i =
0, 1.

Proof:
Substituting Eqs.10.24 and 10.47 into Eq.10.41, we get:

∑

k

H0(
f − k

2
)φ(

f − k

2
)H1(

f − k

2
)φ(

f − k

2
)

=
∑

k

H0(
f − k

2
)H1(

f − k

2
)
∣∣∣∣φ(

f − k

2
)
∣∣∣∣
2

= 0 (10.52)

Separating the even and odd terms in the summation we rewrite the above as:

∑

k

H0(
f − 2k

2
)H1(

f − 2k

2
)
∣∣∣∣φ(

f − 2k

2
)
∣∣∣∣
2

+
∑

k

H0(
f − (2k + 1)

2
)H1(

f − (2k + 1)
2

)
∣∣∣∣φ(

f − (2k + 1)
2

)
∣∣∣∣
2

= 0(10.53)

We replace f/2 by f ′ and recall that H0(f) and H1(f) have period 1 to get

H0(f ′)H1(f ′)
∑

k

|Φ(f ′ − k)|2

+ H0(f ′ −
1
2
)H1(f ′ −

1
2
)
∑

k

∣∣∣∣Φ(f ′ − k − 1
2
)
∣∣∣∣
2

= 0 (10.54)

The proof is complete by realizing that both summations are equal to 1
(Eq.10.15).

Next we show that the condition in Eq.10.51 is satisfied by the wavelet filter
H1(f) constructed below:

H1(f) = −e−j2πf H0(f −
1
2
) (10.55)

Substituting this H1(f) into the left-hand side of Eq.10.51 we can easily verify
that this equation indeed holds:

−H0(f)ej2πfH0(f −
1
2
)−H0(f −

1
2
)ej2π(f+1/2)H0(f − 1)

= −H0(f)ej2πfH0(f −
1
2
) + H0(f −

1
2
)ej2πfH0(f) = 0 (10.56)
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The time domain filter coefficients h1[n] can be obtained as the inverse Fourier
transform of H1(f):

h1[k] = F−1[−e−j2πf H0(f −
1
2
)] = (−1)k h0[1− k] (10.57)

Substituting these coefficients into Eq.10.43, we can construct the wavelet func-
tions that are indeed orthogonal to the scaling functions φ(t− k):

ψ(t) =
√

2
∑

k

h1[k]φ(2t− k) =
√

2
∑

k

(−1)k h0[1− k]φ(2t− k) (10.58)

Replacing t by 2jt− k, we obtain the wavelet functions ψj,k(t) = ψ(2jt− k) that
span Wj .

Theorem 10.2. The wavelet function ψ(t) ∈ V0 defined in Eq.10.58 are orthog-
onal to its integer translations ψ(t− l) for all l ∈ Z:

< ψ(t− l),ψ(t) >=
∫ ∞

−∞
φ(t − l)φ(t)dt = δ[l] (10.59)

Proof:
Substituting 10.58 into Eq.10.59, we have

< ψ(t− l),ψ(t) >=
∫ ∞

−∞
ψ(t− l)ψ(t)dt

= 2
∑

k′

∑

k

(−1)k+k′h0[1− k]h0[1− k′]
∫ ∞

−∞
φ(2(t− l)− k′)φ(2t− k)dt

= 2
∑

k

∑

m

(−1)m+kh0[1− k]h0[1−m + 2l]
∫ ∞

−∞
φ(2t−m)φ(2t− k)dt

=
∑

k

∑

m

(−1)m+kh0[1− k]h0[1−m + 2l]δ[m− k]

=
∑

k

h0[1− k]h0[1− k + 2l] = δ[l] (10.60)

Here we have assumed m = 2l + k′ and used the fact that φ1,k(t) are orthonormal
(Eq.10.17). The last equal sign is due to a property of the coefficients h0[k], to
be proven below (Eq.10.66)

Example 10.2: The scaling function φ(t) considered in the previous exam-
ple is a square impulse with unit height and width, and the coefficients are
h0[0] = h0[1] = 1/

√
2. Now the coefficients for the wavelet functions ψ1,k(t) can

be obtained as

h1[0] = (−1)0h0[1− 0] = h0[0] = 1/
√

2
h1[1] = (−1)1h0[1− 1] = −h0[0] = −1/

√
2

(10.61)
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Figure 10.4 Square impulses used as wavelet functions

and the wavelet function is:

ψ(t) =
∑

l

h1[l]
√

2φ[2t− l] =
1√
2

√
2φ(2t)− 1√

2

√
2φ(2t− 1) =






1 0 ≤ t < 1/2
−1 1/2 ≤ t < 1

0 otherwise
(10.62)

The first two panels of Fig.10.4 show two of the wavelet functions ψ(t) =
ψ0,0(t) and ψ0,2(t) = ψ(t− 2) in space W0. Note that φ1,k(t) =

√
2φ0,k(2t) can

be generated by the linear combination of φ0,k(t) and ψ0,k(t):

φ1,k(t) =
√

2
2

[φ0,k(t) + ψ0,k(t)] (10.63)

The 3rd panel shows a wavelet function ψ1,0(t) =
√

2ψ(2t) in space W1. The 4th
panel shows a function in space V0, while the 5th panel shows a function in space
W0. Finally the 6th panel shows a function in space V1 = V0 ⊕W0, which can be
written as a linear combination of φ1,k(t), or, equivalently, of φ0,k(t) and ψ0,k(t).

This example together with the one in previous section illustrate that the Haar
transform as discussed in Chapter 6 is actually a wavelet transform. For example,
when N = 2, as shown in Fig.7.8 and Eq.7.74, the first row contains the scaling
coefficients h0[k], the second row contains the wavelet coefficients h1[k].

10.1.3 Properties of the scaling and wavelet filters

We now consider a set of important properties for both the scaling filter h0[k] or
H0(f) and the wavelet filter h1[k] or H1(f), which will be of great importance
for the wavelet filter design to be discussed in future.

1. Normalization:
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∑

k

h0[2k] =
∑

k∈Z
h0[2k + 1] = 1 (10.64)

We integrate both sides of Eq.10.20 with respect to t to get
∫ ∞

−∞
φ(t)dt =

√
2
∑

k

h0[k]
∫ ∞

−∞
φ(2t− k)dt =

∑

k

h0[k]
1√
2

∫ ∞

−∞
φ(t′)dt′

(10.65)
where we have assumed t′ = 2t− k, i.e.,t = (t′ − k)/2. Dividing both sides by∫∞
−∞ φ(t)dt = 0, we get the second equation.

2. Shift-Orthonormality:
The scaling and wavelet filters are orthogonal to themselves translated by any
even number of positions:

∑

k

h0[k]h0[k − 2n] = δ[n]

∑

k

h1[k]h1[k − 2n] = δ[n] (10.66)

In particular, when n = 0, we have
∑

k

|h0[k]|2 = 1,
∑

k

|h1[k]|2 = 1 (10.67)

Proof: Substituting Eq.10.23 into Eq.10.17 (and replacing k by l), we get

δ[l] = < φj,l(t),φj,0(t) >=
∫ ∞

−∞
φj,l(t)φj,0(t)dt

=
∑

k

∑

k′

h0[k − 2l]h0[k′]
∫ ∞

−∞
φj+1,k(t)φj+1,k′(t)dt

=
∑

k

∑

k′

h0[k − 2l]h0[k]δ[k − k′] =
∑

k

h0[k − 2l]h0[k] (10.68)

The proof for
∑

k |h1[k]|2 = 1 is identical.
3. Normalization in frequency domain:

H1(0) = 0, H0(0) =
√

2 (10.69)

These can easily obtained by letting f = 0 in Eqs.10.24 and 10.47, and noting
φ(0) = 1 (Eq.10.27) and Ψ(0) = 0 (Eq.10.50). Equivalently, we have

∑

k

h1[k] = 0,
∑

k

h0[k] =
√

2 (10.70)

which can be also be easily shown by letting f = 0 in Eqs.10.25 and 10.48 and
applying the results H0(0) =

√
2 and H1(0) = 0 above.
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4. Shift-Orthogonalities in frequency domain:

|H0(f)|2 + |H0(f +
1
2
)|2 = 2

|H1(f)|2 + |H1(f +
1
2
)|2 = 2

H0(f)H1(f) + H0(f +
1
2
)H1(f +

1
2
) = 0 (10.71)

Proof:
Substituting Eq.10.24 into Eq.10.15, we get

∑

k

∣∣∣∣H0(
f − k

2
)
∣∣∣∣
2 ∣∣∣∣φ(

f − k

2
)
∣∣∣∣
2

= 2 (10.72)

We separate the even and odd terms in the summation on the left-hand side
to get:

∑

k

∣∣∣∣H0(
f − 2k

2
)
∣∣∣∣
2 ∣∣∣∣φ(

f − 2k

2
)
∣∣∣∣
2

+
∑

k

∣∣∣∣H0(
f − (2k + 1)

2
)
∣∣∣∣
2 ∣∣∣∣φ(

f − (2k + 1)
2

)
∣∣∣∣
2

= 2

(10.73)
But as H0(f ± 1) = H0(f) is periodic, the above can be written as

∣∣∣∣H0(
f

2
)
∣∣∣∣
2∑

k

∣∣∣∣φ(
f

2
− k)

∣∣∣∣
2

+
∣∣∣∣H0(

f + 1
2

)
∣∣∣∣
2∑

k

∣∣∣∣φ(
f + 1

2
− k)

∣∣∣∣
2

=
∣∣∣∣H0(

f

2
)
∣∣∣∣
2

+
∣∣∣∣H0(

f

2
+

1
2
)
∣∣∣∣
2

= 1 (10.74)

The last equal sign is due to Eq.10.15. Replacing f/2 by f , we complete
the proof. The relation for H1(f) can be proven in the same way. The third
equation relating H0(f) and H1(f) is Eq.10.51 already proven above.

Example 10.3: Here we verify that all properties above are satisfied by the scaling
and wavelet filters of Haar transform as illustrated in the previous two examples.
Recall that the scaling and wavelet coefficients are h0[0] = h0[1] = 1/

√
2 and

h1[0] = 1/sqrt2, h1[1] = −1/
√

2, with all other h0[k] = h1[k] = 0 for k $= 0, 1. We
can see immediately that

∑
k h0[k] = h0[0] + h0[1] = 2/

√
2 =

√
2 and

∑
k h1[k] =

h1[0] + h1[1] = 0. Also, he orthogonality in time domain is obvious. Next we find
the DTFT spectra of h0[k] and h1[k]:

H0(f) =
∑

k

h0[k]e−j2kπf =
1√
2
(1 + e−j2πf )

H1(f) =
∑

k

h1[k]e−j2kπf =
1√
2
(1− e−j2πf )

We obviously have

H0(0) = 1/
√

2, H1(0) = 0
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and

|H0(f)|2 + |H0(f +
1
2
)|2 = [1 + cos(2πf)] + [1− cos(2πf)] = 2

|H1(f)|2 + |H1(f +
1
2
)|2 = [1− cos(2πf)] + [1 + cos(2πf)] = 2

H0(f)H1(f) + H0(f +
1
2
)H1(f +

1
2
) = 0

Moreover, we can find Φ(f) and Ψ(f) of φ(t) and ψ(t) respectively (Eqs.10.28
and 10.62):

Φ(f) =
∫ ∞

−∞
φ(t)e−j2πftdt =

∫ 1

0
e−j2πftdt =

1
−j2πf

(1 − e−j2πf )

Ψ(f) =
∫ ∞

−∞
ψ(t)e−j2πftdt =

∫ 1/2

0
e−j2πftdt +

∫ 1

1/2
e−j2πftdt

=
1

−j2πf
(1 − 2e−jπf + e−j2πf ) =

1
−j2πf

(1− e−jπf )2

and further verify that Eqs.10.24 and 10.47 hold:

1√
2
H0(

f

2
)Φ(

f

2
) =

1√
2

1√
2
(1 + e−jπf )

1
−jπf

(1 − e−jπf ) =
1

−j2πf
(1− e−j2πf ) = Φ(f)

and
1√
2
H1(

f

2
)Φ(

f

2
) =

1√
2

1√
2
(1− e−jπf )

1
−jπf

(1 − e−jπf ) =
1

−j2πf
(1− e−jπf )2 = Ψ(f)

10.1.4 Construction of scaling and wavelet functions

To carry out the wavelet transform of a given signal, the scaling function φ(t)
and the wavelet functions ψ(t) need to be specifically determined. In general this
is a design process which can be done in one of three different ways:! Specify directly φ(t) and ψ(t);! Specify their spectra Φ(f) and Ψ(f) in frequency domain;! Specify their corresponding filter coefficients h0[k] and h1[k].

Ideally our goal is to find the scaling and wavelet functions with good locality in
both time and frequency domains. In the following we will consider these three
different methods for the construction the of scaling and wavelet functions, each
illustrated by one example.! Haar wavelets

Based on the discussions above, we can now specifically construct the scaling
and wavelet functions following the steps below:
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1. Choose the scaling function φ(t) satisfying Eq.10.12:

< φ(t− k),φ(t) >= δ[k] (10.75)

or Φ(f) satisfying Eq.10.15:
∑

k

|Φ(f − k)|2 = 1 (10.76)

For Haar transform, the scaling function is:

φ(t) =
{

1 0 ≤ t < 1
0 otherwise

(10.77)

2. Find scaling coefficients h0[k] based on Eq.10.21:

h0[k] =< φ(t),
√

2φ(2t− k) > (10.78)

or H0(f) according to Eq.10.24:

H0(f) =
√

2
Φ(2f)
Φ(f)

(10.79)

For Haar transform, we have

h0[k] =
√

2
∫ ∞

−∞
φ(t)φ(2t − k)dt =

√
2
∫ 1

0
φ(2t− k)dt

=
1√
2

∫ 2

0
φ(t′ − k)dt′ =

1√
2

{
1 k = 0, 1
0 otherwise

(10.80)

3. Find wavelet coefficients h1[k] according to Eq.10.57

h1[k] = (−1)k h0[1− k] (10.81)

or H1(f) according to Eq.10.55

H1(f) = −e−j2πf H0(f −
1
2
) (10.82)

For Haar transform, we have:

h1[k] = (−1)kh0[1− k] =
1√
2






1 k = 0
−1 k = 1

0 otherwise
(10.83)

4. Find wavelet function ψ(t) according to Eq.10.58

ψ(t) =
√

2
∑

k

(−1)k h0[1− k]φ(2t− k) (10.84)

or Ψ(f) according to Eq.10.47

Ψ(f) = H1(
f

2
)Ψ(

f

2
) (10.85)
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Figure 10.5 Haar scaling and wavelet functions

For Haar transform, we have:

ψ(t) = h1[0]φ1,0(t) + h1[1]φ1,1(t) =






1 0 ≤ t < 1/2
−1 /2 ≤ t < 1

0 otherwise
(10.86)

Based on φ(0) = φ0,0(t) and ψ(0) = ψ0,0(t), all other ψj,k(t) can be obtained.
Obviously the Haar scaling and wavelet functions φ(t) and ψ(t) have perfect
temporal locality. However, similar to the ideal filter discussed before, the
drawback of the Haar wavelets is their poor frequency locality, due obviously
to their sinc-like Φ(f) and Ψ(f) caused by the sharp corners of the rectangular
time window in both φ(t) and ψ(t).! Meyer wavelets
Here we will try to construct a wavelet that has good locality in both time
and frequency domains. To do so, we need to avoid sharp discontinuities in
both domains. This time we start in frequency domain by considering the
spectrum Φ(f) of the scaling function φ(t). We will first define a function for
a smooth transition from 0 to 1 and then use it to define a smooth frequency
window. While there exist many different functions with a smooth transition
between 0 and 1, we here consider a 3rd order polynomial function with a



Multiresolution Analysis and Discrete Wavelet Transform 455

Figure 10.6 Haar scaling and wavelet functions and their spectra

smooth transition between 0 and 1 (Fig.10.7(a)):

ν(x) =






0 x < 0
3x2 − 2x3 0 ≤ x ≤ 1

1 x > 1
(10.87)

The coefficients are chosen so that ν(1/2) = 1/2 and ν(x) + µ(1 − x) = 1, a
property needed for the orthogonality requirement Eq.10.15 to be satisfied by
the corresponding spectrum Φ(f) defined below:

Φ(f) =
{√

ν(2 + 3f) f ≤ 0√
ν(2 − 3f) f ≥ 0

(10.88)

As shown in Fig.10.7(b), Φ2(f) = 1 when |f | ≤ 1/3, Φ2(f) = 0 when 2/3 ≤
|f | < 1, and φ2(f) + φ2(f ± 1) = 1 when 1/3 < |f | < 2/3 during the transi-
tion interval where the two neighboring copies of Φ(f) overlap, i.e., Eq.10.15
is indeed satisfied. Note that Φ(f) is non-zero only for |f | < 2/3
Having obtained Φ(f), we will next find the scaling filter H0(f) based on
H0(f) =

√
2Φ(2f)/Φ(f) (Eq.10.24). As shown in Fig.10.7(c), Φ(2f), a com-

pressed version of Φ(f), is zero for all f except for |f | < 1/3, therefore√
2Φ(2f)/Φ(f) is also zero for all f except when |f | < 1/3, during which

interval Φ(2f)/Φ(f) = Φ(2f) as Φ(f) = 1. Also, as the scaling filter H0(f) is
periodic H0(f ± 1) = H0(f), we can write the scaling filter as:

H0(f) =
∑

k

Φ(2(f − k)) =
∑

k

Φ(2f − 2k) (10.89)
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Given H0(f), we can find the wavelet filter H1(f) based on Eq.10.55:

H1(f) = −e−j2πfH0(f −
1
2
) = −e−j2πf

∑

k

Φ(2f − 2k − 1) (10.90)

and then the spectrum Ψ(f) of the wavelet function ψ(t) based on Eq.10.47:

Ψ(f) =
1√
2
H1(

f

2
)Φ(

f

2
) =

1√
2
e−jπfH0(

f − 1
2

)Φ(
f

2
)

=
1√
2
e−jπf

∑

k

Φ(f − 2k − 1)Φ(
f

2
) (10.91)

As is shown in Fig.10.7, Ψ(f) can be written as:

Ψ(f) =






0 |f | < 1/3
− 1√

2
e−j2πfΦ(f − 1) 1/3 < |f | < 2/3

− 1√
2
e−j2πfΦ(f/2) 2/3 < |f | < 4/3

0 |f | > 4/3

(10.92)

Finally, the scaling function φ(t) and wavelet function ψ(t) can be obtained by
inverse Fourier transform of Φ(f) and Ψ(f), respectively, as shown in Fig.10.8,
and the scaling filter coefficients can be found as:

h0[k] =
∫ 1

0
H0(f)e−j2πkf df, k ∈ Z (10.93)

We see that in the case, there may exist infinite number of coefficients h0[k].! Daubechies’ wavelets
Another way to achieve better smoothness in time domain and locality is fre-
quency domain is based on the following observation which is also illustrated
in Fig.10.9. If we convolve the highly discontinuous rectangular function x(t)
with itself, a smoother triangular function y(t) = x(t) ∗ x(t) is obtained. In
frequency domain, the spectrum of the rectangular function X(f) = F[x(t)],
a sinc function, is raised to the 2nd power by the convolution to become
Y (f) = X2(f) with higher frequency components attenuated. If we further
convolve this triangular function with itself, a smoother still bell-shaped func-
tion z(t) = y(t) ∗ y(t) = x(t) ∗ x(t) ∗ x(t) ∗ x(t) is obtained, corresponding to
X(f) in frequency domain raised to the 4th power Z(f) = X4(f), with higher
frequency components further suppressed. We see that in general, if the spec-
trum of a scaling function is raised to a higher power, it becomes better local-
ized in frequency domain and smoother in time domain, due to the attenuation
of most higher frequency components. Now consider in particular the identity
cos2(πf) + sin2(πf) = 1 raised to the 3rd power:

1 = [cos2(πf) + sin2(πf)]3

= cos6(πf) + 3 cos4(πf) sin2(πf) + 3 cos2(πf) sin4(πf) + sin6(πf)

= cos6(πf) + 3 cos4(πf) sin2(πf) + 3 sin2(πf + π/2) cos4(πf + π/2) + cos6(πf + π/2)
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Figure 10.7 Construction of Meyer scaling and wavelet functions

The last equal sign is due to these identities:

cos(θ) = sin(θ + π/2), sin(θ) = − cos(θ + π/2)

We further define

|H0(f)|2 = 2[cos6(πf) + 3 cos4(πf) sin2(πf)] (10.94)

then we have H0(0) =
√

2 and the above equation becomes:

|H0(f)|2 + |H0(f +
1
2
)|2 = 2 (10.95)

As this function H0(f) satisfies both the normalization and shift-orthogonality
properties of a scaling filter given in Eq.10.69 and 10.71, it can indeed be used
as a scaling filter, as the notation suggested. Now all we need is to find H(f)
by taking square root of H2(f). To do so, we rewrite its expression as:

|H0(f)|2 = 2 cos4(πf)[(cos(πf))2 + (
√

3 sin(πf))2]

= 2 cos4(πf) | cos2(πf) + j
√

3 sin2(πf)|2 (10.96)
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Figure 10.8 Meyer scaling and wavelet functions and their spectra

Figure 10.9 Getting smoother time function by attenuating higher frequency
components

and get:

H0(f) =
√

2 cos2(πf)[cos2(πf) + j3 sin2(πf)]

=
1

4
√

2
(ej2πf + 2 + e−jπf )(ejπf + ej−πf +

√
3ejπf −

√
3e−jπf )

=
1√
2
(
1 +

√
3

4
ej3πf +

3 +
√

3
4

ej−2πf +
3−

√
3

4
e−4jπf +

1−
√

3
4

e−j6πf )ej3πf

=

[
3∑

k=0

h0[k]e−j2kπf

]
e−j3πf =

3∑

k=0

h0[k]ej2kπf (10.97)

Note that we have dropped the exponential factor ej3πf as the value of
|H0(f)|2 is not changed. Here we have obtained a set of four scaling coef-
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ficients for Daubechies’ 4-point wavelet transform:

h0[0] =
1 +

√
3

4
√

2
=

0.683√
2

, h0[1] =
3 +

√
3

4
√

2
=

1.183√
2

,

h0[2] =
3−

√
3

4
√

2
=

0.317√
2

, h0[3] =
1−

√
3

4
√

2
=
−0.183√

2
(10.98)

The corresponding wavelet coefficients can be obtained according to Eq.10.57
h1[k] = (−1)kh0[1− k] as:

h1[1] = −h0[0] = −0.683√
2

, h1[0] = h0[1] =
1.183√

2
,

h1[−1] = −h0[2] = −0.317√
2

, h1[−2] = h0[3] =
−0.183√

2
(10.99)

Next, both the scaling function φ(t) and wavelet function ψ(f) can be obtained
based on Eqs.10.26 and 10.49. Alternatively, φ(t) and ψ(t) could also be
obtained iteratively by Eqs.10.20 and 10.43 based on an initial Haar scaling
function:

φ(t) =
{

1 0 < t < 1
0 else where

(10.100)

The approximated scaling and wavelet functions from the first six iterations
are shown in Fig.10.10.

function daubechies
T=3; % time period in second
s=64; % sampling rate: s saples/second
t0=1/s; % sampling period
N=T*s; % total number of samples
K=4; % length of coefficient vector
r3=sqrt(3);
h0=[1+r3 3+r3 3-r3 1-r3]/4; % Daubechies coefficients
h1=fliplr(h0); % time reversal of h0
h1(2:2:K)=-h1(2:2:K); % negate odd terms

phi=zeros(1,N); % scaling function
psi=zeros(1,N); % wavelet function
phi0=zeros(1,N);
for i=1:s

phi0(i)=1; % initialize scaling function
end
for j=1:log2(s);

for n=1:N
phi(n)=0; psi(n)=0;
for k=0:3

l=2*n-k*s;
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Figure 10.10 Iterative approximations of Daubechies’ scaling and wavelet functions

if (l>0 & l<=N)
phi(n)=phi(n)+h0(k+1)*phi0(l);

end
l=2*n-k*s;
if (l>0 & l<=N)

psi(n)=psi(n)+h1(k+1)*phi0(l);
end

end
end
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phi0=phi; % update scaling function
end
subplot(2,1,1)
plot(0:t0:T-t0,phi)
title(’Scaling function’);
subplot(2,1,2)
plot(-1:t0:T-1-t0,psi);
title(’Wavelet function’)

10.2 Wavelet Series Expansion

As discussed at the beginning of the book in Eq.1.5, a given signal x(t) ∈ L2(R)
can be approximated as a sequence of square impulse functions of unit height
weighted by its discrete samples xk. For simplicity we assume the sampling inter-
val between two signal samples is ( = 1, and call the square impulse as the
scaling function φ(t) ∈ V0, as defined in Eq.10.28, then the signal can be approx-
imated as:

x(t) ≈
∑

k

c[k]φ0,kφ(t− k) (10.101)

where c[k] is the kth sample value of the amplitude of the signal. This expression
is a linear combination of a set of standard basis functions φ0,k (k ∈ Z) that
spans space V0, i.e., it can be considered as an identity transform. Obviously
this approximation can be improved if the more detailed information contained
in W0 is added, i.e., if the signal is approximated in space V1 = V0 ⊕W0. Of
course the approximation can be further improved in space V2 = V0 ⊕W0 ⊕W1

with still more detailed information in W1 added. In general the approximation
can be progressively refined if this process is repeated to include more and more
wavelet spaces Wj , until j →∞, when x(t) is precisely represented in L2(R). In
this case, the signal can be written as a linear combination of the orthogonal
basis functions φ0,k(t) and ψj,k(t) (j, k ∈ Z) of L2(R):

x(t) =
∑

k

c0,kφ0,k(t) +
∞∑

j=0

∑

k

dj,kψj,k(t) (10.102)

where c0,k is the approximation coefficient:

c0,k =< x(t),φ0,k(t) >=
∫

x(t)φ0,k(t)dt, (for all k) (10.103)

and dj,k is the detail coefficient:

dj,k =< x(t),ψj,k(t) >=
∫

x(t)ψj,k(t)dt, (for all k and j > 0) (10.104)
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The first term contained in the wavelet expansion of the function x(t) represents
the approximation of the function at scale level 0 by the linear combination of
the scaling functions φ0,k(t), and the summation with index j in the second term
in the expansion is for the details of different levels contained in the function x(t)
approximated by the linear combination of the wavelet functions of progressively
higher scales.

Example 10.4:
Here we use the Haar wavelets to approximate the following continuous func-

tion x(t) defined over the period 0 ≤ t < 1:

x(t) =
{

t2 0 ≤ t < 1
0 otherwise

(10.105)

We start at scale level j = 0. Each individual space (V0, W0, W1, · · · ) is spanned
by different number of basis functions. For example, there is only one basis
function in spaces V0 and W0, while space W1 is spanned by 2 basis functions,
and space W2 is spanned by 4.

c0(0) =
∫ 1

0
t2ϕ0,0(t)dt =

∫ 1

0
t2(t)dt =

1
3

d0(0) =
∫ 1

0
t2ψ0,0(t)dt =

∫ 0.5

0
t2(t)dt −

∫ 1

0.5
t2(t)dt = −1

4

d1(0) =
∫ 1

0
t2ψ1,0(t)dt =

∫ 0.25

0

√
2t2(t)dt−

∫ 0.5

0.25
t2
√

2(t)dt = −
√

2
32

d1(1) =
∫ 1

0
t2ψ1,1(t)dt =

∫ 0.75

0.5

√
2t2(t)dt−

∫ 1

0.75
t2
√

2(t)dt = −3
√

2
32
(10.106)

Therefore the wavelet series expansion of the function x(t) is

x(t) =
1
3
φ0,0(t) + [−1

4
ψ0,0(t)] + [−

√
2

32
ψ1,0(t)−

3
√

2
32

ψ1,1(t)] + · · · (10.107)

Here the first term is V0, the second term is W0, the third term is W1, and
V1 = V0 ⊕W0, V2 = V1 ⊕W1 = V0 ⊕W0 ⊕W1

This process can be carried out further by including progressively more
detailed information in wavelet spaces W2, W3, until j →∞. When higher tem-
poral resolution (doubled) is obtained in the next wavelet space Wj , the cor-
responding frequency resolution is always reduced (halved), as shown in the
Heisenberg box.
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Figure 10.11 Wavelet approximation of a function

10.3 Discrete Wavelet Transform (DWT)

10.3.1 Iteration algorithm

To carry out the discrete wavelet transform, both the signal x(t) and the basis
functions φ0,k(t) and ψj,k(t) will need to be discretized. The signal becomes
a vector x = [x[0], · · · , x[N − 1]]T containing a set of N samples taken from a
continuous signal

x[m] = x(m(), (m = 0, 1, · · · , N − 1) (10.108)

for some sampling period (. Similarly the basis functions φ0,k(t) and ψj,k(t) are
also discretized to become basis vectors φ0,k = [· · · ,φ0,k[m], · · · ]T and ψj,k =
[· · · ,ψj,k[m], · · · ]T for all k and all scale levels j = 0, 1, · · · , J − 1. Now the
wavelet expansion becomes discrete wavelet transform (DWT) by which the dis-
cretized signal x[m] is represented as a weighted sum in the space spanned by
the discretized bases φ0,k and ψj,k:

x[m] =
∑

k

Xφ[0, k]φ0,k[m] +
J−1∑

j=0

∑

k

Xψ[j, k]ψj,k[m], (m = 0, · · · , N − 1)

(10.109)
This is the inverse wavelet transform where the coefficients or weights are the
projections of the signal vector on the orthogonal basis vectors:

Xφ[0, k] =< x,φ0,k >=
N−1∑

m=0

x[m]φ0,k[m], (for all k) (10.110)

Xψ[j, k] =< x,ψj,k >=
N−1∑

m=0

x[m]ψj,k[m], (for all k and all j > 0) (10.111)
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where Xφ[0, k] and Xψ[j, k] are the approximation coefficient and detail coeffi-
cient, respectively. These are the forward wavelet transform. Same as all other
orthogonal transforms discussed before, the general application of the discrete
wavelet transform is to represent the signal in terms of the DWT coefficients for
different scales and translations (similar to the Fourier transform coefficients for
different frequencies) in the transform domain, in which various filtering, feature
extraction and compression can be carried out. The inverse DWT transform can
then be carried out to reconstruct the signal back in time domain.

Example 10.5:
Assume N = 4-point discrete signal x = [x[0], · · · , x[N − 1]]T = [1, 4,−3, 0]T

and the discrete Haar scaling and wavelet functions are:




1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2





φ0,0[m]
ψ0,0[m]
ψ1,0[m]
ψ1,1[m]

(10.112)

The coefficient for V0:

Xφ[0, 0] =
1
2

3∑

m=0

x[m]φ0,0[m] =
1
2
[1 · 1 + 4 · 1− 3 · 1 + 0 · 1] = 1 (10.113)

The coefficient for W0:

Xψ[0, 0] =
1
2

3∑

m=0

x[m]ψ0,0[m] =
1
2
[1 · 1 + 4 · 1− 3 · (−1) + 0 · (−1)] = 4

(10.114)
The two coefficients for W1:

Xψ[1, 0] =
1
2

3∑

m=0

x[m]ψ1,0[m] =
1
2
[1 ·
√

2 + 4 · (−
√

2)− 3 · 0 + 0 · 0] = −1.5
√

2

(10.115)

Xψ[1, 1] =
1
2

3∑

m=0

x[m]ψ1,0[m] =
1
2
[1 · 0 + 4 · 0− 3 ·

√
2 + 0 · (−

√
2)] = −1.5

√
2

(10.116)
In matrix form, we have





1
4

−1.5
√

2
−1.5

√
2



 =
1
2





1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2









1
4
−3
0



 (10.117)



Multiresolution Analysis and Discrete Wavelet Transform 465

Now the function x[m] (m = 0, · · · , 3) can be expressed as a linear combination
of these basis functions:

x[m] =
1
2
[Xφ[0, 0]φ0,0[m] + Cψ [0, 0]ψ0,0[m] + Xφ[1, 0]ψ1,0[m] + Xφ[1, 1]ψ1,1[m] ]

(10.118)
or in matrix form:





1
4

−3
0



 =
1
2





1 1
√

2 0
1 1 −

√
2 0

1 −1 0
√

2
1 −1 0 −

√
2









1
4

−1.5
√

2
−1.5

√
2



 (10.119)

10.3.2 Fast Discrete Wavelet Transform (FDWT)

Here we consider Mallat’s fast algorithm for the discrete wavelet transform.
As shown before, the discrete wavelet transform of a discrete signal x =
[x[0], · · · , x[N − 1]]T is the process of getting the coefficients:

Xφ[0, k] =
N−1∑

m=0

x[m]φ0,k[m] (for all k) (10.120)

Xψ[j, k] =
N−1∑

m=0

x[m]ψj,k[m] (for all k and all j > 0) (10.121)

However, as both φj,l[m] and ψj,l[m] can be expressed as a linear combination
of φj+1,k[m] (Eqs.10.23 and 10.46), the two equations above can be written as:

Xφ[j, k] =
N−1∑

m=0

x[m]φj,k[m] =
N−1∑

m=0

x[m]
∑

l

h0[l − 2k]φj+1,l(t)

=
∑

l

h0[l − 2k]
N−1∑

m=0

x[m]φj+1,l(t) =
∑

l

h0[l − 2k]Xφ[j + 1, l] (10.122)

and

Xψ[j, k] =
N−1∑

m=0

x[m]ψj,k[m] =
N−1∑

m=0

x[m]
∑

l

h1[l − 2k]φj+1,l(t)

=
∑

l

h1[l − 2k]
N−1∑

m=0

x[m]φj+1,l(t) =
∑

l

h1[l− 2k]Xφ[j + 1, l] (10.123)

Comparing these equations with a discrete convolution:

y[k] = h[k] ∗ x[k] =
∑

n

h[k − n]x[n] (10.124)

we see that the wavelet transform coefficients Xφ[j, k] and Xψ[j, k] at the jth
scale can be obtained from the coefficients Xφ[j + 1, k] at the (j+1)th scale by:
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Figure 10.12 Filter banks for both forward and inverse DWT

! Convolution with time-reversed h0 or h1;! Sub-sampling to get every other samples in the convolution.

We can therefore write

Xψ[j, k] = h1[−n] ∗Xφ[j + 1, n]
∣∣
n=2k

Xφ[j, k] = h0[−n] ∗Xφ[j + 1, n]
∣∣
n=2k

(10.125)

Based on these two equations, all wavelet and scaling coefficients Xψ[j, k] and
Xφ[j, k] for all scale levels of a given signal x can be obtained recursively from
the coefficients Xφ[J, k] at the highest resolution level (with maximum details),
which are the data samples x[m] directly from the signal x(t). As a member of
the vector space VJ at the highest scale level, the discrete signal can be written
as a linear combination of the scaling basis functions φJ,k[m]:

x[m] =
∑

k

Xφ[J, k]φJ,k[m], (m = 0, · · · , N − 1) (10.126)

If we let the kth basis function be a unit impulse at the kth sampling time,
i.e., φJ,k[m] = δ[k −m] (same as the ith component of a unit vector ej in N-
dimensional vector space is eij = δ[i− j]), then the kth coefficient Xφ[J, k] is
the same as the kth sample of the function x(t). In other words, given Xφ[J, k] =
x(k), the scaling and wavelet coefficients of the lower scales j < J can be obtained
by the subsequent filter bank, as shown on the left-hand side of Fig.10.12. The
right-hand side is for the signal reconstruction, to be discussed in the following
section.

The computation cost of the fast wavelet transform (FWT) is the convolutions
carried out in each of the filters. The number of data samples in the convolution
is halved after each sub-sampling, therefore the total complexity is:

O(N +
N

2
+

N

4
+

N

8
+ · · · + 1) = O(N) (10.127)

i.e., the FWT has linear computational complexity.
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Figure 10.13 Two-channel filter bank

10.4 Filter Bank Implementation of DWT

As shown before, the forward wavelet transform that converts a given signal
vector x into a set of transform coefficients Xφ[j, k] and Xψ[j, k] in the transform
domain can be implemented by the analysis filter bank. Here we will further show
that the inverse wavelet transform for the reconstruction of the signal from the
DWT coefficients can be similarly implemented by a synthesis filter bank, as
illustrated on the right-hand side of Fig.10.12. In the following we will derive the
theory for the design of the the filters G0 and G1 in the synthesis filter bank.

10.4.1 Two-Channel Filter Bank

The DWT filter bank shown in Fig.10.12 can be considered as a recursive struc-
ture based on a two-channel filter bank, shown in Fig.10.13. This two-channel
filter bank is composed of a low-pass filter h0[n] with output a[n] (for approxi-
mation) and a high-pass filter h1[n] with outputs d[n] (for detail) for the analysis
filter bank, and two additional filters g0[n] and g1[n] for the synthesis filter bank.
Our goal is to design the two filters g0[n] and g1[n] so that their output x′ is
the same as the input x. Once this perfect reconstruction is achieved by the
two-channel filter bank at the lowest level, it can also be achieved recursively at
all higher levels in the entire filter bank in Fig.10.12.

According to Eqs.10.122 and 10.123, we have:

a[k] =
∑

n

h0[n− 2k]x[n] =< x, h0(k) >

d[k] =
∑

n

h1[n− 2k]x[n] =< x, h1(k) > (10.128)

and the output x′[n] of the two-channel filter bank is:

x′[n] =
∑

k

a[k]g0[n− 2k] +
∑

k

d[k]g1[n− 2k], (for all n) (10.129)

or in vector form:

x′ =
∑

k

a[k]g0(k) +
∑

k

d[k]g1(k) (10.130)
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Our goal here is to design the two filters g0[n] and g1[n] on the right-hand side
for the inverse DWT so that the output x′[n] = x[n], i.e., the original signal can
be perfectly reconstructed after DWT and inverse DWT. For convenience, we
will carry out the derivation in the following in frequency domain based on the
discrete-time Fourier transforms (DTFT) of signals and the impulse responses
of the filters. Note that the DTFT spectra are all periodic with period 1, e.g.,
H0(f + 1) = H0(f) (or equivalently H0(ω + 2π) = H0(ω)).

Based on the down-sampling property of the discrete-time Fourier transform
(Eq.4.39), the outputs of filters H0(f) and H1(f) can be expressed in frequency
domain as:

A(f) =
1
2
[H0(

f

2
)X(

f

2
) + H0(

f + 1
2

)X(
f + 1

2
)] (10.131)

D(f) =
1
2
[H1(

f

2
)X(

f

2
) + H1(

f + 1
2

)X(
f + 1

2
)] (10.132)

Then, based on the up-sampling property of the DTFT (Eq.4.36), the overall
output x′[n] can be expressed as:

X ′(f) = G0(f)A(2f) + G1(f)D(2f)

=
1
2
[G0(f)H0(f) + G1(f)H1(f)] X(f)

+
1
2
[G0(f)H0(f +

1
2
) + G1(f)H1(f +

1
2
)] X(f +

1
2
) (10.133)

For perfect reconstruction, the output must be identical to the original signal,
i.e., X(z) = X ′(z), we need to have

{
G0(f)H0(f + 1

2 ) + G1(f)H1(f + 1
2 ) = 0

G0(f)H0(f) + G1(f)H1(f) = 2
(10.134)

These two equations can be written in matrix form as:
[

H0(f + 1
2 ) H1(f + 1

2 )
H0(f) H1(f)

] [
G0(f)
G1(f)

]
= H(f)

[
G0(f)
G1(f)

]
=
[

0
2

]
(10.135)

where H is defined as:

H(f) =
[

H0(f + 1
2 ) H1(f + 1

2 )
H0(f) H1(f)

]
and H−1(f) =

1
∆(f)

[
H1(f) −H1(f + 1

2 )
−H0(f) H0(f + 1

2 )

]

(10.136)
where ∆(f) is the determinant of H(f):

∆(f) = H0(f +
1
2
)H1(f)−H0(f)H1(f −

1
2
) (10.137)

Solving the equation above for G0(f) and G1(f), we get:
[

G0(f)
G1(f)

]
= H−1(f)

[
0
2

]
=

1
∆(f)

[
H1(f) −H1(f + 1

2 )
−H0(f) H0(f + 1

2 )

] [
0
2

]

=
2

∆(f)

[
−H1(f + 1

2 )
H0(f + 1

2 )

]
(10.138)
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Now G0(f) and G1(f) can be expressed as:

G0(f) =
−2
∆(f)

H1(f +
1
2
), G1(f) =

2
∆(f)

H0(f +
1
2
) (10.139)

Also, if we replace f by f + 1
2 in H, and notice that H0(f + 1) = H0(f) and

H1(f + 1) = H1(f) have period 1, we get:

H(f +
1
2
) =
[

H0(f) H1(f)
H0(f + 1

2 ) H1(f + 1
2 )

]
(10.140)

and ∆(f + 1
2 ) = −∆(f). Now we can replace f by f + 1

2 in the above expression
for G1(f) to get:

G1(f +
1
2
) =

−2
∆(f)

H0(f) (10.141)

Multiplying the two sides of this equation by −2
∆ H1(f + 1

2 ) = G0(f), which is
just the first equation in Eq.10.139, we get:

G1(f +
1
2
)H1(f +

1
2
) = G0(f)H0(f), i.e. G1(f)H1(f) = G0(f +

1
2
)H0(f +

1
2
)

(10.142)
This equation can be substituted back into the two equations in Eq.10.134 in
different ways to get the following four conditions for perfect reconstruction:

G0(f)H0(f) + G0(f +
1
2
)H0(f +

1
2
) = 2

G1(f)H1(f) + G1(f +
1
2
)H1(f +

1
2
) = 2

G1(f)H0(f) + G1(f +
1
2
)H0(f +

1
2
) = 0

G0(f)H1(f) + G0(f +
1
2
)H1(f +

1
2
) = 0 (10.143)

Comparing these equations with the three equations in Eq.10.71 for the prop-
erties of H0(f) and H1(f), we see that these conditions will be satisfied if the
following hold:

G0(f) = H0(f), and G1(f) = H1(f) (10.144)

These two relations can be considered as the new conditions for perfect recon-
struction, and they will be satisfied if the following is true in time domain for
i = 0, 1:! gi[n] = hi[−n] is the time reversal of hi[n], so that Gi(f) = Hi(−f) according

to the time reversal property of DTFT (Eq.4.23);! All filter coefficients hi[n] = hi[n] are real, so that Hi(−f) = Hi(f) according
to the time reversal property of DTFT (Eq.4.24.

Now we see that given h0[n] and h1[n] in the analysis filter bank, g0[n] and g1[n]
in the synthesis filter bank can be easily obtained as shown above for a perfect
signal reconstruction.
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Moreover, based on the DTFT properties of down and up-sampling (Eqs.4.39
and 4.36), the four biorthogonal relations in Eq.10.143 are the down and up-
sampled versions of G0(f)H0(f), G1(f)H1(f), G1(f)H0(f), G0(f)H1(f), corre-
sponding to the following four down-sampled convolutions in time domain:

g0[2n] ∗ h0[2n] =
∑

k

h0[k]g0[2n− k] = δ[n]

g1[2n] ∗ h1[2n] =
∑

k

h1[k]g1[2n− k] = δ[n]

g1[2n] ∗ h0[2n] =
∑

k

h1[k]g0[2n− k] = 0

g0[2n] ∗ h1[2n] =
∑

k

h0[k]g1[2n− k] = 0 (10.145)

Comparing the first two convolutions above with the orthonormality property of
the scaling filter h0 and wavelet filter h1 in Eq.10.66, we also see that here g0[n] =
h0[−n] and g1[n] = h1[−n] are the time reversal of h0[n] and h1[n], respectively. If
express the four filters h0, h1, g0 and g1, all shifted by 2n positions, as four vectors
hi(n) = [· · · , hi[k − 2n], · · · ]T and gi(n) = [· · · , h1[k − 2n], · · · ]T for i = 0, 1, the
four convolutions in Eq.10.145 can now be written as vector inner products:

< g0(0), h0(n) >= δ[n]
< g1(0), h1(n) >= δ[n]

< g1(0), h0(n) >= 0

< g0(0), h1(n) >= 0 (10.146)

These four equations can be further summarized as:

< gi(n), hj(0) >= δ[i− j]δ[n], (i, j = 0, 1) (10.147)

This is the biorthogonal relationship between the analysis and synthesis filters,
as discussed in Chapter 2 (Theorem 2.11).

We can now verify that Eq.10.130 is indeed a perfect reconstruction of the
original signal x, if Eq.10.146 is satisfied. We first assume the given signal x can
indeed be expanded in the following form:

x =
∑

k

akg0(k) +
∑

k

dkg1(k) (10.148)

where ak and dk are two sets of coefficients which can be found by taking the
inner product with h0(l) and h1(l), respectively, on both sides of this equation:

< x, h0(l) > =
∑

k

ak < g0(k), h0(l) > +
∑

k

dk < g1(k), h0(l) >

=
∑

k

a[k]δ[k − l] = al (10.149)
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and

< x, h1(l) > =
∑

k

ak < g0(k), h1(l) > +
∑

k

dk < g1(k), h1(l) >

=
∑

k

d[k]δ[k − l] = dl (10.150)

We see that the two coefficients al and dl needed for the expansion of x are
exactly the same as a[k] and d[k] in Eq.10.128, used in Eq.10.130 to generate the
output x′, i.e., it is indeed the perfect reconstruction of the input signal x.

In summary, we can view the two-channel filter bank in Fig.10.13 as a pro-
cess of signal transform based on two pairs of biorthogonal bases {h0, g0} and
{h1, g1}, where g0 and g1 are dual to h0 and h1, respectively. This transform is
essentially the same as what we discussed in Theorem 2.11, where a signal x is
reconstructed according to Eq.2.253 as

x′ =
∑

k

< x, hk > φ̃k (10.151)

We see that this reconstruction is different from the two-channel filter bank
discussed above in that only a pair of dual biorthogonal bases is used, while in
the case of the 2-channel filter bank, two pairs are used.

Recall that we discussed a two-point filter bank implementation of Haar trans-
form (section 7.10 of Chapter 7), which is actually a simple example of the general
discrete wavelet transform.

We list below the Matlab code for the implementation of the two-channel
filter bank. Based on this code, the forward discrete wavelet transform for signal
decomposition and the inverse DWT for signal reconstruction can be recursively
constructed.

function y=reconstruction(x,h)
N=length(x); % length of signal vector
K=length(h); % length of filter (K<N)
h=h/norm(h); % normalize h
h0=zeros(1,N); h0(1:K)=h; % analysis filter H0
H0=fft(h0);
for k=0:N-1

m=mod(k-N/2,N)+1;
H1(k+1)=-exp(-j*2*pi*k/N)*conj(H0(m)); % analysis filter H1

end
G0=conj(H0); G1=conj(H1); % synthesis filters G0 and G1:
% Decomposition by analysis filters:
A=fft(x); % input signal as initial approximation
d=ifft(A.*H1); % filtering of detail d
a=ifft(A.*H0); % filtering of approximation a
d=d(1:2:length(d)); % downsampling d
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a=a(1:2:length(a)); % downsampling a
% Reconstruction by synthesis filters:
a=upsample(a,2); % upsampling for A
d=upsample(d,2); % upsampling for D
a=ifft(fft(a).*G0); % filtering of a
d=ifft(fft(d).*G1); % filtering of d
y=a+d; % perfect reconstruction of x

As can be seen, here the filtering is carried out in frequency domain by multi-
plication. Alternatively, the filtering can also be carried out in time domain as a
circular convolution, as discussed in 4.2.5.

The code for both forward and inverse DWT transforms is listed below. The
input of the forward DWT function includes a vector x for the signal to be
transformed and another vector h for the father wavelet coefficients h0[k], and
the output is a vector w for the DWT coefficients.

function w=dwt(x,h)
K=length(h);
N=length(x); n=log2(N);
if n~=int16(n)

error(’Length of data x should be power of 2’);
end
if K>N

error(’K should be less than N’); % assume N > K
end
h=h/norm(h); % normalize h
h0=zeros(1,N);
h0(1:K)=h;
H0=fft(h0);
for k=0:N-1

m=mod(k-N/2,N)+1;
H1(k+1)=-exp(-j*2*pi*k/N)*conj(H0(m));

end
a=x;
n=length(a);
w=[];
while n>=K

A=fft(a);
d=real(ifft(A.*H1)); % convolution d=a*h1
a=real(ifft(A.*H0)); % convolution a=a*h0
d=d(2:2:n); % downsampling d
a=a(2:2:n); % downsampling a
H0=H0(1:2:length(H0)); % subsampling H0
H1=H1(1:2:length(H1)); % subsampling H1
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w=[d,w]; % concatenate wavelet coefficients
n=n/2;

end
w=[a w]; % append signal residual

The input of the inverse DWT function include a vector w for the DWT
coefficients and a vector h for the father wavelet coefficients h0[k], and the output
is a vector y for the reconstructed signal x.

function y=idwt(w,h)
N=length(w); n=log2(N); K=length(h);
if n~=int16(n)

error(’Length of data w should be power of 2’);
end
h0=zeros(1,N); h0(1:K)=h; H0=fft(h0);
for k=0:N-1

m=mod(k-N/2,N)+1;
H1(k+1)=-exp(-j*2*pi*k/N)*conj(H0(m));

end
G0=conj(H0); G1=conj(H1); % synthesis filters
i=0;
while 2^i<K

i=i+1; % starting scale based on filter length
end
n=2^(i-1);
a=w(1:n);
while n<N

d=w(n+1:2*n); % get detail
a=upsample(a,2,1); % upsampling a
d=upsample(d,2,1); % upsampling d
if n==1 a=a’; d=d’; end % upsampling 1x1 is column vector
n=2*n; % signal size is doubled
A=fft(a).*G0(1:N/n:N); % convolve a with subsampled G0
D=fft(d).*G1(1:N/n:N); % convolve d with subsampled G1
a=real(ifft(A));
d=real(ifft(D));
a=a+d;

end
y=a;
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10.4.2 Perfect Reconstruction Filters

As there are four function variables H0, H1, G0 and G1 in the two equations
in Eq.10.134, there exist multiple designs for the filter banks. Here are three
particular ones:! Quadrature mirror filters (QMFs) We let

H1(z) = H0(−z), G0(z) = H0(z), G1(z) = −H0(−z) (10.152)

both of the two equations above can be written in terms of H0(z). The first
equation above becomes:

G0(z)H0(−z) + G1(z)H1(−z) = H0(z)H0(−z)−H0(−z)H0(z) = 0
(10.153)

and the second equation becomes:

G0(z)H0(z) + G1(z)H1(z) = H0(z)H0(z)−H0(−z)H0(−z) = 2 (10.154)

where H0(z) is so chosen that H2
0 (z)−H2

0 (−z) = 2 to satisfy the requirement
for perfect reconstruction.! Conjugate quadrature filters (CQFs)
We let

G0(z) = H0(z−1), G1(z) = zH0(−z), H1(z) = z−1H0(−z−1) (10.155)

and both of the two equations above can be written in terms of H0. The first
equation above becomes:

G0(z)H0(−z) + G1(z)H1(−z) = H0(z−1)H0(−z)− zH0(−z)z−1H0(z−1) = 0
(10.156)

and the second equation becomes:

G0(z)H0(z) + G1(z)H1(z) = H0(z−1)H0(z) + zH0(−z)z−1H0(−z−1)

= H0(z−1)H0(z) + H0(−z)H0(−z−1) = 2 (10.157)

where H0(z) is so chosen that the second expression is 2 to satisfy the require-
ment for perfect reconstruction.! Orthonormal (fast wavelet transform) filter
We let

H0(z) = G0(z−1), H1(z) = G1(z−1), G1(z) = −z−2k+1G0(−z−1)
(10.158)

and both of the two equations above can be written in terms of G0(z). The
first equation above becomes:

G0(z)H0(−z) + G1(z)H1(−z) = G0(z)G0(−z−1) + G1(z)G1(−z−1)

= G0(z)G0(−z−1)− z−2k+1G0(−z−1)z2k−1G0(z)

= G0(z)G0(−z−1)−G0(−z−1)G0(z) = 0 (10.159)
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and the second equation becomes:

G0(z)H0(z) + G1(z)H1(z) = G0(z)G0(z−1) + G1(z)G1(z−1)

= G0(z)G0(z−1) + [−z−2k+1G0(−z−1)][−z2k−1G0(−z)]

= G0(z)G0(z−1) + G0(−z−1)G0(−z) = 2 (10.160)

where G0(z) is so chosen that the second expression is 2 to satisfy the require-
ment for perfect reconstruction. Note that P (z) = G0(z)G0(z−1) is the Z-
transform of the autocorrelation p[n] =

∑
m g0[m]g0[m + n], and the second

equation becomes

P (z) + P (−z) = 2 i.e.
1
2
[P (z) + P (−z)] = 1 (10.161)

Replacing z by z1/2, we get
1
2
[P (z1/2) + P (−z1/2)] = 1 (10.162)

Consider the down sampled version of the function g′0[n] = g0[2n], and its
autocorrelation p′[n] = p[2n]. As in Z domain we have:

P ′(z) =
1
2
[P (z1/2) + P (−z1/2)] = 1 (10.163)

in time domain we have

p′[n] =
∑

m

g′[m]g′[n + m] =
∑

m

g[m]g[2n + m] = δ[n] (10.164)

i.e., the down-sampled version of g0[n] is orthonormal.

Example: There are different ways to design the FIR filter orthonormal
impulse response g0[n] for the two-channel filter bank.

The conditions for perfect construction filters listed above can be inverse Z-
transformed to get:

Hi(z) = Gi(z−1)↔ hi[n] = gi[−n], (i = 0, 1) (10.165)

G1(z) = −z−2k+1G0(−z−1)↔ g1[n] = (−1)ng0[2k − 1− n] (10.166)

i.e., hi is the time-reversed version of gi (i = 0, 1), and g1 is both time reversed
and modulated version of g0. Once g0 is determined, the rest can all be deter-
mined.

10.5 Two-Dimensional DWT

Similar to all orthogonal transforms previously discussed, the discrete wavelet
transform can also be applied to two-dimensional signals such as an image. Sim-
ilar to the 1-D DWT two-channel filter bank shown in Fig.10.13, a 2-D DWT



476 Chapter 10. Multiresolution Analysis and Discrete Wavelet Transform

Figure 10.14 2-D two-channel filter bank

Figure 10.15 Signal decomposition and reconstruction by 2-D two-channel filter bank

two-channel filter bank for both analysis and synthesis is shown in Fig.10.14,
where the left half is the analysis filter bank for signal decomposition and the
right half is the synthesis filter bank for signal reconstruction. The input of the
analysis filter bank is a 2-D signal array treated as the coefficients Xφ[j] at scale
level j, and its columns are filtered (horizontal filtering) by the low-pass filter
H0(f) and high-pass filter H1(f), and then the columns of the two resulting
arrays are further filtered (vertical filtering) by H0(f) and H1(f) to generate
four sets of coefficients at the next scale level j − 1, including Xh

φ [j − 1] low-pass
filtered by H0(f) in both directions, Xh

ψ[j − 1] high-pass filtered by H1(f) in hor-
izontal direction, Xv

ψ[j − 1] high-pass filtered in vertical direction, and Xd
ψ[j − 1]

high-pass filtered in both directions (diagonal). The synthesis filter bank reverse
the process to generate a perfectly reconstructed signal as the output.

This two-channel filtering can be carried out to the low-pass filtered signal
Xφ[j − 1] to generate four sets of coefficients at the next scale level j − 2, and
this process can be further carried out recursively to obtain the complete 2-
D DWT coefficients, as illustrated in Fig.10.16. Four sets of these coefficients
obtained at four consecutive stages of the recursion are shown in Fig.10.17. Note
that the 2-D DWT coefficients look very much like other 2-D transforms such as
discrete cosine transform and Haar transform, in the sense that the coefficients
around the top left corner represent low-frequency components of the signal while
those around the bottom right corner represent high-frequency components.
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Figure 10.16 Recursion of 2-D discrete wavelet transform

Figure 10.17 2-D DWT coefficients obtained at four consecutive stages

The Matlab code for both forward and inverse 2-D DWT transform is listed
below. The input of the forward DWT function includes a 2-D array x for the
signal, such as an image, and a vector h for the father wavelet coefficients h0[k],
and the output is a 2D array w of the same size as the input array for the DWT
coefficients.

function w=dwt2d(x,h)
K=length(h);
[M,N]=size(x);
if M~=N

error(’Input should be a square array’);
end
if K>N
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error(’Data size should be larger than size of filter’);
end
n=log2(N);
if n~=int16(n)

error(’Length of data x should be power of 2’);
end
h0=zeros(1,N);
h0(1:K)=h;
H0=fft(h0);
for k=0:N-1

m=mod(k-N/2,N)+1;
H1(k+1)=-exp(-j*2*pi*k/N)*conj(H0(m));

end
a=x;
imshow(a,[]);
w=zeros(N);
n=length(a);
while n>=K

pause;
t=zeros(n,n);
for k=1:n % for all n columns

A=fft(double(a(:,k)));
D=real(ifft(A.*H1’)); % convolution d=a*h1
A=real(ifft(A.*H0’)); % convolution a=a*h0
t(:,k)=[A(2:2:n); D(2:2:n)];

end
for k=1:n % for all n rows

A=fft(t(k,:));
D=real(ifft(A.*H1)); % convolution d=a*h1
A=real(ifft(A.*H0)); % convolution a=a*h0
t(k,:)=[A(2:2:n) D(2:2:n)];

end
w(1:n,1:n)=t; % concatenate wavelet coefficients
H0=H0(1:2:length(H0)); % subsampling H0
H1=H1(1:2:length(H1)); % subsampling H1
n=n/2;
a=t(1:n,1:n);
imshow(w,[]);

end

The inputs of the inverse DWT function include a 2-D array w for the 2D
DWT coefficients and a vector h for the father wavelet coefficients h0[k], and the
output is a 2D array y for the reconstruction of the input data array.
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function y=idwt2d(w,h)
N=length(w); n=log2(N); K=length(h);
h=h/norm(h); % normalize h
h0=zeros(1,N); h0(1:K)=h; H0=fft(h0);
for k=0:N-1

m=mod(k-N/2,N)+1;
H1(k+1)=-exp(-j*2*pi*k/N)*conj(H0(m));

end
G0=conj(H0); G1=conj(H1); % synthesis filters
i=0;
while 2^i<K

i=i+1; % starting scale based on filter length
end
n=2^(i-1); % signal size of initial scale
y=w;
t=y(1:n,1:n);
while n<N

fprintf(’\ndata length: %d\n’,n);
g0=G0(1:N/(2*n):N);
g1=G1(1:N/(2*n):N);
for k=1:n % filtering n rows

% rows in top half:
a=upsample(y(k,1:n),2,1); % approximate
d=upsample(y(k,n+1:2*n),2,1); % detail
A=fft(a).*g0; % convolve a with G0
D=fft(d).*g1; % convolve d with G1
y(k,1:2*n)=real(ifft(A)+ifft(D));
% rows in bottom half:
a=upsample(y(n+k,1:n),2,1); % approximate
d=upsample(y(n+k,n+1:2*n),2,1); % detail
A=fft(a).*g0; % convolve a with G0
D=fft(d).*g1; % convolve d with G1
y(n+k,1:2*n)=real(ifft(A)+ifft(D));

end
for k=1:2*n % filtering 2n columns

a=upsample(y(1:n,k),2,1); % top half
d=upsample(y(n+1:2*n,k),2,1); % bottom half
A=fft(a).*g0’; % convolve a with G0
D=fft(d).*g1’; % convolve d with G1
y(1:2*n,k)=real(ifft(A)+ifft(D))/2;

end
n=n*2;
imshow(y,[]); pause;

end
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10.6 Applications in Data Compression

In many fields of social and natural sciences as well as engineering, a large quan-
tity of raw data is regularly collected and accumulated, often automatically.
However, it may become more challenging to transmit and store the data, and,
more importantly, to extract the information meaningful to the specific field, due
also to the large quantity of the data. To address such issues, transform based
methods for data compression and information extraction are widely used, based
on various orthogonal transforms such as DFT, DCT and DWT.

Due to the essential nature of all orthogonal transforms, a given signal in
the transform domain is always decorrelated and its energy (information) redis-
tributed, and more concentrated in a small number of components, compared
to the original signal in either temporal or spatial domain. Consequently it is in
general much more convenient and effective to carry out information extraction
and data compression in transform domain.

Specifically, by taking the orthogonal transform on a signal originally given as
a 1-D function of time or 2-D function of space (e.g., an image), it is converted
to a set of transform coefficients, and the total energy contained in the signal is
likely to be concentrated in a small number of the coefficients so that the rest
of the coefficients containing little energy can be dropped, i.e., suppressed to be
zero, without losing much information contained in the signal. Such methods
are called lossy compression, as some information, although very little, does get
lost. Due to the tremendous reduction of the data achieved by the orthogonal
transform, combined with other coding methods (such as Huffman coding), the
subsequent storage and transmission can be carried out much more efficiently.

For example, the DCT transform is used in the image compression standard
JPEG, named after the Joint Photographic Experts Group, who developed this
standard, and the DWT transform is used in the later version of the standard
JPEG2000. Both transform methods can drastically compact most of the signal
energy in a small number of transform coefficients. However, as the wavelet
transform is capable of representing information of the signal x(t) with temporal
or spatial locality, as well as frequency locality in terms of different scale levels
for different resolutions, its performance is superior to the DCT, both in terms
of the percentage of energy conserved and the percentage of data kept, but also
in terms of subjective evaluation of the compressed images.

Example 10.6: The image Lenna is compressed using both DCT and DWT, as
shown in Fig. 10.18. The original image with pixels x[i, j] and its DCT spectrum
composed of frequency coefficients X [k, l] are shown respectively in the top and
bottom panels in left column. Then a threshold value is use to suppress to zero
all DCT coefficients in the spectrum containing energy less than the threshold
energy level. Here the energy contained in a frequency component is simply its
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value squared, and the total energy contained in the signal is conserved before
and after any orthogonal transform according to Parseval’s theorem:

E =
∑

k

∑

l

X [k, l]2 =
∑

i

∑

j

x[i, j]2 (10.167)

The threshold value is so chosen that 99% of the total amount of signal energy
are kept by 2.44% of the DCT coefficients with values above the threshold, while
all remaining coefficients containing only 1% are suppressed to zero. The filtered
spectrum and the reconstructed image are shown in the 2nd column of the figure.

The result of the same compression method based on the DWT is shown in the
right four panels in the figure. The original image and its DWT coefficients are
shown in the 3rd column. Now a threshold value is chosen so that 2.01% of the
DWT coefficients above the threshold also contain 99% of the total signal energy,
as shown in the panel on the bottom right, together with the corresponding
reconstruction of the image in the top right panel.

We can make an obvious observation: in order to preserve 99% of the total
signal energy, 2.01% of the data is needed after DWT, but 2.44% of the data is
needed after DCT. Moreover, the quality of the reconstructed image can also be
evaluated subjectively. We see that the reconstructed image based on the DWT
is more visually acceptable than that based on the DCT.

Another aspect of this image compression example is the different energy dis-
tributions before and after the transform, either DCT or DWT. Fig.10.19 shows
the histogram of the pixels in the image over all 256 gray scales (top panel), and
the histograms of the transform coefficients over the range of all values (both
positive and negative) after the DCT (middle panel) and DWT (bottom panel).
We see clearly that the energy is relatively evenly distributed among all gray
scale levels before the transform, but it is highly concentrated in the transform
coefficients with values around zero after the transform, i.e., most of the coeffi-
cients after the transform take very low values. This fact lends itself very well
to a lossless compression method based an entropy encoding algorithm called
Huffman coding. Essentially, Huffman coding assigns variable code lengths to
different symbols to be transmitted according to how frequent or probable each
symbol occurs. By assigning shorter code length to more frequent symbols, Huff-
man coding can minimize the total code length. The effectiveness of Huffman
coding is directly related to the entropy of the data defined as:

H = −
∑

k

pklog2pk (10.168)

where pk is the frequency or probability of the kth symbol, in our case, for
all pixels or transform coefficients taking the kth value in the histogram. The
entropy values of the original image and its DCT and DWT transform coefficients
are computed to be 6.05, 0.41 and 0.37, respectively. Correspondingly, Huffman
coding will be most effective for the DWT coefficients, less so for the DCT
coefficients, and not very effective at all for the pixels in the original image.
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Figure 10.18 Image compression based on DCT and DWT

A nonlinear mapping y = x0.3 is applied to all DCT and DWT coefficients for
all of them to be visible.

Figure 10.19 Signal histogram before and after DCT and DWT

The entropy values for the three histograms are 6.05, 0.41 and 0.37, respectively.



11 Appendix 1: Review of Linear
Algebra

11.1 Basic Definitions

! Matrix
An m× n matrix A ∈ Rm×n or Cm×n is an array of m rows and n columns

A =





a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn





m×n

(11.1)

where aij ∈ R or C is the element in the ith (first index) row and jth (second
index) column. In particular,
– if m = n, A becomes a square matrix;
– if m = 1, A becomes an n-dimensional (1 by n) row vector;
– if n = 1, A becomes an m-dimensional (m by 1) column vector.
Through out the book, a vector a is always assumed to be a column vector,
unless otherwise specified.
Sometimes it is convenient to express a matrix in terms of its column vectors

A = [a1, · · · , an] (11.2)

where aj (j = 1, · · · , n) is an m-dimensional column vector:

aj =





a1j

a2j

...
amj




(11.3)

The ith row is an n-dimensional row vector [ai1 ai2 · · · ain].! Transpose and Conjugate Transpose
The transpose of an m× n matrix A, denoted by AT , is an n×m matrix
obtained by swapping elements aij and aji for all i, j ∈ {1, · · · , n}. In other
words, the jth column of A becomes the jth row of AT , and at the same time,

483
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the ith row of A becomes the ith column of AT :

AT = [a1, a2, · · · , an]T =





aT
1

aT
2
...

aT
n




=





a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn





n×m

(11.4)

where aj is the jth column of A and its transpose aT
j is the jth row of AT :

aT
j =





a1j

a2j

...
anj





T

= [a1j , a2j , · · · , anj ] (11.5)

Here are some important properties related to transpose:

(AT )T = A, (AB)T = BT AT (11.6)

The conjugate transpose of an m× n complex matrix A, denoted by A∗, is
the complex conjugate of its transpose, i.e.,

A∗ = AT = A
T (11.7)

i.e., the element in the ith row and jth column of A∗ is the complex conjugate
of the element in the jth row and ith column of A. We obviously have:

(A∗)∗ = A, (AB)∗ = B∗A∗ (11.8)! Identity Matrix
The identity matrix I is a special n× n square matrix with all elements being
zero except those along the main diagonal which are 1:

I = diag[1, · · · , 1] =





1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1





n×n

(11.9)

The identity matrix can also be expressed in terms of its column vectors:

I = [e1, · · · , en] (11.10)

where ei is an n-dimensional column vector with all elements equal to zero
except the ith one which is 1:

ei = [0, · · · , 0, 1, 0, · · · , 0]T (11.11)! Scalar Multiplication
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A matrix A can be multiplied by a scalar c to get

cA = c





a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




=





ca11 ca12 · · · ca1n

ca21 ca22 · · · ca2n

...
...

. . .
...

cam1 cam2 · · · camn




(11.12)

! Dot Product
The dot product, also called inner product, of two real column vectors x =
[x1, · · · , xn]T and y = [y1, · · · , yn]T is defined as

x · y =< x, y >= xT y = y∗x = [x1, · · · , xn]




y1
...

yn



 =
n∑

i=1

xiyi (11.13)

where u + jv = u− jv is complex conjugate of u + jv. If the inner product of
x and y is zero, then the two vectors are said to be orthogonal, denoted by
x⊥y. If particular when x = y, we have:

x · x = ||x||2 =
n∑

i=1

xixi =
n∑

i=1

|xi|2 > 0 (11.14)

where

||x|| =

√√√√
n∑

i=1

|xi|2 (11.15)

is called the norm of x. When ||x|| = 1, x is normalized.! Matrix Multiplication
The product of an m× k matrix A and a k × n matrix B is

Am×kBk×n = Cm×n (11.16)

where the element in the ith row and jth column of C is the dot product of
the ith row vector of A and the jth column of B:

cij = [ai1, · · · , aik]




bk1

...
bkn



 =
k∑

l=1

ailblj (11.17)

For this multiplication to be possible, the number of columns of A must be
equal to the number of rows of B, so that the dot product can be carried out.
Otherwise, the two matrices can not be multiplied.! Trace
The trace of A is defined as the sum of the element along the main diagonal:

tr(A) =
n∑

i=1

aii (11.18)
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! Rank
If none of a set of vectors can be expressed as a linear combination of the
rest of the vectors, then these vectors are linearly independent. The rank of a
matrix A, denoted by rankA, is the maximum number of linearly indepen-
dent columns of A, which is the same as the maximum number of linearly
independent rows. Obviously the rank of an m by n matrix is no larger than
the smaller of m and n:

rankA ≤ min(m, n) (11.19)

If the equation holds, matrix A has a full rank.! Determinant
The determinant of an n× n matrix A, denoted by detA or |A|, is a scalar
that can be recursively defined as

detA =
n∑

j=1

(−1)j+1 a1j detA1j (11.20)

where A1j is an n− 1× n− 1 matrix obtained by deleting the first row and
jth column of A, and the determinant of a 1 by 1 matrix is det(a) = a. In
particular, when n = 2,

det

[
a b
c d

]
= ad− bc (11.21)

and when n = 3,

det




a b c
d e f
g h i



 = a det

[
e f
h i

]
− b det

[
d f
g i

]
+ c det

[
d e
g h

]

= aei− afh− bdi + bfg + cdh− ceg = (aei + bfg + cdh)− (gec + hfa + idb)
(11.22)

Here are some important properties related to determinant:

det(AB) = detA detB, det(AT ) = detA, det(cA) = cndetA (11.23)! Inverse Matrix
If A is an n× n square matrix and there exists another n× n matrix B so
that AB = BA = I, then B = A−1 is the inverse of A, which can be obtained
by:

A−1 =
1

detA





c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cm1 cm2 · · · cmn





T

(11.24)

where cij is the ij-th cofactor defined as

cij = (−1)i+j detµij (11.25)
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with µij being an n− 1× n− 1 minor matrix obtained by removing the ith
row and jth column A. Obviously if detA = 0, A−1 does not exist.
The following statements are equivalent:
– A is invertible, i.e., inverse matrix A−1 exists.
– rankA = n (full rank).
– detA $= 0.
– All column and row vectors are linearly independent.
– All eigenvalues of A are nonzero (to be discussed later).
These are some basic properties related to inverse of a matrix A:

(A−1)−1 = A, (cA)−1 =
1
c
A−1, (AB)−1 = B−1A−1, (A−1)T = (AT )−1

(11.26)! Pseudo-Inverse Matrix
Let A be an m× n matrix. If m $= n, then A is not a square matrix and its
inverse does not exist. However, we can find its pseudo-inverse A−, an n×m
matrix, as shown below.
– If A has more rows than columns, i.e., m > n, then

A− = (A∗A)−1A∗ (11.27)

We can verify that A−A = I:

A−A = (A∗A)−1A∗A = In×n (11.28)

Note that AA− $= I:
– If A has more columns than rows, i.e., m < n, then

A− = A∗(AA∗)−1 (11.29)

We can verify that AA− = I:

AA− = AA∗(AA∗)−1 = Im×m (11.30)

Note that A−A $= I:
Note that the pseudo-inverses in Eq.11.27 (m > n) and Eq.11.29 (m < n)
are essentially the same. Assume A has more rows than columns (m > n),
then another matrix defined as B = A∗ has more columns than rows. Taking
conjugate transpose on both sides of Eq.11.27, we get:

(A−)∗ = (A∗)−1 = [(A∗A)−1A∗]∗ = A(A∗A)−1 (11.31)

i.e.,

B− = B∗(BB∗)−1 (11.32)

which is the same as Eq.11.29.
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We can also show that (A−)− = A. If m > n, then we have:

(A−)− = [(A∗A)−1A∗]− = [(A∗A)−1A∗]∗
[
(A∗A)−1A∗[(A∗A)−1A∗]∗

]−1

= A(A∗A)−1
[
(A∗A)−1A∗A(A∗A)−1

]−1

= A(A∗A)−1(A∗A) = A (11.33)

Similarly we can show the same is true if m < n.
Specially when m = n, A is invertible and the pseudo-inverse in either
Eq.11.27 or Eq.11.29 becomes the regular inverse A− = A−1.

11.2 Eigenvalues and Eigenvectors

For any n× n matrix A, if there exists an n by 1 vector φ and a scalar λ
satisfying

An×nφn×1 = λφn×1 (11.34)

then λ and φ are called the eigenvalue and eigenvector of A, respectively. To
obtain λ, we rewrite the above equation as

(λI −A)φ = 0 (11.35)

This is a homogeneous algebraic equation system (of n equations) for n
unknowns, the elements in vector φ. This equation system has non-zero solu-
tions if and only if

det(λI −A) = 0 (11.36)

This nth order equation of λ is the characteristic equation of the matrix A,
which can be solved to get n solutions, the n eigen values {λ1, · · · ,λn} of A.
Substituting each λi back into the equation system, we can obtain the non-zero
solution, the eigenvector φicorresponding to eigenvalue λi:

Aφi = λiφi, (i = 1, · · · , n) (11.37)

Putting all n such equations together, we get

A [φ1, · · · ,φn] = [λ1φ1, · · · ,λnφn] = [φ1, · · · ,φn]





λ1 0 · 0
0 λ2 · 0
· · · ·
0 0 · λn



 (11.38)

Defining

Φ = [φ1, · · · ,φn] , and Λ = diag [λ1, · · · ,λn] (11.39)

we can write the equation above in a more compact form:

AΦ = ΦΛ, or Φ−1AΦ = Λ (11.40)
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The trace and determinant of A can be obtained in terms of its eigenvalues

trA =
n∑

k=1

λk, detA =
n∏

k=1

λk (11.41)

AT has the same eigenvalues and eigenvectors as A:

ATφi = λiφi, (i = 1, · · · , n) (11.42)

Am has the same eigenvectors as A, but its eigenvalues are {λm
1 , · · · ,λm

n }:

Amφi = λm
i φi, (i = 1, · · · , n) (11.43)

where m is a positive integer. When m = −1, the relation still holds, i.e., the
eigenvalues of A−1 are {1/λ1, · · · , 1/λn}:

A−1φi =
1
λi
φi, (i = 1, · · · , n) (11.44)

A Hermitian matrix A is positive definite, denoted by A > 0, if and only if for
any nonzero x = [x1, · · · , xn]T , the quadratic form x∗Ax is greater than zero:

x∗Ax > 0 (11.45)

In particular, if we let x = φi be eigenvector corresponding to the ith eigenvalue
λi, then the above becomes:

φ∗iAφi = λiφ
∗
iφi > 0 (11.46)

as φ∗iφi > 0, we know λi > 0 for all i = 1, · · · , n, i.e., A > 0 if and only if all
of its eigenvalues are greater than zero. Also, as the eigenvalues of A−1 are
1/λi, i = (1, · · · , n), we have A > 0 if and only if A−1 > 0.

11.3 Hermitian Matrix and Unitary Matrix

If a matrix A is equal to its conjugate transpose, i.e., A∗ = A, then it is a
Hermitian matrix. When a Hermitian matrix A is real (A = A), it becomes
a symmetric matrix, AT = A. All eigenvalues of a Hermitian matrix are real.
Eigenvectors corresponding to distinct eigenvalues are orthogonal.

A is a unitary matrix if and only if A∗A = I, i.e., A∗ = A−1. When a unitary
matrix A is real (A = A), it becomes an orthogonal matrix, AT = A−1. The
eigenvalues of a unitary matrix are complex numbers of absolute value 1 (i.e.
they lie on the unit circle centered at 0 in the complex plane). The determinant
of a unitary matrix A is

detA = ±1 (11.47)
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The columns (and rows) of a unitary matrix A are orthonormal, i.e. they are
both orthogonal and normalized:

< ai, aj >=
∑

k

aikajk = δij =
{

1 if i = j
0 else

(11.48)

where ai and aj are the ith and jth columns of A, respectively.
Consider the eigenvalues and eigenvectors of a Hermitian matrix (symmetric

if real) A:

AΦ = ΦΛ, i.e., Φ−1AΦ = Λ (11.49)

where Φ = [φ1, · · · ,φn]. As the eigenvectors corresponding to distinct eigenval-
ues are orthogonal, Φ is unitary, i.e., Φ−1 = Φ∗ and we have

Φ−1AΦ = Φ∗AΦ = Λ (11.50)

In other words, a Hermitian matrix A can be diagonalized to become Λ by its
unitary eigenvector matrix Φ.

Based on any unitary matrix A = [a1 · · · , an] (where the jth column vector is
aj = [a1j , · · · , anj]T ), a unitary transform of a vector x = [x1, · · · , xn]T can be
defined:





x =





x1

x2

...
xn




= Ay =




a1 a2 · · · an









y1

y2

...
yn




=
∑n

j=1 yj aj (inverse transform)

y =





y1

y2

...
yn




= A−1x = A∗x =





a∗1
a∗2
...

a∗n









x1

x2

...
xn




(forward transform)

(11.51)
In particular, when A = A is real, A−1 = AT is an orthogonal matrix and the
corresponding transform is an orthogonal transform.

The forward transform can also be written as component form:

yj = a∗jx =
n∑

i=1

aijxi, (j = 1, · · · , n) (11.52)

where the transform coefficient yj = a∗jx is the dot product of the two vectors,
representing the projection of vector x onto the ith column vector ai of the
transform matrix A. The inverse transform can also be written as:

x =
n∑

j=1

yj aj or in component form: xi =
n∑

j=1

aij yj (i = 1, · · · , n)

(11.53)
By this transform, vector x is represented as a linear combination (weighted
sum) of the n column vectors a1, a2, · · · , an of matrix A. Geometrically, x is a
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point in the n-dimensional space spanned by these n orthonormal basis vectors.
Each coefficient (coordinate) yi is the projection of x onto the corresponding
basis vector ai.

The n-dimensional space can be spanned by the column vectors of any n by n
unitary (or orthogonal) matrix, and a vector x in the space can be represented
by any of such matrices, each defining a different transform.! When A = I = [e1, · · · , en] is an identity matrix, the transform becomes:

x =
n∑

j=1

yjaj =
n∑

j=1

xjej (11.54)

where ei = [0, · · · , 0, 1, 0, · · · , 0]T is the ith column of I with the ith element
equal 1 and all other 0.! When am,n = w[m, n] = e−j2πmn/N , the corresponding transform is the dis-
crete Fourier transform. The nth column vector wn of the transform matrix
W = [w0, · · · , wN−1] represents a sinusoid of a frequency nf0, and the cor-
responding complex coordinate yn = w∗

nx represents the magnitude |yn| and
phase $ yn of this nth frequency component. The Fourier transform y = Wx
represents a rotation of the coordinate system.

A unitary (orthogonal) transform y = Ax can be interpreted geometrically as
the rotation of the vector X about the origin, or equivalently, the representa-
tion of the same vector in a rotated coordinate system. A unitary (orthogonal)
transform y = Ax does not change the vector’s length:

||y||2 = y∗y = (A∗x)∗(A∗x) = x∗AA∗x = x∗x = ||x||2 (11.55)

as AA∗ = AA−1 = I. This is the Parseval’s relation. If x is interpreted as a
signal, then its length ||x||2 = ||y||2 represents the total energy or information
contained in the signal, which is preserved during any unitary transform. How-
ever, some other features of the signal may be changed, e.g., the signal may be
decorrelated after the transform, which may be desirable in many applications.

If x is a random vector with mean vector µx and covariance matrix Σx:

µx = E(x), Σx = E(xx∗)− µxµ∗x (11.56)

then its transform y = A∗x has the following mean vector and covariance matrix:

µy = E(y) = E(A∗x) = A∗E(x) = A∗µx (11.57)

Σy = E(yy∗)− µyµ∗y = E[(A∗x)(A∗x)∗]− (A∗µx)(A∗µx)∗

= E[A∗(xx∗)A]−A∗µxµ∗xA = A∗[E(xx∗)− µxµ∗x]A
= A∗ΣxA (11.58)

If A is Hermitian (symmetric if A is real), then all of its eigenvalues λi’ are
real and all eigenvectors φi are orthogonal:

φ∗iφj = δij (11.59)
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If all φi’s are normalized, matrix Φ is unitary (orthogonal if A is real):

Φ−1 = Φ∗ (11.60)

and we have

Φ−1AΦ = Φ∗AΦ = Λ (11.61)

On the other hand, the matrix A can be decomposed to be expressed as

A = ΦΛΦ∗ = [φ1, · · · ,φn]




λ1 · · · 0
...

. . .
...

0 · · · λn








φ∗1
...
φ∗n



 =
n∑

i=1

λiφiφ
∗
i (11.62)

11.4 Toeplitz and Circulant Matrices

A square matrix is called a Toeplitz matrix if any element amn is equal to its
lower-right neighbor am+1n+1, i.e., every diagonal of the matrix is composed of
the same value. For example, the following matrix is a Toeplitz matrix:

AT =





a b c d e f
g a b c d e
h g a b c d
i h g a b c
j i h g a b
k j i h g a





(11.63)

An N by N Toeplitz matrix can be formed by a sequence
· · ·x−2, x−1, x0, x1, x2, · · · :

AT =





a0 a1 a2 · · · aN−3 aN−2 aN−1

a−1 a0 a1 · · · aN−4 aN−3 aN−2

a−2 a−1 a0 · · · aN−5 aN−4 aN−3

...
...

...
. . .

...
...

...
a3−N a4−N a5−N · · · a0 a1 a2

a2−N a3−N a4−N · · · a−1 a0 a1

a1−N a2−N a3−N · · · a−2 a−1 a0





(11.64)

In particular, if the sequence is periodic: xn = xn+N with period N , then the
Toeplitz matrix above becomes a circulant matrix, composed of N rows each
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rotated one element to the right relative to the previous row:

AT =





a0 a1 a2 · · · aN−3 aN−2 aN−1

aN−1 a0 a1 · · · aN−4 aN−3 aN−2

aN−2 aN−1 a0 · · · aN−5 aN−4 aN−3

...
...

...
. . .

...
...

...
a3 a4 a5 · · · a0 a1 a2

a2 a3 a4 · · · aN−1 a0 a1

a1 a2 a3 · · · aN−2 aN−1 a0





(11.65)

When the period N of the sequence is increased to approach infinity N →∞,
the periodic sequence approaches aperiodic, correspondingly, the circulant matrix
asymptotically becomes a Toeplitz matrix.

11.5 Vector and Matrix Differentiation

A vector differentiation operator is defined as

d

dx
= [

∂

∂x1
, · · · ,

∂

∂xn
]T (11.66)

which can be applied to any scalar function f(x) to find its derivative with
respect to x:

d

dx
f(x) = [

∂f

∂x1
, · · · ,

∂f

∂xn
]T (11.67)

Vector differentiation has the following properties:

d

dx
(bT x) =

d

dx
(xT b) = b (11.68)

d

dx
(xT x) = 2x (11.69)

d

dx
(xT Ax) = 2Ax (if AT = A) (11.70)

To prove the third one, consider the kth element of the vector:

∂

∂xk
(xT Ax) =

∂

∂xk

n∑

i=1

n∑

j=1

aijxixj =
n∑

i=1

aikxi +
n∑

j=1

akjxj = 2
n∑

i=1

aikxi

(11.71)
for (k = 1, · · · , n).

Note that here we have used the assumption that aik = aki, i.e., AT = A.
Putting all n elements in vector form, we have the above.

When A = I, we have

d

dx
(xT x) = 2x (11.72)
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You can compare these results with the familiar derivatives in the scalar case:

d

dx
(ax2) = 2ax (11.73)

A matrix differentiation operator is defined as

d

dA
=





∂
∂a11

· · · ∂
∂a1n

...
. . .

...
∂

∂am1
· · · ∂

∂amn



 (11.74)

which can be applied to any scalar function of f(A):

d

dA
f(A) =





∂
∂a11

f(A) · · · ∂
∂a1n

f(A)
...

. . .
...

∂
∂am1

f(A) · · · ∂
∂amn

f(A)



 (11.75)

Specifically, consider f(A) = uT Av, where u and v are m× 1 and n× 1 con-
stant vectors, respectively, and A is an m× n matrix. Then we have:

d

dA
(uT Av) = uvT (11.76)
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12.1 Random Variables

! Random Experiment and its Sample Space
A random experiment is a procedure that can be carried out repeatedly with
a random outcome generated each time. The sample space Ω of the random
experiment is a set containing all of its possible outcomes. Ω may be finite,
countable infinite, or uncountable.
For example, “Randomly pick a card from a deck of cards labeled 0, 1, 2, 3
and 4” is a random experiment. The sample space is a set of all of the possible
outcomes: Ω = {0, 1, 2, 3, 4}.! Random Events
An event A ⊂ Ω is a subset of the sample space Ω. A can be an empty set ∅,
a proper subset (e.g., a single outcome), or the entire sample space Ω. Event
A occurs if the outcome is a member of A.
The event space F is set of events. If Ω is finite and countable, then F =
Pow(Ω) is the power set of Ω (a set of all possible subsets of Ω). But if Ω is
infinite or uncountable, F is a σ-algebra on Ω satisfying the following:
– Ω ∈ F (or ∅ ∈ F).
– closed to countable unions: if Ai ∈ F (i = 1, 2, · · · ), then ∪iAi ∈ F ;
– closed to complements: if A ∈ F , then Ω = Ω−A ∈ F .
The ordered pair (Ω,F) is called a measurable space. The concept of σ-algebra
is needed to introduce a probability measure for all events in F .
For example, F = {∅, {0, 1, 2}, {2, 3},Ω= {0, 1, 2, 3, 4}}! Probability
The probability is a measure on F . Probability of any event A ∈ F is a function
P (A) from A to a real value in the range [0, 1], satisfying the following:
– 0 ≤ P (A) ≤ 1 for all A ∈ F .
– P (∅) = 0, and P (Ω) = 1.
– P (A ∪B) = P (A) + P (B) if A ∩B = ∅ for all A, B ∈ F .
For example, “The randomly chosen card has a number smaller than 3” is a
random event, which is represented by a subset A = {0, 1, 2} ⊂ Ω. The prob-
ability of this event A is P (A) = 3/5. Event A occurs if the outcome ω is one
of the members of A, ω ∈ A, e.g., 2.! Probability Space

495



496 Chapter 12. Appendix 2: Review of Random Variables

The triple (Ω,F , P ) is called the probability space.! Random Variables
A random variable x(ω) is a real-valued function x : Ω→ R that maps every
outcome ω ∈ Ω into a real number x. Formally, the function x(ω) is a random
variable if

{ω : x(ω) ≤ r} ∈ F , ∀r ∈ R (12.1)

Random variables x can be either continuous or discrete.! Cumulative Distribution Function
The cumulative distribution function of a random variable x is defined as

Fx(ξ) = P (x < ξ) (12.2)

and we have Fx(∞) = 1 and Fx(−∞) = 0.! Density Function
The density function of a random variable x is defined by

px(ξ) =
d

dξ
Fx(ξ), i.e., Fx(u) =

∫ u

−∞
px(ξ)dξ (12.3)

We have

P (a ≤ x < b) = Fx(b)− Fx(a) =
∫ b

a
px(ξ)dξ (12.4)

In particular

P (x < ∞) = Fx(∞)− Fx(−∞) =
∫ ∞

−∞
px(ξ)dξ = 1 (12.5)

The subscript of px can be dropped if no confusion will be caused.! Discrete Random Variables
If a random variable x can only take one of a set of n values {xi i = 1, · · · , n},
then its probability distribution is

P (x = xi) = pi (i = 1, · · · , n) (12.6)

where

0 ≤ pi ≤ 1, and
n∑

i=1

pi = 1 (12.7)

The cumulative distribution function is

Fx(ξ) = P (x < ξ) =
∑

xi<ξ

pi (12.8)

! Expectation
The expectation is the mathematical mean of a random variable x. If x is
continuous,

µx = E(x) =
∫ ∞

−∞
ξ p(ξ)dξ (12.9)
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If x is discrete,

µx = E(x) =
n∑

i=1

xipi (12.10)

! Variance
The variance represents the statistical variability of a random variable x. If x
is continuous,

σ2
x = V ar(x) = E[(x− µx)2] =

∫ ∞

−∞
(x− µx)2p(x)dx (12.11)

If x is discrete,

σ2
x = V ar(x) = E[(x − µx)2] =

n∑

i=1

(xi − µx)2pi (12.12)

We also have

σ2
x = V ar(x) = E[(x− µx)2] = E(x2)− 2µxE(x) + µ2

x = E(x2)− µ2
x

(12.13)
The standard deviation of x is defined as

σx =
√

V ar(x) (12.14)! Normal (Gaussian) Distribution
Random variable x has a normal distribution if its density function is

p(x) = N(x, µx,σx) =
1√

2πσ2
x

e
− (x−µx)2

σ2
x (12.15)

It can be shown that
∫ ∞

−∞
N(x, µx,σx)dx = 1 (12.16)

E(x) =
∫ ∞

−∞
x N(x, µx,σx)dx = µx (12.17)

and

V ar(x) =
∫ ∞

−∞
(x− µx)2N(x, µx,σx)dx = σ2

x (12.18)

12.2 Multivariate Random Variables

! Multivariate Random Variables
A multivariate random variable or random vector is a vector x = [x1, · · · , xn]T

with each component xi being a random variable. When a stochastic process
or random process (discussed later) x(t) is sampled, its discrete time samples
can be considered as a random vector x.
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! Joint Distribution Function and Density Function
The joint distribution function of a random vector x is defined as

Fx(u1, · · · , un) = P (x1 < u1, · · · , xn < un)

=
∫ u1

−∞
· · ·
∫ un

−∞
p(ξ1, · · · , ξn)dξ1 · · · dξn (12.19)

where p(ξ1, · · · , ξn) is the joint density function of the random vector x.! Independent Variables
A set of n random variables are independent if

p(x1, · · · , xn) = p(x1) p(x2) · · · p(xn) (12.20)! Mean Vector
The expectation or mean of random variable xi is defined as

µi = E(xi) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
ξi p(ξ1, · · · , ξn) dξ1 · · · dξn (12.21)

The mean vector of random vector x is defined as

µx = E(x) = [E(x1), · · · , E(xn)]T = [µ1, · · · , µn]T (12.22)

which can be interpreted as the center of gravity of an n-dimensional object
with p(x1, · · · , xn) being the density function.! Covariance Matrix
The variance of random variable xi measures its variability and is defined as

σ2
i = V ar(xi) = E[(xi − µi)2] = E(x2

i )− µ2
i

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
(ξi − µi)2 p(ξ1, · · · , ξn) dξ1 · · · dξn (12.23)

The covariance of xi and xj measures their similarity and is defined as

σ2
ij = Cov(xi, xj) = E[(xi − µi)(xj − µj)] = E(xixj)− µiµj

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
(ξi − µi)(ξj − µj) p(ξ1, · · · , ξn) dξ1 · · · dξn − µiµj(12.24)

(12.25)

The covariance matrix of a random vector x is defined as

Σx = E[(x− µx)(x− µx)T ] = E(xxT )− µxµT
x

=




σ2

11 · · · σ2
1n

...
. . .

...
σ2

n1 · · · σ2
nn





n×n

(12.26)

When i = j, σ2
i = E(x2

i )− µ2
i is the variance of xi, which can be interpreted

as the amount of information, or energy, contained in the ith component xi
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of the signal x. Therefore the total information or energy contained in x is:

tr Σx =
n∑

i=1

σ2
i (12.27)

Σ is symmetric as σ2
ij = σ2

ji. Moreover, it can be shown that Σ is also positive
definite, and all its eigenvalues {λ1, · · · ,λn} are greater than zero and we have

tr Σx =
n∑

i=1

λi > 0, and det Σx =
n∏

i=1

λi > 0 (12.28)

! Correlation Coefficient
The covariance σ2

ij of two random variables xi and xj represents the statistical
similarity between them. If σ2

ij > 0, xi and xj are positively correlated; if
σ2

ij < 0, they are negatively correlated, if σ2
ij = 0, they are uncorrelated or

decorrelated. The normalized covariance is called the correlation coefficient:

rij =
σ2

ij

σiσj
=

E(xixj)− µiµj
√

E(x2
i )− µ2

i

√
E(x2

j )− µ2
j

(12.29)

Now if the two variables are identical, i.e., xi = xj , then cij = 1, indicating
they are one hundred percent similar to each other.
A random vector x = [x1, · · · , xn]T is said to be decorrelated if rij = 0 for
all i $= j, and its covariance matrix Σ becomes a diagonal matrix with only
non-zero σ2

i (i = 1, · · · , n) on its diagonal.
If xi (i = 1, · · · , n) are independent, i.e., p(x1, · · · , xn) = p(x1) · · · p(xn), then
they are also uncorrelated, i.e., E(x1, · · · , xn) = E(x1) · · ·E(xn). On the other
hand, uncorrelated variables are not necessarily independent. (But uncorre-
lated variables with normal distribution are also independent.)
Note that the term corration is also used to describe the similarity of two
deterministic time functions x(t) and y(t)! Mean and Covariance under Orthogonal Transforms
If the inverse of a matrix is the same as its transpose: A−1 = AT , then it is an
orthogonal matrix. Given any orthogonal matrix A, an orthogonal transform
of a random vector x can be defined as

{
y = AT x
x = Ay

(12.30)

The mean vector µy and the covariance matrix Σy of y are related to the µx

and Σx of x by:

µy = E(y) = E(AT x) = AT E(x) = AT µx (12.31)

Σy = E(yyT )− µyµT
y = E(AT xxT A)−AT µxµT

x A

= AT E(xxT )A−AT µxµT
x A = AT [E(xxT )− µxµT

x ]A

= ATΣxA (12.32)
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Orthogonal transform does not change the trace of Σ:

tr Σy = tr [E(yyT )− µyµT
y ] = E[tr (yyT )]− tr (µyµT

y )

= E(yT y)− µT
y µy = E(xT AAT x)− µT

x AAT µx

= E(xT x)− µT
x µx = tr Σx (12.33)

which means the total amount of energy or information contained in x is
not changed after a unitary transform y = AT x (although the distribution of
energy among the components may be changed).! Normal Distribution
The density function of a normally distributed random vector x is:

p(x) = N(x, µx,Σx) =
1

(2π)n/2 |Σ|1/2
exp[−1

2
(x− µx)TΣ−1(x− µx)]

(12.34)
When n = 1, Σx and µx become σx and µx, respectively, and the density
function becomes single variable normal distribution.
To find the shape of a normal distribution, consider the iso-value hyper surface
in the N-dimensional space determined by equation

N(x, µx,Σx) = c0 (12.35)

where c0 is a constant. This equation can be written as

(x− µx)TΣ−1
x (x− µx) = c1 (12.36)

where c1 is another constant related to c0, µx and Σx. For n = 2 variables x
and y, we have

(x− µx)TΣ−1
x (x− µx) = [x1 − µ1, x2 − µ2]

[
a b/2

b/2 c

] [
x1 − µ1

x− µ2

]

= a(x1 − µ1)2 + b(x1 − µ1)(x2 − µ2) + c(x2 − µ2)2 = c1 (12.37)

Here we have assumed
[

a b/2
b/2 c

]
= Σ−1 (12.38)

The above quadratic equation represents an ellipse (instead of any other
quadratic curve) centered at µx = [µ1, µ2]T , because Σ−1

x , as well as Σx, is
positive definite:

∣∣Σ−1
∣∣ = ac− b2/4 > 0 (12.39)

When n > 2, the equation N(x, µx,Σx) = c0 represents a hyper ellipsoid in
the n-dimensional space. The center and spatial distribution of this ellipsoid
are determined by µx and Σx, respectively.
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In particular, when x = [x1, · · · , xn]T is decorrelated, i.e.,
σij = 0 for all i $= j, Σx becomes a diagonal matrix

Σx = diag[σ2
1 , · · · ,σ2

n] =





σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n




(12.40)

and equation N(x, µx,Σx) = c0 can be written as

(x− µx)TΣ−1
x (x− µx) =

n∑

i=1

(xi − µi)2

σ2
i

= c1 (12.41)

which represents a standard ellipsoid with all its axes parallel to those of the
coordinate system.! Estimation of µx and Σx

When p(x) = p(x1, · · · , xn) is not known, µx and Σx cannot be found by
their definitions, but they can be estimated if a set of K outcomes (x(k), k =
1, · · · , K) of the random experiment can be observed. Then the mean vector
can be estimated as

µ̂x =
1
K

K∑

k=1

x(k) (12.42)

i.e., the ith element of µ̂x is estimated as

µ̂i =
1
K

K∑

k=1

x(k)
i , (i = 1, · · · , n) (12.43)

where x(k)
i is the kth element of x̂k. The covariance matrix Σx can be esti-

mated as

Σ̂x =
1
K

K∑

k=1

(x(k) − µ̂x)(x(k) − µ̂x)T =
1
K

K∑

k=1

x(k)x(k)T − µ̂xµ̂T
x (12.44)

i.e., the ijth element of Σ̂x is

σ̂ij =
1
K

K∑

k=1

(x(k)
i − µi)(x

(k)
j − µj) =

1
K

K∑

k=1

x(k)
i x(k)

j − µ̂iµ̂j , (i, j = 1, · · · , n)

(12.45)
However, note that in order for this estimation to be unbiased, i.e., E(Σ̂x) =
Σx, the coefficient 1/K needs to be replace by 1/(K − 1).

12.3 Stochastic Model of Signals

A physical signal can be modeled as a time function x(t) which takes a real
or complex value x(t0) at each time moment t = t0. This value may be either
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deterministic or random with a certain probability distribution. In the latter case
the time function is called a stochastic process or random process.

Recall that a random variable x(ω) is a function that maps the outcomes
ω ∈ Ω in the sample space Ω of a random experiment to a real number between
0 and 1. Here a stochastic process can be considered as a function x(ω, t) of two
arguments of time t as well as the outcome ω ∈ Ω.

If the mean and covariance functions of a random process x(t) do not change
over time, i.e.,

µx(t) = µx(t− τ), Rx(t, τ) = Rx(t− τ), Σx(t, τ) = Σx(t− τ) (12.46)

then x(t) is a stationary process, in the weak or wide sense (weak-sense or wide-
sense stationarity (WSS). If the probability distribution of x(t) does not change
over time, it is said to have strict or strong stationarity. We will only considered
stationary processes.! The mean function of x(t) is the expectation defined as:

µx(t) = E[x(t)] (12.47)

If µx(t) = 0 for all t, then x(t) is a zero-mean or centered stochastic process,
which can be easily obtained by subtracting the mean function µx(t) from the
original process x(t). If the stochastic process is stationary, then µx(t) = µx

is a constant.! The auto-covariance function of x(t) is defined as

σ2
x(t, t′) = Cov[x(t), x(t′)] = E[(x(t) − µx(t))(x(t′)− µx(t′))]

= E[x(t)x(t′)]− µx(t)µx(t′) (12.48)

If the stochastic process is stationary, then σ2
x(t) = σ2

x(t′) = σ2
x, µx(t) =

µx(t′) = µx, and σ2
x(t, t′) = σ2

x(t− t′), the above can be expressed as

σ2
x(t− t′) = E[(x(t) − µx(t))(x(t′)− µx(t′))] = E[x(t)x(t′)]− µ2

x (12.49)! The autocorrelation function of x(t) is defined as

rx(t, t′) =
σ2

x(t, t′)
σx(t)σx(t′)

(12.50)

If the stochastic process is stationary, then σ2
x(t) = σ2

x(t′) = σ2
x, and σ2

x(t, t′) =
σ2

x(t− t′), the above can be expressed as

rx(t− t′) =
σ2

x(t− t′)
σ2

x

(12.51)! When two stochastic processes x(t) and y(t) are of interest, then their cross-
covariance and cross-correlation functions are defined respectively as:

σ2
xy(t, τ) = Cov[x(t), y(τ)] = E[(x(t) − µx(t))(y(τ) − µy(τ))]

= E[x(t)y(τ)] − µx(t)µy(τ) (12.52)
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and

rxy(t, τ) =
σ2

xy(t, τ)
σx(t)σy(τ)

(12.53)

When only one stochastic process x(t) is concerned, µx(t) and σ2
x can be simply

referred to as its mean and covariance. If a stochastic process x(t) has a zero
mean, i.e., µx(t) = 0 for all t, then it is said to be centered. Any stochastic process
can be centered by a simple subtraction:

x′(t) = x(t) − µx(t) (12.54)

so that µx′ = 0. Without loss of generality, any stochastic process can be assumed
to be centered. In this case, its covariance becomes

σ2
x = E[x2(t)] (12.55)

A Markov process x(t) is a particular type of stochastic process whose future
values depend only on its present value, independent of any past values. In other
words, the probability of a certain future value conditioned on present and all
past values is equal to the probability conditioned only on the present value:

Pr[x(t + h) = y|x(s) = ξ(s), ∀s ≤ t] = Pr[x(t + h) = y|x(t) = ξ(t)], ∀h > 0
(12.56)

The discrete version of a Markov process is called a Markov chain where the
random variable x[n] is only defined over a set of discrete time moments, and it
can only take a set of finite or countable values. A Markov chain has the similar
property:

Pr(x[n] = y|x[m] = ξ[m], ∀m < n) = Pr(x[n] = y|x[n− 1] = ξ[n− 1]) (12.57)

Sometimes this definition of Markov chain can be modified to become:

Pr(x[n] = y|x[m] = ξ[m], ∀m < n) = Pr(x[n + 1] = y|x[n−m] = ξ[n−m], m = 1, · · · , k)
(12.58)

This is called a Markov chain of order k, i.e., the future value depends on the k
prior values.

In particular, when k = 0, we get a memoryless 0 order Markov chain of which
random variables at all points are totally independent . Assuming the Markov
chain is stationary with N

, and its covariance matrix is diagonal:

Σx =





σ2 0 0 · · · 0
0 σ2 0 · · · 0
0 0 σ2 · · · 0
...

...
. . .

...
0 0 0 · · · σ2




= σ2I (12.59)
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The covariance matrix of a stationary first order Markov process (k = 1) is

Σx = σ2





1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

...
...

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · 1




(12.60)

where ρ = σ2
n,n−1/σ

2 is the correlation (normalized covariance) between two con-
secutive variables, i.e., 0 ≤ ρ ≤ 1. We see that the correlation between two vari-
ables x[n] and x[ν] is ρ|n−ν|, which decays exponentially as a function of the
distance |n− ν| between the two variables. Note that here Σx is a Toeplitz
matrix.


