Deep Learning
with PyTorch 1.x

Second Edition

Implement deep learning techniques and neural network architecture
variants using Python

Laura Mitchell, Sri. Yogesh K.
and Vishnu Subramanian

Deep Learning with
PyTorch 1.x
Second Edition

Implement deep learning techniques and neural network
architecture variants using Python

Laura Mitchell
Sri. Yogesh K.
Vishnu Subramanian

BIRMINGHAM - MUMBAI

Deep Learning with PyTorch 1.x
Second Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty

Acquisition Editor: Devika Battike

Content Development Editor: Athikho Sapuni Rishana
Senior Editor: Sofi Rogers

Technical Editor: Joseph Sunil

Copy Editor: Safis Editing

Project Coordinator: Aishwarya Mohan

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Jyoti Chauhan

First published: February 2018
Second edition: November 2019

Production reference: 1291119

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.
ISBN 978-1-83855-300-5

www.packt.com

Packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

About the authors

Laura Mitchell graduated with a degree in mathematics from the University of Edinburgh.
With 15 years of experience in the tech and data science space, Laura is the lead data
scientist at MagicLab whose brands have connected the lives of over 500 million people
through dating, social and business. Laura has hands-on experience in the delivery of
projects surrounding natural language processing, image classification and recommender
systems, from initial conception to production. She has a passion for learning new
technologies and keeping herself up to date with industry trends.

Sri. Yogesh K. is an experienced data scientist with a history of working in higher
education. He is skilled in Python, Apache Spark, deep learning, Hadoop, and machine
learning. He is a strong engineering professional with a Certificate of Engineering
Excellence from the International School of Engineering (INSOFE) and is focused on big
data analytics. Sri has trained over 500 working professionals in data science and deep
learning from companies including Flipkart, Honeywell, GE, and Rakuten. Additionally, he
has worked on various projects that involved deep learning and PyTorch.

Vishnu Subramanian has experience in leading, architecting, and implementing several
big data analytical projects using artificial intelligence, machine learning, and deep
learning. He specializes in machine learning, deep learning, distributed machine learning,
and visualization. He has experience in retail, finance, and travel domains. Also, he is good
at understanding and coordinating between businesses, Al, and engineering teams.

About the reviewers

Mingfei Ma is a senior deep learning software engineer from Intel Asia-Pacific Research &
Development Ltd and he has plenty of experience in high-performance computation.
Mingfei contributed extensively to the CPU performance optimization of PyTorch and its
predecessor, Torch. He also has expertise in computer graphics, heterogeneous computing,
microarchitecture detection, high-performance computation libraries, and more.

Ajit Pratap Kundan is at the forefront of innovative technologies in the world of IT. He's
worked with HPE, VMware, Novell, Redington, and PCS to help their customers in
transforming their data centers through software-defined services. Ajit is an innovative pre-
sales tech enthusiast with over 19 years of experience in technologies such as Lotus, SUSE
Linux, Platespin, and all VMware solutions. Ajit is a valued author on cloud technologies
and has authored two books, VMware Cross-Cloud Architecture and Intelligent Automation
with VMuware, published by Packt.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface

Section 1: Building Blocks of Deep Learning with PyTorch

1.x

Chapter 1: Getting Started with Deep Learning Using PyTorch

Exploring artificial intelligence
The history of Al

Machine learning in the real world
So, why DL?

Applications of deep learning
Automatic translation of text from images
Object detection in self-driving cars

Deep learning frameworks
Why PyTorch?

What's new in PyTorch v1.x?

CPU versus GPU

What is CUDA?

Which GPUs should we use?

What should you do if you don't have a GPU?

Setting up PyTorch v1.x
Installing PyTorch

Summary

Chapter 2: Building Blocks of Neural Networks
What is a neural network?
Understanding the structure of neural networks
Building a neural network in PyTorch
PyTorch sequential neural network

Building a PyTorch neural network using nn.Module

Understanding PyTorch Tensors

Understanding Tensor shapes and reshaping Tensors

Understanding tensor operations
Understanding Tensor types in PyTorch
Importing our dataset as a PyTorch Tensor
Training neural networks in PyTorch

Summary

Section 2: Going Advanced with Deep Learning

Table of Contents

Chapter 3: Diving Deep into Neural Networks
Diving into the building blocks of neural networks
Layers — the fundamental blocks of neural networks
Non-linear activations
Sigmoid
Tanh
RelLU
Leaky RelLU
PyTorch non-linear activations
The PyTorch way of building deep learning algorithms
Model architecture for different machine learning problems
Loss functions
Optimizing network architecture
Image classification using deep learning
Loading data into PyTorch tensors
Loading PyTorch tensors as batches
Building the network architecture
Training the model
Summary

Chapter 4: Deep Learning for Computer Vision

Introduction to neural networks

MNIST — getting data
Building a CNN model from scratch

Conv2d

Pooling

Nonlinear activation — ReLU

View

Linear layer

Training the model

Classifying dogs and cats — CNN from scratch

Classifying dogs and cats using transfer learning
Creating and exploring a VGG16 model

Freezing the layers

Fine-tuning VGG16

Training the VGG16 model
Calculating pre-convoluted features
Understanding what a CNN model learns

Visualizing outputs from intermediate layers
Visualizing the weights of the CNN layer
Summary

Chapter 5: Natural Language Processing with Sequence Data

Working with text data
Tokenization

41
41
43
45
45
46
47
48
48
49
50
50
52
54
57
59
59
61
63

64
65
67
68
70
73
74
75
76
76
79
81
83
85
85
85
88
91
91
94
95

96
97
98

[ii]

Table of Contents

Converting text into characters 99
Converting text into words 99
N-gram representation 100
Vectorization 101
One-hot encoding 101

Word embedding 103
Training word embedding by building a sentiment classifier 104
Downloading IMDb data and performing text tokenization 105
Tokenizing with torchtext.data 106
Tokenizing with torchtext.datasets 106
Building vocabulary 107
Generating batches of vectors 109
Creating a network model with embedding 110
Training the model 11
Using pretrained word embeddings 113
Downloading the embeddings 113
Loading the embeddings in the model 114
Freezing the embedding layer weights 115
Recursive neural networks 116
Understanding how RNN works with an example 117
Solving text classification problem using LSTM 120
Long-term dependency 120
LSTM networks 120
Preparing the data 123
Creating batches 123
Creating the network 124
Training the model 125
Convolutional network on sequence data 126
Understanding one-dimensional convolution for sequence data 127
Creating the network 127
Training the model 128
Language modeling 129
Pretrained models 129
Embeddings from language models 130
Bidirectional Encoder Representations from Transformers 131
Generative Pretrained Transformer 2 132
PyTorch implementations 132
GPT-2 playground 133
Summary 135

Section 3: Understanding Modern Architectures in
Deep Learning

Chapter 6: Implementing Autoencoders 137
Applications of autoencoders 138
Bottleneck and loss functions 138

[iii]

Table of Contents

Coded example — standard autoencoder
Convolutional autoencoders
Coded example — convolutional autoencoder
Denoising autoencoders
Variational autoencoders
Training VAEs
Coded example — VAE
Restricted Boltzmann machines
Training RBMs
Theoretical example — RBM recommender system
Coded example — RBM recommender system
DBN architecture
Fine-tuning
Summary
Further reading

Chapter 7: Working with Generative Adversarial Networks
Neural style transfer
Loading the data
Creating the VGG model
Content loss
Style loss
Extracting the losses
Creating a loss function for each layer
Creating the optimizer
Training the model
Introducing GANs
DCGAN
Defining the generator network
Transposed convolutions
Batch normalization
Generator
Defining the discriminator network
Defining loss and optimizer
Training the discriminator
Training the discriminator with real images
Training the discriminator with fake images
Training the generator network
Training the complete network
Inspecting the generated images
Summary

Chapter 8: Transfer Learning with Modern Network Architectures
Modern network architectures
ResNet
Creating PyTorch datasets
Creating loaders for training and validation

139
142
142
144
145
147
149
151
154
155
156
160
162
163
163

164
165
167
169
169
170
172
175
176
176
178
180
180
180
181
184
185
186
187
187
187
188
188
190
192

193
194
194
198
199

[iv]

Table of Contents

Creating a ResNet model
Extracting convolutional features
ICredating a custom PyTorch dataset class for the pre-convoluted features and
oader
Creating a simple linear model
Training and validating the model
Inception
The Inception architecture
Creating an Inception model
Extracting convolutional features using register_forward_hook
Creating a new dataset for the convoluted features
Creating a fully connected model
Training and validating the model
Densely connected convolutional networks — DenseNet
The _DenseBlock object
The _DenselLayer object
Creating a DenseNet model
Extracting DenseNet features
Creating a dataset and loaders
Creating a fully connected model and training it
Model ensembling
Creating models
Extracting the image features
Creating a custom dataset, along with data loaders
Creating an ensembling model
Training and validating the model
Encoder-decoder architecture
Encoder
Decoder
Encoder-decoder with attention

Summary

Chapter 9: Deep Reinforcement Learning
Introduction to RL
Model-based RL
Model-free RL
Comparing on-policy and off-policy
Q-learning
Value methods
Value iteration
Coded example — value iteration
Policy methods
Policy iteration
Coded example — policy iteration
Value iteration versus policy iteration
Policy gradient algorithm
Coded example — policy gradient algorithm

199
199

200
201
201
202
205
206
206
208
208
209
210
21
21
213
213
214
214
216
217
218
219
220
221
223
224
225
225
226

227
227
229
230
231
231
233
234
234
237
238
238
240
241
242

[v]

Table of Contents

Deep Q-networks 246
DQN loss function 247
Experience replay 248
Coded example — DQN 248
Double deep Q-learning 254

Actor-critic methods 256
Coded example — actor-critic model 257
Asynchronous actor-critic algorithm 260

Practical applications 261

Summary 264

Further reading 264

Chapter 10: Whats Next? 265

What's next? 265
Overview of the book 265
Reading and implementing research papers 266

Interesting ideas to explore 268
Object detection 268
Image segmentation 269
OpenNMT in PyTorch 270
Allen NLP 270
fast.ai — making neural nets uncool again 270
Open neural network exchange 270
How to keep yourself updated 271

Summary 271

Other Books You May Enjoy 272
Index 275

[vi]

Preface

PyTorch is grabbing the attention of deep learning researchers and data science
professionals due to its accessibility, efficiency, and the fact of it being more native to the
Python way of development. This book will get you up and running with one of the most
cutting-edge deep learning libraries—PyTorch.

In this second edition, you'll learn about the various fundamental building blocks that
power modern deep learning using the new features and offerings of the PyTorch 1.x
library. You will learn how to solve real-world problems using convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and long short-term memory
(LSTM) networks. You will then get to grips with the concepts of various state-of-the-art
modern deep learning architectures, such as ResNet, DenseNet, and Inception. You will
learn how to apply neural networks to various domains, such as computer vision, natural
language processing (NLP), and more. You will see how to build, train, and scale a model
with PyTorch and dive into complex neural networks such as generative networks and
autoencoders for producing text and images. Furthermore, you will learn about GPU
computing and how GPUs can be used to perform heavy computations. Lastly, you will
learn how to work with deep learning-based architectures for transfer learning and
reinforcement learning problems.

By the end of the book, you'll be able to implement deep learning applications in PyTorch
with ease.

Who this book is for

This book is for data scientists and machine learning engineers who are looking to explore
deep learning algorithms using PyTorch 1.x. Those who wish to migrate to PyTorch 1.x will
find this book insightful. To make the most out of this book, working knowledge of Python
programming and some knowledge of machine learning will be helpful.

What this book covers

Chapter 1, Getting Started with Deep Learning Using PyTorch, introduces you to the history of
deep learning, machine learning, and Al. This chapter covers how they are related to
neuroscience and other areas of science, such as statistics, information theory, probability,
and linear algebra.

Preface

Chapter 2, Building Blocks of Neural Networks, covers the various math concepts that are
required to understand and appreciate neural networks using PyTorch.

Chapter 3, Diving Deep into Neural Networks, shows you how to apply neural networks to
various real-world scenarios.

Chapter 4, Deep Learning for Computer Vision, covers the various building blocks of modern
CNN architectures.

Chapter 5, Natural Language Processing with Sequence Data, shows you how to handle
sequence data, particularly text data, and teaches you how to create a network model.

Chapter 6, Implementing Autoencoders, introduces the idea of semi-supervised learning
algorithms through an introduction of autoencoders. It also covers how to use restricted
Boltzmann machines to understand the probability distribution of data.

Chapter 7, Working with Generative Adversarial Networks, shows you how to build generative
models capable of producing text and images.

Chapter 8, Transfer Learning with Modern Network Architectures, covers modern architectures
such as ResNet, Inception, DenseNet, and Seq2Seq, and also shows you how to use pre-
trained weights for transfer learning.

Chapter 9, Deep Reinforcement Learning, starts with a basic introduction to reinforcement
learning, including coverage of agents, state, action, reward, and policy. It also contains
hands-on code for deep learning-based architectures for reinforcement learning problems,
such as Deep Q networks, policy gradient methods, and actor-critic models.

Chapter 10, What Next?, gives you a quick overview of what the book covered along with
information on how you can keep up to date with the latest advances in the field.

To get the most out of this book
Working knowledge of Python will be useful.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

[2]

Preface

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=L

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Deep-Learning-with-PyTorch-1.x. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/files/
downloads/9781838553005_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Let's use simple Python functions, such as split and 1ist, to convert the text
into tokens."

[3]

Preface

A block of code is set as follows:

toy_story_review = "Just perfect. Script, character, animation....this
manages to break free of the yoke of 'children's movie' to simply be one of
the best movies of the 90's, full-stop."

print (list (toy_story_review))

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

['J', 'u', 's', 't', ' ', lpl, 'e', 'r', '£', 'e', 'e', 't', '.', ', 's"',
'e', 'r', 'i'r 'P'I ', Y, Y, ey, 'h’I ‘a', 'r', 'a', 'e', 't', 'e',
‘e, ',', ', 'a', 'n', 'i', 'm', 'a', 't', 'i', 'o', 'm', '.', '.', '.',
L, e, 'h', lil, 's', "', 'm', 'a', 'n', 'a', lgl, 'e', 's', ' ', 't',
'o', "', 'B', 'r', 'e', 'a', 'k'," "', '"£', 'r', 'e', 'e', "', 'o', '£',
Y, 't', 'h', 'e', ' ', vyv, 'o', 'k', 'e', ' ', ‘o', '"f', ' v, min_rgv,
'h', 'i', 1, 'd', 'r', 'e', 'mn', "', 's', "', 'm', 'o', 'v', 'i', 'e',
v, g, ‘o', "', 's', 'i', 'm', 'p', 'Y, 'y', ', 'b', 'e', "',
'o', 'n', 'e', ' ', 'o', 'fll e, 'h’I 'e', ' ', ‘bll 'e', 's', 't',
', 'm', 'o', 'v', 'i', 'e', 's', " ', 'o', '€', "', 't', 'h', 'e', ' ',
vgv, vov, L L val u', 'l', lll, -1, 's', 't', 'o', vpv,
v

Any command-line input or output is written as follows:

pip install torchtext

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We will be helping you to understand recurrent neural networks (RNNs). "

Warnings or important notes appear like this.

Tips and tricks appear like this.

[4]

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub. com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[5]

Section 1: Building Blocks of
Deep Learning with PyTorch
1.X

In this section, you will be introduced to the concepts of deep learning and the various deep
learning frameworks.

This section contains the following chapters:

e Chapter 1, Getting Started with Deep Learning Using PyTorch
e Chapter 2, Building Blocks of Neural Networks

Getting Started with Deep
Learning Using PyTorch

Deep learning (DL) has revolutionized industry after industry. It was once famously
described by Andrew Ng on Twitter as follows:

" Artificial intelligence is the new electricity!”

Electricity transformed countless industries; now, artificial intelligence (AI) will do the
same.

Al and DL are used as synonyms, but there are substantial differences between the two.
Let's demystify the terminology that's used in the industry so that you, as a practitioner,
will be able to differentiate between signal and noise.

In this chapter, we will cover the following different parts of Al:

¢ Exploring artificial intelligence

Machine learning in the real world

Applications of deep learning

Deep learning frameworks

Setting up PyTorch 1.x

Exploring artificial intelligence

Countless articles discussing Al are published every day. The trend has increased in the last
2 years. There are several definitions of Al floating around the web, with my favorite being
the automation of intellectual tasks normally performed by humans.

Getting Started with Deep Learning Using PyTorch Chapter 1

The history of Al

Since you've picked up this book, you may be well aware of the recent hype in Al But it all
started when John McCarthy, then a young assistant professor at Dartmouth, coined the
term artificial intelligence in 1995, which he defined as a field pertaining to the science and
engineering of intelligent machines. This kick-started the first wave of Al, which was
primarily driven by symbolic reasoning; its outcomes were astonishing, to say the least. Al
that was developed during this time was capable of reading and solving high-school
Algebra problems [STUDENT], proving theorems in Geometry [SAINT], and learning the
English language [SHRDLU]. Symbolic reasoning is the use of complex rules nested in if-
then statements.

The most promising work in this era, though, was the perceptron, which was introduced in
1958 by Frank Rosenblatt. The perceptron, when combined with intelligent

optimization techniques that were discovered later, laid the foundations for deep learning
as we know it today.

It wasn't plain sailing for Al, though, since the funding in the field significantly reduced
during lean periods, mostly due to overpromising initial discoveries and, as we were yet to
discover, a lack of data and compute power. The rise in prominence of machine learning
(ML) in the early nineties bucked the trend and created significant interest in the field. First,
we need to understand the paradigm of ML and its relationship with DL.

Machine learning in the real world

ML is a subfield of Al that uses algorithms and statistical techniques to perform a task
without the use of any explicit instructions. Instead, it relies on underlying statistical
patterns in the data.

To build successful machine learning models, we need to provide ML algorithms with
labeled data. The success of this approach was heavily dependent on the available data and
compute power so that large amounts of data could be used.

[8]

Getting Started with Deep Learning Using PyTorch Chapter 1

So, why DL?

Most ML algorithms perform well on structured data, such as sales predictions,
recommendation systems, and marketing personalization. An important factor for any ML
algorithm is feature engineering and data scientists need to spend a lot of time exploring
possible features with high predictive power for ML algorithms. In certain domains, such
as computer vision and natural language processing (NLP), feature engineering is
challenging as features that are important for one task may not hold up well for other tasks.
This is where DL excels—the algorithm itself engineers features in a non-linear space so
that they are important for a particular task.

Traditional ML algorithms still outperform DL methods when there is a paucity of data, but
as data increases, the performance of traditional machine learning algorithms tends to
plateau and deep learning algorithms tend to significantly outperform other learning
strategies.

The following diagram shows the relationship DL has with ML and Al:

Deep

Learning
Al

Machine
Learning

To summarize this, DL is a subfield of machine learning; feature engineering is where the
algorithm non-linearly explores its space.

[9]

