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Preface

PyTorch is grabbing the attention of deep learning researchers and data science
professionals due to its accessibility, efficiency, and the fact of it being more native to the
Python way of development. This book will get you up and running with one of the most
cutting-edge deep learning libraries—PyTorch.

In this second edition, you'll learn about the various fundamental building blocks that
power modern deep learning using the new features and offerings of the PyTorch 1.x
library. You will learn how to solve real-world problems using convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and long short-term memory
(LSTM) networks. You will then get to grips with the concepts of various state-of-the-art
modern deep learning architectures, such as ResNet, DenseNet, and Inception. You will
learn how to apply neural networks to various domains, such as computer vision, natural
language processing (NLP), and more. You will see how to build, train, and scale a model
with PyTorch and dive into complex neural networks such as generative networks and
autoencoders for producing text and images. Furthermore, you will learn about GPU
computing and how GPUs can be used to perform heavy computations. Lastly, you will
learn how to work with deep learning-based architectures for transfer learning and
reinforcement learning problems.

By the end of the book, you'll be able to implement deep learning applications in PyTorch
with ease.

Who this book is for

This book is for data scientists and machine learning engineers who are looking to explore
deep learning algorithms using PyTorch 1.x. Those who wish to migrate to PyTorch 1.x will
find this book insightful. To make the most out of this book, working knowledge of Python
programming and some knowledge of machine learning will be helpful.

What this book covers

Chapter 1, Getting Started with Deep Learning Using PyTorch, introduces you to the history of
deep learning, machine learning, and Al. This chapter covers how they are related to
neuroscience and other areas of science, such as statistics, information theory, probability,
and linear algebra.
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Chapter 2, Building Blocks of Neural Networks, covers the various math concepts that are
required to understand and appreciate neural networks using PyTorch.

Chapter 3, Diving Deep into Neural Networks, shows you how to apply neural networks to
various real-world scenarios.

Chapter 4, Deep Learning for Computer Vision, covers the various building blocks of modern
CNN architectures.

Chapter 5, Natural Language Processing with Sequence Data, shows you how to handle
sequence data, particularly text data, and teaches you how to create a network model.

Chapter 6, Implementing Autoencoders, introduces the idea of semi-supervised learning
algorithms through an introduction of autoencoders. It also covers how to use restricted
Boltzmann machines to understand the probability distribution of data.

Chapter 7, Working with Generative Adversarial Networks, shows you how to build generative
models capable of producing text and images.

Chapter 8, Transfer Learning with Modern Network Architectures, covers modern architectures
such as ResNet, Inception, DenseNet, and Seq2Seq, and also shows you how to use pre-
trained weights for transfer learning.

Chapter 9, Deep Reinforcement Learning, starts with a basic introduction to reinforcement
learning, including coverage of agents, state, action, reward, and policy. It also contains
hands-on code for deep learning-based architectures for reinforcement learning problems,
such as Deep Q networks, policy gradient methods, and actor-critic models.

Chapter 10, What Next?, gives you a quick overview of what the book covered along with
information on how you can keep up to date with the latest advances in the field.

To get the most out of this book
Working knowledge of Python will be useful.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

[2]
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You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=L

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Deep-Learning-with-PyTorch-1.x. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/files/
downloads/9781838553005_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Let's use simple Python functions, such as split and 1ist, to convert the text
into tokens."

[3]
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A block of code is set as follows:

toy_story_review = "Just perfect. Script, character, animation....this
manages to break free of the yoke of 'children's movie' to simply be one of
the best movies of the 90's, full-stop."

print (list (toy_story_review))

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

['J', 'u', 's', 't', ' ', lpl, 'e', 'r', '£', 'e', 'e', 't', '.', ', 's"',
'e', 'r', 'i'r 'P'I ', Y, Y, ey, 'h’I ‘a', 'r', 'a', 'e', 't', 'e',
‘e, ',', ', 'a', 'n', 'i', 'm', 'a', 't', 'i', 'o', 'm', '.', '.', '.',
L, e, 'h', lil, 's', "', 'm', 'a', 'n', 'a', lgl, 'e', 's', ' ', 't',
'o', "', 'B', 'r', 'e', 'a', 'k'," "', '"£', 'r', 'e', 'e', "', 'o', '£',
Y, 't', 'h', 'e', ' ', vyv, 'o', 'k', 'e', ' ', ‘o', '"f', ' v, min_rgv,
'h', 'i', 1, 'd', 'r', 'e', 'mn', "', 's', "', 'm', 'o', 'v', 'i', 'e',
v, g, ‘o', "', 's', 'i', 'm', 'p', 'Y, 'y', ', 'b', 'e', "',
'o', 'n', 'e', ' ', 'o', 'fll e, 'h’I 'e', ' ', ‘bll 'e', 's', 't',
', 'm', 'o', 'v', 'i', 'e', 's', " ', 'o', '€', "', 't', 'h', 'e', ' ',
vgv, vov, L L val u', 'l', lll, -1, 's', 't', 'o', vpv,
v

Any command-line input or output is written as follows:

pip install torchtext

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We will be helping you to understand recurrent neural networks (RNNs). "

Warnings or important notes appear like this.

Tips and tricks appear like this.

[4]
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Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub. com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[5]



Section 1: Building Blocks of
Deep Learning with PyTorch
1.X

In this section, you will be introduced to the concepts of deep learning and the various deep
learning frameworks.

This section contains the following chapters:

e Chapter 1, Getting Started with Deep Learning Using PyTorch
e Chapter 2, Building Blocks of Neural Networks



Getting Started with Deep
Learning Using PyTorch

Deep learning (DL) has revolutionized industry after industry. It was once famously
described by Andrew Ng on Twitter as follows:

" Artificial intelligence is the new electricity!”

Electricity transformed countless industries; now, artificial intelligence (AI) will do the
same.

Al and DL are used as synonyms, but there are substantial differences between the two.
Let's demystify the terminology that's used in the industry so that you, as a practitioner,
will be able to differentiate between signal and noise.

In this chapter, we will cover the following different parts of Al:

¢ Exploring artificial intelligence

Machine learning in the real world

Applications of deep learning

Deep learning frameworks

Setting up PyTorch 1.x

Exploring artificial intelligence

Countless articles discussing Al are published every day. The trend has increased in the last
2 years. There are several definitions of Al floating around the web, with my favorite being
the automation of intellectual tasks normally performed by humans.
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The history of Al

Since you've picked up this book, you may be well aware of the recent hype in Al But it all
started when John McCarthy, then a young assistant professor at Dartmouth, coined the
term artificial intelligence in 1995, which he defined as a field pertaining to the science and
engineering of intelligent machines. This kick-started the first wave of Al, which was
primarily driven by symbolic reasoning; its outcomes were astonishing, to say the least. Al
that was developed during this time was capable of reading and solving high-school
Algebra problems [STUDENT], proving theorems in Geometry [SAINT], and learning the
English language [SHRDLU]. Symbolic reasoning is the use of complex rules nested in if-
then statements.

The most promising work in this era, though, was the perceptron, which was introduced in
1958 by Frank Rosenblatt. The perceptron, when combined with intelligent

optimization techniques that were discovered later, laid the foundations for deep learning
as we know it today.

It wasn't plain sailing for Al, though, since the funding in the field significantly reduced
during lean periods, mostly due to overpromising initial discoveries and, as we were yet to
discover, a lack of data and compute power. The rise in prominence of machine learning
(ML) in the early nineties bucked the trend and created significant interest in the field. First,
we need to understand the paradigm of ML and its relationship with DL.

Machine learning in the real world

ML is a subfield of Al that uses algorithms and statistical techniques to perform a task
without the use of any explicit instructions. Instead, it relies on underlying statistical
patterns in the data.

To build successful machine learning models, we need to provide ML algorithms with
labeled data. The success of this approach was heavily dependent on the available data and
compute power so that large amounts of data could be used.

[8]
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So, why DL?

Most ML algorithms perform well on structured data, such as sales predictions,
recommendation systems, and marketing personalization. An important factor for any ML
algorithm is feature engineering and data scientists need to spend a lot of time exploring
possible features with high predictive power for ML algorithms. In certain domains, such
as computer vision and natural language processing (NLP), feature engineering is
challenging as features that are important for one task may not hold up well for other tasks.
This is where DL excels—the algorithm itself engineers features in a non-linear space so
that they are important for a particular task.

Traditional ML algorithms still outperform DL methods when there is a paucity of data, but
as data increases, the performance of traditional machine learning algorithms tends to
plateau and deep learning algorithms tend to significantly outperform other learning
strategies.

The following diagram shows the relationship DL has with ML and Al:

Deep

Learning
Al

Machine
Learning

To summarize this, DL is a subfield of machine learning; feature engineering is where the
algorithm non-linearly explores its space.

[9]



