
Chapter 2

Background

This chapter presents some background for the research presented in this thesis. We
start with a review, in Sections 2.1 and 2.2, of example-based classification and re-
gression methods, which provides an important context for similarity learning. In
Section 2.3 we discuss prior work on learning distances and similarities, and in Sec-
tion 2.4 we review state-of-the-art algorithms for similarity-based retrieval. The back-
ground for vision applications in the thesis is not covered in this chapter, but rather
presented in Chapters 4, 5 and 6.

2.1 Example-based classification

In a classification problem, the labels belong to a finite set of possible identities :

Y ≡ {1, . . . , C},

and the task consists of assigning a test example to one of the C classes. By far the
most used example-based method is the K nearest neighbors (K-NN) classifier. Its
operation is described in Algorithm 1. Setting K = 1 yields the nearest neighbor
classification rule, perhaps the simplest and the most widely used in practice.

2.1.1 Properties of KNN classifiers

Despite its simplicity, the NN classifier very often achieves good performance, partic-
ularly for large data sets. The result by Cover and Hart [26] establishes a tight upper
bound on the asymptotic risk R∞ of the NN rule for C classes in terms of the Bayes
risk R∗,

R∞ ≤ R∗
(

2− C

C − 1
R∗
)

. (2.1)

Similar bounds can be established for the K-NN classifier, although they are more
involved (see, e.g., [38].)

The bound in (2.1) describes the performance of the rule in the limit on an infinite
amount of data, and has practical significance only in conjunction with a reasonable

31

Algorithm 1 Classification with K nearest neighbors (KNN).

Given: Training set X = {x1, . . . ,xN} with labels {y1, . . . , yN}.
Given: A distance measure D : X → R.
Given: An integer 0 < K ≤ N .
Given: Test example x0 ∈ X .
Output: Predicted label ŷ

(KNN)
0 .

1: Let i∗1, . . . , i
∗
K be the indices of the K NN of x0 in X w.r.t. D, i.e.

D(x0,xi∗1
) ≤ . . . ≤ D(x0,xi∗K

)

and
D(x0,xi∗K

) ≤ D(x0,xi) for all i /∈ {i∗1, . . . , i∗K}.

2: For each y ∈ Y let X ′
y = {i∗k | yi∗k

= y, 1 ≤ k ≤ K}
3: Predict ŷ

(KNN)
0 = argmaxy∈Y |X ′

y|, breaking ties randomly.

rate of convergence of the N -sample risk RN to R∞, as N grows large. The finite
sample behavior of the NN rule has been extensively studied and shown to be difficult
to characterize in a general form. Under various assumptions and approximations, the
existing results describe the rates of convergence of RN to R∞ [25, 37]; unfortunately,
it has been shown that such convergence may be arbitrarily slow. Some results exist
regarding the bounds on RN [48, 90], and means of calculating the risk for given data
and distribution parameters [90, 109]. In addition, some analysis of the deviation
RN −R∞ is given in [50].

Despite the lack of guarantees for finite samples, the NN rule has been known to
work well in very many practical cases, and often performs on par with much more
sophisticated classifiers, provided enough training data (see, for instance, [30] for an
extensive comparative study).

A major drawback of the NN rule is its computational complexity. With N exam-
ples in a D-dimensional input space, brute-force exhaustive search requires O (DN)
operations (assuming a single distance calculation costs O(D) operations, and must
be carried out for each reference point). Faster algorithms, which require as little
as O (log N) time, also require O

(
ND/2

)
storage which for high D is prohibitively

large. It is a common conjecture, supported by empirical evidence [18], that exact
NN search algorithms are bound to suffer from this problem, due to the “curse of
dimensionality”. To alleviate this problem, practitioners often turn to approximate
schemes, which trade off some of the accuracy guarantees in retrieval of neighbors for
a significant increase in speed.

2.1.2 Approximate nearest neighbors

An ε-k-th NN of x0 is defined as a training example xiεk
such that

D(x0,xiεk
) ≤ (1 + ε)D(x0,xi∗k

), (2.2)

32

where ε > 0 is an approximation parameter. In general, there will be more than one
such candidate point and the particular selection strategy depends on the specific
search algorithm used.

The asymptotic risk of the ε-NN rule can be easily established.1 By the dominated
convergence theorem [], we have

if limN→∞D(x0,xi∗k
) = 0 w.p.1, (2.3)

then limN→∞D(x0,xiεk
) = 0 w.p.1, (2.4)

following from (2.2), where D is the metric in the input space. The limit in (2.3)
is proved, under mild assumptions, in [26], thus yielding the conclusion in (2.4).
From here, one can closely follow the proof in [26] and obtain the R∞ (i.e., the same
asymptotic overall risk as for the exact NN rule) in the limit. As for the finite risk of
the ε-NN classifier, and in particular its deviation from the corresponding risk of the
exact NN, no definitive answers are known yet.

State-of-the-art methods allow finding an ε-NN or ε-R neighbors (see next sec-
tion for definition) in time sublinear in N , and with mild storage requirements. In
section 2.4.2 we describe in detail one such method: the locality sensitive hashing
(LSH).

2.1.3 Near versus nearest

In the algorithms discussed above, the cutoff used in the search procedure is para-
metrized by the rank order K. An alternative criterion is to use a distance cutoff.
Modifying step 1 accordingly leads to the R-near neighbor classifier (Algorithm 2.)
The notion of approximate near neighbor is defined similarly to (2.2): For a given
distance value R and the approximation factor ε, the ε-R neighbor of x0 is defined as
any x for which

D(x0,xε,R) ≤ (1 + ε)R. (2.5)

Algorithm 2 Classification with R-neighbors.

Given: Training set X = {x1, . . . ,xN} with labels {y1, . . . , yN}.
Given: A distance measure D : X → R.
Given: A number R > 0.
Given: Test example x0 ∈ X .
Output: Predicted label ŷ

(RN)
0 .

1: Let i∗1, . . . , i
∗
K be the indices of R-neighbors of x0 in X w.r.t. D, i.e.

D(x0,xi∗k
) < R for k = 1, . . . , K.

2: For each y ∈ Y let X ′
y = {i∗k | yi∗k

= y, 1 ≤ k ≤ K}
3: Predict ŷ

(RN)
0 = argmaxy∈Y |X ′

y|, breaking ties randomly.

1We are not aware of any previous publication of this observation.

33

There are important differences between the two algorithms. On the one hand,
the search in K-NN is guaranteed to produce exactly K matches while for a fixed
R the search in R-neighbor may fail to return any matches even with exact search
algorithms, since there may simply be no appropriate matches in the database. The-
oretical analysis of example-based methods based on near-neighbor retrieval appears
to be harder, in particular it is difficult to show any “distribution-free” properties. On
the other hand, setting the cutoff for Algorithm 2 may lead to more robust estimation,
since it prevents cases in which some of the K-NN are too far to usefully contribute
to the local model.2 Overall, the choice of the specific formulation of neighborhood
retrieval is a matter of design and should be decided for the task at hand. In most of
the experiments in this thesis we used the K-NN (i.e., nearest) formulation.

2.1.4 Evaluation of retrieval accuracy

How good is a model Ŝ? Since S defines a classification problem, a standard measure
of accuracy for a classifier Ŝ is the risk

R(Ŝ,S) = E(x,y)∈X 2

[
L
(
Ŝ(x,y),S(x,y)

)]
which depends on the loss matrix L that specifies the penalty for any combination
of true and predicted similarity values. In practice, the expectation above can be
estimated by calculating the average loss on a finite test set.

A more detailed measure is the combination of the precision of Ŝ

pre =
|{(x,y) : S(x,y) = +1 and Ŝ(x,y) = +1}|

|{(x,y) : Ŝ(x,y) = +1}|
(2.6)

(i.e., out of pairs judged similar by Ŝ, how many are really similar under S), and
its recall

rec =
|{(x,y) : S(x,y) = +1 and Ŝ(x,y) = +1}|

|{(x,y) : S(x,y) = +1}|
(2.7)

(out of pairs similar under S, how many are correctly judged similar by Ŝ.) A
closely related terminology3 refers to the true positive, or detection rate TP which is
equal to the recall rate, and the false positive, or false alarm rate

FP =
|{(x,y) : S(x,y) = −1 and Ŝ(x,y) = +1}|

|{(x,y) : S(x,y) = −1}|
. (2.8)

Rather than specifying a single point in the precision/recall space, one can consider
the entire range of the tradeoff between the two. Plotting the TP against FP as a
function of changing parameters of the retrieval algorithm (in this case the threshold

2Although such spurious neighbors may be seen as outliers and could be dealt with by, say, robust
local regression (Section 2.2.)

3This terminology corresponds to the view of similarity learning as a detection task.

34

on the distance) yields the receiving-operating characteristic (ROC) curve.

When retrieval of similar examples is the goal in itself, the ROC curve provides
the comprehensive measure of the method’s performance by specifying the range of
the trade-off between precision and recall. Furthermore, the area under ROC curve
(AUC) provides a single number describing the performance. However, if a similarity
model is used as a component in an example-based classification or regression, its
success should be also measured by the accuracy of the resulting prediction: the
average classification error, or the mean estimation error on a test set.

The choice of a loss matrix L as well as the desired precision/recall combination is
typically influenced by the relative frequency of similar and dissimilar pairs in X 2. It
is often the case (and especially so in vision-related domains) that similarity is a “rare
event”: two randomly selected examples from X are much less likely to be similar
than not. This asymmetry has consequences on all aspects of similarity learning. For
instance, L may need to be skewed significantly, in the sense that the penalty for
one “direction” of wrong prediction is much higher than the penalty for the opposite
error. For many learning algorithms this poses a significant challenge. However, we
will describe in Chapter 3 how it can be turned to our advantage.

2.2 Example-based regression

The task of regression consists of predicting, for a query point x0, the value of a real-
valued target function g on a test point x0; the function is conveyed to the learned by
a set of examples x1, . . . ,xN labeled by the value of yi = g(xi), perhaps with some
noise. When no global parametric model of g is available, example-based estimation
is often an appropriate choice.

The simplest example-based approach to regression is to apply the K-NN rule [24],
with the slight modification to account for the estimation goal: the predicted value of
y0 is set to the average of the values in the NN, rather then to the winner of a majority
vote4. This estimation rule corresponds to a piecewise-constant approximation of the
target function g(x), with at most

(
N
K

)
distinct values (one value for every feasible

assignment of K nearest neighbors among the reference points). Similarly to the
K-NN classifier, there are results on the asymptotic behavior of this estimator [24].

The family of local polynomial regression estimators [43] may provide more flex-
ibility in modeling the higher order behavior of the target function g. Under the
assumptions that g is well approximated by a polynomial of degree p within any
small region of X , and that the selected neighbors of the query point x0 fall within
such a small region around it, a polynomial model fit to those neighbors and evaluated
in x0 will produce an accurate estimate of g(x0).

A more robust approach using the local modeling idea is to assign weights to the
neighbors, in accordance with their similarity to the query x0. The closer xi∗i

is to
x0 the more influence should it exert on the ŷ0. This leads to the locally weighted
regression (LWR) idea, an excellent introduction to which is available in [7].

4If Y ∈ Rd, with probability 1 every value will appear exactly once.

35

In the presence of noise, the local regression procedure may still be vulnerable to
the misleading influence of outliers introduced by function mismeasurement, labeling
errors or spurious similarity judgments. The robust LWR [21, 22] addresses this by
re-weighting the neighbors based on the residuals of the fitted model and re-fitting
the model with the new weights. This process is repeated for a small number of
iterations, and may considerably improve results on noisy data.

The regression approach outlined above is applicable when the underlying rela-
tionship between the data and the estimated quantity g is a function, that is, when
specifying the x determines a unique value of g(x). In some applications this may
not be the case: multiple values of g correspond to the same value of x. In other
words, there is an ambiguity in g(x). This of course makes the problem of estimat-
ing g ill-posed. There are two possible avenues for addressing this challenge. One
focuses on representation: finding a data space X in which the ambiguity is resolved.
For instance, using multiple silhouettes (Section 5.2) or stereo-based disparity images
(Section 5.3) largely removes the ambiguity in the pose estimation context.

The other avenue is to address the problem at the estimation step. If the represen-
tation at hand does lead to ambiguity, simply ignoring it may cause severe estimation
errors–for instance, in a K-NN regression, if there are two possible values of g(x) and
the labels of the retrieved neighbors are roughly equally distributed among these two
values, näıve K-NN regression will yield a value which is the mean of the two, and
may be quite far from both. Instead, we can introduce a clustering step whose ob-
jective is to detect the occurrence of such ambiguity and separate the distinct values.
The regression procedure (e.g., averaging in the K-NN case) is then applied to each
cluster of the labels. This results in multiple answers rather than a single prediction.
Figure 2-1 illustrates this for the case of linear regression model. The query point
(cross) matches a number of neighbors (circles), that correspond to two “modes” of
the target function g. Clustering them according to the value of g is straightforward,
and the final estimation is carried out separately on each cluster, producing two linear
models shown by dashed lines.

How these answers are used depends on the application at hand. An additional
procedure aimed at resolving the ambiguity may be applied; an example of such
approach is taken in the orientation estimation described in Section 5.2, where we
produce two estimates of orientation that are subsequently refined based on temporal
context. Alternatively, we may “propagate” the multiple answers, and defer the
resolution of the ambiguity until later stages in the decision process, or even report
them as the end result of the estimation.

2.2.1 Regression-induced similarity

The key underlying assumption in most example-based regression methods is that the
target function behaves smoothly enough within any small enough region to be well
modeled by a relatively simple (low order) model in that region. Thus the choice of
the neighborhood is crucial for finite sample cases. This choice is typically tuned by
comparing the prediction accuracy on the training data or, if the amount of available
data allows that, in a cross-validation procedure, for a range of neighborhood-defining

36

Figure 2-1: Illustration of the idea of regression disambiguation by clustering the
labels. Cross: query point and its true label; circles: the neighbors; the dashed lines
show the two models fit separately to the two clusters.

parameters: K for K-NN or R for R-neighbors.

Consider however a different notion of similarity: we will define two examples x
and y in X to be similar if the values of the target function g are similar. The latter
similarity is defined in a straightforward manner, depending on the application at
hand, the precision required and the behavior of the function g. When the range Y
of g is a metric space, a natural way to define such similarity is by setting a threshold
r in Y , and defining

Sg,r(x0,x) ,

{
+1 if DY(g(x0), g(x)) ≤ r,

−1 otherwise.
(2.9)

Figure 2-2 illustrates this definition. Note that if r is set so that errors within r can
be reasonably tolerated in the application, and if we can accurately retrieve examples
similar to x0 w.r.t. Sg,r, we should achieve excellent regression results (subject to the
noise level in the training labels.) Of course, the problem is that since the value g(x0)
is not known, the definition in (2.9) is ill-posed and can not be used directly. On the
other hand, we can form a large number of pairs (xi,xj) over the training examples
such that they are similar, or dissimilar, under that definition. This naturally leads
to the problem of learning similarity from examples.

37

Figure 2-2: Regression-induced similarity. For a query point (black cross), shown are
the .5-neighbors in X (green circles) and the Sg,.25-neighbors (red squares).

2.3 Learning Distances and Similarity

There exists a large body of literature, both in machine learning and in cognitive
science, devoted to the idea of learning distances or similarities from examples and/or
for a specific task. Below we review the prior work in some detail, pointing out
relevance to the stated problem of learning an equivalence concept and the differences
from our approach.

2.3.1 Metric learning

The most common way to model similarity is to assume that a distance D can serve
as a reasonable “proxy” for the desired similarity S. Many methods assume that D is
a metric, complying with the following three properties:

∀x ∈ X , D(x,x) = 0; (2.10)

∀x1,x2 ∈ X , D(x1,x2) ≥ 0; (2.11)

∀x1,x2,x3 ∈ X , D(x1,x2) +D(x2,x3) ≥ D(x1,x3). (2.12)

Sometimes D is allowed to be a pseudo-metric, i.e. it may violate the triangle
inequality (2.12).

The most common scenario in which this approach has been applied is a classifica-
tion (or equivalently clustering) setup, where the objective is to produce a metric that
minimizes label error with a specific classification or clustering algorithm. Notable
examples of work in this direction include [78, 118, 79, 61, 53]. In these applications,

38

in addition to the metric assumptions in (2.10)-(2.12), it is typically assumed that
the target equivalence concept on pairs in X 2 induces equivalence classes in X . The
key reason for that is that the metric-learning methods usually depend on transitivity
of similarity: they assume that if S(x,y) = +1 and S(x, z) = +1 than S(x, z) = +1.

As we stated earlier, we would like to avoid such transitivity assumption. In
particular, this assumption clearly does not hold in the context of regression-induced
similarity defined in Section 2.2.1, such as the pose estimation domain described in
Chapter 4. Neither does it hold in general matching problems, such as the image
patch classification in Chapter 6. If a region in an image is repeatedly shifted by
one pixel 100 times, most of the consecutive regions in the sequence will be visually
similar, however it will hardly be the case for the first and the 100th regions.

Another important difference of our approach is in the class of attainable similarity
measures. Metric learning methods are typically based on a particular parametric
form, often a quadratic form of the data, whereas our approach is non-parametric.

2.3.2 Similarity as classification

A very different family of approaches take advantage of the duality between binary
classification on pairs and similarity. Formulated as a classification problem, the task
of learning similarity may be approached using the standard arsenal of techniques
designed to learn classifiers. A number of such approaches have been proposed in the
area of face analysis, where pairs of faces are to be classified as belonging to the same
or different persons, either in a verification context or as part of a matching-based
recognition. Typically it is done by modeling the differences between the two images
in some parametric form, either probabilistic [85] or energy-based [20]. A different
approach is taken in [69], where the classifier is obtained by boosting local features,
in a way similar to our learning algorithms. However, none of that work is extended
to learning an embedding.

The classification approach to modeling similarity face two major challenges. One
is inherent in the nature of similarity in many domains: the classification task induced
by similarity is typically extremely unbalanced. That is, similarity is a rare event : the
prior probability for two examples to be similar may be very low. Consequently, the
negative class is much larger and, in a sense, more diverse and more difficult to model.
Although some solutions to such situations have been proposed, in particular in the
context of detection of rate events [117, 114] this remains a difficulty for learning
algorithms.

The other challenge is in the realm of practical applications of the learned similar-
ity concept. Most of the classifiers are ill-suited for performing a search in a massive
database; often the only available solution is to explicitly classify all the possible
pairings of the query with the database examples, and that does not scale up.

Conceptually, these approaches are closely related to ours, since our algorithms
described in Chapter 3 do rely on classification techniques. However, we use those as
means to construct an embedding, and the similarity classification itself is done by
means of thresholding a metric distance, an approach that easily scales up to high
dimensions and large databases, in particular using methods reviewed in Section 2.4.

39

2.3.3 Embeddings and mappings

Finally, there exists a broad family of algorithms that learn a mapping of the data
into a space where similarity is in some way more explicit. Our approach falls into
this broad category as well, although it differs from the previously developed ones
in important ways. Below we discuss the existing embedding and mapping methods,
which can roughly be divided into two categories.

Multidimensional scaling

Multidimensional scaling (MDS) [27] is a family of techniques aimed at discovering
and extracting low-dimensional structure of the data. The algorithms in this family
expect as their input a set of examples x1, . . . , xN and a (perhaps partial) list of
pairwise dissimilarities δij between xi and xj. The goal is to map the input examples
into a space where Euclidean distance match, as well as possible, the given values of
δ.

Let us denote by f the transformation that such a mapping induces on the dis-
similarities (from the value of δij to the distance between the images of xi and xj.)
In metric MDS, f must be a continuous monotonic function. This form is most rele-
vant to the distance model of similarity mentioned in Section 1.1, but less so to the
boolean similarity case. More relevant is the non-metric MDS (NMDS), in which the
transformation f can be arbitrary, and is only subject to monotonicity constraint:
if δij < δkl then f(δij) ≤ f(δkl), i.e., it only must preserve the rank. Technically,
NMDS may be directly applied to the problem of learning an equivalence similarity,
in which case there are only two ranks since all δij ∈ {−1, 1}. However, NMDS does
not learn an embedding in the sense our algorithms do: it finds the mapping of the
training examples into a lower-dimensional Euclidean space, but does not provide a
way to map a previously unseen example. Another difference is the assumption of low
dimensionality of the embedding space, which is not explicitly present in our work.

In addition to a large set of classical MDS techniques [27], notable methods that
fit this description include, Isomap [112] and local linear embedding [96]. Some re-
cent work aimed at extending these techniques to unseen points is discussed in [12],
along with a unifying perspective on these and other methods. The focus there is,
however, on metric MDS in the context of manifold learning and clustering. In gen-
eral, approaches to extending the embedding in MDS-style methods to new examples
proceed by finding the NN of x0 in X and combining their embeddings (for exam-
ple, averaging) to produce an estimated embedding of x0. In contrast, our approach
avoids such dependence on the original distance in X , that can be detrimental when
there is a significant departure of S from that distance.

Embedding of known distance

Many methods have been developed for constructing a low-distortion embedding of
the original data space into a space where L1 can be used to measure similarity.
They assume that the underlying distance is known, but expensive to compute. The
embedding is used either to approximate the true distance [44, 55, 56] or to apply a

40

filter-and-refine approach [42, 5] in which the embedding space is used for fast pruning
of the database followed by exact distance calculations in the original space. Two main
differences of these algorithms from MDS and related methods is that the dimension
of the embedding is usually very high, often many times higher than the dimension
of the input space, and that the construction of the embedding is usually guided by
analytically known properties of the underlying distance rather than learned by the
data. A recent review of other related methods can be found in [62], however many
of them are better categorized as search algorithms rather than learning similarity.

2.4 Algorithms for search and retrieval

In this section we discuss the state of the art in search and retrieval, decoupled from
the problem of learning and representing similarity. All of these algorithms assume
that the dissimilarity is expressed by a distance (almost always a metric, usually
Euclidean or L1. This is generally not the case in the problems we are concerned with
in this thesis, however, we can rely on these methods to allow, after an embedding has
been learned, for efficient search under L1 distance in the embedding space. Indeed
this is one of the main motivations for our embedding approach. The dimension of
our embedding space may be quite high, as we will see in the following chapters, and
a method of choice must handle high-dimensional spaces well.

The most straightforward method is the linear scan, often referred to as brute force
search: inspect all the examples in the database and measure the distance between
them and the query. This is the simplest solution, but for a very large number of
high-dimensional examples it quickly becomes infeasible. We will therefore focus on
methods that allow some speedup relative to the brute force search.

2.4.1 kd-trees

In the kd-tree approach [13, 32], the space X is partitioned by a multidimensional
binary tree. Each vertex represents a (possibly unbounded) region in the space, which
is further partitioned by a hyperplane passing through the vertex and perpendicular
to one of the coordinate axes of X . The partition is done so that the set of points
that belong to the region represented by a vertex is roughly equally divided between
that vertex’s children. Furthermore, the orientation of the partitioning hyperplanes
alternates through the levels in the tree. That is, the first hyperplane is perpendicular
to X1, the two hyperplanes in the second level are perpendicular to X2 and so on,
starting over again with the first dimension at the level dim(X) + 1.

The standard way of querying the kd-tree is by specifying a region of interest; any
point in the database that falls into that region is to be returned by the lookup. The
search algorithm for kd-tree proceeds by traversing the tree, and only descending
into subtrees whose region of responsibility, corresponding to the partitions set at
construction time, intersects the region of interest.

When dim(X) is considered a constant, the kd-tree for a data set of size N can
be constructed in O (N log N), using O (N) storage [32]. Its lookup time has been

41

shown to be bounded by O
(
N1−1/dim(X)

)
. Unfortunately, this means that kd-trees

do not escape the curse of dimensionality mentioned in Section 2.1.1: for very high
dimensions the worst case performance of kd-tree search may deteriorate towards the
linear scan. Nevertheless, in more than three decades, kd-trees have been successfully
applied to many problems. As a rule of thumb, their average performance is typically
very good for dimensions below 10, and reasonable for dimensions up to 20; however,
for hundreds of dimensions kd-trees are often impractical.

A number of modifications of the kd-tree scheme have been aimed at reducing the
lookup time. For the classification scenario, a method has been proposed in [75] for
NN classification, using a data structure similar to the kd-trees but with overlapping
partitions; the insight of that approach is that in order to predict the majority vote
among the NN it may not be necessary to explicitly retrieve the neighbors themselves.
In a more general setting, a number of modifications have been proposed that change
the order in which the tree is traversed [10] or randomization by early pruning [4].

We now turn to another approach to approximate similarity search, that is prov-
ably efficient even in very high dimensional spaces and that has seen a lot of attention
in the recent years. Besides its utility for the search problems we will encounter, this
approach has provided inspiration to some of the central ideas in this thesis.

2.4.2 Locality sensitive hashing

LSH [65, 52] is a randomized hashing scheme, developed with the primary goal of
ε-R neighbor search. The main building block of LSH is a family of locality sensitive
functions. A family H of functions h : X → {0, 1} is (p1, p2, r, R)-sensitive if, for any
x,y ∈ X ,

Pr
h∼U [H]

(h(x) = h(y) | ‖x− y‖ ≤ r) ≥ p1, (2.13)

Pr
h∼U [H]

(h(x) = h(y) | ‖x− y‖ ≥ R) ≤ p2. (2.14)

The probabilities are over a random choice of h ∈ H; more precisely, the functions
are assumed to be parametrized with a bounded range of parameter values, and the
notation U [H] denotes uniform sampling of those values. A family H is of course
useful only when r < R, and when there is a gap between p1 and p2, i.e. when
p1 > p2. This notion of a gap is very important, and will inspire our approach to
learning similarity.

Algorithm 3 gives a concise description of the LSH construction algorithm for a
particularly simple case, when the distance of interest is L1. The family H in this
case contains axis-parallel stumps, i.e. a value of an h ∈ H is obtained by taking a
single dimension d ∈ {1, . . . , dim(X)} and thresholding it with some T :

hLSH =

{
1 if xd ≤ T,

0 otherwise.
(2.15)

An LSH function g : X → {0, 1}k is formed by independently k function h1, . . . , hk ∈

42

H (which in this case means uniform sampling of a dimension d and a threshold T
on that dimension). Applied on an example x ∈ X , it produces a k-bit hash key

g(x) = [h1(x), . . . , hk(x)].

This process is repeated l times and produces l independently constructed hash func-
tions g1, . . . , gl. The available reference (training) data X are indexed by each one of
the l hash functions, producing l hash tables.

Algorithm 3 LSH construction (from [52])

Given: Data set X = [x1,xN], xi ∈ Rdim(X).
Given: Number of bits k, number of tables l.
Output: A set of
1: for all j = 1, . . . , l do
2: for all i = 1, . . . , k do
3: Randomly (uniformly) draw d ∈ {1, . . . , dim(X)}.
4: Randomly (uniformly) draw min{x(d)} ≤ v ≤ max{x(d)}.
5: Let hj

i be the function X → {0, 1} defined by

hj
i (x) =

{
1 if x(d) ≤ v,

0 otherwise.

6: The j-th LSH function is gj = [hj
1, . . . , h

j
k].

Once the LSH data structure has been constructed it can be used to perform
a very efficient search for approximate neighbors, in the following way. When a
query x0 arrives, we compute its key for each hash table j, and record the examples
C={xl

1, . . . ,x
l
nl
} resulting from the lookup with that key. In other words, we find the

training examples (if there any) that fell in the same “bucket” of the l-th hash table
to which x0 would fall. These l lookup operations produce a set of candidate matches,
C =

⋃l
j=1 Cj. If this set is empty, the algorithm reports that and stops. Otherwise,

the distances between the candidate matches and x0 are explicitly evaluated, and the
examples that match the search criteria, i.e. that are closer to x0 than (1 + ε)R, are
reported.5 This is illustrated in Figure 2-3.

LSH is considered to fail on a query x0 if there exists at least one R-neighbor of
x0 in X, but the algorithm fails to find any (1 + ε)R-neighbor; any other outcome
it’s a success. It was shown in [65, 52] that the probability of success can be made
arbitrarily high by suitable choice of k and l; at the same time, there is a trade-off
between this probability and the expected running time, which is dominated by the
explicit distance calculations for the candidate set C.

5The roles of r and R seem somewhat arbitrary: one could ostensibly define R to be the desired
distance and r to be R/(1 + ε). However, the actual values are important since they determine p1

and p2. They also define the event of success: if there are no points at distance r but there exists a
point at distance R, the algorithm is not required to find it.

43

1

0 1

1
0

110

Figure 2-3: An illustration of LSH lookup. Left and center: two LSH tables with
k = 4 bits based on axis-parallel stumps (assigning zero if a point falls to the left or
below the threshold). The circle shows a query point, with the value of its hash key
in each table. Right: the union of the two buckets is shaded. Points in the candidate
set C shown enlarged; only these candidates are explicitly compared to the query.

The analysis of LSH in [52] is based on the following concept of unary encoding,
which we describe below since it is relevant to our task as well. Suppose that all
components of all the examples in a given data set are integers, and that the values
of dimension d for all examples lie in between 0 and Ud. This does not cause loss of
generality since one can always preprocess any finite data set represented with finite
precision to adhere to these assumptions, by shifting and scaling the data. For each
dimension d of X , we write out Ud bits u1

d, . . . , u
Ud
d , where

uj
d ,

{
0 if x(d) < j,

1 if x(d) >= j.
(2.16)

The unary encoding of x is obtained by concatenating these bits for all the dimensions.
For example, suppose X has two dimensions, and the span of the dimensions is 0, . . . , 4
and 0, . . . , 7 respectively (we are following the assumption above according to which
the values are all integers). Then, the unary encoding for the example [2, 4] will be

[1, 1, 0, 0︸ ︷︷ ︸
1st dimension

, 1, 1, 1, 1, 0, 0, 0︸ ︷︷ ︸
2nd dimension

].

The unary code has length
∑

d Ud, and is of course extremely wasteful (see Ta-
ble 3.2 for some examples of unary encoding lengths for real data.) Fortunately, one
does not need to actually compute the code in order to use LSH.

A later version of LSH [31] expands the locality-sensitive family defined in (2.13)
to include arbitrary linear projections (namely, dot products with random vectors in
X), and uses quantization into more than two values. That is, the line f(x) = x · r,
where r is the random vector defining the projection f , is divided into m regions, and
the hash key is formed by concatenating k numbers from 1 to m, rather than bits.
This version of the scheme, called E2LSH, extends the guarantees of locality-similar
hashing to Lp norms for 1 ≤ p ≤ 2; the basic underlying principles, including the
exploitation of the gap between p1 − p2, remain the same. Besides having appealing

44

theoretical properties, LSH has already been successful in practical applications, in
particular in computer vision problems where the ability to do fast lookup in large
databases is crucial. Some examples include [49, 55, 51] and also the work in [105]
and [93], which is part of this thesis.

We can now make a connection between the idea of LSH and the learning frame-
work developed in the next chapter. Each bit in the unary encoding is a feature of the
input, and LSH is randomly selecting a set of kl (not necessarily distinct) features.
This works since that specific family of features is locality-sensitive, with respect to
L1 norm. However, no such guarantee exists for general similarity concepts, that may
not adhere to any metric. Moreover, in general the similarity is not known analyti-
cally, and therefore it is not possible to analytically design an LSH family and prove
its properties. We therefore are interested in a method that would learn a set of
locality-sensitive functions entirely from data.6

Consequently, we will have to change the notion of locality-sensitive set of func-
tions from (2.13) to the following definition of a similarity sensitive family. Let p1, p2

be probability values and S be a similarity (equivalence) concept. A family H of
functions h : X → {0, 1} is (p1, p2,S)-sensitive if, for any h ∈ H,

Pr
x,y∼ p(X)2

(h(x) = h(y) | S(x,y) = +1) ≥ p1, (2.17)

Pr
x,y∼ p(X)2

(h(x) = h(y) | S(x,y) = −1) ≤ p2. (2.18)

An important difference between this definition and (2.13) is in the placement of
qualifiers. In (2.13) it is assumed that the data are fixed, and that the distance of
interest is Lp. In our case, the roles are interchanged: we are interested in finding
deterministic functions that are expected (i.e. have high probability) to be sensitive
to similarity under S for a random input. Thus, the probabilities in (2.17) are taken
with respect to randomly drawn data x,y, and not random functions.

2.5 Summary

In this chapter we have reviewed the main example-based methods for regression
and estimation, in the context of which we develop our learning approach. The
central computational task in these methods is the search in a labeled database for
examples similar to a query. For cases where the similarity underlying this task is well
represented by an analytically defined distance, there exist methods that allow for
efficient solution, exact or approximate. However, the nature of similarity underlying
this task is often defined by the task at hand, lacks known analytical form, and it is
often beneficial to learn it from examples. We have discussed a number of approaches
that have been proposed to this and related problem, some of which have inspired
the work presented in this thesis. In the next chapter we develop a new approach

6As in any learning approach, we of course will also use certain amount of information not
contained in the data per se, such as a hypothesis regarding the suitable parametric form of the
projections.

45

that combines some of the ideas behind LSH, similarity classification and learning
embeddings in one learning framework.

46

