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Preface

The mathematical theory developed in this book finds its initial motivation in the mod-
eling and the analysis of the time behavior of a class of dynamic systems now often
referred to as ‘discrete event (dynamic) systems’ (DEDS). This class essentially con-
tains man-made systems that consisadinite number of resurces (processors or
memories, communication channels, machines) shared by several users (jobs, packets,
manufactured objects) which all contribute to the achievement of some common goal
(a parallel computation, the end-to-end transmission of a set of packets, the assembly
of a product in an automated manufacturing line). The coordination of the user ac-
cess to these resourcemjuires complex control mechanisms which usually make it
impossible to describe the dynamic behavior of such systems in terms of differential
equations, as in physical phenomena. The dynamics of such systems can in fact be
described using the two (Petri net like) paradigms of ‘synchronization’ and ‘concur-
rency’. Synchronizaion requires the availability of several resources or users at the
sametime, whereas concurrency appears for instance when, at a certain time, some
user must choose among several resources. The following example only contains the
synchronization aspect which is the main topic of this book.

Consider a railway station. A departing train must wait for certain incoming trains
so as tadlow passengers to eimge, which reflestthe gnchronization feature. Con-
sider anetwork of such stations where the traveling times between stations are known.
The variables of iterest are therrival and departure times, assuming that trains leave
as soon as possible. The departure time of a train is related to the maximum of the
arrival times of the trains conditioning this departure. Hence the max operation is the
basic operator through which variables interact. The arrival time at a station is the sum
of the departure time from the previoustsin and the traveling time. There is no
conaurrengy since it has tacitly been assumed tlkath train has been assigned a fixed
route.

The thesis deveped here is that there exists an algebra in which DEDS that do not
involve concurrency can naturally be modeled as linear systems. A linear model is a
set of guations in which variables can be addegether and in with variables can
alsobemultiplied by coefficients which are a part of the data of the model. The train
example Bowed that the max is the essential operation that captures the synchroniza-
tion phenomenon by operating on arrival times to compute departure times. Therefore
the basic idea is to treat the max as the ‘addition’ of the algebra (hence this max will
be written @ to suggest ‘addition’). The same example indicates that we also need
convertional addition to transform variables from one end of an arc of the network to

iX
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the other end (the addition of the traveling time, the data, to the departure time). This
is why + will be treated as multiplication in this algebra (and it will be denogd

The operationsp and® will play their own roles and imther examples they are not
necessarily confined to operate as max andespectively.

The basic mathematical feature @f is that it is idempotentx @ x = X. In
practice, it may be the max or the min of numbers, depending on the nature of the
variables whth are handled (either the times at which events occur, or the numbers of
eventsduring given intervals). But the main feature is again idempotency of addition.
The role of® is generallyplayed by conventional addition, but the important thing
is that it behaves well with respect to addition (e.g. that it distributes with respect to
@). The algebraic structure outlined is known under the name of ‘dioid’, among other
names. It has connections with standard linear algebra with which it shares many com-
binatorial properties (associativity andnomutaivity of addition, etc.), but also with
lattice-ordered semigroup theory for, speaking of an idempotent addition is equivalent
to speaking of the ‘least upper bound’ in lattices.

Conventional system theory studies networks of integrators or ‘adders’ connected
in series, parallel and feedback. Similarly, queuing theory or Petri net theory build up
complex systems from elementary objects (namely, queues, or transitions and places).
The theory proposed here studies complex systems which are made up of elementary
systens interacting through a basic operation, called synchronization, located at the
nodes of a network.

The mathematical contributions of the book can be viewed as the first steps to-
ward the deglopment of a theory dinear systems on dioids. Bb deterministic and
stochastic systems are considered. Ctasgioncepts of system theory such as ‘state
space’ recursive equationsyput-output (transfer) functions, feedback loops, etc. are
introduced. Overall, this theory offers a unifying framework for systems in which the
basic ‘engine’ of dynamics is synchronization, when these systems are considered from
thepoint of view of performance evaluation. In other words, dioid algebra appears to be
the right bol to handle synchronization inlenear manner, whereathis pheéomenon
seens to be very nonlinear, or even nonsmooth, ‘through the glasses’ of conventional
algebraic tools. Moreover, this theory may be a good starting point to encompass other
basic features of discrete event systems such as concurrency, but at the price of consid-
ering sysems which araonlinear even inthis new frame/ork. Some pespectives are
opened in this respect in the last chapter.

Although the initial motivation was essentially found in the study of discrete event
systems, it turns ouhat this theory may be appropriate for other purposes too. This
happens frequently with mathematical theories which often go beyond their initial
swpe, as long as other objects can be found with the same basic features. In this
particular case the common feature may be expressed by saying that the input-output
relation has the form of an inf- (or a sup-) convolution. In the same way, the scope
of conventional system theory is the study of input-output relations which are convo-
lutions. In Chapter 1 it is suggested that this theory is also relevant for some systems
which dther are continuous or do not involve synchronization. Systems which mix



Preface Xi

fluids in cettain proportions and which involve flow constraints fall in the former cate-
gory. Recursive ‘optimization processes’, of which dynamic programming is the most
immediate example, fall in the latter cgtey. All these systems involve max (or min)
and+ as the basic opeti@ans. Another situation where dioid algebra naturally shows
up is the asymptotic behavior of exponential functions. In mathematical terms, the
conventionaoperationst and x over positivenumbers, say, are transformed into max
and +, respectively, bythe maping: X — lims., ;o exp(sx). This is rekvant, for
exampe, inthe thery of large deviations, and, coming back to conventional system
theory, when outlining Bode diagrams by their asymptotes.

There are numeius concurrent approaches for constructing a mathematical frame-
work for discrete event sysins. An inportant dichotomy arises depending on whether
the framework is intended to assess the ¢dabbéavior of the system or its temporal
behavior. Among the first class, we would quote theoretical computer science lan-
guayes like CSPor CCSand recent system-theoretic extensions of automata theory
[114]. The algebraic approach that is proposed here is clearly of the latter type, which
makes it omparable with such forntiams as timed (or stochastic) Petri nets [1], gen-
eralized semi-Markov processes [63] andiigens&ueuing network theory. Another
approach, that emphasizes computational aspects, is known as Perturbation Analysis
[70].

A natural question of interest concerns the scope of the methodology that we de-
velop hee. Most DEDS invdve concurrency at an early stage of their design. However,
it is often necessary to handle this concurrency by choosing certain priority rules (by
specifying rouing andbr scheduling, etc.), in order to completely specify their behav-
ior. The theory developed in this book may then be used to evaluate the consequences
of these choices iterms of performance. If the delimitation of the class of queuing
systems that admit a max-gluepresemrtion is not an easy tkswithin the frame-
work of quauingtheory, the problem becomes almost transparent within the setting of
Petri networks dexoped in Chapter 2: stochastic event graphs coincide with the class
of discrete event systems that have a representation as a max-plus linear system in a
random medium (i.e. the matrices of the linear system are random); any topological
violation of the event graph structure, be it a competition like in multiserver queues,
or a superimposition like in certain Jackson networks, results in a min-type nonlinear-
ity (see Chapter 9). Although it is beyond the scope of the book to review the list of
gueuing systems that are stochastic event graphs, several examples of such systems are
provided ranging from manufacturing models (e.g. assembly/disassembly queues, also
cdled fork-join queues, jobshop and flowshop models, production lines, etc.) to com-
munication and computer science models (communication blocking, wave front arrays,
etc.)

Another important issue is that of the design gains offered by this approach. The
most inportant structural results are probably those pertaining to the existence of pe-
riodic and stationary regimes. Within the deterministic setting, we would quote the
interpretation of the pair (cycle time, periodic regime) in terms of eigenpairs together
with the polynomial algorithms that can be used to compute them. Moreogeause
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bottlenecks of the systems are explicitly revealed (through the notion of critical cir-
cuits), this approach provides an efficievdly not only to evaluate the performance but

also to assess certain design choices made at earlier stages. In the stochastic case, this
approach first yields new characterizations of throughput or cycle times as Lyapunov
exponents associated with the matrices of the underlying linear system, whereas the
steady-state regime receives a natural characterization in terms of ‘stochastic eigenval-
ues’ in max-plus algebra, very much in the flavor of Ose|&lawiltiplicative ergodic
theorems. Thanks to this, queuing theory and timed Petri nets find some sort of (linear)
garden where several known results concerning small dimensional systems can be de-
rived from a few classical theorems (or more precisely from the max-plus counterpart
of classical theorems).

The theory of DEDS came into existence only at the beginning of the 1980s, though
itis fair to say that max-plus algebra is older, see [49], [130], [67]. The field of DEDS is
in full development and this book presents in a coherent fashion the results obtained so
far by this algebraic approach. The book can be used as a textbook, but it also presents
the curent state of the theory. Short historical notes and other remarks are given in the
note sections at the end of most chapters. The book should be of interest to (applied)
mathematicians, operations researchers, electrical engineers, computer scientists, prob-
ahilists, statisticians, management scientists and in general to those with a professional
interest in parallel and distributed processing, manufacturing, etc. An undergraduate
degree in mathematics should be sufficient to follow the flow of thought (though some
parts go beyond this level). Introductory cees in dgebra, probability theory and lin-
earsystemtheay form an ideal background. For algebra, [61] for instance provides
sutable background material; for probability theory this role is for instance played by
[20], and for linear system theory it is [72] or the more recent [122].

The heat of the book consists of four main paresach of which consists of two
chapters. Part | (Chapters 1 and 2) pdms a natural motivation for DEDS, it is
devoted to a general introduction and relationships with graph theory and Petri nets.
Pat Il (Chapters 3 and 4) is devoted to the underlying algebras. Once the reader has
gone through this part, he will also appreciate the more abstract approach presented
in Parts Il and IV. Part Il (Chapters 5 and 6) deals with deterministic system theory,
where the systems are mostly DEDS, but continuous max-plus linear systems also are
discussed in Chapter 6. Part IV (Chapters 7 and 8) deals with stochastic DEDS. Many
interplays of comparable results between the deterministic and the stochastic frame-
work are shown. There is a fiftpart, consisting of onechapter (Chapter 9), which
deals with related areas and some open problems. The notation introduced in Parts |
ard Il is used throughout the other parts.

The idea of writing this book took form during the summer of 1989, during which
the third author (GJO) spent a mini-sabbatical at the second author’s (GC's) institute.
The aher two authors (FB and JPQ) joined in the fall of 1989. During the process
of writing, correcting, cutting, pasting, etc., the authors met frequently, mostly in
Fontainebleau, the latter being situated close to the center of gravity of the authors’
own home towns. We acknowledge the working conditions and support of our home
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necessary travels. Mr. J. Schonewille of Delft University of Technology is acknowl-
edged for preparing many of the figures using Adobe Illustrator. Mr. G. Quanounou
of INRIA-Rocquencourt deserves also many thanks for his help in producing the final
manuscript using the high-resolution equipment of this Institute. The contents of the
book have been improved by remarks of P. Bougerol of the University of Paris VI, and
of A. Jean-Marie and Z. Liu of INRIA-Sophia Antipolis who were all involved in the
proofreading of some parts of the manuscript. The authors are grateful to them. The
second (GC) anddurth (JPQ) authors wish to acknowledge the permanent interaction
with the other past or presemembersof the so-called Max Plus working group at
INRIA-Rocquencourt. Among them, M. Viot and S. Gaubert deserve special mention.
Moreover, S. Gaubert helped us to check some examples included in this book, thanks
to his haady computer software MAX manipulating tidh] y, 8] algebra. Finally,

the publisher, in the person of Ms. Helen Ramsey, is also to be thanked, specifically
because of her tolerant view with respect to deadlines.

We would like to stress that the material covered in this book has been and is still
in fast evolution. Owing to our different backgrounds,éclme clear to us that many
different cutures within mathematics exist with regard to style, notation, etc. We did
our best to come up with one, uniform style throughout the book. Chances are, how-
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co-auhors.

Franmis Baccdli, Sophia Antipolis
Guy Cohen, Fontainebleau
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Jean-Piere Quadrat, Rocquencourt

June 1992

1GC: I donot agree. FB is more prone to that than any of us!
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Chapter 1

Intro duction and Motivation

1.1 Preliminary Remarks and Some Notation
Probably the most well-known equation in the theory of difference equationsis
Xt+1)=Axt) , t=0,1,2,.... (1.1)

The vectorx € R" represents the ‘state’ of an underlying model and this state evolves
in time according to this equatiorx(t) denotes thetate at timet. The synbol A
repregnts a givem x n marix. If an initial condition

X(0) = Xg (1.2)

is given, then te whole future evolution of (1.1) is determined.
Implicit in the text above is that (1.1) is a vector equation. Written out in scalar
equations it becomes

n
Xi(t+1)=ZAngj(t), i=1,....,n:; t=0,1,.... (1.3)
j=1
The gymbol x; denotes thé-th component of the vector; the eementsA;; are the
enties of the square matrid. If Aj,i, j =1,...,n, andx;), j =1,...,n, are
given, therx;(t + 1), j = 1,... , n, can be calculated according to (1.3).

The only opeaations used in (1.3) are multiplicatiory; x X;(t)) and addition (the
>~ symbol). Most of this book can be considered as a study of formulee of the form
(1.1), in which the operations are changed. Suppose that the two operations in (1.3)
are change in thefollowing way: addition becomes maximization and multiplication
becomes addition. n (1.3) becomes

= max(Aj; +xjKk)y , i=1...,n. '
If the initial condition (1.2) also holds for (1.4), then the time evolution of (1.4) is
complegely determined again. Of course the time evolutions of (1.3) and (1.4) will be
different in general. Equation (1.4), as it stands, is a nonlinear difference equation. As

3
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an example taka = 2, suchthatA is a 2x 2 matrix. Suppose

A:<§ j) (15)

=

Thetime evolution of (1.1) becomes

x(O):(é), x(l):(i), x(2)=<ii>, x(3)=<1g;>,...

and thetime evolution of (1.4) becomes

x0=(g) xo=(7) x@=(%) x@=(15).. an

We are used tohtinking of the argument in x(t) as time; at time the state is
X(t). With respect to (1.4) we will introduce a different meaning for this argument.
In order to emphasize this different meaning, the argurhdras been replaced bi.
For this new neaning we need to thk of a network, which consists of a number of
nodes and some arcs connecting these nodes. The network corresponding to (1.4) has
n nodes; one foeach corponentx;. Entry Aj; carresponds to the arc from nogeo
nodei. In terms ofgraph theory such a network is called a directed graph (‘directed’
because the individual arcs between tioeles are one-way arrows). Therefore the arcs
corresponding tod; and Aj;, if both exist, are considered to be different.

Thenodes in the network can perform certain activiteschnode has its own kind
of activity. Such activities take a finite time, called the activity time, to be performed.
Thes activity timesmay be dfferent for different nodes. It is assumed that an activity
at a cettain node can only start when all greding (‘directly upstreamfodes have
finished their activities and sent the results of these activities along the arcs to the
current node. Thus, the arc corresponding¥pcan be iterpreted as an output channel
for nodej and smultaneously as an input channel for nad&uppose that this node
starts its activity as soon as all precedimgdes have sent their results (the rather neutral
word ‘results’ is used, it could equally have been messages, ingredients or products,
etc) to nodei, then (1.4) desaibes when the aciivities take phce. The interpretation
of the quantities used is:

and that the initial condition is

é ) (1.6)

¢ X; (K) isthe eatiest epoch at which node becomes active for thie-th time;

e A isthe uum of the activity time of nod¢ and the traveling time from nod¢
to nodei (the rather neutral expression ‘traveling time’ is used instead of, for
instance, ‘transportation time’ or ‘communication time’).

The fact that we writeA;j ratherthan A;; for a quantity connected to the arc from
nodej to nodei has to do with matrix equations which will be written in the classical
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3 4
m

e Node 1 node Ze
\_2/‘

Figure 1.1: Network corresponding to Equation (1.5)

way with column vectors, as will be seen latn. For the example given above, the
network has two nodes and four arcs, as given in Figure 1.1. The interpretation of the
number 3 in this figure is that if node 1 has started an activity, the next activity cannot
start within the next 3 time units. Similarly, the time between two subsequent activities
of node 2 is at least 4 time units. Node 1 sends its results to node 2 and once an activity
startsin node 1, it takes 2 time units before the result of this activigochesode 2.
Similarly it takes 7 time units after the initiation of an activity of node 2 for the result
of that activity to reachnode 1. Suppose that an activity refers to some production. The
production time of node 1 could for instance be 1 time unit; after that, node 1 needs
2 time units for recovery (lubrication say) and the traveling time of the result (the final
product) from node 1 to node 2 is 1 time unit. Thus the nunfer= 3 is made up

of a production time 1 and a recovery time 2 and the nunfeer= 2 is made up of

the same production time 1 and a traveling time 1. Similarly, if the production time at
node 2 is 4, then this node does not need any time for recovecaseA,, = 4), and

the traveling time from node 2 to node 1 is 3gtauseA;; = 7 = 4 + 3).

If we now look at the sequence (1.7) again, the interpretation of the veatiorss
differert from theinitial one. The argumerk is no longer a time instant but a counter
which gates how many timesthe various nodes have been active. At time 14, node 1
has been active twice (more precisely, node 1 has started two activities, respectively at
times7 and 11). At the same time 14, node 2 has been active three times (it started
acivities at times 4, 9 and 13). The counting of the activities is such that it coincides
with the argument of th& vecior. The initial condition is henceforth considered to be
thezeroth activity.

In Figure 1.1 there was an arc from any node to any other node. In many networks
referring to more practical situations, shiill not be the case. If there is no arc from
nodej to nodei, then noda does not need any result from nogleTherefore nodg
does not have a direct influence on the behavior of mottesuch a guation it is useful
to consider the entry; to be gual to—oo. In (1.4) the term—oo + X;(K) does not
influencex; (k + 1) as long ax (k) is finite. The number-oo will occur frequently in
what follows and Wil be indicaed bye.

For rea®nswhich will become clear later on, Equation (1.4) will be written as

xi(k+1)=@A” @xjk) , i=1..,n,
i
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or in vector notation,
Xx(k+1) =A®x(Kk) . (1.8)

The ymbol @j c(j) refers to the maximm of the elements(j) with respect to all
appropriatej, and® (pronounced ‘o-times’) refers to addition. Later on the syngbol
(pronounced ‘o-plus’) will also be used;® b refers to the maximm of the galarsa
andb. If the initial condition for (1.8) ix(0) = Xo, then

X(1) =A®Xo ,
X(2)=A®X(1)=AR(A®X) =(A® A @X = A’ QX .
It will be shown in Chapter 3 that indeel® (A ® Xo) = (A ® A) ® Xo. For the

example gien above itis easy to check this by hand. Insteadl ®fA we simpy write
A2, We obtain

X3 =A®XQ =AR(A’®X)=A’A) X =A®X ,
and in general
XK =(ARA® - - @A ®Xx =A®x .
k times

The matricesA?, A3, ... , can be calculated directly. Let us consider thenatrix of
(1.5) again, then

p2_ ( Max@+3.7+2) max3+7.7+4) )\ _ (9 11
“\ max2+3,4+2 max2+7.4+4 )\ 6 9 )

In general

(A% = GIBAN ® Aj = mIaX(An + Aj) . (1.9)

An extengon of (1.8) is

x(k+ 1)
y(K)

The ymbol & in this formula refers to componentwise maximization. Thevector
u is cdled the input to the system; thp-vectory is the ouput of the system. The
components ofi refer to nodes which have no pesmissas. Similarly, the components
of y refer to nodes with no swessas. The components of now refer to internal
nodes, i.e. to nodes which have botlteessors and predecessors. The matifies
{Bij} andC = {C;j} havesizesn x mandp x n, resgectively. The traditional way of
writing (1.10) would be

(1.10)

(A®x(K) @ (B®uk) ,
Cx(k) .

Xi(k+1) = maxAz+xiK),..., An+ X (K),
Bi1+Uik),...,Bm+un®k) , i=1...,n;
viltkh = maxCii+xu(k), ..., Cnt+x(k), i=1...,p.
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Sametimes (1.10) is written as

x(k+1)
y(K)

where it isunderstood that multiplication has priority over addition. Usually, however,
(1.10)is written as

AR xKk @ B®uk) ,
Coxk . } (1.11)

xk+1) = AxK @ Buk ,
y(k) Cx(K) . } (112

Uy

If it is clear where the®’-symbols ae used they are sometimes omitted, a
shown h (1.12). This pratice is exactly the same one as with respect tq the
more comman multiplication’ x " or ‘. ' symbol in conventional algebra. |
the same &in, in conventional algebraxix is the same asxi. which isusually
written asx. Within the context of the® and&® symbols, 0» x is exactly the
same ax. The synbol ¢ is the neutral @ment with respect to maximizatian;
its numerical value equalsoco. Similarly, the symbole denotes th neural
element with respect to addition; it assumes the numerical value 0. Also note
that 1® x is differentfrom x.

=)

If one wants to think in terms of a network again, th&k) is a vector ndicating when

certain resources become available for kb time. Subsequently it takeB;; time

units befae thej-th resource reachewdei of the network. The vectoy(k) refers to

the gooch at which the final products of the network are delivered to the outside world.
Take for kample

xk+1) = (g Z)x(k)@(i)u(k),

(1.13)
yk) = (3 &)xKk .
The orresponding network is shown in Figure 1.2.edduseB;; = ¢ ( = —o0), the
o u(k)
3 L /a

m
[ ) [ ]
/3 ~_ 2 S
e y(k)
Figure 1.2: Network with input and output

inputu(k) only goes to node 2. If one were to replaBeby ( 2 1 ) for instance,
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where the prime denotes transposition, then eaglutiwould ‘spread’ itself over the
two nodes. In this example from epociik) on, it takes 2 time units for the input to
reachnode 1 and 1 time unit teachnode 2. In many practical situations an input will
erter the network through one node. That is why, as in this example, onl\Beaetry
per column is different froma. Similar remarks can be ne with respect to the output.
Suppose that we have (1.6) as an initial condition and that

uO=1, ud=7, u2=13, u@ =19,...,

then it easily follows that

x(O):(é), x(l):(Z), x(2)=<191>, x(3)=<12>,...,

yO) =4, y) =10, y@ =14, y@3 =19,....

We started thisextion with the difference equation (1.1), which is a first-order
linear \ector difference equation. It is well known that a higher order linear scalar
difference equation

2K+ 1) = az(K) + apz(k — 1) + - - - + anz(k — n + 1) (1.14)

canbe written in the form of Equation (1.1). If we introduce the veatnk), z(k —
1),...,z(k —n+1)), then (1.14) canbewritten as

zk+ 1) a a ... ... a z(k)

z(k) 1 0 ... ... 0 zk—1)

: -1 0 : . (1.15)
2k —n+2) o .. 0 1 0 20— n+ 1)

This equation has exactly the form of (1.1). If we change the operationsin (1.14) in the
standad way, addition becomes maximization and multiplication becomes addition;
then the numecial evaluation of (1.14) becomes

zk+1 =max(@ +zk),a+zk—-1),...,an+zk—n+1) . (1.16)

This equation can also be written as a first-order linear vector difference equation. In
fact ths equation is almost Equation (1.15), which must now be evaluated with the
operations maximization and addition. The only difference is that the 1's and 0’s in
(1.15) must be replaced s ande’s, resgectively.

1.2 Miscellaneous Examples

In this section, seven examples from different application areas are presented, with a
special emphasis on the modeling processe Exampls can be read ingendently.
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It is shown that all problems formulated lead to equations of the kind (1.8), (1.10),
or related ones. Solutions to the problems which are formulated are not given in this
section. To solve these problems, the theory must first be developed and that will be
done in the next chapters. Although some of the examples deal with equations with the
look of (1.8), the operations used will again be different. The mathematical expressions
are the same for many applications. The underlying algebra, however, differs. The
enphasis of this book is on these algebras and their relationships.

1.2.1 Planning

Planning is one of the traditional fields in which the max-operation plays a crucial
role. In fact, many problems in planning areas are more naturally formulated with
the min-operation than with the max-operation. However, one can easily switch from
minimization to naximization and vice versa. Twgplicationswill be considered in

this subsection; the first one is the shorfeth problem, the second one is a scheduling
problem. Solutions to such problems have been known for some time, but here the
enphasis is on the notation introducedsih.1 and on some analysis pertaining to this
notation.

1.2.1.1 Shortest Path

Consider a network ai cities; these cities are the nodes in a network. Between some
cities there are road connections; the distance betweenj @tyd dty i is indicated
by Ajj. A road corresponds to an arc in the network. If there is no road frami,
then we sety; = ¢. In this xamples = +o00; nonexisting roads get assigned a value
+oo ratherthan—oo. The eason is that wevill deal with minimization rather than
maximization. Owing to the possibility of one-way traffic, it is allowed thaj # Aj;.
Matrix Ais defired asA = (A;).

The entry A denotes the distance betwegrandi if only one link is allowed.
Soméimes it may be more adwntageus to go fromj toi viak. This will be the case
if Aix + Ag < Ajj. The $ortest distance from toi using exadly two links is

min (A + Ayq) - (1.17)
k=1,...,n
When we usehte shorthand symba} for the minimum operation, then (1.17) becomes
@ Ak ® Ay .
k

Note that @ has been used for both the maximum and the minimum operation.
It should be clear from the context which is meant. The symbalill be used
similarly. The reason for not distinguishing between these two operations is that
(R U {—o0}, max, +) and (R U {+o0}, min, +) are isomorphic algebraic structures.
Chapters 3 and 4 will deal with such structures. It is only when the operations max
and min appear in the same foulathat this convention would lead to ambiguity. This
situation will occur in Chapter 9 and diffent synibols for the two operations will be
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used tlere. Expression (1.17) is thg-th entry of A%

(A =D Ak ® A -
k

Note that the &pressionA? can have different meanings also. In (1.9) the max-
operation was used veheas the min-operation is used here.

If one isinterested in the shortest path frgnto i using oneor two links, then the
length of the shortest path becomes

(A A% .

If we continue, and if one, two or three links are allowed, then the length of the shortest
path fromj toi becomes

(Ao A2 A%

whereA® = A2 ® A, and soon for more than three links. We want to find the shortest
path whereby any number of links is allogkelt is easily seen that a road connection
consisting of more tham — 1 links can never be optimal. If it were optimal, the
traveler would visit one city at least twice. The road from this city to itself forms a part

of the total road connection and is called a circuit. Since it is (tacitly) assumed that
all distances are nonnegative, this circuit adds to the total distance and can hence be
disregarded. The conclusion is that the length of the shortest pathjftomis given

by
A A2@---@ A1) .

Equivalently one can use the following infinite series for the shortest path (the terms
AX, k > n do not contribute to the sum):
At A A A A . (1.18)

The matrixAt, somédimes rderred to as thehortest path matrix, also showsip inthe
scheluling problem that we define below shortly.

Notethat(A™);; refers to a path which first leaves nddand then comes back to it.
If one wants to include the possibility of staying at a node, then the shortest path matrix
should be defined as® A*, wheree denotesthe identity matrix of the same size As
An identity matrix in this set-up has zeros tire diagonal and the other entries have
the valuetoo. In gereral,eis an identity matrix of appropriate size.

The shortest path problem can also be formulated according to a difference equation
of the form (1.8). To that end, consider an< n matiix X: theij-th entry of X refers
to a connection from city to cityi, X;;(k) is the minimum length with respect to all
roads fromj toi with k links. Then itis not difficult to see that this vector satisfies the
equation

Xij(k) =|=rl1'i'pn(xi|(k— D+ A, i,j=1,...,n. (1.19)
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Formally this equation can be written as
XK =Xk-—DA=XKk-1DRA,

but it cannot be seen from this equation that the operations to be used are minimization
and addion. Pleasaote that the matriX in the last equation, which is of sizé x n?,

is differentfrom the originalA, of sizen x n, as intoduced at the beginning of this
subsection. The principle of dynamic programming can be recognized in (1.19). The
following formula gives exactlyhe sameesults as (1.19):

Xij (K) :|=T.i.hn(A“ +Xjjk=1), i,j=1,...,n.

The difference betweethis formula and (1.9) is that one uses the principle of forward
dynamic programming and the other one uses backward dynamic programming.

1.2.1.2 Scheduling

Consider a project which consists of various tasks. Some of these tasks cannot be
started lefore ®me others have been finished. The dependence of these tasks can be
given in adirected graph in which eaamode coincides with a task (or, equivalently,
with an activity). Asan example, consider the gitaof Figure 1.3. There are six

_

o4
[ ]
/ 2 s 9 N
° b 4
o ™ 6
/
°3
Figure 1.3: Ordering of activities in a project

nodes, numbered 1.. , 6. Node 1 represents the initial activity and node 6 represents
the final activity. It is assumed that the activities, except the final one, take a certain
time to be performed. In addition, there may be traveling times. The fact that the final
acivity has a zero cost is not a restriction. If it were to have a nonzero cost, a fictitious
node 7 could be added to node 6. Node 7 would represent the final activity. The arcs
between the nodes in Figure 1.3 denote trecpdence constraints. For instanuede
4 cannot start before nodes 2 and 5 have finished their activities. The nufaper
assaiated with the ac from nodej to nodei denotes the minimum time that should
elapsebetween the beginning of an activity at nogand thebeginning of an activity
atnodei.

By means of the principle of dynamic programming it is not difficult to calculate
thecritical path in the graph. Critical hereefers to ‘slowest’. The total duration of
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the overall project cannot be smaller than the summation of all numbBgralong the
critical path.

Another way of finding the time at which the activity at nadean start at the
earliest, whichwill be denotedx;, is the following. Suppose activity 1 can start at
epochu atthe earliest. This quantity is aninput variable which must be given from
theoutside. Hence&; = u. For the otherx;’s we can write

Xj = jgf’%fﬁ(ﬁ‘j + Xj) .

If there is no arc from nodé to j, then Ajj gets assigned the value(= —o0). If

X = (Xg,...,X%s) andA = (A;), then wecan compactly write
X=AX® Bu , (1.20)
where
e € €& €& & ¢ e
5 ¢ ¢ ¢ ¢ ¢ g
3 ¢ ¢ ¢ ¢ ¢ g
A= e 2 ¢ ¢ 5 ¢ |’ B = g
e 1 4 ¢ ¢ ¢ g
e ¢ 8 2 4 ¢ g

Notethatein B equals 0 in this context. Here we recognize the form of (1.11), although
in (1.20) timedoes not play a role in the left-hand side equals tkean the right-hand
side. Hemre (1.20) is an irplicit equation for the vectok. Let us se what weobtain

by repeatd subditution of the complete right-hand side of (1.20) intaf this same
righthand sde. After one substitution:

x = A’X@® ABu® Bu
= Ax®d(A®eBu,

and aftem subditutions:

x=AX® A" 'A% ... & A®eBu .

In the formuee alove, erefers to the identity matrix; zeros on the diagonal and
¢'s elsewtere. The synbol e will be used as the identity element for alleges
that will be encountered in this book. Similarkywill be used todenote the
zewo dement of any space to be encountered.

154

Since he entres of A" denote the weights of paths with lengtlin the mrresponding
graph andA does not have paths of length greater than 4, we\jet —oo forn > 5.
Therefore lhe soldion x in the current eample becomes

x=(A"apAdANoAdeBu , (1.21)
for whichwe can write

Xx=(e® A"HBu ,
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where At was definedn (1.18).
In (1.21), we made se of the eries

ALesAs. . oA .. | (1.22)

dthough it was concluded that, k > n, does not contribute to the sum. With the
conventional matrix calculus in minghe might be tempted to write for (1.22):

EPADA D -y =0 AT (1.23)

Of coursg we have not defined the inverse of a matrix within the current setting and
so (1.23) is arempty stéement. It is also strage to have a ‘minus’ sig® in (1.23)

and it isnot known how to interpret this sign in the context of the max-operation at the
left-hand side of the equation. It should be the reverse operatiagn df we dare to
continue along these shaky lines, one could write the solution of (1.20) as

e Ax=Bu=x=(eo A 'Bu.

Quite often one can guide one’s intuition by considering formal expressions of the kind
(1.23). One tries to find formal analogies in the notation using conventional analysis.
In Chapter 3t will be shown that an inverse as (..23) does not exisn gereral and
therefore we get ‘stuck’ with the series expansion.

There is a dual way to analyze the criticatlpaf Figure 1.3. Instead of starting at
the initial node 1, one could start at the final node 6 and then work backward in time.
This latter approach is usafwhen a target time for the completion of the project has
been set. The question then is: what is the latest moment at whichneaehhas to
start its activity in such a way that the target time can still be fulfilled? If we call the
stating timesx; again, then its not difficult to see that

Xi =min-mjin((7®ij+xj),(§)i+u], i=1..,6,

where
e 5 3 ¢ ¢ ¢ g
e ¢ ¢ 2 1 ¢ g
~ e ¢ ¢ € 4 8 = g
A = s B =
e € ¢ € ¢ 2 g
e ¢ ¢ 5 ¢ 4 g
e € & € & ¢ e

It is easily seen thah is equal to the transpose & in (1.20); xg has keen chosen as
the completion time fathe project. In matrix form, we can write

x=(A®x)®(Bou) .

where® is now the matrix multiplication using min as addition of scalars ands
multiplication, whereasp is the min of vectors, componentwise. This topic of target
times will be addressed #§b.6.



14 Synchronization and Linearity

1.2.2 Communication

This aubsection focuses on the Viterbi algorithm. It can conveniently be described by
a formulaof the form (1.1). The operations to be used this time are maximization and
multiplication.

The stochastic process of interest in this sectigk), k > 0, is a time homoge-
neous Markov chai with stae space{1, 2, ... , n}, defined on some probability space
(2, F, P). The Markovproperty means that

Plvk+1) =i [ v(0) =io, ..., vk =ik] =P[vk+ 1) =ik1 [ v(k) =ik],

whereP [ A | B] denotesthe conditional probability of the evert given the even3
and.A andB are inF. Let M;; denote thetransition probability from satej toi. The
initial distribution of the Markov chain will be denoteul

The process = (v(0), ..., v(K)) is assumed to be observed with some noise.

This means thathere exsts a squence of{1, 2, ..., n}-valued random variables

z(k),k = 0,..., K, cdled theobservation, and sih thatN;j, def Plzk) = ik |

v(k) = jk] does not depend ok and sub that he jant law of (v, z), where
z=(z(0), ..., z(K)), is given by tte rektion

K
Plv=j,z=i]= (H Nikjijkj“) Niojo Pio - (1.24)
k=1
wherei = (ip, ... ,ix) andj = (jo, ..., jk)-

Given such assequencez of observations, the question to be answered is to find
the sguencej for which the probabilityP[v = j | Z] is maximal. This poblem is a
highly simplified version of a text recognition problem. A machine reads handwritten
text, symbol after symbol, but makes mistakes (the observation errors). The underlying
modd of thetext is such that after having read a symbol, the probability of the occur-
rence of the next one is known. More precisely, the sequence of symbols is assumed to
be produced by a Markov chain.

We want to compute the quantity

Xj (Ky= max Plv=j,z=i] . (1.25)
Jo,-es Jk-1
This quantity is also a function of but ths dgpendence will not be made explicit. The
argument that achieves the ximum in the right-hand side of (1.25) is the most likely
text up to thg K — 1)-st symbol for the observatiansimilarly, the argumenjk which
maximizesx;, (K) is the most likelyK-th symbol given that the firgk observations
arei. From (124), we obtain

K
X (K) = max (T (NiiMigics) Nigjo Pio
Joseees JK-1 kel

_ rj}:«’jlf(((NinK Micic 1) Xic 2 (K = 1))

IClassically, h Markov chains M;j would rather be denoted ;.
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with initial conditionx;,(0) = Nyj, pj,- The reader will recognize the above algorithm
asa gmple version of (forward) dynamic programming. & j Mj,;., iS denoted
A j., then he general formula is

Xm(K) = Z_n;ax (AmeXe(k—1), m=1,...,n. (1.26)

This formula is similar to (1.1) if addition is repted by maximization and rtiplica-
tion remains multiplication.

The \iterbi algorithm maximize®[v, z] as givenin (1.24). If ve take thedgarithm
of (1.24), and multiply the result by—1, (1.26) becomes

—In(Xm(k)) = Zznfipn[— IN(Ame) —In(Xe(k—21))], m=1,...,n.

The form of his equation exactly matches (1.19). Thus the Viterbi algorithm is identi-
cal to an algorithm which deteiimes the shortest path in a network. Actually, it is this
latter algorithm—minimizing- In(P[v | z])—which is quite ofte referred to as the
Viterbi algorithm, rather than the one expressed by (1.26).

1.2.3 Production

Consider a manufacturing system consisting of three machines. It is supposed to pro-
duce three kinds of parts according to a certailmguct mix. The routes to be followed

by each part and each machine are depicted in Figure 1.4 in which = 1, 2, 3,

are the machines ang,i = 1, 2, 3, are the parts. Prossing tines are given in

Py

P

By M, M N Vs

Figure 1.4: Routing of arts along machines

\A4

Table 1.1. Mte that this manufacturing system has a flow-shop structure, i.e. all parts
follow the same sequence on the machines (although they may skip some) and every
machine is visited at most once by each part. We assume that there are no set-up times
on machines when they switch from one part type to another. Parts are carried on a
limited number of pallets (or, equivalently, product carriers). For reasons of simplicity

it is assumed that

1. only onepdlet is available for each part type;

2. thefinal product mix is balanced in the sense that it can be obtained by means of
a periodic input of parts, here chosen to Bg P, Ps;

3. there are no $aip times or traveling times;
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Table 1.1: Proessing times

L _[P[P[Ps]
My 1]5
M, | 3] 2|3
Ms | 4 | 3

4. the sequencing of part types on the machines is known andr%.i$;) on My,
(P1, P2, P3) on M3 and(Py, P,) on Ms.

The lastpoint mentioned is not for reasons of simplicity. If any machine were to start
working on the part which arrived first instead of waiting for the appropriate part, the
modeling would be different. Manufacturing systems in which machines start working
on the first arriving part (if it has finislaeits current activity) will be dealt with in
Chapter 9. We can draw a graph in which eadde corresponds to a combination of

a machine and a part. Siné&, works m 2 parts, M, on 3 andM3 on 2, this graph has

seven nodes. The arcs between the nodes express doeg@ence constraints between
opeationsdueto the ssquencing of operations on the machines. To azmtei in

Figure 1.5 corresponds a numbemwhich denotes the earliest epoch at which the node
canstart its activity. In order to be able to calculate these quantities, the epochs at which
the machimes and parts (together called the resources) are available must be given. This
is done by means of a six-dimensional input veatdsix since there are six resources:
three machines and three parts). There is an output vector also; the components of
the six-dimensional vectoy denote the epochs at which the parts are ready and the
machines have finisheti¢ir jobs (for one cycle). The model becomes

X = AX @ BuU ; (1.27)

y=Cx, (1.28)

in which the matrices are

>

Il
M M M M M
m m g™ M ;M
M WM WM m M
N® ND® M & o™
m M M M M ;M
N®m ®m ®» M ;o M
m M M M M ;M

W

Il
m M M m m Mm@
m m M M D M
™ D ®» mm m m
m m M M D M M
m m M M M Mm@
m M m M Mm@ ™
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e 5 ¢ ¢ ¢ ¢ ¢

e ¢ ¢ ¢ 3 ¢ ¢

c_| ¢ ¢ ¢ ¢ ¢¢ 3
Tl e e ¢ ¢ & 4 ¢
e ¢ ¢ ¢ ¢ ¢ 3

e ¢ ¢ ¢ 3 ¢ ¢

Equation (1.27) is an iplicit equation inx which can be solved as we did in the

P, Ps
Usg Ug
@ uL»o - se— Y1
Ug 1 2

M 2 Uz [ Y2
3 4 5
us Y6
M —_— > 0 —>
3 6 3 Y3
Ya Ys

Figure 1.5: Theordering of activities in the flexible manufacturing system
subsection on Planning;
X = A*BuU .

Now we ald feedback arcsto Figure 1.5 as illustrated in Figure 1.6. In this graph

\
\
o< .
N
’
=
1
1
1
4 ==
1
1
1
1
1
¢'(—|—I o< .
\
A==
<7

Y A
/

’
\
~

Figure 1.6: Production system with feedback arcs

the feedlack arcs are indicated by dotted lines. The meaning of these feedback arcs is
the following. After a machine has finished a sequence of products, it starts with the
next sequence. If the pallet on which prodBctvas mounted is at the end, the finished
product is removed and the empty pallet immediately goes back to the starting point
to pick up a new part?,. Ifitis assumed thathte feedlack arcs have zero cost, then
u(k) = y(k — 1), whereu(k) is thek-th input cycle andy(k) thek-th output. Thus we
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can write

ykk) = Cx(k) CA*Bu(k)

CA*Byk —1) .

(1.29)

The trandtion matrix fromy(k — 1) to y(k) canbe calculated (it can be done by hand,
but a simplecomputemprogram does the job also):

6 ¢ ¢ € 6 5

9 8 ¢ 8 9 8

def ~pxp | 6 10 7 10 6 ¢
M=CA'B= e 17T 4 7 ¢ ¢
6 10 7 10 6 ¢

9 8 ¢ 8 9 8

This marix M deternines the speed with which the manufacturing system can work.
We will return to this issue ir§1.3

1.2.4 Queuing System with Finite Capacity

Let us onsider four servers§,i = 1,...,4, in series(see Figure 1) Each cus-

e ORORONOR

Figure 1.7: Queuing system with four servers

tomer is to be served bg;, S, 3 and S, and sgcifically inthis order. It takes; (k)

time units for§ to serve customés (k = 1, 2, ...). Customek arrives at epochu(k)

into the buffer associated with,. If this buffer is empty andS, is idle, then this
customer is served directly ;. Between the servers there are no buffers. The con-
sequence isthati§, i = 1, 2, 3, has finished serving customerbut S, ; is still busy
serving aistomerk — 1, then§ cannot start serving the new custonie# 1. He must

wait. To complete the description of the queuing system, it is assumed that the travel-
ing times between theesvers are zero. Letj (k) denote the beginning of the service

of customeik by serverS. BeforeS can start serving customkr+ 1, the fdlowing

three conditions must be fulfilled:

e S must have firshed sering customek;
e S.1 mustbeide (fori = 4 this condtion is an empty one);
e S_1 must have firshed seving customelk + 1 (for i = 1 this condtion is an

empty one and must be related to the arrival of custdmerl in thequeuing
system).



1.2. Miscellaneous Examples 19

It is not difficult to see that the vector, consisting of the foux-components, satisfies

g g g g
k+1
x(k + 1) A P T
€ € 3k+1) ¢
(1.30)
11(K) e g € e
€ 72(K) e € g
) . . (k) o x(k) ® . uk+1) .
€ € € 74(K) €

We will not discuss issues related to initial conditions here. For those questions, the
reader is referred to Chapters 2 and 7. Equation (1.30), which we write formally as

x(k+1) = A(k+ 1 k+Dxk+1) & Ak +1,kxKk & Buk+1) ,

is an implicit equation inx(k 4+ 1) which canbe solved again, as done before. The
resut is

Xk+1) = (Ak+1, k+ 1)) (Ac(k+ 1, kx(k) & Buk+ 1)) ,
where(Ax(k + 1, k + 1))* equals

e € € €
i(k+ 1) e € €
(kK + Dok + 1) 2k +1) e €
ik + Dok + Dk +1) wk+Dsk+1) 3k+1) e

The austomers who arrive in the queuing system and cannot directly be served by
S, wait in thebuffer associated witls,;. If one isinterested in the buffer contents, i.e.
the number of waiting customers, at a certain moment, one should use a counter (of
customers) at the entry ofatbuffer and one at the exit of the buffer. The difference of
the two counters yields the buffer contents, but this operation is nonlinear in the max-
plus algebra framework. 1§L.2.6 we will return to the ‘counter’-description of discrete
ewent systems. The counters just mentioned are nondecreasing with time, whereas the
buffer contentstself is fluctuating as a function of time.

The design of buffer sizes is a basic praolin manufactung systems. If the buffer
contents tends to go teo, one speaks of an unstable system. Of course, an unstable
system is an exmple of abadly designed system. In the current example, buffering
between the servers was not allowed. itéibuffers can also be modeled within the
max-plus algebra context as shown in the next subsection and more genefall§.ia
Another useul parameter is the utilization factor of a server. It is defined by the ‘busy
time’ divided by the total time elapsed.

Notethat we dichot make any assumptions on the service tinde). If oneisfaced
with unpredictable breakdowns (and subsequently a repair time) of the servers, then
the service times might be modeled stoctwdly. For a deterministic and invariant
(‘customer invariant’) system, the serving times do not, by definition, depend on the
particular customer.
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1.2.5 Parallel Computation

The gplication of this subsection belongs to the field of VLSI array processors (VLSI
stands for ‘Very Large Scale Integration’). The theory of discrete events provides a
method for analyzing the performances of so-called systolic and wavefront array pro-
cessas. In both processors, the individual processing nodes are connected together in
a reaed neighbor fashion to form a regular lattice. In the application to be described,
all individual processing nodes perform the same basic operation.

The difference between systolic and wlent array processors is the following.

In a systolic array processor, the individual processors, i.e. the nodes of the network,
operate synchronously and the only clock required is a simple global clock. The wave-
front array processor does not operate synchronously, although the required processing
function and network configuration are exactly the same as for the systolic processor.
The operation of each individual processor in the wavefront case is controlled locally.

It depends on the necessary input data available and on the output of the previous cycle
having been delivered to the appropriate (i.e. directly downstream) nodes. For this
reason a wavefront array processor is also called a data-driven net.

Wewill consider a network in which the execution times of the nodes (the individ-
ual processors) depend on the input data. In the case of a simple multiplication, the
difference in execution time is a consequence of whether at least one of the operands is
azem oraone We assumethat if one of the operands is a zero or a one, the multiplica-
tion becomes trivial and, more importantlgster. Data driven networks are at least as
fast as systolic networks since in the latter case the period of the synchronization clock
must be large enough to include the slowest local cycle or largest execution time.

Bo1 B2

B 0 B2 0
oA AR .0 -p
1 12
oo A2 A2 .00 .00
3 4

Figure 1.8: The negwork which multiplies two matrices

Consider the network shown in Figure 1.8. In this network four nodes are connec-
ted. Each of these nodes has an input/output behavior as given in Figure 1.9. The
pumpose o this retwork is to multiply two matricesA and B; A has size 2« n andB
has sizen x 2. The numben is large (> 2), but otherwise arbitrary. The entries of the
rows of A are fedinto the network as indicated in Figure 1.8; they enter the two nodes
on the lef. Similarly, the entries oB erter the two top nodes. Each node will start
its activity as soon as each of thepiut channels contains a data item, provided it has
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Figure 1.9: Input and output of individual node, before and after one activity

finishedits previous activity and sémhe output of that previous activity downstream.
Note that in the initial situation—see Figure 1.8—not all channels contain data. Only
node 1 can start its activity immediately. Also note that initially all loops contain the
number zero.

The acivities will stop when all entries oA and B have been processed. Then
each of the founodes contains an entry of the prodéd®. Thus for instance, node 2
contains(AB);». It is essumed that eacimode has a local memory each of its nput
channels wich functions as a buffer and in which at most one data item can be stored
if necessary. Such a necessity arises when the upstream node has finished an activity
and warts to send the result downstream while the downstream node is still busy with
an activity. If the buffer is empty, the output of the upstream node can temporarily
be stored in this buffer and the upstream node can start a new activity (provided the
input channels contain data). If the upstream node cannot send out itsedatesé
one or more of the downstream buffers are full, then it cannot start a new activity (it is
‘blocked).

Since it is assumed that eacimode starts its activities as soon as possible, the net-
work of nodes can be referred to as a wavefront array processor. The execution time of
anode is eithet; or t, units oftime. Itisty if atleas one of the input items, from the
left and from above @\; andB;;), is a zero or a one. Then the product to be performed
becomes a triial one. The execution time is if neither input contains a zero or a one.

It is assumed that the entis; of A equds zero or one with probabilityp, 0 <
p < 1, and thatA; is neither zero nor one with probability-1 p. The enties of B
are assumed to be neither zero nor onei{eych anumber would occur, it will not be
detected and exploited).

If x; (k) isthe gpoch at which nodebecomes active for thHeth time, then it follows
from the description above that

Xl(k +1) = Oll(k)Xl(k) ©® Xz(k ) X3(k -1,
Xo(K+ 1) =a1(K)%2(K) @ ar(kK+ XK+ 1) & xa(k — 1) ,
X3(K+ 1) = a2(K)x3 (k) @ ar(K+ Dxp(k+ 1) ® xq(k — 1) , (1.31)
X4(k +1) = a2(k)X4(k) ©® Oll(k + 1)X2(k +1)
S azk+ Dxa(k+1) .

In these equations, the coefficiengk) are eitherr; (if the entry is @&her azero or a
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one) ort, (otherwise)w; (k + 1) have the same eaning vith respect to the next entry.
Systems of ths type will be considezd in Chapter 7.

There is a correlation among the coeffidienf (1.31) during different time steps.
By replacingx, (k) andxz(K) by xa(k+1) andxz(k+1), respectively,x4(K) by X4(k+2)
anda(K) by a2 (k + 1), we obtain

X1(K+ 1) = a1 (K)x1(K) @ x2(K) @ x3(K) ,

X2(K+ 1) = ar1(k — Dxa2(k) @ a1(K)x1(K) @ Xa(K) ,

X3(K + 1) = a2(K)x3(K) @ a1 (K)x1(K) ® Xa(K) ,

Xa(K+ 1) = az(k — D)Xa(K) @ a1 (k — D)Xo2(K) @ aa(K)x3(K) .

(1.32)

The carelaion between some of the;-codficierts still exists. The standard proce-
dure to avoid problems connected to this correlation is to augment the state xector
Two new state ariables are introducedis(k + 1) = a1(k) andxg(k + 1) = ax(k).
Equaion (1.32) can now be written as

X1(K + 1) = a1(K)X1 (K) @ X2(K) @ X3(K) ,

X2(K + 1) = X5(K)X2 (K) @ a1(K)X1(K) @ X4(K) ,

X3(K + 1) = a2(K)x3(K) @ a1(K)x1(K) © Xa(K) ,
Xa(K + 1) = Xa(K)Xa (K) @ X5(K)X2(K) @ a2(K)X3(K) ,
xs(k+1) = a1(K) ,

Xs(k + 1) = a2(K) .

(1.33)

The carelaion in time of the coefficients; has disappeed at the expense of a larger
state ector. Alsonote that Equation (1.33) has termgk) ® x (k), which cause the
equaion to become nonlinear (actually, bilinear). For our purposes of calculating the
performance of the array processor, this does not constitute basic difficulties, as will
be seen in Chapter 8. Equation (1.32) is non-Markovian and linear, whereas (1.33) is
Markovian and nonlinear.

1.2.6 Traffic

In a metropditan area there are three railway statio8g, S, andS;, which are on-
nected by a railway system as indicated in Figure 1.10. The railway system consists of
two inner circles, along which the trains run in opposite direction, and of three outer
circles. The trains on these outer circles deliver and pick up passengers at local stations.
These local stationsave not been indicated in Figure 1.10 since they do not play any
rolein the problem tdoe formulated.

There are nine railway tracks. Tra&S; denotes the direct Havay connection
from stdion § to stationS;; track S § denotes the outer circtnnected to statio .
Initially, a train runs alongeach of these nine tracks. At each station the trains must
wait for the trains arriing from the other directions (except for the trains coming from
the direction the current train is heading for) in order to allow for transfers. Another
assunption to be sttisfied is that trains on the same circle cannot bypass one another.
If xj (k) denotes th&-th defrturetime of the train in directiom (see Figure 1.10) then
these departure ties are described byk + 1) = A; ® x(K), whereA; isthe 9x 9
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matiix
e & &1 & € £ S11 € €
S, e ¢ e € I3 e S €
e S € & ¢ € I3 £  S3
£ € € e S & S11 € €
AL = g g € € € S & S ¢
€ € £ Si13 € e ¢ £  S3
€ € &1 &€ 1 € S11 ¢ €
S12 € € € € S22 & S €
E 3 & Si3 ¢ € € £  S33

An entrys; refers to the tradéng time on trackS S;. Thesequantities include transfer
timesatthe gations. The diagonal entriesprevent trains from bypassing one another
onthe same track at a station. The routing of the trains was according to Figure 1.10;
trainson the two inner circles ay on these inner circles and keep the same direction;
trainson the outer circles remain there. Other routings of the trains are possible; two
such difierent routings are given iRigures 1.11 and 1.12. K (k) denotes thé-th
departure time from the same station asegiin Fgure 1.10, tkn the departure times

are described again by a model of the foxitk + 1) = A ® x(k). The A-matrix
corresponding to Figure 1.11 is indicated By and the A-matrix corresponding to
Figure 1.12 byAs. If we definematiicesF; of size 3x 3 in the followving way:

g & ¢ € & 1
Fi=| ¢ ¢ ¢ |, F=]| s2 & ¢ )
& 3 &
S11 & & & S1 &
Fs=| ¢ s ¢ |, R=| ¢ ¢ s |,

€ £  S33 S13 € €
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Figure 1.11: Routing no. 2 Figure 1.12: Routing no. 3

then the matricesA;, A, and Az canbecompadly written as

ep R Fy Fs3 ed R Fs Fs3
A = Fi.. edk F |, A= F. edk Fs |,
F Fi Fs F Fi Fs
edpF F R
As = Fi e ks
F2 F4 e

It is seen that for different routing schemes, different models are obtained. In gen-
eral, depending on the numerical values pfthetime evolutions of these three models
will be different. One Beds a criterion for deciding which of the routing schemes is
preferable.

Depending on the application, it may be more realistic to introduce stoclsgstic
guantities. Suppose for instance that there is a swing bridge in the railway track from
S3to S (only in this track; there is no bridge in the track frddpnto S3). Each time
a trainruns fromS$; to S; there is a probabilityp, 0 < p < 1, thatthe train will be
delayed, i.e.s3; becomes larger. Thus the matricAs becomek-dependentA; (k).

The system has becomstodastic. In thg stuation one may also have a preference for
one of the three routings, or for another one.

The last part of the dicussion of this exapte will be devoteda thedeterninistic
model of routing no. 1 again. However, to atesome mathematical subtleties which
are not essential at this stage, we assume that there is at least a differentmef
units between two subsequent departures of trains in the directions 1rto-6€).
Consequently, the equations are ngwk + 1) = A ® x(k), where A, equalsthe
previousA; excep for the first six diagonal entries that are r@apdd byr (instead ofe
eatier), and the last three diagonal entrigsthat are replaced by; @ t resgectively.

Wethen introduce a quantity (t) which is related tox; (k). The agumentt of y; (t)
refers to the actal clocktime andy; (t) itself refers to he number of train departures
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in the directioni which have acurred up to (andnicluding) timet. The quantity x;
can hencefdah only assume the values D, 2, .... At an abitrary timet, thenumber
of trains which left in the direction 1 can exceed at most by one:

e the samenumber of traing units oftime earlier;

e thenumber of trains that left in the directions3; time units earlier (recall that
initially a train was already traveling agach track);

e thenumber of trains that left in the directionsy; time units earlier.

Therefore, we have

xa®) =min(xat —1)+ 1 st —s0) + 1, x7t —s1 + 1) .

For x, one similarly obtains

xo®) =min(xat —s12) + 1, ot — 1) + 1, st — ) + 1) ,

efc. If all quantitiess;; andt are equal to 1, then one can compactly write
X =A®xt-1),

where x (1) = (), ..., xo(t)), and where lte marix A is derival from A; by
replacing all entries equal toby +o0o and theother entries by 1. This equation must

be read in the min-plus algebra setting. In case we want something more general than
sj andr equd to 1, we will consider the situation when all these quantities are integer
multiples of a positive constart,; theng, can be iterpreted as the time unit along
which the ewlution will be expressed. One then obtains

AXO=ARxt-DOARXt-2d - - dAxt- (1.34)

for some finitd . The ldter equation (in the min-plus algebra) angk+1) = A, ®x(K)
(in the max-plus algebra) describe the same system. Equation (1.34) is referred to as
the counter description and theother one as thdater description. The word‘dater’
mustbe understood as ‘timer’, but since the word ‘time’ and its declinations are already
used in various ways in this book, we will stick to the word ‘dater’. The awareness of
these two different descriptions for the same problem has far-reaching consequences
as will be shown h Chapter 5.

The reackr should contemplate that the stochastic problem (in which some of the
sj are random) is more difficult to handle in the counter description, since the delays
in (1.34) kecome stochastic (s§8.2.4).

1.2.7 Continuous System Subject to Flow Bounds and Mixing

So far, the examps have been related to the realfrdescrete evensystems, and dy-
namic equations have been obtained under the form of recursive equations involving
max (or min) anc4--operations. We close this section by showing that a continuous-
time system may naturally lead to essentially the same type of equations whenever
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same flow limitation and mixing phenomena are involved. Had we adopted the point
of view of conventional system theory, the model of such a system in terms of differ-
ertial equations would have exhibited very complex nonlinearities. With the following
approach, we will see that this system is ‘linear’ in a precise mathematical sense (see
Chapter 6). An analogous discrete event model will be discussed in Example 2.48.

In Figure 1.13, a fluid is poured through a long pipe into a first reservoir (empty

Y
—

Figure 1.13: A continuous system

attimet = 0). The inputu(t) denotes theumulated flow at theinlet of the pipe
up totimet (herce u(t) is a nondecreasing time function andt) = 0 fort < 0).
It is assumed that it takes a delay of 2 units of time (say, 2 seconds) for the fluid to
travel through the pipe. From the first reservoir, the fluid drops into a second reservoir
through an aperture which limits the instantaneous flow to a maximum value of, say,
0.5 liter per second. The volume of fluid at tirhén this second reseoir is denoted
y(t), and itis assumed thay(0) = 3 liters.

Let us estadish dynamic equations for such a system relating the ouyptatthe
inputu. Because of the flow limitation into the second reservoir, we have:

vVt, Vs>0, yt+s) <y)+0.5s. (1.35)

Onthe aherhand, since there is a delay of 2 seconds caused by theygtpehould be
compared withu(t — 2), andbecause there is a stock ofiers in the second reservoir
att = 0, we have:

Vi, yt)<ut-—-2+3. (1.36)
It follows that

vt, Vs>0, vy y(t —s) +0.5s

ut—2-s)+3+0.5s ,
hence,

vt o,y

IA

im(‘)[u(t —2—-5)+3+0.5q
- iﬁfz[u(t — ) +3+405(r —2)] . (1.37)
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Let
h) %13 it =2, (1.38)
3+ 05( —2) otherwise.
and consider
vt, vy ¥ inf [ut = 1) +h()] . (1.39)
TE

Indeed, in (1.39), the range af may belimited to r > 2 sirce, fort < 2, h(t)
remains equao 3 whereaqu(t — r) > u(t — 2) (remanmber thau(-) isnondecreasing).
Therefore, comparing (1.39) with (1.37), it is clear thét) < y(t), Vt.

Moreover, choosing = 2 at the rght-hand side of (1.39), we see thasdisfies
(1.36). In addition, since for ai and all > 0, h(s+ ) < h(s) + 0.5¢, then

Vi, Y9>0, Vt+9)

inf [ut + 9 —7) + h(r)]
= lgﬂg[u(t —9) +h(s+ )]

< lgﬂg[u(t — ) + h(s)] +0.5¢
= V(t)+050 .

Thus,y sdisfies (.35).

Findly, we have proved thay is the maximum solution of (1.35)—(1.36). It can
also be checked that (1.39) yielfig) = 3, vt < 2. Theefore,y is the solution which
will be physically realized if we assume that, subject to (1.37)—(1.39), the fluid flows
asfast as possible. This output trajectory is related to the input histdry an ‘inf-
convolution’ (see Equation (1.39)). In order to make this inf-convolution more visible,
the inf-operator should be viewed as an ‘integration’ (which is nothing else than the
@-operator ranging over the real numbers). If moreovan (1.39) is replaced by
one obtains the appearance of the conventional convolution. The same kind of input-
output relationship (indeed, a ‘sup-convolution’ in that context) can be obtained from
the recursive equations (1.12) by developing the recursion from any initial condition.

As a final renark, observe that if whave two systems similar to the one shown in
Figure 1.13, one producing a red fluid and the other producing a white fluid, and if we
want to produce a pink fluid by mixing them in equal proportions, then the new output
is related to the two inputs by essentially the same type of equations. More specifically,
let y(t) andyy(t) be the quantities of red and white fluids that have been produced in
the two davnstream reservoirs up to tintg(including the initial reserves). Suppose
that the two taps at their outlets are opeése that the same (wetarge outflow of red
and whte liquids canbe obtained unless one of the two reservoirs is empty, in which
case the two taps are closed immediately. Then(yniD, yw (1)) is directly related to
the quantityy,(t) of pink fluid produced up to time. Therdore, this mixng operation
does not introduce new mathematical operators.
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1.3 Issues and Problems in Performance Evaluation

In the previous sections we dealt with equations of the fotka-1) = Ax(k), or more
generallyx(k+1) = Ak)x(k) ® B(k)u(k). Inthe plicationghree diferent interpre-
tations in terms of the operatis were given: maximization and addition, minimization
ard addition and lastly, maximization and multiplication. In this section only the first
interpretation will be considered (we will say that the system under consideration is in
the max-plus algebra framework). Before that a brief introduction to the solution of the
conventional quation (1.1) is needed.

Assumethat the initial vector (1.2) equals an eigenvector®pthe corresponding
eigenvaluas denoted byi. Thesdution of (1.1) can be written as

xt)=a% , t=01,.... (1.40)

More generdly, if the initial vector can be written as a linear combination of the set of
linearly independent eigenvectors,

Xo=) Cjvj , (1.41)
j

wherev; is the j-th eigenvector with corresponding eigenvalye thec; are coeffi-
cients, then

X() = ch)‘tjvj .
j

If the matrix A is diagonalizable, then the set of linearly independent eigenvectors
spansR", and any initial conditiorxy can be gpressed as in (1.41). K is not diag-
onalizable, then one must work with generalized eigenvectors and the formula which
expressex(t) in terms of eigenvalues ang is slightly more complicated. This com-
plication does not occur in the max-plus algebra context and therefore will not be dealt
with explicitly.

In Chapter 3 it will be shown that under quite general conditions an eigenvalue
(1) and corresponding eigenvectar)(also existin the max-plus algebra context for a
square méix (A). The definition is

ARv=AQuU .

To exclude degenerate cases, it is assumed that not all componengseidentical to
¢. As an example of a (nondegenerate) eigenvalue:

3 7 25 25
(3 5)(e7)-()
Thus itis seen tht the matrixA of (1.5) has an eigenvalue 8. Equation (1.40) is also

valid in the current setting. Ik is aneigenectorof A, with corresponding eigenvalue
A, then thesdution of the difference equation (1.8) can be written as

x(kK) =21*%9 (=2K®@x0) , k=0,1,.... (1.42)
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The numerical evaluation of in this formula equal& in conventional analysis. The
eigenvaluex canbe interpreted as the cycle time (defined as the inverse of the through-
put) of the underlying systeneachnode of the corresponding network becomes active
every units of time, since it follows straightforwardly from (1.42). Also, the relative
order in which the nodes become active for khn time, as expressed by the compo-
nentsx; (k), is exactly the same as the relative order in which the nodes become active
for the k + 1)-st time. More preciselyequation (1.42) yields

X|(k+l)—Xj(k+l)=X|(k)—Xj(k), i,I=1,...,n.

Thus the solution (1.42) exhibits a kind of periodicity. Procedures exist for the calcula-
tion of eigenvalues and eigegctors; an efficient one isétprocelure known as Karp’s
algorithm for which the reader is referred to Chapter 2. More discussion about related
issues can be found in Chapter 3. Under suitable conditions the eigenvalue turns out to
be unique (which differs from the situation in conventional analysis). It can be shown
for instance thatA of (1.5) has only one eigenvalue. Similarly, the matvixof §1.2.3

also has ainique eigenvalue:

6 ¢ ¢ € 6 5 e e
9 8 ¢ 8 9 8 3 3
6 10 7 10 6 ¢ 35 | _ 95 35
e 7 4 7 ¢ ¢ o5 | ™ & 0.5
6 10 7 10 6 ¢ 35 35
9 8 ¢ 8 9 8 3 3

It follows that the eigenvalue equalss9which neans in more practical terms that the
manufacturing system ‘delivers’ an item (a product or a machine) at all of its output
channels every.8 units of time. The eigenvector of this example is also unique, apart
from adding the same constant to all components.igfaneigenveatr, thencv, where
c is a scalar, also is an eigenvector, as it follows directly from the definition of eigen-
value. ltis possible hat seveal eigenvectors can be associated with the only eigenvalue
of a matrix, i.e. eigenvectors may not be identical up to an additional constant.
Suppose that we deal with the system characterized by the matrix of (1.5); then
it is known from earlier that the ‘cycle time’ is/2 units of time. The throughput
is defined as the inverse of the cycle time and equa® 2f we had the choice of
reducing one arbitrary entry ok by 2, which entry should we choose such that the
cycletime becomes as small as pddsl? To put it differently, if a piece of equipment
were available which reduces the traveling time at any connection by 2, where should
this piece of equipment be placed? By trial and error itigrfd that eithe;, or Ay
should be reduced by 2; in both cases the new cycle time becomes 4. If one reduces
A11 or Ay, by this amount instead o4, or A1, then he cycletime renains 92. The
consequences of the four potential ways of reduction are expressed by

(21)(E)-(2) (2 D))
D)) (E)-e()
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To ansver thequestion of which ‘transportation line’ to speed up for more general
networks, application of the trial and error method as used above would become very
laborious. Fortunately more elegant and more efficient methods exist. For those one
needs the notion of a critical circuit, which is elaborated upon in Chapters 2 and 3.
Without defining such a circuit in this section formally let us mention that, in Fig-
ure 1.1, this critical circuit consists of the arcs determineddbyand A;;. Note hat
(A2 + A21)/2 = A = 9/2, ard this equdity is not a coincidence.

Stodastic extensions are possible. Towards that end, consider

x(k+1) = AK)x(k) ,

where thematiix A now depends ok in a stochastic way. Assume thate R? and
that for eachk the matrixA is one of the following two matrices:

3 7 3 5

2 4 ) 2 4 )
Both matrices occur with probability 1/2 and there is no correlation in time. A suitable
definition of cycle time turns out to be

kIim E[x(k+1) —x®] .,

where E denotes mathematll expectation. Application of the theory presented in
Chapters 7 and 8 shows that this cycle time is independerdmd is gual to 13/3.

Conventional linear systems with inputs and outputs are of the form (1.10), al-
though (1.10) itself has the max-plus algebra interpretation. This equation is a rep-
resenttion of a linear system in the time domain. Its representation iretlemain
equals

Y@z =C@zl — A 'BU(®) ,

whereY (z) andU (z) are defined by

o]

Yo=) ybz', U@=) ubdz',
i=0

i=0

where it is tadtly assumed that the system was at resttfer 0. The matrixH (2) def
C(zl — A~1B s called the transfer matrix of the system. Hénefers to the identity
matiix in conventional algebra. The notion @ahsfer matrix is esgrially useful when
subsystems are combined to build largestgyns, by rmeans of parallel, series and
feedback connections.

In the max-pls algebracontext, the z-transform also exists (see [72]), but here
we will rather refer to they-transform wherey operates ag~*. For insance, the
y-transform ofu is defired as

Up)=Puirey' .
i=0



1.3. Issues and Problems in Performance Evaluation 31

andY(y) and X (y) are defined likewise. Multiplication of (1.12) by yields

y Xk + Dyt = A@xky*eBeukyk , (1.43)
ylyt = Cexk®y* . '
If these equations areimmed with repect tok =0, 1, ... , then weobtain
y X)) = AX(y)®BU@y)®dy X , } (1.44)
Y(y) = CeX(y) . '

The first of these equaions can be solved by first multiplying (max-plus algebra),
equivalently adding (conventional) the left- and right-hand sideg layd then repeat-
edy substituting the right-hand side fot(y) within this right-hand side. This results
in

X(y)=WwA " (¥BU®{) @ xo) .

Thus we obtainY(y) = H(y)U(y), provided thatxg = ¢, and wherehie trarsfer
matiix H(y) is defired by

Hy)=C ¥A*®y ®B=yCB@®y’CAB® y°CA’B@®--- . (1.45)

The transfer matrix is defined by means of an infinite series and the convergence de-
pends on the value of. If the series igonvergent foly = ¢/, thenitis al® convergent

for all y’s which are srdller thany'. If thesaiesdoes notconverge it till has a mean-

ing as a femal series.

Exadly asin convertional system theory, the product of two transfer matrices (in
which it is tacitly assumed that the sizes of these matrices are such that the multiplica-
tion is posshle), is a new transfer matrix which refers to a system which consists of the
original systems coretted in series. In the same way, the sum of two transfer matrices
refers to two systemgut in parallé This section will be concluded by an example of
such a prallel ®nnection.

We are gien two sytems. The fistone is given in (1.13), and is characterized by
the 1x 1 trander matrix

Hi=¢ey @11y2@ 15y @ 20y* @ 24y° @ 29%%q - - - .

It is easily shown that this series converges)fox —4.5; the number 4.5 corresponds
to the eigenvalue oA. The seond system is given by

4 £
e |xwae| 2 Juk ,
3 e

yky=(1 1 4)xK ,

O R ®

e
xk+1=| 1
&

andits transfer matrix is

Ho=4y ©12/°0 15° 0 18/* ©23)° ® 26)° @ - - - .
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The tran$er matrix of the two systems put in parallel has size 1 again 6ne cartalk
about a transfer function) and is obtained as

Hoar= HI® Ho =4y © 1220 150 20y* 9 24/ © 29 % --- . (1.46)

A trander function careasily be visualized. IH (y) is a scalar function, i.e. the system
has one input and one output, then it is a continuous and piecewise linear function.
As an eample, the transfefunction of the parallel connection considered above is
pictured in Figure 1.14.

Above it was shown how to derive the traesmatix of a system if the represen-
tation of the system in the ‘time domain’ is given. This time domain representation is
characterized by the matricéds B andC. Now one could pose the opposite question:
How can we oldin a time domain repsentaton, or equivalently, how can we find
A, B andC if the transfer matrix is given? A partial answer to this question is given in
[103]. For the example above, one would like to obtain a time domain representation
of the two systems put in parallel starting from (1.46). This avenue will not be pursued
now. Instead, one can always obtain such a representation by connecting the underly-
ing networks of the two original systems in the appropriate (‘parallel’) way and then
derive the state equations directly. In this way one gets for the above example,

xk+1 = x(k) ® uk ,

™ om MmN W
m oM, N~y
™ D ™ ™
O, ® ™ o
Wm™ AN® o
O N® o

vk =(3 ¢ 1 1 4)xK) .

1.4 Notes

A few times, eference has been made to (linear) system theory. Classic texts are [81], [32] or
[72]. A few examples could be phrased in terms of dynamic programming. There are many
elementary texts which explain the theory of dynamic programming. A more advanced text is
[18]. Systems in the context of max-plus algebra were probably first described in [49], though
most theory in this book is algebraically rather than system oriented. It was in [39] where the
relation between system theory and max-plus algebra was clearly shown. The shortest path
problem is a standard example in dynamic programming texts. The Viterbi algorithm was found
in [59]. The example on production was presented in [38], the examples of parallel computation
and traffic can be found in [97]. Other simple examples can be found in [101]. A max-plus
modeling of the Dutch intaity railway net is given in [27]. An application to chemical batch
processing is given in [107]. A good introductory text to design methods of processors for
parallel computation is [79]. The relation between eigenvalue and cycle time was developed in
[39]. Stochastic extensions were given in [104]. The connection between transfer matrices and
state equations in theaw-plus algebra context wasvestigatedn [103]; see als§9.2.3.
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Figure 1.14: The transfer functidti,a as a tinction ofy
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Chapter 2

Graph Theory and Petri Nets

2.1 Introduction

An overview of varous results in the theories of graphs and Petri nets will be given.
Several poperties of DEDS can be expressed in terms of graph-theoretic notions such
as strong connectedness and critical circuits.

A rich relationship exists between graphs and matrices, about which many books
have beenwritten. Here, we will emphasize some of these relationships between di-
rected graphs and matrices, together with their consequences if such matrices and
graphs are composed to build larger ones. The way to construct such compositions
is by means of parallel and series connections.

Peri nets, which describe DEDS pictorially, can be viewed as bipartite graphs.
An essential éature of Petri nefqiot present in conventional graphs, is that they are
dynamic systems. Tokens are used to reflect this dynamic behavior.

There is an equivalence between DEDS without concurrency and a subclass of
Petri netscalled ‘event graphs’. Faanytimed eent grgph, we will show how to ob-
tain a mathematical modeh iterms of ecurrence guations. In the proper algebraic
framework, these equations are linear and the model offers a strong analogy with con-
ventional linear dynamic systems.

In the last part of this chapter, starting from the point of view of resources involved
in DEDS, we propose a methodolgy to go from the specifications of a concrete system
to its modeling by eentgraphs.

2.2 Directed Graphs

A directed graph G is definedas a paiV, £), whereV is a set oklements calledodes

and wheref is a set the elements of wdhi are ordered (not necessarily different) pairs

of nodes, calledrcs. The possibility of several arcs between two nodes exists (one then
speals about a multigraph); in this chapter, however, we almost exclusively deal with
directed graphs in which there is at most one (i.e. zero or one) arc between any two
nodes. One distinguishes graphs and directed graphs. The difference between the two
is that in a graph the elements &farenot ordered while they are in a directed graph.
Instead of nodes and arcs, one also speaks about vertices and edges, respectively. The
origin of the symbol8’ and¢ in the definition of a (directed) graph is due to the first

35
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letters of the latter two names. Instead ofedied graph one often uses the shorter
word ‘digraph’, or even ‘grph’ if it is clear from the context that digraph is meant. In
this chapter we will almost etusively deal with digraphs (hence also called graphs).
Denote the number of nodes by and number the individual nodes 2, ... , n.
If (i, j) € &, theni is called the initial node or the origin of the afi¢ j), and j the
final node or the destination of the ati¢ j). Graphically, the nodes are represented by
points, and the ar(, j) is repregented ly an ‘arow’ fromi to j.
We now give dist of conceptf graph theory which will be used later on.

Predecessor, successolf in a graph(i, j) € &, theni is called a pedecessor of
and j is called a successor of The set of alprececessors of is indicated by
7(j) and the set oflasuccessors of is indicated by (i). A predecessor is also
cdled anupstream node and a successor is also calledavnstream node.

Source, sink. If 7(i) = @, then noda is called a source; i (i) = @ theni is called
a shk. Depending on the application, a source, respectively sink, is also called
aninput(-node), resgectively anoutput(-node) of the graph.

Path, circuit, loop, length. A path p is a ssquence of nodefiy, iz, ... ,ip), p > 1,
suchthati; € 7(ij+1), j = 1,..., p— 1. Nodei; is the initial node andl, is
the finalone of this path. Equivalently, one also says that a path is a sequence of
arcswhich connects a sequence of nodes. edmentary pathis a path n which
no node appears more than once. When the initial and the final nodes coincide,
one speaks of @rcuit. A circuit (i1, iz, ... ,ip =i1) is anelementary circuit if
the path(iy, io, ... , ip—1) is elementary. Aoopis a circuit(i, i), that is,a circuit
composed of a single node which is initial and final. This definition assumes that
i € (i), that is, thee does exist an arc fromto i. Thelength of a path or
a circdt is equal to he sum of the lengths of the arcs of which it is composed,
the lengths of the arcs being 1 unless otherwise specified. With this convention,
the length of a loop is 1. The length of pathis denoted|p|;. The subscrig ‘I’
here refers to the word ‘length’ (later on, another subscript ‘w’ will appear for a
different concept). The set of all paths and circuits in a graph is deriited
digraph is said to bacyclic if R contains no circuits.

Descendant, ascendantThe set ofdescendants™ (i) of nodei consists of all nodes
j such that a path exists fromto j. Similarly the set & ascendantsz*(i) of
nodei is the st of all nodesj such that a path exists fronp toi. Onehas, e.g.,
at(i) =w(i) Un(@(@)) U.... The mppingi — 7*(@i) = {i} Ur™() is the
transitive closure ofr; the mapingi — o*(@i) = {i} U™ (i) is the transitive
closure ofo.

Subgraph. Given a graplg = (V, &), a graphg’ = (V', £’) is sdd to be a subgraph
of Gif V' c V and if&’ consists of the set of arcs gfwhich have thi origins
and destiationsin)'.

Chain, conrected graph. A graph is called connected if for all pairs of nodies
and j there exists ahain piningi and j. A chain is aseguence of nodes
(i1,i2,...,ip) swh that between each pair of successhades either the
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arc(ij, ij+1) or the arc(ij41, ;) exigs. If one disregards the directions of the
arcsin the definition of a path, one obtains a chain.

Strongly connected graph. A graph is called strongly connected if for any two dif-
ferent node$ and j there exiss a patifromi to j. Equivalently, i € o*(j) for
alli, j e V, withi # j. Note tha, according to this defition, an isolated node,
with or without a loop, is a strongly connected graph.

Bipartit e graph. If the set of node¥ of a graphg canbe partitioned into two disjoint
subsets); and);, such that every arc off connects anlement of V; with one
of V, or the other way around, the&his called bipartite.

In §2.3, it will be useful to introduce the notion of an ‘empty circuit’ the length

of which is equal to 0 by definition. An empty circuit contains no arcs. [The
circuit (i) isanenmpty circuit which should not be confused with the lodp )
of length 1 (the latter makes sense only if there exists an arc fromintae
itself). Empty circuits araot included in the seR of paths.

To exemflify the various concepts introduced, consider the graph presented in Fig-
ure 2.1. Itis a digraph since the arcs are indeed directed. The graph has seven nodes.
Node 3 is a predecessor of node 6&37(6). Similarly, 6 € ¢ (3). The sguence of

nodes 1, 3, 6, 4, 3, 2 is a nonelementary path. Thélart) is a loop and the sequence

of nodes 3, 6, 4, 3is an elementary circuit of length 3. The sequence of nodes 2, 3, 6 is
a dhain. It should be clear that the graph of Figure 2.1 is connected.

Definition 2.1 (Equivalence relationR) Leti, j € V be two nodes of a graph. We
saythatiR j,if eitheri = j or there exist pathsfromi to j and from j toi.

ThenV is split up into equivalence class¥s, . .. , Vg, with respect to the relatioR.
Note thatif nodei belongs to/,, thenV, = o*(i) N 7*(i). To each equivalence class
V, carresponds a subgragh = (V,, &), where&, is the restriction of to V,, which

is strongly connected.

Definition 2.2 (Maximal strongly connected subgraphs—m.s.c.sJhe subgraphs
G = (V, &) corresponding to the equivalence classes determined by R are the
maximal strongly connected subgraptfsG.

Notation 2.3

e The abset of nodes of the m.s.c.s. containing no¢knd possibly reduced )
is denoted |].

e The wbset of nodek J; .. [i]is denoted [< i].

e The synbol [< i] represents the subset of nodesi] \ [i]. [ |

The gaph of Figure 2.1 has two m.s.c.s.’s, namely the subgraphs consisting of the
nodes 1, 3, 6,4 and 2, 5, 7, respectively. If one ‘lumps’ the nodeact m.s.c.s. into
a sngle node, one obtains the so-calteduced graph.
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Figure 2.1: A digraph Figure 2.2: The reduced graph

Definition 2.4 (Reduced graph) Thereduced graph of G isthegraphwithnodesV gef

{1,..., g} (one node per ms.c.s), and with arcs £, where (i, j) € £if (k, 1) € & for
some nodek of Vi and some nodel of V;.

Figure 2.2 shows the reduced graph of the graph in Figure 2.1.

Notation 2.5 A nodei of the reduced graph corresponds to a collection of nodes of
the orighal graph. Lex be a vector the entries of which are associated with nodes of
the ariginal graph. If we want to refer to the subvector associated with the nodes of
m.s.c.s.i, we will use the notationx,. Similarly, for a matrix A, A(j, is the block
extracted fromA by keeping the rows associated with the nodes of m.s.@sd the
caumns assaiatedwith thenodes of m.s.c.§.. If nodet of the original graph belongs

to m.sc.s.i, thenotationx, is equivalent tok,. Similarly, X <, resgectively X i), is
equivalent tox| ¢, resgectively X <. ]

Lemma 2.6 Thereduced graphisacyclic.

Proof If there is a path fronk € V; tol € Vj, then there is no path from any node of
V;j toary node of); (otherwisek andl would be in the same m.s.c.s.). [ |

Denote the existence of a path from one subgi@ptio another ongj; by the kinary
relaion R’; GiR'Gj. Then these subgraplds, ... , Gq, together with the relatiof®’
form a partidly ordered setsee Chpter 4 and also [85].

2.3 Graphs ard Matrices

In this section we consider matrices with entries belonging to an abstract alphabet
C in which some algebraic operations will be definedi23.1. Some relationships
between these matrices and ‘weighted graphs’ will be introduced. Consider a graph
G = (V, &) and associate an elemely < C with each arqj, i) € £: theng is called
aweighted graph. The quantity A;; is called theweight of arc (j,i). Note hat the
seoond subscript of\jj refers to the initial (and not the final) node. The reason is that,
in the algebraic context, we will work with column vectors (and not with row vectors)
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later on. In addition, we will also consider compositions of matrices and the resulting
consequences for the corresponding graphs.

The aphabetC contains a special symbelthe properties of with will be given in
§2.3.1.

Definition 2.7 (Transition graph) If anm x n matrix A = (A;;) withentriesinC is
given, thetransition graptof A isaweighted, bipartitegraph with n+mnodes, labeled
1,...,mm+1,..., m+n, suchthat each row of A correspondsto one of the nodes
1,...,m; each column of A correspondsto one of thenodesm+1,..., m+ n. An
arcfromjton+i,1<i <m,1<j <n,isintroduced withweight A;j if A # e.

As an example, consider the matrix

3 ¢ & 7T ¢ ¢ ¢
e ¢ 2 ¢ ¢ ¢ 1
e ¢ ¢ 2 ¢ ¢ ¢
A=| ¢ ¢ ¢ ¢ ¢ 5 ¢ (2.1)
e 4 ¢ ¢ ¢ 8 6
4 ¢ 1 ¢ ¢ ¢ ¢
e € & € € ¢ ¢

Its trangtion graph is depicted in Figure 2.3.
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Figure 23: Thetransition graph oA

Definition 2.8 (Precedence graph)The precedence graph of a squaren x n matrix A
with entries in C is a weighted digraph with n nodes and an arc (j, i) if Aj # ¢, in
which case the weight of this arc receives the numerical valueof A;;. The precedence
graph isdenoted G(A).

It is not difficult to see that any weighted digragh= (V, £) is the precedence graph
of an appropriately defined square matrix. The weightof the arc from nodg to



40 Synchronization and Linearity

nodei defines thej-th entry of a matrixA. If an ac does not exist, the corresponding
entry of Ais set toe. The mdrix A thus defined ha§ as its precedence graph.

The trangtion graph of a squara x n matiix, which has & nodes, can be trans-
formed into a precedence graphrohodes. Towards that end, one combines the nodes
i andn + i of the transition graph into one single node for theqadence graph,

i =1,...,n. As an example, Figure 2.4 gives the precedence graph of the matrix
4
4 1
3 0 0
CO 20——e0e«—— 04 50&06 Z
1 2 3 2
5 6
! 1

Figure 24: The precedence graph Af

defined in (2.1). One directly recognizes the relation of this graph with the transition
graph in Figure 2.3. The latter graph has been ‘folded’ so as to obtain the precedence
graph.

It may be convenient toansiderthat entriesA;j equal toe definedummy arcs
(which are not drawn) in the associated precedence oritiamgraph. Later, a path
including a dummy arc will be called a dummy path. Dummy paths are not included
in the setR of paths (which were taken into account in Definition 2.1; therefore these
dummy paths are not involved in the definition of m.s.c.s.’s). The interest of the notion
of dummy arcs is tht these arcs may be considered as being of the same length as arcs
associated with entried;; # ¢ (gererally this length is 1); hece arcs of the same
length can be asstated with all entries of a matrix.

Notation 2.9 The number of m.s.c.s.’s ¢f(A) is denotedNa. []

For later réerence, the following definitions are given.

Definition 2.10 (Incidence matrix) The incidence matrixF = (F;) of agraph G =
(W, £) isa matrix the number of columns of which equals the number of arcs and the
number of rows of which equals the number of nodes of the graph. The entries of F
cantakethevalues0,1or —1. If | = (i, j) € &,i # j,thenF =1, F) = —1and
the other entriesof column| areQ. If | = (i,i) € £, then F; = 0.

Definition 2.11 (Adjacency matrix) Theadjacency matric = (Gjj) of agraph G =
(V, £) isa matrix the numbers of rows and columns of which are equal to the number
of nodes of the graph. The entry G;j; isequal to 1if j € (i) and to O otherwise.

Notethat if G = G(A), thenG;; = 1 ifandonly if Ajj # ¢ (G describes the ‘support’
of A).
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2.3.1 Composition of Matrices and Graphs

We now stidy two kinds of compositions of matrices, and the relation between the
transition graph of these compositions and the original transition graphs. These com-
positions are, reggtively, theparallel composition, denoted®, and theseries compo-

sition, denoted®. These compositions will be defined by means of the corresponding
compostion operations of elements in the alphabefor which the samesynbols @

and® will be used. The operatios is usually réerred to as ‘addition’ or ‘sum’, and

the operatior® as‘multiplication’ or ‘product’. The alphabef includes twospecial
elements ande with specific propertiestbe defined in the folling set d axioms:

Associatvity of addition:

Va,b,ceC, @dbydc=adbaoo .

Commutativity of addition:

Va,beC, adb=boa.

Associativity of multiplication:

Va,b,ceC, @®bc=a® bxo .

Right and left distributivity of multiplication over addition:

Va,b,ceC, @oby®c=@®c)dbxc),

Va,b,ceC, c@db=Ccaodceb) .

Existence of a zero element:

JeeC: VaelC, ade=a.

Absorbing zero element;

VaeC, aQe=c¢ .

Existence d an identity element:

JeceC: Vael, aQe=e®a=a.

In Chapter 3 other rated axioms will be discussed in detail. There the notion of a
semifield will be introduced and its relation to axioms of this type will be made clear.

Theparallel composition & of matiices is defined for matrices of the same size by
the following rule: if A = (Ajj) andB = (B;j) have the samsize, then

(A® B)ij = Aij @ Bij .
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A trandgtion graph can of course be associated with the mdrix A @ B. This
transition graph has the same set of nodes as the transition grapkaof theefore
of B) and there exists a (nondummy) arc from nod& nodei if and only if at least
oneof the transition graphs oA and B has a (nondummy) arc frojmtoi. This is
a monsequence of the axiody; @ ¢ = A;j. In general, this arc receives the weight
Aij @ B;j. It may beviewedasthe arc resulting from the merging of two parallel arcs
(if both Aj; and B;j are diffaent frome). The symbok is called thezero element of
the operatior®. Two other axioms are thab is assocative and commutative and they
have obviousconsquencesfor theparalel composition of transition graphs.
Theseries composition ® of maticesA andB is definedonly when the number of
columns ofA equals the number of rows @& (say,Aism x nandB isn x p) by the
following rule:

(A® B); =P Ak ® By (2.2)
k=1

A trangtion graph can be associated with the mattix= A ® B of sizem x p. With
the help of Figure 2.5, we explain how this graph is obtained. First, the transition

B A

p nodes n nodes m nodes

Figure 25: The saiescompostion of two transition matrices

graphs of matrice8 and A are cncaerated Thegraph so obtained isnota transtion

graph sire it hasn intermediate nodes in addition of ifs input nodes and itsn
output nodes. These intermediate nodes are removed, and an arc froijntooaelei

exists in the transition graph & if and only if there exists at least one (nondummy)
path from nodej to nodei in the concatnated graph shown iRigure 2.5. This arc
receives the weight indicated by Equation (2.2). In order to interpret this formula, let
us first define the weight of a path= (i1, ... , ip) in a weighted graph as the product
A, ® -+ ® A, i, of weights of arcs composing this path (observe the order). This
weight is denotedp|w, where the sbscript w refers to the wdr'weight'. Notethat a
dummy path always has a weighthanks to tle absrbing property of in products.

Then, each term of the sum in (2.2) can be interpreted as the weight of some parallel
path of length 2 from nodg¢ to nodei, characterized by the intermediate nddé
passes through (see Figure 2.5). The previous rule pertaining to the weights of parallel
conmpositions of arcs is thus extended to parallel paths. Sirisghe zero element for
addition, dummy paths do not contribute to (nonzero) weights in parallel compositions.
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For theseiescompostion of matrices, we haveA® B) @ C = A®Q (B® C). This
assaiativity property of matrix multiplication is a direct consequence of the axioms
given almve, nanely the associativity of® and the right and leftigtributivity of ®
over ®. ltis easily seen that these right and lefttdlsutivities also hold for matrices
of appropriate sizes.

The ndion (AP)ji, p=1,2,..., whereAis square, is defined byAP);i = (AQ®
Apfl)ji. Observe tht this involves the enumeration and the sums of weights of all
paths of lengthp with initial nodei ard final nodej. This definition makes sense for
both the transition graph ofA, corcatenated times, and the precedence graphfof
We get

(Ap)jl = @ Aip,ip—l ® Aip—lqip—Z ® e ® Ai]_,io :

{p| lpli=p:io=isip=j}

Because we removed the intermediabeles in the graph of Figure 2.5 in order to
obtain thetransition graph o€ = A ® B, and sinilarly whenone considers the tran-
sition graph of a matrixC equal to AP, the infamation that weights of the graph 6f
have been obtained as weights of paths of length larger than 1 (hamely® wegec-
tively) hasbeen lost. In order to keep track of this information, one may introduce the
nation of length of a transition graph. This length is an integer number associated with
the transition graph and hence also with all its individual arcs, including dummy arcs,
and findly with the matrix associated with this graph. These considerations explain
why the lengths of arcs may be tak greater than 1 and why dummy arcs may also
have a nonzero length.

We now consider the transition graph corresponding to matiieshereA is an
n x n matix. In the sane way asAP, for p > 1, describes the weights of paths of
length p, A° should describe the weights of paths of length 0, that is, empty circuits
(i) corresponding to ‘no transition at all’. Pictorially, the corresponding transition
graph of such matrices has the special form depicted in Figure 2.6a in which input

[ It e
®o—— e

; 1

| |

| I e
| e ° oe— e
| |
| |
| |
| |

e
oe———— >0

(a) (b) (c)
Figure 26: Thetransition graphs of°, ¢ ande

ard output nodes are not distinguishable. §transition graph must not be confused
either with that of the ‘zero matrix’ (with all entries equal 4p or with that of the
‘identity matrix’ (with diagonal entries equal te and dl off-diagonal entries equal

to £). The trangtion graph of the zero matrix is depicted in Figure 2.6b: all its arcs
are dummy with length 1. The transition graph of the identity matrix is depicted in
Figure 2.6¢: weights are indicated in the figure and the length is 1 for all dummy and
nondummy arcs. The length associated with all entried%fs 0, that is, the series
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compostion of the transition graph oA® with any other bipartite graph do not modify
the lengths of paths. In the same way, we would like the weights not to be modified in
that operatin: this requires that the entries 8f bethe same as those of the identity
matiix e. Butagain therespecive lengthsard transtion graphs ofA° ande are diferent
(see Figure 2.6a—c). Also, dummy logps ) of the transition graph of the zero matrix
should not be confused with empty circuiis (see Figure 2.6a—b) even if it is difficult
to distinguish them with the help of pcedence, rather than tréimen, graphs.

In Chapter we already met several examples@fand® operations with satisfy
the axoms just stated. A particular example is tBagqualsR, e = 0, ¢ = —o0, @
equals maximization ang equals addition. Note that the max-operation is idempotent,
i.e.a® a = a, butths property is not (yet) assumed as an axiom.

Remark 2.12 An example 6 operations which doot satisfy some ofhe axoms is
one whered is addition and® is minimization. The axioms of distributivity are not
sdisfied. Indeed,

min(5, 3+ 6) # min(5, 3) + min(5, 6) .

As a ongguence, assaiativity of multiplication with respect to matrices does not
hold. If for instance,

1 3 3 2 4 2
r=(22) e=(25) o=(25)

4 6 4 4
(5 6>=(AB)C7£A(BC)=<4 4>.

A practical interpretation of a system with these operations is in terms of the calcula-
tion of the capacity of a network in which the arcs are pipes through which there is a
continuous flow. The capacity of a pipe is assumed to be proportional to the diameter
of this pipe. Then itis easilgeen that the capacity of twapes in parallel equals the

sum of thetwo capacities. Similarly, the capacity of two pipes in series equals the min-
imum of their capacities. The reader should contemplate the physical consequences of
the lack of associativity. [ |

then

Definition 2.13 (I'rr educibility) The (square) matrix Aiscalledirreducibleif no per-
mutation matrix P exists such that the matrix A, defined by

A=PAP ,
has an upper triangular block structure.

The reacer should be aware of the fact that this definition is invariant with respect to
the algebra used. Premultiplication &fby P” and pogmultiplication by P simply

refers to a renumbering of the nodes of the corresponding graph. Hence renumbering
of the nodes of the same graph leads to differ&mhatrices. In an upper triangular
block structure, diagonal blocks with nanentiies are allowed.If one also wants

the dagonal blocks to have-entries only, one should speak about a strictly upper
triangular block structure.
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Theorem 2.14 A necessary and sufficient condition for the square matrix Ato beirre-
ducibleisthat its precedence graph be strongly connected.

Proof Suppose thaf\ is such that by an appropriate renumbering of the nod&sas

an upper triangular block structure. Call the diagonal bloé@s. o Ag. If Ag has

sizeng x Ng, then there are no paths from any of the (renumbered) nades In—ng,

to ary of the nodes1 — ng + 1, ... , n. Hercethis graph is not strongly connected.
Onthe aher hand, if the graph is not strongly connected, determine its m.s.c.s.’s

Gi,i=1,...,q. These subgraphs form a partially ordered set. Number the individual

nodes ofV in such a vay that if GiR'G;, then the nodes o¥; have lower indices

than those ofY; (R’ was defined ir2.2). With this numbering of the nodes, the

corresponding matriA will be upper block triangular. [ |

Definition 2.15 (Aperiodicity) The square matrix A isaperiodicif there existsanin-
teger N suchthat for all n > N andfor all i, j, (A")ij # e.

Theorem 2.16 Anirreducible matrix A such that Aj; # ¢ for all j isaperiodic.

Proof FromThearem 2.14, the irreducibility assumption implies that for &l , there
exigs n suchthat (A")i; # ¢. This together vith the assumptioi;; # ¢ in turn im-
plies that(A™);; # ¢ for all m > n. The asertion of he theoremdllows immediately
from this since the number of nodes is finite. [

Definition 2.17 A digraph is called a treeif there exists a single node such that there
isa unique path from this node to any other node.

1

-

6
2e 4 >ec 0 o7
2 . TS

1 -

3 >®6

=

4

1
. 0o,

3C \

Figure 2.7: Weighted digraph consisting of two m.s.c.s.’s

o ——>0

In order to determine whetheX is irreducible, one can calculag (see (1.18)).
Matrix A is irreducible if and only if all entries oA* are diffeent fromes. This
algorithm for deterrming whetherA is irreducible can be simplified by considering
only Boolean variables. Repladeby the aljacency matrixG of its precedence graph
(seeDsfinition 2.11), except that 0 and 1 are rapkd bys ande, respectively, in the
present coreixt. ThenA is irreducible if and only if all entries &+ are identical tce.
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As an eample, consider the matrix given in (2.1). The matBx becomes

e ¢ e e ¢ € ¢
e e e e e e e
e ¢ e e ¢ € ¢
e ¢ e e ¢ e ¢ (2.3)
e e e e e e e
e ¢ e e ¢ € ¢
e e e e e e e

HenceA is not irreducible. In fact it follows directly from (2.3) that the nodes314

ard 6 form a m.s.c.s., as do the nodess2and 7. If one rearranges the nodes and
arcs of Fgure 2.4, one obtains Figure 2.7, in which the weights of the arcs have been
indicakd, and the two m.s.c.s.’s are clearly visible. Figure 2.7 is identical to Figure 2.1
apart from the fact that weights are given.

2.3.2 Maximum Cycle Mean

In this subsection the maximum cycle mean will be defined and some of its properties
will be derived. The maximum cycle mean haglear relation with eigenvalues of
matiices within the context of the max algebra and with periodic regimes of systems
described by linear equationalso wthin the same context. These relationships will

be described in Chapter 3.

LetG = (V, £) be a weighted digraph witthnodes. The weights are real numbers
here and are giveby means of tha x n matiix A. As discissed befag, the numerical
value of Ajj equals the weight of the arc from nodeto nodei. If no such ac exids,
then Ajj = ¢. Itis known from Chapter 1 that the ent(y j) of A=A® ---®A

considered withn the algebraic structur@max def (R U {—o0}, max, +), denotes the
maximum weght with respect to all paths of lengkhwhich go from nodej to nodei.

If no such pattexigs, then(A")ij = ¢. Within this algebraic structure,gets assigned
thenumercal value—oco ande = 0. In this subsection we will confine ourselves to the
algebraic structure Ryax.

Definition 2.18 (Cycle mean)The mean weighbf a pathis defined as the sum of the
wel ghts of theindividual arcs of this path, divided by the length of this path. If the path
is denoted p, then the mean weight equals |p|w/|pli. If such a path is a circuit one
talks about the mean weight of the circuit, or simply the cycle mean

We are inerested in the maximum of these cycle means, where the maximum is taken
over all circuts in the graph (empty circuits are not considered here). Consider an
n x n matix A with corresponding pcedence grapg = (V, £). The maimum
weight of all circuits of lengthj which pass through node of G can be written as
(A)ii. The maximum of these maximum weights over all nodes, (Al)i; which
canbewritten tracgAl ). The aveage weight isbtained by dividing this number by

in the conventional sense, but this can be writtescg Al ))Y/1 in the max-plus algebra
notation. Finally, we have to take the maximum with respect to the lepgthis not
necessary to consider lengths larger than the numisémodes since it is enough to
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limit ourselves to elementary circuits. It follows that a formula for the maximum cycle
mean). in the max-plus algebra notation is

n

» = Ptracag A

j=1

The fdlowing theorem preides an expression, due to R. Karp, for this maximum
value. All drcuits with a cycle mean equal to the maximum cycle mean are called
critical circuits. Karp’s theorem does not give the critical circuit(s).

Theorem 2.19 (Kap’s theorem) Given is an n x n matrix A with corresponding
precedence graph G = (V, £). The maximum cycle mean is given by

) AN — Ak - )
A= max min PO TR . V. (2.4)
i=1,....n k=0,....n—1 n—k
In this equation, A" and AX are to be evaluated in Rpay the other operations are
conventional ones.

Proof Notethatthe indeX in (2.4) is arbitrary (it will be shown in this proof that one
can take anyj € {1, ..., n}). The reallting value of is indgpendent ofj .

Without loss of generality, we may assume t@as strongly connected. If it were
not, we would condder each of its m.s.c.s.'s—sin¢gis assumed to be finite, there are
only a finite number of such m.s.c.s.’'s—and determine the maximum cycle mean of
each of them and then take the maximum one.

We first asume thathe maximum cycle man is 0. Then it mst be shown that

ny.. _ kY. .
max min (A )I] (A )I]

=0.
i=1,...,n k=0,...,n—1 n—k

SinceA = 0 there exits a circuit of weight 0 and there exists no circuit with posi-
tive weight Because there are no circuits (mops) with positive weight, there is a
maximum weight of all paths from nodgto nodei which is equal to

k
Xij d=efmax2: A, i, . subjectto ip=j , ix=i ,
=1

where the maimum is talen with respect to all paths and klISince fork > n the path
would contain a circuit and since all circuits have nonpositive weight, we can restrict
oursehes tok < n. Therdore we get

Xij = =(|)T']'f'i)r§71(Ak)ij .

k
Also, (A")i; < xij, andhence

Ny o i Ny AKy.
(ADij — xij k=0r,n.!?1fl(A )ij — (A%)i; <0
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Equivalantly,

(AM)ij — (A9

. S (25)
Equdity in (2.5) will only hold if (A");; = xij. It will be shown hat indeed an index
i exigs such that this is true. L&t be a circuit of weight 0 and ldtbe a node ot .
Let o; be a path fromj to| with corresponding maximum weighpijlw = xj. Now
this path is extended by appending to it a number of repetitiogssoich that the total
length of this extended path, denotgg becomes greater than or equalrtoThis is
again a path of mamum weight fromj tol. Now considerthe path consisting of the
first n arcs ofpe; its initial node isj ard denote its final nodé¢’. Of coursel’ € ¢.
Since any subpath of any path of maximum weight is of maximum weight itself, the

path fromj tol’ is of maimum weight. Therefor€A");; = xj. Now choosei = I’
and we get
AN — kY. .
max |: min M] =0 .
i=1,....n | k=0,...n-1 n—k

This competes the pd of the proof witha = 0.
Now consideran arbitrary finite.. A constant is now subtracted from each weight
Ajj. Then dearly x will be reduced byc. Since(A")ij is redwced bykc, we getthat

(A — (A9
n—k
is redwced byc, for all i, j andk, andhence
ny.. _ kY. .
max m (A )I] (A )I]
i=1,...,n k=0,...,n—1 n—k

is also reluced byc. Herce both sides of (2.4) are affected equally when all weights
Ajj are reduced by the same amount. Now choose this amount such tletomes 0
and then we are back in thegvious situation wherg = 0. [ |

2.3.3 The Cayley-Hamilton Theorem

The Cayley-Hamilton theorem states that, in conventional algebra, a square matrix
sdisfies its own characteristic equation. In mathematical termsAlbe ann x n
matix and let

pa) Edetxl — A) = x"+ x4 -+ eax 4 cx° (2.6)
where| is the identity matrix, be its characteristic polynomial. The tedhin the
polynomial equals 1. Thepa(A) = 0, where 0 ighe zero matrix. The coefficients
G,i=1,...,n,in(2.6) satisfy

Aiin - Al
o = (=1)¢ Z det :

. : 2.7)
i1 <iz<--<ik Aik,il . Aik,ik
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The rea®n for studying the Cayley-Hamilton theorem is the following. In con-
ventional system theory, this theorem is usedthe manipution of different system
desaiptions and for analyzing such properties as controllability (see [72]). In the con-
text of discrete event systems, a utilization of this theorem will be show8.ih2.

In this section it will be shown that a Cayley-Hamilton theorem also exists in an
algebraic structure defined by a sebf elements supplied with two operations denoted
@ and® which obey some of the axioms given §2.3.1, namely

e associativityof addition,

e commutaivity of addition,

assaiativity of multiplication,

both right and left distributivity of multiplication over addition,

existence of an identity element,
provided wealso have

Commutativity of multiplication:

Va,be(C, a®b=b®a.

Notethat the existece of a zero element (and its absioidpproperty) is not required in
this subsection.

A partial permutationof {1, ..., n} is a bijectionc of a subset of1, ... , n} onto
itself. Thedomain of¢ is denoted by donic) and its cardinality is denoteft|,. A par-
tial permutatiory for which|¢|; = nis called a complete permutation. The completion
¢ of a patial permutatiort is defired by

20) = c(@) ifi edom(c) ,
SV 0 ifie{l...,n}\dom) .

Thesignature * of a patial permutatiorg, denoted sgh(c), is defined by
sgrf(s) = sgn)(=1’" ,

where sgiid), sometimes also written ag—1)<, denotes the conventional signature of
the permutatiorr, see p1].

Every (patial) permutation has a unique representation as a set of disjoint circuits.
For examplethepermutation

1 2 3 456
4 6 351 2
has the circuit representation

{1.4,9.03),(2.6)} .
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With the graph-theoretic interpretation of permutations in mind, these disjoint circuits
correspond to m.s.c.s.’'s. The unique partial permutation of cardinality O has the empty
set agts circuit represerdtion. If ¢ is a partial permutation with cardinalikyconsig-
ing of a single circuit, then sgn= (—1)¥1(—1)% = —1. It easily fdlows that for any
patial permutatione, sgrif = (—1)", wherer is the number of circuits appearing in
the circuit representation af.

Given ann x n matix A = (Aj;), the weght of ¢ is defired by

Islw= &) Aciri -

iedom(¢)

The weight of the partial permutation with cardinality 0 equalsin accordance with
the thery presented i§2.3.1. Let 1<i, j < nand IetTjT be the set oéll pairs(c, p)
wherec is a partial permutation and whepas a pah fromi (the initial node) tgj (the
final node) in such a way that

lsh+lpli=n, sgri(s)=1.

The setT; is defined identically except for the fact that the condition*sgh= 1 is
replaced by sgii¢) = —1.

Lemma 2.20 For each pair (j,i), withl < i, j < n, thereisa bijection n;; : TjT —
T;i insuchaway that nji (s, p) = (¢', p") implies|s|w ® |olw = I5"lw ® |0 |w-

Proof Each pair(s, p) € TJT U Ty is represented by a directed graph with nodes
{1,...,n}. The set of arcsansists oftwo classe of arcs:

Ec={G,¢@) |i edom(s)} , &, ={d,k |, k) isanarcofp} .

This graph will, in general, contain multiple arcs, sincenay travese the same arc
more than once, or the same arc may appear in8p#nde,. The epressions|w ®
|p|w is the series composition, with multiplicities taken imtoount, of all theAy for
which (k, 1) is anarc of the graph associated with, p).

Let o be the path connecting the nodgsiy, ... ,ig, in this order. There is a
smallestntegerv > 0 such hat etheri, =i, for someu < v, ori, € dom(¢). If such
av did not exst, thenp must havdp|, + 1 distinct nodes (lecause there are noandv
withi, =iy). Butthen thee are aleast|s| + | ol +1 = n4 1 distinctnodes (ecause
¢ andp do not have any node in common), which is a contradiction. Furthermore,
it is easily seen that this smallest integecannot have both properties. Hence either
iy =i, forsomeu < v ori, € dom(s). An exampleof the first property is given in
Figure 2.8 and an example of the second property is given in Figure 2.9. The dashed
arcs refer to the set. and the solid arcs refer to the st In Figure 2.8,v equals 3,
and in Fgure 2.9 equals 1 {.e.i; = 2).

Consider the situation with the first property such as pictured in Figure 2.8. We
havei, = i, for someu andv. The circuit passing through is renoved fromp and
adjoined as a new circuit t9. Thenew path fromip to ig is denotedp’ and thenew,
longer, partial permutation is denotetl The mapping n;; is defired asnji(s, p) =
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Figure 2.8: Example of a graph with Figure 2.9: Example of a graph with
the first poperty the seond property
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Figure 2.10:31 applied to Figure 2.8 Figure 2.11:n3; applied to Figure 2.9

(¢’, p'). Application of themapping nz1 to Figure 2.8 iggiven in Figure 2.10. Since
the number of circuits of’ and of¢ differ by one, we have sg¢’) = —sgnf(¢) and
thereforen;; mapsT} into T;; and vice versa.

Consider next the situation with the second property such as pictured in Figure 2.9.
The maping nji (s, p) = (¢’, p) is obtained by removing the circuit containimng
from ¢ and adpining it to p. Applicaion of n3; to Figure 2.9 is given in Figure 2.11.
Also in this situation, the numbers of circuits ef and of ¢ differ by one, and again
we have sgf(s’) = —sgrf(¢) which resilts in the fact thay;; mapsTjT into T and
vice versa. In both situationg|w ® |olw = I<’lw ® |0'|lw, Sincenothing has changed
in the graph of(c, p). Itis in thederivation of this equality that the associativity and
commuativity of multiplication, and the existence of an identity element, have been
used. What remains to be shown is that the mappings surjective. For this reason
considerthe iterationnjion;i. It eadly follows that this mapping is the identity on
TJT UTj, which isonly possible ifyj; is suriective. [ |
Definition 2.21 (Characteristic equation) The characteristic equation is given by

PAX) = Pa(X) , (2.8)

n
PA(X) = b @ A | | X",
k=0 \[sli=ksgrr(s)=1 \iedom(c)

p;(x): @ ® Ag(i),i ank .
k=0 \|sli=k,sgr(¢)=—1 \iedom(c)

where

and
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It is easily verified that this chiacteristic equiéon, if considered th convational alge-

bra, coincides with the equation obtained by setting the characteristic polynomial (2.6)
equal to zero. The crucial feature of (2.8) is that there are no terms with ‘negative’
coefficients (in contrst with the conventional characteristic equation, which can have
negative coefficients)Sincethe inverse ofp does not exist, the terms in (2.8) cannot
freely be moved from one side to the other side of the equation.

Theorem 2.22 (The Cayley-Hamilton theorem)The following identity holdstrue:
PA(A) = PA(A) .
Proof Fork =0,....,n,

(A = b o -

. lph =n-k )
initial node ofp equalsi
final node ofp equalsj

It follows that

PAAN = P Isw®lolw . PaAi= P Isw®lplw -

(s:PET (s.p)eTj;

Owingto Lemma 2.20, these two sums are identical. Itis in these two equalities that
the associativity and commutativity of addition, the distributivity and the existence of
anidentity element have been used. [ |

Let us give an exaple. For the 3x 3 matrix A = (A;j), the claracteristic equation is
PA(X) = Pa(X), Where

PAX) = X3@ (A11A22 @ A11As3 ® Ax2Ag3)X @ Ar3AxAsgy
D A12A21 A3z @ A11Az2 3
PAX) = (A1 ® Axx® Aga)X? @ (Ar2A21 ® A13As1 ® AsAsa)X

@ A11A22A33 D A12A23A31 @ Ax1Ar3Asz2

wher, as usual, th@-symbols have beenomitted. If we consider

A=

Do~

2 3

1 ¢

5 3

in the algebraic structui®n,x, then he characteristic equation becomes
XCeaxp9=32a6xd 12,

which can be simplified to

xX=3’p6x®12 ,
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since the omitted terms are dominated by the corresponding terms at the other side of
the equality. A simple calculation shows that if one substitét@sthe latter equation,
oneobtainsanidentity indeed:

12 11 9 9 11 9 7 89 12 ¢ ¢
10 12 10| = 8 9104|100 7 ¢ | e 12 ¢
12 11 12 12 11 9 6 11 9 e ¢ 12

This sedion will be concluded with some remarks on minimal polynomial equa-
tions. The Cayley-Hamilton theorem shows that there exists at least one polynomial
equation stsfied by a givenn x n matiix A. This polynomial equation is of degree
For example, ifA is the 3x 3 identity matrix, then

PR =x®x, pa)=x’de,

and A sdisfies the equatio®® @ A = A? @ e. There may ist equations of lower
degree also satisfied b4 With the previousA, we also haveA = eandx = eis a
polynomial equation of degree 1 also satisfied by the identity matrix. A slightly less
trivial exampleis obtained for

>
Il
[N
m M
= ® ™

The characterttc equation is
XC@3=1x°@®2x .

It is easily seen tha saisfies bothx® = 2x and 3= 1x2. These quations have been
obtained by a ‘partitioning’ of the characteristic equation; ‘adding’ these partitioned
equations, one obtains the characteristic equation again. In this case]l>¥ is of
degree 2. We may call a polynomial equation of least degree satisfied by a matrix,
with the additional requirement that the €@ ent of thehighest power be equal to

e, aminimal polynomial equation of this matrix. This is the counterpart of the notion
of the minimal polynomial in conventional algebra and it is known that this minimal
polynomial is a divisor of the characteristic polynomial [61]. In the present situation,
it is not clear whether the minimal polynomial equation of a matrix is unique and how
to extend the idea of division of polynomials to polynomial equations. In Chapter 3, a
more detailed discussion on polynomials is given.

2.4 PetiNets
2.4.1 Definition

Peri nets are directed bipartite graphs. They are named after C.A. Petri, see [96].
The =t of nodesV is partitioned into two disjoint subsef® and Q. The ebments
of P are called places and those @fare called transitions. Places will be denoted
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pi.i =1,...,|P|, and trangions,q;, j = 1, ... ,|QJ. Thedirected arcs go from a
placeto a transition or vice versa. Since a Petri net is bipartite, there are no arcs from
placeto place or from transition to transition. In the graphical representation of Petri
nes, places are drawn as circles and titinas asbars (the orientation of these bars
can be anyting). An example of a Petri net is given in Figure 2.12.

N
O

Figure 2.12: A Petri net with sources and sinks

In order to complete theformal definition of a Petri net, an initial marking must be
introduced. The initial marking assigns a nonnegative integeéo each placep;. Itis
saidthat p; is marked withy; initial tokens. Pictoriallyu; dots (the tokens) are placed
in the circle representing plagg. The componentg; form the vectoru, cdled the
initial marking of the Petri net.

Definition 2.23 A Petri net is a pair (G, u), where G = (V, &) is a bipartite graph
with a finite number of nodes (the set V) which are partitioned into the digjoint sets P
and Q; & consists of pairs of theform (p;, g;) and (q;, pi), with p; € P andq; € Q;
theinitial marking u isa |P|-vector of nonnegative integers.

Notation 2.24 If p; € 7 (q;) (or equivdently (pi, gj) € &), thenp; is anupstream
place forg;. Downgream places are defined likewise. The followingitiddal nota-
tion will also be used when we have to play with indices:pife 7(q;), we wite
i e ()i =1,...,IP,j = 1,...,1Q|; similarly, if g; € w(pi), we wite
j € mP(), with anaralogous meaning fasP or o 9. [ |

Roughly speaking, plces represenbaditions and transitions represent events. A tran-
sition (i.e. an event) has a certain number of input and outpadqs representing the
pre-conditions and the post-conditions of the event, respectively. The presence of a to-
ken in aplaceis interpreted as the condition associated with that place being fulfilled.
In another interpretation; tokens are put into a place to indicate thatataitems or
resourcesare available. If atoken represents data, then a typical example of a transition
is a computation step for which these data are needed as an input. In Figure 2.13, the
Peri net of the production example if1.2.3 is given. The tokens in this figure are
located in such a way that machih, starts working on productP, and M, on P;.
NotethatM; cannot work onPs in Figure 2.13.
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Figure 2.13: Petri net of the manufacturing systerlo®.3

Within the classical Petri-net setting, the marking of the Petri net is identified with
the gate. Changes occur according to the following rules:

e A trangtion is said to beenabled if each upstream place contains at least one
token.

e A firing of an emaded transition removes one token fragach of its upstream
places and adds one token to each of its downstream places.

Remark 2.25 The enaling rule given above is not the most general one. Sometimes
integer valued ‘weights’ are attached to arcs. A transition is enabled if the upstream
place contains at least the number of tokens given by the weight of the connecting arc.
Similarly, after the firing of a transition, a downstream place receives the number of to-
kens given by the weight of the connecting arc. Instead of talking about such ‘weights’,
one sometimes talks about multi-arcs; the weight equals the number of arcs between
a trangtion and a place or between a place and a transition. In terms of ‘modeling
power’, see [96] and [108] for a definition, this generalization is not more powerful
than the rules which will besed here. The word ‘weight’ of an arc will be used in a
different sense later on. [

Forg; to be embled, we need that
mi=1l, Vpen().

If the enabled transitiogy fires, then anew markingu is obtained with

wi—1 if pen(; ,
mi=qwp+1 if pea(),
Wi otherwise.
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In case bothp; € 7(q;) andp; € o(q;) for the same place;, thenit; = ;.
In Figure 2.13, oncéM; has completed its work oR, and M, its work on Py, then
Figure 2.14 is obtained. The next transitions that are now enabled are described by the

&

A5
@»@

3@ O4 ZO
_A 4

Cc'ﬁ 837'@

Figure 2.14: The tokens after the firingafandqs
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—’&2 3
0
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combiretions(M1, P3), (M, P,) and(Ms, Pp). Note that in general the total amount
of tokens in the net is not left invariant by the firing of a transition, although this does
not hgppen in Fgure 2.13. If we have a ‘join’-type transition (Figure 2.15), which
is called amand-convergence, or a ‘fork’-typetransition (Figure 2.16), called amnd-
divergence, then dearly the number of tokens changes after a firing has taken place. In

e @® @O0 ® O
N NV v v

v v /N Y\
O O, © O ©O

Figure 2.15: And-convergence before Figure 2.16: And-divergence before
and after firing and after firing

the same &in, anor-convergence refers to two or more acs entering one place, and an
or-divergence refers to two or more acs aiginaing from oneplace.

A transition without predcessa(s) is cdled a source transition or simply a source;
it is enabled by the outside world. Similarly, a transition which does not hazaesu
sa(s), is called a sink (or sink transition). Sink transitions deliver tokens to the outside
world. In Figure 2.12 there are two transitions which are sources and there is one tran-
sition which is a sink. If there are no sources in the network, as in Figure 2.17, then we
talk about anautonomous network. It is assumed that only transitions can be sources
or sinks This is no loss o gererality, since one can always add a transition upstream
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or downstream of a place if necessary. A source transition is an input of the network, a
sink transition is an output of the network.

The struture of a placep; having two or more output transitions, as shown in
Figure 2.18, is referred to as@nflict, sincethe transitions areanpeting for the

Figure 2.18: Part of a Petri net
Figure 2.17: An autonomous Petri net with a conflict

token in the place. The trariBons concerned will be said to bavals. There are no
general rules as to which transition should fire first. One says that a Petri net with such
anor-divergence exhibits nondeterminism. Depending on the application, one can also
talk about a choice (between the transitions) or a decision.

The firing of an eraled transition will change the distribution of tokens. A se-
guence of firings will result in a sequence of markings. A marking said to be
reachable from a markingyu if there exists a spience of enabled firings that trans-
formsu into 1.

Definition 2.26 (Reachability tree) Thereachabity tree of a Petri net (G, 1) isatree
with nodes in N'7! which is obtained as follows; theinitial marking u isa node of this
tree; for each q enabled in u«, the marking & obtained by firing q is a new node of
the reachability tree; arcs connect nodes which are reachable from one another in one
step; this processis applied recursively from each such .

Definition 2.27 (Reachability graph) The reachabity graph is obtained from the
reachability tree by merging all nodes corresponding to the same marking into a single
node.

Take as an exanple the Peri net depicted in Figure 2.19.  The initial marking is
(1,1, 1, 1). Bothtransitions are enabled. ¢f; fires first, the net marking is(1, 1, 0, 2).

If gz fires insead, the marking becomés, 1, 2, 0). From(1, 1, O, 2), only theinitial
marking can be reached immediately by firipg stating from (1, 1, 2, 0), only g; can
fire,which also leads to the initial marking. Thus it has been shown that there are three
different markings in the reachéity graph of (1, 1, 1, 1).
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Figure 2.19: A Petri net with correspondirgpchabity graph and eachabity tree

Definition 2.28 For a Petri net with n transitions and m places, the incidence matrix
G = (Gjj) isann x m matrix of integers —1, 0 and +1. The entry G;; is defined by

Gij = G- GI |

where G°Ut = 1 (0) if there is an (no) arc from q; to p; and Gin = 1 (0) if there is
an (no) arc from p; to gi. Matrices G°“ and G™ are defined as Gout = (GO‘“) and
Gn (G'“) respectively.

Notethat G does not uniquely define a Petri net since@Gif = 0, a path including
exadly one place around the transitignis also possible. A circuit consisting of one
transition and one place is called@op in the context of Petri nets. If each place in
the Petri net hdonly one upstream and one downstream transition, then the incidence
matix G would reduce to the well-known incidence matixintroduced in Defini-
tion 2.10 by identifying each placp with theunique arc fromz (p) to o (p).

Trarsition g; is enabled if and only if a marking is given sich that

= (G"e ,

whereej = (0,...,0,1,0,...,0), with the 1 being thej-th component. If this
transition fires, then the next markifgis given by

nw=pu+ G’ej .
A dedination markingm is reachable fromu if a firing sequencee;,, ... , gj, exids
suchthat
d
T=u+G Z g -

1=1

Hence anecessay condtion for & to be reachable fromu is that ann-vector x of
nonnegative integers exists such that

GX=T—p . (2.9)



2.4. Petri Nets 59

The existence of such a vectois not a sufficient condition; for a counterexample see
for instance [108]. The vector does not reflect the order in which the firings take
place. In the next subsection a necessary and suffictertiton for reachabity will

be given for a subclass of Petri nets. An integer solutitm(2.9), with its components
not necessarily nonnegative, exists if and onlgiyy = 'y, for any y that satisfies
Gy = 0. The recessty of this statement easily follows if one takes the inner products
of the let- and right-hand sides of (2.9) with respectyto The sufficency is easily
shown if one assumes thatloes not exist, i.e. rand] <rank[G, 77— u]—the nottion

[G, @ — u] refers to the miix consisting ofG and the ext coumn7t — . Then a
vectory exigs withy'G’ = 0 andy'(x — 1) # 0, which is a contradiction.

2.4.2 Subclasses and Properties of Petri Nets

In this subsection we introduce some subclasses of Petri nets and analyze their basic
properties. Not all of these properties arsed later onthis subsection is also meant

to give some background information on distinct features of Petri nets. The emphasis
will be on event graphs.

Definition 2.29 (Event graph) A Petri net is called an event graph if each place has
exactly one upstream and one downstream transition.

Definition 2.30 (State machine)A Petri net iscalled a statemachineif each transition
has exactly one upstream and one downstream place.

Event graphs have neither or-divergences nor or-convergences. In event graphs each
place together with its incoming and outggiarcs can be int@reted as an arc itself,
connecting the upstream and downstream transition, directly.

In the literature, event graphs are sometimes also referredrtarded graphs or
asdecision free Petri nets. Figure 2.20 shows both a state machine which is not an

O.O
|— — |
O/' O |/0§ID

0

Figure 2.20: A state machine and an event graph

event graphand a eventgraph which is not a state machine. An event graph does
not allow and cannot model conflicts; a token in a place can be consumed by only
one predetermined transition. In an event graph several places can precede a given
transition. It is said that event graphs aandel synchronization. State machines do
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notadmit synchronization; however, they do allow competition. The number of tokens
in an auonomous state machine never changes (Petri nets in which the number of
tokens remains constant are called strictly conservative; a discussion follows later).

It can be shown [108] that sEmachines are equivalent to the finite state machines
or automéa in theoretical compet science. Each automaton can be rephrased as a
state nachine Petri net. This shows that Petets have more modeling power than
automaa.

Basic definitions and properties of Petri nets are now given.

Definition 2.31 (Bounded and safe netsA Petri net, with initial marking w, is said
to be k-bounded if the number of tokens in each place does not exceed a finite number
k for any marking reachable from . Instead of 1-bounded (k = 1) Petri nets, one
speaks of safe Petri nets.

Concerning (practical) applications, it is important to know whether one deals with a
bounded or safe Petri net, since one is then sure that there will be no overflows in the
buffers or regigers, no matter what tHeing sequence will be.

Definition 2.32 (Live net) A Petri net issaid to be live for the initial marking . if for
each marking v reachable from . and for each transition q, there exists a marking o
which isreachable from v and such that g is enabled on 0. A Petri net whichisnot live
is called deadl ocked.

A Petri netis deadlocked if its reachility tree has a marking where a transition, or a set
of transitions, can never fire whatever the firing sequences of the other transitions. For
a live Retri net, whatever the finite initial sequence of firings, from that point onwards,
ary arbitrary transition can be fired an infinite number of times.

An exanple of alive netis a state machine the underlying graph of which is strongly
conreciedand theinitial marking of which has at least one token.

Definition 2.33 (Consistent net) A Petri net iscalled consisten{weakly congsteny if
there exists a firing sequence, characterized by the x-vector with positive (nonnegative)
integers as components, such that G’x = 0, where G isthe incidence matrix.

In a consistent Petri net we can choose a finite sequence of firings such that repeating
this sequence results in a periodic behavior.

Definition 2.34 (Synchronous net)A consistent net is called synchronousf the only
solutionsx of G'x = Oareof theformx = k(1, 1, ... ,1).

Definition 2.35 (Strictly conservative net) APetri net withinitial marking v iscalled
strictly conservativef, for all reachable markingsyz, wehave } -, » 1t = > cp Hi-

Definition 2.36 (Conservative net)A Petri net with initial marking u is called con-
servativeif positive integers ¢; exist such that, for all reachable markings iz, we have

Zpie’P C|ﬁ| = Zpie’P Gi i

Theorem 2.37 The number of tokensin any circuit of an event graph is constant.
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Proof If atrandgtion is part of an elementary circuit, then exactly one of its incoming
arcs and one of its outgoing arcs belong to the circuit. The firing of the transition
removes one token from the upstream place connected to the incoming arc (it may
remove tokens from other places as well, but they do not belong to the circuit) and
it adds one token to the downstream place connected to the outgoing arc (it may add
tokensto other downstream places as well, but they do not belong to the circuit)m

An event graphis not necessarily strictly anservative. Consider an and-
convergence, where two circuits merge. The firing of this transition removes one token
from each of the upstream places and adds one token to the only downstream place.
At anand-divergence, where two circuits split up, the firing of the transition removes
onetoken from theonly upgsream place and adds one token to each of the downstream
places.

Theorem 2.38 An autonomousevent graph isliveif and only if every circuit contains
at least one token with respect to theinitial marking.

Proof

Only if part: If there are no tokens in a circuit of the initial marking of an event graph,
then this circuit will remain free ofakens and thus all transitions along this
circuit never fire.

If part: If a trangtion is never enabled by any firing sequence, then by backtracking
token-free phces, one can find a tokdree circuit. Indeed, if in an event graph
a trangtion never fires, there is at least one upstream transition that never fires
also (this statement cannot be made for general Petri nets). This backtracking is
only possble if each place has atrdtisn as preécessor and each trasn has
atleas one place as predecessor. This holds for autonomous event graphs. Thus
the th@rem has been proved. [ |

Theorem 2.39 For a connected event graph, with initial marking 1, a firing sequence
can lead back to . if and only if it fires every transition an equal number of times.

Proof In a connead event graph all transitions are either and-divergences, and-
convergences or they are simple, i.e. they have one upstream place as well as one
downstream place. These categories may overlap one another. If an and-divergence is
enabled and it fires, then the number of tokens in all downstream places is increased
by one In order to dispose of these extra tokens, the downstream transitions in each
of these places must fire also (in fact, they must fire as many times as the originally
emabed transition fired in order to keep the number of tokens of thegs in between
constant). If an and-convergence wants to fire, then the upstream transitions of its up-
stream places must fire first in order that the number of tokens of the places in between
do notchange Ladly, if a transition is simple and it can fire, both the unique down-
streamtransition and upstream transition must fire the same number of times in order
that the number of tokens in the places in between do not change. The reasoning above
only fails for loops. Since loops are connected to the event graph also and since a firing
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of a transition in a loop does not change the number of tokens in the place in the loop,
thes loops can be disregarded in the above reasoning. [ |

Thistheorem states that the equati®hx = 0 hasonly one positive independent solu-
tionx = (k, ..., k). An immediate onsequence is that every connected event graph
is synchronous.

Theorem 2.40 Consider an autonomous live event graph. It is safeif and only if the
total number of tokensin each circuit equals one.

Proof The if part d the proof is straightforward. Now consider the only if part. As-
sume thathe graph is safe antiat the total number of tokens in a circgit indicaed

by wu(¢k), is not necessarily one. Consider all circuits, ¢2, ... , {m) passing through
aplacep; ardits upstream transitiorj. Bringas many tokens as possible to each of the
updream places df; and sibsequently fir¢; as many times as possible. It can be seen
that the maximum number of tokens that can be broughtpinis bounded from above

by min{r(¢1), n(z2), ... , u(¢m)}. In paticular, if this minimumequals one, then this
maximumnumber of tokens is less than or equal to one. Since the event graph is live,
t; can be enabled, and thereédhis maximum equals one. ]

The fdlowing theorem is stated in [95].

Theorem 2.41 In a live event graph 7x is reachable from w if and only if @'y = 'y,
for any y that satisfies Gy = 0.

This last theorem shagms the resulinentoned at the end df2.4.1, where the condi-
tion'y = 'y wasonly a necessary condition.

2.5 Timed Event Graphs

The origihal theory of Petri nets deals with the ordering of events, and questions per-
taining to when events takeaue are not addreskeHowever, for questions related to
performance evaluation (how fast can a network produce?) it is necessarydduot
time. This can be done in two basic ways by associating durations with either transition
firingsor with the joum of tokensin places.

Durations associated with firing times can be used to represent production times
in a manufacturing environment, where transitions represent machines, the length of a
code in a computer science setting, etc. We adopt the following definition.

Definition 2.42 (Firing time) The firing time of a transition is the time that elapses
between the starting and the completion of the firing of the transition.

We alsoadopt the additional convention that the tokens to be consumed by a transition
remain in the preceding places during the firing time; they are caéssived tokens.

Durationsassociated with places can be used to represent transportation or commu-
nication time. When a transition produces a token intoaz| this token ¢mot im-
mediately ontribute to the enabling of the downstream transitions; it must first spend
someholding timein that place, which actually represents the time it takes to transport
this token from the initial transition to thegute.
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Definition 2.43 (Holding time) The holding time of a place is the time a token must
spend in the place before contributing to the enabling of the downstreamtransitions.

Observe thathere is a basic asymmetry between both types of durations: firing
times repesent the actual time it takes todfia transitbn, while holding times can be
viewed as the minimal time tokens have to spend in places (indeed it is not because
a specific token has completed its holding time in a place that it can immediately be
conaumed by some transition; it may be that no transition capable of consuming this
token is enabled at this time)n practcal situdions, both types of durations may be
preent. However, as we shall see later on, if one deals with event graphs, one can
disregard durations associated with transitions without loss of generality.

Roughly speaking, a Petri net is said to be timed if such durations are given as
new data associated with the network. A basic dichotomy arises depending on whether
thes durations are constant or variable. Throughout the book, only the dependence
on the index of the firing (the firing of transitiog of indexk is thek-th to be initi-
ated), or on theridex of the token (the token qf of indexk is thek-th token ofp to
contribute enabling (p)) will be considered. The other possible dependences, like for
instarce the dependence on tim@,on some possibly changing environment, will not
be addressed.

The timing of a Petri net will be said to be variable if the firing times df a
transition depend on the index of the firing or if the holding times of tokens in
a place deend on the index of the token. The timing is constant otherwise.

In the constant cas the firs, thek-th and(k+ 1)-t firingsof transitiong take the same
amount of time; this common firing time may however dependjdsee the gamples
below).

Remark 2.44 With our definitions, nothing prevents a transition from having several
ongoing firings (indeed, a transition does not have to wait for the completion of an
ongoing firing in order to initiate a new firing). If one wants to prevent such a phe-
nomenon, one may add an extra place associated with this transition. This extra place
should have the transition under consideration as uniqueepess$or anduccessor,

ard onetoken in the initial marking, as indicated in Figure 2.21. The addition of this
loop models a mechanism that will be calledeaycling of the transition. Owing to

this mechanism, the firings of the transition are properly serialized in the sense that its
(k 4+ 1)-st firing can only start aér the completion of thi-th firing. [ |

In the rest of this chapteunless otbrwise specifiedkp will be maximization and
® addition, so thatt = —oco ande = 0. We will also use the symbglto denote
subtraction.

2.5.1 Simple Examples

The gbbal aim of the present section is to derevoluion equatdns for the variables
xi(kK),i =1,...,]|Q|,k > 0, not counting the sources and sinks, and whetk) is
defined asthe epoch at which transitiap startsfiring for thek-th time. Both constant
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Figure 221: Recycling of a transition

and variabletimings will be considezd. Forgeneral Petri nets, such equations are
difficult to derive. This problem will only be addressed in Chapter 9. For the moment,
we shall onfine ourselves to event graphs. Wetstath some simple examples with
constant timing before addressing the general case. The issue of the initial condition
will not be addressed in these silmgxampés either (se§2.5.2.1). The general rule

(to which we will reurn in the next subsection) is that transitions start firing as soon as
they are aabled.

Example 2.45 (An autonanous timed ezent graph) The first exampleleals withthe
manufacturing system df1.2.3, as depicted in Figure 1.5. The related Petri net, given
in Figure 2.13, is the starting point for discussing the way the evolution equations are
derived. The timing under consideration is limited to constant holding timesame gl
which areindicated in the figwe. The firing times are all assumed to be 0. We have the
following evolution equations:

X1(k + 1) = 5x2(k) & 3x7(k) ,
Xo(kK+1) = Ixi(k + 1) & 3x5(k) ,
X3(k + 1) = 3x5(k) ® 4xs(K) ,
Xa(k+1) =1Ix;(k+1) ®3x3(k+ 1) ,
Xs(K+ 1) =5xo(k +1) @ 2x4(k + 1) ,
Xe(k+1) = 3xa(k + 1) ® 3x7(k) ,
X7(K+1) =2x4(k+1) ®4xg(k + 1) .

In order to get this set of equations, one must first observe that owing to our assumption
that holding times are constant, overtaking of tokens in places is not possible: the
k-th token to enter a place will be tHeth token b leave tlat place (at least if the
initial marking in that place is 0). If one uses this observation, the equatior fdor
instarce) is obtainedafollows: ge is enabled for thek + 1)-sttime at the latest of the

two gpochs when thék + 1)-st token to entethe placebetweenqs; andgs complées

its holding time there, and when tHeth token to entethe placebetweenqg; andgs
complées its holding time. The difference between the argumlerarsdk + 1 comes

from the factthat the phce between}; andgs has onetoken in the initial marking. If
onenaow uses theddinition of holding times, it is easily seen that the first of these two
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epochs isxg(k + 1) + 3, while the second one kg (k) + 3, which concludes the proof.
There ae clearly some further problems to be addressed regarding the initial condition,
but letusforgetthem for the moment. In matrix form this equation can be written as

XK+ 1) = Aox(K + 1) & Ax(K) , (2.10)

where

z

Il
M M M ® o,
m M Ul Mm ®m ;o™
M WM Wm m ™
N® N® ® o o™
m M M ;M m ;M
N®H ®m ;o ;m ;m om
m M M ;M m m Mm

P

Il
m M M ;M m m M
m M M m m m gl
m M M m m ;M
m M M ;M m ;M
m M M M oW ™
m MmN ® O™
M WM M m ;o

The equdion is written in a more convenient way as
x(k+1) = AxK) , (2.12)

whereA = A} A; (see(1.22)), or, written out,

e 5 e e & ¢ 3
e 6 ¢ ¢ 3 ¢ 4
e € ¢ ¢ 3 4 ¢
A=]| ¢ 6 ¢ ¢ 6 7 4
e 11 ¢ ¢ 8 9 9
e ¢ ¢ ¢ 6 7 3
e 8 ¢ ¢ 10 11 7

Remark 2.46 Both equations (2.11) and (1.29) describe the evolution of the firing
times, the first equation with respect to the statéhe seond one with repect tothe
outputy. Using thenotation 0f§1.2.3, one cacheck that

y(k + 1) = Cx(k + 1) = CAx(k)
and that
y(k+1) = Myk) = MCx(K) ,
whereA is definedabove, and wher€ A equalsMC. [ |

Conversely, it$ easy to derive a Petri net from (2.11); such a net has 7 transitions
(thedimension of the state vector) and 22 places (the number of entriew/irich are
not equal tae). Each of these places has a token in théahmarking. The holding
time associated with the place connecting transifido transitioni is given by the
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Figure 2.22: Petri net of Example 2.47

appropriateA;; entry. Thus at least two different Petri nets exist which both yield the
same set of evotion equatons. In this sense these Petri nets are equivalent.

Example 2.47 (A nonautonomous timed event graphThe stating point for the
next exanple is Hgure 2.22, which coincides with Figure 2.12 with an initial marking
added. The timing is again limited to places. The evolution equations are given by

x(k4+1) = Aox(k + 1) & Arx(K) @ Aox(k — 1) & Bou(k + 1) & Byu(k)
y(k) = Cox(k) ® Cix(k — 1) ,

where

N O ™
™ M ™
\—/
P

|
VS
SR
™ M ™
\—/

&

Il
S
N ™ ™
\—/

Co=(¢e & 2), C1=(8 e 8).

If one usesAy;, this system can be written as

e 4 ¢ e € ¢
e 7 ¢ |IxkKd]|l ¢ ¢ ¢ |xtk=1)
e 11 ¢ e ¢ 2
1 ¢ e ¢
@&l 4 ¢ Juk+D)ad| ¢ 5 Juk ,
8 ¢ e 9

yk) = (e & 2)x®e(e e & )xk-1 .

x(k + 1)
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This equation can be put into standard form by augmenting the state space: if one
defines

X(K) = (X2(K), x2(k — 1), X2(K), X2(k — 1), x3(K), Xx3(k — 1), u1(K), u2(k))" ,

the system can be written as

X(k+1) = AX(K @ Buk+1) ,
~ 2.12
yk = CXK) (212)
where
e ¢ 4 ¢ ¢ ¢ ¢ ¢ 1 ¢
e ¢ € € €& ¢ ¢ ¢ e ¢
e ¢ 1T € ¢ € ¢ b5 4 ¢
~ &g & € ¢ & €& & ¢ e ¢
A= e ¢ 11 ¢ ¢ 2 ¢ 9 |’ B= 8 ¢ |’
e & € € € g & ¢ e ¢
e & € € €& & & ¢ e ¢
e & € € €& & & ¢ e €
and

~

C=(¢ec ¢ ¢ e 2 ¢ ¢ ¢).

Further sinplifications are possible in this equation. Singeis not observable (see
[72]) and since it does not influence the dynamics0dr x3 either, it can be discarded
from the séte, as cami;. Thus a five-dimensional state vector suffices. Equation (2.12)
is still not in the standard form since the argumenta$ k + 1 insiead ofk. If one
insists on the ‘precise’tandard form, it can be shown that (2.12) and

xk+D = AXK @ ABu(k) ,

y(K) Cx(K) @ CBu(k) , (2.13)

are identical in the sense that theirtransforms (see Chapter 1) are identical. This

is left as an exercise to the reader. The latter equation does have the standard form,
though there is a direct throughput term (the inpk) has a direct ifluerce on the
outputy(k)). [ |

Example 2.48 (Discrete analogue of the system §1.2.7)Thepurpose of this exam-

ple is to play again with the ‘counter’ description already alluded to in Chapter 1, and
to show that discrete event systems may obey similar equations as some continuous
systems, up to the praodin of ‘quantization’. Figure 2.23 (left-hand side) represents

a simple evat graph: the three transitions are labellgdx andy, holding times of
places are indicated by numbers (firing times are all zero) andital imarking is
shown. With each tranision, e.g. X, is assocated a functia of timet having the same
name, e.gt — X(t), with the following meaningx(t) represents the number of firings
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Figure 2.23: An event graph and its continuous analogue

of transitionx up totimet, and itis assumed thax(t) = efort < 0. The following
equations are obtainad the min-plus algebra:

X)) =Ixt—-2)6put -2 ; y(t) = 3x(t) ,

where thalelays in time originate from the holding times and where the coefficients are
conrected with the initial number of tokens in theg@tes. By successive suibstions,
one obtains:
yt) = 3ult—2) eaxt—2)
= 3ut—2)@4u(t —4) ds5xt -4

P h@out -1 .

2=t=t+2
T even

whereh is the function defined by (1.38). Observe that the min-summation can be
limited tot + 2 becausau(—1) = u(-2) = --- = Xx(-1) = Xx(-2) = --- = eand
the coeffcient ofx(t) is larger than that ofi(t). Indeed, for the same reason, the min-
summation can bextended tor < +o00, and also to-co < t becauseh(r) remains
equal to 3 for values ot below 2, whereasi(t — 7) is nonincreasing with. Findly,
one obtains that

yt = @ hout -1,

—00<T<+400
T even

which conpares with (1.39), except that nawanges in Z instead ofR.

The right-hand side of Figure 2.23 suggests the correspondence of continuous ele-
ments (extracted from Figure 1.13) with their discrete counterparts.

Recalling the mixing operation explained in the last paragrap$ildf.7, we see
thatthe dscrete analogous operation consists here in ‘synchronizing’ two event graphs
similar to that of Figure 2.23 by a join at their output transityan [ |

2.5.2 The Basic Autonomous Equation

The event graphs of this section are assumed to be autonomous. The nonautonomous
case will be considered i§2.5.5. We now turn to the derivation of a set of evolution
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equations for event graphs with variable timing, under the general assumptions that
¢ the transitions stafiring as ®on as they are enabled;

¢ the bkens of a place start enabling the transitions downstream as soon as they
have completed their holding times.

The poblems that arise with vaabletiming are slightly more complex than in the
preceding examples. The main reason for this lies in the fact that tokens can then
overtake one another when traversing places or ftiems. As we will s& in Chapter 9,

this precludes a simpterdering of events to hold, and event graphs with overtaking lose
the nice linearity property emphasized in the preceding examples. The discussion will
hence ke limited to thecase of event graphs with First In First Out (FIFO) places and
transitions, where the ordering of events preserves linearity.

2.5.2.1 Initial Condition

We start vith a first discussion of thiitial condition which is here understood as a

sd of initial delays attached to the tokens of the initial marking in a way that general-
izeswhat is often done in queuing theory. This topic will be revisitecti4.4.1 and
§5.4.4.2, and further considered from a system-theoretic point of vié.fh4.3.

Assumethat one starts looking at the system evolution at time 0, and that the
piecewise constant functioN; (t) describing the evolution of the number of tokens
preentinp,i = 1,...,|P|, attimet € R, is right continuous. LeWN;(0) = wui,
whereyu; denotesthe initial marking in placep;.

The gereralidea behind the initial condition is as follows: thg(0) ( = ;) tokens
visible at timet = 0 in p; are assumed to have entengdbeforetime O, at time O, each
token is completing its holding time or it is being consumed by the transition (namely
it is a reserveddken), or it is ready to be consumed. We can equivalently define the
initial condition through the entrance times of the initial tokens, or through the vector
of R-valuedlag times, where

Definition 2.49 (Lag time) The lag time of a token of the initial marking of p; isthe
epoch when this token starts contributing to enabling o (p;).

However, these lag times should be compatible with the general rules that transitions
fire & onasthey are enabled and that tokens start enabling the transition downstream
as soon as they have complethdit holding times. For instance

e if the lag time of an initial token eseeds its holding time, this tokenrozot have
entered the plackefore time 0O;

e if the lag times (whiclare possibly negative) areeh that one of the transitions
completes firing and consumes tokens of the initial marking befoe0, these
tokens cannot be part of the marking seen at time 0 since they must have left
before time 0.

Definition 2.50 (Weakly compatible initial condition) The initial condition of a
timed event graph consists of an initial marking and a vector of lag times. This ini-
tial condition isweakly compatibleif
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1. thelagtime of each initial token does not exceed its holding time;

2. thefirst epoch when a transition compl etes firing is nonnegative.

2.5.2.2 FIFO Places and Transitions

A basc assumption that will be made throughout the chapter is that botcps and
transitions are First In First Out (FIFO) channels.

Definition 2.51 (FIFO place) A place p; is FIFO if the k-th token to enter this place
is also the k-th which becomes availablein this place.

In view of the interpretation of holding times as communication or transportation times,
this definition just means that the transportation or communication medium is overtake
free. For instance, a place with constant holding times is FIFO.

Definition 2.52 (FIFO transition) A transition q; is FIFO if the k-th firing of q; to
start is also the k-th to complete.

The interpretation is that tokens cannot overtake one anotbeause of the firing
mechanism, naely the bkens produced by thé + 1)-st firing of g; to be initi-
ated cannot enter the pices oo (q;) earlier thanhose of thek-th firing. For instance,

a trangtion with constant firing times is always FIFO. If a transition is recycled, its
(k + 1)-st firing cannot start before the completion of théh one, so that a recycled
transition is recessarily FIFO, regardless of the firing times.

Definition 2.53 (FIFO event graph) An event graphisFIFO if all itsplacesand tran-
sitionsare FIFO.

A typical example of a FIFO timed event graph is that of a system with constant holding
times and recycled transitions with possibariable firng times. An event graph with
constant holding and firing times is always FIFO, even if its transitions are not recycled.
Since the FIFQoroperty is essential in order to establish the evolution equations of the
preent sectionit is important to keep in mind that:

The dasses o timedewert graphs considered throughout the book are those
with

1. constant firing and holding times;

2. constant holding times and variable firing times, provided all transitions
are recycled.

2.5.2.3 Numbering of Events

The fdlowing way of numbering the tokens that traverse a place and the firings of a
transition will be adopted.
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D

By conwention, thek-th tokenk > 1, of placep; is thek-th token to contribut
enablingo (p;) during the evolution of the event graph, including the tokens
of the initial marking. Thek-th firing, k > 1, of transitiong; is thek-th firing
of g; to be initiated, including the firings that consume initial tokens.

It may happen that two tokens in contribute enabling (p;) at the sara eoch, or

that two firings of a transition are initiated at the same time (when the transition is not
recycled). In thicase, some ordenj of these simultaneous events is chosen, keeping
in mind that it should be compatible with the FIFO assumptions.

2.5.2.4 Dynamics

In what follows, the sequences of holding timesk), i =1, ..., |P|, k € Z, and of
firing timesB; (K), j = 1,...,|Q|, k € Z, are sssuned to be gven nonnegative and
finite real numbers. Initially, only the restriction of these sequencés=tol will be
needed. However, we assume that these sequences can be contikue®tdSuch a
continuation is tear in the case of a constant timing, and we will see in due time how
to define he continuation in more genal circumstances (s§2.5.7).

We are now in a position to define the dynamics of the event graph more formally.

e Thek-th token of place p; incurs theholding timec; (k).

e Once thek-th firing of transitionq; is enabled, the time fay; to complete itk-th
firing is thefiring time B; (k). When tis firing is completed, the reserved token
is removed from each of the places 0fq;), and each place o6 (q;) receives
one token.

We now stée a few basic propertseof thenumbering in a FIFO event graph with a
weally compatible initial condition. For suchthatu; > 1, denotew; (1) < w;i(2) <

- < wi(ui) € R, thelag times of the initial tokens of placg ordered in a nonde-
creasing way.

Lemma 2.54 If theinitial condition isweakly compatibleand if the timed event graph
isFIFO, thenfor all i and for all k suchthat 1 < k < uj and uj > 1, theinitial token
with lag time wj (K) is also the k-th token of place p; (that is the k-th token to enable

a(pi)).

Proof If this last property does not hold for some plagethen a bken which does not
bdong to the initial marking ofp;, and which lence enterg; after time 0 (the initial
condtionis weakly compatible), contributes to enablingp; ) before one of the tokens
of the initial marking does. Since the tokens of the initial marking eptdrefore time
0 (the initial condition is weakly compatible), this contradicts the assumptiorgihat
FIFO. [

Lemma 2.55 Thefiring of g; that consumes the k-th token of p; (for all p; € 7(q;))
isthe k-th firing of q.
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Proof Owing tothenumbering convention, the setloth tokens ofp; € 7(q;) enables
g; before the set ofk + 1)-st tokens. []

Lemma 2.56 The completion of thek-th firing of q;, k > 1, produces the (k + u;)-th
token of p;, for all pi € o (q;).

Proof The FIFO asumption®n transitions imply that the completion of tke¢h firing
of g; produces thé&-th token to enter the places that followp;. The property follows
immediately from the FIFO assumption on places and from Lemma 2.54. [ |

2.5.2.5 Evolution Equations

Definition 2.57 (Statevariables, daters) The state variable x;(K), j =1, ..., |Q],
k > 1, of the event graph isthe epoch when transition q; startsfiring for the k-th time,
with the convention that for all g, x; (k) = oo if g firesless than k times. These state
variableswill be called daters

These state variables are continued to negative valukdbgithe rettion x; (k) = ¢,
forallk < 0. Let

M= max u . (2.14)
i=1,..,|P|

In what follows, we will adopt the convention that tliesumover an empty set is.
Define the| Q| x |Q| matiicesAk, k), A(k, k — 1), ..., Ak, k — M), by

Aji (k. k —m) & [ i) | ®pk—m) (2.15)
{iexd(j)lwP(i)=!,pi=m)
and thg Q|-dimensonal vectorw(k), k = 1,..., M, by
0 E P wk . (2.16)
{iena(j)lpi=k}

Theorem 2.58 For a timed event graph with recycled transitions, the state vector
x(K) = (xj (k) satisfies the evolution equations:

xK) = Ak KxK® ® Ak Kk—DxK—1) & & Ak k — M)x(k — M) ,
k=M+1,M+2,..., (2.17)

with theinitial conditions

xK) = AKKXK @@ AK Kk — M)x(k — M) @ v(K) ,
k=12...,M, (2.18)

where x; (k) %' for all k <0.
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Proof We first pove thatthe variables;(k), j = 1,...,|Q|, sdisfy the evolution
equations:
i = P (k) ® BroiyK— i) ® Xaogiy (K — 1)
{iemd(j)lk>pui}
@ P wk|., k=12... (2.19)
{iemd(j)lkspi)

Thek-th firing, k > 1, of transitiong; startsas soon as, for ail e 79(j), thek-th token
of p; contributes to enabling;. In view of Lemmas 2.55red 2.56, fork > u;, thisk-th
token is produced by th@ — w;)-th firing of transitionsz (p; ), so that he epoch when
this token contributes enabling(p;) is & (K) ® Brriy(K — i) ® Xzeiy(K — wi). For
k < uj, this eveat takes phce at timew; (K), in view of Lemma 254, which completes
the poof of (2.19).

We now use ssocativity and canmutdivity of @, together with ouconvention on
@-sumsover emptysets, to ewrite x; (k), k > M, as

M Q]

SD > (k) ® Bk —m) @x(k—m) .

m=0 |=1 {iexd(j)|zP@)=l, ni=m}

The digributivity of ® with respect tad implies in turn

M Q|
xj<k)=@@( b m(k))@ﬂ.(k—m)@xl(k—m),
{ =mj

m=0 |=1 ierd()|aPi)=l, ui

which completes the proof of (2.17), in view of the definition4f
The poof of (2.18) follows the same lines (using the continuation of the functions
Xj(K) toe fork < 0). []

Remark 2.59 Owing to the dynamics, the first transition to complete its firing is nec-
essarily within the set of transitiong; having atleast one token in the initial marking

of p; for all p; € n(qg;). Sincethe set of tokens with the smallest lag times is the
firstto be consumed, the second weak compatibility condition in Definition 2.50 can
be transhted intathe requirement that

BiH®vi() =e, (2.20)

for all j suchthaty; > 1V p € 7(q;), which can be seen as a first set of linear
condraints on the lag times in view of (2.16). Similarly, the first weak compatibility
relaion is translated into the followingdditional set of linear constraints:

wik) <ok , i=1...,Pl, 1<k<upu . (2.21)

For instance, if wi(k) = «j(k) foralli = 1,...,|P|,1 < k < uj, then the initial
condition is weakly compatible, provided the conditioi(1l) < wi(2) < ... < wj(w)
is satisfied. [ |
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Figure 2.24: Event graph of Example 2.60

Example 2.60 Consider the timed event graph of Figure 2.24. The firing times are as-
sumed to kb gqual toe. Theplace coneding g; to g is denotedp;;. Theholding times

in this placeare denoted;; (k), and the lag times of the initial tokens; (k). In order

to have a HFO event graph, placestsould be overtake free. This will always be true

for p11 and pyo, regardless of the holding time sequences in these places (since there is
always at most one token each of these places). A simple suffi@adtion ensuring

that the other places are overtake free is that the associated holding time sequences are
non deceasing irk (for instance constant). Under the assumption that the event graph

is FIFO, the matrices ahvectors inwlved in the evolution equations are

£ € € € a11(k) ¢ ¢ ai4(k)
Ak K) = € € € € CAKK—1) = an(K) & ¢ €
€ € € € € g € €
e as(k) agzk) e e & & ok
€ e € ¢
€ g € ¢
Ak k-2 = az1 (k) ¢ ¢ ¢
€ g € ¢
and
w11(1) B w1a(l) >
w21(1) 2
1 = 2 =
v wan(1) Y@= wa
w44(1) &

The onstraints (2.21) and (2.20) are translated into the bound®) < o;(k), and
w11(1) B wia(l) > €, w1 (1) > e, wa1(l) > e ]
2.5.2.6 Simplifications

Firing Times The evoldion equatons (2.19) are unchanged if one sets all the firing
times equal t@ and if«; (k) receives the value; (K) ® B.»i)(K — ;). Thus, one can
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always nodify the holding times in order to get an ‘equivalent’ event graph with firing
times of duratiore, where guivalence means that the epochs when transitions fire are
the samen both systems.

It may be assumed without loss of generality that the firing times are equal to
e=0.

Obsave that under this assumption the state variaglg) is also the poch when
transitiong; compldes itsk-th firing. Graphically, this is exemplified in Figure 2.25.

If a firing time were assigned to a transition within an event graph, then this time can
always be assigned to (i.e. added to) the holding times of all the upstream places.
Consider Figure 2.25a, in which the transition has a firing time of 5 time units. The

30 04 8Q Q9% 30 04 3Q O4 30 O4
l5 ATLO \l/ 0 \/ [\\/

1
O6 Os6 O11 Cl) 5 00 (1) 5
+ I+
O6 O6
(@) (b) (© (d) (e)

Figure 2.25: Firing times set ®

holdingtimes of the places are 3, 4 and 6 as indicated in this figure. Figure 2.25b shows
assignment of the firing time to the places. The firing of the ftemsin Figure 2.25b,
which is instantaneous, corresponds to the completion of the firing of the transition in
Figure 2.25a. Another, similar, solution is provided in Figure 2.25c, where the holding
time has been assigned to all the downstream places. The firing of théitvams this

figure corresponds to the initiation of therig of the transition in Figure 2.25a.

A different solution is provided in Figure 2.25d. In this figure, both the beginning
ard completion of the firing are now explicitly represented. In Figure 2.25¢, the holding
time at the transitions is also 0, but in contrast to the previous solutions the transitions
cannot fire twice (or more times) within 5 time units. The transitions cannot be engaged
in (partly) parallel activities.

In what follows, we shiatherefore ofen assume that the firing times are zero. The
practical implication of this mathematical sitification is clear in the constant firing
ard holding time case. In the variable case, one should however always keep in mind
that the only meaningful initial situation is that of variable firing times (on recycled
transitions) ad constant holding times.

Initial Condition The end of this subsection is devoted to a discussion of the initial
condition. Itis shown that Equation (2.18), defining the initial condition, can be further
simpified whenever the lag times satisfy certain additional and natural constraints.
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For alli suchthat; > 0, denote byy;(k), k < 0, theentrance time function
associated with placp;, defined ly the rdation

o def Jwi(fei(k) ifl <k =ui;
Yi(k— i) = . ko | (2.22)

where we recall that denotes conventional subtraction.

The initial condition is said to beompatibleif it is wealky compatible and if for
any pair of places; and p; which follow the same transition, the entrance tinye&)
andy;j (k) coincide providedk > min(u;, uj).

Definition 2.61 (Compatible initial condition) The initial condition is compatibleif
it isweakly compatibleand if there exist functions zj(k), j =1, ..., |Q]|, k < 0, such
that

Vi(K) = Zzey(k) , Vi,k suchthat —pj+1<k<O. (2.23)

This condition is quite natural, should thatial condition result from a past evolution
of the event graph: for instance, the last tokens of the initial marking to enter agespl
pi and p;- that follow the same transitica, have the been produced at the same time
z; (0) by a firing ofq;.

Let

def

Mj = max (ui) .

iead(j)

Observe thattte functionz;(k) is only defined through (2.23) forM; < k < 0,
providedM; > 1. For othewalues ofk, or if M; = 0, we takez; (K) = ¢.

Instead of the former continuation aik) to k < 0 (which consited in taking
Xj (k) = ¢ for k < 0), we now take

xjk=zjk) , Vk<0, j=1,...,]9 . (2.24)

Corollary 2.62 For a FIFO timed event graph with a compatibleinitial condition, the
state vector x(k) = (x;(k)) satisfiesthe evolution equations:

xk) = Ak KxK & AKkk—-—Dx(k—1Dd---® AK k —M)x(k—M) ,
k=12 ..., (2.25)

provided the continuation of x(k) to negative values of k isthe one defined by (2.24).

Proof By successively using (2.22) and (2.23), one gets

@ wik) = @ i (K) ® Yi(K — i)

{iema(j)lk=pi} {iema(j)lk=pi}

= @ @i (K) @ Zzoiy (K — i)

{iem9())lk=pi}
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forallk=1,2, ..., sothatone can rewrite (2.19) as
X = P Fenk-—p)@a®) . k=12..., (2.26)
fiexa(j))

when usinghe continuation ok proposed in (2.24). Equation (2.25) follows immedi-
ately from (226). [ |

Remark 2.63 A simple example of compatible initial condition is obtained when
choosingw;i (k) = «j(k) for all 1 < k < u;. Practcally speakig, this means that
all the initial tokens enter at time 0. This corresponds to the continuation
e if—-Mj <k<0;

(k) =
Xi (k) ifk<M, .

(2.27)

Example 2.64 (Exanple 2.60 continued)If the initial condition is compatible, let

2000 &

z(-1
24(0)

w11(Dfe11(1) = war(Dfa21(l) = wa(@faz1(2)
w31(Dfaz1()
w1a(Dfa14(1) = was(Dfoaa(l) .

def

def

Define

71(0) z(-1)
x(0) = i . X(=1) = i
24(0) €

It is easily checked that
v(2) = A2, 0)x(0)

and that
v(1) = A, 0)x(0) ® AL, —D)x(-1) .

Thus
X(k) = Ak, K)x(k) & Ak, k —Dx(k—1) b Ak, k—2x(k—2), k=1,2,....

2.5.3 Constructiveness of the Evolution Equations

The first naturafjuestion concerning Equation (2.17) is: is it implicit or constructive?
The main result of this section establishkattthe evolution equations (2.17) are not
implicit and that they allow one to recursively define the valuegak) for all j =
1,...,]9Q|, andk > 1, provided the event graph under consideration is live.
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Lemma 2.65 The event graph isliveif and only if there exists a permutation P of the
coordinates for which the matrix P" A(k, k) P isstrictly lower triangular for all k.

Proof If the matrix P' A(k, k)P is strictly lower triangular for some permutatia,
then there is no circuit with 0 initial marking, in view of the definition Ak, k) (see
(2.15)). Conversely, if the @nt graphis live, the matrixA(k, k) has no cicuit, and
there exists @ermutation of the coordinates that maléestrictly lower triangular. The
proof is then concluded from Theorem 2.38. [ |

Observe thathe fact thatP does not depend ok comes from the fact that the
support of Ak, k) does not depend ok (by ‘the support’ of matrixA we mean the
matiix Swith the same dimension asdefined byS; = 1a; ).

If the matrix P’ A(k, k) P is strictly lower triangular,A"(k, k) = ¢ forn > |Q|, and

the matrix §
Ak k) Eed Ak k) @ A2K K @ - -

is finite. Let
K(k,k—l)dzefA*(k,k)A(k,k—I) , keZ, 1=1,..., M, (2.28)

and
k) LA K k), keZ

with vj (k) £ fork < 0 ork > M.

Theorem 2.66 If the event graph islive, the evolution equations (2.17) and (2.18) can
be rewritten as

xk) = AKK—Dxk—-1)@---dAK k—Mxk—-M avk) ,
k=12..., (2.29)

where x; (K) dzefe, for all k < 0.

Proof From (2.17) and (2.18), we obtain by inductionothat
x(k) = A1k, k)x(k)
n M
@ (@ A" (K, k)) (@ Ak, k —Dxk -1 @ v(k)), k=12,....
m=0 =1
Equaion (2.29) follows from the last relation by lettimggo toco. [ |
Remark 2.67 If the initial condition is compatible and if one now takes the continu-

ation of x(k) for k < 0, as defined in (2.24), the same type of arguments shows that
(2.25) becomes

M
x(k):@ﬁ(k,k—l)x(k—l) ., k=12 ....

1=1
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Corollary 2.68 If theevent graph islive and if the holding times and thelag times are
all finite, so are the state variables x; (k), j=1,...,]QJ, k> 1.

Proof The proof is by induction based on (2.29). [ |

Remark 2.69 The matrixA(k, k—I), | > 1, has a simple graph-¢obreicinterpretation.
LetS(j’, j,|) be the set of paths in the gragiof the event graph, of length at least 2,
with initial transitiong;,, with final transitionq;, and suchthat the first two transitions
of the path are connected by a place with initial marking equd) thile the other
transitions are connected by places with i@ marking. It is easily checked, using
the results 0f2.4, thatAjj (k, k — 1) is defined by the relation

h-1
Ajjk k—1) = ) @ ai, k) (2.30)
{p=Cj1.i1, j2,iz2-,in-1,jn)€S(j’, j,D)} n=1

with the usual convention if the s&(j’, j, 1) is empty. The entryAjj (k, k — 1) is
hence simply the longest path&t(j’, j, ). [ |

Example 2.70 (Exanple 2.60 continued)We have

e I & I
T
e oK) ask) e
so that
a11(K) e ¢ a1k
mckop=| om0
as2(Kyaz21(K) & & aaa(k)
& & & &
—_ & & & &
Ak k-2) = az1(K) e € ¢
a3(Kazi(k) & & ¢
and
w11(1D) & wi14(1) €
—ay w21(1) — o _ €
v = w3i(1) V@ =1 0
w21(Das2(1) ® war(Deraz(l) & wasa(l) w31(2)a43(2)

Remark 2.71 (Equivalent event graph with positive initial marking) With the evo-
lution equation (2.29)one canassociate alerived event graphwith the same set of
transitions as the initial event graph, and where the initial marking is suclthatO
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for al placesp;. This event graph is equivaent to the initial one in the sense that cor-
responding transitions fire at the same times. The derived event graph associated with
the eventgraph of Example 2.60 is given in Figure 2.26, left-hand side. This derived
event grapltan be defined frm theoriginal one by thedllowing transformation rules:

1. take the same set of transitions as in the original event graph;
2. for each path ofS(j’, j,1), | > 1, in the original event graph, create a place

connectingj’ to j with | tokens and with ta weight of the path as holding time.
[

O) O)

o o— o) (60— q
|/—(x)42a21 |/—05)42(¥21
\““5?/ S5

21 @%I &

Figure 2.26: lllustration of Remarks 2.71 and 2.72

Remark 2.72 (Equivalent event graph with reduced state space)he dimemionof
the state space can be reduced using thevidhigobservation: the transitions followed
by places all having a 0 itial marking, or equivalently the transitiong such ttat the
entiies of thej-th column of Ak, k — I) aree, arenot present in the right-hand side
of (2.29). LetQ’ be the set of tragitions followed by at least one place with a positive
initial marking. One can take as reduced state variakjée), j € @',k > 1. The
remaining variables are obtained from them via (2.29). [ |

Example 2.73 (Exanple 2.60 continued)Here we haved’ = {q;, q4}. With these
new stae variables, the evolution equations are reduced to

( x1(K) ) _ ( a11(K) a14(K) ) ( x1(k — 1) )
Xa(K) aa2(K)ao1(K)  craa(k) Xa(k — 1)
@( & e)(xl(k—2)>®<il(k)>
aa3(K)azi(K) € Xa(k — 2) vak) -
The event graph corresponding to these equations is depicted in Figure 2.26, right-hand

side. It isobtained from the derived graph by deleting the transitions that do not belong
to Q.
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The other state variables are obtained from the reduced state variables by the rela-

tion
X2(K) _ a21(k) & X1(k — 1)
x3(K) N & & Xa(k — 1)
€ € x1(k—2) v2(K) )
® ( ank) e ) ( Xa(k — 2) )69 ( 3k )
The variablegxz(k), x3(k)) areoutput variables in the derived event graph. Equiva-
lently, transitiong}, andgg are sinks of the derived event graph. [ |

2.5.4 Standard Autonomous Equations

The data of this section is a live event graaisfying the evolutim equations (2.29),
with the reduction of the state space mentioned in Remark 2.72. We will assume that
the trangtionsof Q" arenumbered 1... , |Q’|, which introduces no loss of generality.

It may be dedrable to replace the initial recurrence (2.29), which is of oriler
by an equivalent recurrence of order 1. This is done by using the standard technique
which consigs in extending the state vector. As a new state vector, tal(qz@ﬁpx M)—
dimensional vector

X(K)

x(k—1)

K (k) &

x(k+1—M)
Let A(K), k € Z, be the(]Q'| x M) x (|]Q'| x M) matiix defined by the relation

Ak+1,k Ak+Lk-1 ... ... Ak+Lk+1-M)
e I & &
AK) = e e EI : ,
: e ¢ &
& & e &

wheree ande denote thdQ’| x |Q’| identity and zero matrices, respectively, and let
(k) be the(]Q'| x M)-dimensbnal vector

vk +1)
F(k) &

&

wheres repregnts hee the|Q’|-dimensionakero vector.

Adopting the convention thatg (k) andv; (k) are gual tos for k < 0, it should be
clearthat Equation (2.31) in the following corollary is a mere rewriting of the evolution
equations (2.29).
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Corollary 2.74 The extended state space vector X(k) satisfies the (M x |Q'])-
dimensional recurrence relation of order 1

Xk+1) =AKXK ®TK , k=12 ... (2.31)

Equation (2.31) will be referred to as tistandard form of the evolution equations of
anauonomous timed event graph satisfying (2.29).

Remark 2.75 In the particular case of a compatible initial condition, these equations
read

KK+1) =AKXK , k=12 ..., (2.32)

providedthe continuation ok; (k) for k < 0, is that of Equation (2.24). Whenever the
ertrance times of the tokens of the initial marking are all equa! teee Remark 2.63),
it is easily checked from (2.27) that in this case

e ifo<l <Mj;

2.33
forl = M; , (233)

X+ (0) =

forl=0,..., M=-1;j=1,...,|9]. u

Example 2.76 (Exanple 2.60 continued)Here we have

x1(K) v1(k+ 1)
~ k ~ va(k +1
(k) = xl)((li(—) b | (k) = va( 8+ ) ’
Xa(k — 1)
and

ajn(k+1) a1a(k +1) 2 2
oo | s+ Dazik+1)  asak+1) assK+Dasi(k+1) ¢
Ak) = e € € €
& e & I

In the ecial case mentioned at the end of the preceding remark, weX{@ye=
(e.eee). [

Remark 2.77 (Equivalent net with at most one token in the initial marking) One
can associate a timed event graph with thelaion equatons (2.31). The interest-
ing property of this event graph is that its initial marking is such tat= 1 (more
precisely, eachu; in this event graph is 1).

In view of Corollary 2.74, one can hence state that for any timed event graph, one
cancondruct another ‘equivalent’ event graph with initial marking equal to 1 every-
wher. The guivalence means here that one can find a bijective mapping from the
sd of trangtions of the initial event graph to a subset of the transitions of the second
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one, such that two corresponding transitions fire at the same time. In particular, any
observation of these traitions will be identical.

For instance, in the case of a compatible initial condition, this event graph can be
obtained from the original one by first transforming it into an event graph with positive
initial marking (as it was done in Remark 2.71), and by then applying the following
transformation rules:

1. for each tranigsion g; of Q' in the original evat graph, creatéM transitions
Qj|,| =0,..., M-1;

2. for eachqj,| =0,..., M — 2, create a place that connects to ¢} |41, with 0
holdingtimes. Put one token in its initial marking, with initial lag timag(—I);

3. for each place @annectingg; € Q' to q;, andwith | + 1 initial tokens,| > 0,
in the original system, create a place with one token with initial lag trael),
and with the same holding times sequence as the original place. This new place
hasg; asinput transition, andj;o asoutput transition.

For Example 2.60, the corresponding event graph is given in Figure 2.27. The behavior
of gy in this graph is the same as that@fin Figure 2.24. The same property holds
for quo andqy respectively. [ |

14
0420021

TV’Q T,

e

O111 ,,,,,,,,,,,,,, - 0149
a0 acy ol

Figure 2.27: lllustration of Remark 2.77

2.5.5 The Nonautonomous Case

This subsection focuses on FIFO timed event graphs with external inputs. The firing
times can be taken equal to 0, without loss of generality.

Totheframework of the preceding sections, we add a new class ofitiamscalled
input transitions. This setof transitions will be denoted.

Definition 2.78 (Input transition) An input transition consists of a source transition
and of a nondecreasing real valued sequence, called the input sequence .
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The input sequence associated with transitipre 7 will be denotedu; (k), k > 1; the
interpretation of this sequence is thgtk), k > 1, gives the epoch wheuy fires for
thek-th time, due to some external trigger action. The input sequences are assumed to
be given.

Definition 2.79 (Weakly compatible input sequence)The input sequence u; (k), k €
Z, isweakly compatibleif u;(1) > 0.

In what follows, all input sequences will be assumed to be weakly compatible. As in
the autonomous case, the initial condition isisaibe wealy compatible if in addition

¢ the entrance times of the tokens of the initial marking are nonpositive;

e the firings which consume tokens of the initial marking complete at nonnega-
tiveepochs (the assumption that the input sequences are weakly compatible may
contribute ensuring that this holds).

The definition of compatibility is the same as in the autonomous case. For instance,
if the lagtimesof a nonautonomous event graph are compatible, one can continue the
input sequencgu; (k)} (with j € 7) to anondecreasing sequengg; (K)}xez, with

uj(0) < 0, such tlat for all p; € o (q;) with ; > 1,

wik)=aiKWOujk—pi), Vk:l<k=<up. (2.34)

2.5.5.1 Basic Nonautonomous Equations

The derivation of theevolution equations is based on the same type of assumptions as
in the autonomous case, namely the event graph is FIFO and the initial condition is
weakly comptible.

Define thel Q| x |Z| maticesB(k, k), ... , Bk, k — M) by

Bji (k. k —m) & D ai k) (2.35)

fiexd(j)lrP ()=, i =m}

and the|Z|-dimensonal vectoru(k) = (u1(kK), ... ,uz(K), k =1,2,.... Using the
same agumentsas in Theorem 2.58, we gthe fdlowing result.

Theorem 2.80 Under the foregoing assumptions, the state vector x(k) =
(x1(K), ... , X0(k))" satisfies the evolution equations:

X(K) = Ak, K)x(K) @ - - - ® AK, k — M)x(k — M) & B(k, kyu(k)

where x; (K) def ¢ and ujk) = ¢ for all k < 0; vj(k) is defined as in (2.16) for
1 <k< Manditisequal to ¢ otherwise.
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If the initial lag times and the input sequences are both compatible, this equation can
be simplified by using the same arguments as in Corollary 2.62, which leads to the
equation

X(K) = Ak, KIx(K) @ --- ® AK, k — M)x(k — M) & Bk, kyu(k)

& @Bk K- Muk—M) . k=12.. (@30

where thecontinuations that are taken fatk) andu(k), k < 0, are now those defined
in Corollary 2.62and Equation 2.34, respectively.

In what follows, we will say that the nonautonomous event graph is live if the
assaiated auonomous event graph (namely the one associated with the equation
X(K) = A, Kx(Kk) @ --- D Ak, k — M)x(k — M)) is live. Let

Bk k—1) EAKKBKKk-—m) , keZ, 1=0,...,M.

The fdlowing theorem is poved like Th@rem 2.66.

Theorem 2.81 If the event graph islive, the evolution equations (2.36) can be rewrit-
tenas

X(K) = Ak k—DxK—1 & ---® Ak, k — M)x(k — M)
@Bk Kuk) @---® Bk k- Muk-M) dvk) , (2.38)
k=1,2,...,

with the same simplification asin Corollary 2.62, provided theinitial lag times and the
input sequences are compatible.

The graph thetic interpretation oBjj: (k, k—1) is again the longest path i (j’, j, 1)
(see Remark 2.69).

2.5.5.2 Standard Nonautonomous Equations

Define the(M x |Z|)-dimensbnal vector

uk+ 1
tido < "
uk +2— M)
and the(|Z] x M) x (|]Q’| x M) matiix
Bk+1,k+1 Bk+1k ... Bk+1Lk+2-—M)
& & &

Bk) =
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Corollary 2.82 (Standard nonautonomous equation)The extended state space vec-
tor X(k) satisfiesthe (M x |Q'|)-dimensional recurrence of order 1:

Ik+1) = AKXK @ BRIK @7k , k=12 ..., (2.39)

with the same simplification asin Corollary 2.62, provided theinitial lag timesand the
input sequences are compatible.

Remark 2.83 Formally, the autonomous equation (2.17) can also be seen as that of
anonautonomous event graph with a set of input transitibrs {q;, d;, ... } of the

same cardindity as the setQ’, with input sequence vectokk), andwith B(k, k) = e,
Bk,k—I)=¢forl =1,..., M (the input transitiorqu is conneced tothe internal
transitiong; by a gngle place with 0 initial marking).

However, the requirement that an input sequence should be nondecreasing con-
tradicts our foregoing assumption oxk) (with our definitions,v; (k) eventwally be-
comese for k large,as it can be seen from (2.16)). However, when using the fact that
the sguences; (k) are nondecreasing, it is easy to check that one can take the input
sequenceu; (k) defined by the function

Lmbgfmw) ﬁlsksMp
vj(Mj) if k> M,

instead ofv(k), without altering the values of(k).

This representation of an autonomous event graph as a nonautonomous one, where
all initial lag times can be taken equal4pis exemfiified on the evengraph of Exam-
ple 2.60 in Figure 2.28. [ |

Ua(k) = way(l) , k=1

us(k) = wis(1) @ wia(1) us(1) = way(1) Ua(K) = was(1)
k>1 us(k) = wa1(2), k> 2 k>1

Figure 2.28: lllustration of Remark 2.83
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2.5.6 Construction of the Marking

This subsection is concerdewith the construction of the marking from the state vari-
ables. We Wl limit ourselves to the construction of the marking at certain epochs for
which ther expression is quite simple. Hower the famulae that are obtained are
nonlinearin the max-plus algebra. We will thereforeturn o classicalalgebra, at least
in this subsection. For the sake of simplicity, it is assumed that the initial condition is
compatilbe. Pick some place; in P, and letq; = 7 (p;i), g = o(p;i). Let N;(t) be the
number of tokens in placp; attimet,t > 0, with the convention that this piecewise
constant function is right-continuous.

Let

Nii(k) = N (an(i)(k)) , k>1, (2.40)
Nﬁ(k) = N (Xgp(i)(k)) , k>1. (2.41)

Owing toour definitions N;” (k) is the nuner of tokens inp; just after thek-th token
entrance intop; aftert = 0, while Nﬁ(k) is thenumber of tokengy; just after the
departure of th&-th token to leavep; aftert = 0.

Lemma 2.84 Under the foregoing assumptions,

K+ pi
N = Y Lumexwy » k=12, (2.42)
h=1
[o¢]
NP = ) Lgwexmy - k=1.2..... (2.43)
h=k+1—p;

Proof The bkens present ip; attime (just after)x; (k) are hose that arrived int;

no laer thanx;(k) and which are dillin p; attime x; (k). The bkens that arrived no
later thanx; (k) are hose with indexh with respect to this place, with & h < k+ p;.
Among these tokens, those which satisfy the relatigh) > x;(k) are dill in p; at
time x; (k). Similarly, the only bkens that can be psent in placey; just after time

x (k) are hose with indexh > k with respect top;. The bken of indexh with respect

to p; is the token produced by transitigrattime x; (h — ;) (where the continuation
of xj(k) to k < 0 is theone defined ir§2.5.2.6). Among these tokens, those which
enteredp; no later than timex (k) are inp; attime x; (k). []

2.5.7 Stochastic Event Graphs

Definition 2.85 (Stochastic event graph)A timed event graph is a stochastic event
graph if the holding times, the firing times and the lag times are all random variables
defined on a common probability space.

Differert lewels o gererdity can be considered. The most general situation that
will be considered in Chapters fa 8 is the case when the sequené®gk)}kz,
i =1...,1P|, and{Bj(K)}kez, j = 1,...,1Q], are jointly stationary and ergodic
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seguences of nonnegative and integrable random variables defined on a common prob-
ahility space($2, F, P). Similarly, the lag timesw; (kK — 1), 1 < k < u;j, are @sumed
to be finite and integrable random variables defined®@nrF, P).

More specific situations will also be considered, like for instance the case when
the sguenceqa; (K lken, | = 1, ..., |Pl, and{Bi K }ken, i = 1,...,|Q|, are mutu-
ally independent sequences of independent and identically distributed (i.i.d.) random
variables. For instance, all these variables could be exponentially distributed, with a
parameter that depends bar i, nanely

l1-—expax) ifx>0;
Plog (K = 2.44
[er k) = x] 0 otherwise, ( )
and
Bl k) < x] = | L7 SO0 X =0 (2.45)
0 otherwise,

wherea; > 0 andb; > 0. Another particular case arises when all the sequences are
constant and deterministic, and the case wihstant timing is thusa special (and
degenerate) case of the i.i.d. situation.

2.6 Modeinglssues

In this section some issues related to the modeling of Petri nets will be described briefly.

2.6.1 Multigraphs

Multigraphs are graphs in which more than one arc between two nodes is allowed. The
factthat in this chapter no such multigraphs have been considered is twofold.

The first rea®n is that the modeling power of Petri nets with multiple arcs and
Petri nets with single arcss the sameJ08]. This ‘modeling power’ is defined in terms
of ‘reachabity’, as discussed ir$2.4.1. Pdri nets with multiple arcs can straightfor-
wardly be representeby Petri nets vith single ars, as shown in Figure 2.29. Note,

Q
/ N\

l
O

—

4%
—> == T |
Ve oS

O A4

Figure 229: The changeof multiple arcs into single arcs

=O

however, that in the second of these figuresuaflict Stuation has arien. In order that
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this single arc representation of the originally multiple arc from place to transition be-
haves in thesaneway as this multiple arc, it is recessary that the twival transitions
receive tokens alternately.

The second reason is that it is not at dbar how toobtain equations for timed
Peri nets in which there are multiple arcs. Observe that such nets are not event graphs,
as is directly seen from Figure 2.29. It seethat ®me transitions fire in the long run
twice as often as somelwdr transitions; thelth enabling of such a ‘fast’ transition is
caused by th&-th firing (approximately) of such a ‘slow’ transition.

2.6.2 Places withFinite Capacity

For the rule for enabling transitions it has tacitly been assumed ¢laah place can
accommodate an unlimited number of tokens. For the modeling of mphggical
systens it is matural to consider an upper limit for the number of tokens death place

can hold. Such a Petri net is referred to as a finite capacity net. In such a net, each place
has an asocated capacit;, being tle maximumnumber of tokens thap; can hold

atary time. For a transition in a finite capacity net to be enabled, there is the additional
condtion that the number of tokens Bachp; € o(q;) cannot exceed its capacity after

the firing of g;.

In the discussion to come we confine ourselves to event graphs, although the ex-
tension to Petri nets is quite straightforward, see [96]. Suppose that pjacas a
capacity constraink, then he finite capacity net will be ‘remodeled’ as another event
graph, without capacity constraints.#{p;) N o (p;) # &, then there is a loop. The
number of tokens in a loop before and after the firing is the same and hence the capac-
ity constraint is never violated (provided the initial number of tokens was admissible).
Assume nw thatz(pi) No(pi) = @. Add another placep;: to the net. This new
place will haveu; = K; — uj tokens. Add an arc froma(p;) to p;r and a arcfrom
pir to 7 (p;). Thenumber of tokensin this new circuit is constant according to Theo-
rem 2.37. The liveres o theewvert graph is not influenced by the addition of such a
new circuit, see Theorem 2.38. An example is provided in Figure 2.30 whetre3.

o

<=3 (@~j

Pi
pi
Figure 2.30: Node with and without a capacity constraint

It is easily verified that this newly constructed Petri net, without capacity constraints,
behaves in exactly the same way in terms of possible firing sequences as the original
finite capacity net. In this sense the nets are ‘equivalent’.
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2.6.3 Synthesis of Event Graphs from Interacting Resources

This aim of this subsection is to show how, starting from the physical understanding
of ‘resources’, and some assumptions, one can build up event graphs in a somewhat
systematic way. Tis goproach leads to a subclass of event graphs (essentially restricted
by the kind of initial marking they careceive) for which the issue ofitinal conditions

is trans@rent.

2.6.3.1 General Observations

The exercie of modeling is more an art than an activity which obeys rigid and precise
rules. For example, the degree of detadtaned in a model is a matter of appraisal
with respect to future uses of the model. Models may be equivalentin some respects but
they may differ in the physical insights they provide. These observations are classical
in conventional system theory: it is well known that different state space realizations,
evenwith different dimensions, may yield the same input-output behavior, but some of
thes redizaions may capture a physical meaning of the state variables whereas others
may not.

To be more specific, a clear identification of what corresponds to ‘resources’ in an
abstract Petri net model may not be crucial if available resources are given once and for
all and ifthe pioblem only consists in evaluating the performance of a specified system,
but it may become a fundamental issue when resource quantities enter the decision
variablesg.g. in optimal resource sizing at the design stage. It has already been noticed
that, in an event graph, although the number of tokenach circuit is invariant during
the evolution of the system, this notgenerally the case of thetal number of tokens
in the g/stem, even if the graph is strongly connected and autonomous. In this case, it
is unclear how tokens and physical resources are relateddo other.

Figure 2.31 shows the simplest example of this type for which there are only two
distinct situations for the distribution of tokens, the total number of tokens being either
one or two. Indeed, if we redraw this event graph as in Figure 2.32, it becomes pos-

GD\(fj) O\lj 9@ joj) O Ci ?j
(a) (b) () (b)
Figure 2.31: Merging two resources Figure 2.32: An alternative model

sible to nterpret the two tokens as two resourcasulating in the system sometimes
alone (case (a)) and sometimes jointly &#l). The problem with the former model

of Figure 2.31 is that, when they stay togetlicase (b)), the two resources are rep-
resented by a single token. Obviously, these two models are equivalent if one is only
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interested in the number of transition firings within a certain time (assuming that some
holding times have been defined properly in correspondiaggsl), but the difference
becames relevart if oneis willing to play with individual resource quantities in order
to ‘optimize’ the design.

As long as modeling is an art, what is described hereafter should be considered as
a <t of practical guidelines—rather than as a rigorous theory—which should help in
trying to construct models which capture as much physical meaning as possible. The
dynamic systems we have in mind are supposed to involve the combined evolution of
several inteaicting resources designed to achieve some specific overall task or service.
Our gpproach isn three stages:

1. wefirstdesaibethe evolution of each type of resource individually;
2. then we describe theaohanism of interaction between resources;

3. finaly, we discuss the problem of initialization.

2.6.3.2 State Evolution of Individual Resources

The word ‘resource’ should be understood in the broadest sense: a machine, a tool, a
pat, achannd, a transportation link, a position in a storage or in a buffer, etc. are all
resources Of coursg in pradice, it is worthwhile modeling a resource explicitly as
long as itis a ‘scarce’ resource, that is a resource the limited availability of which may
have some influeze on the evolution of the system at some time. The capacity of a
buffer may be large enough for the buffer to behave as if it were infinite. Again, it is
a madter of feeling to decide whether an explicit model of the finite capacity is a priori
needed or not.

The evolution of each resource in the system is modeled by a sequence of ‘stages’.
What is considered a ‘stage’ is a matter of judgment since sew@radecutive stages
may be aggregated intoshgle stage. For example, considering the evolution of a part
in a workshop, traveling to the next machine and then waiting for the temperature to be
cool enough before entering this next machine may be considered a single stage. We
assume that

e the mature and the order of the stages experienced by each type of resource are
known in advarce;

e foragiven resource, every stage is preceded (followed)—ifit is not the first (last)
stagg—by asingleother stage.

Consequently, for a given type of resource, if we draw a graph such that nodes (drawn
as places in a Petri net) represent stages, and arcs indicate precedence of the upstream
stages over the downstream stages, then this graph is a path (i.e. it has neither circuits
nor branches) and ieflects the total order of stages.

Obviously, in a workshop, this assumes that a ‘deterministic scheduling’ of oper-
ations has been defined a priori. For example, a machine is supposed to work on a
specified sequence of parts in a specified order, each operation being represented by a
particular stage. If the stage ‘idle’ is possible between two such operations (i.e. the
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machine may deliver the part it holds withouteceiving its next part—hence it stays
alone for a while), then additional stages should be introduced in between. Notice that

e the stage ‘idle’ imot repregnted by aunique node, but that a node of this type
is introduced if necessary betweany two succesee operations;

e a machine may be idle, while still holding the part it was working oecause
there is no storage available downstream, and the next operation of this machine
cannot be undertaken before the downstream machine can absorb the present
part. In this case, it is not necessary to introduce an additional stage, that is,
the stage ‘working’ and the stage ‘waiting for downstream delivery’ need not be
distinguished.

For a part, it is also ssumed thathte sequence of machines visited is specified in
advance, but notice that storages visited should be considered as an operation of the
same ype as machines visited. Therefore, a storage position, if it is common to several
types of parts, must know in advance the order in which it will be visited by these
different parts, which is cgiinly a restrictive constraint in the modeling phase, but this

is the price to pay for remaining eventually in the class of event graphs.

Findly, the evolution of a resource is simpéypath (inother words, this evolution
is represented by a serial automaton). For convenience, each arc will be ‘cut’ by a bar
resembling a transition, which will serve later on for synchronization purposes. Each
stage receives a sequence of holding times represeniinignal times sgnt in this
stage by the successive resources. For example, waiting in a storage should involve a
minimal time gual to 0. At any time, the present stage of a given resource is repre-
sented by a token marking the correspondingqa. Tranisions represent changes of
stages and they are stantaeous.

Resources may enter the system and leave it after a while (nonreusable resources)
or they may revisit the same stages indefinitely because they are ‘recycled’ (reusable
resources). For example, raw materiaténe in a workshop andcehve after a trans-
formation, wheeas machines may indefinitely rese their work onlhe same repeti-
tive seguences of parts. Sometimes, nonreusable resources are tightly associated with
reusable resources so that it is only important to model these reusable resources: for
exampe, parts may be fixed on pallets that are recycled after the parts leave the work-
shop. For reusable resources, we introduce an additional stage called the ‘recycling
stag’, and we put an arc from the last stage (of an elementary sequence) to this recy-
cling stage and another arc from the recycling stage to the first stage. Hence we obtain a
circuit. Physically, the recycling stage mighgpresent a certain ‘reconditioning’ oper-
ation (possibly involving other resources too), and therefore it might recaiemzero
holding time (transportatiotime, set-up time, etc.). However, it will be preferable to
suppose that the recycling stage of any resource corresponds to an abstract operation
which involvesonly this resource, and which is immediate (holding time 0). The posi-
tioning of this recycling stage with respect to the true reconditioning operation (before
or after it) is left to the appraisal of the user in each specific situation. Indeed, each
stage abng the circuit of the reusable resource where this resource stands alone may
be a candidate to play the role of the recycling stage, a remark which should be kept in
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mind when we speak of canonical initialization later on (this is related to the issue of
thepoint at which one starts a periodic behavior).

2.6.3.3 Synchronization Mechanism

Any elementaryoperation may involve only one particular type of resource, or it may
also involve several different resources. For example, a part waiting in a storage in-
volves both the part and the storage position (whereas an idle machine involves only
this machine). It should be realized that, so far, the same physical operation, as long
as itinvolvesn different resources simultanedysas keen represented bydifferent
places.

If two stages belonging to two distinct resource paths (or circuits) correspond to
the sane operation, we must express that these stages are entered and left simultane-
ously by the two resources (moreover, the holding times of these stages should be the
same). This may be achieved by putting two synchronization circuits, one connecting
the ‘baginning’ transitions, the other connecting the ‘end’ transitions, as indicated in
Figure 2.33. In order to comply with the standard event graph representation, we have
put new places—represented here in grey color—over the arcs of these circuits. How-
ewer, these grey places do not represent ‘stages’ as other places do. They are never
marked wvith tokens and they have holding times equal to 0. Then, it is realized that
these circuits involving no tokens and having a total holding time equal to O express
simultaneity of events, that is entering or leaving the considered stage by anyone of the
two resources precedes the same type of event achieved by the other resource and vice
versa.

Remark 2.86 What we have just done here is nonstandard from the point of view of
Peri net theary, although it is mathematically correct for the purpose of expressing
simutaneity. Indeed, having Hve Petri net wlch includes circuits with no tokens
seens to contradict Thearem 2.38. More specificdly, every transition having a ‘grey
place’ upstream (which will never receive tokens) will never fire if we stick to the
general rule about how transition firings arebled. We propose the following (tricky)
adaptation of this rule to getut of this contradictiontin a timedPetri net, a transition
may “ borrow” tokensto enableitsown firing during a duration of O time units, that is,
provided that it can “ return” the same amount of tokensimmediately’. This condtion
is saisfied for transitions preceded and followed by (the same number of) ‘grey places’
since tokens may be ‘borrowed’ in upstream ‘grey places’ only at the epoch of firing
(since those tokens are then immediately available—holding time 0), and, for the same
reason, tokens produced in downstream ‘grey places’ can immediately be ‘returned’
after firing(they are immediately available when produced).

Mathematically, consider the pair of transitions at the left-hand side of Figure 2.33
and letx; (k) andxx(k) denote thdr respective daters (see Definition 2.57). The ‘grey
circuit’ translates into the following two inequalities:

X1(K) = x2(k)  and Xo(k) > x1(K) ,

which imply equality: this is exactly what we want and everything is consistent.
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Onthe mntrary, the reader should think of what happens if one of the holding times
puton‘grey places’ is strictly positive and there atdlso tokens in the initial marking
of these places. [ |

To awoid this discussion, two alternative solutions can be adopted. The first one
consigs in merging the simultaneous transitions as shown by Figure 2.34, which re-
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Figure 2.33: Synchronization mecha- Figure 2.34: Alternative representation
nism of synchronization

\
/

moves the synchronization circuits and the ‘grey places’. We then come up with a rep-
resentation similar to that of Figure 2.3&.further sep towards isnplification would
beto merge the places and arcs in between so as to arrive at a representation similar to
that of Fgure 2.31, but then the resource interpretation would be obscured.

The s2oond solution involves the introduction of fake transitiopsindx; upstream
the real transitions to beyschronized. This mechanism is explained by Figure 2.35
with the equations proving that the firing timesxgfandx, (denoted after the name of
the transitionsare gual.

X1 X1 = X/ /
o 1=%9
= X1 = X2
O X2 = X1 D X5

X2

Figure 2.35: Another synchronization mechanism

Notice that he holding times of two synchronized stages, which were equal by
construction, can now be different—e.g. one of the two may be taken to be 0—since
only the greater holding time is important. All the above considerations extend to the
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case oh, rather han 2, resources simultaneously. Itéslized that, withhis approach,

ewely transition has as many output arcs as it has input arcs. A problem arises with
resources which are physically merged into a single product (assembly) or split up into
two or more products (disassembly). That is, the end nodes of a resource path do not
correspond to inlet or outlet nodes of the system. There is a choice of considering that
a duster of two resources that enter the system separately is still made of two resources
traveling together (which amounts to doubling all arcs andcek after the assembly
opeation) or to accept that the number of output arcs at some itiangrepresenting

the begnning of an assembly operation) be less than the number of input arcs (which
means that anew type of resource starts its life at that point of the system). Dual
consideratins apply to the problem of disassembly.

2.6.3.4 Initialization

As already indicated, during the evolution of the system the present stage of each re-
source will be marked on the graph by a token in a certain place along the path or the
circuit of that resource. Two resources of the same type, e.g. two machines performing
exacly the same sequeamf operations, may use the same path or circuit as long as
they never need to be distinguished. For example, a storagewaitisitions, and which

is dadicated to a single type of stored resource, will be represented by a circuit with two
stages ‘occupied’ and ‘available’ (the only distjjuishable stages of a single position),

and with n tokens the distribution of which in the circuit indicates how many positions
are available at any time. For a storage accommodating several types of resources, we
refer the reader to the exatemt the end of this section.

Epochs at which resources move from one stage to the next one will be given by the
dater attached to the transition in between. We now define a canonical initial condition.
For reusable resources, it corresponds to all tokens put at the corresponding recycling
stages As dscussal eatier, these reg/cling stages are supposed to involve a single type
of resource each, and a holding time equal to O (therefore, itis irrelevant to know when
the tokens had been put there). For any nonreusable resource, since it passes through
the system, we first complete its path by adding an inlet transition (upstream from the
first place) and an outlet traiti®n (downstream from the last @te) so as to attach
the epochs of inputs and outputs to thesedtams (unless one of these transitions
is already represented because the resource participates in an assembly operation, or
because it is issued from a disassembly operation). Thergeal initial condition
for nonreusable resources corresponds to their paths beipty: all tokens must be
introduced at the inlet transitiorafter the arigin of time. Observe that the canonical
initial condition is compatible in the sense of Definition 2.61.

From this given canonical initial condition, and given a sequence of epochs at all
input transitions at which tokens are introduced into the system (see Definition 2.78),
tokenswill ewolve within the system (whereas other tokens will leave) according to the
genera rules of timed event graphs, and they will reach sométjpos at sone oher
given epoch. Obvioudy, dl situations thus obtained, which we may call ‘reachable
conditions’, are also acceptable itial conditions’ by changing the origin of time to
the present time. Such a candidate to play the role of an initial condition obviously
fulfills some constraints (see hereafter), and it is not defined only by the positions of
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Figure 2.36: Two plus one resources

tokens (called the ‘initial marking’): the time already spentagh token of the itial
marking in this position before the (new) origin of time is also part of the definition
of the ‘initial condition’ (at least for @ces where the holding timem®nzero). Alter-
naively, thefirstepoch at which each token of thatial marking may be consumed
must be given: this corresponds to the notion of lag time introduced in Definition 2.49.
Necessary, but maybe not sufficient, requirements of reddefbom the canonical
initial condition can be stated for allates included between any pair of synchronized
(Figure 2.33) or merged (Figure 2.34) transitions. Say thera ateh places, then the
same number of tokens must mark all these places, stgkens per place, and there
must existp n-tuples of tokens (with one token per place) with the same difference
between their holding times drtheirlag times. This assumption that there must exist
exacly the same numbep of tokensin each of then places makes this notion of an
‘initial condition reachable from the c@nical initial condition’ even more restrictive
than the notion of a ‘compatible initial condition’ of Definition 2.61.

For example, fiwe return to thegraph of Figure 2.32, with the interpretation of
two reusable resources, position (a) corresponds to the canonical initial condition, po-
sition (b) is anotheacceptable iitial marking. Suppose now that we add an additional
exempary of the resurce represented by the left-hand circuit. Figure 2.36a repre-
sents an initial marking which we can interpret, but Figure 2.36b does not, although
it is perfectly correct fromHhe abstract point of view of event graphs. Moreover, it
may be noted that thergph of Figure 2.36b is not redilate to something similar to
Figure 2.31.

2.6.3.5 An Example

We mnsider two types of parts, sa#y andQ, which can waitin separate buffers of
large capacities before being heated individually by adoen The furnace deals with
parts# and® alternately. The parts can then waita stove haing the room for three
pats, each one of either type, the purpose being to maintain the temperature of the
parts util they are assembled in pait®, ©) by a machine. Finally, prtsleave the
workshop. A part must stay in the furnace if it cannot enter the stove. In the same way,
parts can leave the stove in pa{s, ) only when the assembly machine can handle
them.

Figure 2.37 represents the stage sequences of @aated O as vertical paths on
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Table 2.1: A example: &ge interpretation

Stage &bel | Stage inérpretation Holding time
A Parte waits in buffer 0
B Parte stays in firnace o1
C Parte waits in stove 0
D Parte is assembled with paf® oo
E PartQ waits in buffer 0
F PartQ stays in firnace a3
G Part® waits in stove 0
H PartQ is assembled with pa# oo
I Furrace waits for part of typ® 0
J Furrace hotls part of typas a1
K Furrace waits for part of typ® 0
L Furrace hotls part of type? as
M One postion in stove waits for part of typ® 0
N One postion in stove holds part of typé 0
(0] One postion in stove waits for part of typ® 0
P One postion in stove holds part of typ® 0
Q Machine asseniis a paine, ©) oo
R Machine vaits for a pair(e, Q) 0

the left-hand and ght-hand sids, respectively. In the middle, from top to bottom,

the three circuits represent the stage sequences of the furnace, of the stove and of the
machine. Each stage is labeled by a letter and Table 2.1 gives the interpretation of these
stages together vth their holding times.

The trangtions which are synchronized are connected by a dotted line. The initial
marking assumes that therfiace starts with a pa# and thatwo positions out of the
three in thestove accept a par first.

Figure 2.38 shows the reduced event graph obtained by merging the synchronized
transitions and the stages representing the same operation. However, we keep multiple
labels when appropriate so that the order of multiplicity aigals between synchro-
nizedtransitions is still apparent. Single labels omag#s in circuits indicate possi-
ble recycling stages. Observe that, for any transition, the total number of labels of
places upstream balances the total number of labels of places downstream. Indeed, the
Petri net of Fgure 2.37 (with transitions connectby dottedines merged together) is
strictly conservative (Definition 2.35) whereas that of Figure 2.38 is conservative (Def-
inition 2.36) with weights (used in that definition) indicated by the number of labels.

2.7 Notes

Graph thery is a standard course in many mathematical curricula. The terminology varies, how-
ever. Here we followed the terminology as used in [67] as much as possible. Karp’s algorithm,
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Figure 2.37: Expanded model Figure 2.38: Reduced model

the subject 0f§2.3.2, was first published in [73]. The proof of the Cayley-Hamilton theorem in
§2.3.3 is due to Straubing [124]. Since the 1970s, a lot of attention has been paid to the theory
of Petri nets. This theory has the potential @iy suitable as an egttent moddéing aid in

many fields of aplication. Its modeling power is larger than the one of automata. If one were to
allow inhibitor arcs, see [1], then the modeling power is the same as that of Turing machines. A
‘system theory’ including maximization, addition as well as negation (which is what an inhibitor
arc represents), has not yet been developed. An excellent overview of the theory of Petri nets is
given in [96], where also many other references can be found. The section on timed Petri nets,
however, is rather brief in [96]. Some material on cycle times can be found in [47] and [115],
which is dso discussed in Chapter 9. A good, though somewhat dated, introduction to Petri nets
is [108]. Other sources which contain a lot of material on Petri nets are [30] and [29]. For a
recent discussion on modeling power related to Petri nets, see [82]. Section 2.5 on equations for
timed Petri nets is minly based on [39] for the constant timing case and on [11] for the general
case. Equivalence of systems represented by different graphs is also discussed in [84]. This ref-
erence, however, deals with systolic systeimsyhich there is a fixedlock frequency. Some of

the results obtaied there also seem plausible within the timed event graph setting. Relationships
between graphs and binary dynamic systems are described in [25].

In [92] a novel sheme, calledkanban, is descriled and analyzed for the coordination of
tokens in an event graph. The essence is that the introduction of a new circuit with enough
tokens regulates the ‘speed’ of the original event graph and it controls the number of tokens in
various places.

For arecent development in continuous Petri nets, where the the number of tokens is real
rather than integer valued, sé&s8] and [99]. In the latter reference some results given in Chap-
ter 3 for ‘discrete’ Petri nets are directly extended to continuous ones.
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Chapter 3

Max-Plus Algebra

3.1 Introduction

In this chapter we systematically revisit thessical algebraic sictures used in con-
ventional calculus and we substitute the idempotent semifigldy (the sé of real
numbers endowed with the operations max and plus) for the field of scalars. The pur-
pose is to provide the mathematical tools needed to study linear dynamical systems in
(Rmax)n-

This chapter is idedin three main parts. In the first part we study linear systems
of equations and polynomial functionsliax. In the £mnd part we consider a more
advanced topic which can kskipped in a firsteading. Thigopic is the problem of
the linear closure dRpax andits consguences for solving systems of linear and poly-
nomial equations (the linear closure is the extension of a set in such a way that any
nondegenerated linear equation has one and only one solution). The third part is con-
cerned with a max-plus extewsi of the Perron-Frobenius theory. It gives conditions
under which event graphsach a periodic behavior and it characterizes their periodici-
ties. It can besen as a more advanced topic of the spectral theory of max-plus matrices
given in the first part of this chapter.

Wefirstintroduce the algebraic structuRg,ax and we stidy its basic properties.

3.1.1 Definitions

Definition 3.1 (Semifield) A semifieldK isa set endowed with two operations ¢ and
® such that:

e the operation @ isassociative, commutative and has a zero element;

e the operation ® definesa group on L \ {&}, itisdistributive with respect
to ® and itsidentity elemene satisfiesc @ e=e® ¢ = ¢.

We say that the semifield is
e idenpotentif thefirst operation isidempotent, that is, if a® a = a, Va € K;

e commutaive if the group is commutative.

101
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Theorem 3.2 Thezero element ¢ of anidempotent semifieldisabsorbindor the second
operation, thatise @ a=a®e =¢,Vae K.

Proof We have that

8:86:8(8696):82698=82 ,

and hen,
VaeK,, s=ce=calta=c@'ds)a=caladela=c’a=ca .

Definition 3.3 (The algebraic structure Rpyay) The symbol Rp,a« denotes the set R U
{—o0} withmaxand + asthe two binary operations & and ®, respectively.

We call this stucturethe max-plus algebra. Sometimes this is also called an ordered
group. We remark that the natural orderi®Rax may be defing using thep operation

a<b if a@db=b.

Definition 3.4 (The algebraic structure Rya) Theset R U {—oo} U {400} endowed
withthe operatigls maxand + as® and ® and with the convention that (—oo) +o00 =
—oo isdenoted Ryax. The element +oo isdenoted T.

Theorem 3.5 The algebraic structure Ryax is an idempotent commutative semifield.

The poofis straightforward. If we compare the propertiespohnd® with those of+
and x, we sedhat:

e we have lost the symmetry of addition (for a given an elemenb does not exist
such that maxb, a) = —oo wherevera # —o0);

e we havegained the idempotency of addition;
e there areo zero divisors iR (@@ b = —co = a= —ocoorb = —o0).

If we try to make sme algebriz calculations in this structure, we soon realize that
idenmpotency is as weful as the existence of a symmetric element in the simplification
of formulee. For example, the analogue of the binomial formula

(a+b)“=<8>a“+<2>a“1b+---+< nfl>ab“1+<8>b“

is nmax@a, b) = max(na, nb), which is mich simpler. On the dgher had, we now
face the difficulty that the max operation is no longer cancellative, e.g(anbx= b
does not imply thad = —oc.
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3.1.2 Notation

First of dl, to emphasize the analogy with contemal catulus, max has been denoted
@ , and+ has been denoteg. We dso introduce the symba! for the conventional
— (the inverse operation of which plays the role of multiplication, that is, the ‘di-
vision’). Henceagb meansa — b. Another notation foa¢b is the two-dimensional

display notation

a
—

b
We will omit the sign® if this does not leado confusion. To prevent mistakes, we
usee ande for the ‘zero’ and the ‘one’, that is, the neutral elementstofind ®,
respectively, namely—oco and 0. To get the reader acqutgid with this new notation,
we propose the following table.

Rmax NOtation Conventional notation =
263 max(2, 3) 3
102030495 max(l, 2, 3, 4, 5) 5
2®3=5 2+3 5
2@ ¢ max(2, —oo) 2
e=¢e®?2 —00+2 —00
-)®3 -1+3 2
e®3 0+3 3
3¥=22=-33=2®2Q®2|3%x2=2x3=3+3=2+2+2 6
e=e2=20 0x2=2x0 0
2®3)F2a3) (24 3) —max2, 3) 2
a3 =22¢3° 3x max?2,3) =max3x23x3) 9
6re 6-0 6

&3 0-3 -3

78 8/2 4

J15 15/5 3

There is no di8nction, hence there are risks of confusion, between the two
systems of notation agff as the power operation is concerned. As a general
rule, a formulais written in one system of notation. Therefore if, in a formula,
an opeator of the max-plus algebra appears explicitly, then usually all the
operators of this formula are max-plus operators.

3.1.3 The min Operation in the Max-Plus Algebra

It is possible to derive the min operation from the two operati®rad® as fdlows:

min(a b)—ﬁab
7 aeb

Let us now pove the tassical poperties of the min by pure rational calculations in the
max-plus algebra.
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3.2

—min(a, b) = max(—a, —h):

e I_aeabl_e@e_
ab = ab b a’
adb
—max(a, b) = min(—a, —b):
e e ®e
€ _ ab  _ a’ b,
adb adb E@S
ab a b
min(a, min(b, ¢)) = min(min(a, b), ¢):
bc
ab@c o abc .
s bc ab® ac @ bc
boc

and the symmeyrof the formula with respect ta, b andc proves the result;
max(c, min(a, b)) = min(max(c, a), max(c, b)):

{ ab (cda)ycab) } {caeacbeaab (cpacpb) }
C@. = ) r 5= )
adb coayd(cab) adb adboc

& {(cadcbab)y(adbdc)=(cpa)(cphby(adb)} .

To check the last identity, we consider the expressions in both sides as polyno-
mials inc and we first remark that the coefficienta¥f nanely a®b, is the same

in both sides The cefficient of ¢, nanely ab(a & b), also is thesame inboth
sides. Now, onsidering the coefficient af, it is equal to(a @ b)? @ ab in the
left-hand si@, and to(a @ b)? in the right-hand side: these two expressions are
clearly always equal.

min(c, max(a, b)) = max(min(c, a), min(c, b)):
cadb) ca cb adb a b
= @ : = @ I
chadb cda cob coadb cda cob
The latter identity is amenable to the same verification as earlier.

Matrices in Ryax

In this section we are mainly concerned with systems of linear equations. There are two
kinds of linear systems iRax for which we are able to compute solutioms= Ax®b

and Ax = b (the general system beirdx & b = Cx & d). We alsostudy the spectral
theary of matrices. There exist good notions of eigenvalue and eigenvector but there is
often only oneeigenvalue: this occurs when the precedence graph associated with the
marix is strongly connected (see Theorem 2.14).
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3.2.1 Linear and Affine Scalar Functions

Definition 3.6 (Linear function) Thefunction f : Rmax — Rmaxislinearif it satisfies
foo=c® f(e) , VceRma .

Thus any linear function is of the form = f(c) = a ® ¢, wherea = f(e). The
graph of such a function consists of a straight line with slope equal to one and which
intersects theg-axis ata (see Figure 3.1).

Definition 3.7 (Affine function) Thefunction f : Rmax— Rmax f(C) =ac®d b,a e
Rmax b € Rpaxiscalled affine

Observe tha as usial,b = f(¢) anda = lim¢_, . f(c)¢c, but here thelimit isreached
for a finite value ofx (see Figure 3.2).

A Rmax A Rmax

b
3 Rmax a Rmax
0 > 0 >
Figure 3.1: A linear function Figure 3.2: An affine function

In the primary school, the first algebraic problem that we have to solve is to find
the solution of asalar affine equation.

Definition 3.8 (Affine equation) The general salar affine equatioirs
axdb=axeb . (3.1)

Indeed, sinced has no inverse, Equation (3.1) cannot be reduced to the usual form
ax @ b = ¢, whichmoativates the definition above.

Theorem 3.9 The solution of the general scalar affine equation isobtained asfollows:
o if
(@ <a) and (b<b)) or ((@a<a) and (b" < b)) (3.2)
hold true, then the solutionis uniqueand itisgivenby x = (b @ b")¢(a & a');
e if a#£a,b+#Db,and(3.2) doesnot hold, no solutionsexist in Rmax;

e if a =a and b # b/, the solution is nonunique and all solutions are given by
x > (b @ b)a;
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e if a £ a and b = b/, the solution is nonunique and all solutions are given by
X < bf(a® a);

e ifa=a andb="0/,all x € R aresolutions.

The pioof is straightforward from the geometric interpretation of affine equations as
depicted in Figure 3.3.

A Rmax )
®
&
_/ Rmax
0 >

Figure 3.3: An affine equation

In practice, itis better to simplify (3.1) before solving it. For exampleaif- a’
andb’ > b, thenax @b = ax ® b’ & ax = b'. Let usgive all different kinds of
simgified equations tht may ome up.

Definition 3.10 (Canonical form of an affine equation)An affine equation is in
canonical formif it isin one of the simplified forms:

e ax =b;
e aXPb=c¢;
e ax ® b = ax;

e ax®db=nh.

3.2.2 Structures

The moduloid structure is a kind of module structure which, in turn, is a kind of vector
space, that is, a set of vectors with an internal operation and an external operation
defined over an idempotent semifield.

Definition 3.11 (Moduloid) A moduloid M over anidempotent semifield XC (with op-
erations @ and ®, zero element ¢ and identity element €) is a set endowed with

e aninternal operation also denoted & with a zero element also denoted ¢;

e an external operation defined on K x M with values in M indicated by the
simplejuxtaposition of the scalar and vector symbols;

which satisfies the following properties:



3.2. Matrices in Ruax 107

@ isassociative, commutative;

a(XB®Y) =ax@ay,;

(@ @ B)X = aX @ BX;

a(BX) = (af)x;
o ex =X;
o X =¢;
foralla, 8 e Landall x,y € M.

We will only be concerned with somspecial cases of such a structure.
Example 3.12 (Rmay)" is @ moduloid overRyayx. Its zero elenentis(e, ... , &)'. []

Other examples of moduloids will be presented later on.

Definition 3.13 (Idempotent algebra) A moduloid with an additional internal oper-
ation also denoted ® is called an idenmpotent #&gebraif ® is associative, if it hasan
identity element also denoted e, and if it is distributivewith respect to &.

Thisidempotent algebra is the main structure in which the forthcoming system theory
is going to be developed.

Example 3.14 Let (Rma)™" be the set oh x n matices withcoefficients inRmax
endowed with the following two internal operations:

e the componentwise addition denoted
e the matrix multiplication already used in Chapters 1 and 2 dengted

(A ® B)jj =@Aik® By ;

k=1

and the exteral operation:
o Vo € Rpax YA € Rma)™ ", a A= (¢ Ajj).
The set(Rman™" is an idempotent algebra with
e thezero matrix, again denoted which has allits entries equal te;

e the identity matrix, again denoteag] which has the diagonal entries equaleto
and theother entries equal ta [ |
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3.2.3 Systems of Linear Equations ifRmay"

In this subsection we are mainly interested in systems of linear equations. To define
such systems, we use matnotation. A linear mappingRma0" — (Rmax)" will be
represented by a matrix as it was done in the previous chapters. With the max-plus
algebra, the general system of equations is

AXdb=Cxad,

where A andC aren x n matrices and andd aren-vectors. This system can be put
in canonical form in the same way as we have done in the scalar case.

Definition 3.15 (Canonical form of a system of affine equations) The system
AX @ b=Cx @& dissaidtobeincanonical formif A, C, b, and d satisfy

° Cij =¢if Aij >Ci,~,andAij =¢if Aij <Cij;
° di =c¢if bi >di,andbi =¢if bi <di.
Example 3.16 Consider the system
3 2 X1 1 _ 4 1 X1 e
(22)(%)e(2)-(13)(%)=(5)

which can be simplified as follows:

(2 2)()=()=(

which implies
2X ®1=14x1 _ _ _ —
2% :1X1®3}=>4x1_1x1693=>4x1_3=>x1_ 1=>x=1.

This system has a soluin. In general, a linear system may or may not have a solution.
Moreover, even if a solution exists, it may be nonunique. [ |

There are two lasses of linear systems for which we have a satisfactory theory,
namely,

e X=AXDb;
e AXx =h.

Let us stdy the former case first.
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3.2.3.1 Solutionofx = Ax® b

Theorem 3.17 If there are only circuits of nonpositive weight in G(A), thereis a so-
lutionto x = Ax @ b whichisgiven by x = A*b. Moreover, if the circuit weights are
negative, the solutionis unique.

The reackr should recall the defiition of A* as given ly (1.22).

Proof If A*b does exist, it is a solution; as a matter of fact,
AA'b) b= (e® AA" )b = A*b .

Existence ofA*b. The meaning of A);; is the maximum weighof all paths of any
length fromj toi. Thus anecessay and sufficient condition for the existence of
(A");j isthatno strongly connected componentsigfA) hawe a circut with pos-
itive weight. Otherwise, thre would exist a path fronj to i of arhtrarily large
weight for all j andi belonging to the strongly connected component which in-
cludes the circuit of positive weight (by traversing this circuit a sufficient number

of times).
Uniqueness of the solution.Suppose thak is a solution ofx = Ax @& b. Thenx
sdisfies
b Ab @ A%x |
= boAb®---@ A b Ax (3.3)

and husx > A*b. Moreover, if all thecircuits of the graphhave negative
weights, thenAk — ¢ whenk — oo. Indeed, the entries ofk are the wights

of the paths of lengtk which necessarilytraverse some circuits & anumber of
times gong tooco with k, but the weghts of these circuits are all negative. Using
this property in Equation (3.3) fok large enough, we obtainthat = A*b. =

Remark 3.18 If the maximum circuit weight is zero, a solution does exist, but there
is nouniqueness anymore. For example, the equatien x @ b adnits the solution
X = a*b = b butallx > b are soltions too. [ |

Example 3.19 Consider the two-dimensional equation

=( 5 _)xe(5)

=(2)e()2(2)e(e)e=(2)

Thisis theunique solution. [ |
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Theorem 3.20 If G(A) has no circuit with positive weight, then
A=ed A -9 AL,
where n isthe dimension of matrix A.

Proof All the paths of length greater than or equaltare necessarilynadeup of a
circuit and of a path with lendt stiictly less tham. Therefore, because the weights of
circuits are nonpositive by assumption, we have

vm>n, A"<e® .- A"l

Returning to Example 3.19, we remark th#&€b, Ab, ... are less thab @ Ab.

3.2.3.2 SolutionofAx = b

The second class of linear systems for whige can obtain a geeral result consists of
the systemsAx = b. However, we must firstansider the problem iR may ratherthan
in Rmax and second, we must somewhat weaken the notion of ‘solutios(ib&ol ution
of Ax = b is anx which sdisfies Ax < b, where the oder reldion on the \ectors can
also bedefined byx <yif x@y=y.

Theorem 3.21 Given an n x n matrix A and an n-vector b with entries in Ryay, the
greatest subsolution of Ax = b existsand is given by

—Xj = miax(—bi + Aj) -

For reasons that will become apparentsh.4.4 ands4.6.2, the vector form of this
formulacanbewrittenefx = (efb) A.

Proof We have that
{AXx <h} & @A”‘Xjfbi , Vi
i

& {xj<b—A; . Vij}

& X =min(bi — Aj) Vj}

- —X;j zmiax(—bi —I—Aij) , Vj}

Conversely, t can be checked similarly that the vectar defined by —x; =
max, (—bi + A”) , V], is a subsolution. Therefore, it is the greatest one. [ ]

As a @nsequence, in order to attempt to solve the system= b, we may first
compute its greatestibsolution and then check by iregion whether it satisfies the

equdity.
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Example 3.22 Let us mompute thegreaed sublution of the following equality:

(43)(2)-(7)

According to the preceding considerations, let us first compute

(e/b)A=( -6 —7)(2 §>==(—3 2)

Then the greatest subsolutiorn(ig, x2) = (3, 2); indeed,

(3)(2)=(7)=(7)

It is easily verified that the second inequality would not be satisfied if we incrgase
and/orx,. Therefore, the first inequality cannot be reduced to an equality. [ |

3.2.4 Spectral Theory of Matrices

Given amatiix A with entries inRnyax, We @nsider the problem of existence of eigen-
valuesand eigenvectors, that is, the existence of (honzear)dx suchthat

AX = AX . (3.4)
The main result is as follows.

Theorem 3.23 If Aisirreducible, or equivalentlyif G(A) isstrongly connected, there
exists one and only one eigenval ue (but possibly several eigenvectors). Thiseigenvalue
isegual to the maximum cycle mean of the graph (see § 2.3.2):

A = max/thw
¢

where ¢ ranges over the set of circuitsof G(A).

Proof

Existence ofx and A. Consider matrixB = A¢x def (efM)A, where v =

max, |¢|w/1¢li. The maimum circuit weight ofG(B) is e. Herce B* and
B+ = BB* exid. Matrix B* has some columns with diagonal entries equal to
To prove this claim, pick a nodeof a circuit & suchthaté € arg max [¢|w/I¢])-
The maximumweight of paths fronk tok is e. Therdore we havee = B. Let
Bk denote thek-th column of B. Then, since, generally speaking,”~ = BB*
andB* = e ® B (e the identity matrix), for thak,

B/ = B} = BB} = B} = B} = AB} = AB}, .

Hencex = Bj = Bj is aneigenectorof A corresponding to the eigenvalue
A. The set of nodes df(A) corresponding to nonzero entriesis called the
support of x.
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Graph interp retation of A. If A saisfies Equation (3l), there exists a nonzero com-
ponent ofx, sayx;,. Then we hav&Ax);, = Ax;, and there exis an index;
suchthat A, X, = AX,. Hercexi, # ¢ and Ay, # e. We can repeat this
argument ad obtain a sequendg;} suchthat A, i X, = AX;,_,, Xi; # ¢ and
Ai_,i; # &. At some dagewe must reach an indei already encountered in
the squence since the number of nodes is finite. Therefore, we obtain a circuit
B =, im, ..., 01, ). By multiplication along this circuit, we obtain

Ai|i|+1 Ai|+1i|+2 cee Aimi|xi|+1xi|+2 coe Xip X = am-iTt
Sincex;; # ¢ for all ij, we may simfify the equation above which shows that
A™1+1 is the weight of the circuit of lengttm — | + 1, or, otherwse stated),. is
the average weght of circuit 8. Observe tht ths partof the proof did not use
the irreducibility assumption.

Xiy Xijyq -+ Xig

If Aisirreducible, all the components ofx are different from ¢. Suppose that the
support ofx does not cover the whole graph. Then, there are arcs going from
the support ofx to other nodes dcause the grapfi(A) has only one strongly
connected component. Therefore, the supporois larger thanthe support of
X, which contradicts Equation (3.4).

Uniqueness in the irreducible case.Consicer any circuity = (i1, ... ,ip, i1) such
thatits nodes belong to the supportof{here any node af (A)). We have

AigXip S AXiy 5 eee s A Xipy S AXi, s AgipXi, < AXi; .

Herce, by the same argumeng @ theparagraph on the graph interpretation
of A, we seethat A is greater than the average weightjof Therdore A is the
maximum cycle meaand hus it is unique. [ |

It is important to understand the role of the suppork @f the prevous proof. IfG(A)
is not strongly connected, the support>ofs not necessarily the whole set of nodes
and, in general, there is no unique eigenvalue (see Example 3.26 below).

Remark 3.24 The part of theproof on the graph iterpretation ofs indeed showed
that, fora gereral matrixA, any eigenalue is gual to some cycle mean. Therefore the
maximum cycle mean isgglial to the maximum eigenvalue of the matrix. [ |

Example 3.25 (Nonunique eigenvectoryVith the only assumptio of Theorem 3.23
onirreducibility, the uniqueness of the eigenvector is not guaranteed as is shown by the
following example:

(¢ 9)(2)=(e)=+(5)
(¢ 5)()=(1)-(")

The two eigenvectors are obviously not ‘proportional’. [ |

and



3.2. Matrices in Ruax 113

Example 3.26 (A not irreducible)

e The following example is a trivial counterexample to the uniqueness of the eigen-
value whenG(A) is not connected:

(22)(2)=1(2) (F2)(e)=2(2)

¢ In the fdlowing exampleG(A) is connected but not strongly connected. Never-
theless there isnly one eigenvalue:

(2e)(2)-(2)
(= )(2)=(2)

has no lutionsbecause the second equation implies- e, and therthe first
equation has no solutions for the unknoan

but

¢ Inthe fdlowing exampleG(A) is connected but not strongly connected and there

(D)) (D)

More generally, consider the block triangular matrix

A ¢
(5 ¢)
whereG(A) andG(C) are grongly connected, and(C) is downsteam ofG(A). Let
Aa andic, be the ajenvalues of block#\ andC, respectively, and letxa andxc be
the corresponding eigenvectors. Observe Iﬂqat Xc )’ is aneigenwectorof F for the

eigenvalueic. In addtion, if Ao > Ac, the expression(Cgra)* is well-defined. The
vector

(i Bam )
(CAAN) " (BErp)XA

is aneigenectorof F for the eigenvalué.a. In conclusion,F has two eigenvalues

if the upstream m.s.c.s. is ‘slower’ than the downstream one. Clearly this kind of
resut can be generalized to a decomposition into an arbitrary number of blocks. This
generalization will not be considered here (see [62]).
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3.2.5 Applicationto Event Graphs

Consider an autonomous event graph witinansitions, that is, an event graph without
sources, with constant holding times and zero firing time$2l6.2 we savthatit can
be modeled by

M
x(k) = @ Alxk —i) . (3.5)

i=0

where theA(i) aren x n matiices with entries imRnax. We asume thathe event
graph (in which transitions are viewed as the nodes aadegl as the arcs) is strgly
connected. I82.5.4, it was shown that an equation in the standard form

X(k + 1) = AX(K) (3.6)

canalsodescribe the same physical system. A new event graph (with a different num-
ber of trangtionsin general) can be associated with (3.6). In this new event graph, each
placehas exadly one token in the initial marking. Therefore, in this graph, the length
of a circuit or path can either be defined as the total number of arcs, or as the total
nunber of tokensin the initial marking along this circuit or path.

We refer the reader to the transformations explainef§4rb.2 t0$2.5.4 to see that
same transitions in the two graphs can be identified to each other and that the circuits
are in one-to-one correspondence. Since the original event graph is assumed to be
strongly connected, the new event graph can also be assumed to be strongly connected,
provided unnecessary transitions (notdlved in circuits) becanceled. TherA is
irreducible. Hence therexists a unique eigenvalue and at éast one eigenvector
X. By starting the recurrence in (3.6) with the initial val®€d) = X, we obtain that
X(k) = A*x for all k in N. Therefore, atoken leaves each trait®n every units of
time, or, otherwise stated, the throughputeafch tranision is 1/A.

It was shown thak can be evaluatkas the maimum cycle mean ofj (7\) that
is, as the maximum ratigveight divided by length’ over all the circuits @f (T\) The
purpose of the following theorem is to show thatan also be evaluated as the same
maximum ratio overhe circuits of theoriginal graph, provided the length of an arc be
understood as the number of tokens in the initial marking of the corresponding place
(theweight is still defined as the holding time).

Let us retun to (3.5). The graphG(A(i)) describes the subgraph of the original
graph obtained by retaining only the arcs correspondinggtogs marked withtokens.
SinceA(i) is ann x n matrix, dl original nodes are retained in this subgraph which is
however not necessarily connected. Consider the followirgn matiix:

M
BV E DA A) |
i=0

wherea is any eal nunber.

Remark 3.27 For a given value of, a circuit of B(1) can bedefined by a sequence
of nodes (in which the last node equals the first). Indeed, once this sequence of nodes
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is given, the arc between a pair of successive ngdeb) is selecéd by the egument

i, (a, b) of the max which is imgicit in the expression ofB(A))pa. If thisi; (a, b) is

not unique, it does not matter which one is selected since any choice leads to the same
weight. Therefore,he set of @cuits of G(B(1)) is a subset of the set of circuits of

the orighal graph (a circuit of the original graph can be specified by a given sequence
of nodesand by a mappinga, b) — i(a, b) in order to specify one of the possible
parallel arcs between nodasandb). The set of circuits of; (B(1)) is thus clanging

with 1. However, br any gven value ofj, if we areonly interested in the maximum
circuit weight of G(B(1)) (or in the maximum cycle mean, assuming that the length of
a circut is defined as thaumber of arcs i (B(1))), the maxmum can be thkenover

the whole set of circuits of the original graph (this set is independenti)ofindeed,

the additional circuits thus considered dot contribute to the maximum since they
correspond to choices @fa, b) which ae not optimal. [ |

Theorem 3.28 We assume that
1. G(B(e)) isstrongly connected;
2. G(A(0)) hascircuits of negative weight only;
3. there exists at least one circuit of G(B())) containing at |least one token.

Then, there exist a vector x and a unique scalar A satisfying x = B(A)x. The graph
interpretation of A is

A= maxw , 3.7)

¢ ¢l
where ¢ ranges over the set of circuits of the original event graph and |¢|; denotes the
number of tokensin circuit ¢.

Proof To solve theequationx = B(A)x, we mus find A and x suchthate is an
eigenvalie of the matrixB(A). Thegraphg(B(e)) being strongly connected,(B(1))

is also strongly connected for any real value bfand theefore B().) admits aunique
eigenvalueA (1). Owing tothe graph interpretation af (1), A(X) = max [¢|w/IZ]I,
where¢ ranges over the set of circuits 6{B(1)). However, Rmark 3.27 showed
that wecan as well consider thatranges over the set of circuits of the original graph.
Herce, in conventionahotation, we have

1
A max| > (B(A))ba)

(@a,byes

Ie |§'_|| ie{l,...,

= max_ ((Ai))pa — i x )
(a,b)es M

1 . .
= m{ax |§_|I irg(’a}%((a%:q((A(| (a,b)pa —i(a,b) x A)) . (3.8)
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If we assume that there existshasuchthat A(A) = e = 0, then, forany circuit¢ of
the orighal graph, and thus for any mapping, -) which conpletes the specification
of the drcuit, we have

. Z(a,b)e;(A(i (a» b)))ba

N Z(a,b)e; [ (a’ b) ’

ard the equdity is obtained for some circui¢. This justifies the interpretation (3.7)
of A.

Let us nowprove thatA(A) = e has auniquesdution. Because of (3.8), and
since, according to Remark 3.27, the mapping@s:) can be viewed asanging in a set
independent of, A(-) istheupper hull of a collection of affine functions (aj. Each
affine function has a nonpositive slope which, in absolute value, equals the number
of tokens in a circuit divided by the number of arcs in the circuit. Therefarés a
nonincreasing function of. Moreover, due tahe third assumption of the theorem,
there is atéast one strity negative slope. Hence lim _, A(L) = +o00. On theother
hand, owing to the second assumption, and since the affine functions with zero slope
stem recessarilyfrom the circuits ofA(0), lim;_. ;. A(A) < 0. Finally A is a convex
nonincreasing function which decreases frgno to a strictly negative value, and thus
its graph cosses the-axis at a single point. [ |

A

It is easy to see that if we start the recurrence (3.5) wif) = X, x(1) = A ®
X, ..., X(M) =AM ® x, thenx(k) = AX ® x for all k. Herce 1/ is the throughput of
the system at thperiodic regime. At the end of this chapter, we will give conditions
under which this regime is asymptoticallgached, andanditions under which it is
reached after a finite time, whatever théial condition is.

3.3 Scalar Functions inRyax

In this section we discuss nonlinear real-valued functions of one real variable, consid-
ered as mappings frofmay iNto Rpax We dassfy them in polynomial, rational and
algebraic functions in the maplus dgebrasense.

3.3.1 Polynomial FunctionsP (Rmax)

Pdynomial functions are a subset of piecewise linear functions (in the conventional
sense) for which we have the analogue of the fundamental theorem of algebra. This
sd isnot isomorphic to the set of formal polynomialsi®f,.x that is, te set offinite
sequences endowed with a product which is the sup-convolution of sequences.

3.3.1.1 Formal Polynomials and Polynomial Functions

Definition 3.29 (Formal polynomials) We consider the set of finite real sequences of
any length

p=(pk),...,p0)...p(n)) , ki,neN, p@)eRna .
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If the extreme values k and n are such that p(k) and p(n) are different from ¢, then

val(p) % is called the valuation of p, and deq p) % 1 is called the degreeof p.

This set is endowed with the following two internal operations:
e componentwise addition &;
e sup-convolution ® of sequences, that s,
popO = P poad) .
i+j=l

val(p)<i<degp)
val(q) < j<degq)

and with the following external operation involving scalarsin Ryax:
e multiplication of all the el ements of the sequence p by the same scalar of Rpyax,

We thus define Rma{ ] which is called the set of formal polynomials.

Notethatif the polynomialy is defired by

e ifk=1;
YK = .
¢ otherwise,

thenary polynomial ofRmady] canbewritten asp = @, p()y'.
Let us gve alist of definitions related to the notion of formal polynomials.

Definition 3.30

Polynomial functions: associated with a formal polynomial p, we define the polyno-
mial function by

P Rmax— Rmax . > P(©) = pk)c* @ - @ p(n)c” .
The set of polynomial functionsis denoted P (Rmay).

Support: the support supp(p) isthe set of indices of the nonzero elements of p, that
is, supp(p) = {i | k <i <n, p(i) #e}.

Monomial: a formal polynomial reduced to a sequence of one element is called a
monomial®.

Head monamial: the monomial of highest degree one can extract from a polynomial
p, thatis p(n)y", iscalled the head monomial.

Tail monomial: themonomial of lowest degree out of p, thatis, p(k)y¥, iscalled the
tail monomial.

1we do not to make the distinction between formasmomials and monomial functions because, unlike
polynomials-see Remark 3.34 below-a formal monomial is in one-to-one correspondence with its associated
function.
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Full Support: we say that a formal polynomial has a full support if

pi)#e¢, Vi:k<i<n.

The fdlowing two theorems are obvious.

Theorem 3.31 The set of formal polynomialsRma{¥] isan idempotent algebra.

Remark 3.32 Because we can identify scalars wittonomials of degree 0, this idem-
potent algebra can be viewed as the idempotent semiring obtained by considering the
two internal operations only, since the external multiplication by a scalar is amenable
to the internal multiplication by a monomial. [ |

Theorem 3.33 Theset of polynomial functionsP (Rimax) endowed with thetwointernal
operations:

def

e pointwise addition denoted @, that is, (P &® §)(c) = P(c) D G(c);

def ~

e pointwise multiplication denoted ®, that is, (P ® §)(c) = P(C) ® G(C),

and the external operation over Ryax x P (Rmax), Namely,

e (bP)© E'b® po),

is an idempotent algebra.

The same remark as above appli@stis idempotent algebra too.

Pdynomial functions are convex piecewise linear integer-sloped nondecreasing
functions (see Figure 3.4). Indeed the monomi@)c' is nothing but the conventional
affine functionic+ p(i). Owing to the meaning of addition of monomials, polynomial
functions are thus upper hulls of such affine functions.

Remark 3.34 There is no one-to-one correspondence between formal polynomials and
polynomial functions. For example,

Ve, @2=Ccol’=c?plca?2.

The monomial k is domirated byc? @ 2. In other words, @ does not contribute to the
graph ofc? @ 1c @ 2 (see Fgure 3.5), and thus, two different formal polynomials are
associated with the same function. [

The following lemma should be obvious.

Lemma 3.35 (Evaluation homomorphism) Consider the mapping F : Rmady] —
PRmax), p = P. Then, F is a homomorphism between the algebraic structures de-
fined in Theorems 3.31 and 3.33. It will bereferred to astheevaludion honomorphism
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Figure 3.4: The graph of = (—1)c?2@®1c®2 Figure 3.5: The graph of = (c @ 1)?

Unlike in conventional algeta, the evaluation homomorphism is not a one-to-one cor-
respondence, as shown in Remark 3.34. More precisely, itis surjective but not injective.
This is why it is important to distinguish between formal objects and their associated
numerical functions.

Remark 3.36 The maping F is in factclosely related to the Fenchel transform [58].
In convexity theory [119]with a numerical functionf over a Hilkert spaceV, the
Fendel transforniFe associates a numerical functigi( f) over thedual Hilbet space
V* as fdlows:

vee V* |, [Fe(f)] () =sup((c,2) - f(2) ,
zeV

where(-, -) denotes the duality product over* x V. If we consider the formal poly-
nomial p as a finction fromN into Ryax p : | — p(l) (the domain of which can be
extended to the whol& by seting p() = ¢ if | < val(p) orl > degp)), then,

p) = rp&x(lc + p()) = Fe(—p)(©) . (3.9)
||

Before studying the properties ¢f and the guivalence relation it induces in
Rmax v], let us first give some terminology rédal to convexity that we will use later
on.

Definition 3.37

Convex set in a disonnected domain: we say that asubset F ¢ E = N x R is
convex if, for all u € [0, 1] and for all x, y € F for which ux + (1 — n)y € E,
it followsthat ux + (1 — w)y € F.

Hypograph and epigraph of a real function f ;: X — R: these are the sets defined
respectively by

hypo ) E'((x.y) |xe X,y e R, y < f(x)} .
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epiH) E{(x,y) [xe X, yeR y> f(X)} .

Convex (mncave) mapping: a function f : X — R isconvex (respectively concave)
if itsepigraph (respectively its hypograph) is convex.

Extremal point of a convex setF: itisa point which is not a convex combination of
two other distinct pointsof F.

Theorem 3.38 Consider the equivalencerelation

Vp.deRmaly] . PEqeP=GogqeF (P .

1. Withagiven p € Rnay], we associate two other elements of Ray’] denoted
pi and pj, such that, for all | € N,

P = maxup() + (L — ()

s (3.10)
subjectto | = pi + (1 —pwj ,
pi) £ min (P —lo) . (3.11)
ceRmax

Then pi = p} (denoted simply p*) and p* belongs to the same equivalence class
as p of which it isthe maximum element. The mapping! — p*(l) isthe concave
upper hull of | — p(l). Hence hypo(p?) is convex.

2. Let now p° € Rmady] be obtained from p by canceling the monomials of p
which do not correspond to extremal pointsof hypo(p?). Then p” belongsto the
same equivalence class as p of which it is the minimum el ement.

3. Two members p and g of the same equivalence class have the same degree and
valuation. Moreover p* = g and p’ = q".

Proof

1. Using (3.19 with the particular valueg. = 1, hencd = i, we first pove that
pﬁ > p for the pointwise conventional order (which is also the natural order
assaiated with the addition inRyady]). Combining (3.9) (written forpﬁ) with
(3.10), we obtain

BE(C) mlax<lc+0 max N(Mp(i) + (1—M)p(j))>

<u=<li,je
subjectto | = ui + (1 —pw)j
- Orgixl (M miax(ic +p@)) + @A —pw mjaX(jC+ p(i)))
= max (up©) + (1 — w)p(c)
O<pu=<1

= p(© .
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This shows thaipﬁ1 belongs to the same equivalence clasgpaand tha it is
greater than any such, herce it is the maximum element in this equivalence
class.

On the dher hand, combining (3.11) with (3.9), we get

ps(l) = min <m%x(mc+ p(m)) — Ic)

ceRmax

By choosing particular valuem = 1, it is shown thatpg > p. SinceF is a

homomorphism, it preserves the order, and tpglsz P. But, if we conbine
(3.9) (written for pj) with (3.11), we get

E)E(c) = T§X<IC+ min (p(c) — Ic’))

€Rmax

By picking the particular value’ = c, itis shown thatpg < P. Herce, we have

proved thatpj = P and thatp > p. Therdore pj is the maximumelement in
the equivalace class op. Sincethe maximumelement is unique (s€g4.3.1),
it follows that p} = p}.

From (311), it is apparent thapg is concave as the lower hull of a family of
affine functions. Hence, since it is greater tharit is greater than its concave
upper hull, but (3.10) shows that indeed it coincides with this hull.

2. It is now clearthat the equivalence class pfcan be characterized by, or
equivalently by its hypograph which is a convex set. Since a convex set is fully
characterized by the collection of itsteeme points, this collection is another
characterization of the class. Sinpzhas precisely been defined from this col-
lection of extreme points, itis clearly @abement of the same class and the min-
imum one (dropping any further monomial would change the collection of ex-
tremepoints and thus the equivalence class).

3. In particular, the head and tail monomials of a giperorrespond to members of
the collection of extreme pots. Therefore, all elements of an equivalence class
have the same degree and valuation. [ |

Definition 3.39 (Canonical forms of polynomial functions) According to the previ-
ous theorem, we may call p* and p’ the concavified polynomiaénd the skektonof p,
respectively.

e The skeleton p° is also called the minimum canonical formof the polynomial
function B;

e the concavified polynomial p* isalso called the maximum canonical fornof .

Figure 3.6 illustrates these notions. It should be clear thegssarilyp? has full sup-
port.
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Example 3.40 Forp = 2@ y @ 2, we havep’ = y2@ 2. Forp = y3® 3, we have
pP=yiely’e2y @3. -

Lemma 3.41 Aformal polynomial p of valuation k and degree n isa maximal canon-
ical form of a polynomial function P, that is, p = p¥, if and only if p hasfull support
(hence p(l) # ¢, forl =k, ... ,n),and

pn-1 _pn-2 ek
pn) — pn-1) — = pk+1

(3.12)

Proof The factthat a maximal canonical form must have full support has been es-
tablished earlier and this ensures that the ‘ratios’ in (3.12) are well defined. In the
proof of Theorem 3.38 it has also been shown tpais the concave upper hull of

the functionl — p() (concvity in the sense of Definition 3.37). Conversely,pf

is concave, it is equal to its own concave upper hull, and thus p*. Now, (3.12)
simply expresses thahe sbpes of the lines defined by the successive pairs of points
(0 =1, pd — 1)), d, p))) are decreasing with which isobviously a necessary and
suficiert condtion for p to be @ncave. [ |

3.3.1.2 Factorization of Polynomials

Let us now show that polynomial functions and concave formal polynomials can be
factored into a product of linear factors.

Definition 3.42 (Corners, multiplicity) Thenonzero cornersf a polynomial function
P are the abscissee of the extremal points of the epigraph of p. Since P is convex,
at such a corner, the (integer) slope increases by some integer which is called the
multiplicity of the corner. A corner iscalled multiple if the multiplicity islarger than
one.

The zero conerexistsif the least dope appearing in the graph of p isnonzero: the
multiplicity of thiszero corner isthen equal to that (integer) slope.

Figure 37 shows anorzemo comer of multiplicity 2.

A Rmax A Rmax
O P
P’ | Corner of
multiplicity 2
>
OJ N> O Rmax

Figure 3.7: Corner of a
Figure 3.6: The functionp, p* and p’ polynomial function
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Theaem 3.43 (Fundamental theorem of algebra)

1. Any formal polynomial of theform p = p(n) ®;_;(y & ¢) (where somec; may
be equal to ¢) satisfies p = p*.

2. Conversdly, if aformal polynomial p = p(K)y* @ p(k+ 1)y*1 - @ pn)y"
issuch that p = p?, thenit hasfull support, the numbersc; € Ryax defined by

Cidzef pin—i)fpn—i—+1) forlglgr-\—k; (3.13)
e fon—-k<i<n,

are such that
CL>C>-->Cn, (3.14)
and p can befactored as p = p(n) (R, (¥ ®¢)).
3. Any polynomial function P can be factored as
n
po) = p(n) (®(c DG )) ,
i=1

where the ¢; are the zero and/or nonzero corners of the polynomial function p
repeated with their order of multiplicity. These corners are obtained by Equa-
tion (3.13) using the maximum canonical form.

Proof

1. Letp = ®, p(N)(y @ c) ard assume without loss of generality that the

have been numbered in such a way that (3.14) holds. We consider the nontrivial

casep(n) # ¢. By direct calculation, it can be seen thatn — k) = p(n)oy,
whereoy is thek-th symmetric product of the cornets that is,

n
n=EPc . o= ag .
i=1

i#=1

Owing toour assumption on the ordering of theit is clear thaiy, = ®:<=1 Cj.

Therefore,
Pn—k Ok Pn—k+1
— = = < CG1=— .
Pn—k+1 Ok—-1 Pn—k+2

Thusp = p* by Lemma 3.41.

. If p = p?, theg; canbe defined by (3.13) unambiguously and then (3.14) follows
from Lemma 3.41. The fact that can be factored as indicated is checked as
previously by direct calculation.
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3. Fromthe preceding considerations, provided that we reprepenith the help of
its maximum canonical form, the factored form can be obtained if we define the
¢ with Equation (3.13). To complete thegof, it must be shown that any such
is a corner in the sense of Definition 3.42 and that,df appearss times, then
the slope jumps big atc. To see tis, rewrite the factored form in conventional
notation, whch yields

n
ple) =) maxc,c) .
i=1
Each elementary term@® ¢ has a graph represented in Figure 3.2 with a slope
discontinuity equal to one at. If a ¢; appears; times, the ternk; x max(c, ¢)
causes alope discontinuity equal tk. All other tems with ¢j # ¢ do not
cause any slope stontnuity at ¢;. [ |

Example 3.44 The formal polynomialy? @ 3y @ 2 is amaimum canonical form

becausec; = 3fe = 3 > ¢, = 263 = —1, and therefore itan be factored into
(¥ ®3)(y ® (—1)). The formal polynomialy? @ 2)* = y?@® 1y @ 2 can be factored
into (y @ 1)2. m

3.3.2 Rational Functions

In this subsection we study tianal functions in theR,,x algeébra. These functions

are ontinuous, piecewise linear, integer-sloped functions. We give the multiplicative
form of such functions, which completely defines the points where the slope changes.
Moreover, we show that the Euclidean division and the decomposition into simple
elements is not always possible.

3.3.2.1 Definitions

Definition 3.45 Given p(0), ..., p(n), q(0), ... ,g(M) € Rmax p(N) and g(m) # &,
the rational functiort, associated with these coefficients, is given by

PO) & - @ p()c"
q0) & --- @ q(mem

T Rmax— Rmax ., CHT(C) =

Sweha function is equal to the difference of two polynomial functions (see Figure 3.8):
hence itis still continuous, piecewise linear, integer-sloped, but it is neither convex nor
increasing anymore.

Definition 3.46 The corners of the numerator are called zero conersor root caners
and the corners of the denominator are called pole corners

Using the fundamental theorem of algebra, we can write any rational functisn

QL (cda)

T(c) = a—nm ,
© Q-1 ® dj)
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where the zero and pole wrers are possbly repeaed with their order of multiplicity.
At a zero corner of multiplicity ki, the ctange of slope idG (unless this zero corner
coincides with some pole corner). At a pole corner of multipliditythe ctange of
slope is—I; (see Figure 3.9).

RmaxA RmaxA
y = C2@2C®3
Rmax
0 >
>
y = ef(1Z @ 4c P 5) 0

Figure 3.8: Graph of
y= (@2 (I P 4cP5) Figure 3.9: Root and pole corners

3.3.2.2 Euclidkan Division

In general, a polynomigb cannot be expressed &8 & T with degf) < degb) for
samegiven polynomiab as shown § Example3.47. Nevertheless, sometimes we can
obtain such a decomposition, as shown by Example 3.48.

Example 3.47 The euationc® @ e = G(c ® 1) & T has no solutions. Indeed;
must beof degree 1 and of degree 0; thugl = q1)y @ q(0), r = r(0), with
g(0), q(1),r(0) € Rmax By identifying the coefficients of degree 2 in both sides, we
must haveq(l) = e. Now, since the maximal canonical form in the left-hand side is

¢® @ ¢ ® e, by considering the coefficient of degree 1 in the right-hand side, we must
haveq(0) @ 1q(1) < e, whichcontradictgy(1) = e. []

Example 3.48 For p(c) = ¢2 @ 3 andb = c @ 1, we have
e3=(co®D*®3=Ccad(Ccd1l5a3.

As in conwentional algebra, this issue of the Euclidean division leads to solving a
triangular system of linear equations. HoweverRpax the difficulty dwells in the
fact that a triangular system of linear equations with nonzero diagonal elements may
have no solutions.

Example 3.49 The system(x; = 1, X; ® X2 = €) has no solutions iRy []
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3.3.2.3 Decomposition of a Rational Function into Simple Elements

Definition 3.50 A proper rational functiof#q is a rational function which satisfies

degt) < deg@).

In general, it is not possible to express a rational funcigiiass & T#q, wherer¢q is
proper and is a polynomial function. Nevertheless, given a proper rational function,
we may datempt to decompose ihto simple elements.

Definition 3.51 A proper rational function ¥ is decompoableinto simple elementi

it can be written as
n Ki

F=PPawcac),

i=1 k=1
where the a;x are constants.
Suwch a decampostion is not always possible.
Example 3.52 We first consder a rational function for which the decomposition into
simple eements is possible:
cal ceoe 1 e 1
(ceae)zl - (ceae)Zl ® (ceae)Zl ~coe ® (ceae)Zl '

The rdional function(c® e)# (c® 1), however, cannot be decomposed. Indeed, if such
a decampostion exists, we would have

cee  a o b .
cd1? cpl (cdl?

Thena(c®l) @b =cde hercea=¢e andals,ald b =1&b = e whichis
impossible. [ |

The graptof a proper rational function which can be decomposed into simple ele-
ments is necessarily nonincreasingdause it is thepper hull of nonincreasing func-
tions. But a rational function with the degref thenumerator lower than the degree of
the denominator is not always nonincreasing: this depends on the relative ordering of
its pole and zero corners.

Example 3.53 The functiony = 2(c @ e)¢(c @ 1)? is proper but not monotonic (see
Figure 3.10). [ |

However, being nonincreasing is aenessay but not a aufficient condition to be
decompoable into simple elements as shown by the following example.

Example 3.54 The functionf(c) = ef(c®> @ ¢), thegraph of which is displayed in
Figure 3.11, cannot be decomposed into simple elements. Indeed,

{r(c)— Ceaceae}:{a(ceae)eabc_e}:{a e}’

which is impossible inRmax. []
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A Rimax A]]%{max
R
1 “tmax
1 -1 0 >
Rimax
0 1 2 >
-2

Figure 3.10: Graph of = 2(c® e)f(c ® 1)> Figure 3.11: Graph of = e/(c’®C)

Theorem 3.55 A proper rational function has a simple element decomposition if and
onlyif it hasgeneral root cornersand special pole cornerswhich are at theintersection
of a zero-sloped line and a negative-integer-soped line (Figure 3.12).

Proof If Tis decomposable, it can be writtenfas- P r; with

Ki
fio =Pawcoc) .

k=1

Reducing the right-hand side to a common denominatap ¢ )Xi, we obtainf; =
Pc@c)f(cdc)K, wherepisapolynomial function of degrei; —1. The polynomial
function p is characterized by the fact that the abscissae of its corners are greater than
¢;. TherdoreT; (c) is constat on the left-hand side af, has gpole corner of ordeK;

atc, and a oot corner on the right-hand side @f Conversgl, a function haing this
shapecan easily be realized by d@n Theproof is compléed by considering the fact
thatf is the supemumof a finite number of such. ]

3.3.3 Algebraic Equations

Definition 3.56 (Polynomial equation) Given two polynomial functions p and § of
degree n and m, respectively, the equality p(c) = G(c) iscalled a polynomial equation
Solutions to this equation are called roots The degreeof the polynomial equation is
theinteger max(n, m).

Samepolynomial equations have roots, some do not. For exansple, a has the
rootc = J/a, thatis,c = a/nin conventional algebra. Oh¢ other hand, the equation
P(c) = ¢ has no roots whep is a gereral polynomial of degree > 1.

3.3.3.1 Canonical Form of an Equation

Before studying equations, it is useful to write them in their simplest form. An equation
P(c) = G(c) can geerally be simfified even if itis in the formp®(c) = g°(c). Indeed,
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if two monomialsp’(k)y* andq’(k)y* of the same degree appear simultaneously, and
if pP°(k) < g°(k), we can further simplify the equation by canceling the monomial

p*(K)y k.

Example 3.57 The guationc®®3c®2 = 3c?@ 2c@ e can be reduced tacdp 2 = 3¢?

(see Figure 3.13). [ |
A Rmax
root
corners admissible
pole
corner
>
0 Rmax
0 >
Figure 3.12: A rational function Figure 3.13: Equation
decompoableinto simple elements R3kcd2=32Pp2che

Definition 3.58 If there exist two identical monomials on both sides of the equation,
we say that the equation is degeneratedThe nondegenerated equation p(c) = G(c) is
in minimal canonical fornif (p&® q)° = p® q.

In the case of a degenerated equation, there is a segment of solutions.

3.3.3.2 Solving Polynomial Equations

T/hgrem 3.59 Any root of the nondegenerated equation p(c) = G(c) is a corner of
p&aq.

Proof Let us take the canonical form of the equation. Any rootafc) = q‘(c)i/sme
soluion of p(k)ck = q(l)c for some differenk andl and tus it is a corner op @ q
because the equation is in minimaheaical form. [ |

The converse oftis theorem is not true, i.e. a corner is not always a root of the equation
p©) =4q(©).

Example 3.60 The polynomial equation 8@ 2 = 3c? has the cornet = —1 which
isnotaroot (3—1) &2 = 2,3(—1)? = 1). m
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Now we gve a haracterization of the situation where the polynomial equation of
degreen has exactlyn roots.

Theorem 3.61 Supposethat n iseven (thecase when nisodd issimilar). Let
P) = pO) & pAC & - - & pc*

a©) = pcd pRIC* @ -+ @ pk — ™,
and suppose that p(c) = G(c) is a nondegenerated equation in canonical form, then
G & p(i —¢pa),i =1,...,n,arethen roots of the equation.

Proof No correr ofpfe\q is multiple. Henceeach one is obtained as the intersection of
two monomials of consecutive degrees. Therefore, these monomials belong to different
sides of the equation. Thus the corresponding corners are roots of the equation.

Conversely if the equation hasroots,pfe\q hasn corners which therefore are
distinct. But each of these corners is a root, hence these corners are characterized
by the intersection of two monomial functions of consecutive degrees, the monomials
being in different sides of the equation. [ |

3.4 Symmetrization of the Max-Plus Algebra

We have sen that the theory of linear systemenfuations in the mayplus dgebra is

not satisfactory at all, not even the <alar case. We now exterRRi,« to a larger

setS for which Rpnax can be viewed as the ptige part. The construction is similar

to the construction oZ as an extension df in convertional algebra, but we cannot
avoid ®me complications coming from the idempotency of the max operator. With
this new set, wean geeralize the notion of an equation that we call a balance. Then

all nondegenerated scalar linear balances have a unique solution. Thus a linear closure
of Rmax has leen achieved.

3.4.1 The Algebraic StructureS

A natural approach t@ur problem is to embed the max-plus algebra into a structure in
which every nontrivial scalar linear equation has at least one solution. In particular we
would like to hae a soltion to the equatioa & x = ¢, that is, wewould like to find a
symmetic element toa. But this not possible, as shown by the following theorem.

Theorem 3.62 Every idempotent group is reduced to the zero element.

Proof Assume thathe goup (G, ®) is idempotent with zero element Let b be the
symmetic element ofa € G. Then

a=adcs=ad(@db)=>@dadb=adb=c¢c.
[ |
Nevertheless we caadapt the idea of #hanstruction ofZ from N to build a ‘bal-

ancing’ element rather than a symmetoiace. This is the purpose of the following
subsections.
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3.4.1.1 The Algebra of Pairs

Let us onsider the set of pailR2_, endowed with the natural idempotent semifield
strucure:

(X/, X//) @ (y/’ y//) — (X/ @ y/’ X// @ y//) ,
(X/, X//) ® (y’ y/) — (X/)/ @ X”)//, X/)// @ X”)/) ,
with (g, ¢) as the zero element arid, ¢) asthe identity element.
Letx = (X', x”) and define theninus sigh asox = (x”, X), theabsolute value of

x as|x| = x’ @ x” and thebalance operator asx® = x © x = (|x|, |X|). Clearly, these
operators have the following properties:

1. a* = (e3)";
2. a* =a"

3. ab* = (ab)*;

4. o(ca) = a;

5. 6(@ob) = (0a) & (6b);
6. 5(@a®b)=(©a)xb.

These poperties How us to writea @ (&b) = a© b as usial.

3.4.1.2 Quotient Structure

Definition 3.63 (Balance relation)Let x = (X', x”) and y = (Y, y”). We say that x
balancesy (whichisdenoted X Vy)if X @y’ =x" @Y.

Itis fundamental to notice that is not transitive and thus is not aquivalence relation.
For instance, considete, 1) V (1, 1), (1, 1) V (1, e), but(e, 1) ¥ (1, e)! SinceV cannot
be an equivalence relation, it is not possible to define the quotient structife, by
means ofV (unlike in conventnal algebran whichN?/ V ~ 7). However, we can
introduce the equivalence relatidd on RZ, closely related to the balance relation,
namely,

X/ @ y// — X// @ y/ If X/ # XN, y/ # y// ,

X, X"RY,Y") & i
( YRYY, ¥ X, X =,y otherwise.

It is easy to check thaR is compatible with the addition and multiplication &f,.,,
the balance relatioW, and thes, | - | and® operators.

Definition 3.64 The symmetrizemlgmraR%ax/R of Rmaxiscalled S.

We distinguish three kinds of equivalence classes:

(t, —o0) = {(t,X") | X" <t} , called positive elements;
(—oo,t) = {(X',t) | X <t} , called negatie elements;
(t, t) = {(t, )} , called balanced elements.
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By associating(t, —oo) witht € Rmax We can identifyRya¢ with the semifield of
positive or zero classes denot8#. The set of negate or zero classe (of the form
ox for x € S®) will be denotedS®. This stis not stable by multiplication and thus it
is not a semifial. The set of balanced classes (of the forthis denotedS?; it is also
isomorphic toRmax This yields the decomposition

S=S%uUs®us* . (3.15)

The element is theonly element common t8% andS® andS*. This decanpostion
of S should be compared with = N* U N~. This notation dlows us to write 35 2
instead of(3, —o0) ® (—o0, 2). We thus have 32 = (3,2) = (3, —o0) = 3. More
generally, catulaions inS can be summarized as follows:

acb=a, ifa>Db;
boa=oca, ifa>b; (3.16)
aca=a".

Because of its importance, we inttuce the notatioS" for the setS® U S® and
Sy =S¥\ {e}. The eements of" are calledsigned elements. They are either positive,
negative or zero.

Theorem 3.65 Theset S; = S\ S* isthe set of all invertible elements of S.

Proof The dovious identityt ® (—t) = (6t) ® (© —t) = efort € Rmax\ {¢} implies
that every nonzero ement of S¥ is invertible. Moreover, th absrbing properties of
the bahnce operatoshow hatS" is absarbing for the product. Thuss®y = e for all
y € Ssincee ¢ S°. [ |

Remark 3.66 Thus, inS, with each elemerd € S¥, we can associate an elemena

suchthatb = a© a € S* but in generalb # ¢. This is the mairdifference vith the

usual symmetrization. Here the whole Setplays the role of the usual zero element.
[

3.4.2 Linear Balances

Before solving general linear balances, we need to understand the meaning of the gen-
eralization @& equations inRnyax by balances irS. This can be done by studying the
properties bbalances.

Theorem 3.67 Therelation V satisfies the following properties:
1. avVa;
2.aVbs bVa;
3. avVbsasbVeg;
4, {avb,cvdl=>adcVbad;
5

.aVb= acVhbc.
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Proof Let us pove Property 5. ®viously,aVb < aob e S* and, sinceS*® is
absorlng,(ao b)c=acobc e S*, i.e.acV bc. ]

AlthoughV is not transitive, when some variasl are signed, we can manipulate bal-
ances in the same way as we manipulate equations.

Theorem 3.68
1. Weak substitution If x Va,cx Vband x € SY, wehaveca V b.
2. Weak transitivity If aV x,x Vbandx € S¥,wehavea V b.

3. Reduction of balanceslf x Vyand x,y € S¥,wehavex = y.

Proof

1. We have either € S® or x € S°. Assume for inance hatx e S®, that is,
X = (X/, ¢). With the usual notation’ @a” =a andcx @b’ =c'X @ b'.
Addingc’a” & ¢’a” to the last equality, we get

C/X/ @ C/a// @ C//a// @ b// — C//X/ @ C/a// @ C//a// @ b/ ,
which yields, by usingK’ @ a” = &/,
C/a/ @ C//a// @ b// — C//a/ @ C/a// @ b/
thatis,ca V b.

2. This a consequence of the weak substitutiondfer e.

3. This point is trivial but is important in order to derive equalities from balances.
[

The introduction of these new notions is justified by the fact that any linear balance
(which is not degenerated) has one and only one solutiSi.in

Theorem 3.69Leta € S} and b € S, then x = ©a~b isthe unique solution of the
balance

ax®bVe , (3.17)

which belongsto SV¥.

Proof From the poperties of lalances it follows thaax @bV e < xV © a~b. Then
using the reduction property and the fact tgat—'b € SV, weobtainx = ca~'b. =

Remark 3.70 If b ¢ SY, we lose he uniqueness of signed solutions. Ev&rguch
that|ax| < |b| (i.e. |x| < |]a—b]) is a soldion of the balace (3.17). Ifa ¢ SV, we
again log uniqueness. Assuntee SY (otherwise, the balance holds for all values of
X), theneveryx suchthat|ax| > |b| is a soltion. [ |
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Remark 3.71 We can describe allhe solutions of (3.17). For all € Rpax We obvi-
ously haveat® V ¢. Adding this balance tax & b V ¢, wherex is the ungue signed
soluion, we obtaira(x @ t*) @ b V ¢. Thus,

X =XBt* (3.18)

is a solution 6 (3.17). Ift > |x|, thenx; = t* is balanced Conversg}, it can be
checked that every solution of (3.17) may be written as in (3.18). Finallyuhigue
signed solutiorx is also the least solution. [ |

Remark 3.72 Nontrivial linear balaces (withdatain SV) always have @lutions inS;
this is whyS may be considered adiaear closure of Rmax. []

3.5 Linear Systems inS

It is straightforward to exdnd balances to the vector case. Theorems 3.67 and 3.68
still hold whena, b, x, y andc are matrices with appropriatémensions, provided we
replace ‘belongs t8"’ by ‘every entry belongs t&"’. Therefore, we say that a vector
or a matrix issigned if all its entries are signed.

We now onsider a solutior € Ry« Of the equation

Axdb=Cxa®d . (3.19)
Thenthe definition of the balance relation implies that
(AeC)x@® (boed)Ve . (3.20)
Conversely, ssuming thak is a positive solution of (3.20), we obtain
AXDbVCxad,

with Ax @ b andCx @ d € S®. Using Theorem %8, we obtain
AX®db=Cxdd .
Therefore we hve the fdlowing theorem.

Theorem 3.73 The set of solutions of the general system of linear equations (3.19)
in Rmax and the set of positivesolutions of the associated linear balance (3.20) in' S
coincide.

Hence, studying Equation (3.19) is reduced to solving linear balancgs in

Remark 3.74 The case whe a soldion x of (3.20) has some negative and some
positive eitries is also of interest. We write = x* © x~ with x™, x~ e (S®)".
Patitioning the columns oA andC according to the sign of the entriesxafwe obtain
A=AT®dA ,C=Cr®C,sothatAx = AtxT©O A x~ andCx = C"xTeC x".
We can thus claim the exisnce of a solution ifR s to the newproblem

AXTeC X db=A X C'x" @d .

The lution of nondegenerated problems is not unique, but the set of solutions forms
a sngle class oR2 ,, (for the equivalence relatioR ). [ |
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3.5.1 Determinant

Before dealing with general systems, we need to extend the determinant machinery to
theS-context. We define the signature of a permutatidoy

e if o is even;

Si =
gne) ©e otherwise.

Then the determinant of anx n matix A = (A;;) is given (asusual) by

P sane) Q) Asi
4 i=1

and is denoted eith¢A| or def A). The tranpose of the matrix of cofactors is denoted
A ((AJ)ij def cofji (A)). The dassical properties of the determinant are still true.
Theorem 3.75 The determinant has the following properties:
linearity:

[(U1, ..., AU B uvi, ..., Up)| = Al(U1, .., Ui, .., Un)| B p|(U1, .., Vi, .., Up)]| 3

antisymmetry:
[(Us)s - - > Usm)| = SQN(@)|(Ug, ... , Up)| ;

and consequently

(U, ..., v,...,v,...,U)| Ve ;

expansion with respect to a row:

n
|Al = P aikcofik(A) ;
k=1

transposition: |A| = |A/|.

A direct consequence is that some classical proofs lead to classical identities in this
new setting. Sometimes weak substitution limits the scope of this approach.

Theorem 3.76 For an n x n matrix A with entriesin S, we have

Cramer formula: AA7 V |Ale, and if |A| is signed, then the diagonal of AAY is
signed;

recursive computation of the determinant:

— F G — g
|A|—‘< Hoa )‘—|F|anneHFG

for a partition of matrix A where a,, isa scalar;
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Cayley-Hamilton theorem: p being the characteristic polynomial of matrix A, i.e

p() £ A6 rel, wehave p(A) V s.

Remark 3.77 We define lhe positive deterinant of a matrixA, denoted|A|™, by the
sum of terms); A, i) where the sum iEmited to even permutations, and a negative
determinant, denotedd|—, by the samesumlimited to odd pemutations. The matrix
of positive cofactors is defined by

(A+) = |AIT[*if i + j is even,
i AT if i+ jisodd,

where Ail denotes the matriderived from A by delding row j and coumni. The
matiix of negative cofactorg”~ is defined similarly. With this notation, Theorem 3.76
canberewritten as follows:

AN @ |A"e= AA” @ |Alte .

This formula does not use the sign and is dlid in any semiring. The symmetrized
algebra gpears to be a ratural way of handing such identities (and giving proofsin an
algebraic way). [ |

3.5.2 Solving Systems of Linear Balances by the Cramer Rule

In this subsection we study solutions of systems of linear equations with entf§es in

We only consider the solutions belonging ¢8")", that is, weonly considersigned
sdutions. Indeed, in a more general setting we cannot hope to have a result of unique-
ness; see Remark 3.70. We can now state the fundamental result for the existence and
uniqueness of signed solutions of linear systems.

Theorem 3.78 (Camer system) Let Abeann x nmatrixwithentriesinS, |A| € SY,
b e S"and A’b € (SY)". Then, inSY there exists a unique solution of

AxVb, (3.21)
and it satisfies

XV Albg|Al (3.22)

Proof By right-multiplying the identityAA* V |Ale by |A|~1b, we seethatx is a
sdution. Let us now prove uniqueness. The proof is by induction on the size of the
matrix. It is based on Gauss elimination in which we manage the balances using weak
subgitution. Let us prove (3.22) for the last row, i.8A/x, V (A’b),. Devebping

| A| with respect to the last columpd| = @’k‘zl aknCofikn (A), we see tht at least one

term is invertible, say;,cofi,(A). We now partition A, b andx in sucha way that the
scalaray,, becomes a block:

A=(F ) oo=(8) ()
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Then Ax V b canbewritten as

H X @ alan V bl 5 (3.23)

FX®Gx,VB . (3.24)

Since|F| = (©e)™'cofi,(A) is invertible, we can apply the induction hypothesis to
(3.24). This implies that
XV |F|"FYB o Gx,) .

Using the weak substitution property, we can replxce (S¥)"~! in Equation (323)
to obtain
IFI"*HF*(B © GXn) ® ainXx, V by ,

that is,
Xn(|Flain © HF'G) V |[FIby© HFB .

Here we recognize the developmentg &f and(A*b),, therdore
Xn V (A'b)nf| Al .

Since he same reasoning can be applied to the entrigsodifier tham, this oncludes
the poof. [ |

Remark 3.79 Let us write D; for the determinant of the matrix obtained by replacing

thei-th column of A by the column vectob; thenD; = (A’b);. Assume thaD def |A|

is invertible, then Equation (3.22) is equivalent to
x VDD, Vi.
If A’b e (SV)", then by uang the reduction of élances (see Theorem 3.68), we obtain
xi =D"'Di ,
which is exactly the classical Cramer formula. [ |

Example 3.80 The Rimax €quation

(5 2)e(x)e(=)=(7 2)e(n)e(7) w2

corresponds to the balance

(5 %)) (%) 29

Its deerminant is D = 4.
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S@

Figure 3.14: A(2, 2) linear system ofequations

_ D1 _ 8 V2
so=(2)=(2)eer.

The system is invéible and has a ugue solution. Thugx; = DD = 8 -4 =
4, x, = Do¢D = 7 — 4 = 3) is the unique positive solution & of the baance (3.26).
Hence it is he unique solution iRy, 0f Equation (3.25). [ |

Example 3.81In the two-dimensional case the conditidrb € (S¥)" has a vey clear
geometric interpretation (see Figure&).as the inérsection of gaightlines inS. First
we canchoose an exponential scaling of thkeandx, axes The exponential mad$®
toR* andS® to R, if we identify S® with iz + R U {—oc0}. We donot represent the
balance axis in this representation. Therefore the straighthpe bx; @ cV eis a
broken line (in the usual sense) composed of four segments:

e two of them are symmetric with respect of the origin; they correspond to the
contribution ofax, & bx; to the balance (they belong to the conventional line
axy + bxy = 0);

¢ thehorizontal segment corresponds to the contributicese c to the kalance;
e the vertical sgment corresponds to the contributionond @ c to the talance.

Then it is easy to see that tvsuchlines haveone and only one point of intersection,
or there exists a complete segment of solutions. This latter case is called singular and
is not further considered here. [

Remark 3.82 The invertibility of |A| is not a necessay condtion for the existence of
a sgned solution to the systedx V b for some value ob. Let usconsider

A=

® D D
® D D
M m ™
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BecausgA| = ¢, the marix A is not invertible. Let € SY be suchthat|b;| < |t| for
alli,andletx = (t ot & ). ThenAx V b. Butinthis case, the signed solution is
not unique. [ |

Remark 3.83 As already noticed, in [65] for example, determinants have a natural
interpretation in terms of assignment problems. So the Cramer calculations have the
same comlexity asn + 1 assignment pblems, which can be solved using flow algo-
rithms. [

3.6 Polynomials with Coefficients inS

We havebuilt the linear closuréS of Rmax. Therdore anylinear equation irf has in
general a solution in this set. The purpose of this section is to shov tisadlmost
algebraically closed, that is, any ‘closed’ polynomial equation of degraeS has

n sdutions. The term ‘closed’ refers to the fact that the class of formal polynomials
having the same polynomial function definedSois not always closed (in a topological
sensehat will be made precisetiar). We will see thaf is algéoraically closed only for

the aubset of ‘closed’ polynomial equations. Moreover, we will see that any polynomial
function can be transformed into a closed function by modifying it in a finite number
of points.

3.6.1 Some Polynomial Functions

We cangeneralize the notions of formal polynomials and of polynomial functions to

the setS. We redrict our study to polynomial functions iR(S") def F(SY[y]), where

SY[y] denotes the class of formal polynomials with coefficientsSihand F is the
straghtforward extension of the evaluation homomorphismintroduced in Lemma 3.35.
We will see that sich functions assume valuesSi when treir argumentranges inSV,
except perhaps at a finite number of points. For the more general class of polynomial
functions with coefficients ifS, denotedP(S), it may hagpen that the function takes a
balanced value on a continuous set of point§'ofin which case we say that we have
a halanced facet). Because we are mainly interested in the analogy with conventional
polynomials, we do not deal with this latter situation.

To get a better understanding of polynomial function§Same study somearticu-
lar cases. Let us start by plotting the graphs of polynomial functions of degree one, two
and three (see Figure 3.15). We must study the graphs over each of the three compo-
nentsS® , S° andS*. The value 6the functionitself, howeverjs anelement ofS which
also belongs to one of these components. Therefore the plot is quite complicated. In
order to simplify the study, only the plot ovBl is considered. Moreover we will use
the exponential system of coordinates that we have discussed in the previous section.
Figure 3.15 shows the points of discontinuity of the three component functions. These
disaontinuities always appear at abscissee which are symmetric with respect to corner
absdssae. At these discontinuities the polynomial functions take balanced values (in
the graph, we see sign changes). They correspond to what we call ‘roots’ of polyno-
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A S® AS@/ A S8 /
(S] (82 S] (5] (S) / (82
S € SIS 3 S¢S € St
Ve Yt V.
y=axob y= ax?®bxec  |y= ax3@bx?@cx @d
s e s

Figure 3.15: Polynomial functions of degree one, two and three

mial functions. If a polynomial is of degre® it has ingeneraln corners anch points
in S¥ where the polynomial function takes balanced values.
Let us gudy the polynomial functions of degree two in more detail. We consider

P = pO)® plcd p@c® , pi)eS’, i=012.

The polynomial function|p] € P(Rmax) is defired asp(c) = |p0)| & |p(D)|c &
|p(2)|c2. We will later prove, but it should be clear, thatdfis a oot of p, then|c| is

a coner of |p|. Owing to Theeem 3.43,| | canbe factored into the product of two
linear polynomials. We have the following four possibilities:

1. If | p(D)fp2)| > |p(0)¢p(D)|, then|P| has two distit cornersc; = |p(1)f p(2)|
andc; = |p(0)#p(1)|. It can be checked thg = p(2)(c & p(L)¢p(2))(c &
p(0)¢ p(1)) ard that this factorization is unique. In addition, the moduli of the
roots arec; andc,.

2. If |pfp@| = |p0)#p(D)], then|p| has a cenerc; = |p(0)¢p(2)|*/2 of
multiplicity 2 and the roots ofp = p(2)(c & p(1)¢p(2))(c & p0)¢p(1)) have
modulusc;.

3. If | p(D£p2)| < |p0)¢p(1)| and p(2)p(0) € S®, then|p| has a cenerc; =
| p(0)£ p(2)|*/? of multiplicity 2 and p cannot be factored. Indeed et andecy,
P has signed values. We hape= p(2)(c® ® p(0)/p(2)).

4. If I p(L¢p2)| < |p0)¢p(1)| and p(2) p(0) € S°, then the polynomialp| has a
cornerc; = | p(0)¢ p(2)|*? of multiplicity 2. We havep = p(2)(c @ ¢1)(C & ¢1)
and husp has leen factored.

This discussion suggests that if the cornerg@f(now a polynomial function of de-
green) are diginct, then here aren roots; but if| p| has multiple corners, then we are

not guaranteed to have a factorization in linear factors. We now study the situation in
more déail.

3.6.2 Factorization of Polynomial Functions

We canconsider formal polynomial§[y] and polynomial function$(S) with coef-
ficients inS aswe have done for polynomials with coefficients Ryax. They cefine



140 Synchronization and Linearity

algebras. The following mapping fror®(S) into P(Rmax)
p=pKy @ @ pny"— Ipl=IpRly“ e - & pmly"
is a surjectie mophism.

Definition 3.84 (Root) The root of a polynomial function p € P(S) is an dement
¢ € SY such that p(c) V «.

Remark 3.85 It should be clear that the computation of the linear factors of a polyno-
mial yieldsits roots. hdeed we have

®(C9Q)V€©C9Q Ve .

Lemma 3.86 If, for a polynomial P e P(SY), cisaroot of P(c), then |c| isa corner
of [pl.

Proof If cis a moot, thenp(c) is balancedand hencep(c)| = |p(|c|)| is a quantity
which isacheved by two distinct monomials of since, by assumpin, the coefficients
of p belong toSY. Thus|c| is a coner of|p|. [ |

For the sameaason as in thR 5« case, the mapping
F:Slyl = PS), p—p,

is not injective. In oder to study the set valued-inverse mappffigf, we introduce the
notion of a closed polynomial function.

Definition 3.87 (Closed polynomial function) We say that the polynomial function
P e PSY)isclosed if F-1(P) admitsa maximum element denoted p* € P(S). This
element is called the maximum representative of P.

Example 3.88 The polynomial functiorc? © eis closed because it has the same graph
asc® @ e*c © e. The polynomial functiore® @ e is not closed because its graph is
different from that of any polynomigh, = ¢® ® ac @ ewith a € {e, ©e, €*} dthough

it is the same for al& < e. [

The notion of closed polynomial function is relevargdause the inverse of the evalua-
tion homomorphismis simple for this class, and because this class is exactly the set of
polynomial functions which can be factored into linear factors.

Theorem 3.89 A polynomial function p € P(S") can be factored in linear factorsif
and only ifitisclosed.
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Proof

Any polynomial which can be factored is closedLet us suppose that the degree of
P is n, its valuation 0, and the coefficient of its head monomialégthe proof can be
generalized to avoid these assumptions). Let us suppose that the de@reenpfts
valuation 0, and the coefficient of its head monomialagthe proof can be adapted to
the gerral case). Let;,i = 1,...,n, denote the roots gp numbered according to
the decreasng order of their modulus. If the; are all dgtinct, we have

n i
P = @ m with m & ®Cj o
i—0 =1

Because
m>m;, Vj>i, Vc:iGu<C<G,

we cannot increase the coefficient of a monomial without changing the grajpraofi
therefore it is closed. The situation is more complicated when there is a multiple root
because then at least thre@momials take the same value in modulus at this root. To
understand what happens at such a multiple root, let us consider the cas@ Wwasn
only the rootse or Se, that is,p(c) = (c ® e)"""(c © ™. The «pansion of this
polynomial gives five kinds of polynomials:

c"ecle...pe;

Cnecnfl@cnf2_”@e;

Cnecnfleacn*z___ee;

c" o) e‘c“*l o) eocn72 o Pe;

Cn oy e‘c“*l oy eocn72 ...oe.

By inspection, we verify that we cannot increase any coefficient of these polynomials
without changing their graphs. Therefore, they are closed.

We remark that some polynomials considered in this enumeration do not belong to
P(SY). For exanple, itis the case ofc © e)?(c & €). Some other polynomials have
their coefftients inS* and do not seem to lmng to the class tht we stidy here, but
they haveother representatives fA(S"). For example, we have

(coecpe=cpecoe=c?oe.

Any closed polnomial can be factored. If P is closd, let p denote its maximum
repreentdive. Its coefficientss; = p(n — i) p(n — i + 1) are nonincreasing with
i in modulus. Indeed, if that were not the case, there would &xastd k suchthat
IGi_k| > |Gi+1] > |Gi|. Then it would be possible to increag®_; while preerving the
inequalitiesc,_k| > |c+1] > |G|. Because this operation would not change the graph
of P, we would have mntradictedthe maximality ofp.

Now, if the|ci| arestrictly decreasing with, we diredly verify by expansion that
p©) = Q;(c ® c). If the ¢ are smply nonincreasing, we will only examine the
particular case when theg have their modulus equal ® There ae four subcases:
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1. p(e) Y ¢ andp(ce) ¥ «;
2. P(e) ¥ e andp(ee) V ¢;
3. p(e) Ve andp(ee) Y ¢;
4. p(e) Ve andp(ce) V e.
The first case can appear onlynifs evenand
po=c"ec"’e---ae,

which mntradicts the fact the are nonincreasing. The other cases correspond to a
factorization studied in the first part of the proof. [ |

Corollary 3.90 A sufficient condition for p € P(SY) to be closed is that [p| has dis-
tinct corners.

Example 3.91
e C?> @ eis always positive and therefore cannot be factored;
e (2@ cd eis cloed and can be factored info @ e);

e (yoOy®el=(yde(yoe?=y3aey?eey ®eisamaximum
representative of a closed polynomial;

e y3@e'y? @ ey @ eisnota maximum representative of a closed polynorsial.

In the fdlowing theorem the form of the inverse function &f, which isa set-
valued m@ping, is made precise.

Theorem 3.92 The set 71 (P), with P € P(SY), admitsthe minimum element p*
SY[y] and the maximum element p* e S[y] which satisfy

p<F P < p%
p’, p* € FH(P);
P’ = 1pl;

|p*| = | pl*.

Proof The pioof follows from the epimorphism property @f— |p|, from the corre-
sponding result iRyax and from the previous result on closed polynomial functions.
[

Example 3.93 Forp = @ lc@ ewe havep” = p* = y?@ 1y de Forp =
c? @ (—1)c @ ewe havep® = y2 @ e, but pf does not exist in this case. [
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3.7 Asymptotic Behavior of A

In this section we prove a max-plus algebra analogue of the Perron-Frobenius theorem,
that is, we study the asymptobehavior of the mapping — AX, whereAis ann x n
matrix with entries inRyax. We can restrict ourselves to the case wigdi\) contains
at least a circuit since, otherwisg,is nilpotent, that isA¢ = ¢ for k sufficiertly large.

We suppose that the maximum cycle mean is equad.tdf this is not thecase,
the matrixA is normalizedby dividing all its entries by the maximum cycle mean
Then the behavior ohie general recurrent equation is easily derived from the formula
A = AX(A~LA)X. Therefore, in this section all circuits have nonpositive weights and
some dohave a weight equal te = 0 which isalso the maximum cycle mean. We
recall that, in this situatiore is the maximurnreigenalueof A (see Remark 3.24).

3.7.1 Critical Graph of a Matrix A

Definition 3.94 For an n x n normalized matrix A, the following notionsare defined:

Critical circuit: a circuit ¢ of the precedence graph G(A) is called critical if it has
maximumweight, that is, |¢ |y = €.

Critical graph: the critical graph G°(A) consists of those nodes and arcs of G(A)
which belong to a critical circuit of G(A). Its nodes constitute the set V°.

Saturation graph: given an eigenvector y associated with the eigenvalue e, the sat-
uration graph S(A, y) consists of those nodes and arcs of G(A) such that
Aijyj =Y for somei and j withy;, yj # .

Cyclicity of a graph: the cyclicity of a m.s.c.s. is the gcd (greatest common divisor)
of the lengths of all itscircuits. The cyclicity c(G) of a graph G isthelcm (least
common multiple) of the cyclicities of all itsm.s.c.s!s.

Example 3.95 Consider the matrix

e e g &

-1 -2 e ¢

A= e =1 -1 e
& & e e

e Its precedence grapfi(A) has three critial circuits{1}, {3, 4},{4}.

e Its aitical graph is the precedence graph of the matrix

m ™ M @
m M M M
D ™ ™ ™
® D ®™®
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e Matrix A has the eigenvectqre -1 -2 -2 ) associated with the eigen-
valuee. The corresponding saturation graph is thegedence graph of the ma-

trix
e e & ¢
-1 g & ¢
S=
e =1 ¢ e
& E e e

e The cyclicity of the critical graph is 1. Indeed, the critical graph has two m.s.c.s.’s
with nodes{1} and{3, 4}, resgectively. The second one has two critical circuits,
{4} and{3, 4}, of length 1 and 2, &spectively. The cyclity of the firda m.sc.s.
is 1, the cyclicity of the second m.s.c.s. is ¢t®) = 1. Therefore the cyclicity
of G°(A) islem(1, 1) = 1. []

Let us gve now some simple results about these graphs which will be useful in the
following subsections.

Theorem 3.96 Every circuit of G°(A) iscritical.

Proof If this were not thease, we could find a circujt, composed of subpattis of
critical circuitsy;, with a weightdifferentfrom e. If this circuit had a weght greater
thane, it would contradict the assumption that the maximum circuit weigh @%)
is e. If the waght of ¢ were less thane, the crcuit ¢’ composedf the union of the
complements of; in ¥ would be a circuit of weight greater tharand this vould also
be a contradiction. [

Corollary 3.97 Given a pair of nodes (i, j) in G°(A), all paths connectingi to j in
G®(A) have the same weight.

Proof If there exists a patlp fromi to j in G°(A), it can be complied by a pathp’
from j toi also inG®(A) to form a critical circuit. If there exists another pathi from
i to j in G°(A), the oncatenations op and p’ on the one hand, and g’ and p’ on
the other hand, form two critical circuits with the same weight. Hepead p” must
have the same weight. [ |

Theorem 3.98 For each node in a saturation graph, there exists a circuit upstreamin
this graph. The circuits of any saturation graph belong to G¢(A).

Proof Indeed, ifi is one of its nodes, there exists another nggdeipstreamwith
resgect toi, such haty, = Ajy;; vi, y; # €. The sameeasonng shows that there
exists another node upstream with respectjtoetc. Because the number obdes of
S(A,y) is finite, the pathi, j, ...) obtained by this construction contains a circuit. A
circuit (i, i1, ... , ik, ip) Of a saturation grap§ (A, y) sdisfies

Yio = AsioYio » - > Yio = A Vi -

The multiplication of all these equalities shows that the weight of the circuit
(,i1,..., Ik 1) ise []
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Example 3.99 In Example 3.95, node 2 has the critical circuit (indeed a Iodp)
upstream. [

3.7.2 Eigenspace Associated with the Maximum Eigenvalue

In this subsection we describe the s eigervectors of matrixA associated with the
eigenvaluee. Clealy, this set is a moduloid. We characterize a nonredundant set of
generators of this moduloid as a subset of the colummstof

Here the word ‘eigenvector’ must be understood as ‘eigenvector assotiated
with the eigenvalue’. We will use the notationﬁ\i”j for (AP);; and A} for
(AN)ij.

Theorem 3.1001f y is an eigenvector of A, itisalso an eigenvector of A™. Itisthe
linear combination of the columns AT, i € V°. More precisdly,

y=E Al (3.27)
ieye

Proof The first pat of the theoremd trivial. Let usprove Formula (3.27). Consider
two nodesi andj in the same m.s.c.s. of the saturation gr&gi, y). There eists a
path(,iy, ..., ik, j) which sdisfies

Yio =AuiYi o s Y =AY -
Thereforey; = wy; with
w = Aji. - Aui < A
and we have
ATy = Afwy < ATATY < ATy . WL (3.28)

We oould have chosenin a drcuit of the saturation graph according to Theorem 3.98.
Thisi will be calledi(j) in the following. We have

o= @ Aﬁ)’j (by definition of S(A, y)
jeS(Ay)

= @ Al Yic (by (3.28))
jeS(Ay)

IA

LR

ieye

where thelast inequality stems from the fact thdi ), belonging to a circuit of a sat-
uration graph, belongs also & by Theaem 3.98. The reverseinequality is derived
immediately from the fact thatis aneigenectorof At. [ |
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Theorem 3.101 Given a matrix A with maximum circuit weight e, any eigenvector
associated with the eigenvalue e is obtained by a linear combination of N columns of
A", where N§ denotes the number of m.s.c.s’s of G¢(A). More precisely we have

1. thecolumns A}, i € V°, are eigenvectors;

2. if nodesi and j belong to the same mscs. of G°(A) , then AT and A are
‘proportional’;

3. no A} can be expressed as a linear combination of columns Aj which only
makes use of nodes | belonging to m.s.c.s’s of G°(A) distinct from[i].

Proof The first sttementhas already been proved in Theorem 3.23. Consider now the
second statement: sing&" A" < A" and A} A} = e, if nodes and | belong to the
same m.s.c.s. @°(A), herce to the same critical cinit by Theorem 3.96, we have

ATAT = AT = ATATAL < ATAT L W

which shows that
AﬁjAﬁ = Aﬁ , vl .

This resilt, together with (R7), show thalNg columns ofA* are suffigent to geerate
all eigenvectors.

The third statement of the theorem claims that we cannot further reduce this num-
ber of columns. Otherwise, one column Af, sayi, could be expressed as a linear
combindion of other columns ofA* sekcted in other m.s.c.s.'s 6F(A). Let K de-
note the set of columns invadd inthis linear combination. Then, construct a matrix
B as follows. Let] = K U {i}. Matrix B is obtained fromA™ by delding all rows and
columns vith indices oubf J. By construction By = e, Vk, and the weights of all cir-
cuits of G(B) are less thaor equal toe. Thelinear combination of the columns &*
is preserved when restrictirthis @mbination to matrixB. Owingto the multilinear-
ity and antisymmetry of the determinant, and to the decomposition of any permutation
into circular pemutations, deB = €*. Since@), B = &, there must eist another
permutations suchthat@), B« = e. Staed differently, there must exist a critical
circuit connecting some m.c.s.’s 0fG¢(A) and this yiéds a ©ntradiction. [ |

Example 3.102If we return to Example 3.95matiix A" is equal to

e e ¢ ¢
-1 -1 ¢ ¢
-2 -1 e e
-2 -1 e e

Nodes 1, 3, 4 belong tg°(A) which hastwo m.sc.s’s, namely{1} and {3,4}.
Columns 1 and 3 are independent eigenvectors. Column 4 is equal to columnis.
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3.7.3 Spectral Projector

In this subsection we build the spectral projector on the eigenspace (invariant modu-
loid) associated with the eigenvalee

Definition 3.103 (Spectraproj ector) A matrix Q satisfying AQ = QA = Q?is
called a spectral projector of A associated with the eigenvaluee.

Theorem 3.104 The matrices

QLAA, i€V, (3.29)

are spectral projectorsof A.

Proof The piopertiesAQ; = Q; A = Q; follow from the fact that the columnaT, i e
V¢, are eigenvectors oA (from which we deduce by transposition that the row#\bf
suchthat At = e are left eigenvectors). Let us prove ti@t = Q;, that is,

ATAT =D ATAAIAT -
k

This relation is true becaud; = eimplies@®, AL A; = e. |
Theorem 3.105 The matrix Q gef @Dicyc Qi, where the matrices Q; are defined by
(3.29), isa spectral projector.

Proof The only nontrivial fact to prove is tha®? = Q. This rektion will be proved if

we pove thatQ; Q; < Q; @ Q;. This lag inequdity is true because it means that the
greatest weight of the paths connecting a pair of nodes and traveéraimdg)j is less
thanthe maximum weight of the paths connecting the same pair of nodes and traversing
eitheri or j. [ |

Example 3.106 Continuing with Example 3.95, we obtain two elementary spectral
projectors:

e e e ¢ ¢
-1 -1 -1 ¢ ¢
Q= s |(eece)=| 5 5, |
-2 -2 -2 & ¢
& & & I &
& & & & &
Q=1 ¢ (-2 -1 ee)= 2 -1 e e |’
e -2 -1 e e
e e g ¢
-1 -1 ¢ ¢
Q = Ql () Q2 = -2 —1 e e
-2 -1 e e
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3.7.4 Convergence oA with k

In this subsection we give a necessary and sufficient condition for the convergence of
the powers bmatrix A. To achievethis goal, we equifRnax with the topology: when
n — 409,

Xn —> X & [Xn — X|e d=ef|exp(xn) —exp(x)] - 0 .

The purpose of this topology is to simplify the study of the convergence towards
Indeed, because exp = e, limy|xn — ¢le = 0 andlim, |Xx;, — ¢le = O imply that
limy, [xn — X/,|e = 0. This property, which is not trueith respect to the usual absolute
value inR, is us€ful for the asymptotic cyclicity notion that we will introduce later on.
We firstrecall the following result on the dphantine linear equation (see [33]).

Lemma 3.107 For all p and n which are coprime and for all g > (p — 1)(n — 1),
there exist two integersa(q) and b(q) such that g = a(q) p + b(q)n.

Theorem 3.108 A necessary and sufficient condition to have limy_, ., AX = Q isthat
the cyclicity-see Definition 3.94-of each m.s.c.s. of G¢(A) isequal to 1.

Proof Let us prove the sufficient condition first. Consider a nada G°(A). For any
other nodej, there eists a path froni to j of maximum weight (possibly equal t9).
If there happens to be more than one such path, we take the one with the least length
and call this lengthp(i, j) which is less tham — 1 if Ais ann x n matiix. If the
maximum veight ise, we onsider that the length is equal to 1. By Lemma 3.107 and
the assumption on cyclicity, there exists some intdgér) such that, for allm greater
than M (i), there exits a critical cirait of lengthmin [ilgeca) (the m.sc.s. of GE(A)
to whichi belongs). Therefore,dzause the maximum weight of the circuitejsany
maximum-weght path from to j of lengthq greater tharM (i) + p is conposed of a
critical circuit of lengthg — p traversing and a maximum-wight path fromi to j (of
any lengh). ThereforeA?i = Aﬁ for all g greater tharp + M(i) and thsholds for all
i in GS(A). SinceAl = e, we also haved, = AT, Al

Consider now another nodlevhich does not belong tg°(A). Leti be a node in
G°(A), let g be large enough and lgt < n be suchthat Aip = Al (such ap exigs
because circuits have weights less tieaherce the lendts of maximum-weight paths
between any two nodes do not need toeedn). We have

A= ATPAT = ALAT

where the inequality is a consequence of the matrix produtjn, whereas the qual-
ity arises from the prewaius part of the proof and from the property pf If we have
a drict inequality, it means that the paths with maximum weight frprro | do not
traverse, and shce this is true for any in G°(A), thesepaths do not traversg®(A).
On the aher hand, forq large enough, they must traverse some circuits which therefore
have a strictly negative weight. Whenincreases, these paths have weights arbitrarily
close toe. Findlly, this situation is possible only if there is no noded5t{ A) located
downstream of in G(A). In thiscaseA; = ¢ for alli in G°(A) and theefore

lim Al =e =P ATAT .

—>00
a ieye
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By collecting all the above results, we have proved that

lim Al = ALAT . Villeg®A .

—00
d ieye

Conversely, suppose that the above limit property holds true and that at the same
time the cyclicity ofG°(A) is strictly greater than 1. Let us consider a nade G¢(A)
(herce At = €). We have

exp(A) = expe) = exp(A ) + 4y

wheren can be arbitrarily small because of the assumed limit. gmdﬂ = ’1
for 0 < p < n (agan because circuits haveonpositive weights). Therefor !ﬁx‘”

canassume vauesout of a finite set. From the relation above, it should be clear that

kxd+1 _ e This means thathere exiss a circuit of lengttk x d + 1. But the gcd of

kd andk x d + 1 is 1, which is a ontradiction. []

Theorem 3.109 Suppose that G(A) is strongly connected. Then there existsa K such
that

vk>K , A=Q,
if and only if the cyclicity of each m.s.c.s. of G°(A) isequal to 1.

Proof The poof is similar to the previous one. The only difference lies in the second
part of the ‘if’ part. Under the assumption th@tA) is strongly connected, a path
of maximum weight froml to j with length large enougheatessarilycrossesGe(A).
Therefore, foiq large enough we have

A?| = Aﬁ +| ’
wherei belongs taG°(A). []
Example 3.110

e Using Exampe 395 once more, we have

e e ¢ ¢

-1 -1 ¢ ¢

2 _

A= -2 -2 e e |’

e -1 e e
e e ¢ ¢
-1 -1 ¢ ¢
A=A = -2 -1 e e
-2 -1 e e

ThereforeA", n > 3, is equal toQ1 ® Q2 given in Example 3.106.
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¢ In the previousexample the periodic regime is reached after a finite number of

steps. This is true for the submatrix associated with the nodes of the critical
graph but itis not true in general for the complete matrix. To show this, take the

example
-1 ¢
A_< ! e).

e In the previous example there is an entry which goes.tdNhen allentiies

converge to a finite number, the periodic regime can be reached also, but the

time neeced may be abitrarily long. Consider the matrix

A= ( -n -1 )
e e
The matrix A* converges to the matrix
-1 -1
e e
if  is a small positivanumber. But we have to wait for a power of ordenio
reach the asymptote. [ |

3.7.5 Cyclic Matrices

In this subsection we use the previous theorem to describe the general behavior of the

successive powers of matriwhich tums out to be esséally cyclic.
Definition 3.111

Cyclicity of a matrix: amatrix Aissaidto be cyclicif thereexist d and M such that
vm > M, A™d = A", Theleast such d is called the cyclicity of matrix A and
Aissaid to be d-cyclic.

Asymptotic cyclicity: a matrix A is said to be asymptotically cyclic if there ex-
ists d such that, for all > 0, there exists M such that, for all m > M,
sup; |(Am+d)ij —(A™)ijle < n. Theleast such d iscalled theasymptotic cyclicity
of matrix A and A issaid to be d-asymptotically cyclic.

Theorem 3.112 Any matrix isasymptotically cyclic. The asymptotic cyclicity d of ma-
trix Aisegual tothecyclicity p of G°(A). Moreover if G(A) and G(A?) are connected,
the matrixis p-cyclic.

Proof This result has already been proved in the gase 1. For anymatiix A, if
we onsiderB = A?, then he asympoticydicity p’ of B is equal to 1. Indeed, the
nodes of the critical graph d8 are a sibset ofG°(A), and aroundeach suchode

there «ists a loop. The ecessary and suffigié conditions of convergence of the
powers of a matrix can be applied By (see Theorems 3.108 and 3.109). They show
the convergeee (pasibly in a firite nunber of stages) oBK = A to the spectral
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projector Q associated wittB. Because anyn canbewrittenh + k x p, A" =
AMtk<p — AhBK converges té\" Q whenk goes to infinity. This is equivalent to saying
that matrix A is d-asymptaically-cyclic (ord-cydic in the case of finite convergence),
withd < p.

Let us pove thatthe asymptotic cyclicityd of marix A is greater than or equal to
o (herce itis equal top). The proof when the matrix isot only asympttically cyclic
but cyclic is similar. Consider a node of the m.s.d.s= [i]ge(a) Of G°(A) and letp
denoteits cyclicity. By definition ofd, we have

exp( kix‘") = exp(e) = exp( !‘ix‘”d) +7,
for n arbitraily small and fork large enough. Therefor kix‘" = kix‘" *¢ and there is
a circut of lengthd in the m.sc.s.l of G°(A). Therdore p dividesd. But this is true
for all m.sc.s.’s of G°(A) and theefored is divided by the Icm of all they which isp.

[
Example 3.113 The matrix
-1 ¢ ¢
A= e & e
e ¢
has cyclicity 2. Indeed,
-2n ¢ ¢ —2n+1) ¢ ¢
A2 — e e ¢ |, AL g € e
e &£ € e e ¢
[

3.8 Notes

The max-plus lebra is a special case of a more general structure which is called a dioid struc-
ture. This is he topic of the next chapter. Nevertheless the max-plus algebra, and the algebras of
vector objects built up on it, are important examples of dioids for this book because they are per-
fectly tailored to describe synchronization mechanisms. They were also used to compute paths
of maximum length in a graph in operations research. This is why they are sometimes called
‘path dgebrd [67].

Linear systems of equations inettmax-plus lebra were systematically studied in [49].
Some other very interesting references on this topic are [67], [130]. In these references the
Gauss elimination algorithm can be found. It was not discussed here. Linear dependence has
been studied in [49], [65], [93], [126] and [62]. Several points of view exist but none of them is
compleely satisfactory. Moreover the geometry of linear manifolds in the max-plus algebra is
not well understood (on this aspect, see [126]).

The only paper that we know on a systematic study of polynomial and rational functions in
the max-plus algebra is [51]. In this papmte can find some results on rational functions not
detailed in this book.
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The symmetrization of the max-plus algebra was discussed earlier in [109] and [110]. The
presentation given here is based on these references. This symmetrization is more deeply studied
in [62]. Reference [65] has been an important source of ideas even though symmetrization has
been avoided in this paper. The proof of the Cramer formula is mainly due to S. Gaubert and
M. Akian. Relevanteferences are [118], [124], [93].

The attempt made here to discuss polynomial$ is new. It ®uld give a new insight into
the egenvalue problem. Because of the lack of space this discussion has not been continued
here.

The section on the max-plus Perron-Frobenius theorem is a new version of the report [37].
The proof is mainly due to M. Viot. Some other relevant references are [64], [49], [127].



Chapter 4
Dioids

4.1 Introduction

In previous chapters, the s&tU {—oo} (respedtely R U {+o0}) endowed vith the

max (respecively the min) opaation as addition and the usual addition as multipli-
cation has appeared as a suitable algebraic structure for obtaining ‘linear’ models of
some discrete event systenia Chapter 5 it will be shown that another slightly more
complex $ructure is also appropriaterfthe sameelass of systems.

All these abebraic structures share some common features that will be studied
in the present chapter. However, theseyet nouniversal name nor a definite set of
axiomsewverybody agrees upon in this general field. We refer the reader to the notes at
the end of this chapter where some related works are briefly discussed. Here we adopt
the following point of view: we introduce a first ‘minimal’ set of axionagcording
to what seems to be the intersection of axioms generally retained in the works alluded
to above, and also according to what seems to be appropriate for the linear system
theory wearegoing to develop in Chapter 5. Starting from this minimal set of axioms,
we derive some basic results. To obtain further results we may need to introduce some
additional assumptions or properties, which we do only when necessary: itis then clear
where this dded structte is really needed.

We use he word ‘dioid’ as the generic name for the algebraic structure studied in
this chapter. The linguistic roots of this name and its introduction in the literature are
discussed in the notes section.

Dioids are structurehatlie somewhere dtween conventional linear algebra and
samilattices endowed with an internal operation generally called multiplication. With
the former, it shares combinatorial properties such as associativity and commutativity
of addition, associativity of multiplication, distributivity of multiplication with respect
to addition, and of course the existence of zero and identity elements. With the latter,
it sharesthe feaures of an ordered structure (adding is then simply taking the upper
bound) endowed with another ‘compatible’ operation. Therefore one may expect that
the results of linear algebrahich depend only on combinatorial properties will gen-
erdize to dioids. A typical case is the Cayley-Hamilton theorem. On the other hand,
since neither addition nor multiplication are invertible in general dioids (in this respect
the max-plus algebra ispecial since the stoture associated with is a group), one
appeak to theclassical theory of residuation in lattice structures to provide alternative

153
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notions of inversion of the basic operations and of other order-preserving mappings.
This yields a way to ‘solve’ some equations in a certain sense related to the order
structure evenfithere isno soldion in a more chssical sense.

A sedion of this chapter is devoted to rational calculus, in the sense in which this
expression is used in automata and formal languages theory. The motivation in terms
of system theory and especially in terms of realization theory should be clear and this
will be illustrated by Chapter 5. However, the problemnafiimal realization is yet
unsolved in the present framework (see also Chapters 6 and 9).

In this chapter we will also be interested in constructing more elaborate dioids
from given basic dioids. This is generally done by considering the quotient of simple
dioids by certain ‘congruences’ (equivalence relations which are compatible with the
original dioid structure). Particular congruences will be considered for their usefulness
regarding the developments in Chapter 5.aAmotivaion, the readr may think of this
guotient operation yiding a ‘coarser’ dioid as a way to ‘filter’ elements of the original
dioid that are ‘undesirable’ for the system theory one is concerned with. For example,
if trajectories of disrete event systems are the basic objects, one is often interested
in nondecreasing trajecories whereas the basic dioid may also contain nonmonotonic
trajeciories. Nonmonotonic trajectories are then mapped to nondecreasing ones in a
canonical way by special congruences.

4.2 Basic Definitions and Examples

42.1 Axiomatics

Definition 4.1 (Dioid) A dioidisa set D endowed with two operations denoted & and
® (called ‘sum’ or ‘addition’, and ‘ product’ or ‘multiplication’) obeying the following
axioms:

Axiom 4.2 (Associativity of addition)
Va,b,ce D, (@obdc=adbaoc) .
Axiom 4.3 (Commutativity of addition)
Va,beD , ad®b=Dboa.
Axiom 4.4 (Associativity of multiplication)
Va,b,ce D, @®bc=a®bec) .
Axiom 4.5 (Distributivity of multiplication with respect to addition)

Va,b,ce D, @dbc=@cdbec),
cR@db)=cradcxb .

Thisisright, respectively left, distributivity of product with respect to sum. One state-
ment does not follow from the other since multiplicationis not assumed to be commu-
tative
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Axiom 4.6 (Existence of a zero element)

deeD:YaeD, ade=a.
Axiom 4.7 (Absorbing zero e ement)

VaeD, aQe=¢Qa=c¢ .
Axiom 4.8 (Existence of an identity element)

deeD:VaeD, a®@e=e®@a=a .
Axiom 4.9 (Idempotency of addition)
VaeD, ada=a.

Definition 4.10 (Commutative dioid) A dioid is commutaive if multiplication is
commutative.

Most of the time, the symbol ®’ is amitted as is the case in conventional
algebra. Maeover,ak, k € N, will of course denota ® - - - ® a anda’ = e.
——

k times

With the naticeable exception of Axiom 4.9, most of the axioms of dioids are required
for rings too. Indeed, Axiom 4.9 is the most distinguishing feature of dioidgsaBse

of this axiom, addition cannot be cancellative, thakish b = a @ ¢ does not imply

b = cin general, for otherwis® would be reduced te (see Tleorem 3.62). In fact,
Axiom 4.9 is at the bags of the introduction of an order relation; as mentioned in the
introduction, this is the other aspect of digjtiseir lattice structure. This aspect is dealt
with in §4.3.

Multiplication is not recessarily cancellative either (of course, because of Ax-
iom 4.7, cancellation would anyway gnbpply to elemers different frome). We
refer the reader to Example 4.15 below. A weaker requirement would be that the dioid
be ‘entire’.

Definition 4.11 (Entire dioid) Adioidisertireif
ab=¢=a=corb=¢ .

If a # ¢, b # ¢, andab = ¢, thena andb are calledzero divisors. Herce, an entire
dioid is a dioid which does not contain zero divisors. Not every dioid is entire (see
Exanple 4.81 below). If multiplication is cancellative, the dioid is entire. As a matter
of fact,ab = ¢ = ab =as = b = ¢ if a # ¢ by cancelléion of a.

4.2.2 Some Examples

For the fdlowing exanples of dioids, we let the reader check the axioms and define
whate ande should be. All of them are commutative dioids.
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Example 4.12 The first example of a dioid encountered in this book Ras {—oc}
with max as® and+ as®. It wasdenotedRax. []

Example 4.13 (R U {+o¢}, min, +) is another dioid which is isomorphic—this termi-
nology is precisely defined later on—to the previous one by the compatible bijection:
X — —X. It will be denotedR min. [ ]

Example 4.14 Using the bijedion x — exp(x), R U {—oc} is mgped ontdR*. For
this bijection to preserve the dioid structureRyax, one has to defin® in R as max
again andg as x (the conventional product). This yields the digiit, max, x). =

Example 4.15 Consider the seR U {—oo} U {+o00} and defined as max and® as
min. [ |

Example 4.16 In the previous example, replace the set{Byl} and keep the same
operations: this is the Boole algebra and also the unique dioid (up to an isomorphism)
redwed tole, €}. [ |

Example 4.17 Let 2% denote the set of all subsets of thé plane, includingz and
the wholeR? itself. Then defined asu and® as+, that is, the Vector sun’ of subsets

VABCR?, A®@B=A+B={xeR*|x=y+zyecAzeB} .

Example 4.18 A similar example in dimension 1 is praed byconsidering the subset

of 2% consisting only of halfines infinite to the left, that is, intervals-oo, x] for all

X € R, including@ but notR itself, with againU as® and+ as®. Obseve that

this subset of half-lines is closed—see below—for these two operations. This dioid is
isomorphic toRmax by the bjectionx € R+ (—o00,x] e 2 ande = —co > @. =

In all the examples above, except Examples 4.15 and & 1dduces a group struc-
ture onD \ {¢} (D minuse¢). Thisimplies of course thap is cancellative. Obviously
® is not cancellative in Example 4.15. Thssalso true for Exaple 417: this fact
follows from Theorem 4.35 below. Hower, inboth cags the @bid is entire.

4.2.3 Subdioids
Definition 4.19 (Subdioid) A subset C of a dioidis called a subdioidof D if
e ccCandecC;

e Cisclosed for @ and ®.

The second statement means tatb € C,a® b € Canda® b € C. We enphasize
the first conditbn. For example, the dioid in Example 4.16 (Boole algebrajotsa
subdioid of the one in Example 4.15. The diql U {—o0}, max, +) is a subdioid
Of Rmax.
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4.2.4 Homomorphisms, Isomorphisms and Congruences

Most of the material in this subsection is ety specific tothe dioid structure and can
be found in elementary textbooks on algebra. Here, we reconsider this material in the
framework of dioids.

Definition 4.20 (Homomorphism) A mapping IT fromadioid D into another dioid C
isa homomorphisnif

VYa,be D , N@aeb)=I@aeIb and II(e) =¢ , (4.1)
[MN@a®hb)=I@ b)) and II(e) =ce . (4.2)
Of course the operations and neutral elements on the left-hand (respectively right-hand)
side arethose ofD (respedtely C). If IT is surgctive, it is clear that the former part of
(4.1) (respectively (4.2)) implies the latter part which is thus redundant.

A mapping having only property (4.1) will be called &-morphism’, and a map-
ping having property (4.2) will be called ‘@-morphism’.

Definition 4.21 (Isoma phism) A mapping IT from a dioid D into another dioid C is
an isomorphismif I~ isdefined over C and IT and IT1~* are homomorphisms,

Lemma 4.22 If 1 isa homomorphismfromD to C and if itisa bijection, thenitisan
isomor phism.

Proof It suffices to prove thafl—! sdisfies (41)—(4.2). Applying (4.1) toa =
MM—%(x),x e Candb = IT~%(y), y € C, we get

nNMmtweny)=0('x) el y)=xay,

and theefore
ntoeniy=0"'xay) .

Also
ME) == e =) ,

which proves thaflI~! is a®-morphism. The same reasoning can be applied to (4.2).
[

Definition 4.23 (Congruence)A congruencean a dioid D is an equivalence relation
(denoted =) in D which iscompatiblewith & and ®, that is,

Va,b,ce D, a=b=a®dc=bdc,
and the same for ®.

Lemma 4.24 The quotient of D by a congruence (that is, the set of equivalence
classes) isa dioid for the addition and multiplicationinduced by those of D.
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Proof The main diffialty here is to show howp and® can beproperly defined in the
guotient. Let f] denote the equivalence class@fib € [a] © b = a & [b] = [a]).
Then define &] @ [b] by [a @ b]. This definition is correct bcause ifa’ € [a] and

b’ € [b], then [@’ & b'] = [a & b] from the compatibility of = with &, that is, p & b]

only depends ond] and [b], not on particular representatives of these classes. The
same onsiderations apply t® too. [ |

Example 4.25 One gecial instance of a congruence is the following. [kte a
homomorphism from a dioi® to another dioidC. We can define an quivalence
relaion in D as fdlows:

Va,beD, ambew M@ =Ib) . (4.3)

Corollary 4.26 If IT is a homomorphism, 2 isa congruence. Therefore, the quotient
set denoted D/ IT isadioid; it isisomorphicto IT(D).

The pioof is straightforward. Of cours®/IT is isomophic to D if I is injective.

4.3 Lattice Properties of Dioids

4.3.1 Basic Notions in Lattice Theory

Hereater, we list a few basic notions from lattice theory, the main purpose being to
make our vocabulary more precise, especially when there are some variations with
respect to other authors. The interestedder may refer to [22] or [57]. In a set, we
adopt the following definitions.

Order rel ation: a binary elation denoted>) which is refleive, transitve and ati-
symmetic.

Total (partial) order: the order istotal if for each pair of element&, b), theorder
relaion holds true either fofa, b) or for (b, a), or otherwisestaed, ifa andb
are always ‘comparable’; otherwise, the ordepastial.

Ordered set: a setendowed with an order relation; it is sometimes useful to represent
an ordered set by an undirected graph the nodes of which are the elements of
the st two nodes are connected by an arc if the corresponding elements are
comparable, the greater oheing higher in the diagram; the minimal number of
arcs is represented, the other possiblegansons being derived by transitivity.
Figure 4.1 below gives an example of such a graph callétbase diagram'.

Chain: atotdly ordered set; its Hasse diagram is ‘linear’.
Please notehtat the following elements do not necessarily exist.

Top element (of ax ordered set): an element which is greater than any other element
of the set (elsewhere also called ‘universal’).
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Bottom element (of an ordered set):similar definition (elsewhere also called ‘zero’,
but we keepthis terminology for the neutral element of addition, although, as it
will be seen hereafter, both notions coincide in a dioid).

Maximum element (of a subset): an elemenbf the subset which is geater than any
other element of the subset; if it exists, it is unique; it coincides with the top
element if the subset Ejual to the whole set.

Minimum element (of a subset): similar definition.

Maximal element (of a subset): an elemenbf the subset which isnot lessthanany
other element of the subset; Figure 4.1 shows the difference between a maximum
and a maximal elementf ihe aubset has a maximum element, it is the unique
maximal element.

Majorant (of a subset): an elementnot necessarily belonging to the subset which
is greater than any other element of the subset (elsewhere also called ‘upper
bound’ but we keep this terminology for a notion introduced below); if a majo-
rant belongsto the subset, it is the maximum el ement.

Minorant (of a subset): similar definition (el sewhere also called ‘lower bound’, but
we reserve thisfor a more specific notion).

Upper bound (of a subset): the least majorant, that is, the minimum element of the
subset of majorants (elsewhere, when ‘majorant’ is called ‘upper bound’, this
notioniscalled ‘least upper bound’).

Lower bound (of a subset): similar definition (el sewhere also called ‘ greatest lower

bound’).
i --- Top elemen
Masimamm =
element of | __{Majorants of subsets
subset@@® | - J. and

Maximal
--lelements of
subset

Figure 4.1: Top, maximum, majorants and maximal elements

The following items introduce more specific ordered sets and mappings between these
sets.
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Sup-semilattice: anordered set such that there exists an upper bounelfchn pair of
elements.

Inf-semilattice: similar definition.
Lattice: an odered set which is both a sup- and an inf-semilattice.

Complete supsenilattice: an ordered set such that there exists an upper bound for
each finite or infinite subset.

Complete inf-semilattice: similar definition.
Complete lattice: obvious definition.

Distributive lattice: let a v b (respedtely, a A b) denote the upper (respectively,
lower) bound ofa andb in a lattice; then the lattice distributiveif

Va,b,c, avbac=(@VvbA(@VoO ;

in fact, as shown in [57, p. 188], if this equality holds true, the same equality
with v andA interchanged atsholds true, and conversely.

Isotone mapping: a mgpingI1 from an ordered séP into an ordered se&t suchthat

Va,be D, a>b=T() >TII(b) .

We condude this brief enumeration (more facts from lattice theory will beatled
later on) by mentioning a fundamental result [57, pp. 175-176].

Theorem 4.27 A compl ete sup-semilattice having a bottom element is a compl ete lat-
tice

Proof LetC bea subsetof a mmplete sup-samilattice D; we must provehat it admits
a lowerbound. Consider the subsEtof minorants ofC. This subset is nonempty since
it contains at least the bottom element. kdbe the upper bound df, which exigs
sinceD is a complete sup-semilatt. Let us check whetherobeys the definition of
the lower bound ofC. First,c itself is belowC (that is, it belongs t& —it is thus the
maximum element of ). As a matter of fact,7 is bounded from above by dll € C
(by defnition). Sincec is less than, or equal to, ewy element greater thah (by
definition of the upper boundg, < b, Vb € C, hercec € 7. Therdore, cis less than,
or equal to, all elements d@fand greater than every other element befhwarnrely the
elements irZ. Herceit is the lower bound ofC. [ |

4.3.2 Order Structure of Dioids

Theorem 4.28 (Oder relation) Inadioid D, one has the following equivalence:

Va,b:a=adbseIc:a=bopc.
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Moreover these equivalent statements define a (partial) order relation denoted > as
follows:

a>bsa=adb.
This order relation is compatiblewith addition, namely
a>b={vwc, adc=bec},
and multiplication, that is,
a>b={vc, ac> bc}

(the same for the left product). Two elements a and b in D always have an upper
bound, namely a @ b, and ¢ isthe bottom element of D.

Proof

e Clearly, ifa = a®b, thendc : a = béc, nanely c = a. Conversely, ifh = bdc,
thenaddingb onboth sdes of this equality yielda®b = b® (béc) = bdc = a.

e The relation> is reflexive @ = a®a from Axiom 4.9), antisymmetricg = a®db
andb = b @ aimpliesa = b), and transitive since

b—bac b=bagc a—adhb }=>{aeac=a}.

{a:a@b} agc=aobec :{a@c=a®b
a=adb

Therefore> is an oder relation.

e The compaibility of > with addition is a straightforward consequence of Ax-
ioms 4.2 and 4.3. The compatibility of multiplication involves Axiom 4.5. The
expression ‘the(left or right) multiplicationis isotone’ is also used for this prop-

erty. But, & will be discissed in§4.4.1, the mapping +— ax is more than
simplyisotone: it is ad-morphism.

e Obviously,a & b is greater thara andb. Moreover, ifc > a andc > b, then
c=c@c>adb. Hercea @ bisthe upper bound o& andb.

e Findly,
(va, a=adsls{va, ax>s},

which means that is the bottom element db. []

Notation 4.29 As usial, we may us@ < b as an equivalent statement for~ a, and
b > a (ora < b) as an guivalent statement fob[> a and b # a]. [ |

The fdlowing lemma deals with the problem afhether he order relation induced by
@ is total or only partial.
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Lemma 4.30 (Total order) The order relation defined in Theorem 4.28 is total if and
only if
Va,be D, a@b=etheraorb.

Proof It is just a matter of rewriting the claim ‘eithar> b orb > a’ using® and the
very definition of >. [ |

Let us revigt the prevbus examples of dioids and discover what is the order relation
associated witkp. It is the conentional ordeof numbers for Examples 4.12, 4.14,
4.15 and 4.16. However, in Example 4.13 it is theersed order: 2> 3 in this diad
since 2= 2@ 3. As for Examples 4.17 and 4.18,is simply 2. All these dioids are
chains except for Example 4.17.

Thearem 4.28 essatially shows that an idempotent additionihinduces a struc-
ture of sup-semilattice ovelP. But we could have done it the other way around: con-
sidering a aup-samilattice, we can define the result of the addition of two elements as
their upper bound; this obviously defines an idempotent addition. The sup-semilattice
has then to be endowed with another operation caledhis multiplication should be
assumed nobnly isotone but also disbutive, except that isotony is sufficient i is
a chain (se€4.4.1). We now present a counterexample to the statement that isotony
of multiplication implies distributivity (and therefore of the statement that isotony of a
mapping would imply that this mapping is@-morphism).

Example 4.31 Consider Example 4.17 again but change addition iastead ofu.
Now A > B meansA C B anditis true thethis implies AQC > B®C or equivalently
A+ C C B+ C. Since® = + is isobne, we do have, as a translation of (4.12),

(BNC)+D < (B+D)N(C+D) (4.4)

(because here is C, not D), but equdity does not hold in general, as shown by the
particulr case:B is the subseteduced to the poirl, 0) € R?, C is similarly reduced
to thepoint (0, 1), whereasD is the square-f1, 1] x [—1, 1]. Clearly, the left-hand
sideof (4.4) is equal tay, wheras the right-handdge is thesquare [Q 1] x [0, 1] (see

Figure 4.2). In conclusior(ZRz, N, +) is not a dioid. [ |

4.3.3 Complete Dioids, Archimedian Dioids

In accordance with the deftion of complete sup-semilattices, we adopt the following
definition.

Definition 4.32 (Complete dioid) A dioid is comgeteif it is closed for infinite sums
and Axiom 4.5 extends to infinite sums.

With the former requirement, the upper bound of any subset is simply the sum of
all its elements. Me latter requirement may be viewed as a property of ‘lower-
semicontinuity’ of multiplication.
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NI CELEE
C+D f
— ——
| | D | | |
Lo - _ A _ __L___l___4

Figure 4.2:+ is not distributive with respect to

In a complete dioid the top element of the dioid, denoteaxists ad is equal to
the sumof all elements irfD. Thetop element is always absorbing for addition since
obviouslyva, T@a = T. Also

TRe=c¢ , (4.5)

because of Axiom 4.7.

If we consider our previous examples again, Examples 4.12, 4.13, 4.14 and 4.18
are not comple dioids, whereas Examples 4.15, 4.16 and 4.17 are.[RrQk to be
complete, we should add the top elemefi = +oo with the rule—oco + 00 = —o0
which is atranslation of (4). This completed dioid is calleRmax andR denotes
R U {—o0} U {+00}. Similarly, the dioid in Example 4.18 is not complete but can be
complded by adding the ‘half-lineR itself to theconsidered set. Heever sonething
is lost when doing this completion since multiplication does not remain cancellative
(see Theorem 4.35 below). Of course, a subdioid of a complete dioid may not be
complde. For eample(Q U {—oo} U {4+00}, max, +) is a subdioid of Rymax Which is
not compete.

Thequestion arises whethdr is in general absorbing for multiplication, that is,

VvaeD, a#e¢, T®a=a@T=T? (46)
Property (4.6) can be proved for ‘Archimedian’ dioids.
Definition 4.33 (Archimedian dioid) A dioidisArchimedianif
Va#e, VYbeD, 3JcanddeD:ac>bandda>b .

Theorem 4.34 In a complete Archimedian dioid, the absorbing property (4.6) holds
true.

Proof We give the proof only for right multiplication byT. From Definition 4.33,
givena, for all b, thereexigs ¢, suchthatac, > b. Onehas that
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aT:a(@b) za(@%):@a%z@b:T :

beD beD beD beD

Among our previous examples, all dioids, except for the one in Example 4.15, are
Archimedan, but only Examples 4.16 and 4.17 correspond to complete dioids for
which (46) holds true. Example 4.15 is a case of a dioid which is complete but not
Archimedian, and4.6) fails to be true.

Theorem 4.35 If adioid is complete, Archimedian, and if it has a cancellative multi-
plication, then it isisomorphic to the Boole algebra.

Proof Since @.6) holds true and sincg is cancellative, itis rdezed that every element
differentfrom ¢ is equal toT. Herce, the dbid is reduced tde, T}. [ |

4.3.4 Lower Bound

Since a compte dioid is a complete sup-semilattice, and since there is also a bottom
elements, the lower bound can be constructed for any subset elements ofD and

the semilattice becomes then a complete lattice (Theorem 4.27)=I{x, vy, z, ...},

its lower bound is denoteat A y A ZA .... In gereral, we use the notatiof . X.

One has the fitlowing equivalences:

a>bsa=adbseb=anab. 4.7)

This operationa is alsoassociative, commutative, idempotent and faas natral
element ' A a = a, Va). The following property, called ‘absorption law’, holds true
[57, p. 184]:

Va,beD , an(@adby=ad@nby=a.

Returning to our examples, the reader should apply the formal construction of the
lower bound ecalled in Theorerd.27 to Example 4.17 (a complete dioid) and prove
that A is simplyn in this case. As for the ber examples, since all of them are chains,
ard even when thedioid is notcomplete, a simpler definition cd A b canbe adopted:
indeed, owing to Lemma 4.30, (4.7) may serve as a definition. Moreover, in the case
of a chain, since a lower bound can be defined anyway, a&sduse there exists a
bottom element, the dioid is acomplete inf-semilattice even if it is not a complete
sup-senilattice.

Equivalences (4.7) maydee the inpression thag and A play synmetic roles in
a omplete doid. This is true from the lattice point of view, but this is not true when
considering the behavior with respect to the other operation of the dioid, nagnely
Since multiplication is isotone, from Lemma 4.42 ij#.4.1 below itfollows that

(aAb)c < (ac) A (bc) (4.8)

(similarly for left multiplication) what we may call ‘subdistributivity’ @b with respect
to A. The same lmma shows thatidtributivity holds true for chains. Butthisis nottrue
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in general for partially-ordered dioids. A counterexample is provided by Example 4.17
(®isU, ® is+andA isN). In Example 4.31 we showed thatis not distributive with
respect ton. There ae, however, isuations in which distributivity of® with respect to

A occurs forcertain elements. Here is such a case.

Lemma 4.36 If a admitsaleft inverse b and aright inverse c, then
e b = candthisuniqueinverseisdenoted a—:;
e moreover, VX, y, a(Xx Ay) = ax A ay.
The same holds true for right multiplication by a, and also for right and left multipli-
cationby a~?.
Proof
e One had = b(ac) = (ba)c = c, proving uniqueness of a right and left inverse.

e Then,Vx, y, defineg andn according taé = ax, n = ay), whichis equivalent
to (x = a~'£, y=a 15). Onehas

Enn=aal¢an<alatralyl=alxAyl<axray=£EAn .

Hence equality holds throughout. [ |

4.3.5 Distributive Dioids

Once the lower bound has been introduced, this raises the issue of the mutual behav-
ior of ® and A. In fact, A is not necessarily distributive with respect@onand ©n-
versely, except agan for chains. The following inequalities are again consequences of
Lemma 442 in§4.4.1 below, and of the fact that— x @ c andx — X A c are isdaone:

@anbyec<@ecAnbac ,

Va,b,ceD , @ebyrc>@rc)d (Ao ,

which means thatp is subdistributivewith respect to\, anda is superdistributive with
respect tod.

As alread/ defined, a lattice is distributive when equality holds true in the two
inequalities above.

Example 4.37 Here is an example of a complete lattice which is not distributive.
Consider all the intervals & (including andR itself) with C as<. The upper bound

@ of any (finite orinfinite) collection of intervals is the smallest interval which contains
the whole collection, that is, it is the cagwhull of the union of all the intervals in the
cdledion. The lower bound is simplyn. Then, considea = [—3, —2], b = [2, 3]
andc = [—1, 1]. We have thata @ b) A c = c, whaeas(aArnc)® (b®dc)=2. =n

The following theorem can be found in [57, p. 207].
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Theorem 4.38 A necessary and sufficient condition for a lattice to be distributive is
that

va.b . {3 _anc = bac

a®@c = baec }=>{a=b} '

In [57]itis also shown that if is a multiplicative ‘lattice-ordered group’, which means
that, in addition to being a group and a lattice, the multiplication is isotone, then

e the multiplication is ecessaily distributive with respect to both the upper and
the lowerbounds @ is called a ‘reticulated group’),

e moreover, the lattice is distributive (that is, upper and lower bounds are distribu-
tive with respecto one another).

Also, one has the remarkable formulee:

@anbyt=aleb?, (4.9)
@by t=atAb?, (4.10)
arnb=a@eb) b, (4.11)

which should remind us of the De Morgan laws in Boolean algebra, and also the sim-
ple formula mirfa, b) = — max(—a, —b). However, ths stuation is far from being
representative for the general case as shown by Examples 4.15 (total order) and 4.17
(partial order). Nevertheless, these examples correspond to ‘distributive dioids’ in the
following sense.

Definition 4.39 (Distributive dioid) A dioid D isdistributiveif it is complete and, for
all subsetsC of D,

(/\c)EBa:/\(CEBa) ,
Vae?D,

ceC ceC

(@c) Aaz@(ma) .

ceC ceC

Notice that here distributivity is required taxtend to infinite subsets. Both properties
should be required now since one does not imply the other in the infinite case [57,
p. 189]. Using the terminology df4.4.1, we may state the preceding defion in

other words by saying that a dioid is distributive if and only if the mappings a A x

andx — a @ x are both continuous for everg. All complete dioids considered so far

are dstributive. Example 4.37 can be extended to provide a nondistributive dioid. It
suffices to define as the ‘sum’ of intervals (convéional arithmetic sum). Of course,

@ istheupper bound as defined in that example (the reader may check the distributivity
of ® with respect tab).



4.4. IsotoneMappings and Residuation 167

Remark 4.40 A distributive dioid may also be considered as a dioid with the two

operation® &' @ and® %' A. But one can also chooge £ A and® L' @. Sgecial

features of these dioid structures are tate < x < € ard tha multiplication is
commutative and idempotent. Examples 4.15 and 4.16 are instances of such mioids.

4.4 Isotone Mappings and Residuation

Most of the material in this section is classical in Lattice Theory. The structure added
by ® in dioids plays virtually no role, exceépf course when the mappings considered
themselves involve multiplication (for example when considering the residual of the
mappingXx — ax). A basic reference is the book by Blyth and Janowitz [24].

4.4.1 Isotony and Continuity of Mappings

We are going to characterize isotone mappings in terms of ‘lower’ and ‘upper sets’.

Definition 4.41 (Lower, upper set) Alower setisa nonempty subset L of D such that
xelLandy<x)=yel .

A closed lower sef(generated by x) is a lower set denoted [<«—, x] of the form
{y |y < x}. Anupper setsa subset U such that

xeUandy>x)=yeU .

A closed upper sefgenerated by x) is an upper set denoted [x, —] of the form
{yly=x}

The names ‘(principal) ideahnd ‘(principal) filter’ are used for ‘(closed) lower set’
ard ‘(closed) upper set’, respectively, in [24].

A closeal lower sé is alower set which contains the upper bound of its elements.
Similarly, a closed upper set is an upper set containing the lower bound of its elements.
For a chain, sayRnax closed lower sds correspond to closed half-lings-oco, x], lower
sds are open or closed half-lines, whereas closed upper sets are of thextyped).
Figure 4.3 gives examples of suchssit a patially-ordered lattice.

Obviously, if IT is a®- or a A-morphism, it is isotone (se€@.3.1). For example,
for everya € D, the mapingXx — ax from D into itself is a®-morphism, hence itis
isotone. But, conversely, ifl is isotone, it is neither necessarilyga nor necessarily a
A-morphism.

Lemma 4.42 Let I1 be a mapping froma dioid D into another dioid C. The following
statements are equivalent:

1. themapping IT isisotone;

2. the ‘pre-image’ TT~1([«, x]) of every closed lower set is a lower set or it is
empty;
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closed lower s€

lowes £
Figure 4.3: Lower setrad closedower set

3. the pre-image IT~%([x, —]) of every closed upper set is an upper set or it is
empty;

4. the mapping IT is a @-supermorphism, that is,
Va,be D, TIl(aeb)>TI@aIllb) ; (4.12)

5. if lower boundsexist in D and C, I isa A-submorphism, that is,

Va,be D, Tl(anb)<TIl(a)All(b) . (4.13)

Proof Suppose thafl is isobne. Leta € I~ ([<«, x]) if this subset is nonempty.
ThenTI(a) < x. Letb < a. ThenII(b) < I1(a), herceIl(b) < x andb € T~ ([«

, X]). Therdore IT~%([<«, x]) is a lower set. Conversely, lbt< a. Since oliously

a e MM~Y([«, M(a)]) and since tIs latter is a lower set by assumption, thebelongs
to this subset. HencH (b) < I1(a) andII isisotone. A similar proof involving upper
setsis left to the reader.

Suppose thafl is isotone. Sincea andb are less tham @ b, thenIl(a) and
I1(b), and thus their upper bourid (a) @ I1(b), are less thar1(a & b) proving (4.12).
Conversdy, letb < a, or gquivaleitly, a = a @ b. Then, under the assumption that
(4.12) holds truell(a) = IM(a@®b) > I1(a)® I[1(b), proving thatl1(b) < I1(a). Thus
IT is isotone. A similar proof involving\ instead ofé® can begiven. [ |

If Disachaina®bis equal to eithea or b, hercell(a®b) is equal to eithefl (a)
or I[1(b), herce toll(a) @ I1(b). That is,IT is a®-morphism inthis case. Similarly, it
is aA-morphism too.

If D andC are complete dioids, it is easy to see that (4.12) (respectively (4.13))
extends tod (respedtely A) operating over infinite subsets Bf.

Definition 4.43 (Continuity) A mapping IT from a complete dioid D into a complete
dioid C is lower-semicontinuous abbreviated as |.s.c. respectively, upper-semicon-
tinuous abbreviated as u.s.c. if, for every (finite or infinite) subset X of D,

1 (@x) =@n(x) ,

xeX xeX
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respectively,
1 (/\x) = /\n(x) .
XeX XeX

The mapping IT is continuousf itisbothl.s.c. and u.s.c.

Of course, a l.s.c. (respeotily an u.s.c.) mapping is@- (respedvely aA-) morphism.
If TT is a@®-morphism, it is isotone and thus it issasubmorphism, but not necessarily
a An-morphism This hasalread/ beenillustrated by Example 4.31.

Tojustify the terminology ‘l.s.c.’, one should consider the examplerafraecreas-
ing mgoping IT from R to itself (because here we are interestedsstone mgppings
between ordered sets), andeck that, in this case, the l@rsemicontiuity in the
previous sense coincides with the conventional notion of lower-semicontinuity (which
requires that liminf_ x I1(x;) > I1(x)). The same observation holds true for upper-
semicotinuity.

Lemma 4.44 One has the following equival ences:
e ITisl.sc,;

e the pre-image IT~1([ <, x]) of every closed lower set isa closedlower set or it
is empty.

Smilarly, the following two statements are equivalent:
e ITisusc,;

e the pre-image IT~1([x, —]) of every closed upper set isa closedupper set or it
is empty.

Proof Weprove the former equivalence only. Suppose ffia |.s.c. In particularitis
isotone and the pre-imag& = IT-%([«, x]) of every closed lower set, if nonempty,
is a lower set. Ifa € X, thenII(a) < x. Thus

n(@a) =@n(a)5x .

acX aecX

Hence the upper bound of belongs taY’: X is closd.

Conversely, suppose that the pre-image of every closed lower set is a closed lower
sd. In paticular, according to Lemma 4.42] is isotone and for every nonempty
subsetY C D, one has that

1 (@x) >Pnx . (4.14)

xeX xeX

On the a¢her hand, it iobvious that

xcnt ([<—, @nw]) .

xeX
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But the latter subset is a closed lower set by assumption, hence it contains the upper
bound of its elements and a fortiori it contains the upper bountl.ofhis imgdies the
reverse inequdity in (4.14). Therefore equality holds true abHis I.s.c. [ |

Example 4.45 Let D = RyaxandC = Npay, letIT : D — C defined by

M:x—>y= P v.

yeC,y<x

where thesymbol < has its usual meaning. Indedd,is the residulbof the mapping
X = x from C into D (not fromD to C!)—see§4.4.2 below. More simplMI(x) is just
the integerpart of the real numbex. Then, IT is a®- and a A-morphism, it is u.s.c.
(this is a consequence of being a residual) but not|.s.c. [ |

Lemma 4.46 The st of |.s.c. mappings from a complete dioid D into itself is a com-
plete dioid when endowed with the following addition & and multiplication &:

0e&d: x +— MIX)®PX)
Nd: x +— I(PX) . (4.15)
Smilarly, the set of u.s.c. mappingsfrom D into D is a compl ete dioid when endowed
with the following addition & and multiplication ®:

Med: x — IIXADNX) ;
Nd: x +— I(PX) . (4.16)
Proof We only prove the former statement. K easy to check thdts.-continuity

is preserved by addition and composition of mappings. The other axioms of dioids
are also easily checked. In particularjs the mapping identically equal to and

€ = |p (identity of D). Distributivity of right multiplication with respect to addition

is straighforward from the very definitions o and ®, whereas left distibutivity
involves the assumption of |.s.-continuity. [ |

Remark 4.47 Observe that site Lemma 46 defines a complete dioid structure for
the set of I.s.cmgopings from a complete dioi® into itself, this dioid of mappings
has a lower bound operation (Theorem 4.27) also denetddowever, in gneral, for
two mapingsIl and ®, (IT A ®)(X) # I1(X) A &(X) since he right-hand side is in
general nota l.s.c. function af [ |

_ N2 _
Example 4.48 ConsiderD = (Rmax) (operations ofD are hose ofRyax Operating

componentwise). Le€ = (EZ, ) ®) for which the underlying set is the same as that
of D and® is also the ame. Bu is defined as follows:

X if (Xg > yp) or(xy = yr andxz > yo) ;

VX.yeR° . xBy=
Y ' Y=1y if cx<ypor(xg=ysandx, <y, .
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The order inD is the usual partial order iR whereasC is totally ordered by the
lexicographic order. Lefl : D — C be simply the canonical bijectian +— x. This

is an isobne mapping sincg < yin D impliesx < yin C. However, his mapping

is neither I.s.c. nor u.s.c. fire 4.4 depicts the shape of a closed lower set generated
by the pointx = (2,3) in C (shaded area). It is a half-plane including the border

[ 3 D B |
| | | | |
| | | | |
Lo |- a1 ______21
| | | | |
| | | | |
| | | | |
P——————A———.———\———J
| | | |
| | | |
| | | |
[ e e e |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
‘ ‘ ‘ ‘

Figure 4.4: A closed lower set for the lexicographic order

for xo < 3 butnot for x, > 3. SinceIl™! is also the canonical bijection in@z, the
pre-image of this closed lower set is itfahd itis not a closed lower set iP: closed
lower sets inD consist ofclosed south-west orthants. Hende is not |.s.c.
This example is also interesting because it shows that an isotone bijEttiaay
have an inverse mappirig—! which isnot isotone. As a matter of fact, < y in C
does notimply the same inequality if® in general. Havever, we leag to thereader
to prove that an isotone bijection fromtatally ordered dioid D onto another dioid
has an isotone inverse and, moreover, if both dioids are complete, the mapping and its
inverse are continuous. [

Lemma 4.49 Let D and C be completedioidsand IT be a homomorphismfromD into
C. Consider the congruence defined in Example 4.25. If TTisl.s.c. (respectively u.s.c.),
then every equivalence class has a maximum (respectively minimum) element, whichis
therefore a canonical representative of the equival ence class.

Proof We nsider the case of a |.s.c. mapping. Lefdlenote the equivalence class

of anyx € D, thenx def @Dyc1x Y istheupper bound of¥], and it belongs tox] since,

by lower-semiontinuity,

NK) =1 y| =
]

TI(y) = II(X) .
yelx ]

yelx

4.4.2 Elements of Residuation Theory

Residuation has to do with ‘inverting’ isotone mappings and with solving equations.
Let IT be an isotone mapping from a didld into another dioidC. To guarantee the
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existence of upper and lower bounds, we assume throughout this subsectiah that
andC are complete. IfiT is not surjective, the equation k1 TT(x) = b will have

no soldion for some values db, and if IT is not injective, the same equation may
have nonunique solutions. One way to always give a unique answer to this problem of
equation solving is to consider the subset of so-called ‘subsolutions’, that is, values of
x saisfying IT(x) < b, if this subset is nonempty, and then to take the upper bound
of the subset, if it exists: it remains to be checked whether the upper bound itself is
a absolution, namely, that it is the maximum element of the subset of subsolutions,
which hasto do with I.s.-continuity off1. In thiscase, this maximua elementwill be
denotedI*(b) and we have

% (b) = @ X and M (IT*(b)) <b . (4.17)

{X|T1(x)<b}

Dudly, one may onsider ‘supersolutions’ satisfyifdg@(x) > b, if agan this subset
is nonempty, and then take the lower bound assuming it exists: again it remains to
checkwhether the lower bound is itself a supersolution, namely, that it is the minimum
element of the subset ofipersolutions, which has to do with u.s.-continuitylof In
this case this minimum element will be denof@t{b) and we have

1°(b) = /\ X and  T(IT’(0) > b . (4.18)

{X|T1(x)=b}

Theorem 4.50 Let IT be an isotone mapping from the complete dioid D into the com-
plete dioid C. The following three statements are equival ent:

1. For all b € C, there exists a greatest subsolution to the eguation IT(x) = b
(by this we mean that the subset of subsolutions is nonempty and that it has a
maxi mum el ement).

2. TI(e) = ¢ and IT isl.s.c. (or equivalently, the pre-image of every closed lower
set isnonempty and it isa closed lower set).

3. There exists a mapping IT* fromC into D which isisotone and u.s.c. such that

[T.I1?
%11

lc  (identityofC) ; (4.19)
Ip  (identity of D) . (4.20)

=
=

Consequently, IT* is unique. When IT satisfies these properties, it is said to be residu-
atedand IT* is called itsresidual

Proof First of all, it should be clear that the two statements in ‘2. above are equivalent.
In the rest of the proof, weaays refer to the former of these two statements.

1= 3: As a mater of fact,vb € C, there exits a geatest suladution that we de-
noteIT#(b). It is obvious that the mappingl* thus defined is isotone. Inequal-
ity (4.19) is immediate from the definition of a subsolution. N&Ww, € D, let
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b = II(x). Sincex is a subsolution corresponding to that from the definition
of IT¥(b), x < IT*(b) = M*I1(x), from which (4.20) follows.

We now pove thatIT! is u.s.c. SincelIl* is isobne, using (4.13), for a subset
B C C, one has that

Iyt (/\ b) < \ ) . (4.21)

beB beB
Using (413) again, we obtain

1 (/\ nﬁ(b)> < /\nonﬁ(b) < /\b ,

beB beB beB

in which the latter inequality follows from (4.19). Hengg,_g IT*(b) is a s1bso-
lution corresponding to the right-hand sigg,_g b. Thus thereverse inequdity
alsoholdstrue in (4.21), and equality is obtained, proving titis u.s.c.

3= 2: From (4.19),IT-I1%(e) < ¢ = TI1%(e) = e. ButIl?(e) > ¢ = ITIT4(e) >
I1(¢). If we combine the two fad, it follows thate > I1(¢), provingthe equality
of the two sides.

Let X € D. Sincell is isotone, it follavs from (412) that

Pnw<n (@ x) . (4.22)

xeX xeX

For allx € X, letb, = IT(x). Because of (4.20)1*(by) > x, herce

y (@ x) <1 (@ nﬁ(b») < T.IT? (@ bx> <@b=Pnx .

xeX xeX xeX xeX xeX

where we use (412) for IT* ard then (4.19). This is thereverse inequdity of
(4.22), hernce equdity holds true and the |.s.-continuity @1 is proved.

2= 1: Sincell(e) = &, the sibset of subsolutionX, € D is nonemptyvb € C.
Then, by I.s.eontinuity of IT, and shce everyx € Xy, is a sibsolution,

n(@x)z@n(x)gb.

XeXp XeXp
This proves thatp, .y, X is a sibsolution too.

Findly, since the greatest subsolutionurique by definition, the equivalences above
imply thatTI* is unique as well. ]

Remark 4.51 Itis clear thatlT1([«, X]) = [<«, [T1¥(x)]. Moreover, sincdI(T) <
T, thenIT?(T) > T, herceIT*(T) = T. n

Now, insiad of being interested in the gredtasbsolution, we may search for the
least superdution. This is dual residuation. The dual of Theorem 4.50 can be stated.
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Theorem 4.52 Let IT be an isotone mapping from the complete dioid D into the com-
plete dioid C. The following three statements are equivalent:

1. Forall b € C, thereexists a least supersolutionto the equation IT(x) = b (by this
we mean that the subset of supersol utionsis nonempty and that it has a minimum
element).

2. TI(T) = T and IT isu.s.c. (or equivalently, the pre-image of every closed upper
set isnonempty and it isa closed upper set).

3. There exists a mapping I1° from C into D which isisotoneand |.s.c. such that

[.I1°
M°.I1

lc  (identityofC) ; (4.23)
Ip  (identity of D) . (4.24)

=
=

Consequently, TI” is unique. When I satisfies these properties, it is said to be dually
residuatecnd I1" is called its dual residual

Remark 4.53 One haghat
n([x, =] = ["x), > ,

and
M) =¢ .

It should also be clear that It is residuated, itsesidual is dually residuated and
(%’ =11 .
[

Example 4.54 An exanple of a residuated mapping was encountered in Example 4.45.
Indeed, if we letD = NyaxandC = Rmax the canonical injection fror¥ into R is
residuated and its residual is the mapping described in that example, that is, the ‘integer
part’ of a real number ‘from below’. The same injection is also dually residuated and
its dual resilual is the ‘integer part from above’. [ |

Example 4.55 Another interesting example is provided by the mapdihg x
(x, X) from a complée dioid D into D?. This maping again is residuated and dually
residuated iad itis easy to check that

M*(X,y) = XA Y and X, y) =x®y .
n

Subsection 4.4.4 provides other examples on residuation. The following theorem lists
additional properties of residuated mappings and residuals, and dual properties when

appropriate.



4.4. IsotoneMappings and Residuation 175
Theorem 4.56
e If IT isaresiduated mapping fromD into C, then
[TITP.IT = 1T ; (4.25)
[T%IT.ITF = IT° . (4.26)
One has the following equival ences:
I1°%.I1 = |p < IT injective < TT° surjective ; (4.27)
[1.IT° = | < IT* injective < IT surjective . (4.28)

The same statements hold true for dually residuated mappings by changing #

intob.

e If IT:D — Cand ® : C — B are residuated mappings, then ®-I1 is also

residuated and
(PoIT)F = MMHd? .

Again, the same statement holds true with b instead of .

(4.29)

e If IT, ®, ¥ and ® are mappingsfrom D into itself, and if IT and ® are residu-

ated, then
Me® < ¥e® & Do < [TV .
As corollaries, one has that
MN<0 &6 <I,
and

Mn<lp <« HnZh),
n=1lp < anhj.

(4.30)

(4.31)

(4.32)
(4.33)

Smilar statements hold truefor dual residuals with appropriate assumptions; in

particular, the analogueof (4.30) is

Dol < QoW & O°d < WoIT" .

(4.34)

e If IT and @ are two residuated mappingsfroma dioid D (inwhich A exists) into

itself, then IT @ ® isresiduated and

(M@ d)* =I1F A DF .

If IT and ® are dually residuated, then IT A ® isdually residuated and

(MMAD) =" D" .

(4.35)

(4.36)
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e If IT and @ aretwo residuated mappingsfroma dioid D (inwhich A exists) into
itself and if IT A @ isresiduated, then

(TTA D) >TIT*F @ dF . (4.37)
With dual assumptions,

(M@ &)’ <" A D" . (4.38)

Proof

About (4.25)—(4.26):One haghat
TToTT%I1 = ITo (IT%IT) > 1T,
which fdllows from (4.20). But one also has that
ToTT%IT = (TTeIT%) oI < IT

by making use of (4.19), hence (4.25) follows. Equation (4.26) is similarly
proved by remembering th&t* is isoone.

About (4.27)—(4.28): Assume thatl1’-IT = Ip ard suppose thafl(x) = TI(y).
Applying IT?, we onclude thatx = vy, herce IT is injective. Also, since
M*.I1(X) = X, it means that every belongs to Infil?, herce IT* is surctive.
Conversely, iflT%IT # |p, thereexigsy suchthatx = IT%I1(y) # y. However,
because of (4.25)[1(x) = II(y). HerceII cannot be injective. On the other
hand, if[1% is surective,¥x € D, b € C : TT¥(b) = X. Sincex is a subsolution
corresponding to the right-hand sibel1 (x) < b, herceIT?.I1(x) < IT%(b) = X.
We oonclude thafll%IT < |p, but equdity must hold true lecause of (4.20).
This competes the poof of (4.27). The proof of (4.28) is similar.

About (4.29): Asalread/ naticed |.s.- or u.s.-continuity is preserved by composition of
two smilarly semicontinuous mappings and the same holds true for the property
of being residuated (consider the conditions stated in item 2 of Theorem 4.50).
Also IT%.®* is an isobne and u.s.c. mapping. Finally,

PoIToIT%d? = P (TIoIT7) o < Pod? < I¢ ,

by repeated applications of (4.19), showing thiat®* saisfies @.19) together

with ®.I1. Likewise, itcan beproved that (4.20) is met by the two composed
functions. From the uniqueness of the residual, we conclude that (4.29) holds
true.

About (430)—(434)” [Mod < YO, then(l'lnol'[) NoNCH < MW, (@o@n) which
implies thatd.©F < I using (4.19)—(4.20). The converse proof is left to the
reader (use a dual trick). Then (4.31) is obvious whereas to prove (4.32)—(4.33),
we use he straightfoward fact thatl; is residuated and is its own residual. The
proof of (4.34) is similar to that of (4.30).
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About (4.35)—(4.36):We give a poof of (4.35) only. First it is clear that the sum of
two residuated mappings is residuated (l.s.-continuity is preserveg) bilow
congder the compositiolr = W3.W,.W; of the following three mappings:

v,: D — D?, X > (x x),
W D2 - D*, (x y) = (OX @Y ),
U3: P2 - D, (x VYy) X®Yy .
Thus
' D—->D, X (I P)X) .
Then,
VD25 D, (X y)e XAy (see Example 4.55),
W iD? D2, (x y)e (TP DY) ) (trivial),
WD D?, X = (x x),

the last statement following also from Erple 455 since it was explained there
that(W5)’ is indeedWs. Then, it suffices to calculat&” by using (4.29) repeat-
edlyto prove (4.35).

About (4.37)—(4.38): We prove (4.37)only. Observe first that is necessary tassume
thatIl A @ is residuated since this is not automatically true. Then

(ITA D)o (ITF @ D) = (M A D) TT* & (TT A D) oD |

sincell A @ is assumed residuateddhence |.s.c. The former term at the right-
hand side is less thaf.I1* which is less tharp; the later term is ess than
®.dF which agén is less tharp, and so ighe left-hand side. This suffices to
prove (4.37). [ |

Remark 4.57 Returning to Lemma 4.49, ifl is residuated, it should be clear that
considered irthe proof of this lenma is nohing butIT*.IT(x). [ |

4.4.3 Closure Mappings

Here we study a gzial class of mappings of a dioiditself which will be of interest
later on.

Definition 4.58 (Closure mapping) Let D bean ordered set and IT : D — D bean
isotone mapping such that IT = IT.IT > Ip, then IT isa called a closure mapping If
[T = I1.IT < Ip, then T iscalled a dual closure mapping

Theorem 4.59If 1 : D — D isa residuated mapping, then the following four state-
ments are equivalent:

I[.IT=11 > Ip (i.e ITisaclosure mapping), (4.39)
M°IF = I1° < Ip  (i.e I1* isa dual closure mapping), (4.40)
I1° = I.IT° (4.41)

T = IT%I1 . (4.42)
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Proof
(4.39)= (4.40): This follows from (4.29) and (4.33).

(4.40)= (4.41): From (440) it follows thatIT.IT%I1* = II.IT*. The lefthand side is
less than oequal toI1* because of (4.19). The right-hand side is greater than or
equal tolT* becausdl” < Ip = IT > Ip (see (4.33)). Hence (4.41) is proved.

(4.41)= (4.42): From (4.41),ifollows thatTI.IT*.IT = IT%I1. But the lef-hand side
is equal toIl (see (4.25)). Hence (4.42) results.

(4.42)= (4.39): Sincell = IT%II, thenIl > |p because of (4.20). On the other
hand, (4.42)= TT.I1%.IT = IT.I1 but the lefthand side is equal t@ (see (4.25)).
[

Theorem 4.59tates thatll residuated closure mappings can be expressed as in (4.42).
Indeed,all closure mappingg1 onD can be factored a¥*.¥ for some¥ : D — C,
where(C is another ordered set [24, Theorem 2.7]. Another characterization of I.s.c.
closure mappings will be given in Corollary 4.69.

Theorem 4.60 If 1 : D — D isadually residuated mapping, then the following four
statements are equivalent:

[LIT=T1I < Ip (i.e ITisadual closure mapping), (4.43)
M’.I1"=11" > Ip (i.e I° isaclosure mapping), (4.44)
=TI, (4.45)
1’ = I1°:I1 . (4.46)

Lemma 4.61 If IT and & are closure mappings on D and if they are A-morphisms,
then IT A ® alsoisaclosure mapping. Likewise, if IT and & are dual closure mappings
and if they are @-morphisms, then IT @ & isa dual closure mapping. These statements
extend to infinite numbers of mappingsif the mappingsare u.s.c., respectively l.s.c.

Proof Let us pove the formestaement. Clearly[T A ® > |p. Moreover,
(MTADP)ITAD) =TTATI DA DPIIAD=TTAD ,

sincell and® are greater thahp. []

4.4.4 Residuation of Addition and Multiplication
In this subsection we consider the following mappings from a dividto itself:

Ta © X—>adXx (transldion by a);
Lo : Xx—a®x (leftmultiplication by a);
R, : X+ x®a (rightmultiplication by a).

Observe that

TaoTo=TpoTa=Tagh =Ta® Tp . (4.47)
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Moreover, if D is a distributive dioid,
Ta N Tb = TaAb . (4.48)

As for multiplication, the associativity of implies that

Lackp=Lap , (4.49)
and also that
LacRy = Rool g . (4.50)
The digributivity of ® with respect tap implies that
La® Lp=Lagp , (4.51)
and also that
LaoTp = Tapola . (4.52)

Observe thak ; is l.s.c. if and only if (left) multiplication is distributive with respect
to addition of infinitely many elements, which we assume here, and, since moreover
La(e) = ¢, Ly isresiduated. The same considerations apply to right multiplicé&ion

Notation 4.62 We use he one-dimensional display notatibf(x) = axx (‘left divi-
sion’ by a—reads a (left) dividesx’), respectively,Rg(x) = Xga (‘right division’ by
a—reads X (right) divided bya’), and the two-dimensional display notation

o) — X o) — S
La(x) = e Ra(X) = 3
n

As for Ty, sinceT,(¢) # ¢ unlessa = ¢, this maping is not residuated. Actually,
by restraining the range dt to a @ D, that is, tothe sibset of eéments greater than
or equal toa (call this new mappind, : P — a @ D), we could define a residual
AL with domain gual toa @ D. However, this $ not very irteresting sinceA; is
simply the identity ofa @ D. Indeed, sincehy, is suriective py definition), Ay Ay is
the identityaccording to (4.28). On the other hand, sifkeis olviously a closure
mapping, Aw- Al = A% (see (4.41)). Thiss why we assume tha® is adistributive
dioid—see Definition 4.39—and, as a consequence of tiatis u.s.c.Since noreover
Ta(T) = T, T, is dually residuated.

Notation 4.63 We use he notationTzf(x) = Xo a. [ ]

It should be clear that:
Xea=¢&oa>Xx .

We aregoing to list a ctlection of formulae and properties for these two new op-
erations, division’ and ‘subtraction’, which are direct consequences of the general
properties enumerated §d.4.2. For the sake of easy reference, the main formulae have
beengahered in Tables 4.1 and 4.2. In Table 4.1, left and right multiplication and
division are both considered.
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Remember that, when we consider properties involving the dioid D is
tacitly assumed to be complete (hence multiplication is infinitely distributive)
and also astributive.

Table 4.1: Brmulaeinvolving division

XAY X, Y| XAY X Y
a a a a a a
XBY  Xg | XOY X ¥ |
a a a a a a
X X X X X X
- = — —_— — .3
adb a A b adb a A b (13)
X X X X X X
b =2%y | aap=a®p |
ai <X iagx (f.5)
a a
ﬁzx sz (f.6)
a a
aﬂ = ax ﬁa:xa (f.7)
a a
a(@ayx) _ l (Xfa)a _ i (.8)
a a a a
X ajx X Xxfa
ab b ba b (1-9)
axx _ Xfb Xfa _ byx (£.10)
b a a
X X X X
b— < — —b< . — f.11
a = asb a = bya (f11)
b b
X< X2 bt < 2% (f.12)
a a a a
ieBbsL@ab i@bsLBba (f.13)
a a a a

For Table 41, we only prove the left-hand side versions of the formulee. Formulae (f.1)
and (f.2) are consequences of the fact thatis u.s.c.and isobne. Dually, For-
mulee (f.14) and (f.15) result fronT, being I.s.c. and isotone. Inequalities (4.19)—
(4.20)imply (f.5)—(f.6). However, if multiplication is cancellative, thén is injective

and (see4.27))aj(ax) = x andx +— a\x is surgective. Ifa is invertible, then
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Table 4.2: Brmulaeinvolving subtraction

Xdy)ea=(Xea)d(yea) (f.14)
xXAy)eas<(xea)A(yea) (f.15)
xXea)da=xda (f.16)
X@a)ea=xea (f.17)

Xe (@db)y=xea)eb=(Xebea (f.18)

Xe (@Ab)=Xea)®(xeb) (f.19)
axe ab <a(xe b) (f.20)
X=XAY)DXeYy) (f.21)

axx = a~ix. Dudly, (4.23)—(4.24) yields
Xea)®da<x and XPa)ea<x.

But this is weaker than what results from Theorem 4.60. Cle@glys a closure map-
ping, hence from (4.44),
Xea)ea=xea,

and one alsgets (f.16)—(f.17) from (4.45)—(4.46). It follows that
X>a=>Xea)da=x and x>a, y>a,xea=yead) = X=Y),

which mayalso be viewed as conggences of the dual of (4.28) by observing tiat
is surjective if its range is restraineddad D.

Formulae(f.7)—(f.8) are consequences of (4.25)—(4.26). The dual result stated for
@ and = is weaker than (f.16)—(f.17).

As a onsequence of (4.31) or its dual,

X X
asb@i;zg, VX}@{XeaEXeb, vx} .

In particular,a > e & ayx < X, ¥x andxe a < X, Va, Vx sincea is alwaysgreater
than orequal tos andx e ¢ = X.

Using (429) and (4.49), one gets (f.9). Dually, using (4.47), Formula (f.18) is
derived. Formula (f.10) is a consequence of (4.50) and (4.29). To obtain (f.12), one
makes usef (4.30) with[I = ® = L, and® = ¥ = R,, and alsoof (4.50). The
proof of (f.11) essentially uses (f.5) twice: > a(a\x) > (agb)b(axx) (the later
inequality arising from the version of (f.5) written faight multiplication and division
applied to the pair(a, b) instead of(x, a)); by associativity of the product, and from
the very definition oﬁ_g%b(x), one obtains (f.11).
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Equations (4.35) and (4.51) yield Formula (f.3) (which should be compared with

(4.10)), whereas (4.36) and (4.48) yield (f.19). Because of (4.8)p < La A Lp.
If Lo A Lp were residuaed, we could use Inequality (4.37) to get thaﬁIAb >
(La A Lp)* > Lg @ L¥, which would prove (f.4). Unfortunately, ; A Ly is not resid-

uaed in general, unless multiplication is distributive with respect t& direct poof
of (f.4) is as follows: La.p < La, herce LY, > L5; similarly L%, > Lf; herce
Liw = La® L.

As for (4.38) applied tol, & Ty, it would yield a weaker result than Equality (f.18).
Findly, consider (4.52) and use (4.30) willh = © = Ly, ® = Ty, ¥ = Ty, this
yields(f.13). Consdering (4.52) again, but now in connection with (4.34), and setting
O =W=1L, II=T, O =Ty yield (f.20).

An interesting consequence of some of these formulae is the decomposition of any
X with respect to any as given ly (f.21). Indeed,

XAY)BXey) = XOXeY))AYD(Xey)
= XAX®DY)
X,

the first equality following from the assumption of distributivity, the second based on
the fact thatx e y < x onthe one hand, and (f.16) on the other hand, the last equality
being obvious. A a cordary,

XOYy=XeyY)®XAY) S (YeX),

which is graightforward using the decompositions)oWwith respect toy and ofy with
resgect tox.

Remark 4.64 Formula (f.3) canbewritten L, (x) = La()* A L{(x), wheas (f.9)

can be written L%, (x) = LisL5(x). Then onsidering the dioid structure of u.s.c.
mappings fromD into D described in Lemma 4.46 (see (4.16)), it is realized that the
mappinga > L%is ahomomorphism fronD into that dioid of us.c. mapings.

Likewise (f.19) canbewritten T, (x) = Ta(x) @ T, (x), whereas (f.18) can be
written T, (X) = T, (X)sTa (X). Remember hat nowD is supposed to be a distributive
dioid. Consider the dioid of I.s.c. mappings with the operations defined by (4.15).
Observe tha® is commutative and idempotent when restricted to elements of the form
T.. For the nappinga T, to be a homomorphism, we must sup@lywith the

addition & %' A and themuitiplication® %' @ (see Remark 4.40). n

Example 4.65 Let us @nsider the coplete doid Ryax. From thevery ddinition of
< , we have that
a ifb<a;

va,beR, aeb= .
¢ otherwise.

As for agb (or bya, which is the same since the multiplication is commutative), it
is equal toa — b (conventional subtraction) whewer ttere is no amiguity in this
expression, that is, inlacases except when=b = ¢ = —ooc and whema = b =
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T = +o0. Returningto the definition of, it should be clear thatfs = T4T = T,
which yields the ruleco — co = 400 in conventional notation.

Note that the conventional notation should be avoideechuse it may be mislead-
ing. As a matter of fact, we also have that® ¢ = ¢ (according to Axiom 4.7), which
yields the rulexo — 0o = —o0: this sesems to contmict the previous rule, at least when
using conventional notation. [ |

Example 4.66 In order to illustrate the operations andy in the case of theommu-
tative dioid of Example 4.17, consider first Figure 4.5 in whigland B are two disks
(respectiely, transparent and grey). The subGet B Ais the smallest subset such
thatC U A D B: itis depicted in the figure which also illustrates Formula (f.16) in this
particular case. Consider now Figure 4.6 in whihs a disk centered at the origin,
wherasB is a gjuare. ThenC = BfA is the largestshset soh thatC + A C B: it

is the dark small square in the middle of thigure. The right-hand side of this figure
illustrates Formula (f.5) (written here foight divisionand multiplication). [ |

(BeA)®dA=BdA

@)

Figure 4.5: The operatioga |n 2R U, +

D
=1

Figure 4.6: The operatighin (ZRZ, U, +)

We onclude this subsection by considering the problem of ‘solving’ equations of
the form

axdb=c (4.53)

in the s=rseof the greatest subsolution. This amounts to COMPpUEAE) with TT =
ApoL 5. Notice that, as discussed ae{beginpjng of this subsection, we have to restrain
the imaye of T, to b @ D for the mappingA, to be resiluated. More directly, it is
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obvious that the subset of subsolutions of (4.53) is nonempty if and omy>if b.
ThenTI*(c) = L} because of (4.29) and sind§, = Ipsp as already discussed. We
summarize this discussion the following lemma.

Lemma 4.67 There exists a greatest subsolutionX to (4.53) if and onlyif b < c. Then
X = aj\c.

Of course, other siitar equatons may be considered as well, for example those in-
volving the residuated mappingﬁbboLa and Lang’, or thedually residuated mappings

TooLh andL T,

4.5 Fixed-Point Equatiors, Closure of Mappings and
Best Approximation

In this section we first study general fixed-point equations in complete dioids. The
general results are then applied to specades of interest. These special cases are
motivated by some poblems of ‘best approximation’ of elements of a dioid by other
elements subject to ‘linear constraints’. $tind ofquestions will aise frequently in
Chapter 5 and therefore theyeatiscissed here iname dedil.

45.1 General Fixed-Point Equations

Let D be a complete dioid and consider the following ‘fixed-point’ equation and in-
equdities:

nx = x, (4.54)
nx) < x, (4.55)
nx) = x, (4.56)

wherell is an isobne mapping fronD into D. Observe that the notion of ‘inequality’
is somewhat redundant in complete dioids: indeed, Inequalities (4.55) and (4.56) can
bewritten as equations, namely(x) @ x = x andII(x) A X = X, resgectively.

Let us again onsider the operations defined by (4.15) or (4.16). We will @se
instead of@® and A instead of@&. Accordingly,IT > ® willmeanTl = IT1 @ ®, or else
® = I1 A ® (Which would not be the case if were onsideed as the ‘sum’)IT€ will
denotell.. .. .IT andI1® = 1. We introduce the following additional notation:

k times
+00 +00
m =pnk ; m.=An*. (4.57)
k=0 k=0
Although (4.15) (respectively (4.16)) has been defined only for I.s.c. (respectively

u.s.c.) mappings, there is no difficulty in definiby or IT, for mappingsIT which
are neither l.s.c. nor u.s.c. Wellialso use he following notation:

+00 +00
mt =k : my = /\m*.
k=1 k=1
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Obviously
M=IlppI" , hence TIT*>T1I1 , (4.58)
but equdity holds true ifIT > |p. Also, because of (4.12),
MeI1* > MM =" , (4.59)
but equdity holds true ifIT is |.s.c. Similarly,
M,=I1p ATl , hence TII,<TII, , (4.60)
but equdity holds true ifIT < |p. Also, because of (4.13),
Mol < Mol =1, , (4.61)

but equdity holds true ifIT is u.s.c.

If IT is a closurangoping, thenl1* = IT, and ifIT is a dual closte mapping, then
I1, = II. Indeed, wherl is not a closurdrespectively dual closure) mapping,*
(respeately I1,) isits ‘closure’ (respectively ‘dual closure’) under a semicontinuity
assumption.

Lemma 4.68 Let T be a mapping from a complete dioid D into itself. If ITisl.s.c,
then IT* isthe least closure mapping which is greater than IT. Likewise, if TTisu.s.c.,
then I, isthe greatest dual closure mapping which islessthan IT.

Proof We give the poof of the first statement only. By direct calculations using the
assumption of loweramicortinuity, it is first checked that

(m*)? =" . (4.62)

Since noreover IT* > |p, IT* meets propertie (439) and it is a closure mapping
greater tharl.

Then, assume thdt is another closure mapping greater thdnWe have¥ > |p,
and successivelyy > IT, ¥ = W2 > W.IT > M2 and¥k > I1K, vk € N. Therdore,
by summing up these inequalities,

which conpletes the proof. [ |

Corollary 4.69 Let ¥ be a mapping froma complete dioid D intoitsdlf. If W isl.s.c.,
then
W isaclosure mapping & ¥ = ¥* |

If ¥isu.s.c., then

¥ isadual closure mapping & ¥ =W, .
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This cordlary provides an additinal equivalent statement to Theorem 4.59, respec-
tively Theorem 4.60.
We now retirn to (4.54), (4.55) and (4.56) and we set

DL ={x |IX) =x}, D= {x|OX <x}, D ={x|T(x)>x}. (4.63)

Obviously, D¥, = D°, N D¥. With the only assumption thdl is isotone, Tarski's

fixedpoint theorem (see2P]) staes thatDj; is nonempty (thus?)*f1 andDﬁIT are also
nonempty).

Theorem 4.70
1. Given two mappings Tl and W, if TT > W, then D%, € DJ,.

2. 1f C € Dy, then A\, x € Dj; otherwise stated, the set D} with the order
induced by that of D is a completeinf-semilattice having the same lower bound
operation A asD. Moreover, T € D*ﬁ. Hence (by Theorem 4.27, or rather by

itsdual), D*ﬁ isalso a complete lattice, but the upper bound operation does not
need to be the same asthat of D, the latter being denoted ®.

3. If Mislsc, thenC < D} implies @, .. x € Dy; otherwise stated, the set

D*ﬁ with the order induced by that of D isa compl ete sup-semilattice having the
same upper bound operation @ asD.

4. Statement 3 holdstrue also for D7;.
5. Ingeneral, D}; = Dy = Di.. Otherwise stated,

X)) <x& X)) <x&eII'X) =x . (4.64)

6. If II isl.s.c., then D*ﬁ = [T*(D). The minimum element is IT*(¢) which also
belongsto D7, and thusis the minimum element of this subset too.

Proof
1. Straightforward.

2. Sincell is isobne, ifx, y € D*ﬁ, thenx Ay > TT(X) A TI(y) > TT(X A Y) (See
(4.13)). Hencx Ay € D*ﬁ. This resllt obviously extendso any finite or infinite
subset of D};. Also T > TI(T), herce T € D;;. Thedual of Theorem 4.27
shows that ay (finite or infinite) number of elements dD?T admit an upper
bound inD};. But this does not mean that, ¥,y € D!, thenx @ y € D7,
where d course® denotesthe addition ofD.

3. Sincell is assumed to bes.c., forx, y € D, x®y > I(X)BII(Y) = TT(XDY).
Hencex @ vy € D*ﬁ. This reslt obviously extends to atfinite or infinite subset
of D;.
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4. Same argument.

5. If ¥ > Ip and ifx € D), thenx > W(x) > x, hercex = W(x) andx € DI,
thus D}, = Di,. In paticular, this is true for¥ = I*. Now, if x € D},
x > TI(x) > I1%(x) > - - -, andby summing upx > IT*(x), hercex € D;* and
Dy, € Dy,.. But shcell* > I, the revese inclusion also holds true and thus
Dy = Dy = Dj
n=-~m = -

6. From its very definitionD}, < IT*(D). On theother hand, lek e IT*(D),
hencedy € D : x = IT1*(y). Then, I1(X) = II.IT*(y) = I17(y), the later
equdity being true kecausdl is assumed to be I.s.c. From (4.58), it follows that
M(x) = I*(y) < IT*(y) = x, hercex € D}; andIT*(D) C D}, But shce it
has been proved thdl, = Dy, findly D}, = D}, = D}, = [1*(D).

Sincet = [1*(¢) is clearly the mimmum ekement of[1*(D), it is also that of’D*ﬁ,
but sinceD}, € DY, £ is a minorant ofd?,. It remains tobe proved thag indeed
belongs thﬁj. This follows from the fact thafl*(¢) = IT7(¢) = IT.IT*(¢),
hencet = I1(§). [ |

Lemma 4.71 If I1 isresiduated, then IT* is also residuated, and
[x > (x) & M*(x) > x], thatis, Dy =D, . (4.65)
Moreover,
(Im)° = (1), . (4.66)

Proof If II is residuated, the fact thal* is also residuated is immediate from its
definition. Then (4.65) is a direct consequence of (4.19)—(4.20). Equality (4.66) can be
proved using (4.29) and (4.35) (or rather its extension to infinitely many operagions
andA). [ |

The following dual of Theorem 4.70 is stated without proof.
Theorem 4.72
1. If M > W, then DY, > DL,

2.1f ¢ € Df, then @, x € Dj; otherwise stated, the set D}, with the order
induced by that of D isa compl ete sup-semilattice having the same upper bound
operation @ as D. Moreover, ¢ € D% Hence (by Theorem 4.27), D%, alsoisa
complete lattice, but the lower bound operation does not need to be the same as
that of D, thelatter being denoted A.

3. If Misusc, thenC € Df implies A\, X € Df; otherwise stated, the set D},
withthe order induced by that of D isa compl eteinf-semilattice having the same
lower bound operation A asD.

4. The same statement holdstruefor Df,.
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5. Ingeneral, Df; = D}, = D, .

6. If IT isu.s.c., then D% = I1,(D). The maximum element is I, (T) which also
belongsto D, and thusis the maximum e ement of this subset too.

45.2 The CasdI(x) =ayXx Ab

Givena andb in a complete dioid>, we mnsiderthe equation

X=a\xAb, (4.67)
ard theinequality

X <ayxxAb . (4.68)

We may useall the conclusions of Theorem 4.72 since the corresponHing u.s.c.

(T1 is the composition of two u.s.c. mappings, namefyintroduced in§4.4.4, and
X = X A b). Let us evaluatél.(x). By using(f.1) and (f.9) of Table 4.1, it follows
that b

ayxxAb X
kK%/\bz%z/\b/\a ,
a a

[2(x) =

koon X b b b
H(X)_aT/\ /\Z/\m/\akj .
Taking the lower bound on both sides of these equalitie&fer0, 1, 2, ..., andusing
(f.3) (more properly, using its extensiominfinitely many operations), it follows that

X X b b
I,(x) = X/\'—|/\‘—2|/\---/\b/\‘—|/\‘—2|/\---
a a a a
X b

L /\I
epagaid.--- edagaid---
XADb

AR e
edadazy---
XADb

with
a*—e@ad®a’d - . (4.70)

Returning to Theorem 4.72, we know tHat (T) = a*\b is the maxinum ekement
of both subsets of solutions to (4.67) and (4.68). On the other hasdlyes (4.68),
but it also solves4.67), unlesa = ¢ andb # ¢ (note thateye = T). Because of
staement 5 of Theorem 4.72, ¥ solves (468), and a fortiori if itsolves (4.67), that
is, if X € D%, thenx ¢ DﬁL, that is,x = I1.(X) = a*}{(X A b). This imgdies that
X = a*}x sincex < b as a saltion of (4.68). We summazeé these rasts in the
following theorem.
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Theorem 4.73 Consider Equation (4.67) and Inequality (4.68) with a and b given in
a complete dioid D. Then,

1. a*\bisthe greatest solution of (4.67) and (4.68);
2. every solution x of (4.67) and (4.68) satisfiesx = a*\x;

3. ¢ istheleast solutionof (4.68), and it is also theleast solution of (4.67) provided
thata#£corb=c¢.

Remark 4.74 (Some identities involvinga*) Observe thathe notatiora* of (4.70)
may be jusified by the fact that

L =La , (4.71)
which is a onsequence of (4.57), (4.49) and (4.51). Sih¢es a closwe mapping,
(L%)? = L% and with (4.49) and (Z1), it follows that

(a*)Z — a*’ hence (a*)* —a* . (472)
ConsideragainIT(x) = ayx (derived from the previou§I by lettingb = T). This
mapping IT is nothing butL 2. By using (4.8®) in this cag, we see that

(L. = (La)f = (L2, (4.73)
the latter equality following from (4.71). Indeed, this is a particular instance of Equa-
tion (466). Since(L;)tI is a dual closurengoping, it is equal to its square, hence, with
(4.73),
X a*yx
VX, = (4.74)
a* a*
SinceL - is a closure mapping, and since its residudlis)*, from (4.42), it follows
that

a*x . . a*
VX, a*x= % (ln particular, a* = ;) . (4.75)
From (4.41) weobtain
X . [ X
. —=a (?) . (4.76)

453 TheCasdI(x) =ax®b

Givena andb in a complete dioid>, we mnsiderthe equation

X=ax®db, (4.77)
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ard theinequality
X>ax®db . (4.78)

We may useall the conclusions of Theorem 4.70 since the correspondiigl.s.c. A
direct calculation shows that

[M*(x) =a*(x® b) .

Then,IT*(¢) = a*b is the minimum element of both sudts of solitions to (4.77) and
(4.78). On the other hand, solves (478), but it also solves (4.77) 1 is Archimedian,
unlessa = ¢ andb # T. Because of (4.64), it solves (4.78), and aftiori if it solves
(4.77), therx = a*(x @ b). This imdies thatx = a*x sincex > b as a saltion of
(4.78). We summarizthese results in the following theorem.

Theorem 4.75 Consider Equation (4.77) and Inequality (4.78) witha and b given in
a completedioid D. Then,

1. a*bistheleast solution of (4.77) and (4.78);
2. every solution x of (4.77) and (4.78) satisfiesx = a*x;

3. T isthe greatest solution of (4.78), and, if D is Archimedian, it is also the
greatest solution of (4.77) providedthata # ¢ or b = T.

We conclude this subsection by showing a result which is analogous to a classical
resultin conventional liear algebra. Namely, in conventional algebraAdte ann x n
matiix and b be ann-dimensional column vector, it is known that all the solutions of
Ax = b can beobtained by summing up a particular solution of this equation with all
soluions of the ‘homogeneous’ equatidixx = 0. More precisely, ifAx = b and if
Ay = 0, then, by summing up the two equations, one obt#ios+ y) = b. This
staement and prof also hold true for equation (4.77) in a dioid, where

X = ax (4.79)

plays the part of the homogeneous equation.

Conversely, in conventional algebra, Ax = b and AX" = b, by subtraction,
y = x — X’ sdisfies Ay = 0. This latter argument cannot be translated straightfor-
wardly to the dioid situation. Indeed, one should first observe that, since ‘adding’ also
mears ‘increasng’ in a dioid, one cannot recovall soluions of (4.77) by adding
sometling to a particular solutionynless this is the least solution. Moreover, the proof
by subtraction has to be replaced by another argument. We are going to see that the
‘minus’ operatione indeed plays a part in proving essentially the expected result, al-
though, admittedly, things are somewhat more tricky. Since we are playingewjth
we recall thatD has to be ssumed thtributive.

Theorem 4.76 Let D bea distributivedioid (which may aswell be a matrix dioid—see
§4.6). A necessary and sufficient condition for x to be a solution of (4.77) isthat x can
bewritten y & a*b, where y isa solution of (4.79).
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Proof Let x be a ®lution of (4.77). Consider the decompositionxofvith respect to
a*b (see (f.21) of Table 4.2), that is,

X = (xAa'h)d (xe a'b)
a*b @ (xe a*b)

sincex > a*b by Theorem 4.75. Lat = x e a*b. Onehas that

r = (axdbyeab owingto (4.77),
= (axe a*b) ® (b= a*b) using (f.14),
= axe a‘b sincebe a*b = ¢ becausee < a*,
< axea'b sincea* > a™,
< a(xea*b)=ar using (f.20).

Sincex = a*b @ r, one also hag*x = a*a*b ® a*r = a*b ® a*r from (4.62). But
X = a*x (by Theorem 4.75) and thus = a*b @ y with y % a*r. Obseve that
y = a*y (from (4.62) again). Since < ar, theny < ay, and hence, multiplying by
a*, weobtainy = a*y < aty < a*y = y. Findly, we have proved thay = ay and
thatx =a* @ vy. [ |

45.4 Some Problems of Best Approximation

Let us gve the pradical rationale behind solving inequalities such as (4.68) or (4.78)
in the sense of finding an ‘extremal’ soluti¢respectively the maximum or the mini-
mum). This motivation will be encountered several times in Chapter 5. In a complete
dioid D, for somegivena, DT_a is the subsetx € D | x > ax} . Such sibsets en-
joy nice properties that wilbe described later on. L&t be the ‘canonical injection’
from D{ _into D, nanely 7 : x > x. Givenanyb, if b ¢ D] , thereis no solution
toZ(x) = b,x € Db Howewer, resduation theory provides an answer by Iooking
for the maximum elemaﬂt in D which is less that, or the mhimum elenent mD
which is geater thaib, as bng aSZ is both residuated and dually residuated (WhICh we
will check later on). In some sense, theskitons canbe viewed as ‘best approxima-
tions from above or from below’ di by elements ofD . It will be shown hat these
two residuation prol@ms are direty related to the problems G¢#.5.2 andi4.5.3.

We firststudy severaequivalent claracterizations o‘D L, and the structre of this
subset.

Lemma 4.77
1. We have the following equivalences:
X>ax & x=a*X& x<ayXx & x=a*yx . (4.80)
0) (i) (iii) @iv)
2. The subset Db containse and T; itisclosed for addition; itisa left multiplica-
tiveideal, that is,
VxeDT_a , VYyeD, xyeD:’_a ;

afortiori, itisclosed for multiplication.
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3. The subset DT_a istheimage of D by L, and also by (La)?, thatis, Vy € D,
a*y € D and a*\y € D, ; thesubset D\ _ isa complete dioid with a* asits
identity eement (itisa subdioid of D onlyif a < eand Dba = D).

Proof

1. The equivalenceg) < (ii) and(iii) < (iv) are direct consequences of Theo-
rems 4.70 and 4.72 @ement 5), respectively, appliedfb= L, andIl = LE.
The equivalence(i) < (iii) comesfrom (4.65).

2. We may use any of the equleat characterizations oiDT_a to prove the rest of
the ¢atements of this lemma. For each statement, Wwease the most adequate
characterization, but, as an exercise, we invite the reader to use the other ones
to prove the same statements. Of course ac andT > aT. We have x >
ax,y>ayl] > xdy>axay). Alsox > ax = Vy € D, xy > a(xy).

3. The first part of the statement is a direct consequence of statements 6 of Theo-
rems 4.70 and 4.72 (applied i® = L, and toIl = L%, respectively), andof
(4.73). For allx € D:’_a, a*x = x, andhencea* behaves & theidentity element

in Dﬁ’_a. Therdore, Dﬂ’_a saisfies all the axioms of a did; it is even a complete
dioid since it is also closed for infinite sums. It is a subdioi®df a* coincides
with e. Sincea < a*, this imdies thata < e. In this case,D:’_a coincides with
D, which isa rather tivial situation. ]

SinceD:’_a = L (D), from now on we will prefer the more suggestive notat&®

instead of D] _.

Let us now retmn to the problem of the best approximationkoby the ‘closest’
element ofa*D among those which are either ‘below’ or ‘abov®’ More piecisely,
we look for the greatest € a*D suchthatZ(x) < b or for the leasx € a*D such
thatZ(x) > b. Such poblems are well-posed i is residuated odually residuated
respectively. This is indeed the case thanks to the fact &i@ is a complete dioid
containinge and T which aremapped to the same elements®f(and all continuity
assumptions needed are satisfied’y

Consider the former problem of approximation from below, the solution of which
is Z%(b) by definition. We show that this problem is the same as that of finding the
greatest element dt)ﬁiT with TT(xX) = a\x A b. Indeed,x must be less thab; it must
also béong toa*D, herce x < a)x, thusx < ayx A b. Corversely, this inequality
implies thatx is less tharb and less tham\x, herceit belongs toa*D. Therdore,
from the results 0§4.5.2, we conclude that* (b) = a*\b.

Similarly, it can be slwn tha finding Z°(b) is the same prokim as findng the
least elmentof DZ, with W (x) = ax @ b. The soltion hasbeen given irt4.5.3 and
thereforeZ’(b) = a*b.

We mnsider the mapping whicassocates with anyb € D its bestapproximation
from below (or from above) ia*D. This maping is of course surjective (any element
of a*D is its own appoximation) but not injective: severdl having the same best
approximaion are said to be ‘equivalent’. We can partitibrinto equivalence classes.
The fdlowing theorem smmarizes and comples ths disaission.
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Theorem 4.78

1. Let 7 : a*D — D besuch that Z(x) = X. The canonical injection Z is both
residuated and dually residuated and

7%(b) = a% , 7°(b) = a*b .

2. ThemappingZ’ : D — a*D isa surjectivel.s.c. dioid homomorphism. Consid-

ering the equivalence relation Linp (see (4.3)), then for any b € D, its equiv-
alence class [b] contains one and only one element which can also be viewed as
an element of a*D and which, moreover, is the maximum element in [b]. This
element is precisely given by Z (Z°(b)) = a*b.

3. ThemappingZ* : D — a*D issurjective and u.s.c. (it is not a homomorphism).

Considering the equivalence relation z in D, then for any b € D, its equiva-
lence class [b] contains one and only one element which can also be viewed as
an dement of a*D and which, moreover, is the minimum element in [b]. This
element is precisely given by Z (Z%(b)) = a*\b.

Proof
1. Already done.

2. The fact thatZ® is ahomomorphism is obvious from its explicit expression; it is
I.s.c. (as aual residual) and surjective aseddy discussed. Each equivalence

class byg has a maximm elemenb by Lemma 4.49, and an explicit expression

for b has been given in @&nark 4.57: herdl = Z° and hencdl* = Z, thus

b = Z(a*b). Clearly,b may be considered as an elementtp. If anotherb’
belongs at the same time to[hencea*b’ = a*b) and toa*D (herceb’ = a*b’),

thenb’ = a*b = a*b = b andb’ coincides vith b.

i
3. Dual argumants can be used here. The main difference iskhiatnot a ongru-
ence becausg is only an-morphism (indeed it is u.s.c.), but it does not behave
well with respect tap and®. [ |

Concrete applications of these results will be given in Chapter 6 and 5.

Remark 4.79 Most of the reslts of this subsection can be generalized to the situation
when the subseta*D characterized by (4.80) is replaced mbﬁ (see (4.8)) with IT
resiq)uated. Theorems 4.70 and 4.72, and Lemma 4.71 show that other characterizations
of D are

x =" () & x < TTF(X) & x = (), (%) = (M%) (%) ;

that this subst containg andT; that it is closed for addition (but it is no longer a left
multiplicative ideal, unless$T saisfiesTT(x)y > T1(xy), VX, y, which isequivalent to
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[1*(x)y < IT4(xy)); thatit is the image of the whol® by IT* and al® by (IT*)*. The
best approximation of sormefrom above ir[D*f1 is given byIT*(b). Itis themaximum

repregntdive of the equivalence clasb][of b for the equivalence relatio® and the
only element infp] N D*ﬁ. Dual stdementshold true for the best approximation from
below given by(IT*)* (b). m

4.6 Matrix Dioids

4.6.1 From ‘Scalars’ to Matrices

Stating from a ‘scalar’ dioidD, consider squara x n matiices with entries irD. The
sum and product of matrices are defined conventionally after the sum and product of
scalars inD.

The set oih x n matrices endowawith these two operations is also a dioid which
is denotedD™". The only point that deserves some attention is the existence of an
identity element. Thanks to Axiom 4.7, the usual identity matrix with entries eqeal to
on the diagonal and toelsevhere is theidentity element o>"<". This identity matrix
will also bedenoteck and the zero matrix il simply be denoted.

Remark 4.80 We prekr to move from ‘scalars’ directly to square matrices. In this way
the product of two matrices is a matrix of the same type @id" can begiven a dioid
structure too (multiplication remains an ‘internal’ operation). In fact, from a practical
point of view and for most issues that will be considered later on, in particular linear
equations, we can deal with nonsquare matrices, and especially with row or column
vecbrs, as well. This is just a matter of completing the nonsquare matrices by rows
or columns vith entries equal te in order to convert them into square matrices, and
to check that, for the problem considered, this artificial part does not interfere with the
real part of the problem and that it only adds a trivial part to that problem. [ |

Notice that if D is a commutative dioid, this is not the case 8" in general.
Even if D is entire,D"™*" is not so.

Example 4.81Letn = 2 and

ThenA? = A® A = ¢ dthoughA # «. [
Of course
A>BinD™ & {(Aj>B;inD, i=1....,n, j=1,...,n}.

Even ifD is a chainD"™*" is only partiallyordered. IfD is complete D™" is complete
too. Moreover
(A A B)ij = Aj ABjj .
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If D is distributive,D™" is also dstribuive. Even if D is Archimedian,D™" is not
Archimedan. Here is a counterexample.

Example 4.82 Let n = 2 and onsiderthe matices

(1) (2 4)

Then there is ohiwously no matrixC suchthat AC > B. [ |

O ™

In §2.3 it was shown how weighted grapban be associated with matrices, and
moreover, inthe case when the entries lie in sets endowed with two operaparsd
® sdisfying certain axioms, how the sum and the product of two matrices can be
interpreted in term®f those graphs (se$2.3.1). These considerations are valid for
matriceswith entries kelonging to a general dioid. The only point that deserves some
attention is the notion of ‘circuit of maximum weight’ in the case when the underlying
dioid is not a chain. We will discuss this issue in the case of polynomial matrices in
§4.7.3.

4.6.2 Residuation of Matrices and Invertibility

We onsider the mapping  from D" into D" defined byx — Ax, whereA € D™"
andD is a dioid in whichA exigs. Retuning to Remark 4.80, we could rather define
a maping fromD™" (which is a doid unlike D") into D™", nanely X +— AX and
then ug it for X € D™" having its first column equal t& € D" andits n — 1 last
columns idatically equal tos. Thepurpose here is to establish a formula [di( and
then to study conditions of exact invertibility to the left of matAx

Indeed, it is not more difficult to consider a ‘matrix of operators’ in the following
way. To keep notatia simple,we taken = 3 but the gearalization is straightforward.
Then, considesix dioids {D; }i=12 3 and{Cj}j=12,3 and nine resluated mappingHl;;
from Dj to Ci. The mapingIT mapsD; x D, x Dz into C1 x C2 x C3 and is defined
as fdlows:

X1 Y1 IT11(X1) @ M12(X2) & 13(X3)

Mix=| X |=y=| Y2 | =] HaX) & M2(x2) ® [M23(X3)

X3 Y3 [T31(X1) @ M32(X2) @ IM33(X3)

It is interesting to considdr as the sunof the following three mappings:

IM11(X1) IT12(%2) IT13(X3)
M(x) = | TaaX2) |, Ma(x) = Tas(X3s) |, Ia(xX)=| TIT21(X1)
IT33(X3) IT31(X1) T32(%2)

The rea®n for considering these mappings is that their residuals should be obvious
since eachy; depends upon a singkg (or otherwise stated, they are ‘diagonal’ up to a
permutation of ‘rows’). For instance,

M, (y2)

x=T5(y) = | TTiy(ys)
M4 (y1)
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Then, sincdl = I1; & I, & I3, by applicdion of (4.35), one obtains

15, (y1) A Ty (y2) A TT5(Ys)
(y) = | T5,(y1) A Tan(y2) A TT5s(Y3) |-
5 5(y1) A Tha(y2) A TT55(y3)

Returning to the mapping a : x — AX, we will use the natural notatioly for
Li(y). It should be kept in mind thali\ is not a ‘linear’ operator in gneral, that is, it
is not expressible as the left product by some matrix. The following lemma is indeed
just a corollary of the considerations just made.

Lemma 4.831f A = (Aj) € D™" where D isadioid in which A exists, and y €
D" then

n

(Avy); = A (Aiivy)) - (4.81)

j=1

Therefore, calculatingdyy amounts to performing a kind of (left) matrix product of
the vectory by thetranspose of marix A where multiplication is repbced by (left)
division and addition is replced by lowebound. Recall thaty is distributive with
respect toA as shown  Formula(f.1).

With A, D € D™" B € D™P, C e D"™P, itis straghtforward to obtain the
following more general formulee f& = AYB andD = B¢C:

m p

Cij= /A (Ai\Bg) . Dij=/\ (Bi/Cix) - (4.82)

k=1 k=1

We now consider conditions under which there exists a left inversé eoD"*",
that is, an operatoB from D" to D" suchthat BoA = | (here we usd instead of
Ipn to denote identity). IfD is a commutatie dioid, andB € D™" (as A does),
Reutenauer and Straubing [118] proved tB#t = | < AB = |. In what follows we
do not assume that the opera®canbe expressed as the left product by a matrix (see
Remark 4.85 below) nor that there exists a right inversa.to

Lemma 4.84 Let D be a complete Archimedian dioid and let A be an n x n matrix
with entriesin D. A necessary and sufficient conditionfor the existence of a left inverse
operator to Aisthat thereisoneand only oneentry in each row and column of Awhich
is different from ¢ and each such an entry has a left inverse.

Proof Notice firstthatifBo-A = 1, it can bgroved thatA is injective by using a similar
argument ashiat used in the proof of (4.27). Then (4.27) again shows A = |.
Hencex = AX(AXx), Vx. Fixanyi € {1,... ,n}and setx; = ¢ andx; = T,V #i.
Using (4.81) and the conventional matrix product formula, one obtains

xi=¢e=/\ (M) . (4.83)
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For the lower bound, we can limit ourselves to the indikes K (i), whereK (i) =
(k] Ag # ¢}, sinceAq = ¢ = (Aq\y = T,Vy). This subset is nonempty for all
i since otherwise theight-hand side of (4.83) would be equal Tofor the reason
just given, yielding a contradiction (or equivalently, becauses injective and there
is no column ofA which is idetically equal tog). For allk € K(i), we monsider
JG.k) ={il]j#Ii, Ag #e}. If none of thesel (i, k) was empty, v would again
reach a contradiction since the right-hand side of (4.83) would again be equal to
Therefore we haw proved that ér every columrni, there exits at kast one rovk
suchthat Ay; # ¢ and all oher entries in the same row are equat t&ince sah a row
can olviously be associated with only one indiexhere ae exadly n rows in A with
a sihgle nonzero entry. HencA contains exactlyn nonzero entries, but since it has
no column identically zero, each column must also contain exactlynoneero entry.
Therefore, up to a permutation of rows and columfAss a dagonal matrix. Then,
using vector which are columns of the identity matrix, it is easy to prove thath
diagonal term has a left inverse. [ |

This resit generalizes similar results by \Wderburn [128] and Rutherford [120]
for Boolean matrices (observe that the Boole algebra is a complete Archimedian dioid).
Other etensions using different assumptions on the diBidre discussed in the notes
section.

Remark 4.85 Of course, the mapping — A\y (denotedAy-) is aA-morphism, but
when A has a leftinverse,Ay- is also ad-morphism when restricted to the image of
A. As a mater of fact,

X@y=AYAX & Ay) = AY(AX) & AX(Ay) ,

since Ay- is isoibne. But the last term is also equahtad y, hence equdity holds
throughout. However, whe® is not commutative, this inot sufficient to associate a
matiix with this operator. [ |

4.7 Dioids of Polynomials and Power Series

4.7.1 Definitions and Properties of Formal Polynomials and Power
Series

Stating from a ‘scalar’ dioidD, we can consider the set of formal polynomials and
power series in one or several variables with coefficient8.inf seveal variables are
involved (e.g.z; andz,), we only considethe situation otommutative variables (e.g.
212, andz,z; are wnsidered to be the same object). Exponéntsf z; can be then in

N orinZ: in the later cag, one usually speaks of ‘Laurent series’.

Definition 4.86 (Formal power series)Aformal power seriem p (commutative) vari-
ables with coefficientsin D isa mapping f fromNP or ZP into D: VK = (kq, ... , Kp)
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e NP or ZP, f (k) represents the coefficient of z'f e z',ﬁ”. Another equivalent represen-
tationis

f= @@ fku... . kp)Zs... 28 . (4.84)

keNP or 7P

Remenber that e.g. f (3) denotes the coefficient af, not the ‘numerical
value of theseriesfor z = 3. First,this has no meaning i is not a dioid of
numbers but just an abstract dioid. Second, evéhig a setof numbers, we
are not dealing here withumerical functions defined by either polynomials
or series, we only deal wittormal obgcts. The relationship between a formal
polynomial and its related numerical function was discussed in Chapter|3.

Definition 4.87 (Support, degree, valuation)The support suppf) of aseries f in p
variablesisdefined as

supp(f) = {k e ZP | f(k) #¢} .

The degree degf) (respectively valuaion val(f)) |s the upper bound (respectively
lower bound) of supp(f) in the completed lattice Z*, where Z denotes Z U {—o0} U
{+o0}.

Example 4.88 For p = 2 and f = 2,2} @ 225, deg f) = (2, 4) and val f) = (1, 3).
m

Definition 4.89 (Polynomial, monomial) A polynomial(respectively a monomia) is
a series with a finite support (respectively with a support reduced to a singleton).

The set of formal series is endowedtfnthe following two operations:

fog: (fegk = fkegk ,
fog: (fegpk = P fHea|) . (4.85)
i+j=k

Thes ae the conventional definitions of sum and product of power series. The product
is nothing other than a ‘convolution’. As usual, there is no ambiguity in using the same
@ symbol in (4.84) and for the sum of seriest i$ easy to see that the set of series
endowed with these two operations is a dioid dend¥d;, ..., zp]. In patticular, its
zeo dement, still denoted, is defined byf (k) = ¢, Yk, and its identity elemene
corresponds tof (0, ... ,0) = eand f (k) = ¢ otherwise. Most othe time, we will
consider exponentg € Z; we will not use a different notation whdq € N but we will
state it explicitly when necessary. Notiethat vhenk lies inZP, theddfinition of f ® g
involves infinite sums: for this definition to make sense, it is thecessary tassume
thatD is complete. This is not required for polynomials. The subset of polynomials is
a subdioid of D[ zy, ..., z,] denotedD([z, ..., Z].

One haghat

f>g&e {fk=gk . VK .
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Of course, D[z, ..., zp] is only partially ordered even iD is a chain. Te dioid
D[z, ..., zp] is commutdive if D is commutative (this holds true because we con-
sider ammutdive variablesonly). If D is complete,D[zy, ..., z,] is compete, but
DIz, ..., Zp] isnot. Here is a counterexample.

Example 4.90 For p = 1, consider the infinite subset of ponnomia{%}keN. Their
sum isnot a polynomial. [ |

However, if lower bounds can be defined 1, in paticular whenD is complete,
these lower bounds extend t®[zy, ..., zp] and D[ zy, ..., zp] ‘coefficientwise’. Dis-
tributivity of D implies distributivity of D[ zy, ..., zp]. But even if D is Archimedian,
D[z, ..., zp] and D[z, ..., Z,] are not necessarily so when exponents arfnHere
is a munterexample.

Example 491 Let p = 1, f = zandg = e. Obviously, there is nd1 suchthat
fh > g, sincezis alwaysa factorof fh, thatis,(fh)(0) = ¢, which cannot dominate
g0 =e. [ ]

Lemma 4.92 If D is Archimedian, D[z, ..., zp] and D[z, ..., Z,] are Archimedian
too provided the exponents liein ZP.

Proof Given f # ¢ and g (Laurent series or polynomials), we must fihdsuch
that fh > g. Sincef # ¢, there eists at least oné suchthat f(¢) # ¢. Let
f’ denote the corresponding monomial, thatfis¢) = f () and f'(k) = ¢ when
k #£ ¢. Of course,f > f’, herce it suffices to findh suchthat f’h > g. Onehas that
(f'h)(k) = f'(®)hk — £). SinceD is Archimedian, for alk, there exsts anax such
that f'(£)ax > g(k). It suffices to seh(k) = ax,,. Of course, ifg is apolynomial,h
canbe a polynomial too. [ |

Lemma 4.93 We consider supp(.) as a mapping fromthe dioid D[ zy, ..., zp] into the
dioid (22°, U, +) in which A isN, and deg(.) and val(.) as mappings from the dioid
D[z, ..., zp] intothedioid (Z, max, +) P inwhich all operationsare componentwise,
in particular A is min componentwise. Then

supp(f ®@9) = supp(f) @ supp(@) . (4.86)
supp(f A g) = supp(f) Asupp@) , (4.87)
supp(f ® 9) < supp(f) ® supp(@) . (4.88)
degf@®g) = degf)odeqgqg) , (4.89)
degf Ag) = degf)Adeqg) , (4.90)
degf®g) =< degf)®degg) , (4.91)
val(f @g) = val(f) Aval(g) , (4.92)
val(f Ag) = val(f)®val(g) , (4.93)

\

val(f @ g) > val(f) ®val(g) . (4.94)
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Of course, equalities and inequalitiesinvolving the lower bound in D[ zy, ..., z,] are
meaningful onlyif thislower bound exists. Moreover, all inequalitiesbecome equalities
if D isentire, and then suppand degare homomorphisms, whereas val would be a

homomorphismif considered as a mapping from D[ zy, ..., Z,] into (Z, min, +) p.

Proof Equation (4.86)—respectively, (4.87)—results from the fact that
f(k) @ gk #e & {f(k) #eorgk # e}

—respectively,

f() Agk) # e« {f(K) #eandg(k) # ¢} .
Inequdity (4.88) results from the fact that

(feok #e=3i,ji+j=k, fi)#e, 9g()#e}.

But the conerse statement is also truelifis entire, proving equality in (4.88).
Now, to prove the corresponding statements for deg (respectively, val), it suffices to
take the upper bound (respectively, the lower bound) at both sides of (4.86)—(4.88) and

i . = P o .
to observe thatin the particular case oI(Z, max, +) , @, ®, A are digributive with
respect to one another. [

Remark 4.94 Sinced, and theefore<, operate componentwise for power series, it is
clear thatA operates also componentwise, as was claimed in Lemma 4.93. However,
there is aother interesting way of viewing this question. Consider a faffi|y;c; <

D[ Z] (we limit ourselves to a single variabesimplyto alleviate thenotation) and the

expression
N fi= A\ fitoz .
jed jed keZ

Notethat the general formula of distriltivity of any abstract operatioj with respect
to some dher operatior] | is

[TL1ax= LI [Taww - (4.95)

jeJ keK peK? jel
whereK’ is the set omagppings fromJ into K. Applying this formula to our situation,
we obtain A
Nfi=B N fieinz? .
jed peZ? jed

Then, since for ang, b € D, az‘ A bz‘ = ¢ whereverk # ¢, we can limit ourselves
to constant mappingsy in the above formula. Thefore, we finally obtain

N fi=@ N fikoz (4.96)
jed keZ jed

which is the &pected result. [ |
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4.7.2 Subtraction and Division of Power Series

Since @ operates componentwise, so doesfor power series Let usconsidery
which is more nvolved sinceR is a ‘convolution’. We again limit ourselves to a single
variablez without loss of generality. We also assume that the expokeanges inz
ratherthan inN. A power seriesf with exponents inN is nothing but a series with
exponents irZ for which f (k) = ¢ for k < 0. However, if one considers = z, for
exanple, it should be clear, from the very definition gfthatzye = z~* if exponents
are dlowed to range irZ andz\e = ¢ if exponents are restricted to belongNo

Since we onsiderk € Z, recall thatD should be complete.

Lemma 4.95 Under the foregoing assumptions, for any given f and hin D[ z], one
has

ger h ho
gL =P A o (4.97)

Proof This is another consequence of the considerations preceding Formula (4.81).
If h = f ® g, thenh(¢) = P, TTk(9(K)), wherell(x) = f(€ — K)x. Therdore,
gk) = A\, I, (h(®)), whichyields (4.97). n

Remark 4.96 There is aother way to derive (4.97), which makes use of Formula (f.3)
of Table 4.1, plus a remark concerning the division by monomial, namely:

b hwz he)zt h(Z)

4.98

1‘(m)zm @ f (m) ( )

This formula should be obvious, but note that it is stronger tharirbguality derived
from (f.2). Now, to derive (4.97), we have

B 97 = ot by definition,
= A oz by (1.3),
= An@n far 2" by (4.98),
= Am D h?%k) by sdtingn = m+ K,
= P N\ T2 by (4.96),
=D A\ T 2 by sdtingm = ¢ — k.

4.7.3 Polynomial Matrices

Since D[z, ..., Zp] is a dioid, we may consider squarex n matices with entries
in this dioid: this is the dioid D[z, ..., zp])""". Here, we justwant toreturnto the
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interpretation of such matrices in terms of precedence graphs, and discuss the issue of
‘path or circuit of maximum weight’ through an example.

Example 4.97 SupposeD is the dioid of Example 4.12 and lgt = 1 andn = 2.

Consider the matrix
A— £ edz
"\ 3¢z eqp2z )’

Figure 4.7 features thweghted graptj(A). We have
3 bz
° node 1 node 2 . ed2z

EGBZ

Figure 4.7: A graph representation of a polynomial matrix

22— 303z0Z? ed2z27
~\ 3052027 303z947

The term(A?)2, = 3@ 3z @ 472 gives the upper bound of weights of circuits of length

2 passing through node 2. Buto circuit of length 2 corresponds to this weight in Fig-

ure 4.7. This is due to the fact thB{z, ..., zp] is only partially ordered. To figure out
whathappens, one may adopt the alternative representation shown in Figure 4.8, which
anmounts to viewingA as being qual to the sunB & C of two matices withmonomial

/\Q

® node 1 node 2 0

€
Figure 4.8: Another graph representation of the same matrix

entries (according to the rule of parallel compios of graphs explained i§2.3.1—

the pair(B, C) is of course not uniquely defined). The advantage is that monomials of
the same degree can always be compared. Itis then seen that the monomials8 b

is obtained by going from node 2 to node 1 using the arc weighted 3 and coming back
using the arc weightee} the monomial & of (A?),, is obtained by going from node 2
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to node 1 using the arc weighted 3 and coming back using the arc weigHiadlly,
the monomial 422 is obtained by using the loop weighted Rvice.

Therefore, each entry 0% can always be intereted as the weight of a path or a
circuit made up of arcs belonging to eithg(B) or G(C). [ |

4.8 Rational Closure and Rational Representations

The main motivation bthis setion arises from system theory over dioids, and in par-
ticular from realization theory. Therefore, this material forms a bridge to Chapter 5.
However, since the reffs hold true n gereral diods, this theory of rational calculus
has its ntural place in the present chapter.

4.8.1 Rational Closure and Rational Calculus

We onsider a complete dioi®® and a subsef < D which containss ande. For
exampe, thnk of D as the set of formal power series in one or several variables with
coefficients in a compte dioid, and of7 asthe arresponding subset of polynomials.
In general,7 does not need to be a subdioid.

Definition 4.98 (Dioid closure) The dioid closureof a subset 7 of a dioid D, denoted
7°,istheleast subdioid of D containing 7.

This definition is well-posed since the set of subdioids contaiffinig nonempty (it
containsD itself) and this set has a mimum element (for the order relati@p) since
the intersection (lower bound) of a collection of subdioids is a subdioid. The termi-
nology ‘closu€ is judified becausd°® 2> 7 and7°° = 7°. Notice that we donot
require7 ° tobe complete. It should be clear tHat contains, and is indeed reduced to,
all elements o> which can beobtained byfinite sets ofoperationsp and® involving
elements off only.

The idea is now to consider ‘scalar’ ediams like (477), subsequently called
‘affine equations’, with data andb in 7 (or, equivdently, in 7°). The least solu-
tion a*b exigs in D sinceD is complete, but it doesot necessarily belong t8°
since the star operation involves an infinite sum. Thus, one may produce elements out
of 7° from data in7 or 7°. Onecan then use these new elements as data of other
affine equations, and so on and so forth. The ‘rational closureTofherafter de-
fined is essantially the stable structure that contains all elements one can produce by
repeating these operationdiaite number of times. We shall see that if we consider
matrix, instead ofscalar, affine euations (vith data in7"), but of arbitray large, dbeit
finite, dimensions, it isot necessary to repeat the process of using solutions as data
for further equations. In the case wheris a mommutative dioid, it is even enough to
limit ourselves to weighted sums of solutions to sets of decoupled scalar equations (the
weights belonging t@).

Definition 4.99 (Rational closure) The rational dosureof a subset 7 of a complete
dioid D, denoted 7*, is the least subdioid of D containing 7 and all finite sums,
products and star operationsover itselements. A subset 7 isrationdly closedif 7* =
7.
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This definition is well-posed for the same reason as previously. Moreover, it is clear
that(7 °)* = 7* and that7** = 7* (hence the terminology ‘closure’).

If we go from scalars to mtrices, we may first consider the subgét" C D"
of n x n matiices with entries ir{” andits rational cIosure{T“X“)*. This is a subdioid
of D™N, On the other hand, we may consider the subdi@d)"™" € D™". We date
a first resul which will be needed soon in iggresent form, but which will be improved
later on (Theorem 4.104).

Lemma 4.100 The subdioid (7™")" isincluded in the subdioid (7*)™".
The pioof is based on the following technical lemma.

Lemma 4.101 For a € D™" partitioned into four blocks, namely

a= ( G 12 ) (4.99)

a1 ax
a* isequal to

af, @ aj;a(aziaj a1 @ ax)*axar;  aj;ai2(aziajdue @ ag)* (4.100)
(22187812 ® ax2)*az1aj; (a2187,812 @ ax)*

Proof We use he fact thata* is the least solution of equation= ax @ e, whichyields
the system

X11 = anXndapXade, (4.101)
X12 = a11X12® apXoz , (4.102)
X1 = @21X11D agXo1 , (4.103)
Xo2 = @xX12@ axX2®@e . (4.104)

We can solve thisystem in a progressive manner, using Gaussian elimination. From
(4.101) and (4.102), we first calculate

X11 = aj,(@1oX21 D €) and Xip = ajjaiXes ,

which we substitute into (4.103)—(4.104). These equations are then solved fa,,

and the solutions are placed back in the equations above, yielding the claimed formulae.
Note that plcing partial leastdutions in other equations preserves the objective of
getting overall least solutions since all operations involved are isotone. [ |

Another path to solve the system is to first get andx,, from (4.103)—(4.104), and
then to calculatex;; andx;,. This amounts to interchanging the rolesagf anda;,
with those ofay, anday, respectively. Identifying the exyssionof the solution which
onegds in this way with the previous expression, the following identity is obtained:

(21871212 B A22)™ = 5, B a5,821(21285,321 D a11) 1285, - (4.105)

Proof of Lemma 4.100The sums and products of matricesTi™*" belong to(7 *)"™".
To prove that(T“X“)* is included in(7*)™", it remains tobe proved that one stays
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in (7*)™" when performing star opations over elements &f"™<". This is done by
induction over the dimensiom. The staémentholds true forn = 1. Assuming it
holds true up to some — 1, let us pove itis also true fon. It suffices to consider a
patitioning of an element o ™" into blocks as in (4.99) such that; is (n — 1) x

(n — 1)-dimensional. By inspection of (4.100), and by using the induction assumption,
the proof is easily completed. [ |

4.8.2 Rational Representations

We aregoing to establish some results on representations of rational elements. Here
the mnnection with realization theory of rational transfer functions should be clear.
For rea®ns that will become more apparent in Chapter 5, we distinguish two particular
subsets of7, narely B andC. There is no special requirement about these subsets
except thathey both must containande. Herce, we allow3 andC to beoverlgping

and even identical. The extreme casesiare C = {¢,e} andB=C="7T.

Theorem 4.102 The rational closure 7* coincides with the set of € ements x which
can bewritten as

X = CxA;bx ) (4.106)

where A, € T™*™, b, e B™*! (column vector), and ¢, € C**™ (row vector). The
dimension ny is finite but may depend on x. For short, a representation of x likein
(4.106) will be called a (B, C)-representation.

Proof Let F be the subset of all elements Bfhaving a(B, C)-repregntdion. This
subset include§ because of the following ideity:

o) (5)

Suppose that we have already proved thais stable by addition, multiplication and
star operation, which we postpone to the end of this proof, thea of course equal to
its rational closureF*. SinceF includesT, 7* = F includes7*. On theother hand,
from Lemma 4.100A; hasits entries in7*. From (4106), itis thus cear thatF is
included in7*. Findly, we condude thatF = 7* = 7*.

For theproof to be complete, we have to show that, considering two elements of
F, sayx andy, which, by defintion, have(B, C)-representation @ y, x ® y andx*
also have B, C)-representations. This is a consequence of the following formulae:

Ac e \ (b

Ay by ¢ * €
CxA;bx@CyA;byz ( CX & & ) & & Cy & )
e & A by
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(©Ab)" = (e e)<§: . >*<Z>

These formulee can be proved by making repeated use of (4.100). However, the reader
already familiar with system theory will have recognized the arithmetics of transfer
functions in parallel, series and feedback. [ |

Remark 4.103 As already mentioned3 andC can be any subsets @f ranging from

{e, e} to T itself. LetB = {¢, €}. For a fixedx € 7*, and for tvo pairs(8’, C’) and

(B, C) suchthat B’ € B and(C’ C C, a(B3, C")-repregntation can also be considered

as a(B, C)-representation. Gwersely, every3, C)-repregntation can yield &B, B)-
representation thanks to the formula (which is again a consequence of (4.100) used
repeatedly)

*

A b ¢ €
CA*b:(s € e) e & € e
C ¢ ¢ €

However, we note that the corresponding inner dimensioimcreases when passing
from the(B, C)- to the(B, B)-repregntdion (which is also &B3’, C’)-representation).

In fact, this discussion cannot be pursued satisfactorily until one is able to clarify
the issue of ‘minimal representati’, that is, for a given paits, C), and for agiven
x € T*, arepresentation yielding the minimal (canonical) valuegfThis problem is
yet unsolved. [ |

Theorem 4.104 The subdioids (7™")" and (7*)"™" are identical. Consequently,
(T*)™" isrationally closed.

Proof The incluson in one direction has been stated in Lemma 4.100. Therefore, we
need only to prove the reverse inclusion. et (7*)"™" and assume that = 2 for
the sake of simplicity and without loss of generality. Thérmanbewritten as

_ X1 X2

T\ X3 Xg
with entriesx; € 7*. Everyx; has a(B, C)-repregntdion consisting of a triple
(Ax , by, Cx), with Ay, € 7" *"_Then

X — < CXl A;]_ bX]_ CX2 A;Z sz )
Cxs A bxs  Cx AL Dy,

*

A, ¢ € € by, ¢
. Cy, C, & € e A, ¢ € e by
o € & G Cx € e Ay, ¢ by, ¢
€ € e Ay e by,

The inner dimension igi“:l n;, butit can be artificially augmented to the next multiple
of 2 (and more gnerally ofn) by adding enough rows and columns with entries equal
to ¢ in the matrces. The, since the outer dimension is 2 and the inner dimension
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is now a multiple of 2, by appropriately partitioning these matrices i 2 blocks,
one may consider thigpregntaion as a(3*?, C>*?)-representationApplication of
Theorem 4102 inthe dioidD?*? proves thatX belongs to(72<?)". [

4.8.3 Yet Other Rational Representations

So far, we haveonsidered representations of elementg bby triples(A, b, ¢), such
that the entries oA are taken ir/', wheeas those df andc are dlowed to lie in subsets
B andC of 7 which are arfirary, up to the fact that they must contdn= {e, €}.
Recall that3 andC need to be neither distinct nor disjoint.

As an exanple to be encountered in Chapter 5, consider agaas the abset of
polynomials ofD which is thedioid of formal power series in one or several variables.
ThenB andC may be aubsets of particular polynomials, or they may be reducel. to
Since brmal variables are going to be interpites ‘shit’ or ‘delay’ operators in the
system theary setting, it means that no ‘dynamics’ is allowedbrandc in the latter
ca®, whereas'some’ dynamics is allowed in the former case. In Chapter 5, we are go-
ing to consider a two-dimenmnal domain description involving two shift operators
ands in the event, resgetively the time, domain. To describe the connection between
this two-dimensional description and the more classical one-dimensional description
(either in the event or in the time domain), it is necessary to study other rational rep-
resentations. They correspond to other choices for the subsets in which the entries of
A, b, c assume their values.

Let us introduce the following notation. For two subsitandV of D, let

k
ElkeN:x:@cibi,ci ceU b eV

u*®vd=ef{x
i=1

ThenotationV®U* is similarly defined. Notice thatbelongs to the subsets so defined.
We now onsider a ‘coveringli/, V) of 7 (thatis,7 = U/ UV buti/ NV does not
need to be empty). Walways asume thaB C I/ whenconsideimg /*.

Theorem 4.105 The rational closure 7* coincides with the set of elements x which
can be written as in (4.106), but with entries of A lying in/* ® V, those of by in
U* ® B andthose of ¢, inC (we call thisan observerepresentation).

Alternatively, there exist other representations such that the entries of Ay arein
Y ® U*, those of by arein 13, and those of ¢, arein C ® U* (we call these controller
representations).

Proof Only the former statement will be proved. The latter can be proved similarly.
We first pove that if x € 7*, thenx does have an observer representation. From
Theorem 4102, we know thak has a(B, C)-representation, sayA, b, ¢). The madrix

A canbe written A, @ Ay in such a vay that Ay, contains only entries which are
elements o, and A, only elements of{. If V N is nonempty, entries oA which

lie in the intersection of those sets may be arbitrarily put eithefjnor in Ay, or
even inboth matrices thanks to Axiom 4.9. Therefore, we have c(Ay & Ay)*b.
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Consider (4.105) witlay1 = ¢, aj2 = €, a1 = a anday, = b. We obtain

@b = b*@b*ab'a)'b" ,
(e® (b*a)")b* ,

hence theidentity
@a®b)* = (b*a)*b* . (4.107)
If we use this witha = A, andb = Ay, weobtain

x=c(AAv) Ab

which is a1 observer representation.

Conversely, ifx has an observer representatiohy, by, cx), thenx € 7*. As a
matter of fact, it is easy to realize that the entries?Qf by, ¢4 lie in subsets off * (in
particular, remember thgt** = 7*). The conclusion follows from Theorem 4.10A.

Remark 4.106 Another form of (4.107) isobtained by lettinga;; = ¢, ap1 = €, a1 =
a, a2 = bin (4.105), which yields

@®b)* = b*(@b"* . (4.108)

If we return to our example dP being the dioid of power series in two variables
ands (say, with exponents i), we may for example assume that= {¢, e, y, §}—
the doid closure of which is the dioid of polynomials in, 5—and we may choose
B=C=/{¢€e},U ={e,¢ey}andV = {§}. A more expicit interpretation of this
situation will be distissed in Chapter 5.

4.8.4 Rational Representations in Commutative Dioids

We havedefined ‘rational elements’ (i.e. elementsDf) as hose elements which

can be obtained by a finite number of operations such as sums, products and stars,
stating from elements of7. This can also be viewed as the process of obtaining
(least) solutions from equations like (4.77), which in turn serve as coefficients of further
equations of the same type, this process being repeated a finite number of times, starting
with coefficients inZ". The resits of the prevous subsections showed that, indeed, all
rational elements can also be obtained by solving equations with coefficiehtsrity

once, but these should benatrix equations—or systems of equations—of arbitrary,
albeit finite, dimensions.

Whatwe are goingto discuss here is the possibility, in the context of commutative
dioids (Definition 4.10), of limiting ourselves to linear combinations of solutions of
scalar equations with coefficients ifi, or otherwisestated, of solving only ‘decoupled’
systems of equions with coefficients iry .
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Lemma 4.107 Let D be a complete commutative dioid, then

Va,beD , (a@b*=a*h". (4.109)

Proof One wayto prove thisis by direct calculations, starting from the very definition
of the left-hand side above, and reducing it to the right-hand side using commutativity.
Alternatively, one may start from (807) (for scahrs) and remark thala @ b)* =
(b*a)*b* = (b*a*)b* = a*(b*)? = a*b* whencommutdivity holds true.

A third, maybe more involved, but interesting, argument is based on considering an
equationlike (4.54) withTTI(x) = ax @ xb @ c. With or without commutativity, the
least solutiorlT*(¢) is easily proved to be equal &cb*. But, with commutativity, the
same equdion can be writterx = (a®b)x @ ¢, the least solutia of which is(a® b)*c.
Sdting ¢ = e, we obtain the identity (4.109). [ |

With this formula at hand, (400) can be given a new useful form, at least when
azp is a calar (i.e. a Ix 1 block).

Lemma 4.108 In a commutative dioid, for a matrix a partitioned into four blocks as
in (4.99), whereay, is1 x 1, and a;» and ap; are respectively column and row vectors,
then a* isequal to

( a7, (e ® a5,a10821(a11 @ A12321)") aj,(a11 @ aoaz1)*ar ) (4.110)
az,a21(a11 @ ar0d21)* as,(e® ax1(a11 @ arpdz)*ary) /- '

Proof Sinceay, andayiaf,a;, are scalars, usingt(109), one obtains
(31371212 D a22)" = (A13];212)" 85, -
Moreover, from (4.105) witlay, = ¢, we find that
(az1877812)" = e ® az1(ar1 ® aza)) as -

Therefore
(az187,812 @ az)* = a3, @ aj,ap1(a11 D axdy) ars .

These are the lower right-hand blockq4.100) and (4.110), respectively.
Consider now the upper right-hand block of (4.100) which is equal (see (4.100)) to
the lower right-hand block premultiplied &f;ai1». Using (4108),

ajj@12(8z1877812 B U)* = axapdre (e @ az1(a11 P alzazl)*alz)
= a,a,a12 (€ P @18}, (a128213},) a12)
= aa; (ed (aanaj)?t)an
= azay; (@8] a2
= a3(aj; @ azazy) an .

Similar calculations yield the fe-hand blocks of (4.110). [ |
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Theorem 4.109Let a € D™" where D is a complete commutative dioid. Then all
entries of a* are finite sums of the form &p; ¢; (b)*, where each ¢; isafinite product of
entries of a and each b; is a finite sum of weights of circuits of the precedence graph
g@.

Proof The proof is by induction. The statement is true foe= 1. Suppose that it also
holds true up to dimensiam— 1. Consider the partitioning (4.99) & with a,, scalar.

In the graph asocated witha, matrixa;,ay; describes the weights of paths of length 2
which start from one of the first — 1 nodes, then go to theth node, and finally come
back to one of the firat — 1 nodes. The paths coming back to their initial nodes are
circuits of length 2, armang other circuits of the graph associated vatiMatrix a;2az;

can be considered assteibing a graph witm — 1 nodes in which the previous paths

or circuits of length 2 can be considered as arcs (i.e. paths of length 1) or loops. As for
ay1, it describesthe aubgraph associated with the first- 1 nodes. Matrixa;; @ ajzaz;
corresponds to a graph with the same 1 nodes but with weights calculated as upper
bounds of the weights of the two previous graphs. The weights of paths of this graph
are anong the weights of paths of the graphafThe induction assumption applies to
(a11 ® a10821)*. The ®nclusion follows easily by considering the expressions of the
four blocks in (4.110) and by remembering that products of stars of scalar elements can
be converted to stars of sums of these elements using (4.109). [ |

Theorem 4.110Let 7 be a subset of the complete commutative dioid D. Then, 7*
coincides with the set of elements x which can be written as

K
x=Peaib) . (4.111)
i=1

where kg isan arbitrary finiteinteger and ¢;, bj € 7° (thedioid closure of 7).

This s a straightforwardansequence of Theorems 4.60 and 4.109.

4.9 Notes

49.1 Dioids and Related Structures

Dioids, as defined and studied in this chapter, are members of a larger family of algebraic struc-
tures that stem from various fields of mathdicgand from several woskmotivated by a wide

range of applications. We shall not attempt to be exhaustive in describing the origins of these
theories. The interested magfer e.g. to [66] where some references are given. In all these
works, the sebf axioms and the terminology are subject to some variations. The notion of
‘semiring’ has already been defined in Chapter 3. ‘Absorbing semiring’ is sometimes used when
the first operation is supposed to be idempotent (Axiom 4.9), but ‘idempotent semiring’ would
be a more appropriate denomination in this case. As already discussed, this axiom prevents the
addition from being cancellative. This is whydadran and Minoux reject the name ‘semiring’
which may suggest that the structure can be embedded into that of a ring. Hence they propose
the appellation ‘dioid’ which they attribute to Kuntzmann [80]. In French (or Latin), ‘di’ is a
prefix for ‘two’ as ‘'mono’ is a prefix for ‘one’. A ‘dioid’ is thus ‘twice a monoid'.
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As disassed in§4.3.2, Axiom 4.9 is closely related to the introduction of a partial order
relation and to a semilattice structure. However, weaker axioms may serve the same purpose.
The following axiom is proposed in [66]:

{fa=b®dc and b=add}=a=>b, (4.112)

and this axiom is sufficient for stating Theorem 4.28. We retained Axiom 4.9 because all dioids
of interest to us naturally satisfy it. An example of a dioid satisfying (4.112) but not Axiom 4.9
is (R, +, x). Howeer, this example corresponds to a cancellativatiadand it is natural to
embed this structure (R, +, x), that is, inthe conventional algebra.

Helbig [69], who himself refers to Zimmermann [130], defines an ‘extremal algebra’ with
axioms which are very close to but stronger than ours on two points:

e the multiplication is commutative;
e Axiom 4.9is replaced by the stronger one:

X @y = eitherxory .

As stated by Lemma 4.30, the latter axiom corresponds to a total order.

Cuninghame-Green [49] studies structures that we c&ligg andR,;, under the name of
‘minimax algebra’. The term ‘path algebra’ may also be found, owing to the relevance of these
particular dioids in graph theory. Reference [34] is about ‘incline algebra’ which is a structure
close to our dioid algebra, but with the following additional axiom:

Va,b, ad®ab=a, (4.113)

which says thaBb < a. This suggests that the ttiplication is close to the lowebound
(athough these two operations may be different), and that every element is less (tinan
identity element—altough the existence of an idity element is not required a priori). Indeed,
Propodtion 1.1.1 of [34] states that an incline algebra is exactly a distributive lattice (that is,
multiplication and lowerbounds are the same)d = a (that is, the multiplication itself is
idenpotent). The dioid of Example 4.15 is an incline algebra. The strugfOrel], max x)
is an example of an incline algebra for which multiplication and loim@und do not coincide.
Observe that Axiom (4.113) prevents the corresponding dioid from being Archimedian, unless it
is isomophic to the Boole algebra (Example 4.16).

Findly, since an idempotent addition can indirectly be antuced through the introduction
of a £milattice or a lattice structure, in the literature on ordered sets, owing to the properties
of the second operation (multiplication), the name ‘lattice-ordered sempgis frequently en-
countered.

49.2 Related Results

Reslts of §4.3 andi4.4, which are not very specific to dioid theory, are largely based on the cor-
responding quoted references, with a few variations with respect to terminology (these variations
have been indicated) and to presentation.

The main topic of§4.5 is about solving implicit equations like = ax @ b for example.
Unlike [67] or Chapter 3 of this book, we only considered the case of complete dioids (in which
a* always exists), which makes the problem of the existence of a solution easier, but at the price
of losing uniqueness in general (for example, in an Archimedian dibig a trivial solution
of x = ax @ b). Theorem 4.76 is an original relsufirst published in [44] with a slightly
different proof. In this same reference, a discussion of the form of the general solution of the
homogeneous equation (4.79) can be found.
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The problem of invertibility of matricesg4.6.2) has been considered by several authors, first
for Boolean matrices ([128], [120]), then for morergeral dioids ([23], [34]). Formula (4.81)
appears in [49] in the special case Bf.... As for the condition of exact invertibility (see
Lemma 4.84 which appears here for the first time), it is similar to that obtained in the above
mentioned references, but under quite different assumptions: like [34], reference [23] is more or
less in the context of an incline algebra—or at least of an algebra in which every element lies
betweere ande—whereas our result deals with Archimedian dioids.

Finally, the rational theory 0§4.8, which appeared first in [44is largdy inspired by the
use of it we are going to make in Chapter 5 in a system theoretic context.
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Chapter 5

Two-Dimensiaonal Domain Description
of Event Graphs

5.1 Introduction

In Chapter 2 a class of Petri nets called event graphs has been discussed. This class pic-
torially describes discrete event systems. The dynamics of such systems is essentially
driven by synchronization phenomena.§&5, it was shown that linear equations can

be obtained for event graphs by appealing to some descriptive variables and to some
associated dioid algebras.

To beprecise, we will call an ‘event’ any occurrence which is instantaneous, such
asthe beginning of a transition firing, the end of a transition firing (these two events
are smultaneous if transition firings are themselves immediate), the arrival of a token
at, or the departure of a token from, a place, etc. In fact, wengdjsish ‘events’, which
are uniquesince they occur only once, from ‘types of events’ which refer to families
of events of the same nature. For example, ‘a message pops up on the screen of my
computer’ is a type of event, whereas ‘a message pops up on the screen of my computer
at five o’clock’ is a particular event of thitype. In the context of event graphs, a type
of event will very often correspond to thecgssie firings of a particular transition
(we assume that firings have a zero duration).

In the ‘dater’ description, onessentifly deals with variablesl (k) associated with
types of events such that, for a given type:

e kis an index inZ which numbers successive events of this type (from an initial,
possibly negative, value onwards);

e d(k) is the epochdr ‘date’) at which the event numberkdakes pace.

The mapingk — d(k) is called thedater associated with the type of event. Because
of the meaning of the indelk, one may call this an ‘event-domain description’. For
this description, the appropriate underlying dioidRgax in continuous time 0Zmax
in discrete time. Using the-transform (which is analogous to tad¢ransform of con-
ventional system theory—see Chapter 1), daters can be represented by formal power
saies with exponents iZ and with coefficients iRmax OF Zmax.

In conventional system theory, a ‘time-domain’ description s rather used. For event
graphs, this description involves variabtgs) such tat:

215
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¢ t has the usual meaning of time (either in a continuous or in a discrete domain);

e c(t) is thenumbet of the last event of the considered type which happens before
or attimet.

In fact, there is a discrepancy between the definitions of daters and counteraciTo

k, at least from a certaitky (theinitial value of the numbering process) to a certain

ki which canbe infinite, corresponds a uniquaigk) which is well cefined. On the
contrary, for anyt, it may be tkat no event takes place gta shgle event happens

att, or seveal events occurigultaneously at. Consquently, the definition ofc(t)
adopted above is just one among several possible definitions. A purpose of this chapter
is to discuss two ‘canonical’ definitions and their relationship with daters. In any case,
the mapingt — c(t), definedover the wole time domain, will be called eounter.

The gpropriate dioid algebra of counters turns out t&hg, (seee.g. Example 2.48).

In order to enhance the symmetry between counter and dater descriptions, from now
on in this chapter, time will be discrete. Then, thdransform ofc(-) is classically
definedas the formal power seri€$), ., c(t)s' with coefficients iZmin.

In view of what happensin conventional system theory, this dual possibility of de-
saibing evert graphsby modds written down either in the event domain or in the time
domain is not usual. This arises because of the fact that trajectories exhilmha-m
tonic behavior, due to the numbering of events in the order they take plaweghy
speaking, tle mapingsk — d(k) andt +— c(t) are inverses of each other. Indeed, to
give tothis staterent a precise meaning, it will be necessary to appeal to residuation
theory (see§4.4). Anyway, thisnversion is a nonlinear operation. Nevertheless, the
dater and counter descriptions are both ‘linear’, but of course not in the same dioid.

We will discuss the fact that neither description has a definite superiority over the
other one. Then, we will study another description, namely in a two-dimensional do-
main which is the cartesian product of the event and time domains. In this new domain,
a desription involving formal power series ity, §) will be proposed. Unlik&.xand
Zmin, the corresponding dioid is no longer totally ordered, and it is not the straightfor-
ward product of these two dioids.

Section 5.6 addressebd issue of obtaining equations for ‘dual’ systems. We as-
sume that desittoutputs of an event graph are given and we wish to find the ‘best
possible’ inputs which meet this target, that is, to compute the latest input dates which
cause oyiut dates to be less than or equal to the given target. This problem of ‘invert-
ing a system’ is solved via residuation ané Hyuations so obtained are reminiscent of
adjant- or co-state equations in conventional optimal control.

Section 5.7 discusses thgugvalence of three notions related to transfer functions,
namdy rationality, periodicity and realizability. Finallg5.8 studies the response of ra-
tional systems to some periodic inputs which are shown to be eigenfunctions of rational
transer functions (in the same way as sine functions are eigenfunctions in conventional
system theory). Thaotions of phase shift, amplification gain and Black plots can then
be demonstrated for timed event graphs.

1in Frerch, ‘numéro’ rather than ‘nombre’, the former being a numerical label assigned to each event.
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5.2 A Comparison Between Counter and Dater Des-
criptions

We oonsider the simple example of Figure 5.1 and we compare the equations obtained

_Q( }l
@
AV

Figure 5.1: An event graph

for daters and counters.

Barsin places indicate the holding times of these places (in time units). [Each
transition eceives a name (indicated in the figure) and this name is alsp that
of the descriptive variable attached to this transition, be it a dater or a counter.
The name of the argument, eitHeor t, will indicate whetler we are dealing
with a dater or with a counter description. It should also be remembered that
the synbol ‘@’ has a different meaning in each context: it stands for the max
operation when used in conjunction with daters, and for the min operation in
conjunction with counters.

According to$5.1, we consider that, e.gx(t) is the nunber of the last firing of tran-
sition x occurring before or at time Thenumbering of firings starts with 1, say, for
all transtions. For the event graph of Figure 5.1, the following equations are then ob-
tained (we do not discuss the issue of initial conditions at this moment-$5séd. 1,
page 241).

Dater equations:
X1(K) = Ix1 (K — 2) @ Ixo(k — 1) & 1u(k) ;

x2(K) = 1xa(k — 1) @ 2u(K) : (5.1)
y(K) = x1(k) @ x2(K) .

Counter equations:

X)) =21t =Dt -1 put—-1) ; (5.2)

Xot) =1Ix1t = dut —2) ;
y(t) = xu(t) @ xo(t) .
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Using the former re@sentationwe derive

yk = xu(k) @& x2(k)
= 1xik—1) @ xik—2) @ Ixo(k — 1) & (1 2u(k)
= Ixy(k—1) & Ixa(k — 1) @ 2u(k)
= 1ykk —1) @®2uk) .

Thus a first order input-output relation has been obtained. It should be noticed that
we haveused two different rules in our simplifications. On the one hang, 2= 2
because we are working with the didi,ax. On theother hand, we have used that
x1(k — 1) @ x1(k — 2) = x3(k — 1) because we are interested only in trajectories;of
which are nondecreasing functions lof

Remark 5.1 The nondecreasingness is not an intrinsic property of solutions of (5.1).
For example, iu(k) = ¢ fork < 0 andu(k) = e( = 0) for k > 0 (suchinputs will be
interpreted as ‘impulses’ i§6.4.4.1), then one can check that

(k+1 k+3) ifkeven

VkeZ, (x® x® )= r
(k+3 k+1) if k odd,

is anonmonotonic soluion to (5.1). [ |

In terms ofy -transforms, the preceding simplification rules can be summarized as
follows:

ty' @y’ = maxt, 1)y’ ; tyl@ty™=tymnem (5.3)

In terms of event graphs, this corresponds to the graph reductions displayed in Fig-
ure 5.2.

/\ Ry 1
e E) = e @ = @
W R T 4

Figure 5.2: Two rules for graph reduction

Remark 5.2 Since we left apart the issue of initial conditions, one should be aware
of the fact that the reduimn shown on the right-hand side of Figure 5.2 is only valid
for certain initial conditions (in particular, it holds true for canonical initial conditions
discissed ag5.4.4.1, page 241). [ |



5.2. A Comparison Between Counter and Dater Descriptions 219

Now, using the counter representation, we derive

yt) = Xu(t) @ Xa(t)
Coxt-Deolet-out-oult-2)
Ixt —D @ xe(t — 1) dut —2)
= lyt—-Dout-2) .

We haveused tlat 192 = 1in Zmin, and that(t — 1) du(t —2) = u(t —2) becauseai is
anondecreasing function of In terms ofs-transforms, these rules can be summarized
by

ks® @ €87 = min(k, £)8" ; k8™ @ k8? = ksm=O) (5.4)

Thes rules are similar to those of (5.3) but the roles of the exponents and coefficients
are, roughly speaking, interchanged. In terms of event graphs, the rules (5.4) also
express the graph reductions of Figure 5.2 (in reverse order).

The above example also shows that in both approaches we reach a kind of ARMA
(Auto-Regressive-Moving-Average) equatiovhich, in ths specific case, involves the
same delay inite AR part in both representations, but different delays in the MA part.
Consequently, we would need state vectors of different dimensions in both cases to
convert this ARMA equation into standard state space equations (with only unit delays
on the right-hand side). Otherwise stated, the same physical system appears to be of a
different order in the dater and in the counter descriptions.

These discrepancies and dissymmetries are not very satisfactory and we could fur-
ther accumulate remarks in the same vein. Let us just mention another intriguing fact.
Figure 5.3 repreents an event graph before and after the firing of the transition named
X1 or &1. The fdlowing equations are obtained for the dater description before and after
firing.

Before firing After firing

X1(K) =ik =) @ xo(k—1) , &1(K) = 161k — 1) @ &2(K)
X2(K) = x1(k) @ u(k) , &K =&k -1 duk) ,
y(K) = x2(k) , y(K) = &(K) .

Same subditutions yield the following equivalent descriptions:

Before firing
xik) \ _ (1 e X1(k — 1) c
(Xz(k)>_<l e)(xz(k_1)>@<e>u(k),

Kk
wo=(e o) (30):
After firing

Kk \ _ (1 ¢ &(kk—-1) e
<Sz<k>>‘<e e)(sxk—l))@(e)“(k)’

Kk
vio=(e e)( 20 )
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These are twotate space realizations of the samaransfer function (which can be
proved to be equal tedy (1y)* provided that all possible simplification rules be used).
In matrix notation, we have

before firing after firing

of e

Dra oD e

%%@Jé R A
L,

—_ y

Figure 5.3: Firing a transition

x(k) = Axk - D @Buk ,  yk =CxkK) ,
£ = As(k —1) @ Bu(k) , y(k) =C&(K) .

But one cannot find a linear coordinate transformation to pass from one realization to
the other. As a matter of fact, this would require that an invertible2anatrix T exids
suchthatx = T¢&, implying for exanple that

B . & _ Ti1 Ti2 e
oot e (0)=(T B)(2),

The first row of this matrix relation implies thaty; @ Tio = ¢, herce Ty = Ty = &,
which isnot compatille with the fact thafl is invertible.

Indeed, from the physical interpretation of this situation (remember that an inter-
nd trangtion fired once), or directly from the equations, it is apparent that the true
relationship betweef andx is &(k) = x2(K); £1(k) = x1(k + 1). However, hiscan-
not be captured by a (static) linear change of basis in the state space. Because, in the
counter description, coefficients and delays are, roughly speaking, exchanged, this is-
sue of fnding a linear change of basis in the state sgaoee solved pasively when
moving to the counter description for the same example. In this description, entries
of matrices correspond to numbers of tokens in the initial marking. Firing an internal
transition removes one token froeach upstream place: this subtracts 1—in conven-
tiond algebra—from each entry of the row of matixcorresponding to that transition,
ard it does the same on the corresponding rovBoSimilarly, the same transition fir-
ing addsonetoken to each downstream place: algebraically, this adds 1 to each entry
of the corresponding column & andC. Theseoperations can be realized Ty, by
pre-, repectvely pog-multiplication by appropriate matrices which are inverseaxth
othe. For theabove exanple, the pre-multiplication involves the matrix:
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We let the reader works out this example completely in the counter description and
check this claim.

Remark 5.3 From the above example, one should not conclude any superiority of the
counter over the dater description. When it is possible, consider removing one bar from
all places upstream of a givénternal transition, and dding one bar to all downstream
places: this leaves theput-output relation unchanged, and this is indeed the dual
situation of firing a transition (which moves tokens instead of bars). Therefore, playing
with bars instead of tokens will correspond to a change of basis in the dater description,
but not in the counter description. [ |

In the next sections we move smoothly to a two-dimensional description in which,
roughly speaking, monomials suchtas in y -transforms ands! in §-transforms will
be represented by monomials of the fopfs!; thebasic objects will be power series in
(y, 8) with Boolean coefficients; and, in addition to the conventional sum and product
of series, we will be kbowed to use the rules

ykat ® yzgt — ymin(k,@at i ykat ® yky — ychma)(t") , (5.5)

which arejust the syrtiesis of (5.3) and (5.4). However, this requires an algebraic
foundation which appeals to isomorphisms, quotients of dioids by congruences and
residuation theory. As an introduction to these algebraic manipulations, the next sec-
tion discusses how the st of daters can be embedded into a more general set of non-
monotonic functions fronZ to Zmax

5.3 Daters and theirEmbedding in Nonmonotonic Func-
tions

5.3.1 A Dioid of Nondecreasing Mappings

Recall that with each type of event is associated a numbering mechanism which assigns
a nunbe to each event of this type in the order of these events taking place, starting
from an initial finite (but possibly negative) valug € Z. We also onsider a pecial

type of event which corresponds to ticks of an absolute clock. These ticks are also
numbered in increasng order, starting from an initial valug € Z (the originof time).

At each event of a given type, the current clock value is instantaneously read and the
pair (event number, clock value) is saved. The dater associated with a type of event is
just the maping fromZ into Z the graphof which is the set of all such pairs.

Obviously, daters are nondecreasing functions, but they may not be strictly increas-
ing since several events of the satgpe may occur simultaneously. We udes a
generic notation for a datertr&tly speaking, the functiod is definedover an inter-
val of Z possibly extending to infinity to the right (if events of the same type occur
infinitely often), and, wherever it is defined,assumes finite, but a priori unbounded
values inZ. Indeed in orderto extend the definition of to the whok domainZ, it is



222 Synchronization and Linearity

convenient to assuntlat the range set i3 ez u {—00} U {+00}. The conertion is
that

—00 if k < ko (theinitial value of the numbering);
dk) = +00 if the k-th event of the considered type never
B took place;

any finte value otherwise.

From a mabematical point of view, it may sometimes be useful to see daters as map-
pings from a complete dioid into a complete dioid. For this reason, we may extend the
domain ofd by sdting

d(—o00) = —c0 and d(+o0) = 0 . (5.6)

Obviously, these end-point conditions are always compatible with the nondecreasing-
ness property ofl. B
As already discussed, the natural algebra for the range spatésdt .y, that is,

(Z, max, +). It should be remembered that, Bax,

(—00) +(+00) =e®@ T =& =—00 (5.7)

according to Axiom 4.7. As for the domain spacedothe afjebraic structure we need
consists of the convertnal order riation of Z (this is necessary in order to speak of the
nondecreasingness propertyd)f and theconvertional addition (which will be needed
for defining the product of daters). At this stage, it is immaterial to decide whether the
domain will be cdled Zmi, or Zmax. Indeed, if we adopt the former option, the only
consequence is that we should speak of ‘nonincreasing’, rather than ‘nondecreasing
functionsd with regardto the order relations implied by the dioid structures in the
domain and in the range. There is however a more important criterion to decide which
name is to be given to the domain of daters. In this dioid, do we wishithat- co =
+00 ® (—o0) = —oo or + oo? Thisquestion involvest, i.e. ®, rathe than® which
is related to the order relation. We leathe ans\er open until Remark 5.4 below.

The next stage is to endow the set of daters with a dioid structure which already
appeared to beppropriate for our purpose. Namely,

e addition is just the conventional pointwise maximum, or otherwise stated
VKeZ , (di@d)(k) =di(k) ®da(k) ,

in which thesymbol ‘@’ on the left-hand side denotes the addition of daters,
whereasit denotes addition in the range didfthay On the right-land sie; this
definition is extended to infinite sums without difficulty since the range is a com-
plete doid;

e mutiplication is the conventional ‘sup-convolution’, that is, for RlE Z,

(dh ® do)(K) = @) (1(0) ® da(k — £)) = sup(ch(€) + da(k — 0)) .

(T LelZ
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Remark 5.4 The above formula canbewritten
(dh ® do)(k) =
sup(dl(—oo) + do(K + 00), d1(+00) + da(k — 00), sup(di(£) + da(k — Z))) )
Lel

Using (56) and (5.7), it can be proved by inspection that

o for finite k,
(d; ® d2)(k) = sup(di(€) + do(k — £))

LeZ

that is, the result is the same whether we consider that the donfaiorig;

e fork = —o0, weobtain(d; ® dy)(—o0) = —oo, whatever we decide upon the
value to ke given to+oco — oo in the domain of (event domain);

e for k = 400, one has that
(d1 ® dp)(+00) = sup(—oo, +00 + da(+00 — 00), sup(ds (£) + oo)) .
Lel

For the clas o fundions satisfying (5.6) to be closed by multiplication (it is
obviously closed by addition), we want to ensure tttht® d;)(+00) = +o0,
even ifd;(£) = —oo, V£ < +00. Then, wemust decide that

+00 — 00 = +0o0 in the evat domain. (5.8)

In conclusion,

¢ we should consider that the event domairZg, ratherthanZmax (however, we
will keep on speaking of ‘nondecreasing’ functions);

e we also observed tha onemay first condder that addition and multiplication
operate on functions frofd (instead ofZ) into Zmax, and thencomplde the
results of these operations by the end-point conditions (5.6). [ |

We summarize tlis subsection with the following definition.

Definition 5.5 (Daers) Datersarenondecreasing mappingsfromZmin into Zmax obey-
ing the end-point conditions (5.6) (‘nondecreasing’ refers to the conventional order of
7 in both the domain and the range). The set of daters is endowed with the pointwise
maximum of functions as the addition, and with the sup-convol ution as the multiplica-
tion.

Onecancheckthat the zero and identity elements of the dioid of daters are respectively:

ik <+ —o00 ifk<O;
—00 < 400 £ .
(k) = ék) =10 if0 <k < 400 ; (5.9)

400 otherwise; .
+o00 otherwise.
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5.3.2 y-Transforms of Daters and Representation by Power Series
iny
5.3.2.1 Power Series iy and the Nandecreasingnes Property

A convaiient way to manipulate daters is to encode them using théfransforms.
This yields formal power series with coefficientsZmax. As for exponents, owing to
the last observation inétnark 5.4, we may restrict them to belondzoFor a daterd,
D will denote itsy -transform and we have

D= @d(k)yk .

keZ

Asis usual, if some monomialX is missing in the explicit expression of some
D, this just means that the corresponding coefficient is ‘zero’, that is,| it is
equal toe.

If the set ofy-tranforms o daters is endaved with the addition and multiplication
introduced in Chapter 4 (see (4.85)), then daters and heiensorms wnditute two,
isomorphic dioids. The latter will be denotgd[y]. In D[ y], the zero element can
be denoted simply because, owing to (5.9), it is the zero series with all coefficients
equal toe = —oo. As for the identity element, it is thg-transform ofé given in (5.9),
and thisisy* =y’ @y @ y?®---.

Remark 5.6 Observe thethe interpretation ofy is that of the ‘backward shift operator

in numbering’ (or ‘in the event domain’) since the serjeP corresponds to the -
transform @ the daterk — d(k — 1). The &pression ‘backward sft’ is traditional

in system theory as is the name ‘forward shift’ for the operat(see [72]). However,

this appellation is somewhat misleading since it should be realized that, if we plot the
graphs ok — d(k) andk — d(k—1), then te later is shiftedo theright with respect

to the former. [

Notethat y itself, viewed as a formal power series which has all its coefficients
equal toe except that ofy* which is ejual toe, may beconsidered as thg-transform
of the function

def | € |f k = 1 X
k k) = 5.10
=7 otherwise. ( )

Shifting a dater may be considered as achieving its sup-convolutionpyittith y -
transforms, this operation amounts to ‘multiplying py Of course, the functiory
itself is not a dater since it is not monotonic, heneceZ D[y]. Therdore, to give

a mearing to this ‘multiplication byy’, we must embd elements ofD[y] into a
larger set, namely the set @fereral) formal power series with coefficientsZiay and
exponents irZ. According to§4.7.1, once endowed with the same operatiori3[gs]
(see (4.85)), this set is a cotee commutative distributive Archimedian dioid denoted

Zma{ V]
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The zero element of Zma] ] is again the zero series (all coefficients equal to
¢), but theidentity element of Znad y] is the series which hasnly one coefficient
differentfrom ¢, narrely that ofy ® which is ual toe = 0 (in Zmay). It is redized that
thise = y° of Zmnad ¥] is not formally equal tg/* which is the identity element in the
dioid D[ y]. HenceD[y] is not a subdioid of Zma] ¥ ]-

Actudly, this situation is pretty much related to that considered in Theorem 4.78.
To show tlis, let us firstobserve that the property of a functidn: Z — Zmaxto be
nondecreasing can be characterized by

VkeZ , fk >fk-1).
In terms of they -transformF e Zma v, this transldes into
f nondecreasings F > yF . (5.12)

This should be compared with (4.80) which provides other characterizations of nonde-
creasing finctions.

Remark 5.7 If we let k range inZ instead ofZ, without imposing the end-point
conditions (5.6), then (5.11) is no longer a characterization of nondecreasing functions.
For instance, consider the functiof suchthat f(—o0) = 2 andf(k) = 1 fork >

—oo; itsaisfies f (k) > f(k—1), and thus also (5.11), although itmst nondecreasing
overZ. If (5.11) cannot be retained as a characterization of nondecreasing functions,
then it is not clear how to solve in a singplvay the besapproximation problems
addressed below. [

Itis thusrealzed that, as a subset of eIenlen@ggX[y]l meeing condition (5.11),
D[ y]is nothing but what we have denotedZma] ] in §4.5.4. The following theo-
rem is just a rephrasing of Theorem 4.78 in the present context.

Theorem 5.8 Let 7 denotethe canonical injectionfrom D[y ] into Zmad v, and con-
sider some F € Zma{ v1-

1. Thegreatest dement F inZ (D[ y]) whichislessthan or equal to F is given by
F=y"\F=FAy 'FAy2FA--- . (5.12)

In the equivalence class of elements F of Zmay]y] which have the same  best
approximation from below’ F, this F is the unique eement which belongs to
Z (D[ y]) anditisalso the minimum representative in the equivalence class.

2. Theleast element F inZ (D[ y]) whichisgreater than or equal to F isgiven by
F=y*F . (5.13)

In the equivalence class of elements F of Zmay]y] which have the same * best

approximation from above’ F, this F is the unique element which belongs to
Z (D[ y]) anditisalso the maximum representative in the equivalence class.
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Corollary 5.9 The greatest dater f which is less than or equal to a given (not nec-
essarily monotonic) mapping f from the event domain into Znax is obtained by the
formula

vkez . fdo=/\f@® = inf f(¢0) . (5.14)
>k -

Theleast dater f whichis greater than or equal to f isobtained by

vkeZ , fk = P f@) =supfe) . (5.15)
<k

<k

Of course, these formulaeshould be completed by the end-point conditions (5.6).

Proof The formulae (8.4) and (5.15) are straightforward consequences of (5.12) and
(5.13). [

The maping Z¥ which assoates withF € Zma[y] its best @proximation from
below in D[ y] is u.s.c, but itis neither a®d- nor a®-morphism. On the contrary,
the mapingZ” which sekcts thebest approximation from above is a |.s.c. surjective
dioid homomorphism. This is why in what follows we concentrate on this type of
approximation.

Remark 5.10 Because of (5.13) and of Lemma 4.77, statement hatikl be clear
thatD[ y] is a multiplicative ideal and that

VF,G e€Zmady] ., FRG=F®G=FQG=F®G .

Figure 5.4 explains how to geometrically construct the graph of the majping

|
[ [ I A
,,,,,,,,, o- - - - - -
T T T A A
- Sl 4 e v - e
[ R R R A
- - - - - - o - - - - - - .
e
- - o -i- - & o -
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Figure 5.4: Featuring the constructiomofF

f (k) associated with the power seriBsfor a givenF (represented by the graph of
k — f(Kk)): to each point of this discrete graph is attached a ‘horizontal half line’
extending to the right (corresponding to the multiplicatiomb$) and then, he graph
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of f is obtained as the ‘upper hull’ of this set of half lines. Of course, when we speak
of ‘lines’, only the trace of those lines ov&r is significant.

The practical consequence of the preceding results is that an eleniefy dfcan
be viewed as a particular representative (indeed the maximum one) of an equivalence
class of elements &,a 1] for the equivalence relation

F=G & y'F=y'G. (5.16)

CalculationsirD[ ] can beperformed using the general rules of power series anith
representative of an equivalence class (i.e. not necessarily a series with nondecreasing
coefficients); however, the second simgiion rule (.3) is now available (the first

one is of course also valid since it arigesm the fact that the coefitientslie in Zmay).

The synbol ‘="in the second rule must be understood as the fact that both sides are in
the same equivalence class.

Because of (5.16), there is no meaning in speaking of the degree of an element
of D[y], because an element is an equivalence class, and two representatives of the
same chss may have different degrees. For example, y° (which is of degree zero
in Zmax]¥]) and y* (which is of irfinite degree ifZma y]) are the sara elemat in
D[ y]- The stuation is better for the valuation which is invariant in an equivalence
class. This is stated by the next lemma whatso &hibits another invariant of equiv-
alence classes.

Lemma 5.11 Consider F = @, f(Ky* and G = @\, 9K ¥ inZmad v]. If F
and G arein the same equival ence class, then

1. val(F) = val(G), i.e inf{k | f(k) # ¢} =inf{k | g(k) # ¢};
2. By T K = Bz 9K, ie supy F(K) = supez 9(K).
Proof

1. We havey*F = y*G. Butvaky*F) = val(y*) ® val(F) from (4.94) (equdity
holds true sinc&maxis entire), but valy*) = eand hence vaF) = val(y*F) =
val(y*G) = val(G).

2. Since the two formal power series in (5.16) must be equal, the corresponding
values inZmax Obtained by subgituting a numerical value iZmax for v, must
also be the same. Therefore, get e and the resiifollows. [ |

5.3.2.2 Minimum Representative

In general, there is no minimum representative of an equivalence class bealse
not aA-morphism (check thaf’(F A G) < I°(F) A Z°(G) with F = e® 1y and
G = 1@ y). However, it turns outhat some equivalence classes do have a minimum
representative. We address this question now. RLetefine an equivalence class. If
there vere to exist a minimum member, s&y, of that euivalence tass, then we
would have that

V' F=yF=F@®yy*F=FayyF,
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where thefollowing identities have been used:
y*=e®yt and yT=yy*. (5.17)

Hence, if such anF were to exist, it should be the smallest one satisfyjrid- =
F @ y*F, and therefore it should be equal f6F = y " F.

Theorem 5.12 (Minimum representative) Let F = @ f (K)y¥ € Zma{¥] and F o
y*F e yTF. Then, one also has that
F=Fey'F (5.18)

(equality in Zma] ¥]). Moreover, this F depends only on the equivalence class of F
of which itisa minorant. Finally, the following three statements are equivalent:

1. F belongsto the equivalence class of F of which it is the minimum representa-

tive;
2. val(F) = val(F);
3. limgs o f(K) = .

Before giving a proof, let us consider Figure 5.5 which illustrates lFois obtained
in practice using a geometric constructionydfF < y+F: theblack gaph represents

m/;gye/mﬂ/‘/yw
V2 R 2

IHWWIAY SN ESIHEIIE

Figure 5.5: Featuring the constructiomefF o y*F

y*F (a nondecreasing mapping frofito Z); the grey graph represenjs'F and

is obtained from the previous one by a unit shift along ¥hexis; finally, only the
coefficients corresponding to points where the black graph differs from the grey graph
are nonzero coefficients &f.

Proof of Theorem 5.12 First, wehave that
F=y'Fey'F=(F®y'F)esy"F=Fey*F

according to Formula (f.17) of Table 4.2.

The former &pression shows thd depends only on the equivalence classof
(sincey™F = yy*F andy*F characterizes an equivalence class). The latter expres-
sion shows thaF < F, herce F is a minorant 6the equivalence class df since his
inequality can be obtained for ayin this subset.
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1=2 IfF belongs to the equivalence classafthen Lanma 511 shows that vaF) =
val(F).

2= 3 Suppose that vaF) = val(F). We also asume thaf # ¢ since otherwise
F = ¢ and the theo~rem is trivial. Then, either ¢a) > —oo —in this case
the equality with valF ) need not be assumed since it can indeed be proved, see
Remark 5.13 below—or it is equal teco. In the famercase, clearlyf (k) = ¢
for all k < val(F) and stéement 3 is trivially true. In the latter case, we are
going to prove that statement 3 also holds true. Indeed, since val —oo, for
all ko, thereexigts ky < ko suchthat f (k) > . Since (518) says thaff (k;) =
f(ky) = SUR <1 f(¢), it is necessary that SUP 1 f(0) < fky) — 1. Let
ki = kj — 1 < ko. By repeating the same argument, we can construct a strictly
decreasing subsequenige} such thatsup_, f(¢) < f(k +1)—1. Thisclearly
shows hatlimy . sup f(£) = ¢, and shce the mapping — sup f ()
is nondecreasing, then lim _., sup . f (€) = e. This pioperty is equivalent to
staement 3. -

3= 1 Stabment 1 is equivald tothe fact thatA = B with A def y*Eand B &f y*F,
which is dso equivalent to the fact th& « A = ¢ becauseF < F and tus
A < B. From (517), we have thaf = y A@ F andB = y B@ F. With the help
of Formula (f.16) of Table 4.2, we have that= yB @& (Fe yB) = yB & E.

Moreover,
BeA = (yBaF)o(yAaF) ~
= (yBe(yA®F) o (Fe(yA®F) using (f.14),
= yBe (yA®F) sinceFe (YA® F) =¢,
— (yBeyAeFE using (f.18),
< y(BeAsF using (f.20),
< yBeA (obvious).

Itfollows thatX ' B A saisfiesX < y Xwhich means thak(-) = b(-)e a(:)

is nonincreasing. In addtion, for all k,

X(k) < b(k) =supf () and kIim bk) = ¢
[Sk —> —0Q0

from the assumption that statement 3 holds true. Theretdoejng nonincreas-
ing and tading tos at —oo is alwaysequal tos. [ |

Remark 5.13 If —oo < val(F) < +oo, then valy*F) = val(y") ® val(F) =
1+ val(F) > val(F). From (518), we have thafF < y*F & F, herce, with (4.92),
val(F) > min(val(y tF), vaI(F)) But val(y*F) > val(F), herce valF) > vaI(F)
On the aher hand, smceF < F, vaI(F) > val(F) and findly vaI(F) = val(F).
val(F) = +o0, thenF = F = ¢. Therdore , Statement 2 fahe themem can be
replaced by the statemefial(F) = —oco = val(F) = —oo}. [ |
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5.4 Moving to the Two-Dimensianal De<ription

In (5.3), the simplification rule on exponents is dual to the one which applies to coeffi-
cierts. Therefore, it seems more natural to preserve the symmetry between exponents
and coefficients. This is realizdzy a new coding of daters usirigio shift operators
instead ofone, the so-called two-dimensional domain description. Then a nice inter-
pretation of this new coding will be given in terms of ‘information’ about events.

5.4.1 TheZmaxAlgebra through Another Shift Operator

In Examples 4.17 and 4.18 we observed that a dioid of vectors or scalars can be made
isomorphic to a dioid of some subsets of this vector or scalar set in whiglays the

role of addition and+ (‘vecr sum’) tha of multiplication. For our present purpose,

we monsiderZmax 0n the one hand, and, U, +) on the other hand, wheré is the

subset of Z consiging of ‘half lines of Z’ extending to the left, and includings andZ

itself. More precisely, we consider the mapping

{seZ|s<t}) ifteZ;
ANZ—-2", t— 1o ift=¢6=—00 ; (5.19)
Z ift=T =400 .

HenceA (Z) = L and A is a dioid isomorphism between the two complete dioids

Zmaxand(L, U, +) (in thelatter,e = @ ande = (—oo0, 0]).

We now @nsider the set of power series in one variahl&ith ‘Booleancoeffi-
cients’ (denoted ande) belonging to the dioid of Example 4.16, and with exponents
in Z, this set of series being endowed with the conventional sum and product of series;
this dioid is denotedB[ §]. With any subsetSof Z, we asocate a power sé@s via the

mapping

S= {thes — @a‘ . (5.20)

tels

This expression should be interpreted as a series in which only coefficients equal to
e are plicitly mentioned, the missing monomials having a coefficient equal. to
Clearly, SU S is represnted by the series obtained by summing up the series related
to SandS. The enpty subset is represented by theaseries #ll coefficients equal
to ¢) and the subsetZ is represnted ly the seriesT having all coefficients equal @
Also, if
SOS LSS ={t+t|telst s} .

then the product of the series associated wihand S’ is the series associated with
S® S. Theidentity element consists of the subg@}, and is rereented by the series
80 also deotede.

The maping (5.20) is an isomorphism between the two complete di@tsu, +)
andB[8]. The subsetl of 27 is mgpped to some subsetB{ §] which we ae going to
characterize. Note first thatis the series representing the subjdét and ‘multiplying
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by 6’ amounts to shifting a subset to the right by one (later &mwill be called a
‘backward shift operator in timing’ or ‘in the time domain’ for reasons akin to those
put forward in Remark 5.6). Then, a half line € £ is a sibsetcharacterized by the

fact that it is included in its own image obtained by translation to the right: in terms
of associated series, and keeping the same letter to denote the half line and its coding
series, ths means that. < 8L or

L>s1L . (5.21)

Given ay subsetS, we may bok for the smHest half lineL larger than (ie. ontain-

ing) S: in the algebraic setting, this amounts to solving the algebraic problem of the
‘best approximation from above’ of a seri8by a seried. saisfying (5.2. By direct
applicaion of Theorem 4.78, the solution of this problem is obtained by using the for-
mulaL = (§~1)*S. Thedioid L[§] of seriesrepreenting haf linesL is isomophic to
thequotient of B[ 8] by the congruence

VS, SeB[§] ., S=S <o ¢ H*'s=06"H*s , (5.22)

and itis dso isomorphic to the multiplicative ide&—1)*B[§]. Calculaions inL[4],

which amount to manipulations of half lines—and hence also of numbei ac-
cording to the mapping (5.19)—can be done with any representative of an equivalence
class inB[ 4], provided that the following simplification rule be remembered (which
should remind us of the second rule in (5.4)):

8( @81 — 8ma>(t,r) .

Thisindeed expresses the equivalence of both sides of the equation.

Remark 5.14 The composition of (5.19) and (5.20) (direct correspondence
to (§~1H)*B[48]) is given by

St—H* iftez ;
t — 1 ¢ (zero series) f=¢=—-00 ; (5.23)
EHS=0teo) =Y @8 ift=T=+00 .

In the first two cases there exist minimum representatives in the corresponding equiv-
alence classes @[§] which are respedvely §' ande (the latter class contains only

this element), but there is no minimum representative in the clags(tife lastcase).

If we attempt to allow infinite exponents for power serie®$] in order to |y that

87 is a minimum representative af, then expression (5.22) of the congruence is
no longer valid sincg*t*> andés*, which should both represefit, do not appear to be
algebraically equivalent through (5.22), thatd$® (671)" # 8* (571)". The reason is

that a sibset ofZ which is aleft half line can no longer be characterized by the fact that
this subset is included in its image by ght unit shift; this fails for the subsét-oco}.

This observation isisilar to that of Remark 5.7. [
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5.4.2 TheMi{y. 8] Algebra

We startfrom the set of formal poweseries intwo variablegy, §) with Booleancoef-
ficients and with exponents I, this sstbang endowed with the conventional addition

and multiplication of series: this dioid is calleB[ y, §]. In two stages, that is, by two
successive quotients by equivalence relations, we reach an algebraic structure, called
My, 8] (pronounced ‘min maxs’), which is isomorphic taD[y] (the dioid of
y-transforms ofhondecreasing functions fromZ to Zmay). At the first stage, we reach

a didd which is isomorphic t&mna 1] (¥ -transforms ofyeneral functions). We also

show that the two steps can be combined into a single one. For each stage, we give
algebraic and geometric points of view.

5.4.2.1 From Sets of Points in the Plane to Hypographs of Functions

The doid B[y, 8] is compete, commutative, distributive and Archimedian. It is iso-
mormphic to the dioid(ZZz, U, +) via the one-to-one correspondence:

Fe2” F={KkOlkper — P r*s' eBly.s] . (5.24)
(k,t)eJr

The lower bound operatiom in B[y, 8] corresponds to the intersectionin 22,

Instead of subsets of points#f, we can manpulate their indicator functions over
72 which assumehe valuee at a point belonging to the corresponding subset and
the values elsewhere. This set of Boolean furaris is a complete dioid once endowed
with the pointwise maximum as the addition and the two-dimensional max-convolution
asthe multiplication. Then, elements Bf y, 8] appear as(y, §)-transforms of these
functions in an obvious sense.

From analgébraic point of viewB[ y, 8] is alsoisomorphic toB[ §][ ] which is
the dioid of power series in one variahtewith coefficients inB[5]. The equivalence
relation (5.22) can be extended to elementB[pf, 5] by usng the same definition
(note that(d—1)* is another notation fots ~1)*y°in B[y, §]). The quotient of B[y, §]
by this equivalence relation, denotési1)*B[y, 8§] because it is isomorphic to this
multiplicative ideal, is also isomorphic t@s ~*)*B[ 8] )[ ¥ ] which is thedioid of power
series iny with coefficients in(s~1)*B[§]. Sincethis one is ismorphic toZmax by
the correspondence (5.23), we are back to the dbig,fy]. We summarize these
consideratins withthe following lemma.

Lemma 5.15 The dioids (§~1)*B[ y, 8] and Zmax] ] are isomorphic.

Geometreally, if one stars from a collection of points i@? (coded by an element
of B[y, 6] asindicated by (5.24)), the quotient by (5.22) corresponds to ‘hanging a
vertical half line’ (extending downwards) at each point as shown in Figure 5.6. This
operation is the counterpart of the isomorphism describéib ih.1 whichassociates
a half line extending to the left with each number Bf,ax (but NOWZ a4y is digposed
vertically along they-axis). All the subsets &2 yielding the same collection of points
under this transformation are equivalent. We obtain the geometric representation of
an element o((afl)*IB|[8]|)|[y]| (in fact, a maximum represeative of an guivalence
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Figure 5.6: Hypograph

class). Sincg(s~1)*B[s] )1 is isomorphic toZma v1, this geometic figure is in
turn in one-to-one correspondence with tharansform of some functiok — f (k)
of which it is the ‘hypograph’ (see Definition 3.37). This function is determined by

fikes f(k)= supt . (5.25)
(k,t)eJr

Conversely, given a functiofi : Z — Zmay, it follows from (523) that one represen-
tative of the corresponding elemeft € (§~1)*B[y, 8] is obtained by

F= ( b ykaf<k>) ® ( b yka*). (5.26)
{ } {

k|—oo< f (k) <400 K| f (k)=+o00}

5.4.2.2 From Hypographs of General Functions to Hypographs of Nondecreas-
ing Functions

The next stepd to restict ourselves tanondecreasing functions. This amounts to
making the quotient ofs~1)*B[y, s]—isomorphic to Zmad ¥ J—by the equivalence
relation (5.16): the result is isomorphic to the multiplicative ideals —1)*B[y, 8],
and it will be denotedVii] v, 8]. This dioid is isonorphic toD[ y].

Lemma 5.16 The dioids D[ y] (dioid of y-transforms of daters) and M&{y, 5] =

y*(~H*B[y, 8] areisomorphic.

Geometrically, this new quotient amounts to attaching a horizontal right half line
to each point of théaypograph of a general function (as we did in Figure 5.4) to obtain
the hypograph of a nondecreasing functwmwhich is deermined by

d:k—dk = supt . (5.27)

(.Hedp
<k

This formula is derived from (5.25) and (5.15). Conversely, given a nondecreasing
functiond, one represeative in MfH{ y, 8] of this dater isobtained by (5.26) withd
replacingf, that is,

F= ( b ykad<k>) ® ( b yka*) . (5.28)
{ } {

k|—oco<d(k)<+o0 k|d(k)=+o00}
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5.4.2.3 Directly from B[y, §] to My, 8]

It is redized that the quotients associated wisit!)* and with y* done sequentially
canbe condensed into a single one using the new equivalence relafi&fyirs]:

VA BeB[y,8] ., A=Be y*¢H*A=y*6"H*B . (5.29)

Because of Formula (4.109)i{ v, 8] is alsoequal to(y & §~H*B[y, 5].

Geometredly, starting from a collection of points i (in one-to-one correspon-
dence with arelement ofB[ y, §]), onefirstattaches vertical half lines down from each
point, and then horizontal right half lines to all the points so obtained: this amounts to
fixing a mne extending in south-east directions with vertical and horizontal borders to
each original point. Note that the cone with its vertex at the origin is coded @y 1)*
in B[y, 8]; it corresponds to the identity element in the quotient dioid.

Notation 5.17 We introduce the following notatior¥(k, t), (¢, t) € Z2,
{,7) <k, t)yorkkt) =, 1)) < {¢ >kandTr <t} ,

{(6,7) <k, t)york,t) = (£, 1)} & {(€, v) < (k,t) and(¢, 7) # (k. 1)} .
|

Geometredly, the point (¢, ) lies in a south, east or south-east direction with
resgect to(k, t). The ebments ofM{i] y, 8] could have been obtained by raising the
geometric problem of finding the smallest set of point&frcontaining a given set of
points and closed by translations to the right and downwards (thatis, a set containing its
own images by these translations). The corresponding algebraic formulaf&frins]
is the following: for a giverA € B[y, §], find the ‘best approximation from above’ by
a B saisfying

B>yB, B=>8'B orequivalenty B> (y &8 1B .

By application of Theorem 4.78, thB is equal toy*(6~1)* A and it is themaximum
representative of the equivalence clas®ofThe problem of minimum representatives
is addressed later on.

Note that there $ another path to obtaid{r]y, 8] from B[y, 8]: it consigs in
making the quotient by * first, followed by thequotient by(§~1)*. This pracedure
may be interpreteih terms of functions$ — g(t), which amounts to inverting the role
of thex- andy-axes. This is what we will do when considering counter descriptions in
§5.5. Finally, we obtain the commutative diagram of Figure 5.7.

The practical rule for mapulating elements oMy, 8] is to use any rpresn-
tative in each equivalence class and the usual rules oftiadcand multiplication of
power series in two variables plus the rules (5.5) which should be understood as equiv-
alerceswith respect to the congruence (5.29). The syni@ y, §] is supposed to
suggest the rules (5.5) which involve min and max. These rules can be summarized by
the following one:

€, 7)< (kt)= p*st @ yls™ = ykst . (5.30)
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Bl[yv 5]] (6_1)* — (8_1)*B|[]/, 8]]
]/* ()/ o) 8_1)* )/*
v*Bly. 3] ¢ —— Minfy. 4]

Figure 5.7: Commutative diagram

The comments preceding Lemma 5.11 can be repeated here with some adaptation.
Because of (5.29), it is clearly meaningless to speak of the degrge am of the
valudion in 8, of an elenentof M v, §]: two members of the samegiivalence class
may have different such characteristics. The nextlemma is a rephrasing of Lemma 5.11
in the context oV, 1.

Lemma 5.18 Consider F and G in B[y, §]. If F and G represent the same e ement
of My, 6], then the valuationsof F and G in y are equal, and so are the degrees
of Fand Gins.

Proof Essentidly, the proof uses the same argument as at point 1 of the proof of
Lemma5.11 We dart from the equality of/*(6~1)*F andy*(6~1)*G (equdity in

B[y, §]). Then weapply (4.91), respectively (4.94), to the degreesjrespectively

the valuation iny, of thos wries. These are equalities singe €} is an entire dioid.

We findly observe that de@é—1)*) = val(y*) = e. n

Definition 5.19 For any element F of My, 8], itsvaluaion (still denoted val(F)),
respectively its degree(still denoted deg(F)), is the valuation in y, respectively the
degreein §, of any representative (in B[y, 8]) of F. Suchan F isa polynomialifitis
equal to ¢, or if its valuation and its degree are both finite. It isa monomialifitisa
polynomial and, when it isnot equal to ¢, if itisequal (in MH[y, 8§]) to yva(F gdedF),

Of course, we cannot claim here that &) < deg(F) as is the case for conventional
nonzero polynomials or power series. However, it is straightforward to see that the
relevant properties of Lemma 4.93 are still valid (with equality). Also, for a given
polynomialF, any monomial which is greater than or equalfanust hae a valuation

not largerthan va(F) and a dgree not smaller than déf§). Therdore, the smallest
such monomial isy Val(F) gdedF) |

5.4.2.4 Minimum Representative

Let us return to the problem of the minimum representative in each equivalence class.
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Theorem 5.20 (Minimum representative inMi[ v, 8]) Let F = @ f (k, t)ykst
B[y, 8] (f(k,t) e B)and F £'(y @ 6-H)*F o (y ® -1 F. Then, one hasthat

F=Fe(®sH'F (5.31)
(equality in B[y, 5]). Moreover, F depends only on the equivalence class of F of
which it is a minorant (the equivalence rlation is (5.29)). Finally, the following three

statements are equivalent:

1. F belongsto the equivalence class of F of which it is the minimum representa-
tive;

2. val(F) = val(F) and deg(F) = deg F);
3. thefollowing two conditionsare satisfied:

VteZ , FKeZ: Y1) =kt , fE,r)=¢, (532
VkeZ, TFteZ: Y1) =kt , f,r)=¢. (5.33)

Figure 5.8 illustrates the geometric construction of the minimum representative: the set

/ﬁ/ﬂ'/f&ﬂ/p/zy//}y/ﬁﬁ 

NN S ENESEINEANE

Figure 5.8: Featuring the construction@f® s 1)*F < (y ® 6 H*F

of points ofy*F (in white) is shifted downwards (shift by* which yields the light

grey set) and to the right (shift by which yields the darlgrey set), and only the points

of the white set which are not ‘covered’ by points of at least one of the grey sets are
kept for the minimum representative.

Proof of Theorem 5.20 The fact thatF only depends on the equivalence class of
F and that it is a morant of this equivalence class is proved in the same way as in
Theorem 5.12y & 6% now repacingy.

1= 2 Thisis an immedate ®nsequence of Lemma 5.18.
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2 = 3 Wecondder the equality of valuations and show that itimplies (5.32). A similar
proof, not given here, canbe made for the equdity of degrees implying (5.33).
The case wheR = ¢ istrivial. Moreover, when vdF) is finite, itcan beproved,
as shown in Remark 5.13,dhths implies that valF) is equal to itand (532) is
again obvious. Finally, suppose that v&) = val(F) = —oco andF # e. Pick
someko; there musexist somek; < ko and somey suchthat f (kj, t}) = e,
which imgies thgtf(k(’),t(’)) = eand, for all (¢, ) > (k. tp), T(£, 1) = ¢,
since otherwisef (kj, ty) would be equal te by (5.31). Setky, t) = (k) —
1,t; — 1). We can repeat the same argument and find sdkhet;) suchthat
ki < ki, f(kj,t)) = eand, forall(¢, 7) > (kj,t)), f(¢, ) = . Necessarily,

t; < t{ — 1 dnce otherwise, we would have found @&;, t;) > (kj, ty) such
that f (ki, t;) = e, which is a ontradiction. Hence we can construct a sequence
{(k.t)} with the mentioned property and such that, < k' andt/,, < t/.
Hence(k/,t/) — (—oo, —0c0) asi — +oo. Letanyt be given. Pick the next
(k. t) suchthatt/ < t. Setk = k' — 1. Thisk fulfills the condition expressed by
(5.32).

31 Let X £ Bo Awith AL (y @5 )*F andB &' (y @ sH*F. To prove

that F belongs to the equivalence class determined-bwe reed to prove that
A = B. Since weknow thatA < B, it suffices to prove thakK = ¢. In a way
similar to that d the proof of Theorem 5.12, it can be proved that

X<@y@®shHX . (5.34)

Suppose that there exidlls, to) suchthatx(kg, to) = €. Then, because of (5.34),
eitherx(k, t + 1) or x(k — 1,1) is alsoequal toe. Call this newpoint (ky, t1),
wherex assumes the value This agument can be regated at the poinky, t1),
providing the next pointkz, t2) > (kq, t;) at whichx is equal toe, etc. Theefore,
we can constuct an infinite sequence of points such thkat 1, ti 1) > (k. tj)
and at each point(k,t)) = e, which also impies thatb(k;,tj) = e, since
X = be a. Oneof the following three possibilities must then occur:

e the sequence {tj} is bounded from above, hence it stays at somevaluet for
i large enough; thenk; must go to—oco wheni increases; consgiently,
there existarbitrarily small values ok suchthatb(k, t) = e; on theother
hand, according to (5.32), there existskasuchthat f (¢, 7) = ¢ for all
(€, 7) = (K, ) which dso implies thab(¢, ) &' @ 1y ep T (€. T) =&
this yields a ontradiction; -

o the sequence {k;} is bounded from below, hence it stays at some value k
for i large enough; thent; must go to+oco wheni increases; consgiently,
there exist arbitrarily large values bsuchthatb(k, t) = €; on theother
hand, according to (5.33), there existstasuchthat f (¢, ) = ¢ for all
(¢, 7) = (K, ©) which dso implies thab®, ) &' @B, .,k f (€, ) =
e; this yidds a ontradiction; -

e the sequences {k;} and {tj} are both unbounded and converge to —oco and
+o0, respectively; this again yields a contradiction with both (5.32) and
(5.33).
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Findly, x cannot assume the valieanywhere. [ |

Remark 5.21 With the aid of (5.27), it is seen that the condition (5.32) is equivalent to
the fact that lim_, _», d(k) = ¢ which is gatement 2 of ieorem 5.12. But now there

is an extra condition, namely (5.33) hwch is equivalent to saying thdtk) remains
finite for all finite k. Therea®n for this extra condtion is that, inZma] ¥], the point
+oo does belong to thg-axis, whereas inB[y, §] it does not. About this issue, the
reader should refer to Remark 5.14. [

5.4.3 Algebra of Information about Events

We aregoing to provide an interpretation of the algebraic manipulation of power series
of B[y, 8] using the additional rule (5.30) in terms of the manipulation of information
about events. Consequently, the relation ordeéntroduced earlier will be interpreted

as the domination of pieces of information over one another.

Given a power serie§ (see (5.24)), we may view each pak,t) € Jr as the
coordinates of a ‘pixel’ irZ? which is ‘on’ (whereas pairs of exponents ©f, §) cor-
responding to zero coefficients Frepreent pixels which are ‘off’). Each such pixel
which is ‘on’ gives a piece of information about the associated datevaluated by
(5.27): it says tha¥¢ > k, d(¢) > t, or, in words, ‘the evehnumberedk and thesub-
sequent ones take place thie earliest at timé'. Geometrically, the graph af cannot
cross he region ofZ? delineated by the south-east cdqu@!, ) | (¢, 7) < (k, t — 1)}.

Now, given two pixels(k;, t1) and (ko, to), the fabidden region is of course the
union of the two corresponding cones. Obviouslyk, t1) < (kz, t2), the piece of
information associated with the latter pixel is at least as informative as the two pieces
of information together (for one cone is included in the other one) and hence the latter
piece of information only may be kept. Indeed, we are just rephrasing the rule (5.30). In
summary, power series M{{ y, 8] can be iterpreted as representations of collections
of pieces of informationlzout events, and summing up two power series consists in
gahering all the pieces of informationbught by the two series about the same type of
ewen. At ary stage, the reduction of the representation using the rule (5.30) amounts to
canceling the pieces of information which ardwadant. The relation order associated
with this idempotent addition expresses the domination of collections of information
over one aother. The partiglarelements, which corresponds to the power series with
zero coefficients, has all its pixels ‘off’ arterefore it brings no information at all. It
is the neutral element for the addition of information.

To complée our interpretation of the manipulationsMf[ y, 8], we discuss the
product operation in the next subsection in which we return to event graphs.

5.4.4 M|y, 8] Equations for Event Graphs
5.4.4.1 Transfer Function

Let us refer back to Figure 5.1. With each tridias is associated a power series in
My, 81 (with the same name as the transition itself) which encodes the information
available about the corresponding dater trajectory. For the sake of simplicity, in the



5.4. Moving to the Two-Dimensional Description 239

same way as we have assumed that there i@badjclock delivering the ticks num-
beredt for all the transitions, we assume that there iemon initial value of the
numbering mechanisms at all transitions (assigning nunbatsuccessive transition
firingg. Then, each arc between two tridmmns, indeed the place on this arc, trans-
mits information from upstream to downstream, but this information is ‘shifted’ by the
number of ‘bars’ in terms of timing and by the number of ‘dots’ in terms of number-
ing. Algebraically, this shift is obtainedytmultiplication of the corresponding series
by the appropriate monomial. For example, since the place betwaadx; has one
bar, and Bice e.g. u denotes the information available about the transition with the
same name, the arc — x; carries thenformationsu. Herce x; > §u, that is, the
information available ax; is at least Su. In the same way; > y28x; andx; > y8x,.

The trandtion x; gathers the information brought by all incoming arcs. Finally,

X1 > y25X1 @ ySX2 D Su .

In the same way, we can obtain inequalitiesfgrandy. In matrix form (remenber
thatall elemens bebng toM&] y, 8]), we obtain

X1 v yé X1 8
(e) = ()G )e e )
X1
y = (e e)<X2>
of the gerral form
X> AXx@ Bu , y>Cx . (5.35)

Thes inequalities should be compared with the equations obtaingsl

Remark 5.22 Without our assumption of a common initial value of all the numbering
mechansms corrections should have been made as for the exponentimthe shift
opeator assaiated with each place in order to acmt for the difference in numbering
initial values between the upstream and downstream transitions of éus.pl [ |

We make thedllowing assumption which is different from that made§ih5.2.3,
but which will find a justification later on in this section.

The initial global clock value it = 0 by convetion, and the numbering
mechanism at each trdtien assigns the valuk = 0 to thefirst transition
firing occurring at or after time 0.

This convertion does not mean that tokens cannot be brought from the outside world
before time 0: it suffices to include these tokens in the initial marking of the place
connecting the input transition with other internal transitions.

Remark 5.23 (Interpretation of ¢ inputs) Because is the bottom element, aninput
is the leas constraining input possible: it is less constraining than any ipdat! for
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arbitraily large n andt. Therdore, one may view¢ inputs as those which correspond
to bringing an infinity of tokens at time-oc. [ |

Sofar, only the inequalities (5.35) have been obtained. Without further information,
the behavior of the system is not complgtspecified andnothing more can be said.
In paticular, lag times of tokens of the initial marking (see Definition 2.49) have not
been stipulated. For the time being, weeggia mathematal answer to this lack of
information by selecting a ‘canonical’ solution to the system of inequalities. Later on,
a more oncretanterpretation of this uniquely defined solutionin terms of arrival times
of tokens of the initial marking in lces will be given.

From Theorem &5, we know that the least solution of (5.35) is given by

X = A*Bu , y=Cx =CA*Bu , (5.36)

ard that it satisfies the equalities in (5.35). This solution corresponds to the earliest
possible occurrences of all events. Fbe ttime being, let usssume thathe least
soluion is indeed the one of interest. We will return to this issue later on. As an exer-
cise, the reader may try to evaluate the expresSiéhB for the consiéred example.

This canbe done either by Gaussian elimination (hint: first expressith respect to

X1 andu, then ®lve a fixed-point equation iry), or, equivalently, by using the for-
mulae (4100), or preferably (4.110), and (4.109), plus the simplification rules (5.5).
Findly, oneobtains

y=38%(y8&)*u . (5.37)

Under the assumption that the earliest possible behavior is the one which will occur,
we reach the conclusion that thegut-output relation of the event graph of Figure 5.1

is given ty (5.37): in generalC A* B will be called thetransfer function of the system

(for single-input-single-output (SISO) systems).

NotethatC A* B encodes the output dater caused by the input dat@nepossible
repregntdion ofeis 8%(y° @ y1 @ y2 @ - - -). Dueto the convention adopted earlier
regarding the initial time and the initial numbering value of events, the iepudy be
interpreted as the action of firing the transitioan infinite number of times at time 0
(or putting an infinite amount of tokens at time O at the inlet of this transgiofis
is the analogue of anmpulsein conventional systa theory, and therefore the transfer
function may be viewed as the coding of ilngoul se response.

We now retirn to the issue of selecting the ‘earliest possible solution’ of (5.35).
This solution corresponds to the least constraining conditions. It does not only mean
that transitions are fired immediately after being enabled, but also that ‘the best initial
condtion’ must be selected: this concerns the time at which tokens of the initial mark-
ing are available; these tolke must not determine the firing epochs of transitions they
contribute to enable, whatever the inpuis, and whatesr the holding times are. For
the relations (5.36) to be valid for all irrespecive d theinitial marking and holding
times, we thus assumesliolowing condition.

2with the convention 0§2.5.2.3 regarding the numbering of events, the same sequence of events would
be coded by(yl @ y2®---) =y.
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Tokensof the initial marking are available at timeoo.

This convertion corresponds to always choosing lag times equal-te. These lag

times may fail to fulfill item 2 of Definition 2.50 of weakly compatible lag times. If
other lag times are desired, there is a way to introduce them without changing the above
convention. Tks is the topic of the fbowing discussion.

5.4.4.2 Introduction of More General Lag Times

Considera placep of anewvert graphwith, say, two tokens in the initial marking and a
holding time equal to two time units (see Figure 5.9a). Suppose that for the two tokens

w
|—’©\
| —@9)—| | — =3 —O—]
X1 p X2 X1 p X2
(a) (b)
Figure 5.9: The introduction of lag times

of the initial marking, we wish to have the lag time$0) andw (1), resgectively. Then

the event graph is modified locally in such a way as to introduce an additional place
ard two additional transitions, one of which is an input transition (label§ds shown

in Figure 5.9b. The new additional place keeps the original initial marking and holding
time. The orginal placep is now free of any initial marking and holding time. The lag
timesare forced by the additional input

w=y%"Q gD (g y% Ve ..), (5.38)

that is, the first toke is inroducedat time w(0) and infnitely many tokens are in-
troducedat time w(1). Since the convention that tokens of the initial marking are
avdlable since—oc is still assumed, it is seen that indeed the first token of the initial
marking starts enabling transition attime w(0) and the seend token does the same
attime w(1), whichis consistent with the definition of lag times. After timg1), the
input defined by (5.38) is no longer constraining for the rest of the life of the system.

Consider again Figure 5.9a, and assume now that this figure represents an isolated
event grah, instead of a part of a laegevent graph (thatis, grey arrows are discarded).
Renamex; andx; asu andy, regectively. The input-output relation of such a system
isy = y252u. If, say,u = e (u is an impulse at time Othen weobtain that the
corresponding output is equal to

y=8G’ey’e- ) . (5.39)

In terms of information, we thus learn that ttiérd token (numbered 2) and the next
ones get out at time 2. Nothing is said about the first two tokens (those of the initial
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making). Alternatively, by completing the missing information in a canonical way
(behavior ‘at the earliest possible time’), it can be said that these two initial tokens
wentout at—oo. This contradicts the factthat they are part of the initial marking, if
this initial marking is meant to represent the exact position of tokens at time 0. This
paradoxoccurs because the lag times, equatte after our convention, are not weakly
compatible in this case (transitiow is erabled twicebefore the initial time). We now
discuss two different ways of resolving this contradiction. The first one is described
below. The second one is the topic of the next paragraph.

Along the lines of Chapter 2, we consider the modification shown in Figure 5.9b,
and we only accept weakly compatible lag times (they serve to determine titieaad
inputw asin (5.38)). In this specific case, these lag times must be nonnegative and less
than orequal to 2, the holding time op. Then, the input-output relation is given by

Vo = y28udw . (5.40)
Notice tha this is now areffine, rathe than alinear, function ofu. Foru = e and for
w given by (5.38), we obtain the information already provided by (5.39) for the output
tokens numbered 2, 3,. , but weobtain additional information regarding the epochs
at which bkens numbered 0 and 1 get out. We see thatgiven by (540), is not
less thary, given by (5.39)from both theMH{ v, 8] (algelraic) and the informational
points of view (of course, these two points of view are consistent accordifj§.th3).

The input-output relation (5.40) can be considered to be linear, rather than affine,
if we restrict ourselves to inputs not lessthany =28 2w (w being given by (5.38)),
which amounts to considering that the two tokens of the initial marking have also been
produced by the input: this discussion will not be pursued further here but it obviously
relaed to the notion of @ompatibleinitial condition (seeDefinition 2.61).

5.4.4.3 System-Theoretic View of Event Graphs

From a diffeent point of view, we may consider event graphs as playing the role of
block-diagrams in conventional system theory. Recall that, for block-diagrams, the
‘initial conditions’ are not directly related to the operators shown in the blocks of the
diagram, but they are either set to zero canonically (in which case the input-output
relation is indeed linear), or they are forced by additional (Dirac-like) inputs which
make the ‘states’ (i.e. the initial values of the integrators in continuous time models)
jump to nonzero values at the initial time.

In an analogous way, we may viewaggks of event graphs as serving the only
purpose of representing elementary shift operators in the event domain (number of
‘dots’) and in the time domain (number of ‘t) in a pidorial way. In this more ab-
stract (or more gstem-theoretic) point of view, there is no notion of ‘circulation of
tokens’ involved, and therefore no applicability of any ‘initial position of tokens’. The
conventional rules of Petri nets which keatokens ‘move’ inside the net (and pos-
sibly get outside) are not viewed as describing any dynamic evolution, but they are
ratherconsidered as transformation rules affecting the internal representation but not
the input-output relation (at least when tokens do not get outside the system; they add



5.4. Moving to the Two-Dimensional Description 243

a dhift in counting between input and output when some tokens get outside the system
during these ‘moves’). As discussed in Remark 5.3, there is a counterpart to trans-
formations which move tokens, namely transformations which move bars, and both
classes o transformations correspond to linear changes of basis in the internal repre-
sentatbn. That is, the vectors—see (5.35)—of twauchequivalent representations
can be obtained from each other by ltplication by an invertible matrix with entries
in M&y, 8] (a shift of the outputy may also be necessary whikens or bars cross
theoutput transitions during their moves).

To illustrate this point with an example which is even simpler than that of Fig-
ure 5.9, condder an output transitioy connected to an input transitianby a dace
with one bken and a zero holding time. This is the representation of the elementary
shift operatory. There is no way to represent this elementary input-output relation
y = yu for any u by an event graph which at the satimae preserves the elementary
view of this object: for the token of the initial marking to be ‘here’ at time zero, we
need an extra inpub = e (as in Figure 5.9b), but this modified graph represents the
input-output relatiory = yu @ e which wincides with y = yu only foru > y 1.

Remark 5.24 Note also that this is not the first time in this book that we meet a
situation in which the naive interpretation of event graphs raises problems which do
not appear in a purely algebraic conception: recall the discussion of Remark 2.86 on
circuits with no tokens and no bars. [

5.4.4.4 Reduction of the Internal Representation

It should be realized that (5.37) is also the input-output relation of the event graph
shown n Figure 5.10 which is thus equivalent to the previous one from this ‘external’

[—®—= —*Q—*I

Figure 5.10: An equivalent simpler event graph

(i.e. input-output) pait of view: this illustrates the dramatic simplifications provided
by algebraic manipulations. As in conventional system theory, the internal structure
is not uniquely determined by the transfer function, and several more or less complex
realizations of the same transfer function can be given.

Of course, this equivalence of internal realizations assumes our convention that
tokens of the initial marking are available sine@o. To handle differentlag times,
one must first appeal to the transformati@scribed above, then compute the transfer
function, and finally find a reduced representation of this transfer function taking lag
times (that is, additional inputs) intacount. As an example, the left-hand side of
Figure 5.11 displays the event graph of Figure 5.1 for which additional inputs allow
the choice of lag times for all tokens of the initial marking. For this new event graph,
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11717
O O Ow

Figure 5.11: Event graph with lag tes and its reduced representation

the input-output relation turns out to be = (y8)* (%u & w1 & w, ® ws): another
simpler evengraph which has the same transfer function.

Remark 5.25 (Multiple-Input Multiple-Output—MIMO—systems) All the no-
tions presented in this section extend without difficulty to the case when theunput
and theoutputy are (column) vectors of respective dimensiarand p. In paticular,
CA*B (see (5.36)) is then @ x m matiix (called the transfer matrix), the entries of
which are polynomial elements S¥(3] y, 5]. n

55 Counters

5.5.1 A First Derivation of Counters

As already mentioned 5.1, discrete event systems, and in particular event graphs,
canbe described in the event domain by daters, or in the time domain by counters. We
also mentioned that for a countdr +— c(t) associated with some type of event, the
precise meaning given t(t) deserves some attention: roughly speaking, it represents
the value reached by the corgEnding numbering mechanism of events at time
however, several events may take place simultaneously atttin@n the ontrary,
there is no ambiguity in speaking of the epatk) of the event numberekl From

a mathematical point of view, this issue about counters waligive a natural solution

in this section. Yet, from an intuitive point of view, the interpretation giverco

might not appear as the most natural one. This interpretation will be given only after
the relationship with the corresponding dater has been established.

At this stage, we can discuss the two possibilities of describing event graphs, by
daters or by counters, from an abstract point of view. Consider two different ways of
moving from the upper left-hand corner to the lower right-hand corner of the commu-
tative diagram of Figure 5.7, namely viaetkastern then southedirections on the
one hand, and via the southern then eastern directions on the other hand. The former
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path has been described in some detail: the first move is develogbdti@.1, and the
second move ing5.4.2.2.

We can irterpret the latter path in thers@ way. The firsmove goes fronB[ y, §]
to y*B[ y, 8] which is isamomphicto(y*B[y]) [ §]. For reasonslual to those given in
§5.4.1,y*B[ ] is isomorphic toZmi, by the correspondence frofim, to y *B[ ¥ ]:

yey* ifkeZ:
k — { & (zero series) iK=¢=4o00 ; (5.41)
G Hyv =@ley=0Hey ifk=T=-c0,

which is the counterpart of (5.23). TherefoKe,*B[ ][ 8] can be viewed as the subset
of B[y, 8] (the latter enodes collections of points ifi%) corresponding to epigraphs
of mappingsy : t — g(t) from Z into Zmnn, Or dternatiwely, as the set of-transforms
of those mappingg.

Remark 5.26 Wetill speak of ‘epigraph’, that is the part of the plane above the graph
(see Definition 3.37), although, iAnmin, thedioid order is reversd with respect to the
conventional order. [

The seond move in the diagram, namely that going frerB[ y, 5] to My, 5]
through the south, corresponds to selecting only the nondecreasing mappingsttsom
Zmin Which are precisely the counters. The approximation of nonmonotonic functions
by nondecreasing ones is ‘from below’. Again, the words ‘nondecreasing’ and ‘from
below’ should be understood with reference to the conventional order.

These two moves canbe summarized by the following formulae which are the coun-
terparts of (25) and (5.27): the mappingsandc defined by

g:t—git) = (kql&fJF k, cC:t— |Sr2n:g(s) = (k'lzr)};F k (5.42)
are successively associated with a power séfiesB[ y, §], or with the corresponding
colledion of points inZ? (see (5.24)). In terms of ‘information’, a pixék, t) € Jr,
tells that,at timet, the counter reaches at most thevaluek (since, from (5.42)¢(s) < k
for all s < t). Conversely, to a counter: Z — Zmin corresponds a power series in
My, 81, namely

( D y°<”a‘)@( ) <y1)*a‘), (5.43)
{tl } {

—oo<C(t)<+o00 tlc(t)=—o0}

a formula which follows from (5.41). This formula is the counterpart of (5.28).

5.5.2 Counters Derived from Daters

Let us now discuss the relationship that exists between the dater and the counter as-
scciated with the same type of event. We are going to prove that under some mild
condition, the counter is the dual residual of the daterce.d”.
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However, for ths to be pasible,d must first beconsidered as aisotone function
between two completdiads. Indeed, as already discusseds a monotonic mapping
from Zmin INt0 Zmax, as sub, it is antitone ratherthan isotone (that is, with the dioid
orders in the domain and the range, it is ‘decreasing’ rather than ‘increasing’). How-
ever, we nay as well consider the mappidgrom Z (with the natural order) into itself
having the same graph ds Thisd is an isotone mapping from a complete lattice into
itself. Because of the end-poimeditions (5.6) that we imposed on purpoé\e;,an be
both residuated and dually residuated, provided that the required semicontinuity con-
ditions be fulfilled (see Theorems 4.50 and 4.52, statements 2). The following theorem
discusses the dual residuation. By abuse of expression, we speak of the residuation of
d ratherthan ofd.

Theorem 5.27 A dater d isdually residuated if and only if
Jim d(k) = —c0 . (5.44)

Then, if a power seriesin My, §] is associated with d by (5.28), and if ¢ is derived
fromthis series by (5.42), thenc = d".

Proof Sinced is a mgping between two totally ordered and discrete sets, the required
upper-semicontinuity condition (see Definition 4.43) has to be checked only for subsets
{ki} suchthat A\, k = —oo. Since weimposedd(—o0) = —oo, condtion (5.44)
follows.

Then, the set of pixelgk, t)} defined by

( U <k,d<k)))u U o

—oo<d(k)<+o0 d()=-+00
=0

is assocated withd. Indeed, this isone possible collection, since a south-east cone
can be attached to any pixel of the collecti The above formula follows from (5.28).
Finally, looking at (5.42), it should be clear that

ct) = d:gfztk , (5.45)

which is nothing but a possible definition df (see satement 1 of Theorem 4.52)m

Remark 5.28 If (5.44) is satisfied, then it follows from (4.23) and (4.24) that
vt , d(ct)) >t and Vk, c@dk) <k. (5.46)
Moreover, sincec = d°, thend = ¢, herce

dk) = supt . (5.47)
c(t)<k

Relation (5.45) always holds true, even if condition (5.44) is not fulfilled. But then,
we cannot say that is the dual esdual ofd since he other statements of Theorem 4.52
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do not hold true, in particular (5.46) and (5.47) may be wrong. For example, consider
the maoping defined by (5.6) and(k) = O for all finite k. Then the corresponding

is such that(t) = +oo fort > 0 andc(t) = —oo otherwise.Therefore,d(c(0)) =
d(—o0) = —oo < 0, in contradictionith (5.46). Also, sup;)~ .t = 0> d(—o00) =

—00, in contradiction with (5.47).

However, this discssion isof purely mathematical interest since, given our con-
ventions, any realigc dater, even after sonfaite shift in numbering due to the initial
marking, will be such that(k) = —oo, Yk < kg for some finiteky. That is, condi-
tion (5.44) will always be satisfied in practice. [ |

Remark 529 (Interpretation of caunters) In words, the relation (5.45) expresses
that c(t) is the gnallest value the numbering mechanism will reach at or after time
t; otherwisestakd, c(t) is the nunber d the next event to come at or afte time t.

This explains the inequalities (5.46) which may seem counterintuitive at first sight. An
dternative definition of counters is considered in the next subsection. [ |

5.5.3 Alternative Definition of Counters

Another possible definition of countersds= d”, provided thatd be residuated. A
necessay and aufficient condition is thatl be I.s.c., which here is implied by the dual
condtion of (5.44), namely

lim d(k) = +oo . (5.48)
k—+o00

This condition means that no infinite numbers of events occur in finite time. Then, the
residuated mappingof d is, by definiton, equal to

C(t) = supk . (5.49)
d(k)<t

Evenif (5.48) is not fulfilled, we can take (5.49) as the definitioncofout then, we
cannot say that, converselgi(k) = infy)>kt). The meaning of this new countégt)

is the number of the last event which occurs before or at t. This might seem a more
natural definition for counters than the one correspondingttp However from a
mathematical poimf view, there is a drawback in manipulating this alternative notion
of counters. To explain this point, we first establish the following result.

Lemma 5.30 If c and € are derived fromthe same d by (5.45) and (5.49), respectively,
then

Vt, ct)=Ct—1+1.

Proof Let us startfrom (5.45). Ac(t) so defined icharacterized by the fact that
d(c(t)) >t but alsod(c(t) — 1) < t, thatis,d(c(t) — 1) <t — 1. Observe that if we
setk £'c(t) — 1, these inequalities also tell us that= sup, -, ¢, which isnothing

butct — 1). ]
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Givenc, a twodimensional representative MH{y, ] can be associated with
by (5.43). Therefore, owing to the above lemma, gi@rthe corresponding two-
dimensional representative is given by

( @ )/E(t)+18t+l) @ ( @ (yl)*8t+l) ,
{ } {

t|—oo<q(t)<+o0 t[e(t)=—o0}

which is of murse not as convenient as with

5.5.4 Dynamic Equations of Counters
We return to the definition (5.45) of counters. We introduce the following notation:

e Equation (5.45) defines a functionalfrom the set of nondecreasing mappings
d : Z — Zmax (referred to as the ‘dater set’) to the set of nondecreasing map-
pingsc : Z — Zmin (referred to as the ‘counter set’); if we restrict ourselves
to mappingsd which sdisfy (5.6) and(5.44), thenZ (d) is simplyd® (and then,

Z7 o) =),

¢ in the dater set, the pointwise addition of mappings (den@teid theoperation
of upper hull; in the counter set, the pointwise addition (denaipis the lower
hull;

e in the dater set, the ‘shifftk — d(k)} — {k — d(k — 1)} is denotedy for
obvious reasons (see Remark 5.6); similarly, the same kind of shiftin the counter
set is anoteds;

e in the dater set, the ‘gaifk — d(k)} — {k — d(k) + 1} is denotedly; the
amalogous unit gain in the counter set is denoted

Lemma 5.31 With the previous notation, we have, for all d or d; in the dater set:

Z(dy @ dp) = Z(d)BZ(dy) . (5.50)
Z(yd) = 1.Z(d) , (5.51)
Z(1qd) =5Z(d) . (5.52)

Proof A proofcanbegiven by playing with Definition (5.45) ofZ and with the mean-

ing of thenotationy, &, ... . A smarter poof is obtained in the following way. For a
givend, let D denote the element WK v, 8] definedby the right-hand side of (5.28).
Similarly, for a givenc, let C denote the element iV y, 5] definedby (5.43). If

¢ = Z(d), it should be clear tha = D in My, 8] (that is,C and D are two rep-
resentatives of the same equivalence class). The sebesorresponds to the dater
yd, herce the ®ries assaiated with the counterZ (yd) must bey C, but ths series
corresponds, through (5.43), to the series associated with the cdidnter 1.Z(d).

This proves (551). Formula (5.52) can be similarly proved (by noticing that the series
associated withgd is § D).
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As for (550), letD;, i = 1, 2, be the sdes a&socated with the daterd;, i = 1, 2.
Then, because of the second rule (5.5), which can be usadify, 5], D1 & D-
(hered is the addition ifM&] y, 8]) is assocated withd; @ d, (pointwise maximum
of the mappingsl; andd,). Similarly, for countersC; @ C, is assocated withc,®c,
because of the first rule (5.5). With these observations at hand, the proof of (5.50) is
easily comgeted. [ |

Remark 5.32 In the case whenZ(d) = d”, and wth the necessary adaptation of
notation, (5.50) can be viewed as a stronger version of (4.38). [ |

As a onsequence of Lemma 5.31, Equations (5.2) can be derived from (5.1). For
exampe, Ix; (k—2) is the value ak of the daterlyy ?x; with which the countes (1¢)%x;
is associated according to (5.51)—(5.52) (here, the dater and its associatedrcare
denoted with the same symbol, as we didg’h2). Therefore, the termx@(t — 1)
corresponds to the termxi(k — 2) in the cunter equations. Ang in date equa-
tions (that is, max) is converted @ in counter equations (that is, mimgcording to
(5.50). Afterwardsit is realized thatly, respectively 1., could have been denotexq
respectivelyy.

Using Lemma 530, once Equations (5.2) have been established using one notion
of counters (given by (5.45)), it is clear that these equations are also valid with the
aternative notion of counters (given by (5.49)).

5.6 Backward Equations

Sofar we have been interested in computing outputs produced by given inputs. In the
dater description, outputs are sequences ofdhiéest dates at which events (numbered
sequentially) can occur. Sometimes, it may also be useful to derive inputs from outputs,
which, roughly speaking, corresponds to ‘inverse’ the system. More precisely, and still
in the dater setting, we may be given a sameeof dates at which one would like to
see everd occur at the latest, and we are sked to povide thelatest input dates that
would meet this objective. It is the topic dfis setion to discuss this problem.

From a matematical point of view, as long as the transfer function (matrix, in the
MIMO case) has to be invertk it is no surprise that residuation plays an essential
role. This inversion @nslates into the fact that recurrent equations in the event domain
for daters, respectively in the time domain for counters, noveged backwards in
eventnumbering, respectively in time. Moreover, the ‘algelira’ }) is substituted for
(@, ®) in these lackward equatins. These equations offer a strong analogy with the
adjant-state (or co-state) equatis of optimal control theory.

5.6.1 Mf{y, 8] Backward Equations

Consider a system iM{]y, 8] desaibed by Equaion (5.35) or (5.36) (recall that
(5.36) yields the least solutignof (5.35) with either inequalities or equalities). Lgt
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be given. The greatestsuchthat

z=Hu®'CcA'Bu<y (5.53)
is, by definiton, obtained as

u= Hfy = CA*B\Y . (5.54)

From the preious results, in practice (5.53) means that, in the dater description, the
output events produced hyoccur not later than those dscribed byy; moreover, u
being the ‘greatest’ input having property (5.53), the input events corresponding to
occurnot earlier thanwith any otherinput having property (5.53).

Recall thaty = CA* Bu can be also destéd as the least solution of

X=AX® Bu , } (5.55)

y=0Cx .

We aregoing to give a similarihternal’ representation for the mappiktj defined by
(5.54).

Lemma 5.33 Let u be derived from y by Equation (5.54). Then u isthe greatest solu-
tion of the system
y
= = 5.56
3 NE (5.56)

u =

0 [ 3> [uw

(5.57)

Thisis equivalent to saying that & must be selected as the greatest solution of (5.56).
Moreover, the symbol ‘=" can be replaced by * <’ in (5.56)—(5.57).

Proof We have

u = CA*By\Y owing to 6.54),
= A*BX(C\Yy) thanks to(f.9),
= BXY(A*X(CYY) (same eason).

Let & def A*X (C\y). By Theorem 4.73, we know that is the greatest solution of
(5.56) with equality or with the inequality. [ |

If x (herce &) is n-dimensiong and if u, resgectively y, is p-dimensonal, re-

spectively m-dimensional, then, by using Formula (4.81), (5.56)—(5.57) can be more
explicitly written as

(5.58)
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Obsave agan the transposition of matrices and the substitution of the operation
respectively y, to theoperation®, respectively ®. However, thesequations are not
‘linear’. Owing to (f.1) and (f.9), the mapping* rather obeys the dual properties:

H*(y A2) = H (y) AH%2) , H*(@\y) = axH (y) ,

wherex is a ‘calar’ (i.e.a € Ma{y, 8]).

5.6.2 Backward Equations for Daters

We are going to translate the preceding equations in ttimgeof the dater description.
Consider a system described by equations of the form (2.36), but with matrices (that
is, holding times) which do not depend on the event nuntbérerce wewill write

e.g. A) for Ak, k — £)). More speciftally, we consider a system describedRyay
equations of the form:

x(kK) = AO)x(K) & - - & AM)X(k — M)
® BOuUk) @ ---® B(M)uk — M) , (5.59)
y(k) = C(O)x(k) @ - - - ® C(M)x(k — M) .

There is o coursenoloss of generality in assuming that there is the same ddldgr

x andu ard in both equations (this possibly amounts to completing the expressions
with terms having zero maxk coefficients). They-transforms of these equations yield
(5.55) wherex, u, y now denote the -transforms of signals, and similarly, e.qg.

M
A= @ Ayt .
=1

In the same way, (5.56)—(5.57) are still valid with the new interpretation of notation.
Using (4.97), we can write these equations more explicitly in terms of power series
in y. Taking into account tha#\, B, C are in factpolynomials, i.e. power series for
which coefftients ares for powers ofy out of the sef0, ... , M}, we findly obtain

the relatons, for allk:

&K IE(k+ M) IY(k) y(k+ M)
&k = T(O) A A AN A co) A A %C(M) , (5.:60)
utk) = £k A A Ek+ M)

- BO T B(M)

From these guations, the backward recursion is clear. To alleviate notation, let us now
limit ourselves toM = 1, that is, consider the standard form (2.39), namely,

X(k+1) = Ax(k) ® Bu(k) ; y(k) = Cx(Kk) . (5.61)
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Then, conbining (5.60) with (5.58), we obtain

n ) p
Vi=l...n, &K = (/\#) A(/\%)
=1 (5.62)

=1 ji i

Ve=1,...,m, ug(k)z/\%k) .

=1 st

Let us rewite these equations with conventiomaitation. We refer the reader to Ex-
anple 4.65, to the rule regarding the ambiguous expression co that may show up

if ratios such as \e are encountered, and finally to the warning about the ambiguity of
conventionahotation since the expression— oo may also b@btained as the result of

¢ ® T which yields a different value. With this warning in mind, (5.62) can be written:

& (k) = min [mnin(éj k+1) — Aji), mpin(yr k+1) — Cn)],
L= r=1 (5.63)
ue(k) = min&s(k) — Bs)

The reader is invited to establish these equations by a direct reasoning with an event
graph for which the sequendg(k)}kez of desired output dates is given. It is then
realized that the recursion is not only backward in event numbering (ikidewt also
backward in the graph (from output transitions to input transitions through internal
transitions).

A fewwords are in order regarding ‘initial conditions’ of the recursion (5.63). This
problem arigs when the backward recursion starts at some finite event number, say
ke (‘f ' for‘find’), because desired objectiveg(k)} areonly given up to this number
ki. In accordance with the idea of finding the ‘latespiit dates’, that is the greatest
subsolution ofCA* Bu < y assupposed by residuation theory, the missing information
must be set to the maximum possible value. This amounts to sayingtkamust be
set toT = +oo beyondk, and more irportantly £(k) = T for k > k. As for
the tokens of the initial marking, they are still supposed to be available at-titae
(see page 241) since this is the assumption under which the ‘direct’ system obeys the
input-output relation at the left-hand side of Inequality (5.53).

At the end of this section, let us consider the following situation. Suppose that
someoutput trajectoryy(-) has been produced by processing some imgytthrough
a systenobeying Equations (5.61). This output trajectory is taken as the desired latest
output trajectory. Of course, it is feasible since it is an actual output of the system.
Then, if we compute the latest possible input, aaythat nmeets thegiven objective by
using Equations (5.62), thiswill alsoproduce the output, and it will be greater than
or equal tov. Therdore, the pairqv, y) and (u, y) areboth solutions of (5.61), but
two different internal state trajectories, sayandx, respectively, woutl be obtained
with ¢ < x. Moreover, the trajectory is also diferent fromé which is @mputed
by (5.62) usingy asthe input. The differencesi (k) — x(k),i = 1,...,n;k € Z,
are nonnegative since (5.62) corresponds to the backward operation at ‘the latest time’
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whereas(5.61) describes the forward operation ‘at the earliest time’ for the same input-
output pair(u, y). For thek-th firing of thei-th transition, the differencg (k) — x; (k)
indicates the time margin which is avdla, that is, the maxaum delay by which
this firing may be postponed, with respect to its earliest possible occurrence, without
affeding the output transition firing. This kind of information is of course very useful
in practical situations.

Let us findly summarize the equations satisfied by the j9&j£). The fdlowing is
derived from (5.61)—(5.62) in whichh andy are replaced by their expressions, namely
u = B\¢ andy = Cx, resgectively. Then we obtain the system

x(k+1) = Ax(K) @ B%k) ,

(5.64)
Cxk+1) o Ek+1

C A

£k =

This system is veryreminiscent of state/co-state (or Hamiltonian) equations derived
for example from Pontryagin’s minimum principle for optimal control problems in
conventional ontrol theory. Moreover, the differenégk) — x; (k) aluded to above is
thei-th diagonal entry of the matrig(k)¢x (k). Pursuinghe analogy witltonventional
control problems, it is known that introducing the ‘ratio’ of the co-state vector by the
state vector yields a matrix which satisfies a Riccati equation.

5.7 Rationality, Realizability and Periodicity

5.7.1 Preliminaries

At this point, we know that event graphs can be described by general equations of
the form 6.55) in which the mathematical form of X, y, A, B, C depends on the
description adopted. Essentiallyx, y may be:

e power series iy with coefficients inZmay;
e power series i with coefficients inZmin;
e power series irfy, §) with coefficients infe, €}.

As for A, B, C, they are matrices with polynomial entries of the same nature as the
power seriesdl, X, y, but with only nonnegative exponents since tokens of the initial
marking and holding times introduce nonnegative ‘backward’ shifts (see Remark 5.6)
in evert numbering, respectively in time. The input-output relatior> Y is given

by y = CA*Bu, herce the entries of fils so-called transfer matrix belong to the ratio-

nal closure (see Definition 4.99) of the corresponding class of polynomials with non-
negative exponents. One purpose of this section is to study the converse implication,
namelythat a system with a ‘rational’ transfer matrix does have a finite-dimensional
‘realization’ of the form (5.55) with polynomial matrices. In fact, this is an immediate
consequence of Theorem 4.102. Moreovegyplg with the various possibilities of
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realizations provided by Theorem 4.10% will recover essentially the three possible
descriptions of systems alluded to above by starting from a single framework, namely
theone offered by thei{ v, 8] algebra.

Remark 5.34 In an event graph, if there are direct arcs from input to output transitions,
one obtains an output equation of the foym= Cx & Du and a transfematiix of the
form CA*B @ D. However, ly redefining the ‘state’ vector a8 = ( X' u' ), it

is possible to ome kack tothe formCA*BwithC = (C D ),B' = ( B e)
andA = diag(A, ¢), but at the price of increasing the ‘state’ dimensionality. Indeed,
in what follows the issue of the ‘minimal’ realization will not be addressed since only
partial results have been obtained so far. [ |

The equivalence between rationality of the transfer matrix and its ‘realizability’ is
a classical result in both carentional linear sgtem tleory and in automata and formal
language theory. However, there is here a third ingredient coming in: rationality is
also equivalat to some ‘periodicity’ property of the transfer function or the impulse
response. This is analogous to the situation of rational numbers which have a periodic
decimal expansion.

We will only address the SISO case. The MIMO case (e.g. 2 inputs, 2 outputs)
can be dealt with in a triviainanner by considering all the individual scalar transfer
functionsHij : u; — v, j =1,2,1 =1, 2, first Suppose that 3-tuplegs;, Bij, Cij)
have been found to realizd;; in the fom (555) (Ajj is in general a matrix, not a
scalar). Then, it is easy to check that the 3-tuple

A11 & & & Bll &
A 3 3 e B
A — 12 , B — 12 ,
3 e Ay e B &
& & & A22 & Bzz

C= Cll C12 & &
- & & 021 022 ’

is a realization of the 2 2 tranger matrix. Of course, this way of handling MIMO sys-
tems does not consider the dimensionality of the realization explicitly. In the following,
we will comment on the MIMO case when appropriate.

5.7.2 Definitions

We start vith the following definitions.

Definition 5.35 (Causality) An element h of My, 8] iscausaleither if h = ¢ or if
val(h)y > 0and h > yva®,

This definition is somewhat technical, due to the fact thats an elmentof MH{ v, 8],

has various formal representations, and among them e.g. the maximal one which in-
volves the multiplication bys—1)* (hence it may have monomials with negative ex-
ponents irs). However, the definition, while using the languagé\6ékf y, 5], clearly
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says thathe graph of the associated dater linghe rght-half plane and above the
x-axis. It can then be forally checked that the set of causal elementviify, 5]

is a subdioid of M&[y, 8]. For example, if p andq are causal, then vgh & q) =
min(val(p), val(q)) > 0, andyval(pe)q) — ymin(val(p),val(q)) — yval(p) oy yval(q) <p®q,
proving thatp @ q is also causal. A similar proof can be given forR q.

Definition 5.36 (Rationality) An element of MKy, 8] isrationalif it belongs to the

rational closure of the subset 7 &' {e, e, y,8}. Avector or matrix is rational if its

entriesare all rational.

Indeed, because of the choice of the basic set, the rational elements will also be causal.

Definition 5.37 (Redizability) A matrix H € (MR{y, 8])° " is realizableif it can
be written as

H=C(yA ®8A)B (5.65)

where A; and A; are n x n matrices, n being an arbitrary but finiteinteger (depending
on H),C and B aren x mand p x n matrices respectively, and each entry of these
matricesisequal to either ¢ or e.

Definition 5.38 (Periodicity) An element h of Mi{y, 8] is periodicif there exist two
polynomials p and g and a monomial m (all causal) such that

h=p®gqm* . (5.66)
Amatrix H isperiodicif itsentriesare all periodic.

Here, we adopt a ‘mild’ definition of periodicity. It is however mathematically equiv-
alert to s=eningly other more sophisticated deifions which put further constraints
on the polynomialg andq. This point will be discussed i§5.7.4. At this stage, it
suficesto understand that, if one considdrsas the(y, §)-transform of a trajectory,
s& an impulse response, the intuitive meaning of Formula (5.66) is that a certain pat-
ternrepregnted byg is reproduced indefinitely, since the multiplicationfoy= "%
represents a shift by units along thex-axis—event domain—ansl units along the
y-axis—time domain—andm* = q @ qm ® gm? @ - - - is the unon of all these
shifted vesions ofq. This perbdic behavior ocurs after a certain transient which is
essentidly (but not always exactly, as we dhaee) represented by. Theratio s/r
repregntsthe asymptotic slope of the graph of the dater associatedwéhd hus the
asynptotic output rate: on the averageevents acur everys time units. The extreme
casess = 0 andr = 0 will be discissed ing5.7.4.

5.7.3 Main Theorem

Theorem 5.39 For H ¢ (M y, 81)"*™, the following three statements are equiva-
lent
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(i) Hisrealizable;
(ii) H isrational;
(iii) H isperiodic.

Proof The implicaion (i) = (ii) is straightforward. The converse (i (i) follows,
at least for the SISO case, from Theorem 4.105 Wite- C = U/ = B = {¢, €} and
VY = {y, §}. We then observahatl/* = U hencd/* @ V = {¢, v, §, y @ §}. It remains
to split up matrixAy, whichappears in théB, C)-repregntaion (4.106) (with entries
inU* ® V), intoy A1 & § Ay, whichoffers no difficulty. The MIMO case is handled as
indicated previously.

We now outline the proof of the equivalence (ig> (iii). Since the definitions of
periodicity and rationality refer to the entries &f individually, it suffices to deal with
the SISO case. The implication (i# (ii) is obvious: ifh canbewritten as in (5.66),
thenclearlyh e 7*. Conversely, ifh is rational, sincéViif y, 8] is a cammutaive
dioid, we can use Theorem 4.110 (applied to the dioid closufE)ab seethath can
bewritten as

h — @yaiaﬂi @yrjgsj
iel jed

= Presh QR (ris%) . (5.67)

iel jed

where| and theJ, are firite sets,«;, B, rj, s; are nonnegative integers, and (5.67)
follows from (4.109). The proof is then corgped by showing that (5.67) is amenable

to the form 6.66) wherem is essantially the monomialy"i 6% with maximal ‘slope’

sj/rj. Indeed, the tern(y"i§%)* tends to asymptotically dominate all other similar
terms in sums and products. When the monomial with maximal slope is nonunique,
the precise rules for obtaining the monomralused in (5.66) will be given in the proof

of Theorem 6.32 in the next chapter. The precise derivation of this last part of the proof,
which is ratheréchnical, will be skipped here. The reader is referred to [44] for a more
detailed outline and to [62] for a full treatment. [ |

In the above proof, instead of attgting to prove the implication (ii}= (iii), we
might have proved the implication @ (iii) using Theorem 4.109 and Formula (4.110).
This would have provided some insight into how the monomigl appearing in the
representation (5.66) of eadH;; (in the form ofm;*j) is related to the weights of cir-
cuits of G(A), whereA = y Ay @ § A, appears in (B5). The graplG(A) is drawn as
explained in§4.7.3 (see Figure 4.8). Then, for an input-output gaijr, y;), we @n-
sider all (aiented) paths connectinigase tradtions and all circuits which have at least
one node in common with those paths. These are the circuits of interest to determine
the maximal ratics;j /rij. If there is no such circuit, this means that the polynomial
g of (5.66) ise and husm;; is irrelevant. As a consequence, if matéxis strongly
connected (which in particular precludes any direct path from the input to the output,
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given that we have not included a teldu — see Remarlk.34), then the ratios; /rij
take aunique value for all then;; .
We could dso have proved that (iigs (i) directly by providing an explicit realiza-
tion of a periodic element. This essentially follows the scheme illustrated by Figure 6.4
in the next chapter.

5.7.4 On the Coding of Rational Elements

In this subsection, it is helpful to use the pictorial representation of (causal) elements
of Mt y. 8] by colledion of points in theN?-plane: a monomiay*st is repregnted
by a point with coordinategk, t) and we assume that polynomials are represented by
their minimum representatives (which do exist—see Theorem 5.20).

Let the monomiam involved in (566) be equal to/" §°.

e If s=0,thena= pdgm* = p® qsincem* = (y")* = g, thatis, thke impulse
response is apolynomial : this is the behavior of an event graph having either
no circuits or only circuits with zero holding time. Such a system is able to work
atinfinite speed This ‘finite’ impulse response thus corresponds to the situation
whenan infinite nunber of tokens get out at time= deg@a); the firsttokens
get out earlier a desribed byp & q. From thepoint of view of the minimum
coding ofa, thereno way but to retian the minimum representative @f® q.

e If s £ 0 butr = 0 (andq # ¢), and snce m* = (8%)* corresponds to an
infinite slope, the impulse response is ‘frozen’ after a transient during which
some bkens get out (those numbered from 0 to(gal— 1): this is indeed the
kind of behavior one would like to call a ‘finite response’. It happens when
there is acircuit without tokens but with a positive holding time: the system is
‘deadlocked’. The nontrivial part af is provided byp-e y"3@s* (the part of
the plot ofa which lies & the left hand of the vertical asymptote) which should
again be coded by its minimum representative.

These two particular cases will no longer be considered in detail. Hence, from now on,
we assume that> 0 ands > 0 unless stged otherwise.

With (5.66), we have adopted a characterization of rational (or periodic) elements
which is mathemigcally simple. The forthcomingdmma shows thahts chaacteri-
zaion is gquivalent to another one which puts further constraints on the polynomials
p andg. Thelatter definition will be used in Chapter 6 (see Theorem 6.32). It has
the advantagef making the interpretation of the nevas the trangntpart and of the
new q as the periodic pattern (seeglkre 6.2) possible. Indeeg, can then be repre-
sentedby points contained in a box of width — 1 andheightt — 1 with its lower
left-hand corner located at the origin. The periodic patteoan be encapsulated in a
box of widthr — 1 andheights — 1 with its lower left-hand corner located at the point
(v, 7). Thisbox istranslated indefinitely by the vect@r, s). These onditions are now
expressed mathematicaliy the following lemma.

Lemma 5.40 An dement a € My, 8] isrational if and onlyif it isa polynomial, or
an element of the form p & yVé* (p isa polynomial), or if there exist positive integers
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r and s, nonnegative integers v and ¢, and polynomials

p= @ y*st with k<v—1, t<t-—1, vk t)e Jp,
ke,

g= @ ys? with v<k<v4+r—-1, t<f<s+71-1, Yk, 0) € Jy ,
(k.0)edq

(Jp and Jq are necessarily finite) such thata = p @ q (" 6%)".

Proof Onlythecase whem > 0,s > 0 andq # ¢ is of interest hereMoreover, since
the new claracterization of rational elements is a particular case of (5.66), it suffices to
prove that, coversely, (5.66)s amenable to # new claracterization. Consider =

p®q(y"8%)* for any polynomialsp andq. Lett def max(deg(p) + 1, degq) —s+1).
For any(k, t) € Jgy, there exits auniquel ), € Z suchthatr < t+£y s < r+s—1.
Because deg)) < v +s— 1 ands > 0, necessarily > 0. We consider

a d=ef @ yk+5(k_1)r 8t+[(k_1)5 ) (568)
(k,tyeq

In addition, leta def MaXk t)eJ, Lik.ty andv % val (@). Observe tht all points rep-
resenting monomials appearing at the right-hand side of (5.68) lie in a strip of height
s — 1 ddimited by the horizontal liney = t andy = 7 + s — 1, and at the right-hand
closed halfplane bordered by the vertical linexat= v.

Let a minimum representative afbewritten @ ,. ;. ¥*8' (Ja is countably infi-
nite). This minimum representative does exist since we deal with causal elements and
since we assume that> 0 (see Therem 5.20). Consider ank,t) € J,. If t > 7,
then the mrresponding monomial cannot belong ficsincer > degp). Herce, it
necessarily belongs to somen". If t < t, then this monomial may belong to either
p or to somegm" but thenn < «: indeed, forn > «, we hae by @nstruction that
t > 7. Herce, if we setp gef POgE® M --- ® gm*~L, we can consider all pairs
(k,t) € Ja witht < 7 as coming fromp. We now pove thatthe other pairs can be
explained by monomials djm*. If (k,t) € J, andt > 7, then here exisi(k,f) € Jy
ande > 0 such thatk, t) = (k,f) + £ x (r, s). Moreover,¢ > £iy), herce

kt) =KD+ (z —_ E(Rf)) % (f.5)

wherey st is one of the polynomials involved in (5.68).

At this point, we have proved that all monomialsat= p & gm* are anong the
monomials ofp @ gm*, hercea < p ® gm*. But the onverse st@ment is also true
since the monomials ifd andg have been obtained froemm Herce p @ gm* is another
expression fom.

To complete the proof, we must delete monomials which are useless from this
expression (because they are dominated by otheyrorhials in the same expression
in the sense of the order relationXih] v, 8]). Firstly, concerningd, if monomials of
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P, thus also of, hawe a degree greaténan orequal tor, theycan also be obtained by
other monomials offm* (proceed as previously) and thus they can bepged from
p. Letm = y'8° be the monomial off with valuationv (recall thatv = val ().
Observe that > 7. This monomial dominates the monomialsst of p witht < ¢
butk > v which canthus also be dropped from Findly, the new p stays in the lower
left-hand part of the plane delimited by the horizontal line- © — 1 and the ertical
linex = v — 1. Secondly, concerningj, consider the monomials @f with valuation
greater tharv +s—1: their degre beingnecessarilyess tharr +s, they aredominated
by the monomialy '+ 87+ contained ingm. This observation is of course preserved
by the successiviganslationsr, s). Therdore, a newg can be used whitstaysin the
box given in the statement of the lemma. [ |

We rder the reader to [62] in which an algorithm is provided to obtain the ‘best’
possible representation of the type described by the lemma. The following example
shows that by regfining not only p andq but alsom, more @mpact representations
may be obtained (the reader is invited to make the drawing correspondirmadth
exampe, which is thebest way to quickly grasp the situation).

Example 5.41 The epressione @ y 8)(y26%)* is already n the fam of Lemma 5.40
but it can be simplified tagy §)* by redefiningm asy § instead ofy 252 n

Consider now the following example.

Example5.42 Leta= p@ gqm* with p=e® 25?2 @ y55° @ y5* @ 8¢ @ y 1167,
q = y%s8e @ y28) andm = y382. Another representation afas p @ gm* involves
P=y2°®y8%andg=eq y?. n

In this example, what happens is thatan partlybe explained by ‘noncausal shifts’
gm~' of g. Algebrdcally, there exists soma (heren = 4) such that adding =
@, gm™' toa does not changa. Herce

a=ad®b=pegqm*®db=(pebydbdgm* =pdgm* ,

wherep = pe bandd = gm™". Now P does not any longer appear as the transient
part, but rather as a transient perturbation of the periodic regime. Now the contributions
of p and{q to the transient padre interweaved.

5.7.5 Realizations byy- and §-Transforms

In the proof of Theorem 5.39, Theorem 4.105 has been used with the dheicé =
U =B andV = {y, §}. Other possibilities have been suggested at the erid 8f3.
5.7.5.1 Dater Realization

If we condder the possibilityB = C = B, Y = B U {§} andV = {y}, then
U = {e,e6,8% ...,8% since all sums of such elants are reduble to one of
them by the rulé' @ 67 = M Herce/*, beingobviously a complete dioid in
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this case, is isomorphic to (and will be identified witﬁ,%ax (with §* identified with
T = 400). Consequently, in an observer representa(t(OnA B) of a rational matrix
H as provided by Teorem 4105, B hasits entries inNpay and A = y A where A
is also a matrix with entries ifNmax C is a Boolean matrix. This realization may be
interpreted astte one directly derived, by the-transform, from the dater equations

x(K) = Axk—1D @®Buk) ,  yK =CxK ,

where in addition y is a subectorof x (herce the name ‘observer representation’).
For a ontroller representatior is a Boolean malix whereasC makes ay linear
combindion of thex; with weights inNpax.

Remark 5.43 It is thus always possible, starting from any timed event graph, to obtain
anequivalent event graph with a structure corresponding to the observer (respectively,
the controller) representation, that is, the initial marking consists of exactly one token
in internal places, no tokens in theput and output @ices, and in adtion, zeroholding
timesfor the output (respectively, the input)gaes. [ |

It should be realized that there is a trick here to represent deadlocked systems in this
way, i.e. eent graphs circuit@ith no tokens and positive holding times. These systems
will berealized in ‘state space’ form by matricés B or C having some entries equal
to §*. Indeed, an arc ¥h weighté* introduces an unbounded holding time, which is
sufficient to block some parts of the systefor exanple, for the graph of Figure 5.12
(the transfer function of which i&*), an observer (datgrealzaionisC = ¢, A=y,

| —O—=—0O—f
u (x} y
@
Figure 5.12: A deadicked event graph
B =4".

5.7.5.2 Counter Realization

The oounter realization corresponds to the dpassibility offered ly Theorem 4.105,
namely to choosé/ = BU {y} andV = {§}. Thenl/* = {e, e y,y>% ...}. Thisis

a conplete diad. Due to the rule/k @ y* = y™nk© this/* is now identified with
Nmin (note also thay* = €).

Remark 5.44 In Npay all elements are greater tharexcepte. In Nyin, all elements
lie betweere = 400 andT =e=0. [ |

In this new context, the realizations one obtains appear to be derived, By the
transform, from counter equations in ‘stateasg’ form with, in addion, Boolean
matiicesC or B.
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Deadlocked systems can be represented directly since a weighiheéns no to-
kens in the corresponding place (or arc). For the graph of Figure 5.12, an observer
(counter) realization i€ = B =eandA = .

5.8 Frequency Response of Event Graphs

In conventional system theory, with a continuous time-domain, rational transfer func-
tions may be viewed astianal expressions of a formal operator denaegahich can

be interpreted as the derivative with respect to time. However, transfer functions, say
H(s), are alsousedasnumerical functions when an imagary numerical valug w

is substituted fos. It is well known that when a signal of pure frequensyis used
asthe input of a (stable) linear time-invariant system, the corresponding output is, af-
ter a p@sible traisient, a signal of the same frequencywhich is phase-shifted by
argH (j w) and amplified by the gaifH (j w)| with respect to the input. The transient
can be awided by staiing at time—oo. Then sinetinctions of any frequenay appear

as eigendinctions of any rational transfer functidth with corresponding eigenvalue
H(jw).

The main purpose of this section is to discuss analogous results for event graphs.
We will confine ourselves to the SISO case.n& we can consider transfer func-
tions under three different forms ascalled at théeginning oft5.7 (referred to as
dater, counter or two-dimensional representations), the following developments could
be made from these three different points of view. We will favor the two-dimensional
point of view, but the analogy of certain quantities to phase shift or amplification gain
depends on which of the first two points of view is adoptedi@r, ths topic will be
revisited from the dater point of view and with a continuous domain.

5.8.1 Numerical Functions Associated with Elements d8[ y, 4]

In this sectionan elemenf of B[y, 8] or of M&{ v, 8] will be written either as

P vk (5.69)

(k,t)eJr

oras

e if (k,t)GJF )

5.70
otherwise. ( )

P Fk ks with Fk 1) =

(k,t)ez?

Guided bythe analogy with convdional system theory alluded to above, we are
going to use such a formal expression as a numerical function. This means that numer-
ical integer values will be substituted for the formal variableends, and the quantity
thus obtained will be evaluated numerically. Therefore, the symbalsd® (the later
being impicitin the above expressions) must be given a meaning in order to operate on
numbers. We choose the max-plus interpretation, thas isjll be interpreted as max
(or sup) andp as+. Considently, a coefficient is interpreted as 0 andas—oo. For
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the time being, let us considér as an element dB[y, §] and define the associated
numerical function, denoted(F), as the mpaping fromZ? into Z:

(g, d) > @ Fk,t)gkd® =  sup (F(k,t) + gk + dt)
(kD)e7? kez? (5.71)
= sup (gk+dt) .
(k,t)eJr

In this section, according to our general convention, thdtiplication, de-
noted by mere juxtaposition of elements, must be interpreted as the conven-
tional x when the+, —, supor inf symbols are involegd in the same expres-
sion.

Lemma 5.45 The set of mappings from Z?2 into Z endowed with the pointwise max-
imum as addition, and the pointwise (conventional) addition as multiplication, is a
complete dioid. The mapping F introduced aboveisal.s.c. dioid homomorphismfrom
B[y, 8] into thisdioid of numerical functions.

The pioof is straightforward.

The mapingF will be referred to as theval uation homomorphismin this chapter
and thenext one (se€6.4.1), although the context is somewhat different in the two
chapters. Equatins (5.71) show that not all numerical functions are in the rangg of
for at least two reasons.

e If the functionF(F) was ectended to the continuous domait instead ofZ?
(with range inR instead ofZ) in an obvous manner, then it would becanvex
function as the supremum of a family of linear functions.

e The functionF(F) is positively homogeneous of degree 1, thatis, [F(F)](a x
g,ax d) = a x [F(F)](g, d) for any nonnegative (integer) numbe(in par-
ticular, [F(F)](0, 0) = 0).

For the ldter reason, it suffices practically to know the valuefaf-) for all values of
the ratiog/d which ranges inQ.

From the geonteic point of view, sirce an elemenf of B[y, 8] encodes a subset
of pointsJg in theZ? plare, itis realized thafF (F) is nothing but the so-called ‘support
function’ of this subset [119]. It is well known that support functions characterize only
the convex hulls of subsets: this amounts to saying & certainly not injective; its
value atF depends only on the extreme points of the subset associated with

Being l.sc. and such thafF(s) = ¢, the mgping F is resduated.

Lemma 5.46 Let F be a mapping from Z2 into Z. If F is positively homogeneous of
degree 1, then F = F* (F) is obtained by

Fkt)= inf (F(g,d)—gk—dt). (5.72)
(g,d)ez?
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Proof Recall thatF is the largeselement inB[ y, §] suchthat 7 (F) < F. Because
of (5.71), for all(k, t) € Z2, we must have

v(g,d)eZ?, F(kt) <F(g d) —(gk+dt) ,
hence,

Fk,t) < inf (F(g,d)— (gk+db)). (5.73)
(g,d)ez?

The largst suchF is defined by the equality in (5.73). For thHts we must pove that:
1. F(k, t) assumes onlyhe values-oo and 0O;
2. the inequalityF(F) < F is still verified for thisF.

The first fact stemérom the homogeneity oF. Indeed, if we seg = d = 0 at the
right-hand side of (5.73), this shows thatk, t) < 0. Then, it siffices to realize that
the inf cannot be equal to arfinite and stictly negative value: as a matter of fact, for
any positively homogeneous functign we have

500 -1 (2 g1 5.9
and a contrdiction would be obtained for any value of this inf different from 0 and

—0OQ.
As for item 2 above, according to (5.71) and the défon of F, we obtain

[F(F)] (g.d)

sup (gk+dt + inf (F@, d) —gk—&t))

(k,t)eZ? @.d

< inf sup ((g—0)k+ (d—dyit+ F(@.d)
@.d) (kt)ez?

= F(g.d) .

5.8.2 Specialization tdVix{ y, 8]

We are now iterested in redefining a similar evaluation homomorphism, but for el-
ements oMy, 8]. We have gen that elements 6¥({y, 5], which are indeed
equivalence classes, may be represented by different formal expressiBlig,id].

All these &pressions are characteed by the fact that they yield the same element of
B[y, 8] (themaximum representative) whenthey are multiplied by *(6~1)*. By mere
applicaion of (5.71), we have that

0 ifg<0Oandd >0 ;

xro—1\% —
[F(r @] @ d = 100 otherwise.
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Therefore, by applicationfahe homomorphism property of, it is seen that, for all
(g, d) suchthatg < 0 (denotedg € (—N)) andd > O,

Fy* ¢ H* = Gy*@¢ H* (in By, s = [F(F)](. d) = [F(G)](g.d) .

It is readly checked that we can repeat all the proofs and result&&.1, using any
repreentdives inB[y, 6] of elements ifM{&{ v, 8], provided that we restrict the pairs
(g, d) to bebng to(—N) x N.

Remark 5.47 For (g, d) € (—N) x N, the value ofF(F) can consistety be set to
+o00 whereverF is consideed as an element 6f(5] y, 5], except if F = ¢, for this is
the value obtained with the maximum representativé ofThis maybe explained by
recdling the geometric interpretation of (F) asa support function of a subset, and
by observing that the ‘cones of information’ introduced¢ 4.3 extend indefinitely in
the Suth and East directions (characterizedgoy 0 ord < 0).

Observe thathe subset of numerical functions equakHteo outside(—N) x N,
plus the functiorz equal to—oo everywhere, is also a complete dioid for the operations
defined at Lemma 5.45. [

We will keep onusing the notatiorF for this mapping defined oveMi[y, 5]
(since the previoug definedover B[y, 8] will no longer be in use). The following
definition and lemma, which should now be clear, summarizes the situation.

Definition 5.48 (Evaluation homomorphism) The mapping F from Ma{y, 8] into
the dioid of numerical functions (introduced at Lemma 5.45) is defined as follows:

o F(e) =¢;
o if F+£¢,

— if (g,d) € (—N) x N, then [F(F)](g, d) is defined by Equations (5.71)
using any representative of F;

—if(g,d) ¢ (—N) x N, then [F(F)](g, d) = +o0.

Lemma 5.49 Themapping F just defined isal.s.c. dioid homomorphismover M&{y, 8]
which is residuated, and F* can be defined by (5.72) in which the inf is restricted to
ge (—N)andd € N,

5.8.3 Eigenfunctions of Rational Transfer Functions

We now introduce particular elements dffi{ y, §] which will be shown to play the
role of sine functions in conventional system theory.

Definition 5.50 For two positive integersk and t, we set

Loy E F* (]: ((Vk5t ® Vﬁk‘sft)*)) '



5.8. Frequency Response of Event Graphs 265

It is easy to check that

*

M Z (¥t @y 57" = (¥56Y)" (v 67" = (%) @ (67"

Lemma 5.51 The element L « 1, depends only on theratio ¢ = t/k > O (therefore it
will be denoted simply L. with ¢ > 0) and it is given explicitly by

L= @ y'ss .

s<cxl|

If one draws the line of slope> 0 in theR?-plane,L . is the codig of the points 0%.2
whichlie below this line.In other wordsL . repregntsthe best discrete approximation
of this line from below. For example, witk = 3 andt = 2 hercec = 2/3 (see
Figure 5.13), then

Le=(e® %) (y36?)" (y %72)".

Figure 5.13: A ‘linear’ function

Proofof Lemma 5.51We haveM (I, s) = eif (I,s) = (n x k,n x t) withn € Z
andMy1)(l, ) = e otherwise. Then, according to (5.71),

0 if gk+dt =0 ;
[F (Mkv)] (@, d) nGUZP (gk +dt) +o0o otherwise.

Obviously, this expression depends only on the ratis t/k. Finally, according to
Lemma5.49,

[fli (.7 (M(k,t)))](l ,S) gG(JQ{dGN (_(g| + dS))

gk-+dt=0
= érgll;d(lc -5 (5.74)

0 ifs<d ;
—oo0 otherwise.
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The element_. describes a sequence of events which occurs at the average rate of
1/c events pemunit of time. Consider a SISO event graph with transfer functitin
SinceH is realizable, hence periodic (see Definition 5.38), it can be writteR as

Q (yFS‘_) (P and Q are polynomials). We will confine ourselves to the nontrivial

cases wherQ # ¢ andk > 0,T > 0. The atio k/T (the inverse of the asymptotic
‘slope’ of the impulse response) characterizes the limit of the rate of events the system
can process. IE; is used as the input of the event graph, and/if &xceeds this limit,

then there will be an indefinite accumulation of tokens inside the system and the output
is indefinitely delayed with respect to the input. Otherwise, the following theorem
staes that, usind.. asthe input produces an outpyt<s®L, that is,essentidly the

same trajeciory as the input up to shifts by, along thex-axis (event domain) and

6. along they-axis (time domain). The theorem also shows hew 6;) is related to
[F(H)](g, d) for any(g, d) suchthatg = —d x c.

Theorem 5.52 Consider a 9SO system with rational transfer function H = P &

Q (y"&‘_)*, where P and Q are polynomialsin M&{ v, 8], Q issupposed to be differ-

ent frome, and k and T are supposed to be strictly positive. Then,
1. forallg <Oandd > 0O, [F(H)](g, d) isdifferent from +o0 if and only if
c=—g/d>t/k, (5.75)
and then
[F(H)](g.d) = [F(P & Q)](9, d) = kcg + 6cd (5.76)
for some finite nonnegative integers«. and 6;

2. thosex. and 6. are not necessarily unique, but any sel ection yields nonincreasing
functionsof c;

3. letc &t /k and assume that ¢ satisfies (5.75); then we have

HLc = y*8%L, . (5.77)

Proof

1. LetR= (yfaf)*. Since for thaminimum representative &, R(l, s) = ewhen
k, T

(,s) = ,DHwithn e N, andR(, s) = ¢ otherwise, we have that

K4 df 0 if (g, d) sdisfies 6.75);
[F(R)](g, d) = supn (gk + df) = 9.4 6.75)
neN +oo otherwise.

Onthe aherhand, for a polynomial, salp, the mhimum representative involves
a finite nunber of points, and?(P) is the conve hull of a finite number of
linear functons. Therefore, by the homomorphism property7af F(H) =
F(P) ® F(Q) ® F(R), and shce Q # ¢, [F(H)](g, d) is finite if and only
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if (g, d) sdisfies 6.75), and them(H) = F(P) & F(Q). For any sich pair
(9,d) € (-N) x N, we thus have

[F(H)](g.d)= sup (gl +ds) ,

(|,S)€JPUJQ

and the supremum is reached at some (not necessarily unique)(pQiéf)
which dearly dgpends only on the ratio= —g/d > 0.

2. By a well known result of convexity theory [119k., 6.) belongs to the subd-
ifferential of the convex functiodF(H) at thepoint(g, d). Herce the nappings
(9,d) — (xc, ), for any doices of(x., 6.), ae monotone, that is, for two pairs
(gi, d),i =1, 2, and any assciated subgradientsx;, 6;), we have

(91 — 92) (k1 — Kk2) + (di — dp) (61 — 62) = O .

Since we ar@nly concerned wth the ratioxs; = —g; /d;, wecan either takg; =
g2 ord; = d; in the above inequality. This shows the monotonicity property
claimed fork andé as functions ofc.

3. LetY = HL. with ¢c = t/k saisfying (5.75).Then, for all(, s) € Z?,

Y(l,s) = sup (Hm,r)+ LI —m,s—r))

(m,r)eZ?
= sup (H (m,r) + infd(( —m)c—(s— r))) (from (5.74))
(m,r)ez? deN
= sup inf(H(m,r)+d(—mc+r)+ddc—y9) . (5.78)
(m,r)yez? deN

Onone hand, by inverting the sup and the inf, we obtain a new expression which
is larger than (5.78), and wth tums out to be equal to

(inll; ([F(H)](—dc,d) +d(lc—y9s) = (inlgd (I —kc)C+ 6 —9)
= Lc(l — K¢, S— 90) N (5.79)

the latter equality being trueglbause of (5.74). On the other hand, if wmose
the particular valuém, r) = (xc, 6;) instead ofperforming the supremum, we
obtain an expression which is less than (5.78), and which turns out to be iden-
tical to (579) (the clue here is thakc, 6.) which redizes the maximum in the
evaludion of [F(H)](—dc, d) does not depend cahindeed). Finally, we have
proved that

vd,s) €Z?, Y(,s) =Lc(l —ke,S—6) ,

which is equivalent to (5.77). [ |

Itis intuitively appealing that the ‘shift&,; andd, are nonincreasing witle. Indeed,
recall that wherc decreases, the average time between two successive events at the
input decreases, hence the input is faster: the delays introduced by the system, in terms
of counters or in terms of daters, are likely to increase. Moreover, there is a ‘threshold’
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effect (or a ‘low-pass’ effect) in that, above a certain speed which is defined by the
ag/mptotic slope of the impulse response, the system, driven by an input which is
too fag, ‘blows up’, and the delays become infinite. This corresponds to an unstable
situation (using the same calculations agttie atove pioof, it can be proved in this
case thaty = T). This is also similar to conventional system theory in which the
sine functions are eigenfunctions only in the stable case. The difference is here that
the stability property is not an intrinsic feature of the system (at least in the SISO case
considered here), but it depends on the mutual speeds of the input and of the system
itself.

Let us onclude thisedion by an example.

Example 5.53 ConsiderH = y 82 @ (y28)*, the impulse response of which is repre-
sented at the left-hand side of Figure 5.14. This system cannot process events faster

—?

Figure 5.14: The impulse responsetdf= y 82 @ (y25)* and the response th,3

than 2 events per time unit. Let us study the functiepsind6. with respect tac:

the sibset of points with coordinatésc, 6.) in the N?-plane, wherc varies may be
considered as the Black plot by analogjtwconventional sym thery in which
the Black plot is the curvgenerated by the pointargH (jw), log|H (jw)|) whenw

varies. In thscase, it is easy to see that

(0,00 if2<c<+4oo ;

,0c) = .
(ke:6) =112 if1/2<c<2.

The points belonging to the Black plot are circled in the figure. At the right-hand side
of this figure, the ‘trajectory’ of_. is represented by a solid black line fo& 2/3 (see

also Figure 5.13) and the response of the system to this input is indicated by a gray
line. The shifts along the two axes is igdied by a curved arrovn the dater point of
view, one may say thdhe ‘phase shift’ isc. wheras the ‘amplifiaion gain’ isé.. In

the counter point of view (which is closer to conventional system theory since the time
domain is usually nereented as th&-axis), the role of; andé. asphase shift and
amplification gain are reversed. [ |

5.9 Notes

The first papers on a new linear theory of some discrete event systems have been published in
early 1983 [37, 38]. They were based on the dater representation and, hence, on the max-plus
algebra. The connection of these linear models with timed event graphs was established in 1984
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[41]. In 1985, it has been realized that specific algebraic problems arise from the fact that daters,
as time sequences, are nondecreasing [42]. At about the same time, the idea of the counter
representation has been imdiuced by Caspi and Halbwachs [35] to whom this terminology is
due. This finally resulted in the two-dimensional representation first published in [43]. A more
detailed account of the so-calladi] y, §] algebra was given in [44] together with some of the
formulee about residuation @ and®. A large part of thematerial ofthis (and tle prevous)
chapter(s) is based on that paper—e.g. the sections on backward equations and on rationality,
realizability and periodicity—alftough the presentation has been somewhat improved here. In
particular, the role of residuation theory has been clarified in the process of establishing backward
equations, and in the relationships between dater and counter representations. Only the results
on ‘minimum representatives’ appear for the first time in this book. The idea of using the formal
transfer function as a numerical function, the fact that the Fenchel transform plays a role similar
to that played by the Laplace transform in conventional system theory, the parallel notion of
eigenfunctions of linear transfer functions in discrete event and conventional system theories,
..., were all discovered and published in 1989 [40]. However, here, the presentation has been
more tighly confined in the two-dimensional point of view.
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Chapter 6

Max-Plus Linear System Theory

6.1 Introduction

In this chapter a linear system theory is developed for a class of max-plus linear systems
with discrete or continuous domain and range. This class provides a generalization of
the class of event graphs which have been considered in Chapter 2. We will start with
an input-output point of view. We will view a max-plus linear system as a max-plus
linearoperator mapping an input, which is a function over some domain, to an output,
which is another function over the same domain. For this max-plus linear operator, we
will review the classical notions of conventional linear system theory. In particular, the
notions of causality, shift-invariance, impulsssponse, convolution, transfer function,
rationality, realization and stability will be considered.

The outline of the chapter is as follows. 1§6.2 we give general definitions, we
present the system algebra and we discuss some fundamental elementary systems. In
§6.3 we define some subalgebras of the system algebra by progressively specializ-
ing the systems, starting with the most general ones, and finishing with causal shift-
invariant systems with nondecreasing impulse responses. Most practical examples of
discrete event systenfall into this last category. In the dater description, their outputis
the reault of a sup-convolution between their input and their impulse respongé.4n
weintroduce the notion of transfer functions which are related to impulse responses by
means of thé-endtel transform. Ink6.5 we dscuss rationality in the max-plus con-
text, and characterize rational elements in terms of periodicity. We also discuss the
problem of minimal realization of these max-plus system$6l6 we gve adefinition
of internally stable systems amtiaracterize them in terms of equations which are the
amalogue of the conventional Lyapunov equation. In this chapter, mainly single-input
single-output (SISO) linear max-plus systems are considered.

6.2 System Algebra
6.2.1 Definitions

Definition 6.1 (Signal) A signalu is a mapping from R into Rmayx. When a signal isa
nondecreasing functionitis called a dater.

The spgnal set is@ﬁax. This sgnal set is endowed with two operations, namely

271
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e pointwise maximum of signals which plays the role of addition:

VKeR, YuveRe, . UdvK Euk @ vk =maxu®), vk) ;

e addition of a constant to a signal, which plays the role of the external product of
a sgnal by a salar:

VKeR, VaeRmy, YUER. @k Laguk =a+uk .

max

Therefore the set of signals is endowed with a moduloid structure. This algebraic
structure $cdled U.

In previous chapters the domain of signals Wagvent domain) and trajectories
were nondecreasing. In this chapter we develop the theory in the more general frame-
work of Definition 6.1.

Definition 6.2 (Max-plus linear system) A systemis an operator S: U/ — U, U >
y. The signal u (respectively ) is called the input(respectively outpu) of the system.
We say that the system is maxplus linearwhen the corresponding operator satisfies

s(@ ui> =P sw) , (6.1)
iel iel
for any finiteor infinite set {u; }i¢;, and

S(au) =aS(u) , VaeRma., Yuel .

Remark 6.3 Equation (6.1) is indeed the requirement of lower-semicontinuit$ of
andnot only the requirement th&is an®-morphism. Here is an example of a system
which is an@®-morphism but which fails to be I.s.c.:

[S(W] ) = limsupu(s) .
S—t

This system is clearly a@-morphism, but to show that it is notl.s.c., consider

0 ifk<0;
vn>1 uyk)=13{nxk if0<k<%;
1 if%fk.

For alln > 1, we have $(u,)](0) = 0, and

@un(t)z 0 ift<O0;

1 otherwise.
n>1
This yields[S(6D, un)] (0) = 1, which is different fron]{@, S(un)] (0) = 0. m

The set of linear systems is@éowed with two internal and one external operations,
namely
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parallel composition: S= S, @& S is defined as follows:
[SW]K) = [SW]K) & [SW]K) ; (6.2)
series composition: S= S, ® S, L or more briefly,S, S, is defined as follows:

[SW]K) = [SUSuN]K) ; (6.3)

amplification: T =a® S, a € Rnaxis defiredby:

Tk) =a® Sk) .

In addition to these basic operations, we have another important one, the feedback:

feedback: S* defined by the mapping frotd intol{: u — vy, wherey (see Figure 6.1)
is the least solution of

y=Sy)®u . (6.4)

The notationS* is justified by the fact that the least solution of (6.4) does exist by
Theorem 4.75 and is given byu @ S(u) ® S(S(U)) @ - - -.

3 A
>

u y

Y

A
(0]

Figure 6.1: The feedback operatign= S*u

The set of sgtems adowed with the first three operations defines an idempotent
algebra called the algebra of systems. We do not lose anything by considering only the
two internal operations because the amplification can be realized by a series composi-
tion where the downstreagsystem is wht we call againin the next section. Whenever
we speak of the set of systems endowed with the tnternal operations, we refer to it
as the ‘doid of systems’. The second operation is not invertible, and therefore this set
is not an iderpotent semifield (see Chapter 3), it is only a dioid.

6.2.2 Some Elementary Systems

We havediscussed how we can combine systems using compositions and feedbacks.
Here, we describe some elementary though fundamental systems with which more
complex gstems can be built up.

Wefirstintroduce the following notation.

1we makethe usual abuse of notation which consists in using the same symbol for external multiplication
by a <alarand for internal multiplication of systems. This will be justified later on.
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Notation 6.4 For f : R — Emax,)é: f (s) denotes the supremum 6fs) whensranges
in the interval g, b] (or e.g.(a, b] if a = —o0). We may also usthe notatioq%@ f(s)
if a = —o0 andb = +o0. [ ]

The following elementary systems are now introduced.

Zero systeme: this systenproduces the constant outpuwvhateverthe inputis: y(k) =
¢ for all k. It sdtisfies
e@e=cRQe=¢c"=¢ .

Identity e this systemproduces an output equal to the ingk) = u(k) for all k. It
sdisfies
ebe=eRe=¢€¢"=¢e.

Shift I'9; this systemmaps inputs to outputaccording to the equatioytk) = u(k—g)
for all k. ThenotationI'? is justified by the following rule of series composition
which should be obvious to the reader:

Mery =ty — rwey

ThereforeI'! may be @notedI". If we restict ourselves to signals that are
nondecreasing signals (see the discussion just above Remark 5.1), we have the
simgification rule

r9gry =rmnes (6.5)

In the context of event graphs, an initial stockoaiokens in a place introduces
swch a shift between inputs and outputs in the domain where we ‘count’ events.
In the framework of the continuous system depicted in Figure 1.13, the same
role is played by the initial amount of fluid in the reservoir at the outlet. Note
however that, in that example, equations were written in a counter, rather than
in a daer, representation, andiesequently, this device operated as a gain rather
thanas a shift.

Gain AY: this system maps inputs to outputaccording to the equatiopk) = d ®
u(k) = d + u(k) for all k. Again, thenotationA? is justified by the following
rule of series composition:

Ad ® Ad/ — Ad+d/ — Ad@d/ .

ThereforeA® may be @notedA. We also have the sintification rule (which
holds true for any input signal)

Al @ A — Aded _ gmaxd.d)
In the context of timed event graphs, this is the general input-output relation

induced by a place with holding tintt For the gstem of Figue 1.13,this
input-output relation is that of along pipe at the inlet of a funnel.
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Flow limiter ®,: this systemmaps inputs to outputaccording to the relation

k
y(k) = ﬁ u@)aks . (6.6)

o]

Unlike I'¢ and A¢, we use theotation®d, with a as a subscript, becauaaloes
not behave like an exponent. Indeed, the following parallel, series and feedback
compostion rules can be checked by direct calculation:

Dy ® Pgy = Py ® Pa = cI>ma>(a,a/) = Opgpa - (6-7)

Moreover, ®, > e and henceb, = (Py)*.

Physically, this system corresponds to the input-output relation between the cu-
mulated quantities traversing a pipe which limits the flow f@a {of course, here

a is a positive number). This is the case of the aperture of the funnel in Fig-
ure 113 (recall that this example is worked out usirguoter rather than dater
equations). This system plays the role of the SISO system governed by the dif-
ferentid equation

y=ay+u
in conventional system theory, the solution of which is
t
v = [ ueextat - 9)ds .
which is the analogue of (6.6).

Integrator & this is anothenotation for®,. It maps inputs to outputsccording to
the equationy(k) = ﬁkwu(s). The output of such a system is always nonde-

creasng. It plays the role of an identity element for shift-invariant systems with
nondecreasing impulse responses as we shall see later on. This role justifies the
notationé. It sdtisfies

EPE=ERE=(©E " =¢é.
Local integrator X™: this system maps inputs to outputsiccording to the relation

y(k) = ﬁkk u(s). Itis the analogue of a conventional system recursively av-
—w

eragng the input in a window of widthw. The fdlowing series, parallel and
feedback compositions of localtegrabrs can besasily checked:

oW P Ew/ — Ew@w/
YR Ew/ — Ew+w/ — Ew@w/

E" =x*=¢é, Vw>0.
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6.3 Impulse Responses of Linear Systems

In this section we introduce the notion of impulse response for a max-plus linear sys-
tem. The dgebra of impulse responses is isomorphic to the algebra of systems. The for-
mer algebra is first specialized to the case of shift-invariant systems and subsequently
tothe cae o systems with nondecreasing impulse responses.

6.3.1 The Algebra of Impulse Responses

We saw that the set of systems can be endowed with a moduloid structure. The next
stepis to introduce a kind of ‘canonical basis’ for this algebraic structure. Classically,
for time functions, this basis is provided blye Dirac function at 0, and all its shifted
versions at other time instants. Therefore, we now introduce

e() ks e(k) %€ k=0 (6.8)
¢ otherwise,
and
O LTSy  ie. ySk=ek—s) , VK. (6.9)

The jugification of the notatiore(-) will come from the fact that this particular signal
is the identity element for sup-convolution which will be the internal multiplication in
the system setnideed, it can be checked by direct calculation that

vu ,vk , uk) =ﬁu(s)e(k -9 . (6.10)
R
In view of (6.9), this can be rewritten
u =¢u(s)yS , (6.11)
R

which shows thatl is obtained as a linear combination of the signals This is the
decomposition of signals with respect to the canonical basis. This decomposition is
unique since, if there exists another function R — Rpmay Suchthatu = fv(9)y*,
we oonclude thab(s) = u(s), Vs, because of Idetity (6.10) applied to the function.

Now we can state the following theoremhich introduceghe notion ofimpulse
response.

Theorem 6.5 Let S be a linear system, then there exists a unique function h(k, s)
(called theimpulse respongesuch that y = S(u) can be obtained by

vk ,  y(K) =sugh(k, s) + u(s)] =ﬁh(k, su(s) , (6.12)
seR R

for all input-output pairs (u,y).
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Proof We have

y(k) = [SW]K) = [s (ﬁ u(s)y5>] ®
R

which, owing to the linearity assumption, implies

Yk = ﬁ (3] ) u(s) = ﬁh(k, SU(s) .
R R

where we have seh(k, s) def [S(¥®](K). To prove uniqueness, suppose that there

exigds another functionf (-, -) which satisfies (6.12). Then using inputs = 5, we
obtain

hk,s) L [SH]K)

= % fk, 0)y3(1)
R
= fkys ,

for all s, k € R, wherethe last equality is (6.10) applied to the functibrk, -). [ |

To the sries, parallel, amplification and feedback compositions of systems correspond
operations on the impulse responses.

Theorem 6.6 Given a € Rmax and the systems S, S; and S, with respective impulse
responses h, h; and hy, then,

e theimpulseresponseof S @ S is[h; @ ho](k, s) def hi(k, s) ® ha(k, s);

e theimpulseresponseof S ® S is[h; ® ho](K, s) dzefjéRhl(k, Nhsy(r, s);

e theimpulseresponse of aSis[ah](k, s) def ah(k, s);

e theimpulseresponse of S* ish* def

@ieN h'.

The st of impulse responses endowed with the first three operations (respectively the
first two operations) defines an idempotent algebra (respectively a dioid), called the
algebra (respectively the dioid) of impulse responses which is derigtetmpulse
responses are representations of systems written in a canonical basis, just like matrices
are finite dimensional linear operators written in a particular basis.

Definition 6.7 Alinear system Sis causal if, for all inputsu; and u, with correspond-
ing outputs y; and Yo,

Vs, Vk<s, uik) =uxk = yi(S) = y2(9) .

Theorem 6.8 A system Siscausal if itsimpulseresponse h(k, s) equalse for k < s.
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Proof If Sis causalS(y®) = h(k, s) coincides with S(¢) = ¢ fork < s. ]

Remark 6.9 The impulse responsie of a ries composition of two causal systems of
impulse responsds; andh, has the simplified form

k
h(k, s) =% hi(k,r)ha(r,s) .

6.3.2 Shift-Invariant Systems
Let us specialie the afjebral{ to shift-invariant systems.

Definition 6.10 A linear system Sis called shift-invariant if it commutes with all shift
operators, that is, if

Yu, Ve, S(T%u)) =T%Su)) .

Theorem 6.11 A system Sis shift-invariant if and only if its impulse response h(k, s)
depends only on the difference k — s. With the usual abuse of notation, the impulse
response isdenoted h(k — s) inthiscase Itisequal toh(-) = [S(e)](-).

Proof We have
hik, ) £ [S@9]K) = [ST3Ee)] (k) = [M5(SE)] (k) = [SE@]K—5) .

Consequently, in the shift-invariant case, the kernel defining the impulse response is
reduced to a function. The input-outputrelation can be expressed as follows:

y(K) = (h®@u)(k) dzefﬁ h(k — s)u(s) .
R

This newoperation, also denotegl, is nothing but thesup-convolution which pays the
role of the convolution in conventional system theory. We also note that the series com-
position corresponds to the sup-convolution of the corresponding impulse responses.

Definition 6.12 The algebra of shift-invariant impul se responses, denoted S, isthe set
R, endowed with:

e the pointwi se maximum of functions denoted &;
e the sup-convolution denoted ®;
e the external operation which consistsin adding a constant to the function.

The zero elmentdenoted: (-) is defired bys(k) = ¢, Vk . It is absorbing for multipli-
caion. The identity element denoted ) is descrbed by (6.8).
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Remark 6.13

1. This idempatnt algebraS can simply be considered as a dioid.

2. Because signals and SISO systems can be represented by functions, we do not
have to distinguish them.

3. Impulse responses of shift-invariant causal systems sé#itikjy= ¢ for k < 0.
[

Example 6.14 The elemerdry systemsntroduced in56.2.2 are shifinvariant linear
systens. Their impulse responses are given later in Table 6.2. Noticejthat §° =
¢. = eif ¢, denotes the pointwise limit af, whena goes to—oc. [ |

6.3.3 Systems with Nonde@asinglmpulse Response

In the context of event graphs, input signals have the meaning of sequences of dates at
which successive events occur, and therefore they are nondecreasing functions. In the
ca® d the continuous system depicted in Figure 1.13, the input and the output are also
nondecreasing.

A nondecreasing signalcanbe characierized by the inequality > X™u for any
arbitrary positivew. From an algefaic point of view, this situation is identical to that
desaibed by Inequdity (5.11) if =™ plays the rd¢e earlier played by, now that the

domain is continuous. Hence from Theorem 5.8, we know i (Z¥)* v is the
best approximation from above of a signain the subset of nondecreasing signals.
Recall that(X™)* = é (seeend 0f§6.2.2). In particular, a nondecreasing functiois
characterized by = (G = éu.

Consider a system with impulse respohserhen, if only nondecreasing inputis
are onsidered, the outputs are also nondecreasing as shown by the following equalities:

y=hu=h® (éu)=éheu =€y .

We also notice that, for this class of nhondecreasing inputs, the systems with impulse
responsel andh = é® h yield the same outputs. Thisis cdled the ‘nondecreasing
version’ of the impulse responde The subset of nondecreasing signals and impulse
responses, denoted] is adioid with the same addition and multiplication&sbut the
identity element i%.

The following are the nondecreasing versions of the impulse responses of some
elementary systems encountered earlier, the nonmonotonic versions of which are given
in Table 62 below:

6k) — e ifk>0; ok) = e ifk>c; S’d(k)— d ifk>0;
~ |e otherwise; Y ~ |e otherwise; ~ |e otherwise.
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6.4 Transfe Functions

6.4.1 Evaluation Homomorphism

In this section we discuss the notion of transfer functions associated with shift-invariant
max-plus linear systems. Transfer functions are related to impulse responses by a trans-
formation which plays the role of the Fourier or Laplace transform in conventional
system theory, and vith, in our case, is similar to theendel transform of convex
analysis.

We saw that signals and impulse responses are functions belonging to the same
idempotent algebra and that, in the canonical basis, they can be written

f =ﬁf(s)yS )
R

We assocate a transfer functiog, which will be a maping fromRmax into Rmax
with suchanimpulse response viewed as a generalization of a formal polynomial intro-
ducedin Chapter 3. The value at a point of this latter function is obtained by substitut-
ing anumercal variable inRmax for y in the expessionof f. Theresuting expression
is evaluated using the calculation rulesRafa. This subditution of a numerical value
for the generator should be compared with what one does in conventional system the-
ory when subdituting numerical values i for the formal operator of the derivative
(denoteds) in continuous time, or the shift operator (deno®dn discrete time. To
formalize this notion, we introduce the idempotent algebra of convex functiaaliR
that a closed convex function is a function which is

1. l.s.c.in the conventional sense, that is, it satisfiesJigx f (xn) > f(X);
2. convex;
3. proper, that is, nowhere equal+tao;

or a function which is always equal teco. It is exactly the set of the upper hulls of
collections of dfine functions [119, Theorem 12.1].

Definition 6.15 The set of closed convex functions endowed with the pointwise max-
imum denoted &, the pointwise addition denoted ® and the addition of a scalar as
external operation, is called the algebra of convex functionsand is denoted Ccy.

Once more, there is no loss of generality in considering the dioid of convex functions
endowed with two internal operations only. Indeed, the product by a scalar or the
pointwise product by a constant function gives the same result.

Definition 6.16 For f =5%R f(s)yse s, let

9:R — Rmax c»ﬁf(s)@cs. (6.13)
R
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Then g is called the numertal transfer functiohassociated with f. The transform &
which maps f to g is called the evalugion honomorphism(as will be justified by the
forthcoming Theorem 6.17).

Five different conplete and commutative idempotent algebras and dioids have been
considered, andansequently five different meanings ef and ® have been used.
As usual, the context should indicate which one is meambrding to the nature of
elements on which thesertary operations operate. Table 6.1 recalls the meaning of
these operabins. The application of the evaluation homomorphism to the impulse

Table 6.1: ve diocids

Dioid || Rimax H | S
S) max pointwise max
® + max-plus kernel product sup-convolution
€ —00 ek, 1) =—o00 , VK e(k) = —oc0 , VK
o 0 etk 1) = 0 ifk=l . e(k) = 0 |fk=9
—oo otherwise —oo otherwise
Dioid $=¢8S | Cox
S) pointwise max
® sup-convolution pointwiseaddition
€ e(k) = —oc0 , VK g(€) =—-o00, VC
e é(k):{o Iszo, ec)=0, Vc
—oo otherwise

responses of the elementary systems is given in Table 6.2.

Theorem 6.17 The evaluation homomorphism F is a |.s.c. (in the sense of Defini-
tion 4.43) epimorphism (surjective homomorphism) from S onto Ccy.

Proof The homomorphism and l.s.c. properties are true by construction. Indeed,
F(feo ) = F(f) @ F(f’), andits extension to infinite sums is true by commu-
tativity of the sup operation. Finallf (f ® f') = F(f) ® F(f’) is true by definition

of the ® operation inS. Surjectivity arises from the fact thak (S) is the set of the
upper hulls of families of affine functions which coincides with the set of closed convex
functions. [

Remark 6.18

1. Clearly F is not injective, for example

co=[F(y@r)]© = []—' ({ﬁ)]@ |

1

2In this chapter we will call it simply a transfer function because the notion of formal transfer is not used.
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Table 6.2: Impulse responses and transfer functions of the elementary systems

| System| Impulse response | Transer function |
e ek)=¢, Vk [F(&)](c)=¢ , Vc
e e(k)={e Th=e [F@®lCc)=e, Vc
¢ otherwise
e ifk=
ro Y9k = { g [F @l =9°, Vc
otherwise
d ifk=0
Ad sd(k) = F(H]©) =d, vc
0 {e otherwise [ ( )]( )
ak ifk>0 e ifc<-a
®a galk) = {e otherwise [F @] = {T otherwise
. e . e ifc<O
© ek = { otherwise [7 @)@ = {T otherwise
e fw>k=>0 e ifc<oO
Ew w k — — — Ew — —
") {e otherwise [ EM1© {wc otherwise

2. The convex function

© = ¢ ifc=0,
9O=11 otherwise,

is not closed. Neither is it the upper hull of a set of affine functions. Indesch
affine function would be belowg and therére would be equal te everywhere.
Neverthdessthis fundion is I.s.c. because the subséty g(c) < a}, whichare
equal to{0} for all a € R, are cbsed.

3. By returning to conventional notatiotf; can be iterpreted in terms of the
Fendel transform. More precisely we have

[F(D](©) = SEFIkCﬂL f)] = [Fe(=D)](©) , (6.14)

where [Fe(f)](C) def sup(kc — f(k)) denotes the classical Fenchel transform

of convex amalysis [58]. Recalling that the Fenchel transform converts inf-
convolutions into pointwise (conventional) additions, we see that the choice of
multiplication in Ccx is consistent with this propserbf the Fechel transformm

6.4.2 Closed Concave Impulse Responses and Inputs

It is well known that the Fenatl transform only characterizes closed convex functions;
or otherwise stated, all functions having the same convex hull have the same Fenchel
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transform. Rphrasing this result in terms of the evaluation homomorphism, we ob-
tain that only the closed concave impulse responses are completely characterized by
their tranger functions. For this subclass, the evaluation homomorphism is a tool as
powerful as the Laplace transform in conventional system theory.

Theorem 6.19 For g € Ce, the subset F~1(g) admits a maximum element F*(g)
defined by
def

[F @]k = /\ gx/ch = inf[g(c) — k] (6.15)
C

(where the latter expression in conventional notation requires the convention about

oo — oo discussed in Example 4.65). Moreover, F¥(g) isthe concave upper hull of any

other element of F~1(g).

Proof Fromthe preceding considerations, we see that all the assumptions required in
Theorem 4.50 fulfilled. Then (6.15) is a straightforward extension of (3.11) to the
continuous domain case. [

Definition 6.20 The subset S, of S consists of closed concave functions, that is, the
functions which are concave, upper-semicontinuous (u.s.c. in the conventional sense)
and either nowhere equal to T or always equal to T.

Remark 6.21 The setS, is closed for multiplication (sup-convolutions of concave
u.s.c. functions yield concave u.s.c. functions), but not for addition (the upper hull of
concave functions is not in general a concave function). It is closed for pointwise
infimum. Therefore, this subset is not a subdioidof [ |

The next therem tells us that the computation of the sup-convolution of two concave
fundions is equivalent to a pointwise addition and three Fenchel transforms. Knowing
that there eists a fast Fenchel transform which is the analogue of the fast Fourier
transform B1], this formula gives an efficient algorithm to compute sup-convolutions.

Theorem 6.22 We have the formula
vi,geSew ., h=f®g=F (F(f)®F@Q) ,
which, in conventional notation, means

hk) = sup[fXx) +g(y)] = F*(F(f) + F(@©@)) .

x+y=k

Proof Equation (6.15) shows th&, equalsF* (Ccy), Snce lower hulls of families of
affine functions are closed concave functions. Therefore,

VfEch, fnof(f)zf
Then, using tk closeiness ofS;, and thehomomorphism property of, we have

fg=FF(fg) =F (F(f)®F@Q) .
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6.4.3 Closed Convex Inputs

In conventional system theory ahy function can be decomped with respect to the
basis of sine functions. In the present situation, any closed convex function can be
decomposd with respect to conventional linear functions:

def
y=lcX) = cxx=x°,

which may be considered as the max-plus exponentials (the last expression is in max-
plus notation). This decomposition can be used to compute the outputs of a shift-
invariant max-plus system driven by convex inputs. Indeed, the max-plus exponentials
are eigenvectors for any shift-invariant max-plus linear system in the same way as the
sine functions are eigenvectors for any shiftsariantlinear system inconventional
linear system tleory.

Definition 6.23 Thesubset S¢ of S consists of closed convex functions, The canonical
injection of S¢x into Cey isdenoted 7.

Remark 6.24
1. The differece betveenS., andCcy is the® operation (see Table 6.1).

2. Unlike S, which is closed for multiplication but not for additioSy is closed
for addition and multiplication. But in general the multiplication of two convex
functions is equal td. The only exception is the product of two affine functions
with the same slope.

3. The identity elemente(-) is not convex. ThereforeSc is not a subdioid ofS
either.

4. The intersection 08, and S is the aubset of weighted exponentials in the
maxplus sensel(® I (-)) or affine unctions in the conventional sense. =

In the max-plus framework, the decomposition of closed convex functions tells us
thatthese functions are integrals of weighted exponentials. Moreover, the correspond-
ing weights are explicitly given by the Fenchel transform.

Theorem 6.25 For all f € S, we have
f =T L FFLI(f) ,

which can be written
vk, fk) = ﬁck [F*I(f)](c) = ﬁ Kk [FEZ(f)](©) . (6.16)
R R

to emphasize the exponential decomposition.
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Proof A functionf € Scx may be viewed s1a transér function inCgx because it is
a closed covex function. ThereforeZ(f) equals f but consideed as an element of
Cx- BecauseZ (f) € C, Wecan solveF(g) = Z(f) for g. But wehave an gplicit
formula forg, nanely g = F* (Z(f)). Then usng the fct thatFo F* = Z¢_, we have
proved the result. [ |

Let us show now that the max-plus exponentials (conventional linear functigrask
eigenvectorsdr the operator defined as the sup-convolution with a given impulse re-
sponse.

Theorem 6.26 For all impulseresponses h € S and all scalars ¢, we have
hele=[Fbh)](-o) Il . (6.17)

Therefore [F(h)](—c) is the eigenvalue (called the gain of h for the exponential 1)
associated with the eigenvector | of the operator g — h® g.

Proof The poofis the same as in conventional algebra;

[h® ] k) =ﬁ

R

Sh(s) = ckﬁ cSh(s) = ¢ [F(h)](=0) .

R

We may usethis property of the exponentials to compute the output of a shift-invariant
systemdriven by a convex input.

Theorem 6.27 We have

VieSx, YheS, h®f =ﬁ [FZ(H)]© [FOI=0) ¢ ,
R

where [F%Z(f)](c) is the weight of the exponential .. in the spectral decomposition
of f and[F(h)](—c) isthegain of h for the same exponential.

Proof Using thedistributivity of ® (sup-convolution irS) with respect tg, we have

h®@f = h ®ﬁ [FEZ(f)](©) Ic by (6.16),
= ﬁ [FEZ(f)](© (h®lo) by linearity,
— ﬁ [FEZ(f)](©) [Fh)](—0) Ic by (6.17),
and the @inctionh ® f alsobelongs taS. [ ]

In conclusion, we have encountered two situations of special interest to compute the
response of a system to an input
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e if the input and the impulse response are concave, we can use the evaluation
homomorphism to transform this inf-convolution into a pointwise conventional
sum;

e if the inputis convex, we can first decompose it as a sum of exponential functions
(in the dioid sense), and then, using the linearity of the system, we can sum up
the regponses to these exponentials inputs.

6.5 Rational Systems

The setS is a nice algebraic structure but iteelents are functions and therefore can-

not be coded by finite sets of numbers in general. Itis useful to consider subsets of these
fundions which can be coded in a finite way. The algebraic functions would constitute
swcha £t Those functions are described as the solutions of a polynomial systems of
equations inS. But even inclassical system theory théusly of these systems is in

its infancy. Therefore we restrict ourselves to a simpler situation. We only consider
systems with can be desibed by a finite set ofspecial linear equationsy = hy & u.

Thes equations describe the input-output relation of systems obtained by series, paral-
lel and feedback compositions of elementary systems for which the impulse responses
are eplicitly known. Such systems are called rational. Clearly this notion of rational-
ity depends on the elementary systems considered. Rational systems can be described
in terms of the star operatioty = h*u). This storyis not specific to meplus alge-

bra, but the rationals of theseamtplus dégebras have simple characterizations in terms

of their periodic asymptotic behavior which is similar to the periodicity property of
the decimal expansion of ratal numbers. The aim of this section is to characterize
max-plus rational systems by their asymptotic behavior.

6.5.1 Polynomial, Rational and Algebraic Systems

Let us onsider

1. a subseK of S which dso has a structure of idgyotent algebra but not nec-
essaily the same identity element & (for example, nondecreasing functions
define an algbrawith é asthe identity element—se$6.3.3);

2. afinite setr = {ay, ... , oy} of elements ofS.

Let us define fie aubsets ofS which may beconsidered asxtensons ofK and which
have a structure of idempotent algebra:

polynomial or dioid closure K[«] of K U «: its elements are obtaéd by combining
the elements oK U « using a finite number b and® operations;

rational closure K (a) of K U a: its elements are obtained bgmbining the elements
of K U « using a finite number ob, ® and* operations;
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algebraic closureK {«} of K U «: its elements are obtainedylconbining the ele-
ments ofK U « using a finite number o and ® operations and by solving
polynomial equations with coefficients K U «;

series closureK[«] of K U «: its elements are obtained bpmbining the elements
of K Ua using a countable number @fand® operations: this is the completion
of the polynomial closure;

topological closureK {«} of K U «: its elements are obtained/lzonbining the ele-
ments ofK U « using an infinite number ab and® operations and by solving
polynomial equations: this is the completion of the algebraic closure.

NotethatsS is a sibset 0fRma{y }. In gereral we have

Kla]

K c K[a] € K(a) C { K {er)

} c K{a} .

For exampleconsiderK = B = {¢, e} anda = {8}, where$ is the impulse response
mentioned in Table 6.2. Recall thatdh §% @ §% = smad.d) |n this paticular case
we have

B[6] =~ Nmax C B(8) = B[ 4] ~ Nmax C B{s} = @max C B{s} ~ Emax )

whereAnax for a setA meansAU {¢} endowed withthe maxand the+ operationsA is
Anmax U {+00}, and the isomgrhisms above ientify scalarsd with impulse responses
89,

Remark 6.28 Observe that iB[§] it is difficult to speak of thenotion of valuation.
For examplethe valution of §% @ §% would formally be equal to mily, d»); but at
the same timé® @ 5% is equal tos™%-%); the latter is a monomial the valuation of
which is thus the same as the degree, namely (ahaxd,).

Similarly, considerB[y] which is equal toé @ B[y], and obsrve that tle notion
of degree is equally difficult to define. Indeed, owing to (6.5) which holds true for
nondecreasing signalg®: @ y % is equal toy M"919%) wheleas it would 6rmally have
a degree equal to még, o). )

The sanre difficulties arise in other polynomial (or dioid) closures suckgg, §] =
éB[y, 8]. This dioid is isomorphic to the polynomial subdioid €y, 8] (‘polyno-
mial’ i n thesense o Definition 5.19). Any element if[y, §] can be represented, in a
nonunique way, as the producté@by anelement ofB[y, §]: the later may be called a
‘representative’ of the former. Itis thus possible to speak of the valuations and degrees
in y ands of such a epresentative ifs[y, 5] of an elenentof B[y, §]. However, these
notions can be given an intrinsic meaning only if we restrict ourselves to the ‘minimum
representative’ which exists for polynomials (see Theorem 5.20). [ |

6.5.2 Examples of Polynomial Systems

Table 6.3 gives the main examples of polynomial closureRgf, or of B used inthis
book. They are obtained from the set of scalars (identified with impulse resptfhses
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asexplained earlier) augmented with the impulse responses of some of the elementary

systerrs encountered previously. We sgt= {¢c,, ... , ¢c},

nondecreasing.

Table 6.3: Polynomial extensions

whereg,, is defined in
Table 6.2. h the fdlowing, thec; are asumed to be posig and theefore ¢, is

=R
K o h e Kla] C Rypax
Emax
~ {y} h(k) # ¢ only fork € N.
B{s}
ﬁmax h(k) = ¢ fork e R™; overR™, his —
def ) nondecreasing and piecewise
T v constant with a finite number of —
€R max disoontinuities at integer abscissae.+—|
) h(k) = ¢ fork € R™; overR™, his
@ _ convex, nondecreasing and
max - piecewise linear with slopes in E———
{¢01»--- »¢01} {Ci, ..., Ce).
B h(k) = ¢ fork € R™; overR™, his
def ) nondecreasing, piecewise constant
e {y, 8} and integer-valed with a finite
élc, € nunﬁer of discontinuities at integer
abscissee.
h(k) = ¢ fork e R™; overR™, his
. . convex, nondecreasing, piecewise
B {y,s8}U¢ linear with slopes iricy, ..., ¢/} 7
and with a finite number of 4
discontinuities at integer abscissee.

6.5.3 Characterization of Rational Systems

A characterization of elements df («) is given under the assumption thitis ratio-
ndly closed (see Definition 4.99); this is the representation problem. In the present
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context, we defined a rational element as an elerhatitained by a finite number of
@, ® and* operations applied to elements §fU «. The fdlowing result shows that
only one* operation is reded with respect tihe elements ix. Consequently, it is

easy to obtain a linear system which adnhitasits impulse response.

Theorem 6.29 (Representation of rational impulse responsesje assumethat K is
rationally closed (for example, K is a complete dioid). Then, for all h € K (), there
exisneN, B,CeK"and A e K™ i =1,..., ¢, suchthat

[ *
h=C (@wx) B . (6.18)
i=1

Proof Letus referto Theorem 4.105and &&= K,C = K, U4 = K andY = «. Since
K is supposed to be rationally closed, tHgh= K,U* ® B = K andi/* ® V consids
of linear combinatns of elements af with coefficients inK. Theseobservations lead
to (6.18). [ |

Example 6.30 Let us @nsiderthe elemenh of Ryax(y) defined byh = ((1y3)* @
(y?)*)*. Obseve thatRaxis a mmplete dioid. Using (4.109) and the fact tiiat)* =
a*, we haveh = ((1y3*)*((¥9*)* = (1y3*(yd)* = (1y 3@y ?)* for which we obtain
the realization

Xo=yX1, Xzg=yX2, X1=1lyXz@®yXoPHUu, Y=X1 .
[ ]

In the case of nondecreasing impulse responses, the form of the rational functions may
be explicited by specializing Theorem 6.29.

Corollary 6.31 Every h € ﬁmax(qﬁ) can bewritten

14
hz@h|¢cl ) hie@max, i=1,...,£.
i=1

Proof Using The@rem 6.29 withK = ﬁmax (thisis a complte, here rationally closed,
dioid) anda = ¢, we can write

[ *
h=c (@ai¢ci> b,
i=1

where he entres ofb, ¢ anda; belong toﬁmax. By expanding the expression and by
using the simplification rules given in (6.7), we obtain the form claimed in the statement

of the corollary, butvith coefficientsh; of theg,, belonging taRmax. As sud, they can
bewritten h; = éh; for someh; € Rmax On the other hand, recall that we assumed

¢ > Oforalli, which inplies that thep, are nondecreasing. Hen@. = ¢ . This
observation allows us to adopt theas the coefficients of thg, . [ |
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Theorem 6.32 Every h € B(y, §) can bewrittenh = é (p @ 387 (y" §5)*q), where
e p € B[y, d] isapolynomial of degreeatmost v — 1liny andt — 1iné;
e ( € B[y, §] isapolynomial of degreeat mostr — 1iny ands — 1in3.

For a given h, theratio s/r isindependent of the particular representation of thistype.

The aove form expresses a periodic behavior of the impulse resgon$ée poly-
nomial p represents the transient part having a ‘widthvodind a ‘height’ ofr. The
polynomialq represents a pattern having a ‘width’roéind a ‘height’ ofs. This pettern
is reproduced indefinitely after the transient part (see Figure 6.2). Thesyatiepre-
sents the ‘asymptotic slope’ (see Definition 6.46 below). For the extreme cases0
ors = 0, the reader may return to the discussiof5tv .4.

Proof Because we are in the commutative case, we can refer to Theorem 4.110 with
T = {e,€, 7,6} andD = B[y, d]. In fact, in the following, we will also need to
use elements dB{y, §}, herce we may embed all these structures into a larger one,

namerIé%{)}, §}. From Therem 4.110 we have thét = @Iizléi (bi)* , for some

& andb; which are eéments of7° = B[y, §] = éB[y, §] (see§6.3.3). Sinces;
andb; are polynomials, we may consider their minimum representatives [ip, 5]
(see Remark 6.28), denotadandb;, respectively, and thus obin thenew formh =
é®'i=1 a; (bj)*. It remains to showthat this form can be reduced to the form given in
the theorem statement, which essentially uses the star of a single monorialsin
This proof is outlined below.

def

Considering monomials = ' 83, we first introduce the rational numbei(isl) =

s/r, cdled the ‘slope’ (with the convention that(s) def 0). This notion is extended to

polynomials (or power series) as followsnh andm, are two monomials, then
sl(my & my) = sl(my) & sl(imy) .

The epression of gm; @) is a direct consequence of the definition since the product
of two monomials is also a monomial. Using these rules, we notice that,isfa
polynomial, then glp*) = sl(p) and this is the maximum slope among the monomials
which form the polynomial.

We now propose the following inequalities:

def def .

X d=ef éSS()/SS/r)* >y = é(y’&s)* >zE Eyr(VSS/r)*

(note thats¥" is anelement of the algebraic closure ). Only the inequalityy > z
will be proved. The other inequality can be proved using similar calculations. With
n=ar +B,a, B e Nandg < r, dl the monomials ofz namelyéy' (y6%")", n € N,
canbewrittené(y ' §%)**1yf5#/"=Ds  The monomiak(y" 5%)**! appear iny, whaeas
the multiplicative monomiagy #5#/7=1s js |ess tharé (it has a nonnegative exponent
in y and anegative exponent i), owing to the simfification rules for ‘shifts’ and
‘gains’ given in§6.2.2. Thus each mnomial ofz is dominated by a monomial of.

From these inequalities and from Lemmda. @7, we can derive the following four
rules.
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Rule 1: sl(mp) < sl(imy) = p1(My)* @ p2(m)* = p & pi(my)*, wherep is apoly-
nomial depending on the given polynomigisand monomialsmy;.

Rule 2: sl(mp) = sl(imy) = (M)* & (Mx)* = p ® (Iem(my, my))*, wherem; =
&1 85, lem(my, mp) %' &y lemeura) slemsis) - and p is a polynomial depending
on them.

Rule 3: sl(np) < slimy) = (M)* @ (Mx)* = (Mg & My)* = p @ q(my)*, wherep
andq are polynomials depending on the given monomiais This mle can be
derived from(my)* ® (mp)* = @, mims.

Rule 4: sl(my) = slim) = (Mp)* ® (Mp)* = (Mg & Mp)* = pd m gedimy, Mp)*,
where the gcd of two monomials is defined in a similar way as the lcm previously,
m is a monomial andp a polynomial, both depending on ting .

The posshility of reducingh to the claimed form comes from the recursive utilization
of these four rules.
Finally, it should be clear that cannot have two representations with different

values ofthe ratios/r. [ |
/
_
/
//
Figure 6.2: An element dB(y, §) Figure 6.3: An element db(y, §, ¢)

Remark 6.33 The representatioof rationalsin ﬁmax()}) is a simple gtension of
Theorem 2. IndeedB(y, §) ~ [IB (8)] (¥) =~ Nmax(¥). Therdore we have to
generalize the situation to the case when the coefficients of power sepiearanreal
instegd of integer. This extension is straightforward. The result becomes: for each

h € Rmax(¥), there existp, q € Rmax{y] of degreesy — 1 andr — 1, resgectively, and

a € R suchthath = é(p @ qy"(ay")*). For a giverh (recall this is anondecreasing
impulse responsepl can be restrained to be nonnegative, and then the nonnegative
slopea/r is indgpendent of the particular representation chosem for [ |

Findly, the following corollary is just the synthesis of the previous results.

Corollary 6.34 Every h € B(y, §, ) can bewrittenash = é(p & y"87(y'8%*q) ,
where
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e peB[y,s,¢]isapolynomial of degreeat most v — liny andt — 1in g, and
itislinear in ¢g;

e ( € B[y, s, ¢] isa polynomial of degreeat mostr — liny ands— 1iné, and
itislinear in ¢, .

This thearem describes the asymptotically periodic behavior of the impulse response,
the periodic pattern being a piecewise nondecreasing convex function (see Figure 6.3).

6.5.4 Minimal Representation and Realization

The minimal representation problem can be stated in different terms depending on the
elementary subsystems that we comsid.et us dcuss e two example®ma]¢] and
Emax(y)-

Definition 6.35 (Minimal representation in Rmad#]) Givenh € Ryad#], wherep =
{dc,, - - » Pc,} (thec are nonnegative), the minimal representation problem consistsin
finding a subset of ¢ with minimal cardinality £mi, such that h = @fﬂ hi ¢, , with
hi € EmaXa i=1 ..., %nin.

In conventional system theory, this problem corresponds to finding the minimal number
of exponentials of which the impulse response is a linear combination.

Obsave that this representation directly corresponds to a realizéfipB, C) with
a dagonal matrixA (see the theorem below). Indeed, in conventional system theory,
the impulse response of a continuous-time shift-invariant system may contain functions
of the formt" exp(kt). Themax-plus case is simpler because= t2 and theréore the
impulse response is only composed of max-plus exponentials.

Theorem 6.36 Given h = @_, hi ¢, therealization
X1=¢gU ,..., Xe=¢u, y=Cx,

withC = ( hy ... h,),isminimalifandonlyif thepoints(c, hj) € R* x R are
the corners of the graph of a decreasing and concave piecewise linear function.

Proof Letg,, = min; ¢ andg,, = max ¢. OverR*, h is the upper hull of¢ affine
functionsx — ¢ x + hj, wheaeash(x) = —oo for x < 0. Since we are interested

in determining whether the affine functions are all needed to repredenit does not
matter if we replacén by a new functionH suchthatH(x) = h(x) for x > 0 and

H(X) = +o0o for x > 0. ThisH is convexand is fully characterized by its Fenchel
transform éee Rerark 336). This latter function also is convex and piecewise linear,
and it adnits some of tle points(c;, —h;) as the camers of its graph. Moreover, owing

to our assumption thdtl (x) = +oo for x < 0, this function is constant at the value
—h;,;,, on the left ofc; ,, and is gual to+oco beyondc; . Because of the horizontal
branch of the graph at the left-hand side, the first slope is zero and the next slopes are all
positive since the slope of a convex function is nondecreasing in general, and moreover
it strictly increags when a corner is traversed. Any p@ir, —h;) which isnot a corner
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of the graph of the Fenchel transform can be discarded without changing this function.
The @rresponding affine function of canalsobe discarded without changimg The
staement of the theorem expresses theseditions, which are obviously necessary
and sufficiat, up to the change ofh; into h;. []

Definition 6.37 (Minimal realization in Rmax()/)) Given h e Rmax()/) the minimal

realization problem consistsin finding a triple (A, B, C) € Rmax X Rmax X Rmax with
minimal n such that h = C(y A)*B. Equivalently, if y = hu, then there exists X €

= n
(Rmax()})) such that (u, X, y) satisfy:

XV_gsf X \_e A B X
y ) u /) C ¢ u /-
Matrix Sis called the system matrix

The problemof finding a minimal realization is still open. The previous minimal rep-
resentation theorem in the case of continuous impulse responses cannot be extended
to the present disaete situation in a straightforward manner, essentially because it is
difficult to precisely identify the underlying ‘exponentials’ (that is, the expressions of
the form(ay")* which may contribute to the transient part of the impulse response).
Many attempts to solve this problem have not been successful yet. In Chapter 9 partial
resuts are given. Nevertheless the following theorem gives a realization which is not
necessarily minimal but which contains only one star operation.

Theorem 6.38 (Realization inﬁmax()})) Every element of ﬁmax()}) can be realized
with a system matrix S given by
Y &
CEE 4

[¢,)
SN
[¢,)

v

™ @ ™ ™

ar—-1 - - q©O® pev-1) - p@O

corresponding to the event graph given in Figure 6.4.

Proof Remark 6.33 showed that H e Rmax()/) it can be represented &s =

é(p@ay’ @y, with p = o pi)y' andq = @j5a(j)y’. By direct cal-
culaion, which consists in eIimlnatmg in

(3)=s(2)-

with the above epression ofS, one cancheck thaty = hu with the given expression
of h. [
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Xriv e Xrqv—1 Xr-1 y
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Figure 6.4: One-star realitian of rational systems i max(y)

6.6 Correlations and Feedback Stabilization

In this section we develop a second-order max-plus system theory. This theory offers
algebraic similarities with conventional second-order system theory. In the context of
ewent graphs, its main application is the evaluation of sojourn times of tokens in places
or in broader portions of the graph. A tan of internal stability is introduced by
saying that a system is stable if all its sojourn times are bounded. Finally it is shown
that a gructurally observable and controllable system can be stabilized by a dynamic
feedback while preserving the asymptotic open-loop performance.

6.6.1 Sojourn Time and Correlations

We mnsider the problem of computing the sojourn times in timed event graphs. Let
andu be two dagrs associated with a pair of transitions (also namaddu) surround-

ing aplace p containingu tokens initially ¢ corresponds to the upstream transition,

u to the downstream). The token involved in the firing of transitionumberedk

(this firing occurs at timei(k)) corresponds to the token which was produced by the
firing of transitionv numberedk — 1 (occurring atv(k — w)). This is because we deal
with deterministic event graphs with constant holding times and the FIFO rule may be
assumed for places. Therefore, we define the sojournTyng, 1) of this token in
placep (along arc(v, u), markel with . tokens initially) by

Tw(k, w) =uk) —vk—p) .

More generally, for two transitionsandu connected by a path containingu, tokens
initially (i.e. u, = Iph), Tw(k, n,) = uk) — v(k — p,) repregntsthe time spent
along the pathp by the token numberekl at u. Thesenotions can be generalized to
continuous systems, like the one presentedlir2.7, by considering that tokens are
‘molecules’ of fluid in pipes. More formally, we introduce the following notions.

Definition 6.39 Let u, respectively v, be an n-dimensional, respectively p-dimension-
al, vector with entriesin S.

Sojourn-time matrix The sojourn time (Ty, )ij (k, ) of the token participating in the
k-thfiring of transition u;, and using a path fromwv; to u; which contains . tokens
initially, is defined as

(Tw)ij (K, ) = Ui (Kpvjk — ) = UKFvK — w))j;
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Here ¢ denotes the residuation of the instantaneous matrix product. Then x p
matrix function Ty, (-, -), which gives the sojourn times between paths going from
the set v of p transitionsto the set u of n transitions, is called the sojourn-time
matrix.

Correlation matrix Let R,, be the matrix with entriesiin S defined by R,, = ugv.
Here ¢ is considered as the residuation of the (matrix) ‘convolution’ product in
forcein S (whichissimilar to power series product). Therefore (see (4.97)),

yme R, Ry () = [up](w) = A\ ulopvk — ) = \ Tk, ), (6.19)
k k

This R, is called the correlation matrix of u withv. If u = v, itiscalled the
autocorrelation matrix of u.

There might be parallel paths with different initial markings.

Lemma6.40 If v € S, the mappings u — Ty, (K, w) and u — Ry, (n) are nonde-
creasing.

Proof Sincev is nondecreasing,
vk, p=pu=vk—p)=vk—pw = ukivk—u) <ukpok—pw .

The resilts follow immediately. [ |

Remark 6.41 We rder the readr to Example 4.65 fothe manipulation of in Rpax

and to§4.6.2 for the matrix érmulaeinvolving . It may be useful to recall the point

of view adopted in [49]. With the choice of primitives used therein, the residuation
operator can be evaluated adldavs in the case of vectors ov@®ax. Let us first
introduce the following notation: an overlined (square or nonsquare) matrix or vector
will denote the transposed matrix or vector in which, moreover, the (conventional) sign
of all entries has been changed to the opposite. For exampie;if( 2 3 ) then

a= (-2 -3);ifheds, thenh(t) = —h(-t).*> Then we haveifv = v ® U and
viUu = U® v, where® dtill denotes the matrix product iRmax. Theseformulze hold
also tue inRyax We have

T=¢fe=eRe=eQx T, T=TfT=TR®T=TQ¢ .

It is also useful to recall the De Morgan formuleae for the sup and the inf (see (4.9)—
(4.11)) and in particular the following formula:

a®b=boa,

SIndeed, if we view the convolution as an extension of the matrix product with infinite-dimensional
elements (for special matrices in which entryj) depends only on the differente= i — j), thenh(t) =
—h(-t) is the composition of transposition and of change of sign.
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where® denotes the matrix product based on min anéthe absorbing element for
scalar multiplication being nowT = +oo: we haves ® T = e bute © T = T). For
exanple,

afb=b®a=aob.

Remark 6.42

1. Anothe intereding quantity isT;! (k, u) = u(k) — v((k — n)_) wherev(k_) =
limsyk v(s). ThisT ™ is differentfrom T whenv is not left-continuous.

2. Let us consider the case wheandv are scalar functions. The analogy between
the conventional correlation and the max-plus correlation should be clear:

. 1 [T
SwG0 = Jim oo [ ueus - wds L Rl = AU s - 0)

T—oo 2T -T SR

3. Forfinite functionsu; andvj, the chssical distance syju; (k) — v;(k)| can
be expressed as inf ((Ru)ij (0), (Rw);ji(0)), which shows sme connection
between the notions of distance and correlation.

4. From (6.19), 1 is clear that(T,,)ij (k, ©) = ui(K)fvj(k — ) is bounded from
below by(Ry)ij () for alli, j, k, m. On theother hand,

(Ru)ji (=) = A\ v Ot + ) = \ vj(k = wiui k)
| k

henceef (vj(k — w)fui (k) is bounded from above bg ((Ry)ji(—w)). This
would provide an upper bound @, )ij (k, i) if it were true thatef(xgy) =
y#X. In Rmax this equality obviously holds true wheneverand y are scalars
assuming finite vlues. Otherwise it may not hadj as shown by the following
exampe: letx =y = ¢, thenxgy = T, e/ T = ¢ butyfx = T. [ |

Let us now gve the evoltion equation of the gourn time for a shift-invariant
auonomous linear system.

Theorem 6.43 For the system x(k + 1) = Ax(K), where A Kr,:;z the sojourn time
matrix Tyx (-, ) followsthe dynamics

Tuix(K+1, 1) = (ATux (K, m)F A = A(Tux (K, EA)

provided that Ty (-, 1) never assumes infinite values. More generally, the following
inequalities always hold true

Tux(K+1, 1) > (ATex (K, )F A > A(Tux (K, ) A) .
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Proof We have
Tix(K+1, 1) = XK+ Dgx(K+ 1 — p) = (AX(K)# (AX(K — )

= ((AX(KD#x(k — w)F A by (f.9),
> (AX(K)Ex(k — w)fA by (f.12),
> A(X(K)EXK — w))EA) by (f.12).

The two inequalities become equalities in the case whignk, 1) has finiteenties
only. Indeed, inRnmayx the only counterexamples to equality in (f.12) are the cases
whene and/orT are involed: for xample,e = ¢ ® (sfe) < (e @ &)fe = T. [ |

The fdlowing result provides insight into how correlations are transformed by linear
systems.

Theorem 6.44 (Nonecreasing correlation principle) Consider a (MIMO) shift-
invariant system with (matrix) impulse response H € S and two inputssignalsu and
v withtheir corresponding outputs y and z, respectively. Then
y/z (W(H/H) (6.20)
2y = (W) [\ HijfHij (6.21)

i

v

Proof Observe first that, for all j,
Wv)ij k) =\ (ubvid —k) = A\ (v —xui)
[ [

because® is commutative for scalars. Using this equality fo= j and theobvious
fact that(ufv)ij; > e fori # j, we hae thatufv > (viu)e, wheree is the identity
matix. Then, we have

yfz = (Hu}(Hv)

= ((Huwfv)/H by (f.9),
> (H(ufv))/H by (f.12),
> ((vyuwH)#H as &plained above,
> (vRu)(H#H) by (f.12).

This proves (6.20). Inequality (6.21) is obtained easily from (6.20) and (4.82). m

Remark 6.45

1. SinceH¢H > e, by (f.6), Inequdity (6.21) implies thatzyy > wvXu, which
means thain the SISO case, the correlation of output signals is not less than the
correlation of inputs.

2. For autocorrelations, (6.20) becomgy > (uxu)(H#H) > H#H since(uju) >
e. This is a seand correléion principle, which states that the autocorrelation of
outputs is not less than the intrinsic correlatidpgH of the system. [ |

Thearem 6.44 suggests the importance of quotients of the #ff Theorem 4.59
and Copllary 4.69 gave an algebraic characterization of these quotients.
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6.6.2 Stability and Stabilization

In this subsection we are concerned with what we call the internal stability of systems.
The discission will be limited to systems modeling timed event graphs. This notion
of internal stability means that there is aocumulation of tokens in places or, dually,
that the sojourn times of tokens remain finite. Let us start our discussion on stability by
studying the relation between the asymptotic slopes of functions and their correlations.

Definition 6.46 (Asymptotic slope) Let h € ﬁmax()}) be represented by
&paay’@y))

(see Remark 6.33; without loss of generality, we assume that a is nonnegative). Then,

the asymptotic slope of h € Ryax(¥), denoted sl (h), is defined by theratio a/r.

As observed in Rmark 6.33, the ratia/r is indgoendent of the particular represen-
tation of this type with waschosen forh. Note he differerce between the slope
introduced in the proof of Téorem 6.32 andhis asymptotic glpe: in the context

of Rmax(¥), the famer would be the maximum ratia(n)/n among the monomials
a(n)y" appearing irh; the later is the limit of such ratios whemgoes to infinity.

Theorem 6.47 Given a realization of some h € Riyax(y) by an event graph with ‘in-
ternal state’ x, for any rational input (dater) u such that u(k) = ¢, Vk < 0, the cor-
responding dater x is also rational and such that x(k) = ¢, Vk < 0. The following
equivalence holdstrue:

[N Vi, Reij#e) & {(B): Viij, ske(x) =Sko(x))] -

Proof Theca® o zelo dopes must be handled separately. Suppose that forisane
j+Ske(Xi) > slw(Xj) and that, moeover, sk.(xi) > 0. Then itis easy to see that there
exigs a shifty* suchthatx; > y#x;. Therdore, for allk € Z, x; (k) > x;(k — ) and
(Rw)ij (n) = e. Consequently, if sb(xi) = Slo(Xj) > 0, (R)ij > € and(A) holds
true. If sko(Xi) = slo(Xj) = 0, x; andx; are then polynomials, that is, they can be
(minimally) represented by a finite number of coefficients not equal ta this case,

it is easy to conclude th partof the proof by remembering thate = T.

Conversely, if (B) does not hold, that s, there exists a fair) such that sk, (x;) >
sl (Xj), then whateveru € Z, x; (k) increases to infinity strictly faster thaq(k — )
whenk — +oo. Herce, for allp € Z, A\ x (K£xj(k — n) = ¢ (the A is obtained as
alimitwhenk — +o00) and (A) is ontradicted. [ |

Definition 6.48 (Internal stability) When the equivalent conditions (A) and (B) hold
true for all inputsof the type described in Theorem 6.47, we say that therealization is
internally stable.

Remark 6.49 Owingto Remark 6.42 (point 4), in the situation of Definition 6.47,
and if all datersx; remain finite, one can obtain an upper bound for the sojourn times
of tokens in any internal path of the event graph (using appropriate ghiftsThe
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condtion that thex; remain finite is satisfied if the inputs remain finite (no indefinite
‘starving’ of tokens at the input transitions) and if the system has no deadlocks. A
deadlock would be revealed by infinite asymptotic slopes for the daters associated with
transitions belonging to the deadlocked circuits.

However, even for internally stable event graphs with finite inputs and no dead-
locks, it might happen that tokens incur unbounded sojourn times: this typically occurs
in places which are located immediately downstream-tfansitions (sources), when
one uses inputs which are too fast with respect to the potential throughput of the event
graph (that is, when the asymptotic slopes of these inputtesséhan the common
value of theasynptotic slopes of the;). [ |

Corollary 6.50 Given a rational impulse response h and a realization described by a
triple of matrices* (A, B, C), thisrealization isinternally stable if and only

Vi,j ., (HfH)j #e
where H £'é(y A)*B.

Proof The condtion is sufficient ecausex = Hu andx¢x > H#H by Remark 6.45
(point 2). Conversely, sinceH#H); = A, HifHj and if (HfH)ij = ¢, then here
exigs |, suchthat H;,#Hji, = e. The sytemdoes not satisfy the requirement of
Definition 6.48 for the inputy, = é, uy = ¢,1 # k. []

Theorem 6.51 If the internal subgraph of an event graph (that is, the subgraph ob-
tained by deleting input and output transitions together with the arcs connecting them
to other transitions) is strongly connected, then thissystemisinternally stable.

Proof Indeed if the internal subgraph is strongly connected, for any pair of internal

nodes(i, j), there exits a pathp from j toi containingu, tokens {1, may be gual

to 0). Then we have; (K) > «, ® Xj(K — u,), wherea, is the sum othe holding

times of the places in the pagh(i.e. ¢, = |plw; @, > ¢, indeede, > €). Therfore

(Tw)ij (K, wp) = t, for all k. This holds for any input and Definition 6.48 is satisfied.
[

When a gven (open-loop) event graph is not internally stable, we consider the
problem of obtaining this property by ‘closing the loop’ between inputs and outputs.
By this we mean that will be obtained fromy by u = Fy & v, whereF is a ‘feed-

back’ matrix of appropriate dimensions with entrieRiRax(y ), andv is the newinput

(of the same dimension ag. The stuation is depicted in Figure 6.5 from which it
appears that (at least some componentsupfesgectively y, do no longer correspond

to sources, respectively sinks. The feedback should in general be dynamic in the sense
that F should indeed contain ternan)y" with n > 1 anda(n) > e, in order to avoid
deadlocks in the closed-loop system. A term of this typEjjrmeans thatttere ejsts

a pathfrom y;j to u; (in grey in the figure) with a total number oftokens in the initial
marking anda totalholding time ofa(n) time units.

4See Definition 6.37, except that minimality is not required here.
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Figure 65: An undable timed event graph with a stabilizing feedback

The dabilization of event graphs by output feedback requires the introduction of
the following notions.

Definition 6.52

Structural Controllability An event graph is structurally controllable if every inter-
nal transition can be reached by a path fromat least oneinput transition.

Structural Observability An event graph is structurally observable if, from every in-
ternal transition, there exists a path to at least one output transition.

Theorem 6.53 (Feedback stabilization)Any structurally controllableand observable
event graph can be made internally stabl e by output feedback.

Proof The idea of the proof is to fulfill the sufficient condition of strong connectedness
(mentioned in Theorem 6.51) for the internal subgraph of the closed-loop graph. Under
the assumptions of structural controllability and observability of the open-loop system,
it should not be difficult to see that this sufficient condition can indeed be satisfied if
aneffective feedback connection is established from any output to any input. =

Of course, one can imagine more refined &g@s in ordeto attempt to minimize

the number of feedback links so introduced. Obviously, input transitions which are
upstream obeveral m.sc.s’s of the internal subgraph must be preferably used and a
similar remark applies to output transitions.

Example 6.54 The timed event graph representad-igure 6.5 is not intdly stable

in the open-loop configuration. For instance, if tokens are input thraygit the rate

of 2 tokensper time unit, then tokens accumulate indefinitely in the place between
andx; since the throughput of; is limited to one token per time unit, whereascan
process tokens at the given input rate. On the other hand, the system can be stabilized
by the feedback shown in Figure 6.5 (grey lines). [ |
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6.6.3 Loop Shaping

In the previous subsection we saw how to obtain an internally stable system by closing
the loop between input and output, provided the system is structurally controllable
and observable. However, this operation creates new circuits whereas it preserves the
circuits already existingitheopen-loop system. Therefore, the maximum cycle mean
may only increase when passing from the open-loop to the closed-loop system, which
mears that the throughput (inverse of the maximum cycle mean) may only be worse,
resuting in a loss of performance.

The newly created circuits traverse the feedback arcs. If any such circuit, say
happens to be critical, it suffices to increase the number of tokens in the corresponding
feedback path in such a way that the cycle mgag/|¢|; ceases to be itical. This
reasoning justifies the following theorem which improves the previous one.

Theorem 6.55 Any structurally controllable and observable event graph can be made
internally stable by output feedback without altering its original open-loop throughput.

Another more algebraic view on this problem can be explained in the simple case of
a SISO system. Let be its (rational) impulse response. The open-loop throughput
is 1/sly(h). If one uses the feedback law= fy @ v, the cbsed-loop system is
y = (hf)*hv. Then itcan beproved that iff = y#, thereexids u large enough such
that sk, ((hy*)*h) = sl (h).

An interesting question is to determine timeni mum number of tokens (which may
represent costly resources practically) such that a desired throughput is achieved. This
problem is discussed in [62].

6.7 Notes

This chapter is based on the two articles [111] and [112]. The idea of extending the application of
the max-plus algebra to continuous systems was proposed by R. Nikoukhah during a Max-Plus’
working group meeting. It is quite natural once one realizes that time-invariant max-plus linear
systems indeed perform sup-convolutions of the inputs with their impulse responses. Continuous
Petri nets have also been studied in [14] and [99].

Formaland numerical transfer functions are isomorphic in conventional algebra, and there-
fore they are not always clearly distinguished in fiterature on system theory. The situation is
quite different in the max-plus context. The terminology ‘transfer function’ was reserved for the
Fenchel transform of the impulse response in this chapter.

In the literature on optimization, the idea of considertygpamic systems based on vector
sums of convex objects appeared from time to time but with no connection to the modeling of
synchronization mechanisms.

The characterization of rational impulse responses in terms of periodicity was given for the
first time in [41]. A program for symbolic computation based on this periodic characterization of
rational systems has been developed by S. Gaubert. It is called MAX [62]. An analogous notion
of periodicity exists in the Petri net literature [36].

The second-order theory developed in the second part has two origins: the first stems from
[112], the second from [4]. The first is concerned with finding a max-plus equivalent of the
autocorreléion of a process, theesond with describing the recurrent equation of differences.
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The gplication to stability provides another view on the stabilization by feedback described for
the first time in [41]. The nondecreasing correlation principle was found by S. Gaubert.

The interesting problem of the optimization of the number of tokens involved in the loop
shaping issue has been solved in [62] but was not discussed here.
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Chapter 7

Ergodic Theory of Event Graphs

7.1 Introduction

The main practical concerns of this chapter the construction of the stationary regime

of stochastic event graphs and the conditions on the statistics of the holding times under
which sut a statbnary regime exists. The basis for the analysis is the set of equations
which govern the evoltion of dakrs, estalished n Chater 2. In§7.6 we wll see

that this construction also allows us to determine the stationary regime of the marking
process.

The main tool for addressing these problems is ergodic theory: the existence prob-
lem is gated in tetmsof a ‘random eigenpair problem’ which generalizes the eigenpair
problem formulation of Chapter 3 in the téeministic case, ahwhichcan be seen as
theRmax-analogue of that of a multiplicative ergodic theorem in conventional algebra.

Sedion 7.2 focuses on a simple one-dimensional nonautonomous example. This
exanple is the Petri net analogue of the classiGlG/1 queue. Most of the basic
probabilistic tools to be used in this chapter are introduced through this simple exam-
ple. Thes tools ae based on the probabilistic formalism of [6]. More advanced prob-
ahilistic material, and in particular the ergodic theorems which are used or referred to
in the chapter, are gatheredgn.7.

Sedion 7.3 giveslhe basic first-order theorems which indicate how the daters grow
in such a stochastic framework. The growth rates given in these first-order theorems
are showrto be theR-analogues of Lyapunov exponents in conventional algebra,
and generalizations of cycle times in the deterministic case.

Seaond-order theorems are concerned with the construction of the eigenpairs. This
construction is based on the ansily of rdios of daters (in théRyax sense) This
second-order theory is first presented for multidimensional nonautonomous systems
in §7.4. Itis shown that under appropriate statistical assumptions, this type of systems
admits a unique stationary regime which is reached in finite time, regardless of the
initial condition, provided the ‘Lyapunov exponents’ of the m.s.c.s.’s are less than the
ag/mptotic rate of the input. Section 7.5 focuses on the autonomous case. We provide
a smple and natural condition for the uniqueness and-¢aehability of the sationary
regime.

Throughout the chapter, we will consider two levels of abstraction.

e The first level ighat of stochastic Petri nets,fiavhich wewill use the notation of
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Chapter 2, and for which greference dioid will béRax This level will provide
examples and will require a particular attention because of the difsurelated
to the initial conditions.

e The seond one is that of linear algebra in a stochastic context. The discussions
will rely upon the notion of residuation introduced in Chapter 4. We will try to
consider general dioids, although most of the practical results which we have at
this stage are limited t®max.

For each section of the chapter, we will try to indicate which level is considered.

7.2 A Simple Example inRpax
7.2.1 The Event Graph

We first consider a simple example of an event graph with a single input: the event
graph has two transitiortg andqy, two placesp; and p,, and the following topology:

p2 is a recycling ofgz, 7 (p1) = g1, o(P1) = G2, andq, is an input transition with
input sequencéu(k)}x>1. Theinitial marking has one token ip;, with lag time w;,

i = 1, 2, so thatthe setQ’ of transitions followed by at least one place with nonzero
initial marking is{q.} (see Figure 7.1). The holding timesmn are all zero, whereas

NG

Figure 7.1: A simple example

those inp; are given by te sejuence{e (k)}. Obseve thatM = 1 and thatboth|Q’|
and|Z| are equal to 1. Accordingly, the matricAsk, k — 1) andB(k, k — 1) in (2.38)
areone-dimensional:

Ak k-1 =(@K) , Bkk—1=( .
Let A(k) = a(k + 1). Equation (2.38) reads
x(k+1) = Akxk) ®uk) dvk+1) , k=0, (7.1)
wherev(1l) = w1 ® w, andv(k) = ¢ for k # 1. In this equation the continuation for
(u(0), x(0)) is (u(0), x(0)) = (e, €). The input is weakly compatible if(1) > e. The
initial lag times are weakly compatible if

wr2<al), wi<e and wiPwy>e. (7.2)

Since each tranision is followed by at most one place with a nonzero initial mark-
ing, any weakly compatible initial condition is compatible, so that we can rewrite the
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preceding equation as
x(k+1) = Akxk) duk) , k>0, (7.3)

provided we now tak&(0) = wofa (1) andu(0) = ws.

Remark 7.1 With the statistical assumptions described in the next subsection, this
system is very close to the FIFQ/G/1/0c0 queue. TheG/G part shates that both

the ratios o the input sequence (see (7.4) below) and the holding times form gen-
eral stationanseguences. The /bo part stags that there is a single server and that
there is an infinite buffer in front of the server. This system is also known as the
producer-consumer systemin thearetical computer science. The input into transi-

tion g, features the external input stream of customeiss the infinite buffer which
storescustomers to be serveq, features the single server, and the holding timeg,in
repregent the serice times. [ |

7.2.2 Statistical Assumptions

The staistical assumptions are as follows: the firing times are 0, as well as the holding
times in p;. The holding timesa (k), k > 1, (or equivdently A(k)) and the atios
{U (K)}k=1 of the input sequence, where

UK Luk+ Dsuk) | (7.4)

form two jointly stationary and ergodic sequences on some probability $@ade P).

This assumption can be seen as the stochastic generalization of the case of periodic in-
put considered in Chapter 3: the constant ratios of the input and the constant holding
times in Chapter 3 are now replaced by stationary ratios. Whenever needed, we will

stress tk fact thatA(k), U (k) andw def (w1, wp) are random variables, namely mea-
surabé functions fromg into R, by writing Ak; w), U (k; w) andw(w) instead of
AK), U (k), andw, regpectively. Observe that this is tantamount to using the same no-
tation for a function and for the value whichtétkes at garticular point. The context
should always allow the reader to decide what is meant.

Before going further in the analysis of the system, we comment on the statistical
framework, and on what will be meant by joint stationarity and ergodicity of the two
seguenceq A(k)} and{U (k)} throughout this chapter and the next one.

Definition 7.2 @-shift) The mapping 6 : Q@ — € is a shift operator on (@2, IF, P) if
it is bijective and measurable from Q onto itself, and if it is such that the probability
law P isleft invariant by 6, namdy E[ f] = E[ f-6], for all measurable and integrable
functions f ;| Q@ — R, where E denotes the mathematical expectation with respect
to P.

By convention, the composition operatarhas the lighest priority in all for-
mulae. For instancef,.gh meang( f-g)h.
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Definition 7.3 @-stationarity) We say that a sequence of R-valued randomvariables
{a(k; w)}kez defined on (2, F, P) isO-stationary if the relation

ak; w) = a(0; %(w)) (7.5)

holds for all k > 0, where 6¥ is the composition of 6 by itself k times: 8%t1 = g%.6,
and 6° = |, theidentity.

Remark 7.4 Another way of stating the preceding deifiion consists in requiring that
a(0).0¢ = y~*a(0), for all k € Z, wherey is the backward shift operator on the
numbering of sequences which was defineghirB.2. [ |

In the present example, waill assume that the data ohé problem, namely both
sequenceq A(k)} and{U (k)}, aref-stationary. We immediately obtain from this and
from (7.5) that fa all integeram, the réation

E[h(A0), U (0), ..., AK), U k)]
= E[h(A(m),Um), ..., Am+Kk),U(m +Kk))]

holds for all measurable functioms: R2k+D — R such that the expectation exists.
This is a natual property to expect from joint stationarity indeed. Starting from this
assunption, we will then be interested in proving that other quantities associated with
the event graph also satisfy thestationarity property.

Similarly, the joint ergodicity of the sequencga(k)} and{U (k)} is obtained when
assuming tha# is P-ergodic:

Definition 7.5 (Ergodic shift) The shift 0 issaid to be ergodic if thealmost sure (a.s.)
limit

k
> fb' =E[f] as (7.6)
=1

Il

lim
k— 00

holds for all measurable and integrable functions f : @ — R.

Owing to (7.5),the last property implies in particular that
1 1
leTOEEA(l) =E[A(0)] as. ad leTOEEU(l) =E[U(0)] a.s,

providedA(0) andU (0) are integrable, which corresponds to the conventional meaning
of the ergodicity of both sequences. The joint ergodicity becomes more apparent from
the formula

K 1/k
k|im (®h(A(I),U(I))> = E[h(A(0),U(0))] as.
*\ =1

for all measurable functiorts: R? — R such that the expectation esis, which is also
a direct consquence of our definition.
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A measurable setl of F (an ‘event’) & said to b&-invariant if the indicator func-
tion of A, which will be denoted 14,, sdisfies the relation d4;06 = 1(4;. We will
often make use of Birkhoff’s pointwise ergodic theorem (see [20]).

Theorem 7.6 (Birkhoff) The shift operator 6 isergodic if and only if the only sets of
the o-algebra IF which are #-invariant are of measure O or 1.

Example 7.7 (Canonical probability space)n the paticular eample which we con-
sider, the dat consist of the two sequencéa(k)} and{U (k)}. A concrete example of
such a shifoperator is provided by the translation operatot on thecanonical space
of the two sequences, which is defined as follows:

e Q isthe spacef bi-infinite sequences of the form. , z(—2), z(—1), z(0), z(1),
2(2), ..., wherez(k) = (s(k), t(k)) € R?for allk € Z;

e [ is theo-algebra generated by the coordinate mappmgs), k € Z, where
&(w) = z(k);

e P is a probability measure on the measurable sgacdr).

Onthis probability spce, we can then take
o(..,z(-1), z0), z(1), ...) = y’l(. .., 2(=1), 2(0), z(D), ...) ,

that ise (6 (w)) = & 1(w) for all k € Z. Within this framework, thé-staionarity as-
sumption boils down to the assumption that the probability [Bwf the two sequences
is left invariant byy.

If Ak; w) denotes the first component ef(w), andU (k; ) the seond one, we
obtain that (7.5) is indeed satisfied by both sequences. [ |

Remark 7.8 If we consider a sequence of random variables, {&dly; )}, defined

on this canonical probability sige, which is different from the coordinate process, it

is not true ingeneral thab(0)-6% = b(k). It is clear that(0; 6(w)) = b(0; y ~1(w)),

but in gereral, it is not true thab(0; y ~(w)) = y ~b(0; w) because the translation
operator which is used at the right-hand side of the last relation has nothing to do with
the specific one used at the leftand side, which operates on the sequences. dfor
instarce, takeb(k; w) = kA(k; w). We haveb(0).6% = 0, which dearly differs from
kA(K) unlessA(-) = 0. []

7.2.3 Statement of the Eigenvalue Problem

We can rewritethe equatins governing this system as

uk+1 = U®Kuk) ,
x(k+1) AKX(K) @ uk) ,

or equivalently as

X(K+1) =DKX®K , k>0, (7.7)
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where

o= (49 o 0w (V%5 )

The variablesA(k) andU (k) are assumed to be integrable random variables, defined
ona probability space(2, F, P, ), and seh that

AK) = A0K , UK =U65, keZ,
where A &' A(0) andU def U (0). Under this assumptior) (k) = D.6¥, with D =
D(0).
In the deterministic setting, we looked for periodic regimes in terms of eigenpairs
associated with thRy,x matrix describing the dynamics of the event graph $&&).
In the stochastic setting defined above, we state the problem as the following ‘random
eigenpair’ problem.

Can we find areigenvectorX = (X3, X2), normalizedin such a vay that
X1 = e, and aneigenvaluex, which are both random variables defined|on
(2,TF, P, 0), and seh that

DX = AX0 ? (78)

In view of the specific form oD, this eig@pair property reads

r o= U }

ed AXy = UXyb . (7.9)

So the true unknown isX;, and the gquation it satisfies is a stochastic fixed point
equation. Assume that the above eigenpair is finite; whenever wext@ike= X, and
u(0) = X; = ein Equation (77), weobtain

ul = U }

x1) = e®AX, . (7.10)

From (7.9) ad (7.10), ve seehat
X(1) — U(l) = X200 + U — U = (X(0) — u(0))o6 .
More generally, we prove ithe same y that for allk > 0,
x(K) — u(k) = (x(0) — u(0))-6% .

Therefore, if the above eigenpair problem has a finite solution, we can find an initial
condition such that the random variabbag) — u(k) are stéionary.

Let us show that for this initial condition the marking process is also stationary: let
N* (k) denote the number of tokens m atthe epoch when transitiagp fires for the
k-th time, namely ak (k). Within our setting N * (k) isa random variable. For instance
N* (1) is given by the followng expression (s€§2.5.6):

o]

o0
+01y _
N™(1) = Zl{X(DzU(h)} = 1{x26932,“;11u69'} )
h=1 h=1
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wherez(l) = 0 by convation. Sinilarly, when using the conventioE% = 0, we
obtain

[o¢]
N*@2 = lx@zuty = Z Lixpp2= 1 uen

h=2

e 10

Linosyrtugnd = NT (D0

>
Il
N

and more generallN* (k + 1) = N*(1).6X.

7.2.3.1 Solution of the Eigenpair Problem
For this clasical eample, itis customary to take

A ' X,00U

asunknown, rather thaX,, mainly because this neunknown is nonnegative; indeed
it is immediately sen from (7.9) that

A =e® (APUA) = ed FA | (7.11)

where
def

F = AU .
The @nstruction of a solution to (7.11) is based on a backward construction which is
comman in ergodic theory, and which will be used on severatasions in this chapter.
The backward procesas(k), k > 0, assaiated with (7.11) is the random process on
the probability spacé, IF, P) defined byA(0) = eand

AKK+1) (e® FA(K)) o071

e FO1AK)07T k>0. (7.12)

We will return to the physical interpretation of this process in the next subsection.

A nice property of the backward process is tiatk) = A(k; w) is nondecreasing
in k for all w. This is obtained by induction: itis true that(1) > A(0) = €; assuming
thatA(k) > A(k — 1), weobtain from (7.12) that

Ak+180 = edFAK)
> ed FAK-—-1) = AK)O .

Let A be the a.slimit of A(k) ask goes tooco (thea.s. limit exists becausa(k) is
nondecreasing for alb). The random variabl& may be firte or infinite. In both
cases we obtain that saisfies (7.11) by lettinds go tooo in (7.12).



312 Synchronization and Linearity

7.2.3.2 Finiteness of the Eigenvector
The main result oftis subsection is the following theorem.

Theorem 7.9 (Stability condition) If E[A] < E[U], then the eigenvector
X = (e (ApU)071)
isP-as. finite

SinceU is a.s. finite { is assumed to have a finite mean), it follows from the very
definition of A that X is a.s. finite if and only ifA is a.s. finite. The everitA = oo}

is f-invariant Indeed, if A(w) = oo, thenA(B(w)) = oo, in view of (7.11) and of
the assumption thal (w) < oo a.s. Sinilarly, A(@(w)) = oo implies A(w) = oo,
since A(w) < oo as. Therefore, in view of the ergodic assumptioB[A = oo] is
either 0 or 1: eithen is finite with probability 1, or it is infinite with probability 1 (see
Theoren 7.6).

Lemma 7.10 (Backward star) The following relation holds:

k |
AK =P RQFo" . (7.13)

I=0 h=1
where the ®-product over an empty set (when| = 0) ise by convention.
Proof The proof is by induction ork. The relaion holds true fork = 0 sinceboth

sides areequal toe. Assume the retion holds up to somé > 0. Then using (7.12),
we obtain

k |
AKk+1 = Fbl® (@ X F08h> Hlpe
1=0 h=1
k+1 | k+1 |
— (@@ Foeh> Ge= @@ Foo™ |
I=1 h=1 1=0 h=1

where ve used thelistribuivity of ® with respect tad and the associativity and com-
mutdivity of @ to passfrom the first expression to the second in the last equation.
[

Remark 7.11 The poperty thatA (k) is nondecreasing, which was already shown in
the preceding subsection, is obvious from (7.13), since this relation showa\itat
consists of the maximum of an increasing set of random variables. [ |

Proofof Theorem 7.9If E[F] < O (or gquivalently E[A] < E[U]), from the pointwise
ergodic theorem we obtain that the a.s. limit

k 1k k
1
; —h - —h+1 _ o —h _
kllmoo(®F08 ) _k§(A08 UdM) =E[A-U] <0

h=1 h=1
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holds (we used the obvious property thas P-ergodic if and only i# ! is P-ergodic).
Therefore,

k
Sk E3 (A U
h=1
tends to—oo a.s. ak goes toco, which inturn implies thatS(k) < 0 for all k greater
thana finite random integek. Herce A(K) is a.s. finite in view of (7.13), since it is
the maximum of ara.s. finte nunberL of finite random variables. [

Remark 7.12 A partial converse of the preceding result is the followingEjfA] >
E[U], then noP-a.s. finite solution of (7.11) exists. To prove this, it is enough to show
that A = oo, P-a.s, and thatA is the leas nonnegative solution of (7.11). The latter
is proved by induction. If we start with a nonnegative solut®mf (7.11) for which

E > A(0) = ¢, itis easily checked thag > A(k) impliesE > A(k + 1) (thisis true
becauseA(k + 1)-60 = e® FA(K) < e® FE = E.0). As for the proof ofA = oo,
P-a.s., it follows from the fact tha$(l) then tends tax a.s. ad goes toco. This in
turn implies thatA (k) tends to infinity as well, in view of (7.13). [ |

Remark 7.13 The random variableA may be finite and nonintegrable. A simple
example of his situation is provided by thi™/G/1 case (namelyu(k) is thek-th
epoch of a Poisson process afadk)} is an ind@endenti.i.d. sequence), whenever the
servietimesa (k) have infinite second moments (see [46]). [ |

7.2.4 Relation with the Event Graph

This setion focuses on the relatnship between the eigenpair which was constructed

in the previous section and the stochastic event graph which maotivated our preliminary
exampe. Considethe ‘ratios’§ (k) def Xk + Dpuk) = x(k + 1) — u(k), k > 0. By
using (7.3), we obtain

Xxk+2)—uk+1) = max(Ak+1) +xkk+1),uk+1)—uk+1
max(AKk + 1) + x(k + 1) —uk + 1), 0)
= max(AKk+1) + 8Kk —UKk),0 .

which corresponds to thR« relaion
Sk+1)=e®FKsk , k>0, (7.14)
where the initial conditions (0) is given by the relation
8(0) d=ef(A(0)X(0) ® u(0)fu(0) = (w2 & wi)fwy , (7.15)

andF (k) = Ak + 1)pU (k) = F-0%, k > 0. When making use of Assumption (7.2),
we obtain

3(0) = watwr > €, (7.16)
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for all weakly compatible initial lag times. This lower bound is achievable whenever
w1 = w2 =€

In what follows we will emphasize the dependence on the initial condition by
adding a second optional argument to théunction: for instanceg(k; z) will de-
note the value of (k) wherevers(0) = z. Of special interesto us will be the seuence
{6(k; e)} defined by (7.14), and by the initial conditié(0; e) = e.

Itis immediately checked by induction that

AK) = 8(k; )07 | (7.17)

which shows thas (k; e) and A (k) have the same probability law. Indeed, this is true
for k = 0, and assuming it is true for sorke> 0, we obtain from (7.12) that

AK+1)

(e® F(5(k; €):67%)) o6
(e® Fk)s(k; €) -0 1
= skk+1L et

where we used theroperty thatF = F(k).#— . Therefore, the random variable
A(K) stands for the value of(k; €), when rephcing the squenceU (0), U(1), ...
by U(—k), U@ — k), ..., and the sguence of holding time#\(0), A1), ... by
A(=k), AQ -k, ..., resgectively.

Remark 7.14 Another interpretation is as follows: we go backward in time and we
define the continuation af(k) by

0
uk) = u(l) — ZU(I) , k<o.
1=k
If we assume that the holding time of tkeh token inp; is « (k), and thathe entance

of the k-th token inp; takes place at tima(k), for all k € Z, we can then iterpret
A(K) as the value ok(1)#u(0) given that the value of(—k + 1)¢u(—Kk) ise. []

Remark 7.15 AssumeA is a.s. finite. If we take the initial lag times such that
wy = Aws (7.18)

thens (0) = A, so thats (1) is equal toAq#, in view of (716); more generally we have
s(k) = Ao6¥ for all k > 0. In words, we found initial lag times which make the ratio
process (k) O-stationary. Observe, however, that these initial lag times are not weakly
compatilde in general. For instance, if we takg = u(0) = e (w; andw; areonly
defined through (7.18) up to an additive constant), andl it « (1) with a positive
probability, then (7.18) shows that the compatibility relatian < «(1) cannot hold
almostsurely. [ |

Remark 7.16 If the ratios §(k) are finite andv-stationary, they-staionarity of the
ratios x(k + 1)¢x(k) is easily obtained from the following relation

xk+1) _xk+D uk uk-1)
Cox(k T uk uk-1 xKk
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If x(k + 1)pu(k) = A-p, sinceu(k + 1)fu(k) = U0, we then have
X(K + Dx(K) = (AU 1) pAco*t
Therefore
X(K + Dfx(K) = {(AfUH71) fAH7) 0%
| ]

Remark 7.17 By computing the star operation forward (or more directly by using
(7.17) and (7.13)), we obtain the expression

k k-1
s(k; e) = @ ® F(h) . (7.19)

1=0 h=k—I
The sguence{s(k; e)} is not monotone in general. [ |

7.2.5 Uniqueness and Coupling
The main result of this sectias the fdlowing theorem.

Theorem 7.18 If thestability condition E[ A] < [E[U] issatisfied, there existsa unique
finiterandomeigenvalue A and a uniquefiniterandomeigenvector X = (Xy, Xz), with
X1 = ¢, such that (7.8) holds. In addition, for all finite random initial conditions
X(0) = (X1(0), X2(0)) with X1(0) = e, there exists a finite integer-valued random
variable K such that, for k > K,

X(K+1) = D)DK —1)... DA)DX(0) = A(KAK — 1) ... A(LA(0) X051 |
(7.20)

where X and A are defined as above.
The main bol for proving this theorem is the notion of coupling.

Definition 7.19 (Coupling) The random sequence {W(k)}k=o defined on the proba-
bility space (2, IF, P) couples in finite time(or simply couples) with the stationary
sequence generated by the random variable V if there exists a finite integer-valued
random variable K such that

Wk) = V5, Vk>K .

We alsosay thathe seuence{V .6} is reached by aupling by the sequendaV (k)}.
Coupling implies convergence in total variation; in particulafW (k)} couples with
the sguence geerated by, thenW (k) converges weakly t& ask goes taco. (see
[6, Chapter 2]). We start ith the following lemma which deals with the considered
stodhastic event graph.

Lemma 7.20 Assume that E[A] < E[U]. Then for all finite and compatible initial
lagtimes w = (w1, wy), there exists a positive integer H (w; w) such that for all k >
H(w), §(k; 2) = &(k; ), where z = z(w; w) istheinitial condition defined in (7.15).



316 Synchronization and Linearity

Proof We first pove thatH (w) = H'(w), where
H'(w) Einf(k > 0] 8(k: 2) = 5(k: @)} .

In words, after he first time whers(k; z) andd(k; €) meet, theirpaths arddertical
forever. The proof is by induction: if for some, §(k; z; ) = §(k; €; w), thenfrom
(7.14) we obtainthat(k + 1; z, w) = 8(k + 1; € w).

Itis easily checked by induction dethat for all weakly compatible initial lag times
3(k;2) >é(k;e) > e forallk > 0.

Assume thathe statement of the theoratnes not hold. Then the patbé; z) and
3(k; € never meetwith a positive probability, so that the event

A=1{8Kk;2) > 8k, e) >e Vk >0}
has apostive probability. For allw in A, we obtain

skiz) = edFk—1sKk—1 2
Fk—1sKk—12) ,

for all k > 0. Theefore, if A has apostive probability, the relation

k-1

skiz) =z® ® Fof'

1=0

holds with a positive probability. Owing to the ergodic assumpt@ﬁ;o1 Fo0' tends
to —oo a.s. ifE[A] < E[U]. Therefore, under the assumpti@hA] < E[U], the last
relaion readily implies thas (k; z) — —oo whenk — oo, with a positive probability,
which is impasible sincé (k; z) > 0. []

The general coupling property for the ratio process of the event graph is summarized
in the following lemma.

Lemma 7.21 Let w be an arbitrary finite and compatible initial lag time vector. The
sequence {§(k; z)} couples with the sequence generated by the randomvariable A, so
that §(k; 8§(0; w)) converges weakly to A when k tendsto co. If E[A] > E[U], then
3(k; z) converges a.s. to oo when k tends to co. More precisdly,

lim (3(k. 2)YK=E[AU] > e as.
Proof From Leamma 720, there exista finite integerH = H(z) > 0 such hat for
allk > H, 8(k; 2 = §(k; e) a.s. Using gain Lemma 7.20, we obtain another finite
integerH’ = H(A) such that for allk > H’, A6 = s(k; A) = §(k; e) a.s. Hence,

for allk > max{H, H’}, A-6¥ = §(k; 2) a.s. As for the casB[A] > E[U], we should
use the bound(k; z) > §(k; ) and the fact that

lim (8 (k: e)Yk = E[A/E[U] > e ,

which fdlows from (7.13), to prove that lifi(k; z) = oo a.s. [ |
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Corollary 7.22 If E[A] < E[U], then A isthe uniquefinite solution of (7.11).

Proof Theuniqueness of the possible stationary regimes follows from the coupling
property: if 2 is another stationary regime, namely a finite solution of (7.11), then we
first obtainZ.6 > e a.s. from the fact thak saisfies (7.11), so thak is necessarily
nonnegative. In addition, from the coupling property we obtain Bak = §(k; 2) =
s(k;e) = 8(k; E) = ABX, forallk > max{H (A), H(E)} < oo. ThereforeA = E.

[

Proof of Theorem 7.18The existence pait established i§7.2.3.1-7.2.3.2. Fok
and X as inthe the@rem, we must have = U and X,-0U necessarilysaisfies (7.11).
Therefore,X2:0U = A in view of Corollary7.22. The last property of the theorem
is a mee rephrasing of Lemma 7.21, once we notice that the coupling @)} with
{A-6%} implies that of{x(k)fu(k)} with {X2.6%}. In fact, the lastssertion is only
proved for initial conditions such that0) > e (see the proof of the Lemma 7.21); the
extension to more general finite initial conditions is obtained in the same way. m

Remark 7.23 The only difficulty in the preceding eigenpair problem lies in finding
Xa, or equivalently A. In thecase whe the squences{A(k)} and {U (k)} areboth

i.i.d. (independent and identically distributed) and mutually independent, the problem
of finding the distibution function of X5 is solved using Wiener-Hopf factorization
[46]. [ |

7.2.6 First-Order and Second-Order Theorems

The aim of what ftlows is primarily to extend Theorem 7.18 to more general classes
of matiicesD. Of patticular interest to us will be matrices which correspond to cer-
tain types of autonomous and nonautonomous event graphs, like those introduced in
Chapter 2.

The resits generalizing the eiggair property of Theorem 7.18 will be referred to
asseond-order theoremsgoause they are concerned with ratios of the state variables.
These theorems can be seemRag -instances oMmultiplicative ergodic theorems (see
Theorem 7108).

In what follows, the constastwhichcharacterize the growth rates of the state vari-
ablesx; (k), and which gearalize thoseri Theorem 7.24 below, will be referred to as
Lyapunov exponents; these theorems will be called first-order or rate theorems. We
conclude the section with the first-order theorem associated with our simple example.

Let (e;, &) denote the following vectors &2: e, = (e, ¢) ande, = (¢, €).

Theorem 7.24 The growth rate of X (k) is characterized by the relations
k|im X1V = k|im (e DDk —1)...D@L)DO)X () ¥k
= E[U] as,

and

Jim Xa(k) YK Jim (e2D(Dk—~1)... D(1)D(0)X (0))Y/*

E[A] ® E[U] as,
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regardless of the (finite) initial condition X (0).
Proof The first assertion of the theorem is trivial. As for the second, we have

Iikm xkn¥k = Iikm (uk — 1))1/k”L“ (x(K)fuk — )Y/«
E[U] Iikm (x(Kfuk — ¥k .

If E[A] > E[U], then Lemma 7.2implies that
lim (x(fuk — 1) = E[A/E[U] .
If E[A] < E[U], we obtain from the coupling property of Lemma 7.21 that

. . k
lim (x(oguck — I)YE = lim (a.6%)”

K 1/k
: —1\ gi
lim (@(AMOG Yo ) . (7.21)

i=1

If A is integrable in addition to being finite, so i§A.6~1, and we thegfore have
E [AfA-0~1] = 0; thus Birkhoff's Theorem and (7.21) immediately imply that

lim (x(utk — 1) =E[AfA67] =0 .

Even if A is not integrable (whichmay happen even in this simple case, see Re-
mak 7.13), the random variablafA.0~* is integrable as cabe £en when using
the following bounds obtained from (7.11):

Fo™t < AjAO™L < AH7L .
Therefore, in this case too, whening (721), we also obtain that
lim (x(kyfu(k Y =E[aa67] |
from Birkhoff’s Theorem. We now prove that
E[A-A671]=0, (7.22)

which implies that h thiscase too lim (x(k))* = E[U]. In order to prove (7.22),
observehat
Imin(A, t) — min(A-0~ 1 t)| < |A —A07H]

for allt € R*. Thus, from the Lebesgue dominated convergence theorem, we obtain
that

0 = lim E[min(A,t) — min(A«0~%, t)]
t—>o0

E [tlim (Min(A, t) — min(A.6~1, t))] =E[A—-A07"] .
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If E[A] = E[U], either A is a.s. finite, in which case the preceding method applies, or
it is a.s. infinite. We will consider the cage = oo a.s. lder on (see Tharem 7.36);
the resulis that

lim (x(k)Y* = E[U]

in this case too. []

The proof of the following lemma is contained in the proof of the preceding theorem,
and will be important in what follows.

Lemma 7.25 If A isa finite (not necessarily integrable) random variable such that
A — A6~ isintegrable, namely E [|A — A«0~1|] < oo, where |x| denotes conven-
tional absolutevaluein R, then E[A — A6~ = 0.

7.3 First-Order Theorems

7.3.1 Notation and Statistical Assumptions
Let D be a general dioid. FoA € DP*9, let
def A
Al = DD A (7.23)
i=1 j=1

and
AL EANA (7.24)

We will often use the following properties.

Lemma 7.26 For all pairsof matrices (A, B) such that the product AB iswell defined,
we have

|ABl, < Al IBl; .
|ABl. > |Al, IBl; , (7.25)
|ABl, > Al IB], .,

and
|AB|, > |Al, |B], ,
|AB|, < |Al, IB], . (7.26)
|AB|, =< |Al, IBI, .

where < isthe order associated with @ inD.

Proof SinceAix < |Al, foralli, k,

DD AxBa <AL (@ Bk;) = |Al, IBI,
i,j k j.k
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The pioof of the other fomulee is gmilar. [ |

The agjuation of interest in this section is
x(K 4+ 1) = AKX(K) | (7.27)

where A(k), respectively x(k), is arandom square matrix, respectively a random col-
umn vector, \ith entries taking their values i. We will stress the dependence of
x(K) on the initial condition by writingc(k; Xp).

The random variablesA(k), k € Z, and the initial conditionxy are asumed to be
definedona comman probability space(2, F, P, 9), whered is a shift which leave®
invariant, and is ergodic, with

AK) = A%, keZ . (7.28)

Most of the gdion will be devoted to the case whéhis Ryax. Within this setting,
x(k) will be ann-dimensional column vector andi(k) ann x n matrix. In this case,
each entry ofA is either as. ejual tos or nonnegative, andach digonal entry ofA is
nonnegative. We start with a few examples in this dioid.

7.3.2 Examples inRyax
7.3.2.1 Example 1: Autonomous Event Graphs

Consider the evolution equation of a FIFO and autonomous stochastic event graph in
its standard form, as given in Equation (2.31). If the initial condition of this event
graph is compaible, (2.31) is of the type (7.27). In addition assume that the holding
timese; (K), pi € P, and the initial lag times of this event graph are random variables
defined on a omman probability space (2, IF, P, 8), and thathe sguence{w; (k)} is
f-staionary, i.e.

aik)=ait* , keZ, peP,

whereq; is finite, nonnegative and integrable. Then it easily checked that the matri-
cesA(k) in (2.31) satisfy the-stationaity propaty and that each entry of is either

a.s. equal te or nonnegative and integrable. In view of the FIFO assumption, it is
always tue thatx; (k + 1) > x;(k), so that the diagonal entrf;j; (k) can be assumed

to sdisfy the boundAjj (k) > ewithout loss of generality. Therefore, under the fore-
going statistical assumptions, any FIFO and autonomous stochastic event graph with
compatible initial condition satisfies an evoluticequation which falls into the frame-

work considered above. Conversely, as was pointed ot.5.4, we can also view any
equation of the type (7.27) as the standard evolution equation of an event graph with
compatible initial condition and where the initial marking 8, 1)-valued.

7.3.2.2 Example 2: Nonautonomous Event Graphs

Similarly, consider the evolution equation of a FIFO nonautonomous stochastic event
graph in its standard form (2.39). If the initial condition is compatible, this equation
then eads

KK+ 1) = AKX K @ BRUK) . (7.29)
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If we defineX (k) to be the followingM (| Q| + |Z])-dimensionavector andA(K) to be
the following matrix:

X (K) = ( gﬁﬁi > AK) = ( %EB ka) > (7.30)
whereG(k) is the dagonal matrix with entries
Uji (0 = Tjk+ D0 . gy e, (7.31)
then it is immediate that (2.39) can also be rewritten as
X(k+1)=AKXK , k>1. (7.32)

This trarsformation is tantamount to viewingach nput transitionj as a recycled
transition where the holding times of the recycling place are given by the sequence
{Uj;(®}. If the holding timese; (k) and theinter-input times Uj; (k) satisfy the 6-
statbnarity conditions

ai(k)zaioek , peP, Ujj(k)=Ujj09k , 0yl keZ,

where the random variables; andU;; are positive and integrable, then the matrices
A(k) saisfy thed-stationarity condition (7.28) and the additional conditions mentioned
above. Hence, the framework described atltbginning of this section also covers the
nonautonomous case, provided we make additiorsftionarity assumptions on the
inter-input times.

7.3.3 Maximal Lyapunov Exponent inRpmax

We assumethatthe nonnegative entries @& are dl integrable. Under this condition the
sequence{X(K; Xp)} defined by (7.27) converges ¢o a.s. in a way whik isquantified
by the fdlowing theorem.

Theorem 7.27 There existsa constant e < a < T = oo such that, for all finiteinitial
conditions xo, the a.s. limit

Jim [x(k; xo) |k = Jim [Ak - DAK=2)... AKAOX|Y* =a as (7.33)

holds. If theinitial conditionisintegrable, in additionwe have

. . 1/k
Jlim E[Ix(k: x)[2/] = Jim E [Ix(k xo)l,] " =a . (7.34)

Proof By induction, we obtain thafix(k; e)|, is integrable for allk > 0 (usirg the
integrability assumptions together with the fact that taak) < |a| + |b|, for a andb
in R). Therefore we have

e<E[xkel,]<T, Vk=0.
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Let
Emmik = [X(:®)], 6™, meZ, k=0. (7.35)
Since
X(k, @), = [AOT. . Ae| = A0 T A,
we obtain from Lemma 7.26 that for ati> 1, and all 0< p < k,

| AO AP AOPTE Al BT < AN AP 6™ | ABPTLLL A 6T

that iS,émmik < &mmtp + Emtp.m+k SO thatém mik iS @ nonnegative and integrable
subadditive process. From Kingman’s Theorem on subadditive ergodic processes (see
Theorem 7106), we obtain

Jlim (g00" = lim B[00 ] =0 as.

for some constant < oo, which concludes the proof foix(k; €)|,. From therelaion
x(k) = Ak — 1)... A(0)xo and from (7.25), we obtain the immediate bounds

IX(K; €)1, [Xol, < [X(K; X)|s < IX(K; ©), IXol, , k=0, Vxofinite .

Therefore
Ix(k; @)1 IxolM* < Ix(k; x0)| ¥ < Ix(k; @)1 Y% xolV/¥ (7.36)

for all k > 0. Propety (7.33) follows immediately when letting go toocc. If, in addi-
tion,Xg isintegrable, we first prove by induction thatk; xp) is integrable for alk > 0.
We can hence take expectations in (7.36) and use the fact that lirft [(§0k)1/"] =aqa
to obtain (7.34). [ |

Remark 7.28 Certain representations of stochastic event graphs considered in Chap-
ter 2, such as the representation of Corollary 2.62 for instance, involve initial conditions
with ¢ ertries, for which Theorem 7.27 cannot be applied directly. However, it is easy
to checkthatone can replace these entries by appropriate finite entries without altering
the vabie ofx(.). []

Remark 7.29 It will also be useful to know when the constanis strictly positive. A
suficiert condtion for this is that there exists at least a circuit of theqgadence graph
of A and two nodesip and jo in this circuit such thaft [ Aj;, (k)] > e. Under this
condtion the positiveness af is obtained from the bound

on(kn) > Ajoio (kn — 1)X;, (K — n) .
Thisin turn implies
E [xj,(kn; ©)] > KE [ Ajyio (k)] =kC ,

with C > 0, which imgies thata > e. Note hat in the stochastic event graph setting,
this condition is tantamount to having a circuit of the event graph with at least one
place with a positive mean holding time. [ |
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7.3.4 The Strongly Connected Case

Theframework is that of the previous section. Ig&tA) denote theprecedence graph of
the square matriA (see§2.3). Although matrixA depends o, the asumption that

its entries are either a.s. equalktor a.s. fiite implies thatG(A) is eitheras. strongly
connected or a.s. nonstrongly connected (or equivalently, ekher.s. irreducible or

it isas. nonirreducible). In this subsection we assume that we are in the former case.

Remark 7.30 The assumption tha# is irreducible and thessumption thiethediago-
nal entries ofA are diffeent frome imply that A is aperiodic (see Definition 2.15 and
the theorem which follows this definition). More precisely, the matrix

GK) EAk+n—DAK+n—2)...AK , keZ, (7.37)

is such thatG;j (k) > efor all pairs(, j) € {1, ... , ). [ |

We know from the preceding subsection that(k)|, growslike a*. In fact, in the
case considered here, each individual state varigfglo has the same growth rate, as
shown n the fdlowing lemma.

Corollary 7.31 If matrix A isirreducible, then for all finiteinitial conditions X, and
forall j =1,...,n, wehave
lim (xjk; x0))"“=a as, (7.38)
k— o0

where a isthe maximal Lyapunov exponent of Theorem 7.27. If theinitial conditionis
integrable, we also have

kILI”QOE[(Xj (k: xo))l/k] —a. (7.39)

Proof From Remark7.30, we obtain thak;(k; Xo) > Xi(k — n; Xo) for all i, j =
1,...,n, andk > n. The property (7.38) follows then from the bounds
IX(k—m)l, <xj(K) < [xKI|, , Vji=1...,n, (7.40)

andfrom Theorem 7.27. ]
Corollary 7.32 Under the foregoing assumptions, if Aisirreducible, thea.s. limits
k|Lmoo|x(k)|}/k —a as (7.41)
and
lim |Ak=1)... ADAOI Y  =a as (7.42)

hold.
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Proof Equation (7.41) follows from (7.40). As for the second relation, it is immediate
that
limsup|Ak —1)... ADAW0)|Y* <a as.
k

In addition, we have

(Ak —1+m)AK—2+n)... ADAO));;
= PlAK-1+mAK—2+n)... A +DAM);
=1

QR (An — DA —2)... A(l)A(O))n] .
In view of Remark 7.30, this implies

(AK — 1+ mAK —2+n)... ADAQ)) j;

PAK —1+n)AK —2+n)... A + DA®);
1=1
x(k, 6" .

v

Thus the a.dlimit

lim inf(Ak —1)..... ADAO) > a as.
holds as a direct consequence of Theorem 7.27. [ |

Remark 7.33 Thus, in the case of a strongly connected stochastic event graph, all tran-
sitions have the same asymptotic firing rate; the constastlso called theycle time
of the strongly connected event graph. Its inverseis often called itshroughput. m

7.3.5 General Graph

Consider the decomposition 6{A) into its m.s.c.s./s§2.2). For the same reasons as
above, thenumberN, of its m.s.c.s.’s and their topologies are nhonrandom. We will
use the notations ¢R.2 for the m.s.c.s.’s and the reduced graph€) of G(A). The
reduced graph is acyclic and connected (provided the precedence grapimisoed,
which will be assumed in the what follows). Remember that a m.¥:s.£,) is said

to be a source subgraph if nodef the reduced giph has no predecessors, and that it
is sdd to be a nonsource subgraph otherwise.

Remark 7.34 In the particular case when the equation of interest is that of a nonau-
tonomous event graph of the form (7.32gch recycled traitton associated with an
input transition will be seen as a source subgraph. [ |

When ttere is no ambigity, the notationr, 7* andz* will be used torepreent
the wsual sds of predecessor nodes in theduced graph. Without loss of generality,
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the numbering of the nodes is assumed to be compatible with the graph in the sense
that (m, n) € £ impliesm < n. In particular, the source subgraphs are numbered
{1,..., No}. Forall 1< n < Na, we will make use of the restrictiond\nym, Xn),
A<ny=m)» X(<n), €tc. defined in Mtation 2.5.

The mexdmal Lyapunov exponent associated with the mat, (k) gef Anym (K)

(respediely A<n gef A<ny=n Or Acn) gef Any<m) Will be denoteda, (respec-
tively a.<n) Or a(<n))-

Observe thati gereral, X (k) does not coincide with the solution of the evolution
equation

yk+1) =AnK®yk , k=0,

with initial conditiony(0) = Xn (0). However, he sequencéx<n (k)} (respedvely
{X<n (K)}) is the soltion of the evolution equation

X(Sn)(k+1) = Axn (k)x(gn) &) .
(respectively X<k + 1) Ay KX<m k) , k=0,

with initial conditionX<n) (0) (respediely X<n)(0)).
Lemma 7.35 For all finiteinitial conditions, the following a.s. limitshold:
fim [xo (0] =0 as, (7.43)
and
: 1/k .
kI|m (xj®)"" =aen as, Vjel. (7.44)
If theinitial conditionisintegrable, we also have
: 1/k
lim & [ 0[] = aczn (7.45)
and
. 1/k .
lerQoE[(xj(k)) ]:a(fn) . VeV . (7.46)
Proof It is obvious from the definition thak, (k)| < [X<n ()|, so that
o 1/k
I|mk|nf |x(m(k)|@/ < Gi<n) -
When usinglie fact that there exists a path of length less th&mm h to j in G(A),
forall j € Vs andh € Unpepen Vm: together with the assumption on the diagonal

entiies of A, we obtain the following bound from (7.27):

xik+)>= P xk-n, VieW,

{heVm,men*(n)}



326 Synchronization and Linearity

providedk > n. Therdore |xm(k +1)|_ > |X<n(k — n)|_, fork > n, so that
Iimksup|x(m(k)|;/k > a<n  a.S.

The poof of the individual a.s. limits in (44) followsthe same lines as in Corol-
lary 731. In the integrable case, the proof of the convergence of the expectations is
immediate. [

Owing tothe acyclic nature of theeduced grph, the vectox (k) sdisfies theequa-
tion

Xm K+ 1) = An KXm K &sin,k+1) , (7.47)
where
s K+ 1) £ Ay e ()X (K) (7.48)
Equation (7.47) is the basis for proving the following property.

Theorem 7.36 Theconstant a,<p,, which characterizes the growth rate of the variables
Xj(K), j € Vn, isobtained fromthe constants aqn), 1 < m < n, by therelation

A<n) = @ Amy - (7.49)
memr*(n)
Proof We first pove that
lim |s(n, KIY*=an as, (7.50)
k— o0

forall Np < n < N. From (748), we obtain that

Is(n, k+ DI, <AK)I, ( b IX<m>(k)|@),

mem+(n)

so that
1/k

s, k+ DIY* < JARIY [xen k)] (7.51)
The integrability assumption orA implies that

Iikm IAK)IY*=e as.

(usingthe same technique as in the proof of Theorem 7.24). Lektopgtooo in (7.51)
then implies
Iill(”ninf Isin, KIY* <am as.
— 00

By using the same type of arguments as in Lemma 7.35, from (7.48) we obtain that

Is(n,k+ Dy = [xnkk =) as,
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which in turn implies

lim sup|s(n, k)|2/*

k— o0
This concludes the proof of (7.50).
It is clear from (748) that|x(n>(k + 1)|@ > |s(n,k+ 1)|,, so that mecessarily

X (K + 1)|;/k > |s(n, k+ 1)|¥, andhencea(<n) > a(n. Owing tothe individual
limits of Equation 7.44, for alj € Vi, (X)) (K) ~ a_,, whereas|s(n, k)|, ~ a¥_,,

sothatif ai<n > a(<n), then there exists afinite integer-valued random vari&bsgeich
that

= O<m) a.S.

An KXm (K) > s(n,k) , VYk>K .
Accordingly,Equation (7.48) reads
XK+ 1) = Am KXn) (K)
for k > K. Let y(k; Xo) denote the solution of the equation
yk+1)=AnKyk , k=0,
with initial conditiony(0) = (Xo) ). On{K = h}, we have

XK = Anm& ... An ()xm )
(Am (kK —h) ... Ap (0)X(n (o~ M)6"
= y(k — h; X@ ()8 M)o" |

for all k > h. Thus, on the evenftK = h}

VKo — a0 as, (7.52)

lim x (0] = 1im [y(k = h; Xy ()07
where ve used the a. conergence result of Theorem 7.27 applied to matfx, (k).
SinceK is finite, | ,,{K = h} = €, so that

iim (x00) 7 = am as, vjev.

Therefore,a<ny > a(<ny, andai<n > a<n iIMpliesa<n = am), thatis,a<n =
a<n @D am. Theproof of (7.49) is obtained from the last relation by an immediate
induction om. ]

Example 7.37 (Acyclic forkjoin networks of queues)Consider the stochastic event
graph of Figure 7.2. This example features an acyclic fork-join queuing network
which is chaacterized by an acyclic gragh = (V, £), with nodes{0, 1, ... , n}. In
this greph, 7w (j) will denote the set of predecessors of ngdmda (j) the set of its
swceessas. This graph has a single source node denoted 0.

With this graph, we associate a FIFO diastic event graph, for which we use
the conventinal notation. The set of transitions{igo, 01, ... , 0»}; €ach tranision
g; is recycled, withassociated placg;j, 0 < j < n; in addtion, a placep;; is
associated with each pair obdes 0< i, j < n suchthati € 7 (j). Trandtion gp,
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Figure 7.2: An acyclic fork-join network of queues

which generates the input to the queuing network, is a recycled transition such that
o(Qo) = {Poo. Pioties ), andm (do) = {po}. Trandtion qg;, which represents queug

of the queuing network, admits the g, pji}icz(j) as a predecessor set and the set
{Pjj Pijlies(j) as a successor set.

If 5(j) has two or more elements, one says that there is a ‘fork’ from qyi¢ae
thequeues of (). As a result othis fork, when adeparture takes place from queue
this creates simultaneous arrivals into successor queues. Similarlyzughghas two
or more elements, one says that there is a ‘join’. Clearly, the effect of a join in queue
is to syndironize the outputs of the queuesa(j ).

Leta; (k) denote the holding times ip;; andU (k) denote those ifpgo, and @sume
thatall theother holding times are zero. For instance, the maii) associated with
the autonomous event graph of Figure 7.2 is characterized by the formula

ag(K) e e € € € €
€ a1(k) € e £ €
€ £ as(K) € € € e
Ak -1 = € € € az(K) € e €
€ € € as(K) e €
€ € € € € as(K) e
€ € € € € as(K)

It is easily checked thalla = n + 1, and that each m.s.c.s. consists of exactly one
transition, so that the firing rate of transitigris simply

a=) = P Eloj] .

iem*(j)

7.3.6 First-Order Theorems in Other Dioids

The rate theorem (Theorem 7.27) which was established in the preceding sections for
@ = max and® = + is essentially based on the following two ingredients:
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e therelation

|ABl, <Al IBl, : (7.53)

e Kingman'’s subadditive ergodic theorem which relies on the factghat+.

The first resulholds in a general dioid (see Lemma 7.26).

Example 7.38 For instance, if D = Ryn, the first réation of (7.25) translates into the
property|AB|, > |Al, |B|, (where> denotes here the conventional orderindRi
since< carresponds to the ‘reverse’ &fmin. []

In order to extend the second result to a general dioid, we need agsiyedic
theorem’ stating that anfp-valued random sequené@mn}m<neny Which sdisfies the
conditions

amnfamp®apn, Vm<p<n,

and
ammik = aokod" , Vm,ke N,

is such that
3 lim (ag)¥*=a as,
k— o0

wherea is some consta (the meaning of the limit will not be discussed precisely
here). For instance, such a theorem will follow from Kingman'’s subadditive ergodic
theorem if® is + or x. Thus, under the same type of statistical assumptions as in
Thearem 7.27, we can prove the existence of maximal Lyapunov exponents for linear
systems of théype (7.27) inRmjn.

7.4 Second-Order Theorems; Nonautonomous Case

7.4.1 Notation and Assumptions

In this sectionle dioidD under consideration is general. The basic equation of interest
is the evolution equation

x(k+ 1) = AKXk & B®uk) , k>0, (7.54)

wherex(k), u(k) and A(k) all belong taD.

The sguenceq Ak), B(K)}kez and{u(k)}k=o are assumed to be given, as well as
the initial conditionxg. The sguenceu(k)} is assumed to be finite and nondecreasing
in k. LetU (k) be defined by

uk+d g, (7.55)

Uk = T
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7.4.2 Ratio Equation in a General Dioid

As in the preliminary example, we define thatio process, which consists ofthe se-
quence

x(k+1)
~ k>0 . (7.56)

The first aim ofthis subsection is to derive an evolution equation for this ratio process.

§(K) =

Theorem 7.39 (Rdio Equation) Thevariabless(k) satisfy theinequalities
Sk+1 > Ak+DSKU_(K & Bk+DHU (KU_(Kk) , k=0, (7.57)

where theinitial conditionis §(0) = 8y isequal to x(1)¢u(0), and where

def  U(K) def _uk+1)
U E Ty - Uil Ut = = (7.58)

Proof By successively using formulee (f.2) and (f.12) of Table 4.1, we obtain

xk+1  AKx(K) & BKRuk
uk—-1 uk —1)

ARX(K) Bk
uk -1 uk -1

x(K) uk)
z Al uk—1) ° B(k)'u(k -1
From(f.5), we obtain .
uk —1)
uk -1 > WU(k) ,
so that
x(k+1) - x(k + 1) .
uk—1 = (uk—Dpuk)) uk
XK + Dgu(k)

uk — Dpuk) ’
where we used (f.9)n order to obtain the last relation. By using the notatidn(k)
andU, (k) defined in the statement of the theorem, we finally obtain
0 Aksk-DeBRU k-1 . k=1
U.(k—1) — * =T
Therefore,

5(K)
Thop-k-D = Alsk-DU-(k-1)

®BKU;,(K-—DU_k—1), k>1,
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and theproof is compléed since the left-hand side of the last expression is less than
3(k) (owing to (f.5)). [ |

In whatfollows, we will concentrate on the least solution of Inequalities (7.57).

Lemma 7.40 The least solution of (7.57) is also the solution of the set of equations
Sk+1) =AK+DsKU_(K & Bk+ DU (KU_(k) , k=0, (7.59)
withinitial condition §(0) = x(1)#u(0).

Proof The minimum element of the s¢x > a} beinga, the resultof the lemma
follows from an immediate induction. [ |

Example 7.41 Let thedioid of scalars beRmax and letx andu be vectors in this
dioid, of dimensiom andm respectively. Taking Remark 4.80 into account, the above
calculations are still valid. A more direct derivation of the same result is obtained by
subtractingu; (k) from the j -th line of (7.54); we directly obtain

Sjik+1) = @ (Aj (k+1) (xi(k 4+ Dpui(k + 1))

1=1
m

® P (Biik+ 1) (uk+Duik+1)) .

=1
By using the property thatfa = efor all a € R, a # ¢, itis immediately verified that
under the finiteness assumptions which were made(kn thiscanberewritten as

m

Siik+1) = PP (Airk+1D) (xk+ Daup®) (Upkfuik + 1)))

I=1 p=1

&P P (Bjik + 1) (ui(k+ Diup) (upypuik+ D))

I=1 p=1

which is a mere rephrasing dig¢ matix relation (7.59). [ |

7.4.3 Stationary Solution of the Ratio Equation

Allthedaa are now assumed to be defined on a common probability §@ade P, 6),
with the usual assumptions @h The variablesA(k) and B(k) are asumed to be
g-staionary, with A(k) = A6 and B(k) = B.gX. Thedioid D is assumed to be
complete. In addition to this, it is assumed that the sequence of rfltipgk)} and
{U_(k)} defined in (7.58) are such that

Usk) =U, 0%, U_(k=U_6, keZ.

As in the preliminary example, we are interested in the possibility of making the ratios
3(k) statbnary. For this, we will use a backward construction which generalizes the
construction of the pilaninary example.
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Definition 7.42 (Backward process)The backward process associated with the least
solution of (7.57) is the sequence of variables {A(K)}k=o defined as the solution of the
set of relations

A(0)s0
Ak + 1)

C,
AOAKU_dC , k>0, (7.60)

where U, £'U, 0), U_ £'U_(0) and Cc £ B.6U, U._.

Lemma 7.43 The sequence {A(k)} is coordinatewise nondecreasing in k with respect
tothe order in D.

Proof It is clear thatA(1) > C.0~1 = A(0). Assume nw that for somek > 1,
A(k) > A(k—1). Then

Ak+1ed = AOHAKU_®C
> AOAK—DU_®C = AK)H ,
where we used thedct that the mapping — AxB @ C is isobne. [ |

Lemma 7.44 The randomvariable A = P, ., A(k) satisfiestherelation

Ao = AOAU_ @ C . (7.61)

Proof The sumA belongs toD because this dioid is complete. Since the mapping
X — AxB @ Cisl.s.c., we also have

Af = P (AsAKU- @C)
k>0

- A0 (@ A(k)) Uu_.acC

k>0
= AbHAU_C .

Lemma 7.45Inthecasewhen A € D", U+ andU_ € D™*™ and C and A €
D™ if the diagonal elements of A are greater than or equal to e and U_ hasfinite
entries, then theevent B = {|A|, = T} isof probability either O or 1.

Proof Owing to the assumption that the diagonal elementa afe a.s. fiite, |A|, =
T implies| A0 A|, = T, which inturn implies thaf A0 AU_|, = T (sinceU_ has all
its entries a.s. finite). Thereforg\|, = T implies that

|A], > |ABAU_|, =T .



7.4. Second-Order Theorems; Nonautonomous Case 333

Thus, the measurable d&is such that the indator functions %-6* are nondecreasing
in k. This is enough to ensure thitis of probability O or 1; indeed, when using the
ergodicity assumption on the shift and the nondecreasingness property, we obtain

k
.1 |
P[B] = kILrgo x ; 150" > 15 a.s,
so that if P[B] > O, then the indicator functionglis equal to 1 a.s. (an indicator
function which ispositiveis necessarily equal to 1). [ |

The fdlowing expansion of the backward procesengralizes thetar operation of
Lemma7.10.

Lemma 7.46 The relation
k | |
AK) = @ (® A(—=h + 1)) C(—l —1) (® U.th—1I— 1)) (7.62)
1=0 \h=1 h=1

holds, where the ®-product over an empty set (when| = 0) isequal to e by convention,
and C(k) = Bk + L)U, (k)\U_ (k). Thisformula holdstrue for k = oo when taking
A(00) = A.

As in our previous example, the nondecreasingness of the seqisdcg becomes
trans@rent from this formula.

The mainquestion we are now interested in cimts in determining the conditions
under which the limiting value\ is a.s. finite. The answer to this question is based
on ergodic theory arguments, and is therefore dependent on the specific dioid which is
considered. We will concentrate on tRgay case for the rest of this section.

7.4.4 Specialization tdRyax
7.4.4.1 Statistical Assumptions

In this subsection the underlying scalar dioi®igax. In view of the reuts of the pre-
ceding subsectioma of those of the preliminary example, the most natural statistical
assumptions wuld consist in taking

e U, (k) = U, .6% (which implies thatU_ (k) = U_-6%);
e U, integrable (which implie§)_ integrable).
We will rather take the weaker assumptions

e {U, (k)} couples with{U, -6}, where dlthe enties of U, are a.s. finite (which
implies that{U_ (k)} couples with{U_-6%}, whereU_ has finite efries);

e (U,)jj integrableforali =1,... ,m.
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The notivations for taking these weaker assumptions will be commented upon in the
next subsection.

Remark 7.47 Lety; & E[(U,)ii]. Sinceu; (k) = u; (0) Rt Ui (1), k> 1, from

the coupling assumption and the assumplmc{mugn] = u;, we obtain that

Jim (u kY =y as, Vi=1...,m. (7.63)

This can only ke conpaible with the assumption that, (k) couples with a stationary
and firite sequace ifuy; = uj foralli,j = 1,..., m (sinceu;(k) — uj(k) cannot
couple with a finite stationary sequenceuif# uj). Therfore, a directonclusion of
our assumptions is that

klim luk)| V& = klim u®|¥*=u as. (764)

More generbcases witfE[(U_ )ii]= u andy; # u;j for some paiti, j), are oflimited
practical interest, as shen by the bllowing example. [ |

Example 7.48 Matrix A has a single m.s.c.s., and its Lyapunov exponéstsuch that
a <1 < uj. Inview of Theorem 7.36, we then have

X (K) ~ (a &y @Uj)kZUIj( ;

foralll =1,...,n. Therdore, x (k) — u;j(K) tends a.s. tec for all | ask goes toco.
Thus, in such a situation, some of ttadios necessdy become infinite. [ |

We mnclude this section with an algebraic interpretation of the assumptidds on
and a statement of thHe,a-eigenvéue problem.

Lemma 7.49 Let V (k), k > 0 be a sequence of m x m matrices. The two conditions

e V(k) = v(k + Dpv(k), k > 0, where v(k), k > 0 is a sequence of finite m-
dimensional vectors,

e V(k) = Voo¥ k >0,

are equivalent to the existence of a uniquefinite R™ eigenvector y, withy; = e, and a
uniqueeigenvalue 8 € R suchthat Vy = By.6 and V = (By-6)7y.

Proof We first show that under the first two conditions, there exists a unique pair of
finite vectors(y, z) suchthaty; = eandV = z/y. We haveV = v(L)#v(0) = z/y,
wherey; def i (0)fv1(0) andz def vi (1)#v1(0). We havey; = € let us slow thaty and

z areuniquely defined fronV: from the very ddfinition of ¢, we have

Vij = zfy; .

By taking j = 1 in the last reldion, we see that is uniquely defined fronV, since
z, = Vi, therdore y; = z4V;; does not depend onand isuniquely determined
from V.
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Let B be the random variablg = z;. We havez = Bw, wherew; = zf8 =
vi (DFv1(1). We now onclude the proof of the eigenpair property by showing that
w = Yof. We haveV.0 = v(2)fv(1l) = vpw, wherey; def 1i (2)fv1(1). Sincew; = g,
the albve ungueness property shows that= y.6 indeed.
Conversely, iwe assume tha = (B8y.0)7y, for same firte (8, y), we obtain
V (0) = v(1)#v(0) with v(0) = y andv(1) = By-6. More gererally, we haveV (k) =
v(k + Dfv(k), for allk > 1, when taking (k) = g¥. .. By-0K. n

Unde theassumptions listed above, the system of interest can be rewritten as

58:1 1; z L;Ilf)??lf)k)éB(k)u(k) ; } (7.65)
or equivalently as
X(k+1) =DMKXK , k>0, (7.66)
where
=20
and

_ U+ (k) &
Dk = ( Bl AK ) '
In view of the preceding lemma, the assumptionsBik) can be summarized as fol-
lows: the matrice® (k) couple in finite time with a stationary sequer{d@-6*}, where

_( Y+ e ).
o= (% A)

AUof

the matrixU, is such that

where(i, u) areuniquely defined( is a finite random vecton € R™ withu; = eand
A isanonnegative and finite random variable).

The problem of interest is then similar to the random eigenpair problef7 &f.3:
can we continue the random eigenpair propeky u = Au.f, which fdlows from
(7.67), to the following eigenpair property 6f:

DX = AX0 ? (768)

Remark 7.50 The asumption thatU. );; (k) couples with a stationary sequence for
ali,j =1,...,m, which is equivalent to the agenpair property of (7.67), is neces-
say for the second-order theorems of the following subsections; in particular, if this
property is only satisfied by the diagonal terthk, );; (k) (like for instance in the for-
mulation (7.30) of the evolution equation), then these stability theorems do not hold,
as shown b Example7.98. [ |
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7.4.4.2 Example: Nonautonomous Event Graphs

We know from Corollary 2.82 that a nonautonomous FIFO stochastic event graph with
recycled transitions and with a compatible initial condition in its standard form satisfies
an equation bthe form (7.54) inRmax. We make thdollowing stationarity assump-
tions:

e theholding timesy; (K), pi € P, k € Z, aref-stationary and integrable;

e the ratiosU;; (k) def ui(k + Dgu; (K), g, ; € Z, k € N, ae finite and couple in
finite time with af-stationary sequenc{é)ij oek}, whichsdisfies the integrability
and rate conidions mentoned above.

As a direct consquence of the first assumption, the sequeriégk)} and{B(k)} are
both 6-stationary and thenties of these matrices wth arenot a.s. equal t@ are
integrable. In particular, the diagonal entriesAtk) are as. nonnegative and integrable
owing to the asumptionghat the transitions are all recycled.

Remark 7.51 We nowlist a few motivationgor the assumptions dd, (k), whichwill
become more apparent§i.4.4.5. In (7.54), we would like to be able to take the input
vectoru(k) € R™ equal to the output of some other stochastic event graph (incidentally,
this is the most practical way of buildjrinput vectors which satisfy the conditions of
§7.4.4.1). For instance, consider the veototk), x(k + 1)) € R?, assocated with
Equation (7.3), as an output signal of the system analyzed in the preliminary example.
The first @sumption (oupling of U, (k) with U_.6%) is motivaed by the bllowing
observations:

e Even inthe stable case, the quit process of a stochastic event graph is usually
not suchthatU, (k) is #-stationary fromk = 0 on. For instance, if we take
the gecific vector mentioned above as an input vector of Equation (7.54), with
m = 2, we know from the preliminary example that the corresponding sequences
{U,(k)} and {U_(k)} couple with stationary sequences, provided appropriate
rate conditionsire satisfied.

e More generally, for stochastic event graphs, the assumptior{thak)} is -
stationary may not be consistent with the assumption that the initial condition is
compadible.

As for the second assumption (integrability of the diagonal terms only), we also know
from the preliminary example that the nondiagonal entried pofor U_ arenot inte-
grable in general (see Remark 7.13). [ |

7.4.4.3 Finiteness of the Stationary Solution of the Ratio Equation; Strongly
Connected Case

Matrix A assaiated with (7.54) is assumed to have a strongly connectedquaence
graph. Leta denote the maximal Lyapunov exponent associated wi{see Corol-
lary 731). Let

£(k: x0) E'1AK) ... AQAMDSO; x)U_OU_(1)...U_(k—1)|, . (7.69)
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wherexg is a finite random initial condition ifR"™*™,
Lemma 7.52 For all finiteinitial conditionsxy € R™*™,
Jim (k. X)X =apu  as. (7.70)
Proof The poperty stated in (7.70) is similar to the one proved in Theorem 7.27.
Indeed, from (7.25) we obtain that
1EK, X0) |, < TAK) ... AQRAD)[4 18(0; X0)], U-(OU-_(D)...U_(k=1)[, .
We know from Theorem 7.27 that

Iikm IAKAK —1)... AQAD)| Y =a as.

As for the productU_(0)U_(1)...U_(k — 1), we cannot apply the same theorem
because the entries of_(k) are not assumed to be integrable anymore, and because the
f-stationaity is replaced by the aupling assumption. However, owing to the specific
form of U_(k), and tothe fact that thealar dioid iSRmay, the réation

U_(0)...U_(k—1) = %

holds, so that
Iikm U_(0)...U_-k-D¥*=eu as.,

in view of (7.63). This immediately implies that

limsup(&(k; Xo)¥* < afu  a.s.
K

On the dher hand, (7.25) and (7.26) imply that
£(k: o) = [(Ak — 1) ... A(0)|, 18(0; x0)|, (JU(O)], £ luk)]s) -
By using this inequality together with the above a.s. limits, we finally obtain

Iimkinf Ek; Xo)Y* > afu  a.s.

Let

r(k) &

whereC was defined in Definition 7.42. The following lemma is very similar to the
preceding one, diiough it is somewhat more difficult to prove.

AL AGTICo ™ IU U0 (7.71)

Lemma 7.53 Under the foregoing assumptions

Jim ckNY¥ = apu as. (7.72)
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Proof When usinghe same arguments as in Theorem 7.27 and Corollary 7.32 (applied
to the shifto—1, which is also ergodic), we obtain that for allj

lim (A %9*k+1)ij)l/k

lim |A... A1
k ®

imE [|A... Ao~ ] =a

2

for some positive and finite constaait(the first two limits are understood in the a.s.
sense) Since

E[|A... a0 2| =E[|adkt A

2

we recessarily have = o'. Therdore, for alli, j,
1/k
; —k
iim ((A... A67) )" =a as. (773)
We now $ow that we also have
1/k
; —k -1
lim ((U,oe U )ij) — e as, (7.74)

foralli, j =1,...,m. For ths, we will use the specific forms &f . andU_, which
imply that there exists a unique pair of vectdbg0), b(1)) in (R™)? suchthatb,(0) =
eand

b(1) b(0)

— U7 = —

b(0) b(1)

(see Lemma 7.49). Lgb(k)}«>1 be the sequence &™-valued vectors defined by the
reldions

U+=

b(k) = U o0 tbk — 1) = U, o651, U;ebb(@) , k>2.

We have
Uy obX = b“;%()l) . Uk = % , >0 . (7.75)
Thisimplies
(O U i (LA VA ) M (7.76)
= b (000 b (k)67 . (7.77)

Therefore foii = j

—k
(U . U6l = Q)EUind |

I=—1
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sothatthe egodicity of §~1 and the assumptioB[U;;] = u show that (774) holds at
least fori = j. In view of (7.76), we have

(U—cf7 .. U_o07t) = (U= Ut ™) | b (000D (0)e6 %

We onclude the proof of (7.74) by showing that

yk

. ! —k
I|||:n (bi (0)-6~%) e as., (7.78)

foralli = 1,...,m (thisis immediate if the entries &f_ or U, are integrale, but
we havenot assumed this). We know from Lemma 7.49 that

b(0)s0 = b(1)¢(bi(1)) . (7.79)

Therefore, forall =1, ..., m, the réation

bi (00 _ (biDybi@) Ui,
bi (0) (b1(Dfb1(0) (Ui

holds, which shows thdg; (0)-84b; (0) and hencdy; (0).6~%4b; (0) are integrale. This
implies thatE[b; (0)-0~14b; (0)] = e (see Lemma 7.25). Since

—k+1

bi (006 =i (0) (X) (bi (0)-6~Yb; (0)) 6"
h=0

this and Birkhoff's Theorem imply that

—k+1 1k
. _k11/k . _
|Ikm [bi (0)06 k] ke _ |II|:ﬂ |:bi (0)] ® (bi (0).0 1yfbi (O)) o@h:|

h=0

—k+1 Lk
; ' -1 /. h
hrkn (® (bi (0)o0~24b; (0)) <6 )

h=0
= E[bi©0 b)) =e. (7.80)

Findly, sinceC = B-AU,U_ = B.6b(1)£b(1), we obtain from (7.79) that

bl)

b(1)#by(1) ( b(0) )
C = Bosb- = B P = B—— .6 . 7.81
b(1) b(1)#b1(1) b(0) (7.81)

Then either thg -thline of B is e, andC;j; (k) = ¢ for all i andk, or it is different from
¢ and (7.81), theintegrability assumption on the nerelements oB, and (7.8) imply
that

lim (Cjioeik)l/k =

k— o0

e as., (7.82)

for all i. Theproof of the lemma is concluded from (7.73), (7.74) and (7.82). m
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Remark 7.54 When using the notation of the preceding theorem, titeircondition
for the backward recurrence should be

Bb(0)

A(0) = b0,

If U, (k) is stationarythen r all xq, the initial conditions, of the rdio process satisfies
the bound

_ AOX ®BOU©) _ BOUO _ BbO)

_ -1
u(0) =" pO) b0 =GO

o
]

Remark 7.55 If Ais not strongly connected, the proof of Lemma 7.53 allows one to
conclude that

limsupz (k)X < afu  as., (7.83)
k— o0
wherea is the maximal Lyapunov exponent oA. [ |

In the following theorem, which holds regardless of the strong connectednéssiof
is the maximal Lyapunov exponent oA.

Theorem 7.56 If a < u, then |A|, < co a.s,, and there exists an initial condition §(0)
such that the solution § (k) of the ratio equation (7.59) forms a stationary and ergodic
process.

Proof From Leamma 745, either|A(K)|, tends toco a.s., orA(k) tends toA with
|A|, < T. Assume we are in thirst case. Then in view of (7.62),

limsupz(k) = 0 a.s,

k— o0

which ontradicts (7.83) it < u. Therdore a < u implies that|A|, < oo a.s., and
henceA < oo a.s. T&ing §(0) = A makess (k) statonary in view of (7.61). [ |

Remark 7.57 If wereturn to the initial system (7.54), we may ask whether this system
has an initial condition(x(0), u(0)) which renders the ratio proceskk) statonary.
The answer totis question is equivalent to the existence of a solution to the equation

Ax(0) ® Bu(0)
u(0) S

where the unknowns ar&(0), andu(0), and whereA is the random variable defined

in Lemma7.44. We will not pursue this line of thought since we will see that the
statonary regimgA-6%} is actually reached byauping regardless of the initial con-
dition §(0). []
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Lemma 7.58 In the strongly connected casg, if a > u, thevariables A(k) all converge
tooco as.

Proof In view of (7.62),a > u implies|A(K)|, tends toco and hencgA|, = oo.
From (7.61) weobtain
A" > GoOAH

where
n n—1
GERAL . HERQU ' .
=1 1=0

In view of our assumptions oA, the marix G(k) defined in (see (7.37)) is such that
Gi; = eforalli, j =1,...,n. This bgethewith |A|, = T a.s. inpliesAj.6" =T
as.forallj =1,...,n(sinceU_ is a.s. finite).Thereforen > uimpliesAj = T a.s.
forallj=1,...,n. [ |

Corollary 7.59 The random variable A isthe least stationary solution of (7.61).

Proof Stating with a solutionZ of (7.61), we necessarily ha@ > C.6~! = A(0).
It is easily checked thaE > A(K) implies& > A(k 4+ 1) (the proof is ssentidly the
same as for thprdiminary example). Therefor&€ > A. [ |

Hence ifa > u, there isno finite stationary regime for ratios of the typg(k)#u; (K).

Remark 7.60 A few remaks are in order concerning stochastic event graphs. If there
exist initial lag timesx(0) andu(0) which make the réo process stationary, these lag
times are not compatible in geral (see Remark 7.15).

¢ Nothing general can be said about the critical case a. As in queuing theory,
it may hapen thatA is finite or infinite, depending on higher order statistics.
For instance, if the holding times areetierministic, the variabla is finite (see
Chapter 3). In the case of i.i.d. exponentially distributed holding times, it will be
infinite.

e Itis not always trughat the variabled are integrable. Simple counterexamples
canbe found in queuing theory. For instance, the stationary waiting times in the
Gl /Gl /1 queue (se§7.2) fall in this category of ratios and are only integrable
under certain specific conditions on the second moments of the holding (service
and interarrival) times.

e Assume thathe onstantu is fixed; wha is the mhimal value ofu for which the
system can be stabilized? The preceding remarks show that the threshold is for
u = a, the cycle time of the strongly connected component. In other words, the
minimal asymptotic rate of the input for which the system can be stabilized, is
equal to the cycle time of the system with an infinite supply of tokensach
of the inputs. This result can then be seen as a generalization to Petri nets of a
result known as Lavenberg’s Theorem [83] in queuing theory. [ |
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7.4.4.4 Coupling; Strongly Connected Case

Theorem 7.61 Under the statistical assumptions of §7.4.4.1, if a < u, there exists
a unique random matrix A such that for all finiteinitial conditions §(0), the random
variables {§(k; §(0))} couplein finitetime with the sequence { A-6¥}, regardless of the
initial conditions provided they are finite. If a > u, thenfor all j = 1,...,n, and
i=1,...,m,3ji(k; §(0)) converges a.s. to oo when k tendsto oo.

The pioof is based on the following lemma.

Lemma 7.62 Assumethat a < u. Then for any finiteinitial condition §(0), there exists
a positiveinteger K (6(0)) such that for all k > K (8(0)), 8(k; §(0)) = §(k; Co671).

Proof The poof is by contradiction. Assume thatk; §(0)) # §(k; C.6~1) for all
k > 0. This means that for any fixdd > 1, there exists a pair of intege¢, ix),
with 1 < jx < nand 1< ix < m, such hatd (k; z1) > 8j. (K; z2), wherez;
is eitherz or C.0~—* andz, is the other one. In view of (7.59), we necessarily have
8iiv (K 21) = (AKS(KK —1; zU_(k — )i for if it were not thecase, we would
have

Sjkik (kv Zl) = Sjkik (kv Z2) = (B(k)U+ (k - 1)U7(k - 1))jkik

(in Rmax, 2@ b # aimpliesa @ b = b). Thisin turn implies the existence of a pair of
integers(jk_1, ik-1), With 1 < jx_1 <nand 1< ix_; < m, such hat

Sjkik(k; 7)) = Ajkjk—l(k)ajk—lik—l k=1L z)U_(k - 1)ik—1ik .

It is easy to see that necessaily ,i, , (K — 1; z)) > 8j, i (K — 1; 2). If this were
not true, we would then have

‘Sjkik(k; 1) = Ajkjk—l(k)ajk—lik—l k=1L z)U_(k - 1)ik—1ik
= Ajkjk—l(k)ajk—lik—l (k—=1;29)U_(k - Dy i

D P Aip®8pq(k — L; 2)U_(k — Dg,

p=1g=1
® (BU (k—DU_(k — 1)),
= Jjik 22) ,

IA

which would contradict the definition gf andi.
More generally, by using the same argument iteratively, we can find a sequence of
pairs{(jk-i, ik-1)}—1.2.. « such ttat for alll in this range,

8]k—l+1ik—l+1 k=1+12z)=AK-I+ 1)jk—l+1jk—l8(k -1 Zl)jk—lik—l U_(k— I)ik—lik—l+1 .

Therefore, there exists a sequence of pairs such that

k-1

k
‘Sjkik(k; 7)) = ® Ajk—l+1jk—l k—1+ 1)810io (0; 1) ® Uf(l)i|i|+1 ’

1=1 1=0
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which implies thats;,;, (k; z1) < &(k; z1), where& (k; z1) is definedby (7.69). On the
other hand, we know from (7.59) thétk; z;) > B(k)\U, (k — 1)U_(k — 1); thus for
some pail(jk, ix) such that theline B, has some nonvanishing entries,

&k 20)Y% = [(BROU (k — DU_(k — 1)), V" . (7.84)

Owing to (7.70),£(k; z1)Y’* — agu whenk — oo. Similarly, our assmptions on the
rates (7.63) and on the integrability of the entriesBoiimply that

ik

= Jim €5 (Buk) ™" (1) 0) )

@ <k”m (Bjkl (k))l/k> (klim (U (k))l/kigk”m (Uik(k))l/k>
| 00 —00 — 00
= € a.s.

Jim (B(oU. (k = DU (k - 1Mk

By lettingk go tooo in (7.84), we finally obtaimsu > e, where tle contradiction is
obtained, since we have assumed that < e. [ |

The poof of Theorem 7.61 is obtained from the last lemma using the same arguments
as inthe preliminary example (see Lemma 7.21).

Corollary 7.63 Under the stability condition a < u, Equation (7.61) admitsa unique
finite solution.

Proof Given the oupling property of Theorem 7.61, the proof is the same as the one
of Corollary 7.22. [ |

Remark 7.64 The oupling of he rdios x(k + 1)fu(k) with a finite 6-staionary se-
guence implies the couplipof other rdios like x(k + 1)¢x(k) with a 6-staionary and
finite sequence. In order to see this, write

x(k+1)
x(K)

wheres_ (k) is the matrix with entriegs_(k))i; = &/8;i(k). The @upling of {§(k)}
with a stationary sequence implies tha{éf (k)}, which inturn implies that ofx(k +
1#x(k)}, provided{U_ (k)} couples with a stationary sequence too. [ |

=3(U- (K- (k) ,

Example 7.65 (Blog&ing after service) Consider a network aof machines in series.
The first machine has an infinite input buffer and is fed by an external arrival stream
of items. There are no intermediate buffers between machiaed maching + 1,
1< j <n-1,andan item having comgtied its service in machingis blocked there
as long as maching+ 1 isnot empty.

Itis easily checked that this mechanism is adequately described by the timed event
graph of Figure 7.3. The input transitiggis assaiated with the input functionu(k),
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Figure 7.3: Blaking after service

plO

with inter-input timesU (k); transtionsqj; andg;» are associated with the behavior of
machinej, with j = 1,... , n. Place pjo, which precedes);1, represerd thedevice

for transportingtems from maching — 1 to machinej. Theholding timesassociated
with these places (namely the transportation times) will be assumed to be identically
equal toe. Trangtion gj; represerts the admittance to maching andg;. the exit

out of machinej. Theholding times inpj; will be denotedy; (k) and represent the
processing time of thk-th item to entemachinej. Findly, the feedback arc which
containspj 1,3 forbids one to sendn item from maching to machinej +1 if thelatter

still has an item (this is the blocking mechanism). Similarly, the feedback arc which
contains pj» preventsan item from entering maching if this one con&ins aother
item. The two place;j, and p;s are asumed to have zeholding times.

All thesevariades are defined on the probability spase, F, P, 6), as well as the
compatible initial lag timesv; € R, wherev; is both the initial lag time of the token in
pj2, and theone of the token irp;s.

Itis easily checked that the state space can be reduced to the set of trar@itions
{a12, ... , Gu2}, and that the corresponding canonical form of the evolution equation of
Corollary 2.82 reads

Xk +1) = ARX (K @ BRUK) ,
where ther x n matix A(k) is given by the relation
R jak+1) fori=1,...,j;
Kji(k)= e fori=j+1;
£ fori=j+2,...,n,
whereas the x 1 matrix B(k) is defired byBj1 (k) = ®/_; o (k+1), andii(k) = u(k+
1). Theprecedence graph is strgly connected, and ratios of the foryk + 1)#U(Kk)

with j = 1, ..., n, admit aunique stationary regime if = E[U] > a, wherea is the
cycletime associated with matricesk). Theratio Xj (k + 1)#U(k) here represents the
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delay betveen the arrival of aitem in the network and the time at which it starts being
processedymachinej. If this rate condtion is fulfilled, the unique stationary regime
is reached with cuding regardless of the initial lag times. [ |

7.4.4.5 More on Coupling; General Case

Thenotations and the statistical assumptions of the present section are thask41.
The only difference concerns the precedence graph associatedwithich is not
supposed to be strongly connected here. We assuméthasNa m.s.c.s.’s. As in the
preceding subsections, the basic process of interest is the ratio process

def X(K+1)

det AT 2,
Xk

where{X(K)} is the sequece defined in (7.66).

For theproof of the next theorem, it will be convenient to use Equation (7.66). By
construction, the number of m.s.c.s.’sBfis Np = Na + 1.

n(k) (7.85)

Remark 7.66 The §(k) process defined in (7.56) is thetio of the state variables
x(k + 1) ard the inputu(k), whereas the atio (k) definedabove is

(Uk+D xXKk+D)/(uk xXK® ) .

The restiction of the latter matrix to the set of coordinates 1), (1) coincides wth
8(K). m

Theorem 7.67 If the Lyapunov exponents an, of Theorem 7.36 satisfy the condition

Na
Paw <u . (7.86)
n=1

then there exists a unique finite random (n + m) x (n + m) matrix E such that the
sequence {n(k)}, defined in (7.85), couplesin finite time with a uniquely defined sta-
tionary and ergodic process { E-6%}, regardless of theinitial condition. If

Na
Daw >, (7.87)
n=1

let ng bethefirst n = 1,..., Na, such that a;, > u. Then all ratios of the form

i (K), | € Vng, i € Vi, M < No, tend to oo a.s,, for all finiteinitial conditions.

Proof Weprove by inductionom =1, ... , Np, that under the rate condition (7.86),
the matices
—Y o
Xzn (K)

couple in finite time with a uniquely defined and finitestationary process, and that
the stationary regime is such that

E[(X(zn (k + 1))i ? (X(sm(k))i] =u, Vi.
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This induction assumption is satisfied for the source m.s.c.B,afanely forn = 1,
which corresponds to the set of input variablescause of the assumptions which were
made on the input functions. It is also satisfied for all source m.s.c.sA, ofarrely
foralln=2,..., Ng+ 1 (thenumbering we adopt here for m.s.c.s.’s is that relative to
D), in view of Theorem 7.61 and Remark 7.64.

Assumethatthe induction assumption is true up to ramk 1, wheren—1 > Ng+1
and thatnn < u. From (7.66) we obtain

X K+ 1) = Dy, (K) Xny (K) @ Dy, (<n—1)(K) X(<n-1)(K) ,

where the notation should be clear in view of our conventions. From the assumption
that the ratios o (<n—1)(k + 1)# X(<n—1)(K) couple in finite time with9-staionary se-
quences, and that the rates of the coordinatesof_1,(k) are allu, we obtain from
Theorem 7.61Hat the ratiosX ) (k + 1)# X <n—1)(K) alsocouple with a finite and sta-
tionary sequence. This immediately implies that the sequ{e*)ﬁgen(k + 1)¢X(§m(k)}
also couples with &-stationary sequence.

For alli € V, and in the statinary regimeE[ X; (k + 1)¢ X; (k)] = u. This follows
from the rate property of Theorem 7.36, which implies that

Jim (X kK)Y =u as, (7.88)

foralli €V, andfrom the following simpleargument: the variableX; (k + 1)¢ X; (k)

are nonnegative (the diagonal elementsibfire all assumed to be greater tléypand
couple with a9-stationary sequende\;; -6¥}; therefore, either the random variakig

is integrable, oi£[ Aji] = oco. Since

k
Xi (k) = Xi(0) Q) Xi X = 1)

1=1

if E[Aji] = oo, Birkhoff’s Theorem implies that

K 1/k
; . /k  _ i . 1.
lim (X (kp** = lim (g) Xi (DX 1).)

K 1/k
- Ii||:n (@Anoe'> =00 as,

whereK is the coupling time o¥; (k + 1)#X; (k) with its stationary regime. Thisisin
contradiction with (7.88). Thereforg;; is integrable and necessarily of mean value
Theuniqueness property follows from Corollary 7.63. [ |

Remark 7.68 The only gereral statemernt which canbe made conceming integrability
is as follows: ratios of the formt; (k + 1)#x; (k) are always integrable, whereas ratios
of the formx; (k + 1)#xi (k), wherei andj belong to different m.s.c.s.'s, séye Vi,
andj € V, with m # n, may be finite and nonintegrable. [ |
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7.4.5 Multiplicative Ergodic Theorems in Rpyax

We are now in a position to answer the eigenpair problem associated with Equa-
tion (754) and stated in (7.68). The notations concerning the m.s.c.sfsavfd D
are hose of Theorem 7.67.

Theorem 7.69 Under the statistical assumptions of §7.4.4.1, if the stability condition
@,Tﬁl am < uissatisfied, thereexist a uniquefinite randomeigenvalue A and a unique
finite random eigenvector X € R™*+" with X; = e, and such that (7.68) holds.

Proof Owing to (767), we know that the restrictioD 1) (1, = U of D to the firstm
coordinates, satisfies the eigenpair property

D(l),(l)u = AU ,

for a uniquely defined finite eigenpaik, u), with u; = e. Therdore, the firstm
coordinates ofX anda areuniquely defined, and in particulaf, = u.

Let A be then x m random matrix of Lemma 7.44 (the finiteness/ofs obtained
from Theorem 7.56). Ley be theR" vectordefined by

voo Z (Auya | (7.89)

so thatAu = Ay.6. When multiplying (7.61) byu, we obtain
Ayl = AAOU_c0 u@ B(ULU )07 1u . (7.90)
In view of the definition ofU, , we have

U.U_ = AU U _ Uo0

u AU U
Therefore(U,U_).0~1u = u. Similarly,

_1 _1 _1 eril
AT U_ofl U =A™ ———Uu = y .
LB ~1u
Thus, the right-hand side of (7.90) reaélg & Bu, and we onclude the proof of the
exigence part fptaking X1, = v.
Theuniqueness property follows from the following observations{ &nd X’ are
two different eigenvectors, they can only differ through their last coordinates (i.e. the
coordinates corresponding te- 1)), sinceu and A areuniquely defined. Then there
exist two different vectory andy’ in R™ suchthat

AYo) = Ay® Bu , Ay.6 = Ay @& Bu .

By defining

/
A/ dzﬂ)\' 08
u

o0
AR :

) )

we obtain twdifferent finte matrices which are easily shown to satisfy Equation (7.61).
Since this equaion has a unique finite solution, we reach a contradiction. [ |
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We conclude this subsection by the following rewriting of the coupling property of
Theorem 767, which holds whenevéy, (K) is stationaryand which gearalizes The-
orem 7.18.

Theorem 7.70 If the stability condition @,ﬁ'ﬁl am < uissatisfied, and if the matrices
U, (k) are 6-stationary, then for all finite randominitial conditions X (0) with X1(0) =
e, afiniteinteger-valued randomvariable K exists, such that for all k > K,

X(K+1) =D(K)... D(L)DO0)X(0) = rob¥ ... AOAXH T | (7.91)
where (X, 1) isthe eigenpair of Theorem 7.69.

Proof Owing tothe coupling poperty of Theorem 7.67, we have thdik)¢ X1(k)
couples in finite time withX.6%. We obtain (7.91) byg-multiplying the equality

X KFX1(k) = Xeb* |

which holds fork greater than theauplingtime K, by

okt = 2l Xad
Xi(k — 1) X1(0)
and by using thessumption thaX;(0) = e. [ |

7.5 Second-Order Theorems; Autonomous Case
The agjuation of interest in this section is
x(k+1) = AkxKk) , k>0, (7.92)

with initial conditionxg, wherex(k) and A(k) have their eries ina diad D.

7.5.1 Ratio Equation
As in the preceding sections, the basic process of interest is the ratio ptocess

k+ 1
5(k: Xo) = 'X(X(k—)(:;()), . (7.93)

The @m of this subsection is to determine the condition under which this process admits
a staionary regime where

s(k)y =80, k=0, (7.94)

and toquantify the nature of the convergencesd; xo) to this regime.

1we will use the same symbdl(-) to repreent this ratio process and the one defined in Equation (7.56)
in the nonautonomous case; the context should help determining which one is meant; in this section, the
optional argument af (k) will be xo.
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Lemma 7.71 The state variables § (k; xg) satisfy theinequalities

Ak + 1§k
Sk + 1: Xo) > % . k>0, (7.95)
with theinitial condition
] _ A0)x(0)
8(0; Xo) = X0 ©) (7.96)

Proof We have
Xk+2)  AK+DxKk+1)
x(k+1) AK)x(k)
(A + Dx(k + 1)) /x(K)
' AK)
A + 1) (x(k + D#x(K)
- AK)
where we siccessively used (f.9) and (f.12) indlseond and the third relations. =

Sk+1) =

Example 7.72 Consider tle case of matrices with entries Ryax matrix A(K) is such
that
Ajk) #e, Vi,j=1....,n, k=0.

In Rmax if A andB are fnite n x n matices, then x n matix X = A¢B is given by
the relation

n
Xij = /\AikffBjk , Yiij=1....,n (7.97)
k=1

(see Equation (4.82)). Using this retmn and the finiteness assumption Ark), we
directly obtain thatforalk > 1,i, j =1,... ,n,

Siik+Lix) = Xj(k+2 X0 (@ Aig(K)Xg (k; xO))

9=1

=\ (XK + 2 x0)f (Aig(K)Xg(K; X0)))

1

[te]
Il

n

(Ajn(k + Ddng (ki X0)) / Aig (K)

I
>-=

1h=1

[te]
Il

I
=

(AK + D3(K; X0)) jo/ Aig (K)

[te]
Il

1
- ( Ak + D)8 (k: Xo) )
B AK) i

The fdlowing lemma is proved exactly in the same way as Lemma 7.40.
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Lemma 7.73 The least solution of (7.95) is also the solution of the set of equations

Sk + 1: xg) — W , (7.98)

with theinitial condition §(0; xg) = (A(0)x(0))#x(0).

7.5.2 Backward Process

The staistical assumptions oA(k) are hose of§7.3.1. The dioidD is sssumed to be
complde.

Theorem 7.74 Under the above assumption, Equation (7.98) has a 6-stationary sub-
solution in the sense that there exists a random variable A satisfying therelation

AOA
A < i (7.99)

This subsolutionisa solutionif theright division x — x¢bisl.s.c.
The pioof is based on the backward process defined by

AO =A. Akt Dep= X020

k>0. (7.100)

Lemma 7.75 The sequence {A(k)} is nondecreasing.
Proof By using (f.6), we obtain
AHA
A(1)o8 = — 2 Ab

so thatA(1) > A(0). AssumeA(k) > A(k — 1), fork > 1. Then

AHAK)
A
AHAK — 1)
A
= AK)H ,

AKK + 1)

>

where we used the istony of the mapping — (ax)#b. [ |
Proofof Theorem 7.74Fromthe preceding lemma, we obtain that the sum

A% P Ak (7.101)
k>0
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exigds sinceD is assumed to beamplete. By summing up the equations in (7.100) and
by using the nondecreasingnessAak) and the fact that the mapping— (ax)¢b is
isotone, we directly obtain

AOAK)  ABA
A:ke}A(k)oezkea e
>1 >0

If the mappingx — (ax)#bis I.s.c., there is equality in the last relation. A sufficient
condtion for this is that the right division operatar— x¢b be I.s.c. [ |

The aubsolutionA sdisfies the followingextrenal property.

Lemma 7.76 The random variable A is less than or equal to any solution of (7.99)
greater than or equal to A.

Proof Let E be an arbitrary solution of (7.99) such ttiat> A = A(0). If E > A(K),
we obtain
AGE AOAK
Hof = > ()'ZA(k-Fl)oe
A
Thus,E > A. [

As in the nonautonomous case, the question of finiteness of the minimal (sub)solution
A will only be addressed in specific dioids. However, we have the following general
bound.

Lemma 7.77 For all k > 1,

AbA. .. Aoe*kﬂl

AK-0 = A Ak

Proof The bound clearly holds fok = 1, in view of the defiition. Assume it is true
fork > 1. Then

Ak = 2020
_ AO((AAGTE AOX)f(AOL.. AOK))
- A
_ (AgAnt. AO )4 (AOT.  AHH)
- A

AOALL. .. Aﬁ*&
AAO-1. . ABK

)

where we used (f.12) and (f.9) tdtain the last two relations. [ |
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7.5.3 From Stationary Ratios to Random Eigenpairs

In this subsection we make use of the following inequalities which hold in any @ioid

Lemma7.78 For all x € D,

e e
X< — and X< -— . (7.102)
xxe efx

Proof When t&king x = e anda = x in Formula(f.5) of Table 4.1, we obtain
X(xxe) < e, which immediately implies the first relation in view of the definition

of the residuation of right multiplication. The second relation is obtained in the same
way. [

The resilts of this subsection are concernediwEquation 7.92) in a general dioi@®,
where Ak) = A-X.

Theorem 7.79 Assume that the ratio equation associated with (7.92) admitsa station-
ary subsolution A in D such that

Ach) < Am% , (7.103)
and such that
A= &X , (7.104)
for some x inD. Then there exists aright super-eigenpair (A, X) such that
AX > XOh . (7.105)

Proof Lety = Ax. From (7103), (f.12) and (f.9), we obtain

ng < PO (ABy)X  ABY By,
- A - A AX y
ThereforeA-0y < A0y, that is,(y-0)f(X-0)y < A-0y. By using (7102), we obtain
Xof) < (&fXo0) €, SO that
yOG yoe e
Ao@ > — > 0 s
y= (efxot) \e y=¢ %8’
where we used (f.11) inrder to obtain the last relation. Singge = x, we findly
obtain

Acby > yob (%) y .

When t&ing

X = (Ax).0~1 (7.106)
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and

(7.107)

>
I

<1 @
X

we directly obtain (7.105). [ |

Remark 7.80 The terminology which is used in the preceding theorem comes from
the case when the dioid of interest is a matrix dioid associated with some scalar dioid
D. Inthiscase, itis easily checked from (4.82) thafis n x n andx(k) n x 1, then

A, defined n (7.107), is a salar andX, defined h (7.106), is am x 1 matrix. [ |

7.5.4 Finiteness and Coupling iRy Positive Case

In this subsection,D = Rnax By using (797), it is easilychecked that the right-
division operator of matdes with finte entries inRy« is |.s.c., so thiathe subsolu-

tion A of Theorem 7.74 is a solution. The statistical assumptions are those of the pre-
vious section. In addition, we assume theit positivein the sense thadj (k) > efor

alli, j =1...,n. More gereral conditons will be considered in the next subsection.
7.5.4.1 Finiteness of the Minimal Stationary Solution

We start vith a few preliminary lemmas.

Lemma 7.81 For all initial conditions xo, and all k > 0, §(k; Xo) satisfies the bounds
Ak) <8k xo) , (7.108)

and for all k > 1,

18(k; Xo)l, = AR, [AK =D, . (7.109)

Proof Assume that for somk > 0, §(k; Xo) > A(K); this is true fork = 0 in view of
(7.96) and (f.6)which impgy that

5(0) = %lx() > A0) .

Then

Ak + 1Dk x0) Ak +DAK)
AK) - Ak

Sk + 1; Xo) = - >Ak+1) ,
where we sacessively used the ismy of the mapingx — (ax)fb and(f.6). This
completes the proof of the lower bound.

As for the upper bound, lét_(k; Xo) be the matrix

x(K)

87(k; X()) = 'm’ y kZ
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For allk > 1, we have

x(K) o X(K)px(k — 1)|
AKAK —Dxk—1)  AKAK — 1)
Sk—Lix) _  Ak-1)
AKAK —1) = AKAK-1) ’

5_(k;Xo) =

where we auccessively used (f.9) and the lower boundsgk). Since weare iNRpmax,
this reads (seeduation (4.82))

X (Kfxjk+1 = /\ Ai(k— D (ARAK —1);;

1=1
which can be rewritten as
Xj(k+ Dfxi (k) < é (ARAK = 1) fAIk—=1) .
1=1
SinceAj (k— 1) > eforalli, |, we findly obtain
é (A A — 1))

jl=1
IAKAK — DI, = |AK)], |AK =D, ,

18K,

IA

which concludes the proof of the upper bound. [ |

Lemma 7.82 For all k > 0, therandom variable A (k) satisfies the bounds
A< Ak , (7.110)
and

IAK)|, < Al [AO7Y . (7.111)

Proof The fact thatA(k) > Ais clear sinceA (k) is nondecreasing and(0) = A. In
order to prove the upper bound in (7.111), we first establish the property that fgr all

AK <8k X)o7, k=0. (7.112)

The proof is by induction; the property holds fér= 0, in view of (7.108) considered
for k = 0. By assuming it holds for some> 0, we then obtain

AOAK) _ ABS(K: Xo)ot ¢
A~ A
A-0¥t18(K; Xo)
A6k

AK+1)ed =

K =8k +1; o),
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which concludes the proof of (7.112). From (7.112) and (7.109), we immediately ob-
tain that

IAK)], < 18(k; Xo), 07 < |Al, |A67Y . Vk=0.

By putting together the results obtained in this section, we see that the nondecreasing
and bounded sequendé (k)} necessarily converges to aifmand integrable limit.

Theorem 7.83 In Rmax if Aisintegrableand such that A; > efor all i, j, the equa-
tion
AHA
A = ——— (7.113)
A
always admit the limiting value A of the sequence {A(K)} as a finite and integrable
solution. Any other solution of (7.113) is bounded frombelow by A.

However, the stuation is dightly different from the one encountered in the nonau-
tonomous case: in particular, the equality in lawk) = §(k)-6—% has no reason to
hold here (because it is not true in general that we can &g = A(0)). Theefore,
nothing ensures a priori théitk) converges weakly ta ask goes taxo; theonly thing
which weknow from Lemma 7.76 is that any stationary regime of the ratio process is
bounded from below byA. The conditions under which this minimal solution can be a
weak limit for the ratio process are the maioclus of the following subsections.

7542 Reachabhility

Definition 7.84 (Direct reachability) A stationary solution A of (7.113) is diredly
reachabldf there exists an initial condition xg for which the ratio process defined in
(7.93) coincides with the stationary process { A-6%}, in the sense that

S(k; X0) = AB% , k>0.

Lemma 7.85 The stationary solution A of (7.113) isreachableif and only if the system
of equations

AX
A= (7.114)

hasa finite solution x € R"™ with x; = e. If such a solution exists, it is unique.

Proof If such a solution exists, the ratio process (7.98) can then be made stationary by
adoptingxo = x asthe initial condition (see (7.96)). It is clear that there is no loss of
generdity in assuming thak,; = e. We now pove that (7.114) &s at most one finite
soluiion with x; = e. Indeed, for alln-dimensional column vectors andb with finite

entiies inRyay the reéation
ath b

—_ =

et
asb b
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holds (use (4.82) repeatedly). Therefore,
X AXgx A
= ().~ (m )= (5),
so thatx is uniquely defined from. [ |

Remark 7.86 Using theconstruction in the preceding proof, it is easy to check that

the set
A(w)X(w) }

{a) ‘ IX(w) € R" : x1(w) =0, A(w) = X@)

canberewritten as

{w ‘ Alw) = IA(w)(A(w)kA(w)).ll } (7.115)
(A(@)YA(w)) 4
where its measurability becomes more apparent. [ |

Similarly, a stationary solutior\ of (7.113) is said to besachable by coupling if there
exists an initial conditiornxg ard afinite random variabl&k suchthats (k; Xg) = Ac6X,

k > K. The aim of the following subsections is to give sufficient conditions under
which theminimal stationary solution of Theorem 7.74 satisfies the above redithab
properties.

7543 Conditions for Reachability
Fork > 0, let A(k) denote the event

def

Ak) E {a) ‘Elx eR": AKK) = ﬂx } , (7.116)

whereA (k) is thenondecreasing backward process defined in (7.100), antbetthe
event

Ax
Adzef{a)‘ﬂxeR“:AzT} : (7.117)

whereA is the a.s. limit ofA (k). The fdlowing notation will be used in what follows:
for all events3, B-6 will denote the seBBof = {w € Q | 1g-0(w) = 1}.

Lemma 7.87 For all k > 0, A(k) isincludedin Ak + 1)-60 and A isincludedin A-0.

Proof Forw € A(K), there exists a finite random vectorsuchthat A(k) = Axgx.
Herce,

AOAK) A (AXfX)

AK+1)ob = - A A
_(AOA X ABAX
= A = —x (from (f.12) and (f.9))

_ A9AKR),
(AK)-1
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so thatd (w) belongs taA(k + 1) (takex = (A(K)) ;-0~1). The proof of the second
inclusion is similar. [ |

Lemma 7.88 If P[LA(k)] > O for somek, thenlimsup_, ., AK) = Q as.

Proof If P[.A(k)] > O for somek > 0, the ergodic assumption implies that

h
lim (Z 1{A(k)}09m> /h=P[AK)] > 0 a.s,
m=1

h—o0

so that recessarilim sup,_, ., AK)-6~™ = Q a.s. From Lenma 787, we obtain by
an immediate induction that for alin > 0, A(k + m) 2 A(k)-6~™. Thus, the last
relaion implies that limsup, ., A(k) = Q a.s. ]

Lemma 7.89 If P[.A(k)] > O for somek, then P[A] = 1.

Proof Let H be the subset dk"*" defined by

n=|aer
X

AX
EIxeR“:A:y} )

When using 7.115), we obtain the equivalent representation

A= AAYA), }
(AXA) 4

from which itis immediate thak{ is a close subset ofR™*". Owing to Lanma 788, if
P[.A(k)] > O for somek, then br almcst allw € Q2 there exis$ a squence of integers
kn 1 oo suchthatw € A(k,) or equivaletly such thatA(k,) € H foralln > 1. Since
'H is closed, the a.s. limid of A(k,) whenn goes too is also in?H, so thatw € A. m

n=|aer

Let h* be a fixed integesuch that 1 < h* < n, and letB be the event
B = {Abp An. = ABA} (7.118)

or equivalently,

B= {Ajh*oeAh*i = ®AjhoeAhi . Vi, j=1,... ,n} . (7.119)

h=1

Theorem 7.90 If there exists h* such that P[B] > 0, the stationary regime defined by
A isdirectly reachable.

Proof If ais ann-dimensional row (respagtly column) vector withfinite entries in
Rmax then wecan usehie group structure ad to write

a= © respectively a = ©
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whereeis 1 x 1. If cis a alar, we have = ef(efc). On B3, we theréore have

_AOA Abn A Al (8 (A XE))
A(1)oh = - A= A = A
_ Aﬁe-h*ff(Ah*-kie)l _ Al .
A A(An.\e)

In these equalities, we used (f.12) in order to obtain the fourth equality, and (f.9) in
order to obtain thelast one. Both are equalitiegtauseD = Rpax and the entries of
the matrces which are dealt with are finite.

Let Z = A(An-.}€). OnB, we have

e e
AbZ = AOA—— = Al Ape.— = Aol .
An-. An-.

Therefore, o3,
Acb.h- AbZ

Ay = — 2 = 225

z AN
so thatB ¢ A(1).6. Theproof isimmediately concluded from Lemma 7.89. =

Remark 7.91 Consider the particular case of an autonomous event graph for which
the random variablesj (k) are mutially independent. It is easily checked that a suf-
ficient condition forP[B] > 0 is that there exists one transition i’ such that all the
places which follow it have holding times with an infinitegoort. As we will see in
Exanple 7.92, wealer condtions, like for instance having one transition followed by
atleas one place with infinite holding times, may be enough to ensure this property.
As in the nonautonomous case, there is no reason for the initial condition, the
exigence of vihich is proved in Theorem 7.90, to be compatible. [ |

Example 7.92 Manufacturing blocking) Consider a closed cyclic network afma-
chines. There are no intermediate buffers between machines. The migration of items
is controlled by nanufacturing blocking, as defined in Example 7.65: when an item is
finished h machinej,0 < j < n—1,iterters machine(j) = (j + 1) modnif s(j)
is empty. Otherwise it is blocked ipuntil s(j) is empty. In this eample, all machine
indices are understood to be modulo

A network of ths type, withn = 3, is described by the timed event graph of
Figure 7.4. The interpretation of the various types of places and itians is the
same as in Exmple 765. The only nonzero holding times are thosepil, j =
0, ..., n, which will be denotedx; (k), represating the service time of thk-th item
in machinej. Let u; denote the initial number of items inpj;. It is assumed that
wj =0or1,that

n—1
0< Z“j <n,
j=0

and thatifi; = 0, then there is an initial token in plagg and in placep;s.
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0 poo
13
O

p10 1 p11 Q12

O

Figure 7.4: Closed manufacturing blocking

The stae variables are the firing times of the transitions followed by at least one
placewith a nonzero initial marking, namely

o = o T =1
Xj2 if nj = 0.
The initial lag times are assumed to be compatible, and are given under the form of the
vectorz e (R*)", wherez; represerts the lag time of the initial item in machineif
wj = 1, and the lag times of the two tokensif, and pjs otherwise. Irthe firg case,
z; can be seen as the epoch when machisearts workng. In the second ong; is
the time when some paworkload of maching has keen completed.

Letr(j) be the number of machines to the rightjo$uchthatx; = 1, plus 1 and
letl(j) be the number of maahes to the left off suchthatuj = 0, plus 1. Itis easily
checked that the x n matix A(K) is given by the relation

S k+1) ifief) =1 ... -1
ai(k + 1) ifie{j,....j+r(j)—1}and
Aji (k) = Pe(i—1G),....i—1;
e ifi=j+r()and
P =10, ... ] =1,
€ otherwise,

that the precedence graph isstgly connected, and that under the condition of Theo-
rem 7.90, the ratios of the form (k+1)¢xi (k), i, j =0, ... ,n—1, admit a stationary
regime which is reached withouipling regardless of the initial condition.

For the examle of Figure 7.4 A(k) reads

ap(k+ 1) ay(k +1) e
agk+1) ai(k+Daxk+1) axk+1)

agk+1) ai(k+Daxk+1) axk+1)
AK) (7.120)
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Matrix A beng positive, we can directly apply Theorems 7.90 and 7.93. The condition
P[B] > 0is stisfied if the random variables; (k) are mutially independent and if one

of the dstribution functionsy andS, has an infinite support, wheg(t) = Pla; < t],

t e RT. [
7.5.4.4 Coupling

The main result oftiis subsection is the following theorem.

Theorem 7.93 If there exists h* such that P[B] > 0, the stationary sequence { A6}
is the unique stationary solution of (7.98). For any initial condition xg, the sequence
{8(k; Xo)} coupleswith this stationary sequence.

Proof LetC(k), k > 1, be the event
CK ={AK+Dxk+1D = ApKk+Dxn(k+ D} .
We first pove that on the evertt(k), the rdation

_ ApKk+1

holds. OnC(k), we hae indeed

AK+DXK+1D) A K+ Dxi(k+1)

Sk+1) ARXKR) AROX(K)
A K+ D) (€ X k+1)) Ap(k + 1) |
- AKX(K) ~AKRXK) (6f%n (K + 1))
Ank+1) Ank+1)

AK) (xRfxe K+ 1) AK) (G (KO
Therefore, or€ (k),

_ AKk+2xk+2) x(K +2)
§k+2 = - xk+2) _A(k+2)Tk+2)

_ sak+1) Ap(k+1)

= Ak R T AKT IR T

where the last relation follows from (7.121). This last formula shows that on the
eventC(k), regardéss ofxg,

S(kK+2x0) =¢(Ak +1), Ak +2) , (7.122)

whereg is a measurable function which we will not need in explicit form.

If we can show that for alk, D-6% c C(k), whereD is an eent of positive prob-
ahility, then Equation (7.122) implies thaik).0— couples with a uniquely defined
finite stationary sequence. This result isieedt consquence of Borovkov’s renovat-
ing eventstieorem (Theorem 7.107 shows tli&k) is a renovating event of length 2).
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The second stepf the proof consis in showing thaBB.6% c C(k). In order to do so,
we first pove that

e Aol
B C {AlAh—*‘ = W‘} . (7.123)

The poperty A0 A = Abp- A, implies thatAd A (An.xe) = Acbp-, whichin turn

implies that A (An-.xe) < (A0XA0), where we used the very definition of left

division in order to obtain the last implication. This immediately implies (7.123).
We are now in a position to conclude the proof by showing that

B c Ck) . (7.124)
Inequdity (7.109) implies

xk+1D _ xk+D _ 3k _ AK)
xk+1)  Akxk) Ak ~ Ak

Therefore, for alh,
Xk +1) _ An(k),
xk+1) T AK

or, equivalently,

x(k+1) e

On the evenfB.6%
AK + DAK) = Ap(kK+ DA (K .

By using (7.123) and (7.125), we therefore obtain that on this event,

XHD e AnkiD
Xpe(K+1) — A (k) — AK+D

Fromthe very definition of left division, the last relation implies that

x(k+1)
A(k+1)'m <Apk+1),

so that

Ak +Dxk+1) < Ap(kK+ Dxpe(k+ 1) .

which @ncludes the proof of (7.124). Therefore, there exists a stationary sequence of
renovating events of length 2. The coupling property is then a direct application of
Borovkov's Theorem. [
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7.5.5 Finiteness and Coupling irRnay Strongly Connected Case

The asumption®f this subsdion are the same as §7.5.4, except for the positiveness
assumption which is replaced by the assumption that the precedence grapiasfa
deterministic topology (namely the entries which are equalwdth a positve proba-

bility are a.s. equal te) and is strongly connected. We also make the usual assumption
thatthe dagonal entries are nonvanishing. Under these assumptions, the matrices

Ek L' Amk +n— )Amk +n—2)... Amk + DAmK) , keZ ,

are sub thatE;; (k) > e for all pairs(, j) (this follows from Remark 7.30 and from
the fact thate (k) = G(nk). In this subsection, it will also be assumed that the shift

o Lo

is emgodic (the ergodicity of does not grant the ergodicity 6F, k > 1, in general).

Observe thaE(k) = E-@X, whereE %' E(0).

Let X(k) € R" be defined by the relation
X(K) =x(nk) , k>0 (7.126)
It is easily checked from (7.92) that the state variati€k) saisfy the relation
X (0) = x(0) , Xk+1)=E®KXK , k>0. (7.127)

Following our usual notation, we will stress the dependence on the initial condition
Xo d=efx(0) by writing X (k; Xo) when reeded.
Theorem 7.94 Under the assumption that there exists h* such that

P[Ec®.p Ep. = EOE] > 0 , (7.128)

theratios (k) = x(k + 1)#x(k) also admit a stationary regime {§-6%}. This stationary
regime is unique, integrable and directly reachable. Whatever theinitial condition Xg,
3(K; Xg) coupleswithitin finitetime.

Proof Under Assumption (7.128), the ratio procesgk + 1) X (k) couples with a
statonary regimeA.®K, which is directly reachable (Theorems 7.90 and 7.93). There-
fore, the equation

A= — (7.129)

has auniquesdution satisfying the condition; = e. From the vey definition, taking
x asthe initial condition makes the ratios
Atk x) & X((k 4+ Dn; x)

x(kn; X)
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statonary ink, and moreprecisely such thah(k; X) = A.GX, k > 0. Theefore, the
ratios x((k + Dn + 1; X)¢x(kn + 1; X) are stéionary ink, as canbeseenwhenwriting
themas

X(K+Dn+1x) AK+DmX(K + Dn).
x(kn + 1; X) N Akn)x (kn)
Ak + Dmx((k + Dnyx(kn)
A(kn)x (kn)
AK + DmAK X).
~ Akn)x(kn)

and wha using tle stdionarity of A(k; x). But this ratio process ishe one generated
by the event graph when takifig\(k)-6}k=o as the timing sequence, agdsthe initial
condition, wherey = x(1; X)¢x1(1; X). In view of theuniqueness property mentioned
in Theorem 7.8 we immediatelyobtain thatx(n + 1; X)#x(1; X) = A-6. Sincey; = e,
this in turn implies thaty = X6, owing tothe uniqueness property mentioned in
Lemma7.85.

We show thathe ratio proces8(k; x) sdisfies (7.94). We have

AD)X(D) x(1)
8(1, X) = W = A(l) IW
_ A XWX A
X(Dfxa (D) X X
— 5(0: )0 , (7.130)

so thats (k; x) saisfies (794) fork = 1. In addition (k) sdisfies the equation

AK+DxK+1) _ AK+D3K)

WAD=""0 = AW

From this relation and (7.130), we prove by an immediate inductionstthatsaisfies
(7.94) for allk > 0.

One proves in the same way thilae oupling of the raios A (k) with a uniquely de-
fined sktionary process implies the same propertysi). Theintegrability property
follows from the integrability ofx and of thefinite entries ofA andfrom the relation
8(0; X) = AXgX. [ ]

Remark 7.95 If we replacen in (7.126) by another integer, such hat
e (G(wk)j; = eforalli, j =1,...,n(this condtion s satisfied for alh’ > n);
e 0" is emgodic,

then the whole constructios unchanged. As a consequence, whenever the variables
A associated witlm do not saisfy the reachabity and coupling conditions of Theo-
rems 7.90 and 7.93, we still have the option to test this condition on the variables
associated with'. [
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7.5.6 Finiteness and Coupling irRmax General Case

The framework is the same as §v.5.5, butA is not supposed to have a strongly
connected precedence graph anymore. The notations concerning the détompbs
the precedence graph into m.s.c.s.’s are those of the efid.85. In particular, we will
number the source subgraphs 1 , Ny ard the nonsource ondsg + 1, ..., N.

We know from §7.5.5 that the stationary regime of the ratio process of the source
subgraphs can be constructed using the techniques developed there. The only remain-
ing problem consists in the construction of the stationary regime of nonsource sub-
graphs.

Consider first the case when the reduced graph has a single source, hgraely,
and assume thatsgatisfies the assuption of Theorem 7.94. Then we obtain from this
theorem that the ratiog) (K+ 1)# X1, (k) couple in finite time with a stationary, ergodic
and integrable procesk)-6%, which saisfies thepropertyE [(8)),, ] = a(), where
acyy is the maximal Lyapunov exponent associated wily;). The sameddnique as
in the gereral nonautonomous case (sg¢é.4.4.5) allows us to prove the following
theorem.

Theorem 7.96 If A« satisfies the assumptions of Theorem 7.94, and if the condition
@,T:z am < acy holds true, then a unique finite random matrix § exists such that
the ratio process §(k) = x(k + 1)¢x(k) couples in finite time with the stationary and
ergodic process 5-6%, regardless of the initial condition. If @) ,am > aq), let no
be thefirst n € {2,..., N} such that amy > ay. Then all ratios of the form §;; (k),
j € Vngyi € Vi, m € mt(ng) tend to oo a.s. for all initial conditions.

Remark 7.97 Nothing gereral can be said with respect to the critical case, namely
when@,.., am = a) (€.9. queuing theory). [

Consider now the case when the redugeabh tas several sources, namelly >
1. If the sources have different cycle timéisis clear that some of #hraios of the
processes;(K), j € Vo, n = 1,..., No, canneither be made stationary nor couple
with a dationary sequence. Even if all these m.s.c.s.'s have the Lyapunov exponents,
nothing general can be said about the stationarity of the varidglés for j € Vi,
i €Vm,mn=1,...,Np, m=#n, as exemplified inthe following simple situation.

Example 7.98 Consider a timed event graph with three recycled transitipng, and

t and five places, p2, p;, p, andr. Placep; (respedtely r) is theplace associated
with the recycling ofg;, i = 1, 2 (respedwely t) and p; is the place connecting tot
(see Figure 7.5). Within the terminology of Example 7.37, this systenasajueue
with one server (transitior) and with two sources (transitiortg andgy). This example
can be seen as the simplest assembly grabh manufactung: engines are produced
by q; and carbodies byg,, whereast is the assembly machine. With our terminology,
we have tw source m.£.s.’sG;j, with V, = {gi} and& = (Gi, ), i = 1, 2, andone
nonsource subgrafls, with V3 = {t} and&; = (t, t). Assume the haling times inr,

p; and p, are zero and that #holding times inp; and p, are mutally independent
i.i.d. sgquenceda;(k)} and{az(k)} with comma meana. If the variablesx; (k) and
az(k) are deterministic, the ratiog (k+1)#x2(K) (with obvious notation) are stationary
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(g #O—

5@

Figure 7.5: Counterexample

ard finite whatever the initial condition. However, if the two sequences are made of
exponentially distributed random variables with parametethese réos form anull
recurrent Marbv chain onR which adnits no invariant measure with finite mass, so
thatthey cannot be made stationary.

This exanple can also be formulated as a nonautonomous system with a two-
dimensional input vectotu; (k), uz(k)) wheneer we remove the recycling plaqe
associated with transitiorgg, and replace it by an input functiom (k), i = 1, 2. In
this formulation we see that in the exponential case (i3€k) andu,(k) are thegpochs
of two independent Poisson processes with the samtengty), the matricedJ, (k) and
U_ (k) do not satisfy the assumptions§f.4.4.1 (although the diagonal terms of these
maricesare gationary and integrable, the nondiagonal terms do not couple with finite
stationary processes). We see thatin this case, our second-order theorems do not apply.

[

7.5.7 Multiplicative Ergodic Theorems in Rpyax
We will limit ourselves to the case whef is positive (se€7.5.4).

Theorem 7.99 If the event B = {w | 3h* : AOA = A An-.} has a positive prob-
ability, then there exists a unique finite eigenpair {A, X}, with X; = e and such that
AX = A Xof. Thiseigenpair isintegrable, and

E[\] =a , (7.131)

where a is the maximal Lyapunov exponent of A. In addition, the following coupling
property takes place: for all finiteinitial conditions x(0) = Xg, with (Xg)1 = €, there
exists a finite integer-valued randomvariable K such that, for all k > K,

X(k + 1; Xo) _ X0 K
x(K; Xo) _<A X )OG '

Proof We know from Theorem 7.90 that under the above assumptions, Equation (7.105)
has a unique finite solutian for which (7.105) is satisfied with equality, and such that
(7.104) has a solution. When specializing the formulae of Theorem 7.79 to vectors and
matiices with entries ifR,ax as considered here, it is easily checked that whenever the
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subsolutionA of (7.103) is finite and is a solution, then the super-eigenvalue inequality
of (7.105 becames an egenvalue equality, so that there exists a pgairX) saisfying
the eigenpair mperty (7.68).

Firstitiseasily checked that {fX, 1) is afinite eig@pair, thenAX)$ X = (A Xo0)§ X
is a solution of the ratio eqtian (7.113). Under the foregoing assumptions, this equa-
tion has a unique solution. Sincethe equatiom = (Ax)¢x has a unique solutiox
suchthatx; = e (Lemma 7.85), the eigenvectot is uniquely defined if we decide
that X; = e. The sameroperty holds fon sincer(X.0)$X = A. Property (7.131)
follows from the reldion

X(K+ 1; X) = 265 .. AXHT |

which imgies that

K 1/k
(xa(k 4+ 1; X))k = (® )weh> ,
h=0

The reailt follows immediately from the pointwise ergodic theorem and from Corol-
lary 7.31. [ |

7.6 Stationary Marking of Stochastic Event Graphs

In this section we consider a stochastic event graph, with all its transitions recycled,
and where the places in the recycling all have positive holding times. We return to the
notation of conventional algebra.

Definition 7.100 (Stable place)A place of the event graph is said to be stable if the
number of tokensin this place at timet (the marking at timet), converges weakly to a
finite random variable when time goesto co. The event graph is said to be stableif all
the places are stable.

The a@m of this section is to determine the conditions under which the event graph is
stable ard to construct the stationary regime of the marking process, under the usual
stationarity and ergodicity on the holding times.

Remark 7.101 Let P° be the ubset of places ennecting two transitions belonging
to the same grongly connected subgraph, aft bethe subset of places onnecting
transitions which belong to norcuit. The marking of a place i®° is bounded, and
the only places which can possibly have an infinite marking when time goes &we
those ofP! (see Clapter 2). [

Pick sane placep; in P and letq; = 7 (p;i), andg = o(pi). Assume thathere
exists an initial conditiorxo suchthatx;(0; Xo) = 0, and such that the ratiogk +
1; xo)#X(K; Xo) are gationary and ergodic (the conditions for such an initial condition
to exist are given in Theorems 7.67 and 7.96, respectively, for the nonautonomous and
the autonomous case). Since the sequence

bk) L x(k: xo)pxj (ki x0) . k>0,
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is stationary and ergodic, it can be continued to a bi-infinite stationary and ergodic

seguence by the relatiob(k) def b.6¥, k € Z, whereb = b(0). A similar continuation

alsoholds for the sequence

def

d(k) = 8jj(k; Xo) 46k . k>0.

Because of the assumption thgtis recycled and with positive holding times in the
recycling,d > 0. Theefore, we can consider the sequerdék)} as the wtionary
inter-event times of @oint process defined aiR2, F, I, 6).

Definition 7.102 We define A/ as the marked point process on (2, F, P, §) withinter-
event times sequence {d(K)}kez and with the R?/-valued mark sequence

{(bh(k))qheg}kez :
Namely, the k-th point of A is

def | Xj(K; Xo) fork >0 ;

tho = Sih —dK& fork <0,

and itsmark is {bn (K), gn € O}.

The interarrival times and the marks be#wgtationary, this point process is stationary
(in its so-called Palm version). Owing to our assumptidvishas a fite intensity and
no double points.

LetT(k) = (Tr(k), ... , T.(K)), wheren = |Q|, be the squence

T L't +bnk) . heQ. keZ,

and letN;” be the random variable

N© = Imacr=o - (7.132)
k<0

whereq = o(pj). This vaiable is a.s. finite. Indeed; (k) saisfies the relations

T
lim —'(k) =c>0,
k— o0 k
wherec is a positiveconstant. ThereforéT, (k)} is an inceasing sguence such that
limg, o TI(K) = —o0 as. Hence there exists a finite integer-valued random vari-
ableH suchthatT, (k) < Oforallk < —H.

Theorem 7.103 Under the assumptions of Theorem 7.67 (respectively 7.96), if am)y <
u, foralln = 1,..., N, (respectively any < aq, for all n = 2,..., N), where
N denotes the number of m.s.c.s!s of the event graph, then the event graph is stable
whatever theinitial condition, and the markingin place p; at arrival epochs converges
weakly to the random variable N;”. Conversdly, if ngisthefirstn =1,..., N, such
that a;y > u (respectively thefirst n = 2,..., N, such that ai,y > ag), then the
places connecting thetransitionsof Q , UZ (respectively O ), m < no, to transitions
of Q, areall unstablewhatever the initial condition.
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Proof Let N, (k) be the number of tokens ip; just after timex;(k), k > 1, where
g; = 7 (pi). From (242) we obtain that

K+ pi K+ pi
NT0O = Lixox) = 2 Lnterm—h=x (o) - (7.133)
h—1 h=0

We first pove the last assion of the theorem. Assume thpt is the place connecting
a trangtion of Q nUZ (respedvely Q i) to atransition ofQ ,,. Owing tothe pioperty
that
X (K) — X (k)
k
X (K) — X (k)
k

ard to the increasingness of the sequenpesk)} and{x; (k)}, we obtain that, for all
H, thereexits K such that, for allk > K andh =1,... , H, xi(k — h) — x;(k) > 0.
It follows immediately from this thal;,” (k) > H for k > K. Therdore, N,” (k) tends
tooco a.s.

We now pove the first pat We know that the ratios ok, (k), g, € Q, couple with
their stationary regime in a finite random tim€. This imdies tha for all fixed h, the
sequence(x (k + ni — h) — x;(k)} couples with a stationary process. More precisely,
forallk > K +h, andh > i, x (K + i — h) — x;(K) = —p (i — h)«0%, where

=Cl(n0)—u>0,

lim
k

<respactively Iikm = O(ny) — (D) > 0) ,

k
AR E Y do"—bep K =T -Tik . k<0,

n=-1
in view of the uniqueness of the stationary regimes of the ratios. Define
H=inf{k k>K,x(h —xjk <0, vh=1... K} .
This H is a.s. finite sinc is finite andx; (k) tends toco a.s. Therefore,
NTR = D Lxkrumx®=0= D L pu oo
1<h<k—K 1<h<k—K

for all k > H. On theother hand,

— nk
N7o0 = Ltk —h-T,0050) = Y L p(u—hyov>0) -
0<h O<h

SinceT; (k) tends taco ask goes taco, we obtain that there exists dnsuchthat
Z 1{Tl(k+ﬂi*h)7Tj(k)>0} =0,
k—h<K

for all k > L. Therdore, N7 (k) = N(oe" for Kk > max(H, L), and the &tionary
regime of the marking process is reached withupling, regardless of the initial condi-
tion. [
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Remark 7.104 This staionary regime is unique, owing to the uniqueness of the sta-
tionary regime of the ratio process. [ |

Remark 7.105 The preceding construction gives the Palm prdlitstof the number

of tokens inp; at arrival epohs. The stationary distribution of the number of tokens in

pi in ‘continuous time’ is then obtained via the Palm inversion formula (see [5, p. 17]).
[

7.7 Appendix on Ergodic Theorems

The a@m of this section is to state in a concise form a few basic ergodic theorems
(in conventional algebra) which are either used or referred to in this chapter. The
basic data ae a probability space(2, IF, P) on which ashift operatom is defired (see
Definition 7.2). This shift is assumed to be stationary and ergodic.

Theorem 7.106 (Kingman'’s subadditive ergodic theorem)Let &, m > n € Z be
an integrable random process on (€2, IF, P) such that

Emmip=Eopb" . VYMeZ , Vp>0 (stationarity) ,

and
Emn <&mp+é&pn, VYm<p<n (subadditivity) .

Assume in addition that there exists a positive constant A such that E[£o o] > —Ap,
for all p > 0. Then there exists a constant y such that the following two equations

hold: : Efo o]
lim %P —, as., lim —=0P
pLoo 6] 14 pLoo 6] 14

For theproof, see [75], [76].

Theorem 7.107 (Borovkov’s renovating events theorem).et {u(k)} be a 6-station-
ary R"-valued sequence of random variables defined on (2, F, P). Let {x(k)} be the
RK -valued sequence of random variables defined by the recurrence relation

x(k+1) =axk),uk) , k=0, (7.134)

where a is a continuous mapping R x R* — RK, and by the random initial condi-
tion x(0). Theevent A(k) € FF issaid to be a renovating event of lengthm > 1 and of
associated function ¢ : R™ — RK if, on A(k), therelation

X(k+m)=¢ ukK),...,uk+m-—1)

holds. If the random process x(k) admits a sequence {A(k)} of renovating events,
all of length m and associated function ¢, such that A(k) = .A(0)-6%, Yk > 0, and
P[.A(0)] > 0, then, the sequence {x(k)-0 ¥} converges a.s. to a finiterandom variable
z, which does not depend upon the initial condition x(0). The sequence {z.6%} is a
finite solution of (7.134), and the sequence {x(k)} coupleswithit in finite time for all
finiteinitial conditions.
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For theproof, see [26], [6].
For anymatiix A, let|A| denote its operator norm, namely

|Al = sup [|AX]| ,
Ixl=1

where|| x| denotes the Euclidean norm of vector

Theorem 7.108 (Oseledés multi plicative ergodic theorem) Let { A(k)} bea sequence
of n x n random matrices with nonnegative entries, defined on the probability space
(Q, F, P). Assumethat A(k) = A(0)-6%, for all k € Z, and that

E [max(log(| A(0)]), 0)] < oo .

Then there exists a constant y (the maximal Lyapunov exponent of the sequence) such
that

kIim %Iog(|A(k)... AD) =y, as

In addition, there exists a random eigenspace V (w) of dimension d constant, d < n,
such that A(1)V = V.0 and such that for all randomvectorsx inV,

I(Iim %Iog(||A(k)...A(1)x||) =y, as.

Whenever d = 1, there exists an eigenpair {A, X} such that A(O)X = AX.6 and
E[A] = v.

In fact, Oseledgs Theorem gives the existence of otlegenvalues as@l. Our state-
mentof this theorem is limited to the maximal eigenvalue and its associated eigenspace
(see [106], [45]).

7.8 Notes

The prdiminary example of§7.2 was first analyzed by R.M. Loynes in 1962 [87]. The prob-
ahilistic formalism intoduced in§7.2 is that developed for queues by PeBraud and one of

the aauthors in [6]. The existence of Lyapunov exponents for products of random matrices of
Rmax Was first poved by J.E. @hen, in the case of matrices with neenties, inSubadditivity,
generalized product of random matrices and operations research, SIAM Review, volume 30,

number 1, pages 69-86, 1988. The extension of this result to reducible matrices, and the sec-
tions on the relationship between stochastic event graphR gpéanultiplicative egodic theory
(§7.3-76) are mainly basedon[11], [13]. As to the writing of thisbook, this approach provides

a more or less systematic way for analyzing nonautonomous systems. The situation is somewhat
less satisfactory in the autonomous case: in particular, only the case when the eigenspace associ-
ated with the maximal exponent has dimension 1 was considered. This practically covers cases
with ‘sufficiently random’ entries oA, as showrby the resits of §7.5; however, we know from

the analysis of Chater 3 that an eigenspace of dimension 1 is rarely sufficient to handle the case
of deterministic systems. Autonomous deterministic systems can fortunately be addressed via
the gpectral methods of Chapter 3. However, some systems are neither deterministic nor random
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enough to satisfy the coitbns of §7.4. Filling up this ‘theoretical gap’ between purely de-
terministic and sufficiently random systems is clearly tantamount to understanding the structure
of the eigenspace associated with the maximal exponent when this eigenspace is of dimension
greater than 1.
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Chapter 8

Computational Issues in Stochastic
Event Graphs

8.1 Introduction

This chapter gathers mid@neous resultgertaining to the computation of the cycle
timesand the statinary regimes of stochastic event graphs. The existence and unique-
nessof these two quantities are discussed in Chapter 7: the cycle time of a stochastic
evert graph is the maximal Lyapunov exponent associated with the matfidesof

its standard equation, and stationary regimes correspond to stochastic eigenp&irs of

Sedion 8.2 focuses on monotonicity properties of daters and counters considered
asfunctions of the data (e.g. firing and hatdj times, initial marking, topology of the
graph, etc.). These results lead to the derivation of a lower bound for the cycle time,
which is bagd on the results of Chapter 3 concerning the deterministic case. Itis also
shown that the throughput is a concave function of the initial marking, provided that
the firing andholding times satisfy appropriate statistical properties.

Section 8.3 is concerned with the relationship between stochastic event graphs and
a class of ag-dependent branching processes. Large deviation techniques are used to
provide an estimate for the cycle time, which is also shown to be an upper bound.

The last section contains ssdlaneous computational results which can be ob-
tained in the Markowan case. Whenever the firing and the holding times have discrete
distribution functions with finite support, simple sufficient conditions for the ratio pro-
ces to hawe a fhite state space Markov chain structure are given. In the continuous
ard infinite support case, partial results on functional equations satisfied by the station-
ary digribution functions are pnaded. These results are then used for computing the
distribution of the stationary regime.

The sections of this chapter can be reddh(st) independently. Each section has
its own prerequisites: basic properties of stochastic ordef8t@r(see [123]); notions
of branching processes and of large deviations ([3R8i13; elenentary Markov chain
theory in§8.4. Throughout the whole chapter, the scalar dioid of referengis,
unless otkrwise specified.

373
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8.2 Monotonicity Properties

8.2.1 Notation for Stochastic Ordering

Let x andx’ be R"-valued random variables. Three classical stochastic ordering rela-
tions between andx’ will be considered in this section.

Notation 8.1

Stochastic ordering<g: x <g x' if E[f(x)] < E[f(x")], for all nondecreasing
functionsf : R" — R.

Convex ordering <q. X <cx X' if E[f(x)] < E[f(x")], for all convex functions
f:R" > R.

Increasing convex ordering<iex: X <iex X if E[f(x)] < E[f(x")], for all convex
ard nondecreasing functionfs: R" — R. [ |

Letx = {x(1), ..., x(k), ...} (respedwely x(-) = x(t),t € R") and
xt=xf@),...,xtk),...}

(respedtwely xT(-) = {xT (t)}ier+) be twoR"-valued stahastic sequences (respectively
processes) defined on the probability space, F, P). The sguencex! is said to dom-
inatex (respectiely the processx’(-) dominatesx(-)) for one of the above ordering
relations, say<g, which isdenotedx <¢ x' (respedely x(-) <g x(-)), if all corre-
sponding finite dimensional distributions compare for this ordering.

For basic poperties of these orderings, sg5.

8.2.2 Monotonicity Table for Stochastic Event Graphs

The badc model of this section is a live autonomous event graph, where all transitions
are assumead to be reg/cled. The nonautonomous case leads to similar results and
will not be considered in this chapter. Thetation and basic definitions concerning
stodhastic event graphs are those of Chapter 2 and Chapter 7. The following concise
notation will be used:

Data
Firing times: (k) denotes the vectog;(k), j = 1,...,|Q|, and 8 the se-
quenceB(K)}.
Holding times: « (k) denotes the vectar;(k),i = 1,...,|P|, anda the se-
quence€a (k)}.

Timing sequence: n(k) denotes the vect@g (k), «(k)) andn the sguuencegn(k)}.
Initial marking: u denotes the vectar;,i =1...,|P]|.
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State Variables With each dater sequenge; (K)}key We assodite theN-valued counter
functionx;(t), t € R*, defined by he reldion

Xj(t) =supk | x;(k) <t} .

Daters: x(k) denotes the vectos; (k), j =1, ...|QJ, andx the sguencex(k)}.

Counters: x(t) denotes the vectaxj(t),j = 1,...]1Q|, t € R, andx(:) the
functionx(t).

The dm of the following sections is to prove various monotonicity properties of the
state \ariables and of their asymptotic characteristics considered as functions of the
data. By asymjwotic characteristics, we mean the cycle timef the event graph and

its (conventional) inverse, the throughput. A typical question is as follows: if one
replaces one of the data, sayor 8, by u' or g resgctively, where the new data

are greakr than the initial ones for some partial ordering, what result do we obtain on
the various state variables? The main properties along these lines are summarized in
Table 8.1. The reader should refer to the following subsections in order to obtain the
specific assumptions under which the reported monotonicity properties hold. These as-
sumptions are not always the most general ones under which these properties hold. For
instance, we have tried to avoid the intricate issues associated with the initial condi-
tions by choosing assumptions leading to short proofs, although most of the properties
of the table extend to more general initial conditions.

Table 8.1: Monotonicity of the state variables

Data | Variation Daters | Cycle Counters | Throughput

of data time

pwo | op<pt || x=xt |ax=d" | x() <xi() t<tl
P cC Pl

G | 9cat || x<xt |a<dal | x()=xt() >l
Ecet
n<sn’ | x<ax' |a<al | x()zaxT()| T=1

n | n<exn’ | X Siex X! | a<al T >l
N <ix ' || X <iex X' | a<al T>1f

8.2.3 Properties of Daters
8.2.3.1 Stochastic Monotonicity

Monotonicity wi th respect to the Timing Sequence In this paragraph, we assume
that the entrance times are all equalet¢see Remark 2.75). Let' be another tim-
ing sequence associated with the same event graph (i.e. the topology and the initial
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marking of the event graph are unchanged and each timing variable is replaced by the
corresponding dagger variable) and ¥étbethe resulting daters. We first compare the
sequencex’ andx, whenever the timing sequences can be compared for some integral
ordering.

Theorem 8.2 If n <g n', thenx <g x*.

Proof The initial conditionX(0) is untouched by the transtormation of the variables,
in view of the definition given in Remark 2.75. The matrigg&) in (2.31) are nonde-
creasing funtions of the variables, g (seeEqudions (2.15), (2.28) and the definition
of A(k)). Therefore, from (8.40), we obtain that

{X(0), A®0), AL, ...} <« {XT(0), AT(0), AT (D),...} .

We now use the canonical representation (2.31) to represent the evolution equations of
interest as recursions of thgpe (8.43), where the mappiragis coordinatewise non-
decreasing and such that the sequences defined in (8.44) satisfy the rgét)dn<q

{7 (k)}. Theproofis then concluded from Theorem 8.60. [ |

In the next theorem, the timing variables are assumed to be integrable.

Theorem 8.3 If n <iex n', then x <jey xT.

Proof The entries of matriceg(k), k > 1, are nondecreasing and convex functions of
the variablesy, 8. So, the asumptiom <icx n' and (841) impy that

{X(0), A©), AQD), ...} <iex {X1(0), AT (0), AT(D), ...} .

Since he mappinga of the preceding proof isondecreasing and convex, the result
immediately followdrom Theorem 8.62. [ |

Remark 8.4 Assume thathe holding and firing times are all integrable. Then, it
follows from (8.42) that the ‘deterministic version’ of the event grdphwith firing
timesg; (k) = E [8;(k)] andholding timesx; (k) = E [« (k)], leads to a spience of
daters{X(k)} which is alower bound of{x(k)} in the <icx sense. Irparticular, since

the daters ae integrable under these assumptions, it follows from Lemma 8.59 that for
allk > 1andg; € Q, E[x;(Kk)] = X; (k). n

Example 8.5 For example, by gplying Theorem 8.3 to the cyclic queuing network
with finite buffers of Example 7.92, one obtains that the departure times from the
gueues are&jcx-nondecreasing functions of the service times. []

Monotonicity wi th respect to the Initial Marking  Here, thediscussion will be lim-

ited to the case when all initial lag times are equat {@vhichis a compatible initial
condition). It will be convenient to use (2.19) as the basic evolution equation. Under
ourassumption on the initial lag times, this equation reads

Xi0=" @B  Beriyk— )i (WXeoiiy (k — i) e , (8.1)

liemd(j)lk>pi)
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for k > 1, wherex; (k) = ¢ if k < 0. Consider the same event graph as above, but with

the initial markinguiT, pi € P, inplace ofu;, and let{x (k)} denote the corresponding
dater sequence.

Theorem 8.6 Under the assumption that all the initial lag times are equal to e, if
wi < MiT, Vp; € P, then the coordinatewise inequality x > x holds.

Proof Owingto the assumption that all transitions are recycled and to the preceding
convention concerninthe continuation ok (k) for k < 0, itis easy to check that

xj(K) > Bj(k—Dxj(k—1) , Vj=1,....n, KeZ.

Therefore
Xj(k)ZXj(k—l), Vi=1...,n, keZ,

and
Bikxj (k) > Bj(k —Dx;jk—1) , Vj=1...,n, keZ. (8.2)

We prove thaix; (k) < ij(k) forallj =1,...,n,andk > 1. The proofis by induction
on(j, k). Sincethe evengraph is assumed to be live, the numbering of the transitions
can be chosen in such away that for@llk), j = 1, ... ,n,k > 1, the vaiablesx; (1)
which are found at the right-hand side of (8.1) are always such that ditherk or

| =Kk, buti < j. Therdore, there exists a way of numbering the transitions such that
the daersx; (k) can be computed recursively in the order

X1(D), X2(D), ... , Xa(D), X1(2), ... , Xa(2), ... , X1(K), ... , Xa(K), ... .

Assume thathe poperty holds up tqj, k) excluding this point (it holds for1, 1)
since wth our assumptions, we necessarily hayél) = xI(l) = €). Then, we have

Xk = P B k—puhakxl, k—phee
lierd(j)lk>p)
< P Brok-—wm®x k-—p)@e
lierd(j)lk>p)
< B Beriy k= )i (0Xer iy (k — i) @ €
lierd(j)lk=p)
< P Beik— iR k—w) de
fiexa (k=)
= XKk ,

where we aiccessively used the monotonicity property (8.2), the induction assumption,
and finally the fact that we sum up with respect to a larger set. [ |

Example 8.7 As anapplication of this result, one obtains the monotonicity of departure
timesin closed cyclic networks with blocking, as a function of the population and the
buffer sizes. [
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Stochastic Monotonicitywith respect to the Topology Consider two event graphs
with assaiated graph§ = ((P U Q), &) andI'T = ((PT u @), £T), where

PcPl, Qcof, ¢&fcegt. (8.3)

The evengraphI't is such that the initial marking, the initial lag times, the firing and
holding times of those places and tratiens which elong both tol" and 't are the
same. Letx" denote the sequence of daterddf and k'] the restriction of x' to the
set of traniions which belong taQ andQf.

Theorem 8.8 Under the foregoing assumptions, x < x' coordinatewise.

Proof The proof is based on Equation (2.19) and is again by inductior( jork).
Assume tlat the popertyx; (1) < xiT (1) holds up to(j, k) excluding this point. The
point(1, 1) is not necessarily the first one to compute in the total order associated with
I'f, but we are sure that all the places presentlirprecedingq; are present it

too, and with the same number of initial tokens and the same lag times, so that the
property necessarily holds for (1,1). Then, denotifighe predecessor function Iy,

we obtain the following relation for alfj; € Q:

x! (k) P Bl k—wheltox!,, k- uh

{ienta(j)lk>pl)
o P v

fienta(j)lk=p)

@ ﬂ;p(i)(k - MiT)aiT(k)Xivm(k — )
{iend(j)lk>pu))
o P vk

{iend (k<)
= P Brok—ue®xl,; k= mw)

{iend(j)lk>pmi)

) @ wi (K)

{iema(j)lk=pi}

B Beoir k= e (K)Xen iy (K — i)
{iexd(j)lk>pui}
® @ wi (K)

{iexa(j)lk=pi}

= XK,

v

v

where we aiccessively used the assumptions (8.3), the assumption that the initial con-
dition and the firing and holding times of the noded oh I'f are the sameand firelly
the induction assumption. [ |
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8.2.4 Properties of Counters

In this subsection we assume that tokens incur no holding times in places (so that the
only timing variables come from the firing times of the transitions) and that there is at
mostone place between two subsequent transittpremdq;, which will be denoted

(j, 1), with initial marking «(j,i) € N. It will also be assumed that the initial lag
times are all equal te (which leads to a compatible initial condition). Under these
assumptions,tte evolution equation (2.19) in Chapter 2 reads

xj(0 = @@ Bik—n(, D) xik—n(,i)ee, k=1,
iep(j)

with initial conditionx; (k) = ¢ for all k < 0. In this relation,p(j) dzefnp(nq(j )).

8.2.4.1 Evolution Equations

Let x;(t) (respediely y;j(t)) denote the number of firingswhich transitionj initiated
(respectiely completed) by timé, t € R*. Without loss of generality, we assume that
bothx; (t) andyj(t) are right continuous.

Remark 8.9 The mapingsx;(k) : N — R andx;(t) : R — N are related by the
formulae

Xj (1)
Xj (K)

supk [ xj(k) <t} , (8.4)
inf {t | x;t) >k} . (8.5)

When usiy thedefinitions of§4.4, we see that the isotone and |.s.c. mappij) :
N — R adnits the u.s.c. mapping;(t) : R — N asits residual; similarly, the isotone
and u.s.cmgpingx;(t) : R — N adnits the |.s.c. mapping; (k) : N — R asits dual
residual. [

In this subsection it is assumed that the firing times are all strictly positive.

Theorem 8.10 The random variables x; (t) and y;(t), 1 < j < u, t > 0, satisfy the
following evolution equations:

Xp® = min (yi(t) + pu(. 1) , (8.6)
iep(i)
t
i)y = /O g, 0 Wy <t—up Xj (du) (8.7)
where forall j =1,...,n,y;(0) =0and x;(t) =0, vVt <O.
Proof By timet, trangtion j initiated exactly as many firings as the minimum over
i € p(j) of the number of tokens which entered plagei) by time t (including

the initial tokens). Since a place isgmeded by exactly one trdtisn, thenumber of
tokens which entered placg, i) by t equalsu(j, i) plus the number of firings which
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transitioni compldged by timet. The Sieljes integral in (8.7) is a compact way of
writing the sum

o0
D Lo to=t -
=0

=

In the deerministic case, (8.7) takes the simpler foypit) = x; (t — 8j), whichleads
backto the following familiar result.

Corollary 8.11 If thefiring times are deterministic (i.e. 8;(k) = 8;), then (8.6) and
(8.7) reduce to the Ryax €quation

Xty = /\ n(,Dxt—g), (8.8)
iep(j)
where x;(t) = efort < 0.

8.2.4.2 Stochastic Monotonicity

From (8.4, one obtains that for any fixedttuplet; < ... < t, in R*, the \ector
(X(t1), ..., X(tn)) isanonincreasing function of. Therefore, each<g-monotonicity
property of the sequence with respect to<g yields a dual stochastic monotonicity
property ofx(-) (see Table 8.1).

8.2.4.3 Concavity with respect to the Initial Marking

Throughout this subsection it is assumed that the sequdgds } are mutdly in-
dependentin.

Theorem 8.12 If the random variables g; (k) arei.i.d., with exponential distribution
of parameter Aj, then, for anyt > 0, andany 1 < j < n, Xj(t) and y;j(t) are
stochastically increasing and concave (see Definition 8.63) in the initial marking u €
NIl

Proof Let {bj(n)}>*,, 1 < j < n, be mutually independent sequences of i.i.d.
random variables wherb;(n) is exponentially distributed with parameter;. Let
to, t1, t2, ... , tn, ... be the times defined by = 0 and

th =th_1 + min bj(n) , h>1,
1<j<n

and lety; (n) be the indicator function
Xi (M) = Lit=t, 14+b; () -

Let I'f be an event graph with the same topology and initial marking,asd wth the
following dynamics (which differs from the dynamics defined in Chapter 2):firfor
all transitionsj enabled atimet,, the resilual firing time ofj attimet (narrely the
time whichelapses betwedn and the completion of the ongoing firing of transitig
is resampled anthken gual tob; (n + 1).
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e If xj(n+1) = 1fora trandtion j which belongs to the set of transitions enabled
attimet” in I'T, then transtion j is fired at timet;;, whichdefines a new set of
enabled trarisons at timetn*+1 by the usual token production and consumption
rule.

e If xj;(n+1) = 1 foratranstion j’ which isnot erabled atimet; in I'f, nothing
happens as far as the marking process is concerned.

For each tranision j which is enabled altn*+1 (either still ongoing or newly enabled),
one resamples rgew residual firing time equal tb;(n + 2), etc.

For I't definedabove, it is easily checked that the variabk%:ﬁt) (respeately
ij (1)) representing the number of firings of transitiop initiated (respectively com-
pleted) bytimet, sdisfy the following equations:

yj0 = o0,
yiy = Yt EYi) . st <t
X® = Xt EXM) , th=t<to, (8.9)
and
Xjm =N Mowud i) (8.10)
iep(j)
Yin+1) = Mimxn+1)AXMn , (8.11)
foralln=0,1,2,.... Equation (8.10) is obtained in the same way as (8.6). In order

to obtain Equation (8.11) observe that
Yin+1) =Yi(n)+ xi(n+1)
(equdity holds if i is enabled at tim&t), and

i enabled aty < Yi(n)=Xi(n)—1;
i noterabled at;” < Yi(n) = Xj(n)

(because of the recycling of tratisn i, there is at mst one uncompleted firing ini-
tiated on this transition). duation (8.11) is obtained from the following observation:
eitheri is not erabled attt, and the smiéer term in theright-hand side of (8.11) is
Xi(n), ori is erabled and¥j(n + 1) = Y;(n) + x(n + 1).

It is now immediate to prove by induction that, for all realizations of the random
variablesbj(k), the state ariablesX;(n) andY;(n), 1 < j < n,n > 0, are nonde-
creasing and comwe functions ofu. The variables<jT(t) and ij(t) saisfy the same
property in view of (8.9) and of the fact that the varialid¢s) do not depend upon.
Thus, ifu andy’ are initial markings such that = pu + (1 — p)u’ is in N/7! for some
real parametep < (0, 1), we have, with olbvious notations,

x[(tv) = pxl(t ) + @ — px[ )
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for all w, t andj, with a similar result fory.

Owing to the memoryless property of the exponential distribution, the comft(str)s
andyjT (), 1 < j <u, are gual in digribution tox; (t) andy;(t), resgectively. There-
fore, under appropriate integrability assumptions,

E[xj(t: v)] = pE[xjt; )] + @ — p)E[xj(t; 1)]
so thatx; (t) (andyj(t)) are stobasticély increasing and concave jn indeed. [ |

We now define the class of PERT-exponential distribution functions, which will
allow us to genellize Theorem 8.12.

Definition 8.13 (Stochastic PERT graph)A stochastic PERT graph is a connected,
directed, acyclic and weighted graph with a single source node and a single sink node,
where the weights are random variabl es associated with nodes.

There is no loss of generality in the assumption that only nodes are weighted; one
canequivalently weight arcs or both arcs and nodes. In any weighted directed acyclic
graph, the path with maximal weight is called trétical path.

Definition 8.14 (PERT-exponential distribution function) The distribution function
of arandomvariable X isof PERT-exponential typeif X can be expressed astheweight
of the critical path of a stochastic PERT graph G where the weights of the nodes are
mutually independent random variabl es with exponential distribution functions.

Notation 8.15 Such a difribution function will be denotedr (G, 1), whereg is the
underlying graph and = (X4, ... , A;g|), where},; is the parameter of the exponential
distribution associated with nodén G (we will assume that the source and sink nodes
arenumbered 1 an{l7| resgectively). [ |

Definition 8.16 (Log-concave functions)A function f : R" — R™ islog-concaveif
forall x,y e R"and 0 < p < 1, theinequality f (ox + (1 — p)y) > f2(x) fE=P)(y)
holds.

Theorem 8.17 PERT-exponential distribution functionsare log-concave

For a poof, see [10].

Theorem 8.18 If the firing times of a stochastic event graph I' are all mutually in-
dependent, and if for all transitions j, 1 < j < n, the firing times g; (k) arei.i.d.
random variables with PERT-exponential distribution function, then, for all t > 0, and
all 1 < j <n,x;(t)and y;(t) are stochastically increasing and concave in the initial
marking p.

Proof Let F(G!, A}) bethe distribution function associated with transitipnof I.
i def | i

Letn! = |G|. A A

For all j, considerthe stochastic event grafgh defined from the PERT grapi

as follows: with eactmodei of G/, we a&ssaiate atransitionqiJ in '!; similarly, to
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each arc irG! corresponds an arc il and aplaceonthis arc. The initial marking and
the holdingtimes of each of these places are zero. The firing times ofit'nalrnshJ are
i.i.d. random variables with exponential distribution function of paramq'ter

We now @nstruct a stochastic event graphwhich is defined fronf" andI'!, j =
1,...,n,asfollows: forallj, 1< j <n, we'‘replace’ tranftion g; in I by the event
graphT'l; al the daces ofl" are kept inI'T together with their initial marking; we
taker f(q{) equal to the setr(q;) ando(q,,) equal too(q), forall j = 1,...,n;
finaly, we add a new feedback arc from transitiqrh to transitionq{, for all j; the
placeon this arc is assigned one token in its initial marking and zero holding and
lag times. This transformation is depéd in Figure 8.1. flthe number of firings

r r rt

q/Q) p"l‘Q o, /‘@\Cﬁ "l‘Q %

oS e I Ee—
AR S G

Figure 8.1: Transformation of an event graph with PERT-exponential firing times
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of transitionq{ initiated (respectively completed) by timen I'f is denotedijql(t)
(respeately ijql(t)), then an immediate coupling argument shows that

X0 =X ;0 . YO =ay ;). ¥t=0, Vi<j<n,

where thesymbol = denotes equivalence in law.
Let u! denote theinitial marking of I'f. Applying Theorem 8.12 t¢'f implies
that forallt > 0, and all 1< | < n, ij’l(t) and ij,l(t) are stochastically increasing

and concawe in the initial marking uf € NI'l. Consequentlyx;(t) and y;(t) are
stochastically increasing and concave in the initial markinge N9/, t > 0, 1< j <
n. [

Remark 8.19 It is easy to see that PERT-exponential distribution functions include
Erlangdistribution functions as sgecial case. Therefore one can approximate step
functions with PERT-exponential distributions. Theorem 8.18 can be shown to hold
whensameof the firing times are deterministic, by using some adequate limiting argu-
ment. In the particular case when all firing times are deterministic and integer-valued,
one can also prove the concavity of the counters by an immediate induction argument
based on Formula (8.8). [ |

8.2.5 Properties of Cycle Times

Throughout this subsection we suppose that the sequences of holding and firing times
saisfy the joint stationary and ergodic assumption§ 63 and are integrable. We also
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assume that the event graph under consideration is strongly connected and its cycle
time (se€57.3.4) is denoted, so that he following as. limits hold:

fim |(x()Y¥| = lim E [Ix®,]" =a as, (8.12)

provided that the initial lag times are integrable. The throughput of the event graph will

be denoted & 1.

8.2.5.1 First-Order Theorems fa Counters

Theorem 8.20 For a strongly connected stochastic event graph satisfying the forego-
ing assumptions, the following a.s. limits hold:

lim |x@®)[** = lim |x@®)Y' = lim ;)Y =7 as. (8.13)
t—o0 t—o00 t—o00

foralll<j<n.

Proof Forallk > 1and 1< j < n, we have
Xjt) =k , fortintheinterval x;(k) <t <xjk+1) ,

which imgies that

Xj(k)< t <Xj(k+1)

< X0 " , fortin xjk) <t <xj(k+1 .

Whenlettingt or k go tooc in the last relation and vén using 8.12), we obtain
tlim X' =17 as.
The poofs for|x(t)|, and|x(k)|, follow immediately. [ ]

Remark 8.21 In the paticular case of a deterministic event graphis given by the
formula
L
¢ ¢l
where¢ ranges over the set of circuits bf |¢|, is the sum of the fing and holding

times in circuit¢ and|¢|; is the number of tokens in the initial marking p{see (3.7)).
[

The remainder of this section focuses on the derivation of monotonicity, convexity
properties of cycle time and throughput.
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8.25.2 Bounds on Cycle Times

The stochastic comparisqaroperties obtained i§8.2.3 admit the fllowing corollar-
ies.

Corollary 8.22 If both sequences {a (k), 8(K)} and {a(k), BT(K)} satisfy the above
stationarity, ergodicity and integrability assumptions, and the assumptions of Theo-
rem 8.2 (respectively Theorem 8.3), then the associated cycle timesa and a' are such
that a < af.

Proof If the initial condition is integrable, the relation

E[1x(I.] <E[x o], ] .

holds for allk > 1, as a direct consequence of Theorem 8.2 (respectively Theorem 8.3)
because the functior — f(x) = x is nondecreasing (and convex). Dividing this
inequality byk ard letting k go tooco yield the result in view of (8.12). [ |

Remark 8.23 The preceding result extends immediately to the namgfly connected
case. [

The observation which was made in Remark 8.4 allows one to provide a general lower
bound for the cycle time as shown § the fdlowing corollary.

Corollary 8.24 Under the assumptionsof Corollary 7.31, the cycletimea of the stochas-
tic event graph satisfies the bound

o el
¢ Iqh

where E[|¢]|w] denotes the mathematical expectation of the sum of holding and firing
timesinthecircuit ¢.

The right-hand side of the last expression isaihe cyte time of a deterministic event
graph with the same topology as the initial one, but with the firing and holding times
replaced by their mean values. Under the above statistical assumptions, one obtains the
following corollary in the same way.

Corollary 8.25 Under the assumptionsof Theorem 8.6 (respectively Theorem8.8) a >
al (respectively a < af), where a' is the cycle time of the event graph ' which is
considered in thistheorem.

Example 8.26 For instance, the throughput in queuing networks with blocking, open
or closed, is stchastically decreasing in the service times (as a consequence of the
property of line 4 in the last column of Table 8.1), and increasing in the buffer sizes
ard in the customer population (line 1), regardless of the statistical assumptioms.
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8.2.5.3 Concavity with respect to the Initial Marking

The @ncavity properties establishedj8.2.4 for counters together with relation (8.13)
readily imply a related concavity property of the throughput with respect to the initial
marking.

Corollary 8.27 Under the assumptions of §8.2.4.3, if thefiring times are mutually in-
dependent and if in addition the firing times {8; (k)} arei.i.d. with PERT-exponential
distribution functions, then the throughput 7 is increasing and concave in the initial
marking 1 € NI€I,

Example 8.28 For instance, the throughput in queuing networks with blocking and
with PERT-exponential service times is stochastically decreasing in the service times,
ard increasing and concave in the buffer sizes or the customer population. =

8.2.6 Comparison of Ratios

Certain atios of the state procesgk), and hence the marking in the corresponding
places, also exhibit interesting stochastic ordering propertiesigRly speaking, the
places in question are those which do not belong to@ngty connected component

of the event graph, which corresponds to the set atgd with a marking which is

not structurally bounded. The properties of interest are established through simple
exampes.

8.2.6.1 Assumptions

We consider an event graph with several strongly connected subgraphs. We assume that
this evert graph is in its canonical form, namely allgales have exactly one token in the
initial marking (see Remark 2.77). L&, be the set of transitions corresponding to

one of the subgraphs, whames not a source node in the reduced graph. The evolution
equation (7.47) of Chapter 7 reads

Xy K+ 1D = Amm KXm K & Am<n KX<m® , k=>1.

Let
S(k) dza X(n) (k + 1)
X(<I"I)(k)
X<m(K+ 1 Xe<m (K
U, () def X( n ( ) ’ U_(k) def X n (K) .
X(<n) (K) X(<m K+ 1)

Then, the rtio processs (k) sdisfies the equation
Sk+1D=AK+1DSKU_(K) & BKk+DUL(KU_(k) , k>0, (8.14)

whereAKK) = Amm (K) andB(K) = Amy<n (K) (see§7.4.2).
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8.2.6.2 Stochastic Ordering Results

Letv(k) = (AKk + 1), Bk + 1), U_(k)) andy(k) = §(k). Equation (8.14) can be
rewritten asy(k + 1) = a(y(k), v(k)).

Lemma 8.29 The mapping a(-) satisfies the assumptions of Theorem 8.61.

Proof The nondecreasingness gf— a(y, v) is obvious. As for the convexity of the
mapping (y, v) — a(y, v), observahata(y(k), v(k)) is given & the maimum of two
functions,A(k+ 1)§ (k)U_ (k) andB(k+ 1)U, (k)U_ (k), so that it & sufficient to prove

that each of these functions has the desired convexity property, which is clear for the
first one. In order to prove the convexity property for the second function, we rewrite
the enties ofU_ (k)U, (k) as

(U+(k)U7(k))ij = U,(k)lj}ﬁU,(k)li ,
sothat the entries of the second function can be rewritten as

P Bik + HU-_ (K1 /U-
|

(B(k + DU, (U (K,

U- (K1 (@ Bi (k + 1)¢U<k)1|> :
|

Since he mappingB(k + 1), U_(k)) — Bjj(k + 1)U_(K)y is convex (itis linear in
the cnventiond sense), each of these entries is the sum of two convex functionsin the
variabledJ_ (k), B(k + 1), which mncludes the proof. []

As a direct consguence of Theorem 8.61, we obtain the following result.
Corollary 8.30 If one replaces the sequence {§(0), A(k), B(k), U_ (k)} by a sequence
|8T(0), AT (k), BT (k), Ui(k)} such that

(6(0), AK), B(k), U- ()} Zex {570, A0, BT 0, UT )}

then the resulting ratio sequence 81 issuch that § >ic 8.

Interesting applications of this property arise when the firing and holding times of the
ewent graph are all mutually independent, so that the two sequences of random variables
{AK)} and{B(k), U_(k)} of the preceding theorem are also mutually independent. For
exampe, when applyig the result of Corollary 8.30 to the sequences

Bfk =E[BK] , Ul =E[U_-K®] . Ak =AK ,
we obtain

B} =iex {5700} (8.15)
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provided the initial conditions which are chosen for both systems satisfy the assumption
of the corollary. h paticular, we obtain the relation

Xj (K + 1% (K) Ziex 81,0

for all gj € QO andqg € 7%(qj) N {Q \ Qm}. The random variabléjTi (k) can be
interpreted as the rath(k + 1);!uiT(k) of a nonautonomous event graph with the
same topology asQ,n), with a Q) |-dimensional inputif (k) and with the evolution

equation
xTk +1) = AT (kxT (k) @ BT (kuf (k) .

The input processif (k) is determined by the relations

Foe UK
U=t = uf(k +1)

ard by the initial conditionu® (0). This seond event graph is ‘simpler’ than the previ-
ous one in that the influence of the predecesso&#gfis captured by the first moments
of the vaiablesU_ (k) andB(k) only.

Another example of application of Corollary 8.30 consists in choosing

Bfk) =E[Bk)] , Ul =E[U_-(k] , Ak =E[AK)] .

With such a definitin, we always have >¢, v, which leads to a comparison result
between the ratio process of aoshastic event graph and that of a deterministic one
(for which one can use the results of Chapter 3).

The aonditions under which a stationary solution of (8.14) andjitunterpart
exid, are given in Theorem 7.96. Let us assume that these conditions are satisfied
for both systems, so that one can construct the stationary marking in the initial event
graph and inCf. Onecanthen apply Little’s formula ([77]) and (8.15) to derive the
following bound on the stationary markifg in a placep; = 7 (q;), whereq; € Q
andz (pi) ¢ Q).

[8j.700] _ E[‘SJ‘TJW] .

ai ai
In this relation, a; is the cycle time of transitiong; and g, (these cgle times
must coincide sine theplace is assumed to be stable). The real nurﬁb[érj,npm]
represents the average time spent by a tokep iim the stationary regime (the time
spent by thé-th token ofp; in this place isxj (k) — X.»¢)(k — 1) indeed).
Similarly, under the peceding independence assumptions, it is easily seen that the
variabless (k) are stochastically increasing and convexAgnm (K)}.

E
E[Ni] =

8.3 Event Graphs and Branching Processes

This sedion focuses on the derivation of bounds and estimates for cycle times of
strongly connected stochastic event graphs with i.i.d. firing times. We use associa-
tion properties satisfied by partial sums of the firing times in order to prove that the
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daterscan be compared fotg with the last birth in a multitype branching process, the
structure of vhich is deterrmed from the claracteristics of the event graph. Classi-
cal large deiation estimates are then used to compute the growth rate of this last birth
epoch, following the method developed in [19]. This allows one to derive a computable
upper bound for the cycle time, which is exemplified on tandem queuing networks with
communication blocking.

8.3.1 Statistical Assumptions

The ssumptions a@ those 0f58.2.4. In addition to this, we assume that the sequences
{B; 0}, = 1,...,n, are mutually independent sequences of i.i.d. nonnegative
ard integrable random variables defined on a common probability sffacg, P),
ard that theinitial number of tokens in any place is at most 1 (this last assumption
introduces no loss of generality, see Remark 2.77).

Weknow from Chapter 2 that whenever the event graph under consideration is live,
it is possible to rewrite its equation as

x(k) = Adx(k —1) , k=1, (8.16)

where natrix A(k) is defined as follows:

h-1
Ajjr (K) = b Bik—1® (® ﬂim(k)> : (8.17)

{(i’=lo,i1,iz...,in-1,in=])€S(j’, |, 1)} m=1

with the usual convention if the sé&(j’, j, 1) is empty (se Renark 269). It is as-
sumdl that the event graph under consideration is strongly connected, and that the
initial conditionx(0) is equal toe (since weare only interestechideermining the cy-
cletime, this last assumption introduces no loss of generality). The following theorem
is based on the notion of association (see Definition 8.64).

8.3.2 Statistical Properties
Lemma 8.31 Under the foregoing statistical assumptions,
{Aj K, X K,i,j=1,...,n,k=0}

forms a set of associated random variables (see Definition 8.64).

Proof The independence assumption on the firing times implies that the random vari-
ables{A(k)} are associated since they are obtdias increasingunctions of asso-
ciated random variables (see (8.17)). The resultxXp¢k) follows immediately from
(8.16) and Theorem 8.67. [ |

Lemma 8.32 For all jo, j1,..., jn € {1,...,n}, the random variables A;,,, ;. (K),
k=0,...,h, aremutually independent.
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Proof In view of (8.17), the random variablds, , j, (k) canall be written in the form

A1 i K = (B, (), ..., Bi, ), B (k—=1)) ,

for some indices,, ... ,1;. Sincethe random variablegg;(k)}; k are mutially inde-
pendent, it is enough to show that the arguments of the funaigns=0, ... , h, are
disjoint to prove the property.
Theonly situation where these sets of arguments could fail being disjointis for two

adjacent term&\;, . (K) and A, , ;... (K + 1) having one argument of the tygg (k)

in comnon. The only such argument iy, ... (K + 1) is 8j,,, (K). Assume tht this

is alsoan argument ofA;,,, (k). Then, there exists a circuit crossing1 and ji;1

with zero initial marking in all the ces of the circuit, which contradicts the liveness
assumption. [ |

8.3.3 Simple Bounds on Cycle Times
Let a be the cyte time of A(k). Since weassumed strongonnectdness, we have

lim E(x; ] = lim ()Y  =a as. Vj=1...n. (8.18)

Let

N be the maximal degree of the transitions which are followed by at least one
place with a nonzero initial marking (the degree of a node is the number of arcs
incident with this node).

e b be a random variable which iss=;; upper bound oéach of the radom vari-
ablesAj; (0), nanely

Aj0) <g¢b, Vi,j=1...,n.

e b(2) be the Lapace transforthE [exp(zb)], which isassumed to be flite in a
neighborhood o = 0.

e M(x) be the Cramer-Legendre transform of the distribution function of the ran-
dom variableb, nanely

M(X) = inﬂg (log(b(2)) — zx) .

The presengedion is devoted to the proof of the following result.

Theorem 8.33 Let y = inf{x | x > E[b], M(x) + log(N) < 0}. Under the foregoing
assumptions, the cycle time of the event graph admitsthe upper bound a < y.

We start vith two preliminary lemmas.

1This is not the usual Laplat¢eansfom which would readE [exp—2b)].
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Lemma8.34Foralle > 0,andforall j =1,... ,n
lim P[L < +e] =1,
k— o0

and

lim IP’|:Xj—(k)<a—e]=0.
k— o0 k

Proof The property follows immediately from the fact that a.s. convergence implies
convergence in probability and from (8.18). [ |

Lemma 8.35 If ¢ € R issuch that
kILTOIP’[xj (k) —kc=0]=1, (8.19)
forsomej=1,...,n,thenc > a.
Proof Under the assumption (8.19),
kILTOP[Llib gc] =1,

sothatwe cannot havec = a — € for somee > 0, in view of Lemma 8.34. Therefore,
c>a. []

Proof of Theorem 8.33 Under our assumptions, Equation (8.16) reads+ 1) =
AK) ® x(k) with the initial conditionx(0) = e ard it iseasly checked by induction
that

k-1
Xj (k) = @ Q) Apnrin () (8.20)
josee- s jk-1€fi,...,n} h=0
where jx = j. Therdore,

k—1
PIxik) —ck <0|=P C h 0
[XJ() c 5] |:J Jkle Z Jh+1]h()<:|

whereC;; (k) A” (k) —c.
Fork fixed, Lemma 831 implies that the variablegﬁ;(l) Cin.sjn(h), wherejo, ..., jk-1
vary over the setl, ... , n}¥, are @socated. Therfore, from Lemma 8.66,

k—1 K1
: |:J Jk 1G chhﬂjh(h) = 0:| H F |:Z Cih+1,jh(h) = 0:| .
jo n}

sy Jke1€{1, .0, h=0
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Since the random variables, , j,(h) are hdependent (see Lemma 8.32), angbounded
from above byb, we have

k-1 k—1
P [Z Cinevin(h) < 0} > P [Z(b(h) -0 = 0} ,
h=0

h=0

where{b(h)} is a ®quence of i.i.d. random variables with the same distribution func-
tion ash. Now, Chenoff’'s Theorem ([3]) implies

k—1
P [Z b(h) > ck} = exp(M(©)k +o(k)) ,

h=0
for all ¢ > E[b], so that

P[x;(k) — ck < 0] = (1 — exp(M(c)k + o(k))<®
whereC; (k) denotes the number of patlis . .. , jk—1 which sdisfy the property

k-1

> Cirvin(h) # —o00 .

h=0
Therefore, itis enough to have the limit

Cj (k) exp(kM(c)) — 0
whenk goes taxo, in orderto obtain

I(Iim P[xj(k) —ck <0]=1. (8.21)

Clearly, the boun€; (k) < Nk holds so tha asuficiert condtion for (8.21) to hold is
M(c) + log(N) < 0. In other words, foc > E[b] such hatM(c) +logN < 0, (8.21)
holds, so that > a in view of Lemma 8.35. [

In fact, we proved the followig and more gearal result.

Corollary 8.36 If log(Cj (k)) = Ck + o(k), thena < inf{c | M(c) + C < 0}.

Example 8.37 (Blockihg queues in tandem)Consider the example of Figure 8.2,
which represerst aline of processors witlblocking before service, also called com-
munication blocking in the exponential case. etlenote the number of processors,
each of which is represented by a tridgios. In Figure 8.2n equals 4. The first pro-
cessor (on the left ohie figure) has an infinite buffer of items to serve. Between two
successive processors, thdfbuis of capacity one (which is captured by the fact that
there ae two tokens in any of the upper circuits originating from a processor). The
processors are single servers with a FIFR€cibline (which is captured by the lower
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S S
56T

Figure 8.2: Communication blocking: 4 nodes, 1 buffer

circuit associated with each tratien). It is assumed that all transitions have expo-
nentidly distributed firing times with parameter 1. In this example, we hive- 3,
b(z) = (1 — 2~*. The Craner-Legendrerainsform ofb(z) is given by

M(X) = Zel[r(}fl) (—=zx —log(1 — 2)) .

The derivative bthe function—zx—log(1—z) with respect t@ vanishes for = 1—x !
and thispoint is a minimum. Therefore
M(X) =1 — X+ log(x) .
As a direct application of Therem 8.33, we obtain
a <inf{x | 1 —x+log(x) +log3) <0} ,

which provides the following uniform bound in: a < 3.33 . In other words, the
throughput of the systems is always greater th& fegardless of the number of pro-
CESSOrS.

If we apply Theorem 8.36 using the following more precise estimat; ¢f)

1 T
K logCj(k) =1+ 2005<m> +ok) <3 (822)

(see below for its proof), we obtain
a< |an ‘ 1—x+logx) < Iog(1+ZCos( )) } ~3.09 .

If the service times are Erlang-3 with mean 1, namelpi) = (3/(3 — 2))3, in the
same wayfrom Theorem 8.33, we obtain that

a <inf{x | 3(x —1—log(x)) > log(3)} ~2.11 ,

which corresponds to a throughput greater thad80

Proof of Formula (8.22) Let K denote theadjacency matrix of the precedence graph
of A(0), narrely then x n matix such that; ; = 1ifi € 7 (j), and O othewise. For
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n = 4, we obtain for instance

COoORr R
[ S AN
B R RO
R, R OO

It is easily checked by induction thm;'fj counts the number of paths of lendttirom
i to j. Let P be the subsithastic m&ix defined byP = K /3, ard let A, denote
the Peron-Frobenius eigenvalue associated withFrom theirreducibility of P, we
obtain

Cjk) = Z KE; = 0@a)* .
i=1

In order to evaluate,,, we introduce the Markov chaidy with substochastic transition
matiix P and uniforminitial measure. We then have

P[Zx = 1] = O(hn)¥ .
We can now evaluat® [ Z, = j]using the ecurrence relations

P[Zwi=i] = PlZc=i-1/3+P[Z=]/3+P[Z=|+1/3,

l<j<n,
P[Zi1=1] = P[Z=1]/3+P[Z=2]/3,
P(Zwi=n] = P[Zk=n-1]/3+P[Zx=n]/3. (8.23)
Let
PX,y) =) Y XyYP[Z=] .
k=0 j=1
From (8.23) we obtain
_ n+1
Px,y) = SN —FOA+Y) (8.24)

3—x(y+1+y?h

whereF (x) is the function

FOO =xY P[Zv=1]x*,
k=0

and
G(Y) =1+y+y*+...+y" .

The deominator of (8.24) vanishes far= x(y) = 3/(y + 1+ y~1) < 1. Theefore,
we recessarily have
G(y)

FiX) = —2
(X) 1+ yl‘l+1 ’
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for x = x(y). Thepoles ofF (x) are fory**! = —1, namely for

i 4 2ilx
= - | =0,... .
y(h) exp( ] ) , ,n
We have 3
x(y()) = ,
142 cos(—”(nlﬁ”)

the smallest of which is far = 0. Theefore, from classical theorems on generating
functions,
P[Z = 1] = O(x(y(O) ") ,

Or, equivalantly,
_ 1+2cos(75)

An = —3
which in turn implies

T
Cikk=1+2 — ) .
() =1+ Cos<n+l>

8.3.4 General Case
8.3.4.1 Multitype Branching Processes

The dass of age-dependent multitype branching processes considered in this section is
a special case of those considered in [19]. Theremtgpes; the branching process is
characierizedby a family of integer-valued random processes

ZN® : teRY ij=1...n; kl=12..,
where

e then x nmaticeszZ¥ () areiid.forl,k=1,2,...;

e the variablesZ'j(!

i () are muually independent in, j, and this br all |, k =
1,2,....

Index k refers to generation levels from an initial generation called 1, and irldex
used to count individuals of a given type within a generation level. If the branching
proces is initiated by a single generation-1 individual of typeborn at time 0, this
individual gives birth to a total oZ j{'(c0) generation-2 individuals of typie one at
each jumptime onlil(-). One a gerrationk individual of type is born, itisassigned

an integerl, different from all the integers assigned to already born individuals of the
same geeration and type (for instance, the individuals of generation 2 andi tgpe

be numbered 1.. , Z{(c0)). Then, the random functioBK (t) is used to determine
thenumber of generatiok + 1) individuals of typeh born from the latter individual

in less thart € R* afterits own birth.
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Let Tj(i") (t) € N denote the total number of generatibmnadividuals of type born
bytimet in a branching process initiated at time 0 from a single generation-1 individual
of typej. Let Fji(t) be the monotonic function defined by the relation

Fih) =E[Z}{®)] . teR",
and let®(z) be then x n matiix with entries
®ii(2) =/ exp(zt) Fji(dt) .
0

We assumethatthere eists a real neighborhood of 0 where the matbiz) is finite.

Lemma 8.38 (Biggins) Under the above assumptions,
E[ /O exp(zt)Tj(ik)(dt)] =08 (2) | (8.25)

where &K denotes the k-th power of ®.

Proof Let Fx denote ther-field of the eents upto thek-th gereration. Owng tothe
independence assumptions, we obtain the vector relation

E [ / exp(zt) TV (dt) Fk] — ( / exp(zt)Tj(k)(dt)> d(2) ,
0 0
whereTj(k)(') denotes the vecto(r‘l'j('l‘)(.), . ,Tj(:)(.)). By taking epectationsin the
last xpression, we obtain (8.25). [ |

8.3.4.2 Comparison betveen Event Graphs and Branching Processes

Consider now the following specific agefimdent branching peess associated with
the gochagic evert graph under consideration:

e there areas many ypes as there are transitions followed by at least one place
with a nonzero initial marking, namely,

e the random vectoijll(t) is defined through its probability law by the relation
Zjlil(t) =st Liep(j1a; =t foralli, j € {1,...,n}. This fully defines the prob-
ahility law of the matriceszZ¥ (-) in view of the independence assumptions.

Observe that, for thisgecific branching process, an individual of typgives hirth to
at mostone individual of type, for alli, j.

Let X;j (k) be the epoch of the latest birth of all generatlomdividuals ever born
in the above branching process, when this one is initiated by an individual of tgpe
time 0.

Lemma 8.39 Under the foregoing statistical assumptions, for all j € {1, ... ,n} and
k> 1,
Xj(K) <t X (K) ,

provided x(0) = e.
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Proof Fromthe definition ofx(k), for allt € R,

k-1
Plxj(k) <t] =P { B KA.t = t:| :

jo,... N ]‘k,]_G{l,... ,I‘l} h=0

where jx = j. Therdore, the association property of Lemma 8.31 implies that

k—1
Plxjk) <t] = [1 P[ZAjhﬂ,juh)st}
{i,...,n}

JOyeres Jko1€ h=0

k—1
- I1 P [Z Ajirin(h) = t} : (8.26)
{i,...,n}

joseens jk-1€ h=0
jnep(in+1)

Now, from its very déinition, the eventx; (k) < t} canbewritten as

kfl_
m {Z Ajpirin(h) = t} )
jo,...,]‘kfle{i,...,l‘l} h=0

inep(jn+1)

where the random variabled;, ,, j, are all maually independent, and wher8;, ., j.

has the sane probability law as Aj,,, j,. Sincethe random variables in the right-hand
sideof (8.26) are also mutually independent (see Lemma 8.32), the latter expression
coincides with P [X (k) < t]. m

8.34.3 Upper Bounds for Cycle times

Whenever the integrks defining the entries ob(z) converge, this mailx is positive;
its PerronFrobenius eigenvalue ([61]) is denotédz) . Let M(x) be the Cramer-
Legendre transform o (2):

M(x) = in{) (log(¢(2)) — zx) .
>
It is well known thatM (x) is decreasing fox > 0 (see [3). Let y be defined by

y =inf{x | M(x) < 0} .

Theorem 8.40 Under the foregoing statistical assumptions, the cycle time a of the
event graph is such that

a<y . (8.27)

Proof We first pove that

X; (K)

limsup <y as. (828)
k
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Let v(2) be the right eigenveot assocated with the maximal eigenvalye(z). From
(8.25), we obtain that

<E [/w exp(zt) T (dt)] : v(z)> = ¢*(2v;(2) ,
0
so that
<E [/w exp(zt) Tj(k)(dt)] : 1> < ¢*@v; DU . (8.29)
0

whereu(z) = (min; v; (2))~* (v(2) is strictly positive due to t Peron-Frobenius the-
orem). Now, sinc&; (k) = supt |3i =1,...,n, Tj(ik)(t) — 0}, we have

<E [ / ” exp(zt) TV (dt)] : 1> Y E [ / ” exp(zt) T (dt)]
0 i=1 0

E [exp(zX; (k)] . (8.30)
In addition, forz > 0,

- elenl( )

This, dus (829) and (8.30), in turn imply

v

Iikm % logP [Xj (k) > ke] < ig{)(log(q&(z)) —20) = M(©) .

Therefore, for alkt suchthatM(c) < 0, Y., P[X; (k) > kc] < oo, so that he Borel-
Cantelli Lemma immediately implies (8.28).
From Lemma 8.39, for all bounded and nondecreasing functfons

X;j (K) ?j(k)>]
EH k )]SEH k)1
forallj=1,...,n.

In view of (8.18), from the Lebesgue dominated convergence theorem we obtain
that, for f bounded and continuous,

. Xj(k) _
e (29)] - o

In addition, for f continuous, monotonic, nondecreasing and bounded, we also have

lim sugg [f (wﬂ <E [Iim supf (Ax—j (k)>] =K [f (Iim sup—s(\j (k)>]
k k k k K k

<f@),

where we aiccessively used Fatou’s lemma, the monotonicity and continuify ahd
findly (8.28). Thereforef (a) < f(y), for all nondecreasing, continuous and bounded
f, which immediately imfies (827). [ |
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Observe that inhe particular case when all neroo entiies of A(1) have the same
distribution characterized by the functitiiz), the egenvalue of interest is precisely
¢(2) = b(z)C, whereC is the Rerron-Frobenius eigenvalue of the adjacency matrix
associated with the matri&, nanely the maximal eigenvalue of matri(0).

Example 8.41 (Blockhg queues with transportation times)The examie is that

of the line of processors described previoublyt with a deterministic transportation
time between processors. The associated event graph is obtained from that of Fig-
ure 82 by replacing each buffer by two buffersrmectedby a trangportation transition

with deterministic firing times$ as shown in Fjure 8.3. The statistical assumptions

© — @©— >

buffer buffer 1  transportation buffer 2

Figure 8.3: Blockng with transportation times

concerning the firing times of transitions associated with processors are those of the
previous example. In this example, we have

1 1
7 13 0 0
exp82) 1 1 0
CD(Z) — 1-z 1-z 1-z
0 exp82) 1 1
1-z 1-z 1-z
exp(82) 1
0 0 17 T3

The Peron-Frobenius eigenvalue of this matrix is

1 8z 14
6@ =1— (1 - 2exp<3> cos<m>> (8.31)

(the proof is similar to that of the previous case). The technique is then the same as
above for deriving the upper boungd. The lower bounds™ given in the following
arrays are those obtained by convex ordering following the method indicated in Theo-
rem 8.24. Fon = 4, one obtains the following array at the left-hand side. Farge,

the lower bound is unchanged, and we obtain the following upper bound indicated in
the aray at the right-hand side.

8 0 1 2 3 8 0 1 2 3
y 31|33 |37| 42 y 3336|4044
at || 1 152 2.5 at || 1 15| 2 2.5 -

Remark 8.42 Better upper bounds can be derived when considering the constant
| > 0, assocated with then-type age-dependent branching process of probability law

Zjlil(t) =st L{—co<(AOAQ)..AD)ji <t} -

The @mnstanty referred to in Theorem 8.40 correspondggolt can be show tha the
sequence(y } decreases to a limit whdrtends toco. [ |
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Remark 8.43 Lower bounds on cycle times based on convex ordering were discussed
in the previous section. We have shown how to derive upper bounds based on large
deviations in the present section. Since the stability region of a non strongly connected
ewen graph is obtained by comparing the cycle times of its strongly connected compo-
nents (see Theorems 7.69 and 7.96), these two bounding methods also provide a way
to analyze the stability region of this class of systems. [ |

8.4 Markovian Analysis
8.4.1 Markov Property
The evoldion equation studied in this section is
x(k+1) = Akxk) , k=0,1,2,..., (8.32)
with initial conditionxg € R".

Theorem 8.44 If the matrices A(k) are i.i.d. and independent of the initial condi-
tion Xo, the sequence {z(k)} def {x(K)¢x1(k)} forms an R"-valued Markov chain.

Proof The Markov poperty follows immedately from he reldion

x(k + 1) AK)x(k) AK)z(k)
k—|— 1 = — — N
D=k )~ AR ARz
andfrom the independence assumptions (see Theorem 8.68). [ |

There is no general theory available for computing the invariant measure of this Markov
chain. The following seatins will therefore focus on simple examples. These exam-
ples are obtained either from specific prerns described in Chégr 1 or from simpli-

fying mathenatical assumptiodsn the sructure of matrices\(k). The quantities of
interest are

kIim E[x (kK + 1)¢x K)]

for an arbitraryi, which coincides with the Lyapunov exponent of m.s.df.gnd the
distribution of thestatonary ratios.

8.4.2 Discrete Distributions

Example 8.45 Consider tle case wherx € R? and whe& matrix A(k) is one of the

following two matrices:
3 7 3 5
2 4 ) 2 4 )

each with probaitity 1 /2. This example was also mentionedsih3. Starting from
an arbitraryxp-vector, sayxo = ( 0 2 )’, we will sd up the reachabity tree of
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Table 8.2: Trasitions of the Markov chain

‘ Initial state H Apo=7 H A, =5
ny = ( 0 2 ) na| 9 |[ns| 7
Ny = ( 0 -3 ) na| 4 || ns| 3
ns = ( 0 -1 ) no| 6 || ns| 4
ni=(0 -2 ) na| 5 | ng| 3

all possible normalized states. This is indicated in Table 8.2 which gives the list of
state trasitions ofz(k) (the normalization here means that the first component of the
normalized state is always 0), together with the corresponding valda@&jz(k))1
(the normalization factor).

In order to obtain a concise notation, the different normalized state vectors are

denotedn;,i = 1,.... Thetable is obtained in the following way. The initial state

isng def ( 0 2 ) . From there, two states can be reached in one step, depending on

the valie of A(0): ( 0 -3 ) and( 0 -1 ) . Bothnormalizedstaes are added
to the list and denotend, andns, respectively. The normalization factors are 9 and 7,

respectively. When takingn, asinitial state, two states can bearched:( 0 -2 )

and( 0 —1 ). Only the first of these normalized states is new; it is added to the

list and callechs, and soon. For the current example, it turns out that there exist four
different staées (see Table 8.2).

From ths table, one directly notices that the system never returng tderce ths
state is tranignt. In fact, the Markov chain has a single recurrence class, which consists
of the theee states,, nz andn,: from theddfinition of A(k), we obtain

kk+1) = Xk+1—xi(k+1
= max(2+ x1(K), 4 4 x2(k)) — max(3 + x1(K), A12(K) + x2(K)) ,

whereA12(K) is equal to either 7 or 5. Rewriting the right-hand side results in
Zo(k + 1) = max(0, 2+ z(k)) — max(1, A2(K) — 2+ z2(k))

Whateer integer value we assume fos(k), zo(k + 1) can only assumene of the
values—1, —2 or —3. The frandtion matrix of the restriction of this Markov chain to
this recurrence class is
0 12 1/2
1/2 1/2 1/2
1/2 0 0

2These examples are defined through (8.32) as stocHastiglinear systems; #y do not necessarily
have an interpretation in terms of FIFO stochastic event graphs, as defined in Chapter 2.
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The stéionary distribution of this chain is easily calculated to be
unz) =1/3, wnz) =1/2, png) =1/6.
The average cyeltime is then

pn(N2)(4u(Ar) + 3u(A2)) + n(Nz)(6u(Ar) + 4 (Az))
+1(N) (B (A1) + 3u(Az)) = 13/3 .

The crucial feature in this method is ththe number of different normalized state
vecbrs is finite. We now give a few theorems which provide simple sufficient condi-
tions for the finiteness of the state space within this context.

Theorem 8.46 Consider the n-dimensional equation (8.32). Assume that for all en-
tries Ajj (k) there exist finitereal numbersAij and K@j such that

P[A; < AjK <Ajl=1, Vk=0.

Suppose that z(0) isfinite. Then, for k = 1,2, ..., all eements z;(k) of the Markov
chain are bounded and we have

min (A;; — Au) < zj(k) < P;‘iagr(](f\ji -Ap, J=2...,n. (8.33)

1<i<n

Proof We havez;(0) = x;(0) — x1(0), whichis finite. From the definition of it
follows that

zi() = (Aj100 @ Aj2(02200) B - - - D Ajn(0)2,(0))
£ (A11(0) ® A12(0)22(0) @ - - - © A1 (0)2,(0)) .

Letq e {1,...,n} be suchthat
Ajq(0)24(0) = Aj1(0) & Aj2(0)22(0) @ - - - © Ajn(0)20(0)
and letr € {1, ..., n} be suchthat

A (0)Z: (0) = A11(0) & A12(0)22(0) & - - - & A1n(0)Z1(0) .

Then,
zi(h) = Ajg(0z0 - Ar 0z O = A0z 0 — Ar 0z (0)
= A0 - A0 > A —Ar
whereas on thetherhand,
zi(H) = Ajg0z0) - Ar 0z 0 = Ajq(0)z4(0) — Ag(0)Z4(0)
— <
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The pioperty extends immediately tgk), k > 1. [ |

Remark 8.47 Theorem 8.46 can straightforwardly be generalized to matiaés
which are suclthat, for some, ®'k=0 A(k) has all its entries bounded from below and
from above. [

The preceding theorem admits the following obvious corollary.

Corollary 8.48 If the matrices A(k) arei.i.d. with integer-valued entries which satisfy
the conditions of Theorem 8.46, and if all entries of z(0) are finite, integer-valued, and
independent of matrices A(k), then the Markov chain z(k) has a finite state space.

Remark 8.49 Itis possible that under certain conditions, bounds exist which are better
than those given in Téorem 8.46, as showiybhe fdlowing two-dimensional example
with

P[Aj (kK =0l =P[AjKk =1]=1/2, exceptfori=j=1;
P[A1(K) = 1] = P[Au(k) =2] = 1/2 .

Thenthe greatest lower bound and least upper bound of the random variables are
A,=1; An=2: Aij =0; K@j =1.
According b Theorem 8.46, we have
—2=min0-1,0-2)<zk) <max1-0,1-1)=1.

In the integer-valuedtase, it follows from this that the state spacez@) is given
by the set{—2, —1, 0}. Herce, in this casez(k) will not achieve the upper bound of
Thearem 8.46 with positive probability. [ |

This theorem can easilye extended to include rational values.

Corollary 8.50 If all entries of A(k) are rational-valued and satisfy the conditions of
Theorem 8.46 for all k a.s. and if all entries of z(0) are rational, then the state space
of the Markov chain remainsfinite.

We now give an xample in which the number of elements in the state space does
depend on the actual values of the random variables, but in which on the other hand the
rationality does not play a role.

Example 8.51 Consider (8.32), witm = 2, and where the random variablég (k)
have the following support

A;j;=0o0rl, Ap=0o0raa, Apy=1, Apr=0o0ra.

Let o > 1 andlet all possible outcomes have positive probabilities. For this two-
dimensional system, the Markov chain reduceg(ig = x2(k) — x1(k) € R. Using
Theorem 846, one obtains thata < z(k) < «. From Copllaries 8.48 and 8.50, we
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know that if« is rational, then the Markov chain has a finite state space (at least for a
proper choice 0£(0)).

Depending on the value o, the recurrent state space pfk) can be determined.
For alla > 1, z(k) canassumethe following six states with positive probability:

o, 1, 1-a, o, -1, —«o.

Fora > 2, these are the only valueg) can assume. For & a < 2, the fdlowing
states are also in the state space:

2—a, 2—200, 2—2, 1.

For 3/2 < a < 2 the stategace consists gfist these ten ates. But for 1< o < 3/2
the following valuesan also be assumed:

3—-2¢, 3—-30¢, a—3, a—2.

Again, for4/3 < a < 3/2, the state space consists of the given fourteen states. But, for
1 < o < 4/3, four othe states are also possible, resulting in eighteen states, whereas
for 1 < @ < 5/4 again bur new states are possible, etc. We see that¢bmes
closer toone, the number of states increases (stepwise). But for any valugheftotal
number of states reams firite. Also fora = 1 thenumber of statessifinite (in fact,

the state space is then equal{td,0,1}). Also, for al values of« (both rational and
irrational) within a certain interval, the number of elements of the state space of the
Markov chainz(k) is the same. []

Example 8.52 Consider the following six-dimensional case:

AK) =

™ D ™ m M
m M m m M (@
D ™ ™ ™ @ ™
m M M D ®» ™
m MmO ®» @D ™
m DM M m o™

QD
~

~
(7

with
Platk) = €] =Plak) =1]=1/2 .

The matrix is irreducible since the graph corresponding to the matrix is strongly con-
nected. Butit turns out that, in this case, the state space of the Markov chain becomes
infinite. This canbe en as follows. From a sta(el el el e )’ the follow-

ing states are possible:

(el el el) ad (el el e I+1) .
After thelast state, the state

(1+1 e 1+1 e 1+1 e)
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Table 8.3: Makov chains of the first three routing schemes

Initial state

[o=i[m=2

First routing scleme

n1=(ooooooooo)/ n| 1| 1
n2=(100000100)/n31n31
n3=(110100110)/n12n12
Second routing scheme
n1=(ooooooooo)/ n| 1| 1
n2=(100100100)/n12n12
Third routing scleme
n1=(ooooooooo)/ n| 1| 1
n2=(000100100)/ ns| 1| ne| 1
n3=(100100001)/n51n61
n4=(100100101)/n71n81
n5=(011001011)/ no| 1| n| 2
n6=(011101111)/n12n22
n7=(111101011)/n91n22
n8=(111101111)/n12n22
ng=(111011111)/n12n22
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can be reached with positive proliigly, and from this state the state
(e 1+1 e I+1 e 1+2)

is possible etc. [ |

Example 8.53 (Railway Traffic Example Revisited)n §1.2.6 a railwaysystem in a
metropolitan area was studied. This example will be studied in greater detail now. The
three railway station§;, S; andS; are connected by a railway system as indicated in
Figure 1.10. The railway system consists of two inner circles, along which the trains
run in opposite direction, and of three outer circles. The model which describes the
departure times othe nine trains isx(k + 1) = A;x(k). Two other models were
described irg1.2.6 as well, depending on other routing schemes of the trains. These
modds were characterized by the transition matridgsand Az resgectively. The
elements of these matrices wegge or 5;, the ldter referring to the traveling time
from stdion § to stationS;. The quantity s; refers to the trading time of the outer
circle connected to statidf. Itis assumed that al; -quantities are equal to 1, except

for s33. The latter quantity is random and is either 1 or 2. Each time a train runs
from S to S there is a probabilityp, 0 < p < 1, thatthe train will be delayed,

i.e. s31 = 2 rathe thans;; = 1. Thus matrices; becomek-dependent and will be
denotedA; (k). The swtem is now tchastic. It is assumed that no correlation with
respect to the ‘countek exigs. In this situathn, one may also have a preference for
one of these three routings or another one. In this context four routings will be studied:
the ones charactered by the matriceg\,i = 1, 2, 3, and the outing in which the
trains move in opposite directions compared with the routing characterizéd.byhe
matrix corresponding to the latter routing, though not explicitly given, will be indicated
by A4. Infact, the results corresponding to this fourth routing will be obtained by using
Az in which s;3 is now the uncertain factor rather thajj.

In Tables 8.3 and 8.4 the normalized states corresponding to the stationary situa-
tionsof the fourroutingsare given (one must check again in each of these four cases
whether he set of normalizedtaes inthe stationary situation is unique, which turns
out to be true). These states have beemmadized in such a way that the least compo-
nent equds zero. The transition matrices of these Markov chains follow directly from
these ables. As an example, = 0.2, the transition matrix for the Markov chain of
the first routing sheme becomes

-02 O 1
02 -1 0],
0 1 -1

from which the stationary disbition can be calculated: it i¢ 5/7 1/7 1/7 ).
The cycletime then becomes

(08x1+02x1) x5/7+(08x1+02x1)/7+(0.8x2+02x2)/7=8/7.

The resits for varying p are given in Figure 8.4 for all four routing schemes. Note
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Table 8.4: Makov chain of the fourth routing scheme
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Figure 8.4: Cycle times of the four routings

thatthe gycle times of routings one and three completely coincide. If one could choose
anmong the routings, then routing 4 would be preferred since it has the least cycle time
for any p-value. [ |

Example 8.54 (Example of Parallel Computation RevisitedYhe stating point for

this subsection is Equation (1.33). Thisasonlinear equation which describes the
ewlution of the speed of a simple matrix multiplication on a wavefront array processor.
Suppose thatj, i = 1, 2, are ather 1 (ordinary multiplication) or O (multiplication by
a0oral). Letz(k) be defined as in Theorem 8.44. Using the same type of arguments
as inthe proof of this theeem, one shows thatk) is a Markov dain, provided that

the random variables; (k) are ndependent.

It is possible to aggregate the state space of this Markov chain into twelve macro-
states as defined in Tabe 8.5, while preserving the Markov property (the transition
probabilities satisfy the conditions oféahlumping theorem’ 6.3.2 in [74]).

The aher steps of the analysis (computation of the transition matrix of the ag-
gregaed Markov chain and of the invariant measure) can then be carried out in the
standard way. [ |

Table 8.5: Stees of Markov hain; example of parallel computatidn=0, 1, 2, ...

[ni] n2 [ n3 [ng| ns | ng [ nz [ng| ng | nio [nu| nip |

I I I I I I I I I I I I
I I I Ffr+1] | I F{I+2(1+1] I I
Fir+1] | Fjr+2(1+1] | Ffr+1] | I I
P+ 04+ 1 (I+2(I+2)1+2] @ jI+2(14+2] 1 |I-1
0 0 0 1 0 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1 0 0 1 0
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8.4.3 Continuous Distribution Functions

The stating point is Equation (8.32). It is assumed that the sequence of matrices
{AK)}k=0 isi.i.d,, tha for eachk the entriesA;j (K),i, ] = 1,...,n, are muudly
independent, and that the random varial#ig¢0) all have thesame distthution func-
tion onR™*, whichwill be denotedF. We will assume thaF admits a desity. Under
these sssunptions, there is one m.s.c.s. Whenever the suppor i infinite, the in-
crement process (k)} of Chapter 7, and hence the procéa®)} couple in finite time
with stationary processes which do not depend on the initial condition.

From Theorem 84, the varablesz(k) form a Markov chain orR™ ! (the first
coordinae is zero), the transition matrix of which is characterized by the relation

A1) ® B]_o(Aj K) ®2;(K)

(K+1) = 0
2K = A0 e B LAy 0 ©7,K)

i=2....n. (8.34)

The trandtion kernel of the Markov chain, or equivalently the distribution of
(zZok+1)...z,(k+1) )
given( z(K) ... z,(k) ) is obtained from (8.34):

KXz, ... s Xn3 Y2, -+ 5 Yn)

L Plok+D <yo ..., Zek+1D) < Yo | 22(K) =X, ..., Za(K) = X,]
= P[XofX1 =<Yoo, XafXe S Vul s
where the random variableX;,i = 2, ... , n, defined by

Xi =st An(k) & D A K%

j=2

are ndependent. The notatiea refers here to equality in distribution. From the last
two equatdbns and thedct that allAjj (k) possess the samastributionF, it follows
that

KXz, .. s Xa3 Yo, - .. ,yn)=/ |:HP[X1 < +t]} dP[Xy <t] =

o0 n d
/ HH(t+Yj,t+Yj—X2,...,t+yj‘—Xn) aH(t,t—Xz,...,t—Xn)dt
—oo| |3
where .
H(uy, Ug, ..., Up) dzefHF(ui) .
i=1

The didribution function

%o - %) ZP[2(K) < Xan ... s Za(K) < Xy]
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saisfies thefunctional equation

§k+1()’2,---»)’n)=/ / KXz, ooy Xns Y2, -0 Y)Gk(@Xz, oo, OXn)

Whenrewer the infinite support condition is satisfied, we know that the limikling, ¢x =
¢ exigds in the (weak convergence) distributional sense. This limit is a solution of the
functional equation

g“(yz,...,yn)zf / K(X2, ...y Xns V2, oo, V) C(dXg, ..., dX,) . (8.35)

Let ¢ be the unique solution of this equationidtimmediate to see that the distri-
bution functionD (t) of the gationary ratias;; is given by the relation

D) = kILrQOIP’[xl(k+ 1) —xa(k) <t]
= k”m P[A11(K) <t, Aia(K) +22(K) <t,..., Apn(K) + Za(K) <]
= k”m P[A11(K) <t, Ap(k) <t —22(K), ..., Ain(K) <t — z,(K)]

= F(t)lerL\o/ / [TF@—youyz. ... . dy
- =2

= F(t)/ / HF(t—yi)g(dyz,... ,dyn) (8.36)

i=2
The limit and the integral in (8.36) can be interchanged by the definition of weak con-
vergerte, sincer is continuous, see [21].

Example 8.55 Consider (8.32) witm = 2 and with the assumptions made in the
previous subsection. The transition kern€kx; y) of the Markov chain{z;(k)} is
given by

Kx:y) EPlzak+1) < y | z2(k) = x]
= / H(t+y,t+y—x)<%H(t,t—x)> dt

o]

/ Ft+yFt+y—x) <F(t —X)d—th(t) + F(t)%F(t — X)) dt .

o]

Explicit calculations will be made for
F(X) = (1 — exp(—Xx))1[0,00)(X) - (8.37)

It follows from (8.35) that the densitgt of the tationary distributiory saisfies the

equation
© /d
d(y) =[ (d—ymx, y)) dx) dx .

o]
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or, equivalently, altr some calculations,

1> 1 2
diy) = 5/ [—éeXp(—lyl—2|X|)+§exp(—2lyl—2|X|) (8.38)

2 4
+ 3 exp(—lyl —IxXP) — 3 exp(=2ly| — IxX]) + eXD(—IYI)] d(x)dx .

Thisis an integral equation, thesknel of which is degenerate, see [90]. The solution
d(y) must beof the form

d(y) = crexp(—|yl) + coexp(—2y|)

(see [90, Chpter 1,84]), where thecoefficientsc; till must be determined. Substitu-
tion of this form into the integral equation leads tg 8- 23c, = 0. This, togéher with
the normalization conditioyff‘”oo d(y)dy = 1 resuts in 2c; 4+ ¢; = 1, which uniquely
determines these coefficients. The stationary density is hence given by

23 4
d(y) = 3—8exp(—|y|) — Eexp(—Zlyl) , Y€ (—00,00) . (8.39)

It is easy to show thad(y) > 0, Vy € (—o0, 00), and hencel is indeed a probability
density function. With the aid of (8.39), one now obtains, after some straightforward
analysis,

407
lim E k+1 K]=—=179.
Jim E [xu(k + D/xa(k)] 228
This expression also equals limq E (X (k))l/"], provided that the random vari-
ablesx;(0) andx»(0) are integable. []

Remark 8.56 The fact thatdy, defined ashe density of¢k, indeed approaches the
limit d ask goes to infinity, can easily be illustrated for this example. If one starts with
an arbitrary densitgy, thend; is already the sum of the two exponentials éxg) and
exp(—2y), as fdlows from

dhra(y) = / K (x: y)ck(0) dx .

o]

where thekernelK is the same as in (88). In general,
de(y) = ci(k) exp(—lyD) + () exp(=2ly]) ., k=1,
and the coefficients satisfy
( ak+1 ) _ ( 11/9 23/36 ) ( c(k) )
ok+1) )=\ —49 -5/18 ek )
If onestarts \(/jvith with a probability density functioty, then Z;(k) + c2(k) = 1, k =
1,2,...,an

k|im cu(k) = 23/38 , kIim C2(k) = —4/19 .
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Hence he transént behavior converges to thmit (stationary) behavior. [ |

Remark 8.57 Theoutcome of the above example will be compared with the outcomes
of two other examples. The models of allékrexamples will be the same, i.e. (8.32)
with n = 2. The difference is the stochastic behaviorgf. In the almve exarple, it

was chaacterized by (8.37). In theext two examples we have

Example 2: u(Aij =0) = u(Aj; =2) =1/2;
Example 3: A;j is uniformly distributed on the interval [@).

In all these three example&[Aj] = 1. In spite ofthis, it will turn out that the
throughput for all three examples is different. In the second example, the elefents
have a discrete distribution. The metho8f4.2 can be applied, which results in

lim Ex(k+ Dix o] = 172 —171.

For the thrd example, the ntbod described at the beginning of this subsection can be
used. The same type of analysis leads to

Jim E[xak + Dxa] = 144 .

The third example leads to the best throughput. This is not surprising: for instance,
the mmparison between the exponential case and the case of Example 3 follows from
Thearem 8.3; indeed, the Karlin-Novikoff cut criterion [123, Proposition 1.5.1, p. 12]
immediately implies that an exponential random variable of mean 4.jsbounded

from below by a uniform random variable on, [). [ |

8.5 Appendix

8.5.1 Stochastic Comparison

This subsection gathers a few basic properties of the three stochastic orders introduced
in §8.2.1, and related definitions. For proofs and details, see [123] or [6].
From the very definitions, it should be clear that

x <ax' = f(x) <« FXT) (8.40)
for all coordinatewise nondecreasing functiodnsR" — R™. In the same vein,

X <iex X' = £ (%) <iex F(XT) (8.41)
for all nondecreasing and convex functiohs R" — R™,

Remark 8.58 From Jenseris inequality, it is immediately checked that for all inte-
grable random variables € R", the fdlowing relation holds:

E[X] <x X . (8.42)
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Lemma 8.59 If x and x' are nonnegative, real-valued random variables, each of the
properties X <g X', X <¢x and X <iex X' implies the moment relation E[x"] <
E [(x")"], for alln > 0.

Consicer anR"-valued sequence generated by the recursion
x(k+1) =ax®,uk) , k>0, (8.43)

for some Borel mapping : R" x R? — R", for somegiven sequence dk”-valued
random variablesi = {u(0), ..., u(k), ...} and some initial conditionx(0), all de-
finedon the probability spacé, F, P). Let x' be the sequence defined as above, but
for the initial condition and the sequence, which are respectivelacedibyx(0) and
uf.

In what follows,¢ denotes the sequence

£ = {x(0), u(0), ud), ...} , (8.44)

with a similar definition fors *. The proofs of the following results can be found in [6,
Chapter 4].

Theorem 8.60 Assume that the mapping (X, U) — a(X, U) is nondecreasing; then
£ <g &1 impliesthat x <g; x.

Theorem 8.61 Assume that the random variables x(0) and u(0), u(1), ... areinte-
grable, that the mapping (X, U) — a(X, U) is convex, and that the mapping X
a(X, U) isnondecreasing for all U; then & <., &' impliesthat X <icx X.

Theorem 8.62 Assume that the random variables x(0) and u(0), u(1), ... areinte-
grable, and that the mapping (X, U) — a(X, U) is convex and nondecreasing; then
& <icx gT! impliesthat X <icx X.

Definition 8.63 (Stochastic convexity)A collection of R"-valued random variables
{Z(p)},er Withaconvex parameter set R C R™ issaidto bestochastically (increasing
and) convex in p if E[¢(Z(p))] is (nondecreasing and) convex in p € R, for all
nondecreasing functions¢ : R"* — R.

The stochasc concavity with respect to a parameter is defined in a similar way.

Definition 8.64 (Association) The (set of) R-valued randomvariables xy, ... , Xy, all
defined on the same probability space, are (is) said to be associated if

E[f(xa, ..o X9, oo X))l Z E[f (e, ..o x| E[9(Xe, - Xn)] s

for all pairs of increasing functions f, g : R" — R such that the integrals are well
defined.

This definition is extended to sets Bf*-valued random variables by requiring that the

sd of all coordinates be associated. It is also extended to sequences and to random pro-
cesses in thaisual way: the sequence is said to be associated if all finite subsequences
are associated.
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Remark 8.65 The assaiation property can often be established without computing the
joint distribution of the variables explicitly: for instance, the union of independent sets

of associated random variables forms a set of associated random variables; as can easily
be checked, for any nondecreasing functfon R" — R, and any et of associated

random variable$xy, . .. , X}, the variableg¢ (x), X1, ... , Xn} are associated, where
def

OX) = ¢ (X1, - -+ 5 Xn)- [ |

Lemma 8.66 If therandomvariables {xy, ... , Xn} are associated, then

n
@Xi Sst @Yi ,
i=1 i
and
n n
/\Xi Zst /\Yi ,
i=1 i=1
where X isthe product form version of x, namely the random vector such that
o Xi =g Xjforali=1...,n;
e themarginals of X are mutually independent.

Note that the product form versiorx of x is only characterized through its probability
law. Corterning recur®ns of the type (8.43), we also have the following theorem.

Theorem 8.67 Assume that the function (X, U) — a(X, U) is nondecreasing. If the
set {£(0), £(1), ...} and the initial condition x(0) form a set of associated random
variables, then the random sequence x, £ is also associated.

8.5.2 Markov Chains
Sajuences generated like in (8.43) satisfy the following property:

Theorem 8.68 If the sequence u(k) isi.i.d., then {x(k)} formsa homogeneousMarkov
chain.

For this and related results on Markov chain theory, see [121].

8.6 Notes

A good survey on the methods for deriving stochastic monotonicity results for classical queuing
systems can be found in the book by D. Stoyan [123]. The interest of these techniques to an-
alyze synchronization constraints was first stressed by A.M. Makowski, Z. Liu and one of the
coauthors, in [12] for queuing systems, and in [10] for stochastic event graphs. The uniformiza-
tion method for proving the concavity of throughput generalizes an idea of L.E. Meester and
J.G. Shanthikumar (see [89] and [10]).

The use of large deviation techniques for deriving growth rates for age-dependent branching
processes wasinitiated by J.F. Kingman and D. Biggins [76] and [19]. The relation between
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event grghs and branching processes which is presentéé.B) isthat considered in [8]. This
approach has interesting connections with the work of B. Derrida on directed polymers in a
random medium (see [56], [48]), from which the idea of Remark 8.42 originates.

Most of the results mentioned 8.4 come from [97], [101], [104] and [117]. In the latter
reference, one can also find further results on the asymptotic normality of daters. The analysis of
the finiteness of the state spacg&4.2 is mainly drawn from [54]. The type of functional equa-
tion which is established i§8.4.3 is also considered in certain nonautonomous cases (see [9]).
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Chapter 9

Related Topics and Open Ends

9.1 Introduction

In this chapter various items will be discugsghicheither didnot find a natural place

in oneof the preceding chapters, which are only related to discrete events, or which are
not yet fully grown in a scientific way. The personal bias of the authors will be clearly
reflected in this chapter. There are no direct relations between the sections. Section 9.2
is concerned with various continuations of the linear theory developed throughout the
book. Section 9.3 is devoted to the control of discrete event systems, wtérdas
gives a picture of the analogies between the theory of optimization and that of Markov
chains. The last three sections are devatesbme (limited) incursions into the realm

of general Petri nets and nonlinear systems.

9.2 About Realization Theory

9.2.1 The Exponential as a Tool; Another View on Cayley-Hamilton

If a andb are reals (or-o0) then thefollowing identities are easily verified:

a®b=maxa,b) = lim s 1(In(exp(as) + exp(bs))) ,

a®b=a+b=-s"tInexpas) expbs)) .

Rather than working in the max-plus algebra setting with variadlés. .. , one can
now envisage working with the variables €a&p), exp(bs), ... , wheres is a positive
real, in conventional algebra. After having obtained results in conventional algebra, we
must trarslate these results back into corresponding results in the max-plus algebra by
usingcareful limit arguments whes — oo. This proceélure will be eluedated in this
subsection and i§9.2.3. Instead of working with exps), exp(bs), ... , we will work
with 22, 2°, ... , zreal, and study the behavior far— oo.

In convertional calculus, the Cayley-Hamilton theorem states that every square
matiix satisfies its own characteristic equation. To be more explicithlbe ann x n
matix with entries inR. If

detal — A ="+ A" T+ +cir 4, (9.1)

419
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then
A"+ A 4 e A4cl =0 .

In these equationk is the conventional identity matrix and 0 is the zero matrix. The
coefficientsc, i = 1,...,n,in (9.1) satisfy

Ai1i1 T Ailik
o = (=D)K Z det :

' : 9.2)
i1<ip<--<ik Aikil R Aikik

Now considerthe matrixz? %' (zA1), i.e. theij-th entry ofz* equalsz®i. The Cgley-
Hamilton theorem applied to matrix® yields

@+ 0@ 4+ 1+ 8l =0 . (9.3)

If the principalk x k submatrix occurring on the right-hand side of (9.2) is denoted
A1, i, ... ,ik), then he ceefficientsy are given by

= (=¥ Z detzAlviz— i)

i1<ip<---<ik
If we takethe limit whenz — oo, then weobtain

é.k ~ (_1)kzkzmax1<i2<__<‘k domA(ia,iz,...,ik) , (94)

wheredom (fordominant) is a corcept sinilar to per (forpermanent); for the latter
see [91]. For a arbitrary sjuare mé&ix B, dom(B) is defired as

dom(B) =

greatest exponent in def) ifdet(z®) #0 , ©5)
: .

otherwise.

The coefficientzy in (9.4) equals the nuber of even permutations minus the number
of odd permutations contributing to the highest-degree term in the exponents of

max dom (A, iz, ... ,ik) .

i1<i2<---<|k

Now let usconsider the asymptotic behavior ")k asz — oco. One mg easily
understand that

Mk~ 2~ (9.6)

where A on the right-hand side denotes tkeh power of A for the matrix product
in Rmax. Define

=Dy

Z = {kll<k=<ng >0,

@ dom(A(i1, iz, ... ,iK) -

i1<ip<--<ig

v~
= %
I

P31
Il
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Subditution of (9.4) and (9.6) into (9.3) yields the following:

n & n—k k n—k
A BN ot AR PN o<

keZ k¢T

Since allterms now have positive coefficienthie conparison of the highest degree
terms in both members of this approximation leads to the following identiRgig:

ANo@PagAr=Pga™. (9.7)

keT k¢ T

It is this identity that we consider as a version of the Cayley-Hamilton theorem in the
max-plus algebra sense.

Remark 9.1 Thedominant, as it appears implicitly in (9.7) through the coefficigffs
can be directhobtained fromA

dom(A(iig, ... ,ik) = @ Ailjl T Aikjk ’

whereji, ..., jk is a permutation ofy, ... , iy, and where thedp-symbol is with re-
spect to all such permutations. [ |

Remark 9.2 It isimportantto realize that this version of the Cayley-Hamilton theorem
differs slightly from the one given i§2.3.3. The reason is that the derivation of the
current version terms have been canceled in the calculatippas it appears in (9.4).

If terms of equal magnitude but of opposite signature (of the permutations) had been
kept, then one would have obtained the ‘origind’ Cayley-Hamilton theorem in the
max-plus algebra. [ |

1 2 3
A=1 4 1 ¢ |,
e 5 3

which wasalso considered if2.3.3. First the coefficients; will be calculated:

Example 9.3 Consider

C = @il domA(i,) = @il dom(A,,) =16163=3,

G = D, i, dOMA(i1, i) = domA(l, 2) ® domA(L, 3) ® domA(2, 3)
=60444=6,

¢ =domA(L,2,3) =12 .

The quantity ¢, equals the number of even permutations minus the number of odd
permutations needed to obtaihi The permutations of the diagonal elements are even
end hencg, = +1. The permtation which realizect; = 6, where the number 6
was obtained byA;, Az, is odd and therefore, = —1. Similarly, the permutation
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which realizedc} = 12, where the number 12 was obtainedAay A>; Asz, is even and
thereforel; = +1. Thus one obtaing' = —1, k = 1, 2, 3, and (97) becomes

A>=3A°p6A® 12 .

Notethat this equation was also givengi2.3.3, with the actual subgituted. However,
in that section the characteristic equation was first simplified befores subdituted
into this characteristic equation. [ |

From the dove example it is lear that for any square matri&, ¢, = +1 and
hence A" and A"! always appear on differert sides of the equality symbol in the
Cayley-Hamilton theorem. The lower order exponentialé.achin appear at either side
(but noton both sdes simultaneously) of the equality symbol in the current version of
the Cayley-Hamilton theorem.

9.2.2 Rational Transfer Functions and ARMA Models

In conventional discrete time system theory a rational transfer function can be ex-
pressed as the ratio of two polynomigiéz) = "y piZ andq(2) = Y0_,q;Z

(z is the delay operator). L&i (z) andY (z) denote thez-transforms of the input and

of the output trajectories(-) andy(-) respectively. We have

Y(2) = %um ©d@Y@ =p@U@ « ) qyt+j) =) put+i .
j=0 i=0

In Statistics the last equation is known as an ‘ARMA model: the ‘autoregressive’ (AR)
part of the model corresponds to the left-hand side of the equation, whereas the ‘moving
avelge’ (MA) part is the right-hand side.
In §5.7 rational transfer functiond (y, §) € M&{y, §] were identified with func-
tions which can be written &8 A* B, whereC (respeately B) is a row(respeately
a coumn) vector andA is a square matrix. The entries 6fand B may be restrained
to be Boolean and those ok are elements aM{i] i, 8] which can be represented by
polynomials of degree 1 ip ands (see Tkeorem 5.39). Our main objective here is to
show that réional transfer functions are amenable to ARMA models as previously.
However, since there is no possibility of having ‘negative’ coefficients of polyno-
mials, the AR and the MA part should both appear in both sides of the equation, which
yields an implicit equationThis implicit equation inY (U is given) may hae seeral
soluions in general, and among them, there is the ‘true’ solutiotyot CA*BU.
No restts are available yet to select this true solution among the possibly many other
sdutions. Our purpose is just to show a utilization of the Cayley-Hamilton theorem to
pass from th&€C, A, B)-form to the ARMA form.

Lemma 9.4 If Y istheoutput of a rational transfer function when U istheinput, then
there exist four polynomials py, p2, 1, 02 € My, 8], with deg p1) < degqp) and
degp2) < degqs), such that, for all U € M&H{y, 8], Y satisfies

Y @ piU = Y @ poU . (9.8)
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Proof NotethatY canbewritten asC X with X = AX@® BU (conditionson(C, A, B)
have beenecalled earlier). In Theorem 2.22 itaw shown thia in a commutative
dioid such asMf{ v, 8], there exist two polynomialg*(z) and p~(2) of anabstract
variablez with coefficients belonging to the dioid (hef&{] y, §]), such that

PT(A =p (A .

The explicit form of these polynomials, given in Definition 2.21, shows that their coef-
ficients are themselves polynomials(ip, §) sinceA is a polynomial matrix. Now, for
anyk € N, we have

X=AXoEaAd - A)BU . (9.9)

Let p* = B, pk*z" and considea sinilar expression forp~ (with degreen;). One
canmultiply both sides of Equation (9.9) bp, and sumup all these equations for
k=0,...,n; Thisyields

(@ PI) X =(p*(A) Xa&r*(ABU
k=0 —_—— ———
N —— e’ az az

for some polynomiat * (z) of degree less tham, the fam of which is not given in
detail here. In a similar way, one can obtain

(@ p,) X =(p (A) X&r (ABU
1=0 e e’ v
— — as 3

ay

for some polynomiat — (z) of degree less tham,. Note hata, = as by the Gayley-
Hamilton theorem. Then, we have

yPQag=bBPB=30asPas=ada .

To complete the proof, it suffices to multiply both sides of this equatiorChgwhich
commutes with ‘scalars’) to leét appear Y = CX). [ |

9.2.3 Realization Theory

For this subsedion the reader is assumed to be familiar with conventional realization
theory, e e.g. 72]. In §1.3 the following question was posed: How do we obtain a
time-donain representatin, or equivalently, how do we find, B andC, ifthe p x m
transfer matrix

H(y) = yCB® y>’CAB @ y3CA’B & - - -

is given? For the sake of simplicity we witbnfine ourselves to SISO systems, i.e.
maticesB andC are vectorsrh = p = 1). One may be temptdd study tle relted
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semi-infnite Hankel matrixG defined by

01 02 O

02 O3 O4
G=| 9B 94 O

Oa . .

whereg; = CA~1B; thesequantities are sometimes callédarkov parameters. Only
partial results, some of which will be shown now, have been obtained along this line.
The matrixG<iy<j) is, as in Chater 2, defined as the submatrix @f consiging of

the intersection of the firstcolumns andhe firstj rows of G. As an exam|e, consider

the Markov @rameters

glzlv 92237 g3=07 g4=17 Os = _27 Os = _17 g7 = _47 . (910)
It is easily verified thatdr this series,
domG <<y =1, domG(<z<2) =6, domG(<3 =<3 =0,
and domG<ijy<iy = efori >4 |

where dom was dafed in (9.5). This, with the conventional theory in mind, might
lead to the conclusion that the minimal realization would have order 3. This is false
since he Markov parameters above were derived from the system with

A=<_; _g) B=<Z>, cC=(3 1), (9.11)

and hercethe minimal realization will maximally have order 2. Studying d@3p<i)(<i)
turnsout not to be very fruitful. A better approach is to consider linear dependences
anmong the rows ofs. For the airrent example, for instance, we have

Gi=(-3Gi1®(-2Gio, i=34....
Now we can usehe followingtheorem.
Theorem 9.5 Given the series {g; };2, such that for the corresponding Hankel matrix,
Gi=¢Gi.1®- - ®cGi_pn, i=n+1n+2...,

holds true for certain coefficients cy, ... , ¢y, and where n is the smallest integer for
which this, or another linear dependence (see below), is possible, then the discrete-
event system characterized by

e ... & O1 e
e e ... & o2 &
A=| : , B= ], o= |
e ... .. e e On—1 :
Gh ... ... C On e

isaminimal realization.
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The proof can be found in [105]. The essence of the proof consists in converting
the statement of the theorem into the conventional algebra setting by means of the
exponential transformation as introduced§8.2.1, giving the proof there and then
returning to the max-plus algebra setting. In the statement of the theorem above, the
notion of linear dependence of columns is used.

Definition 9.6 Column vectors vy, ... , v, are said to be linearly dependent if scalars
Ci,...,Cy notall g,andasubset 7 € {1, ... , n} exist such that

@Ckvk = @Ckvk .
keT k¢T

If this theorem is applied to the series in (9.10), then the result is

(5 3) we(3) oo

which is dfferent from (9.11), although both 3-tuples, B, C) characterize the same
series of Makov parameters.

Unfortunately, Theorem 9.5 is of limited use. The reason is that it cannot deal with
general linear dependences of column vectors. Take as an example

=5, ¢=8, g=115, g=155, gs=195,.... (9.12)
For the corresponding Hankel matrix the following dependence is true:
Gi®7Gi 2=4Gi 1, i=34...,

but Theorem 9.5 does not cover this kind of linear dependence. The system character-

ized by
3 7 5
A=<_2 4>, B=<e>, C=(e 35),

however, is a nimimal realization of the Markov parameters given in (9.12).

The @nclusion of this subsection is thatygn an arkitrary series & Markov pa-
rameters, it is not known how to obtain a nmimal stde space realization (if it exists).
In the next subsection, however, the reader will find a recent development.

9.2.4 More on Minimal Realizations

R.A. Cuninghame-Green [50] hasaently come up with a promising method to obtain
a stde smace realization from a series of Markparameters. The following two theo-
rems are used, the proofs of which can be found in [49]. In these theoreKissi&
matiix, thenK is the matrixobtained fromK by transposition and a change of sign.

Theorem 9.7 For ageneral matrixK, (KO K)®@ K = K .

The ymbol © refers to the multiplication of two matrices (or of a matrix and a vector)
in which the mineperation rather than the max-operation is used; it will be discussed
more extensively i§9.6. The theorem just formulated states that all columrnis afe
eigenvectors oK © K.



426 Synchronization and Linearity

Theorem 9.8 For a given matrix K, consider D, where D = K ® Ky and Ky is
derived from K © K by replacing all diagonal elements by . Then a column of K
islinearly dependent on the other columns, i.e. one column can be written as a linear
combination of the other columns in the max-plus algebra sense, if and only if it is
identical to the corresponding column of D. The corresponding column of Kgy then
yields the coefficients expressing the linear dependence.

Thistheorem gives a routineethod of finding linear dependences among the columns
of a given matrix. This linear dependence is to be understood as one column being writ-
ten as a linear combination of the others. Note that this definition of linear dependence
is more restrictive than the definition usedsi2.3, Definition 9.6.

For the refization one forns a Haokel matrixG <n+1)(<n+1) for somen sufficiertly
large. From Tleorem 9.7 weknow that the columns 06 <n+1)<nt+1) are preerved
by the ation of G<nt1y<nt1) © (Ge)(<n+1y(<n+1)- It follows that, if A is the matrix
obtained by dropping the first row and last columitet 1) (<n+1) © (Ge) (<n+1)(<n+1)s
then

01 02
02 O3
A® . = . ,
On On+1
i.e. A moves theMarkov parameters ‘one position up’. A state space realization is now
obtained byA, by B as the first olumn of G(<my<my andbyC = (e ¢ ... ).

In general, the realization found will not have minimal dimension. In order to re-
duce the dimension, Theorem 9.8 is used. One searches for column linear dependences,
as well as for row linear dependencesfofBy simutaneously deletig dependent rows
and colmns of the same index from, the state gace dimension is reduced.

As an eample, consider the Markov parameteis= 0,0, = 3,03 = 6,04 =
10,95 = 14,9 = 18,..., and taken = 3. It is easily verifi@, by following the
procedure desifyedalove, that

3 e -4 e
A= 6 3 el], B=| 3], C:(e € 8).
10 7 4 6

Since he second column of\ depends linearly on the first one, and the second row
depends linearly on the other rows (it is linearly dependent on the last row), the second
row and second column can be deleted so abtain a site space realization of lower

dimension:
3 -4 e
A=<10 4>, B=<6>, C=(e ¢).

This latter realization turns out to have minimal dimension. It is left as an exercise to
show thatif started withn = 2 rather han with n = 3, one would have obtained the
wrong result. TFs in spite of the fact that the Hankel mati&has ‘rank’ 2; fori > 1

we have that—4)G,» ® 3G, = Gj1.
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9.3 Control of Discrete Event Systems

In this section speai instances of nonlinear systemslwe described, for which the
max-plus seiting is still appropriate. The system equations to be considered have the
form

X(k + 1) = A(uk), uk — 1))x(k) . (9.13)

Matrix A can be ontrolled by the decision variableto bedefined. In Chapter 1 a
decision variableu was encountered also. There it had the function of an input to the
system nodes of the underlying network had to wait for external inputs. In the current
sdting as expressed by (9.13),influences the entries of the system matéx For

a motivation of the system described by (9.13), think of a production planning where
the holding times at the nodes are zero and where the standard traveling time from
nodej tonodei is indicated byA;;. This travéding time can be reduced maximally by

anamountc if an extra pieceof equipment is used. Rather tha, it then lecomes

Ajj def max(Aij — ¢, 0). It is assumed thabnly one such a piece of equipment is

available and that it can be used only once (i.e. at one arc, connecting two nodes)
during eachk-step. One can envisage situations in which this piece of equipment could
be used a number of times during the sakgtep, at different arcs of the network.
Although such a generalization can in principle be handled within the context of this
section, the analysis becomes rather laborious and such a generalization will therefore
not be considered.

Suppose we are given a network with two nodes. If no extra piece of equipment
were avdable, the evolution of the state vecte(k) € R is according tox(k + 1) =

AX(K) in Rmax, Where
31
a-(31).

Boolean vaablesuij (k), i, j = 1, 2, are now iriroduced todescribe the control
actions; they are defined subject}o u;; (k) = 0 or= 1. Hence maximally one of the
uij (k) can be 1, which indicates that the piece of extra equipment has been set in for
arca;j, from nodej to nodei during thek-th gycle. Thus there are five possibilities;
the pieceof equipment is not applied or it is applied to one of the arcs corresponding
to Aj,i, j =1, 2. If c =2, these possibilities result in the following matricas

31 11 30 31 31
4 2 ) 4 2 ) 4 2 ) 2 2) 4 0)°
Formdly, we can write

_{ Awpui; Appur,
x(k +1) —< Amu%i Azzﬁugg )x(k) )

This equation does not take into account the fact that the piece of equipment might not
be available at the appropriate node at the right time. For this reason, an extra state
variable xz will be introduced;xs(k) denotes the epoch of release of the equipment
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during the(k — 1)-st cycle. The correct evolution equations then become

( x1(k+ 1) ) _ ( Aqipuz;  Asgpusn ) ( x1(K) )
Xa(K + 1) Aprfud,  Axful, X2(K)
In(u11(K)) & In(uz1(k))
@< In(Us2(0) @ IN(Uza(k)) >X3(k) - 024
2 2
x3) = PP A Inwjik— D)%k . (9.15)

i=1 j=1

where we nade the convention that(h) = e and In(0) = ¢. If (9.15) were subgituted
into (9.14) then an quation of the form (9.13) would result.

If we stat at state( 0 0O )’ for k = 0, thenthe five possible next states are
respectively*

wh w

3 1 3
4 1, 4 1, 4 1, 21,
3 1 3

Fromthese states, new states can be reached again. Thus a tree of statesocentl be f
We will not count states as such if they are linearly dependent on an already existing
state. The gates will be normalized by adding a same scalar to all components of a state
vecbr, such that the last component becomes zero. (other normalizations are possible,
swch asfor instance setting the least component equal to zero). It turns out that five dif-
ferent nomdized states exist. Some trial and error will show that whatever the initial
condtion is, the evolution will always end up in these five states in a finite number of
steps. These sta@re ndicaed byn;,i = 1,...,5, and are give, togethemith the
possible follow-ups, in Table 9.1. In the same table the normalization factors are given.
If according to this table; is mepped ton; with a normalization factoa, then heac-

tual mgping isn; — a® n;. This table defines a Markov chain the ‘transition matrix’

of which is given below. Thgi-th entry equals the normalization factor corresponding
to the m@ping fromn; to nj by means of an appropriate control, if this control exists.

If it does not exis then the entry is indicated ly

<

[l
o NP W®
N ® ® oW
w® ® N A

Chool\)_b@:
C‘cmmwm

Suppose that in Table 9.1 an initial statewould have been mapped to another stgte
twice, with normalization factora andb respectively, witha < b (which does not
occur in this example though). Matri should then have contained the smaller of the
two factorsa andb. Sincethe controls should be chosen in such a way that the network

1The first one is theasult of applyingsj = 0 for alli, j; for the £cond one, we usad; = 1 and the
otherujj = 0; for the third, fourth and fifth onesy, = 1, u;2 = 1 andupz = 1, respectively, where the
nonmentioned-entries remain zero.
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Table 9.1: Pssible transitions

Initial New states according to

state the five diffeent ontrols
n=(0 00 ) no (3]l ns|2]n|3)naf2fnm|3
n=(0 10 ) no [ 31|ns| 2| na|3)ni|3[nm|3
ns=(0 3 0 ) no|4|ln|4|ns|3|n|afn|a
ni=(1 0 0 ) no|4llns| 2| na|4|na|3|n|4
ns=(0 2 0 ) no |3 n2 |3 n2|3)na|3|n|3

operates as fast as smible, ths matrixV will be considered in the min-plus algebra;
hences = +00. The eigenvalue of this matrix is found by applying Karp’s algorithm;
it turns out tobe equal to 5. There are tw ciitical circuits, namely

ng — N3 — Ng , Ny — Ng — Ny .

There are two ifferent periodic solutions to our problem; they are characterized by the
two critical circuits. From Table 9.1, it W be clear how to ontrol the network, i.e.
where to use tis extra piece of equipment, such that the evolution of the state equals
one of these periodic solutions.

9.4 Brownian and Diffusion Decision Processes

We show the analogy between probability calculus and dynamic programming. In the
former area, iterated convolutions of probability laws play a central role; in the latter
area, this rte is played by the inf-convolutionfacost functions. The main analysis
tool is the Fourier trasform for the former situation, and it is the Fenchel transform
for the latter. Quadratic forms, which form a stable set by inf-convolution, correspond
to Gaussian laws, wbh are stable by conlation. Asymptotic theorems for the value
function of dynamic programming correspond to the law of large numbers and the
certral limit thearem. Straight line optimal trajectories correspond to Brownian motion
trajectories. The operator— dv/dt — (dv/dx)?, which will be appear as a min-plus
linear operator, corresponds to the operator> dv/dt + 3%v/9x?. The mn-plus
functionx?/2t corresponds to the Green functi¢ly v2rt) exp(—x2/2t). A diffusion
decision process with generator> dv/dt —b(x)dv/dx —a(x)(dv/dx)? corresponds

to the diffusion process with genera@tdt + b(x)d/ax + a(x)d%v/dx>.
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9.4.1 Inf-Convolutions of Quadratic Forms

Form € R ando € R, let Qm , (X) denote the quadratic form indefined by

X—m

1 2
Qm,a(X)=§< ) foro #0 ,

Orno(X) = 8m(X) = 0 forx =m ;
MmOV =AM T ) 4o otherwise.

These quadratic forms take a zero valumat
Given twomeppings f andg from R into R, we define tie inf-convolution of f
andg [119] as the mapping fromR into R (with the conventiomo — co = oo ) defined
by
z— inf (fX)+a(y)) .
X+y=z

Itis denotedf ® g.

Theorem 9.9 We have

Q.o ® Qmz o, = Qmwmz,«/m '

Thisresult is the analogue of the (conventional) convolution of Gaussian laws (denoted
x):
N(my, o1) x* N(Mp, 02) = N (Mg + M, /o2 + 02) ,

where A'(m, o) denotes the Gaussi law with meanm and stadard deviatiorns.
Therefore, there existsraomphism between the set of quadratic forms endowed with
the inf-convolution operator and the set of exponentials of quadratic forms endowed
with the convolution operator.

Clearly this result can be geralized to the vector case.

9.4.2 Dynamic Programming

Given the simplest decision process:
Xx(n+1) =x(M) —u(n) , Xogiven
for x(n) € R, u(n) € R, n € N, and theparticular additive cost function
N—-1
o (;O cu@) + ¢<x<N))> :

wherec and¢ are mappigs fromR into R which are supposed to be convex, lower-
semicontinuous in the conventional sense, equal to zero at their minimum and thus
nonnegative. Lein denote the abscissa wharachievests minimum, then

minc(-) =c(m) =0 .
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The ssumptions rained here araot minimal but they will simplify our discussion.
The valuefunction defined by
X(n) = x)

v(n,x)=muin(c(u)+v(n+1,x—u)) , U(N,X) =¢(X) .

N-1
v(n,x) = min (Zc(u(p)) + o (X(N)

u,... ,u(N-1) p=n

sdisfies the dynamic programming equation

It canbewritten using the inf-convolution:
vin,)=c®vin+1), v(N,)=¢,
that is (with the change of time indgx= N — n, and tle choice¢ = &),
v(p, ) =cP()® 8 =cP() .

This, in words, means that the solution of the dynamic programming equation in this
particular case of an ‘independent increment decision process’ is obtained by iterated
inf-convolutions of the instantaneous cost function.

In a moe gereral case, the instantaneous coslepends on the initial and the
final states of a decisioperiod, namely(n) andx(n + 1) (and not only on the state
varigion u(n) = x(n + 1) — x(n)). Moreover the dynamics is a general Markovian
process, namelk(n + 1) € I'(x(n)) (whereI" denotes a set-valued function frdkn
into 28). Then the dynamic programming equation becomes

v(n,X)=yr€nri(r;)(C(x, Y+vin+1y) , v(N,X)=68(X) ,

the solution of which can be written, with the same change of time, as
v(n, ) =[c"®] () .
where the product of two kernels is now defined as

[ct®c] (X, 2) = yﬂ}i& X, y) +ca(y. 2) .

This more general case is the analogue of the general Markov chain case.
In addition to the analogues of the law of large numbers and of the central limit
thearem, we will show the analogue of the Brownian motion and of diffusion processes.
Before addressing this issue, let us recall, once more, that the role of the Fourier
transform in probability theory is playeoly the Fenchel transform in dynamic pro-
gramming as it was noticed for the first time in [17].
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9.4.3 Fenchel and Cramer Transforms

Let f be a mapping fronR —>LE, supposed to be convex, |.s.c. and proper (i.e. never
equal to—oo) and letf : R — R be its Fenchel transform (see Remark 3.36). Then it
can be showthat f is convex, l.sc. andproper.

Example 9.10 The function defined by % (Qm.)](p) = (1/2)p?s? + pm is the
amalogue of the characteristic function of a Gaussian law. [ |

The transformF, behaves as an involution, that i5s(Fe(f)) = f for all convex,
proper, l.s.c. function$.

As alread/ naticed, the main interest of the Fenchel transform is its ability to con-
vert inf-convoluions into sums, that is,

fe(f®g)=-7:e(f)+-7:e(g) .

Applying the Fenchel transform to the dynamic programming equation in the case
whenc depends only ox, we obtainv(N, -) = F¢ ($+ Nf:j. Using the &st Fenchel
algorithm [31], this formula gives a fast algthrm to solve this particular instance of
the dynamic programming equation.

Moreover, let us recall that the Fenchel transform is cantous for the epigraph
topology, that is, the epigraphs of the transformed functions converge if the epigraphs
of the source functions converge for a well chosen topology. We can use, for example,
the Hausdorff topology for the epigraphs which are closed convex sef&?pbutthis
may be too strong (see [71] and [2] for discussions of these topological aspects). Here
we will be more concerned with the analogies between probability and deterministic
control.

Example 9.11 Let ¢, : x — vX. Onehas [Fe(¢,)](p) = 8,(p). Whenv — 0, then
8, — & in the epigraph senséut it does not converge pointwise evenéjf — 0
pointwise. [ |

Moreover, the pointwise convergence of numerical convex, |.s.c. functions towards a
function in the same class implies the convergence of their epigraphs.

The Cramerransform is defined b§Fec log.L, whereL denotes the Ldpce trans-
form. Therefore, it transforms the convtilinsinto inf-convolutions. Thus itis exactly
the morphism which we are interested in. Orifinately, it is only a morphism for a set
of functions endowed with one operation, the convolution. It is not a morphism for the
sum (the pointwise sum of twiinctions is not transformed by the Cramer transform
into the pointwise m of the transérmed functions). Moreover, the Cramer transform
convexifies thednctions but the inf-convolution is defined on a more general set of
functions. Nevertheless the mapping Jim log, defines a morphism of algebra be-
tweenthe asymptotics (around zero) of positive real functions of a real variable and the
real numbers endowed with the two operations min and plus. Indeed,

Iirrz)logv(va +vP) = min(@, b) , log, W) =a+b .

This transformation has been already utilized®2 under a slightly different form.
We cannow study the analogues of the limit theorems of probability calculus.
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9.4.4 Law of Large Numbers in Dynamic Programming

Suppose we are given two numerical mappingsde¢ which are nonnegative, convex,
I.s.c.and which are equal to zero their unique minimum. The first and second order
derivatives of a functioe are denoted and¢ resgectively.

To simplify the discussion, let us suppose that C? and|1/&(U)| < oo in a
neighborhood of the minimum. Leh denote the abscissa wharechievests mini-
mum (zero) value. Lety (x) be the mapping — v(N, Nx). For the valie function,
this scding operation corresponds to the conventional averaging of the sample.

Theorem 9.12 (Weak law of large numbers for dynamic programming)Under the
foregoing assumptions, we have

NIim v(N, NX) = 8n(X) ,
the limit being in the sense of the epigraph convergence.

Proof We have
B(N. p)=¢(p/N) + NE(p/N) . lim $(p/N)=¢(0) =0,

since¢ admits a zero mimum by assumption. Moreovet(0) = 0 for the same
reason. Ther€(p) admits a Taylor expansion around O of the formpm + O(p?).
Indeed,

C(P) = %o(P) + Xo(P)(P — E(Xo(P)) = Xo(P) = M+ O(P) ,

wherexq(p) denotesthe point at which the maximum is achieved in the definition of
the Ferhel transform ot. Therdore, v(N, p) = pm + O(1/N). Then, using the
continuity of the Fenchel transform, we obtain

NIim Fe(@(N, ) = Fe(pm) = m .

9.4.5 Central Limit Theorem in Dynamic Programming

We have the analogue of the central limit theorem of probability calculus. The value
function, centered and nmalized with the scalingy/N, is asympttically quadratic.

Theorem 9.13 (Cental Lim it Theorem) Under the foregoing assumptions, we have
. 1, >
Nll”noov(N,«/W(y+ Nm)) = Ec(m)y .

The limitisin the sense of epigraph convergence.



434 Synchronization and Linearity

Proof We make thexpansion up to the second orderpf— T\ (p) wherery is the
mappingy — v (N, VN(y + Nm)).

But
e ~( P ~ p
f = — ]+ N — ,
NP =9 (m) G (m)
wherecn(y) = ¢(y + m). Then we hav@(O) = 0 andc,,(0) = 0 because the minima
of ¢ andc, are zero. .
Let us &pandt, up to the second order. We have seen Gdlp) = Xo(p), and

thereforeCn(p) = Xo(p). Moreover, we knav thatx(p) is defired by p—¢m (Xo(p)) =
0, and therefore L &m(Xo(P)) %o (P) = 0, thatis, Xo(p) = 1/En(Xo(p)). Findly,

_ 1 p?

In(p) = 26,0 +0(1) .
We obtain the result by passing to the limit using the continuity of the epigraph of the
Fendel transform. [

These results can be extended to the vector case, to the case& dwbhpends on time,
etc.

9.4.6 The Brownian Decision Process

Let us consider the discrete time decision process

(T/MH-1, .\ 2
. (u(ihy) _
mum( ;:O 2h + <I>(x(T))> , X(t +h) = x(@t) —u() .

It satisfies the dynamic programming equation

2
v(t, X) = min(u— +v(t+h,x—u)>, w(T,)=® .
u \2h

The cost tinctionQ, 5, is therefore the analogue of the increment of Brownian mo-
tion on a time step ofi. The analogue of the independence of the increments of the
Brownian motion is the independence of the instantaneous cost funéitrfrom the
state wariablex.

Let us make the @mge of controu = wh in the dynamic programming equation.
We obtain

_ (hw?
v(t, X) = min T+v(t+h,x—wh) )

Passing tathe limit whenh — 0, we obtain the Hamilton-Jacobi-Bellman (HIB) equa-
tion )
dv . v w
— +min{—w—+— ) =0, T,)=9o,
8t+w<w8x+2> v(T.)

that is,

v 1 0v,
— ——(—)=0 T,H)=9®
ot 2(8x) , o u(T, ) ,
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which is the analogue of the heat equation

v . 19% .
at  29x2
Therefore, we can see the Brownian decision process as the SobolevIdpeker)

endowed with the cost functiow (w) = fOT (@)? dt for any functionw € H(0, T).
Thenthe decision problem can be written

0, T, )= .

Muw®(x(T)) £ mi(g - (W(w) + @(X(T; ))) (9.16)

by amalogy with probability theory. The functiolV is the analogue of the Brownian
meagsire, and it can be interpreted as the cost of choosinfhen® (X(T; w)) is the
cost of a decigin function® (x(T; -)) once we have chosen But the lution of the
Hamilton-Jambi equation

v 1 /9>
¥_§<&> =0, U(T,')=8y,
is unique [86], and is explicitly given by

(y —x)? -

2T -1t) -

It can be considered as the min-plus Green kernel of the dynamic programming equa-
tion and as the analogue of the Green kernel of the Kolmogorov equation for the Brow-
nian equation, namely

v(t, X) =

1 (_(y—X)2>
o P\ T2y

Therefore, by mi-plus linearity, we can derive the solution of

Cfov 1 /dv\?
min Mo (Z ,c—v] =0, oT,)=o ,
ot 2 \ X

which is the stution of the @ntrol problem

v(t, y) = Mw [min (tminT C(Xs(@)), P(X(T; w))) X(t) = y] ,

wheres denotes a stopping time that we also want to optimize. This cost is clearly the
min-plus analogue of

.
v(t,y) = Ew [/ C(X(S; w)) ds + P (X(T; w))
t

X(t) = y] .

The soltion of the decision problem is

o (y — X)? o (y —x)?
v(t, X) = min (mym <<I>(y) + m) > min min (c(y) + 260 )) :
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This formula is the analogue of

—x)2 N2
v(t,x)=/<1>(y)exp< o0t >>dy+/ dS/C(y)exp( v )))d

Using the clange of times = T — t, we can summarize this paby the Bllowing
theorem.

Theorem 9.14 We have
1im (Qo, !/ = Qo5

where [x] denotesthe integer part of x. Moreover, Qq s isthe unique solution of

aQ 10Q,
— 4+ (—)¥=0, s>0 Qo.0 =60 -
2(3x) >0, 0,0 = 0

9.4.7 Diffusion Decision Process

In the previous subsection, the system dynamics was trivial and the instantaneous cost
depended on the control only. Let us generalize this situation with a more general
instartaneous cost, which will induce more complex optimal trajectories and which is
the mmplete analogue of the diffusion process.

We oonsiderthe discret decision process

(T/h-1, . . 2
. (u@ih) —b(ih)h) _
min ( ; et <I><x<T))> LX) =x®) —u) -

It satisfies the dynamic programming equation

(U —b(x)h)2

v(t, X) = muin< Sho?

+v(t+h,x—u)>, (T, )=

By the change of contral = wh in thedynamic programming equation and by passing
to the limit whenh — 0, we obtain the HIB equation defined, fox T, by

v a(x)2<8v>2_0 To—o
( )__ & - ) U( 7')_

I 2

This is the HIB equation corresponding to the variational problem

T1 /% —p\2
u(t, X) = min (/ 1 (X b) dt + <I>(x(T))> . 9.17)
t 2 o

xeH?

This HIB equation is the analogue of the Kolmogorov equation
v o(x)? 9%
ot 2 ax?

It is not necessary that the instantaneous cost be quadratic for the discrete decision
process to converge to the diffusion decision process.

=0, o, )=0
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Theorem 9.15 The discrete decision process
(T/h-1
muin( Z cn(u(ihy, x(ih)) + d>(x(T))> , X(t +h) = x(t) —u() ,
i=0
admitsthe discrete dynamic programming equation

v(t, X) = muin(ch(u, X)+vt+hx—u) , oT, )=,
which converges to the continuous dynamic programming equation

ov b(x) ov
ot aX

2 2
o (X) <3v> —0. oT.y=0.

2 \oax
aslong as

2
Gh(x, p) = (b(X)p+ %pﬁ h+o(h) ,

where €, denotes the Fenchdl transform of the mappingu — ¢, (u, X).

The varational problem (9.17) was encountered by researchers in large deviation
when they atdied differential equations perturbed by a small Brownian noise. For
exampe, we have th falowing estimate:

IAim)vlog(IP’v [X(T)e@z—-A,z+A) | X©0) =y)])

v—0
. T1/x—-b\?
= min = dat ,
xeH1(0,T),xO)=y,x(M=zJ;y 2 o

wherelP, denotesthe probability law of a diffusion process with drift tedorand diffu-
sion termvo.

We condude this section by summarizing the analogy between probability and dy-
namic programming in Table 9.2.

9.5 Evolution Equations d General Timed Petri Nets

The aim ofthis section is to provide the basic equations that govern the evolution of
general Petri nets, when structural consumption conflicts are resolved by a predefined
‘switching’ mechanism. These equations can be viewed as a nonlinear extension of
the evolution equationfer event graphs (se€f2.5). The system of notation concerning
timed Petri nets is thahtroduced in Chapter 2.

9.5.1 FIFO Timed Petri Nets

We will adopt the following definition concerning the numbering of tokens traversing
a place and the nubrering of firings of a transition, that generalizes tha{2b.
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Table 9.2: Analogy between probability and dynamic programming

Probability Dynamic programming
+ min
X +
N(@m, o) Qm.o
JdF(x) =1 miny c(x) =0

Eef = [ f(x)dF(x)

Convolution

Inf-convolution

Fourier: F(s) = Ee (exp(j sX))
£10g(F)(©0) = j [xdF(x) = jm
~ & 1og(F)(0) = [(x — m?2dF (x)

Fendel: €(p) = —M; (—pX)
©(0) = m: c(m) = miny c(x)

€(0) = 1/&(m)

Brownian motion

%y
V> oz
1%
2 9x?

(1/v2rt) exp—x?/ 21)

v
V> at+

Brownian decision process

X2/ (2t)

Diffusion process

v v 8%
V= 3t + b(X)& + a(X)W

Invarianceprinciple

Diffusion decision process

v v v\ 2
v 2 hx)2 —a(x) (L)

Min-plus invariance principle
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e The initial tokens of placep arenumbered 1... , My, whereas then-th token,
n > My, of placep is the (n — Mp)-th to enter p after thebeginning of the
network evolution. Tokens enterirmmat the saméime are numbered arbitrarily.

e Then-thfiring,n > 1, of transitionq is then-th firing of g to be embledfrom the
beginning of the network evolution. Firings qfenabled at theametime are
nunbered ahitrarily (nothing prevents the same transition from being enabled
twice at the sane goch).

Timing is involved in the evolution of the system through the following two rules.

e Then-th initial token of placep, n < My, is not consideredmmediately avail-
able for downstream traitions. It is put in placep at time z,(n) (where the
function z, is given), and it has then to stay ip for a minimal holding time
ap(n) before enablig the tramitions that follow p. Similarly, the n-th token of
placep, n > M, (or equival@tly the (n — My)-th to enterp) can only be taken
into account by the transitions that follogy «p(n) units oftime after its arrival.

e Eachtransition starts firing as soon as it is enabled (we will discuss the problem
that arises with conflicts later on). Once transitipris enabled for then-th
time, the tokens that it intends to consume become reserved tokens (they cannot
confribute to enabling another transition before being consumed by the firing
of transitiong). Once it is enabled, the time for transition to complete its
n-th firing takesg,(n) units. Once the firing time is completed, the transition
compldes its firing. This firing completion consists in withdrawing one token
from each of the places that preceddthe reserved tokens), and adding one
new token into the places that follong. These two actions are supposed to be
simutaneous.

FIFO places and traiitsonshave beemlefined at§2.5.2.2.

Example 9.16 To make the following results more tangible, we deal throughout the
section with the FIFO Petri net of Figure 9.1. This Petri net can be considered as
a closedqueuing network with two servers angd infinite buffers. The customers
served by server (respectively 2) are roat to buffers 1 or 2 (respectively 2 or 1). In
order to obtain simple results, we have chosen constant holding times on places and
zero firing times (i.efq(n) =0,Vq € @,n € Nandap(n) = ap € RT,Vpe P, ne
N). [ |
9.5.2 Evolution Equations
LetU = (U, ..., Up) be avector oR". The synbol R(U) denotes the vector

RU) = (Uia), ... ,Uim) e R" ,
wherei : {1,...,n} — {1,...,n}is abijection such that

Uw <Uig... <Um .

This notation is extended to vectors B wheneer meaningful.
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Figure 9.1: A FIFO Petri net

9.5.2.1 State Variables
Let

e X4(n), g € Q,n > 1, denote thetime when transitiom startsfiring for then-th
time, with the convention that for atf € Q, xq(n) = oo if transitionq never
fires for then-th time andxy(0) = —oo;

e yq(n), g € Q,n> 1, denote thetime when transitio complées itsn-th firing,
with the same convention as above;

e vp(n), p € P, n > 1, denote the time when plagereceives its1-th token, with
the conventia that or all p € P, vp(n) = oo if the dace never receives itsth
token andv,(0) = —

e wy(n), p € P, n > 1, denote the time when plagereleases its-th token, with
the usuatonvention if then-th token is never réeeased anav,(0) = —oo.

Owing to our conventionspy(n) denotes the firing time off that sarts af
Xq(N), n > 1, whereasxp(n) denotes the holding time of the token that enters
patvpy(n),n> 1.

If transitionq is FIFO, we havehie obvious relation

Ya(N) = Xq(n) + Bq(N) . (9.18)

More generally,
Yg(M)nz1 =R ((Xq(n) + aq(n))nzl) .
If placep is FIFO, we can write

wp(N) = vp(N) + ap(n) ,
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since he token that enterp at time v,(n) stays therdor at leastap(n) time units.
More generally,
(wp(M)n=1 > R ((Up(n) + ap(n))nzl) .

9.5.2.2 Initial Conditions

It is assumed that the origin of time and the initial marking have been fixed in such a
way that he variables,(n) andw,(n) sdisfy the bounds

=2zp,(n) <0 forn=1,... , My, if My>1;

n
™Y o, forn> M, ,

andwp(n) > 0 forn > 1. These conventions are natural: they mean that tokens that
arrived in placep prior to the initial time and which lefp before that initial time are

not congdered to belong to the initial marking. Similarly, tokens that arriveg it

or after’ the initial time do not belong to the initial marking.

9.5.2.3 Upstream Equations Associated with Transitions

We firstlook at the relationships induced by a transitipdueto the gdaces preceding
g. We first consider the case withaaituctural consumption conflicts, nanely for every
placep precedingq, the set oftansitions that follow pis reduced ta.

No Structural Consumption Conflicts For all p € 7(q), one token leavep attime
wp(n). Sinceq is the only transition that can consume the tokeng, dhis corresponds
to the starting of tha-th firing of q. Herce,

Vpen(q)

In the FIFOcase, tha-th token of place p to become availale for enablingy must be
then-th to enterp, so that

Xq(n) = p@n%)(vp(n) +ap(n) .

More generally,
Xq(n) = max U,(n) ,
per(Q)

where

(Up(n))nzl =R ((Up(n) + ap(n))nzl) .
General Case Without further specifications on how the conflict is resolved, we can
only state the following inequalities: in the FIFO case,

Xq(M) = Max (vp () + op() (9.19)

and more generally
Xq(n) = max Up(n) .
per(Q)

Thes inequdities are not very satisfactory, and we will return to this point later on.
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9.5.2.4 Downstream Equations Associated with Transitions

We now look at the relationships induced by a transitigualueto the pdaces following

g. We first consider the case without structural supply conflicts, namely, for every place
p following g, these of trangtionsthat precedep is reduced tay (that is, p is only

fed by thisq).

No Structural Supply Conflicts If no othe transtion thanqg can feed the places
following g, the bken entering place € o (q) with rank(M, + n) has been produced
by then-th firing of transitionq; therdore,

Yg(N) =vp(Mp+n) , Vpeo(q) .
In the FIFO cas, this leads to the relation
Xq(N) + Bg(N) = vp(Mp+n) , Vpeoa(q) ,
wheras in the general case

R((Xq(k) + ﬂq(k))kzl)n =vp(Mp+n) , Vpeo(Q) .

General Case Without further specifications, we can only state the following in-
equdities: in the FIFO case,

Xg(N) + Bq(N) = vp(Mp+n) , Vpeo(q) ,
wheras, in the general case,

R ((Xq(K) + Bg(K)k=1),, = vp(Mp+n) , Vpeoa(Q) .

9.5.2.5 Upstream Equations Associated with Places

We now Pcus on the upstream relationships induced by placeConsiderthe se-
quencegyq(N)}n=1, for all g € 7w (p). With each of them, associate a point process on
the real line, wiere the points are located wf(n). We can look at the arrival process
into p asthe superimposition of these (p)| point processes.

With all g € =(p), we asocate an integeiq € N representing a number of
complée firings ofq. If transtion g has completed exactly firings for allq € 7 (p),
thenplacep has received exactly ., iq tokens. The set of vectots) = (iq)ger(p)
such that then-th token hasentered place is hence

> iq=n]

AP =i e N7
qen(p)

The lag token producedby the transition firings specified by somes Af entersp
at time Maxer(p) Yq(ig), Whereyy(0) = —oo by convention. Since tokens have
reachedp once all the firings specified hyhave been completed, one obtains

n+ Mp) < inf max yu(ig) . 9.20
vp( p) < e g Yq(g) ( )
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Butv,(n+ Mp) should be equal to somg, (no) since at éast one collection of events
putsn tokens in placep (unlessAf is empy andvy(n + M) = o00). Hence equdity
musthold true in (9.20). We then obtain the following final relation:

n+ Mp) = inf max Yq(iq) 9.21
Up( p) {iGN‘”(p”\qun(miq:n}qen(p)yq(q) (9.21)

whereyy(0) = —oo by convention.

9.5.2.6 Downstream Equations Associated with Places

We now @ncentrate on the downstream relationships induced by a jpladeis in
this type of guations that the structural consumption conflicts associated with general
Petri nes become appant.

Consider the sequencgg,(n)}n=1, for allq € o(p). With all g € o(p), we
associate an integés € N represerting some number of firing initiations af. If g
has stagd exactlyiq firings for allg € o (p), then &adly qua(m iq tokens have been
withdrawn fromp. The set évectorsi = (iq)qeo(p) SUCh that then-th token has left
placepis hence

BY={ieN"® | ¥ i =n
geo (p)
For anyi in this set, the last token to leayeleavesat time maye, (p) Xq(iq). Herce

wp(n) < inf max Xq(iq) .
P ieBh qeo (p) ard

Using a sinllar reasonmg as previously, we obtain the final relation

wp(n) = inf max Xq(iq) - (9.22)

I
{ieNI®I 4 iq=n} A€o (D)

Relations (9.21) and (9.22) exhibit nothing but a superficial symmetry. Indeed,
while (9.21) allows one toanstruct the sequende, (n)} from the knowledge of what
happens upstream @fand earlier, tfs is not true at difor (9.22) whid only provides
some sort obackward property stating that the knowledge of what will happen follow-
ing p in the future allows one toeonstruct what happens ip now. The reason for
this is that the way the conflict is solved is not yet sufficiently precise. We show now
one natural way of solvinganflicts, whichwe will call switching. Seveal other ways
are conceivable likeompetition, which we will also outline.

9.5.2.7 Switching

Within this setting,each place that has several triéimmsdovnstream receives a switch-
ing sejuencepp(nN)} with values ino (p)™. In the samevay as then-th token to enter
place p receives a holding time,(n), it aso receives a route to which it must be
switched. This information is given by,(n), which specifies which transition it must
be routed to. In other words, only those tokens such ghat) = g should be taken
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into acount byq € o(p). By doing so, one completely specifies the behavior of the
system Forinstance, in the FIFO case, one obtains the inequality

Xq(N) > wp(mpq(n) ., Vpenr(q) ,
where theswitching function 4 is defired by

Y Uep=gi=nt, n=1. (9.23)

1p.q(0) =0, npq(n) =inf {m >1
k=1

Whenever the behavior of the places upstream isfspecified,one can go further and
obtain the desiretbrward equation, as we will see in the next section.

Example 9.17 In our example (see Figure 9.1), the switchings are deterministic. They
are chosen as follows:

p32n) =1, p32n+1) =5, p2n)=5, p@2n+1) =1, VneN.

9.5.2.8 Competition

The places followingp compete forthe okens of p on a First Come First Served
(FCFS) basis: witm this interpretation, the tokens that have been served in glace
can be seen as building up sonpgeue of tokens. Once a tanstion q following p is
emabed except for the condition depending @nit puts in a request for one token in
same FCFSqueue of requests. This request is served (and the corresponding transition
enabled) as soon as it is at the head of #tpiest line and there is one token in the
token queue.

9.5.3 Evolution Equations for Switching

In this subsection it is assumed that all places receive some switching. For places with
a shgle downstream transition, this sequence is trivial in the sense that it always routes
tokens to this transition.

Theorem 9.18 Under theforegoing assumptions, thestatevariablesvy(n), p € P, n >
1, of a FIFO Petri net satisfy the (nonlinear) recurrence equations

vp(N+ Mp) = A\ P wlralo)alrglig)Bqlia)

{ } {gen(p),ten(q)}
i eNIm(p)l

> ig=n

qen(p)

(9.24)

for n > 1, with theinitial condition vp(n) = zp(n) for 1 < n < My, if My > 1.
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Proof In addition to the variables,(n), we will make use of the auxiliary variables
Xq(N),q € @,n > 1. Owing to the switching assumptions, Inequality (9.19) can be
replaced by the relation

Xq(N) = @ /\ Up(jp)ap(jp) , h>1,

per(@) {
jp=1

ip

> 1{Pp(k)=q}:n}
k=1

or, equivalently,

xq(M) = P vopgMaplpq) , n>1, (9.25)
pen(a)

where ve used thewitching functionn, ¢ defined in (9.23), and the FIFO assumption,

which imglies that he mapping +— v, (i)ap (i) is nondecreasing.
Similarly, using (918) in (9.21) yields

vp(n + Mp) = A\ P xali)Bgliq) . n=1. (9.26)

{ieNT®I |3 iq=n} A€T(P)

Equation (9.24) follows immediately from (9.25) and (9.26). [ |

Remark 9.19 In the case when the Petri net is not FIFO, Equations (9.25) and (9.26)
have to bereplaced by

XM = P (REpMapMmz1) ) ) » NZ=1.

pen(a)
and
vp(N + Mp) = A\ D RoGEMAMmz1)g . =1,
{ieNF®PI Y ) iq=n} A7 (P)
respectively. [ |

Remark 9.20 In (9.24), wecan get ridof the firing times B4(n) by changing the
holding timesap(1p.q(N), YPp € 7(Q), into ap(np,q(N)Bq(n). Thus we obtain an
equivalent net withgy(n) = 0 andap(n) > 0,9 € 9, p € P,n > 1, where the
equivalence means that the entratioeesare the same iboth systems. [ |
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Example 9.21 In our example, we obtain

v+ = A\ @) elvyeir+1) ,  w@)=0,
nz—+n7=n

va(N) = va(N) & va(n)

v3(N) = 2v2(N)

va(n 4+ 1) = 2v2(n) v4(1) =0,
s+ =/ (Wws@z+D@Lr2n7) ,  vs()=0,
n3—+n7=n

vs(N) = vs(nN) & vg(n) ,
v7(n) = 3vs(N) ,
vg(n + 1) = 3vs(n) , vg(1) =0 .

9.5.4 Integration of the Recursive Equations

We assume thatthe Retri net is FIFO. We use Remark 9.20 to assume (without loss of
genedity) that Bq(n) = 0,9 € Q,n > 1. Finally, we @sume thathe switching is
given as well as the holding times in the places and that in every circuit of the Petri net
there 5 a phcep with 0 < ap(n) < oo, n > 1.

In what follows we will use wighted trees where the weights are associated with
the nodes. We call theveight of a directed path the sum of the weights of all its nodes
but its source. A node\; is said to bedeeper thananodeN; if we can find a directed
path fromN, to N;. Findly, the depth of a tree is the length of its longest directed path.

Definition 9.22 (Evolution tree) Let (p, n) € P x N. An evolution tree A associated
with (p, n) isatreewithroot (p, n) defined recursively as follows.

e If n < M), then Aiisreduced to a single node (p, n) with weight «p(n) + z,(n).

o If n > My, chooseonei € N"®! satisfying 3, iq = n— Mp. Then A
is the tree with root (p, n) and with |7 (s (p))| subtrees being evolution trees
associated with the nodes (, 1q,t(ig)), t € 7(p), q € 7(q). Theroot (p, n) is
given aweight ap(n).

The set of all theevolution trees of the pai¢p, n) will be denoted (p, n).
In Equation (9.24), we can replace the variabigs; (n)) by using Equation (9.24)
once more. We obtain

Up(n+Mp)= /\ @

{ } {gen(p).tem (@)}
ieNT®I| Y ig=n
gen(p)
/\ @ vr (r,s(js))aur (nr,s(js))at(nt,q(it)) .
(sex(t),ren(s))
{jGN‘”(“‘ > js=7lt.q(it)*Mt}
sen(t)
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If we use the distributivity ofp with respect ton (see(4.95)), this equality becomes:

p+Mp) = A P vwrs(iNer rs(isHer (neq(ia))

iel qen(p)
jedq tem(q)
sen(q)
ren(s)

where

| dzef{i c NI

gen(p)

Z J;q = ﬂtq(iq) - M ] .

sen(t)

This equation represents the first step in the ‘integration’ of the recurrence equations.
Indeed, we obtain a tree of depth 2 from the roptn + My). If we cortinue to
develop this equéion, we obtain trees with increasing depths. We stop when each path
ends with a leaf, namely, when it terminates with a ngdem) with m < My. We
eventully obtain the integrion of Equatian (924):

vp(n) = inf C(A), n=>=Mp, with C(A) = sup (w(T)) .
Ae&(p,n) TeT (A

The quantity C(A) is the weight of treed, 7 (A) is the set of dlthe directed paths from
the root to any leaf of the tre&, andw (T) is the weight of the directed pafh(i.e. the
sum of the weights of all its nodes except its root).

Remark 9.23 The set£(p, n) might contain infinite trees, thug(p, n) is not con-
strudible and this transformation of thecursive equatins does not obviously give
the ‘constructivaess’ character of these equations. However, it is useful for prelimi-
nary results. The reader is referred toWtjere this issa is furtheranalyzed. [ |

9.6 Min-Max Systems

In this section we will be concerned with systems of which the evolution is determined
by three rather than two different operations, namely addition, maximization and min-
imization. Because these operations occur simultaneously, a different notation for max
and min is necessar is reseved for max, anch will denote min. The most general
system to beansidered is of the form

xk+1) = AIXK ®B YK ®Cieuvk @ D1wk) , (9.27)
yk+1) = AMOXK ABOYK ACOvK AD 0wk , (9.28)
vK) = A3®XK ®@B:3®yKk @Csvk) @ Dz3®@wk) , (9.29)
wk) = ALOXK ABiOYK ACsOvK) ADsOwk) . (9.30)

The notation® here refers to the multiplication of two matrices (or a matrix and a
vector) in which thea-operation is used instead ¢f (see§6.6.1 and§9.2.4). The
expressionsa ® b anda © b are identical if at least eithex or b is a <alar. The
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operation® has the neutral elemertwhereasA has the neutral elemenit. The
followingconvention, in accordance with (5.7) and (5.8), is made:

T®e=¢, TOe=T .

In analogy with conventional system theory, system (9.27)—(9.30) is catiestiaptor
system. It is assumed thatte vectors(k), y(k), v(k) andw(K) are respectively-,m-,
p-, andg-dimensonal. The natricesA, B, C, andD,,| =1, ..., 4, have appropriate
dimensions. The elements of the matrices with an odd index are either finitarat
the elements of the matrices with an even index are either finite or

Equations (9.29) and (9.30) are implicit equation® (k) andw(k), resgectively.
It is assumed that the precedence gr@ph), whereE is the matrix

_( Cs Ds
-(c )
contains neither circuits nor loops. For later reference this condition is called Condition
C1:

Condition C1 The graphG(E) contains neither circuits nor loops.

Because of thisandtion, a finite number of repeated substitutions of the whole right-
hand side of (9.29) and (9.30) into these same equations leads to, respectively,

v(k) = C§ ® (As @ X(K) ® B3 ® y(k) ® D3 ® w(k)) ,
w(k) =D} © (A1O XK ABsO YK ACs0v(K) ,

where
C;=e®C3®Ci®---, D =eADsADiA-- .

In these equations, the matrix product (which is used in the power computation of
marice§ must be understood as bei®y respectively ©, when usd in conjunction
with @, respectively A. Similarly, the symbole denotesthe identity matrix inRpyax,
resgectivelyRmin. Condtion C1 is sufficient, but notecessary, fo€3 and Dj/ to exist
in the exprssions above.

Now the euations inv(k) andw(k) can be solved ira sutable order, and the
soluions can be expressed in termsx@k) and y(k). These sdutions are written
symbolically as

v(k) = fa(x(k), y(k)) , w(k) = f2(x(k), y(k)) .

If these equations are substituted into (9.27) and (9.28), then the new expressions for
x(k + 1) andy(k + 1) will show a finite nesting of max- and min-operations.

For laker rderence, Equations (9.27)—(9.30), defining a mapping fRImm™+P+a
to itself, will symbolically be denotedA. Smilarly, the mapping of the corresponding
nested equations is denotgd (M mapsR™™ to itself). Hence,

(x(k+1) yk+1) vk wk) ) = M((x(k) yk) vk wk) )’),

A , (9.31)
(xk+1) yk+1) = M((x(k) y(k))).
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9.6.1 General Timed Petri Nets and Descriptor Systems

Consider the network depicted in Figure 9.2. Each of the three nodes performs activi-

TG

o «— <

[ ]
& 4] G

A
A

Figure 9.2: A network

ties. The loops around these nodes, with time duratians, andzs, refer to poocessing

or recycling times of one activity at the respective nodes. All other time durations are
assumed to beero. Nodeq; delivers products to nodep and gz simutaneously.
Nodeqs starts processing on the first incoming product. To start an actiedéighnode
must have delivered its product(s) of the previous activity to its destination node(s). If
the dedination node isqp, its buffer, indcated by a rectangle in the figure, can store
one incomingtem (whileq, works at thepreent activity). Henceif this buffer is full,
nodeq; cannot yet deliver a product and must wait until this buffer becomes empty.
Similarly, there is a buffer just before nodg which can contain two incoming items
maximally. If each buffer contains one tokeritially, one may be tempted to model
the succession of firing times as follows:

X1(K + 1) = max(x1(K) + 71, X2(K), X3(K)) ,

Xa2(K + 1) = max(x1(K) + 71, X2(K) + 12, X3(K)) , (9.32)
x3(K + 1) = max(min(xy (k) + 71, X2(K) + 72), X3(K) + 73) ,
where the quantities xj (K), k = 1,2, ..., are the successive firing times of nodg

This model can be rewritten in the form (9.27)—(9.30) by addirk) = min(xy(k), x2(K))

to (9.32) and b replacing the apropriate part in the last of the equations of (9.32) by
w(K). Indeed, nodey; will process the firstarriving k-th product, of either; or gy,

first The last arriving product aqs, howewer, is not processed at all according to
(9.32). It apparently leaves the system in some mysterious way. There is a discrepancy
between the problem statement and its model (9.32). In order to model the processing
of the last arriving product also, one can introduce a fictive rqpdevhich isactually
nodeqs, and which takes care of the last arriving of the two products coming fjom
andaqp. If this fictive node has firing times,(k), then he new model becomes

X1(K + 1) = max(X1(K) + 71, X2(K), Xa(K)) ,
Xa(k + 1) = max(X1(K) + 71, X2(K) + 72, Xa(K)) ,
xa(k + 1) = max(min(x1 (k) + 71, X2(K) + 72), Xa(K) + 73) ,
Xa(K + 1) = maximax(x1(K) + 71, X2(K) + 12), X3(k + 1) + 13)
= max(X1(K) + 71, X2(K) + 2, Xa(K) + 213,
min(X¢(K) + 71 + 13, X2(K) + 72 + 13)) .

(9.33)

Model (9.33) assumes that the buffer just befgsemust be emtied before a new
cycle (k — k + 1) can be started. Note that does not appear on the right-hand side
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anynore and therefore the equation ek + 1) can bedisregarded. It is obvious that
this model can be rewritten in the form (9.27)—(9.30) also. Though model (9.33) does
not throw away half-finished products, nogiestill might not always take the product
which arrives first. Nodes and itsimage nodeq, process the batch of the two arriving
k-th products (fromg; andqy) according to first arrival. If thék + 1)-st product ofg;,

say, arive before thek-th product ofqy, it has towait urtil this lastk-th product has
arrived.

Yet another remark with respect to (9.33) must be made. According to (9.33),
nodesq; andq can start anotherycle only afterqy has startedts current activity.
However, the performance tife netwak can be increased ¥, (k) in either the first or
the s2cond equation of (9.33) is replacedxyyk), depending on whetheky (k) + 71 <
X2(K) + 12 or not. Such a conditional dependence can neither be expressed in terms of
the operations min, max angt, nor can it be shown graphically by means of a Petri
net as introduced in this book. This dependence can be expressed in Petri nets in which
so-called inhibitor arcs are allowed. The reader is referred to [1] about such arcs.

One canerlarge the batch size from which nodp takes its productaccording to
the HFO priority rule. If, for instance, one introduces two fictive nodes, onegfor
andone forgy, and another pair of two fictive nodes, one nodedgrandone forq,
thenone can construct a model which has a batch size of four. The original products
numbered andk + 1 comirg from q; ard the original products numberdédandk + 1
comingfrom g, are processed bgs, or oneof its images, according to FIFO. The
next batch will then consist of the four original products numbédred2 andk + 3
comingfrom bothqg; or its image andj, or its image. The corresponding model will
not be written down explicitly; its (eight) scalar equations become rather unwieldy
expressions with nested forms of the operations max and min.

9.6.2 Existence of Periodic Behavior
In the following definition, the symboM and M are hose of (9.31).

Definition 9.24 Ascalar A, ¢ < A < T, iscalled an eigenvalue of the mapping M, re-
spectively M, ifavector ( X'y v w' ), respectivly ( X'y ), exists, where
either x or y hasat least onefinite element, such that

(r®X 120y v w )’:M(( Xy v ow )/)
respectively,
(rex roy ) =M((x y)).
Such a vector is called an eigenvector of M, respectively M.

It will be clear that, provided Condition C1 holds, g6, an eigenvalue oM is

also an eigenvalue o¥1 and vice versa. A motation to studyeigenvectos is tha the
systemhas a very regular behavior if the initial condition coincides with an eigenvector.
In fact, the firirg times of the(k + 1)-st aciivities take place exactly time units later
than the firing times of th&-th activities. Conditions will be given under which the
eigenvalue and a corresponding eigenvector exist.
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System(9.27)-(9.30) canbewritten as
X(k+1) _ A C X(k) B: D; y(k)
( (ko )‘(Ae Cs>®<v<k>>@<83 Ds>®<w<k>>’

yk+1) \_ ( B2 D2 x(k) A G x(k)
( w(k) >‘<B4 D4>®<v<k>>A<A4 C4>®<v<k>>’

the two ‘autonomous’ equations of which are

xk+D)\ (A C x(k)
( v(k )‘(Ae Cs>®<v<k>>’ (9.34)
yk+1) \ _ ( B2 D2 x(k)
( . >_(B4 D4)@<w(k)>. (9.35)

Thes two sds of autonomous equations can be considered as two subsystems of
(9.27)—(9.30), connected by means of the matrices

B: D: A C
, . 9.36
( B Ds ) ( A Cy ) (93
Condition C2 The first matix in (9.36) is not identicallyT and the seand one is not

identicallye.

This anounts to saying that the two connections are actual.
If Condition C1 is satisfied, thenk) can be solved fnm (934) and subsequently
be subdituted into the right-hand side of (9.34):

Xx(k+1) = (AL ®C1®C}® Ag) @x(K) . (9.37)
Similarly, we obtain
y(k+1) = (B, AD,0 D} © By 0 yK) . (9.38)
Condition C3 The transtion matrices of (9.37) and (9.38) are irreducible.

If Conditions C1 and C3 hold, then the mats which goverihe evolution of the sys-
tems in (9.37) andy(.38) have unique eigenvalues, denotggy andimin, resgectively.

The existence and umiieness of these eigenvalues is a direct consequence of the theory
of Chapter 3. Now the following theorem, proved in [102], holds.

Theorem 9.25 Assume Conditions C1, C2 and C3 are fulfilled. The operator M has
an eigenvalue A and a corresponding eigenvector ( Xy )’ all of which components

arefinite, i.e.
x®<’;>=ﬂ<<’;>>, (9.39)

if and only if Amax < Amin. Under these conditions, 2 is unique and satisfies Amax <
A < Amin.
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The condition that the components of the eigenvector must all be finite is essential for
the ¢atement of this theorem to hold. As a counterexample, consider

X(k+1) = 2x(k) ® 3y(k) , y(k + 1) = 4x(k) A 5y(K) .

The unique eigenvalue which falls within the scope of the above theorem=s3.5
with corresponding eigenvecthrO.S 1 )’. Howevera = Amax = 2 is also an eigen-
value with eigevector (e & )’. Similarly, A = Amin = 5 is an eigewalue with
eigenvecto( T e ).

In Chapter 3 we sawhat, within the max-plus algebra setting, the evolution of
a linear system, such as9(37), converges in a finite number of steps to a periodic
behavior, the period being related to the length(s) of the critical circuit(s). Such a
property has not (yet) been shown for systems within the min-max algebra setting,
though simulations do point in this direction. Procedure 1, to be presented in the next
subsection, is based on this observation.

9.6.3 Numerical Procedures for the Eigenvalue

Three numerical procedures for the calculation of the eigenvalue and corresponding
eigenector of M will be discussed briefly by means of examples. Of course, these
procedures can also be applied to systeni&qig only.

Procedure 1 Consider (9.27) and (9.28) with

33¢ T T 3 T 4 3
A = ,Bi=|1 3¢ e |, A=|T 3T |,Bo=|6TT]|,
el T 3 T T 9 6

andCz = C4 = (¢), B3 = By = (T). The ewlution of this system will be studied by
starting with an arbitrary initial vector. If x(0)' y©) ) =(1 2 3 4 5 6),

1
e
1

N ® ™
m = M

then

(X0 yO) = (12 3 45 6),

(X@ y@®) = (8 7 7 6 5 5),

(X(12 y@2) = (38 37 37 37 37 37,
(X(@13 y@3 ) = (40 40 40 40 40 40 ,
(X149 y@4 ) = (43 43 42 43 43 43 |,
(X5 y@5 ) = (46 46 45 45 46 45 |,
(X(16) y(16) ) = (49 48 48 48 49 49 |,
(xX@?n yan) = (52 51 51 51 51 51) ....

This evoltion is continued untik(k) becomes linearly dependent on one of the pre-
vious stateg x'(1) y'() )’, | =1,...,k— 1. For this example, this occurs for

k=17 ( X(17 y@Q7 ) =14® ( X120 Yy(12 ). Itis now chimed that
= 14/(17—12) = 14/5 and that(zl S (X)) Y )’) /5 is theeigenvector.
Note that in this expression for the eigenvector, the conventional operations addition
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and division occur. These are nonlinear opierss within the min-max algebra! For
the example,he eigenvector thus becomes

1
z(216 214 212 213 215 21§ .

It canbe verified by mears o subditution that the quantities thus obtained are indeed
the eigenvalue and eigenvector. No general proof exists of the fact that this method
indeed yields the coect answers, however. If the same method is used for systems in
the max-plus algebra only, it is known that it does not always give the correct results. In
situations wheretidoes not, a slightly more complicated algorithm exists which does
give the correct results (see [28]).

Procedure 2 Consider (9.27)—(9.30) with sizes= 2,m =0, p = 0,q = 1. The
matrices concerned are given by

A1=<§ g) D1=<2>, Av=(5 3). Ds=(T).

If the exponential approach 8.2 is gplied to the definition of the eigenvalue given
in Definition 9.24, we obtain

e = by g (9.40)
Z)\,+X2 — 22+X1 + Z3+X2 +zZ" (941)
Zz7W — 75 + 2*3*X2 . (942)

The quantities 2 andz* can be solved from3(40) and (9.41), and expressedzifi.
Thes olutions can be substituted into (9.42), which yields

7 _ 53
2@ -1 4+1 "

7 WL — walsz(Z)L _ ZZ) + walz3

Dividing this expression by ** and after some reganging, we obtain
PRy A7 A= P27 3 A A (9.43)

The essance of this arrangement is that all the exponential terms have been moved to
that side of the equality symbol in such a way that only positive coefficients remain.
Equation (9.43) must be valid @— oc. Herce A must satisfy

max(2x + 3, 2 — 5, —1, 8) = max(0, 2, » — 3, . + 6, A + 5) .

This equation is mostasily solved graphdly. The result ish = 3 and hus the
eigenvalue has been found.

This mehod is only suitable when, m, p andq are smi. Essential is that an
explicit equation inz* must beobtained.

Procedure 3 This procedure, which always worksifgystems with satisfy the con-
ditions of Theorem 9.25, will be described by means of an algorithm. For an efficient
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way of explaretion, (9.39) is rewritten as ® a = M(a), wherea € R™™. The
vector unction M has componentdf;, i = 1,...,n 4+ m. If the eigenvector is
a, then M; (a) — & must be qual tox for all i. We will say that the accuracyn,
wheren is a given arbitrary positive number, is achieved if we findaasuchthat
max (M; (@) — a) —min; (Mj(a) — &) < n. We then usghe following algorithm.

1. Choose an arbitray € R™™ with all components finite.
2. Calculates; = M;(@)—a;,i = 1,...,n+m. Definec = min; ¢, T= max ¢.
3. If T —c¢ < n, then sop.

4. Construct disjointsubsets, i =1,2,3,0f T dzef{l, ..., N+ mj} suchthat

e T =T1UT2UT3,
cieTioc <ctn/2,
e jeTr&n/2<c—c<n ,

e jeTs&sci>Cc+y .
5. Changa; intoa; — n/2forall j € T1. Donot change the othe-components.
6. Goto step 2.

This aborithm always ends in a finite number of stepsk tfenotes the it@tion index
of the dgorithm, then thik will, as an argument, specify the quantities related to the
k-th iterdion of the algorithm, and

Gk+1=>ck forieTi(k ,
Gk+1 =<ck forieTak UTsk) .

Thereforec(k) is a nonincreasing function df and sinilarly c(k) is nondecreasing.
At each iteration of the algorithm some element&gimay have mved toY; or vice
versa. Somelements off's may have mved toY,, butnot vice vasa. Ask increases,
1 and Y, will ultimately catch allg;.

By means of the following example, it will be shown how the algorithm works:

ark+1) = maxa(k) +1, ax(k) + 2, az(k) ,
axk+1) = maxa(k) +2 axK),ask) +1) ,
azk+1) = min(@(k) + 2, axk) + 4, az(k) + 3) .

We taken = 0.2 and sart with a(0) = (1 2 3)'. Application of the algorithm
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yields the follaving resuts:

1 3 1 3
a0)=121],cO=|2], a@) = 2 ], cch=|19],...,

3 2.9 0.1

1 3 1 3
a9 = 2 ), cO=111])], alo=|2], cAp=| 1],

21 0.9 2 1

1 2.9 1 2
allh)=| 19|, cAh=|211]),...,a20=| 1], c200=| 2 ].

19 11 1 2

For this ample, even the exact results are obtained: the eigenvect2® =
(1 1 1) andthe eigevalueis 2.

o

9.6.4 Stochastic Min-Max Systems

We are gien the system described by (9.27)3@®. In contrast to the previous subsec-
tions, it is now assumed that the matrices in these formulae are event-depéident;

B (k), etc. The easonof this dependence is that (some of) the entries of these ma-
trices will be assumed stochastic. For elicthe sbchastic efries are assumed to be
mutudly independent and moreover, itis assumed that there is no correlation for differ-
entk-values. The underlying probability distributions are assumed to be finite, i.e. the
entries can only assume a finite number of values. For the calculation of the average
throughput, the same technique as used in Chapter 8 for max-plus algebra systems will
be used. As an example, consider

xi(k+ 1) = max(xy (k) + r2(K). X2(K), x3(K))
X2(k + 1) = max(x1 (k) + 11(K), X2(K) + 72(K), X3(k)) . (9.44)
x3(k + 1) = maxmin(xy (k) + r2(K), X2(K) + 72(k)). X3(k) + 1)

which resembles (9.32). The stochastic quantitig¢k) are supposed to be indepen-
dent of each other (i.e. for ail and allk). Assume that;(k) = 0 or z;(k) = 2, both

with probability Q5. Stating from an ‘arbitrary’xo-vector, sayxo = (0 0 0),

we will se up thereachabity tree of all possible states of (9.44). Froxg, four new
states can be reached in one step in principle, since there are fourifihesifor the
combiretion (z1(0), ©2(0)). Actudly, one of these state§, 2 2 2, is a tansla-

tion of xo and hence is not considered to be a new state. For this example, it turns
outthat the reachality tree consists of ten states which will be denoted. .. , nio.
Heren; = (0 0 O )’. If for instarce t1(0) = 2(0) = 0, then we geto date

n, = ( 0 0 1 )’. The ten tates, together with their immediate successors, are
given in Table 9.3. It is not difficult to show that, from any initial condition, the
statexy will converge in a finite number of steps to the Markov chain consisting of
the given 10 nodes. Since the probabilities with which the diffe¢ertk), 2 (k)) oc-

cur are known, thetransition probabilities of a Markov chain in which the ten states
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Table 9.3: Reachable states

Initial 11=0||11=0||n=2||11=2

state To=0|| =2 1=0||1n=2
n=(0 0 0) [nlelnfelna]21]n]2
n=(0 0 1) |n2|1|ns|1fn|2|ns|2
ns=(0 2 1) |[n|2|ng|2|n|2]|ng|2
n=(1 1 0) |nm|1|ns|1fn7|21|ns|3
ns=(0 1 1) |[np|1n3|1n|2]|ng|2
ne=(0 2 0) |[na| 1| ng|1lfni|2|ng|2
nr=(2 2 0) |[n|2|ns|2|n7|2]|ny|4
n=(0 1 0) |[n|1|ng|1lfng|lfng|2
ne=(1 3 0) |[n7|21|nwo|1|n|3]|ne|3
no=(2 4 0)|n7| 2| nwo|2||n|4]|ne|4

are the nodes can be calculated. Subsequently, the stationary behavior of this Markov
chain can be calculated. Once this statiordisgribution is known, it is not difficult to
calculate

I(Iim EXi(k+1) —x(K) , (9.45)

which tums out to be independent of the subscriptThis method, together with its
properties, has been described more extensively in Chapter 8 for only max-plus sys-
tems. As long as the reachitity-tree consists of a finite number of states, the method
works equally w# for min-max sysems. For the example trest, it tuns out that the
expression in (9.45) equals376time units. This quantity can be considered as the
avelge cyclgime of systen (944).

9.7 About Cycle Times in General Petri Nets

In this section we are interested in finding how fast each titascan initiate firing
in a periodically operated Rénet (not necessarily an event graph). Connections with
Chapter 2 will be made. It will not be assumed here that eachitrandires as soon
asit is enabled. The order and timing of the initiation of firings of enabled transitions
must be chosen in such a way (if at all possible) that a periodic behavior is possible.
During each period, each tratisn must fire at least once. The thus smallest possible
period t is called the cycle time and it is defined as the time to complete a firing
sequence leadng back to the initial marking. Therefore we will confine ourselves to
consistenPetri nes, i.e.

x>0, Gx=0,

whereG was defined ir 2.4.1. Later on in this section, we will narrow down the
consistent Petri nets to event graphs.
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It is assumed that the holding and firing times are constant in time. Suppose there
is a firing time of at leasp; time units associated with transitigp,i = 1,...,n.
This meanshat wheng; is enabled and it initiates a firing, it tak@stime units before
the firing is completed. Hence one token is reserved in each ptace m(q;) for
at leastf; time units before the transition completes its firing. The ‘resource-time
multiplication’ o is definedas (thenumber of tokens in place;) x (the length of
time tha thesetokens remain in that place). Apopular interpretation is: if a token
represents a potential buyer who has to wait, thers proportional to the amount of
coffee you will offer to all these buyers. In matrix forre, = (G")'Dx, where the
m-dimensonal vectorg has an entry per place and whdpeis the dagonal matrix
with the elementg; on the diagonal and O’s elsewhere (in conventional algebra). Here
we only considered the reserved tokens (reserved for the duration of the firing time).
Now suppose that there are on average); tokens in placep; during one period
(this average is with respect to clock time). Then the correspondiagiven by the
vectoruat (popular again: the amount of coffee which you will need during one cycle
for al waiting clients). Since this lattes wascalculated for bothtte reserved and not
resavedtokens, the following inequality holds:

puat > (G"Y DX . (9.46)

Sinceu, is the averagef a finite number of markingg, and shcep'y, with y sais-
fying Gy = 0, does not depend on the particulafsees2.4.1), we obtain

Y it = Y ptat > y'(G") DX
(wherewy is the initial marking or any other one), providgd> 0. Hence

! ny’/
maxy (GMYDx
y Y 1o
It is tacitly assumed that the denominator of (9.47) is strictly greater than zero. In fact,
it is not difficult to derive an upper bound ferand hence the right-hand side of (9.47)
must befinite.

An upper bound for is given by 28max) _; Xi, wherefmax is an upper bound for
the holding and firing times. If a transition starts firing, then any other transition, if it is
enabled gall, will be enabled within Bmax Units oftime, the factor 2 coming from the
firing time of the first transition and from the holding time between the two transitions.
Hence such atransition can initiate firing within 2. time units of the initiation of
firing of the first trang&ion. The btal number of firings in a circuit i3 x;. Thus the
upper bound has been obtained.

For event graphs the analysis related to the lower bound @man be mde more
explicit. Take those indices of thg-vector which correspond to the indices of the
transitions of an arbitrary elementaryrauit of the event gaph eual to 1 and the
other indices equal to 0. It can be shown that yheector thus constructed satisfies
Gy =0,y>0,y#0. If thisy isused in (%47) one obtains

T >

, subjectto Gy=0, y>0, y=#0. (9.47)

vz max| | 3 A | /mo@) | (9.48)

i€k
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wheregg, k =1, ..., are the elementary circuits (thember of such cauits is finite),

and whereug(¢k) denotesthe (initial) number of tokens in circuify. According to

Theorem 237, this number of tokens in a circuit of an event graph does not change

after a fitng. Equation (9.48) will be elucidated by means of the following example.
Consider Figure 9.3 in which an event graph is shown with five transitions and

p

Q\. "O
Figure 9.3: Event graph with four elementary circuits

seven places. The incidence matr of this event graph is

-1 -1 1 1 I3 3 3

& e —1 & 1 3 3

G= € € e -1 3 1 3
g 1 3 e -1 -— 1

1 3 3 3 3 e -1

The columns and the rows of this matrix are numbered as the places aritidrenia
Figure 9.3 resectively. It follows thatG'x = Oforx = ( k k k k k), where
k is a positive integer. A vectoy, y > 0, y # 0, which stisfiesGy = 0 is found as
follows. Take an arirary elementary circuit in the emégraph, for instance the circuit
formed by the placegs, ps, ps andp;. Considery = (1 0 1 0 1 0 1),
where the 1-elements correspond to the indiced the daces in the circuit. Indeed
Gy = 0. A lower bound for the cycle time @1 + B2 + B4 + Bs)/2.

If we were to deal exclusively with event graphs, it can be shown by continuing
along the lines set out above, see [115], thatthgymbol in (9.48) becomes the-
symbol and tha then dl transitions will initiate firing as soon as they are enabled. This
result has already been established in Chapter 3 of this book.

9.8 Notes

Section 9.2 is based on [100, 103, 105, 50] (except®2.2 with was unpublished yet). Sec-
tion 9.3 on control of discrete event systems is believed to be original. One can imagine various
ways to ‘eontrol’ discrete event systems. One such a way has been give®.3n Another
posshility is discussed in [68]. A relation between controlled event graphs and automata-based
models is given in [78].

Section 9.4 is based on [113]. The Cramer transform is an important tool for people inter-
ested in large deviations and researchers in this field know the morphism between conventional
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algebra and min-plusalgebra. But in gereral they are more interested in the probability side than

in the optimization one. Moreover, they are matich corwerned with the algebraic point of view

[3], [60], [125]. Bellman and Karush [17] were are of the iterest of the Fenchel transform
(which they call max transform). Maslov has also clearly understood the analogy between prob-
ahility and dynamic programming and has developed a theory of idempotent integration [88].
The analogue of some jump processes can be found in [55].

The law of large numbers, theentral limit theorem, the Brownian decision process, the
diffuson decision process and the min-plus invariance principle do not seem to have been written
down explicitly before. Some work on the min-plus aogue of stochastic integrals, and more
generally on the analogy between probability adgnamic programming, has been done by
Bellalouna under the supervision of M. Viot [16]. Some comments by P.L. Lions and R. Azencott
on this morphism have been included in this section.

The first dtempt to derive equatns for general timed Petri nets can be traced back to [39].
However, the gpproach proposed in that paper did not lead to explicit equations, owing to the
problem of conaumption conflicts. The setting that is summarized§i5 is that of [7]. The
evolution equations established in this section can be shown to be ‘constructive’ whenever the
Petri net is live, and a computational scheme can be obtained that allows one to determine the
firing times of the transitions iteratively (see [7]). Section 9.6 is based on [98] and [102].

Section 9.7 is based on [96]. As explained, the results of this section can be narrowed down
to event graphs (see [115]), sotasget back the results which have been derived in a different

way in Chapter 3.
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Notation

deg
dom
epi
gcd
hypo

—

-~ D<>006 -

degree

dominant

epgraph

geatest common divisor

hypograph

least common multiple

support

valuaion

collection of subsets d8 (including@ andSitself)
natural numbers

relaive intege numbers

real numbers

the Boolean dioid

R U {—o0} U {+o0} (similar definitions forN, Z, etc.)
dioid {R, max +} (similar definitions forRmin, Zmax €tc.)
symmetrizedlioid of Rpmax

see Kuation (3.15)

see Kuation (3.15)

see Kuation (3.15)

SY =S®uUSs®

S; =8"\{e}

scalar or duality product

addition in a dioid (pronounced ‘oplus’)
multiplicationin a dioid (pronounced ‘otimes’)

in the context 0Rmax (A © B)ij = infy (A + Byj)

(greatest) lower bound in a lattice or dioid (pronounced ‘wedge’)
(least) upper bound in a lattice or dioid (pronounced ‘vee’)
minus sign in a symmetrized dioid (pronounced ‘ominus’)

X — X aisthe dual esdual ofy > y® a

X — Xga (pronouncedx (right) divided bya’) is the residual ofy —

y® a (in Ryax thisisx — a)
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o

Q1 e

™

o o o 1 o

S N o

% is a two-dimensionalidplaynotation forxsa

X — a\x (pronounceda (left) dividing x’) is the residual ofy — a®y
% is a two-dimensionalidplaynotation foraxx

bdance (see Definition 3.63)

empty set

zero elemenin a dioid

zero elemenin the dater diail (see 5.9))

top (largest) element in a lattice or a (complete) dioid
identity element in a dioid

identity element in the dater dioid (see (5.9)) (also, integrator)
best approximation from above of a sigoiglti = éu)

X* = X & X (pronouncedx bullet’)

first order derivative of functior

seand order derivative of functioa

shift operator in the event domain (formalix (k) = x(k — 1))
shift operator in the time domain (formalbx(t) = x(t — 1))
shift operator o2, F, P)

translation bya

left multiplication bya

rightmultiplication by a

shift (by g)

gain (byd)

flow limiter (by a)

local integrator (over a window of widtin)

if fisamaping fromR into Rmax,fg’ f(s) =sups<p F(9)

if P is a set|P| is the cardinality ofP; if x € S, |X| is the absalte value
(seet3.4.1.1); ifAis a matrix,| A is its determinant

|p|i is the length of pathy (total number of arcs)
|p|w is the weght of pathp (total holding time)
|p|t is the totalnumber of tokens along pagh
see Kuation (7.23)

see Kjuation (7.24)

stodastic ordering

convex odering

increasing convex ordering

closed lover set generated by

closed upper set generated by
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D
b
D1'[
g
D1'[
1-[*

IT,
It
m’
F
Fe

g

&

1%
g(A
Na
G(A

[<i]
[=<i]
Aj
X(i)
Ay (j)
Aj
A

AF
A+

DL = {x | TI(X) = X}
Dy = {x | TI(X) < X}
Df = {x | TI(X) > X}

if TT is a maping, I1* = e® I1 @ I[1° @ --- wheree is the identity
mapping and, e.gI? = I1.I1

if ITis a maping,IT, = e ATTATI?A ---

(pronounced ‘pi sharp’) residual of mappiih

(pronounced ‘pi flat’) dual residual of mapping

evaluaion honomorphism

Fendel transform

(directed) graph

set of arcs ba directed graph

sd of nodes of a directed graph

precedence graph associated with magix

number of m.£.s.’s of G(A)

critical graph associated with matrix

sd of nodes ofG°(A)

number of m.£.s.’s ofG¢(A)

saturdion graph associated with matr&and vectory
cydicity of graphG

7 (i) is the ¢t of immediate predecessors of ndde

o (i) isthe ®tof immediate successors of node

(i) isthe %t of all predecessors of nodénot includingi itself)
*(i) isthe st of all predecessors of nod€includingi itself)
o™ (i) isthe stof all successors of nodgnot includingi itself)
o*(i) isthe ¢t of all successors of nodgincludingi itself)

m.s.C.S. containing node; more gewrrally, equivéence class of for a
given equivalence relation

see Not#ion 2.3

see Nottion 2.3

entry in rowi and coumn j of marix A

see Notton 2.5

see Notton 2.5

columnj of matrix A

trangose of matrixA

if Aisasquare matrixA* =e@ A A2 @ - --

if Aisasquare matrixAt = AA*=AP AP ---
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cofij(A)  cofactor of matrixA associated with entr§, j)
A’ trangpose of the matrix of cofactors &
P inaRetri net, set of places
Q ina Petri net, set of transitions
Z ina Petri net, set of input transitions
i vector such that;; equals the number of tokens in placén the initial
marking of aPetri net
a  vector such that; is the holding time of placeof a (timed) Retri net
B vector such thas; is the firing time of transitiom of a (timed) Retri net
wi(j) lag times of thej -thinitial token in placep;
vj(k)  see Fuation (2.16)
zj(k)  see Definition 2.61
‘H  algebra of impulse responses
S  algebra of shift-invariant impulse responses
S algebra of nondecreasing shift-invariantimpulse responses
Scx  subset of convexlements ofs
Sw  subset of concave elements 8f
Co  dioid of closed convex functions froMmay iNt0 Rmax
D™ dioid of n x n matices with entries irD
D¢ dioid closure ofD
D*  rational closure oD
Dl[a] dioid of formal polynomials inx with coefficients inD
P(D) dioid of polynomial functions oveP
Dl[a] dioid of formal power series in with coefficients inD
D(x) rational closure oD U «
D{a} algebraic closure oD U «
D{a} topological closure oD U «
My, 81  (pronounced ‘min max gamma delta’) the quotientBfy, 8] by the
equivalence relatiox = y < y*(671)"'x = y*(6 " 1)*y
(2,F,P) probability space
F  o-dgebrain a probability space
P probability
E mathematical expectation
My  see Huation (9.16)
1, indicator function of subset (or event)
Qmo(X)  quadratic form such thadm,,(m) = 0 andQp,(X) = o1

N(m, o)

Gaussian b with meanm and stadard deviatiorr
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@-morphism, 157
@-supermorphism, 168
®-morphism, 157
A-morphism, 227
A-submorphism, 168

absolde value, 130

absorpion law, 164

activity, 4

activity time, 4

acydicity, 36

addition, 3, 7, 41
cancellative, 155
idempotency of, 102
symmetry of, 102

adjant state, 249

affine equation, 105
canonical form, 106, 108

affine function, 105

aggregation, 91

algebra of convex functions, 280

algébra of pairs, 130

algébra of systems, 273

algébraic equation, 127

algebraic structure, 46, 102, 153
isomorphic, 9

amplificaion, 273

and-convergence, 56

and-divergence, 56

artisymmetry, 134

artitone 246

aperiodidgty, 45, 323

approximation, 191, 225
best, 184

arc, 35
dummy, 40

ARMA equation, 219

ARMA model, 422

array processor
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systolic, 20

wavefont, 20
ascendat, 36
assembly, 95
assaiatedrandom variables, 389
associatn, 388, 389

of random variables, 413
associativity

of addition, 41, 154

of multiplication, 41, 154
asynptotic behavior, 143
automaa theory, xiii
automaon, 60
auonomous, 56
auonomous equation, 81
axiomadics, 154

backward equation, 249
backward process, 311, 332, 350
balance, 129
linear,131, 135
balance operator, 130
balance relation, 130
balarced element, 130
bar, 54
best approximation, 184
from above, 225
from below, 225
bijection, 50
binary system, 98
binomial formula, 102
Birkhoff’s ergodic theorem, 309
Black plot, 268
block diagram, 242
blocking
after service, 343
manufacturing, 358
Boole algebra, 156, 164
Boolean matrix, 197
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Boolean varable, 45
Borel-Cantellilemma, 398
Borovkov’'s theorem, 360, 369
bottom element, 159
brarching process, 395
Brownian neasure, 435
Brownian motion, 429
Brownian process, 434

buffer, 18, 21

buffersize, 19

calculus

rational, 203
cancellative102, 155
canonical basis, 276
canonical form

maximum, 121

minimum, 121
capacity, 89

of network, 44
cawsdity, 254

Cayley-Hamilton theorem, 48, 52, 135,

419

central linit theorem, 433
chain,36, 158
characteristic equation, 48, 51
charactristic polynomial, 48
Chernoff’s theorem, 392
choice, 57
circle, 54
circuit, 10, 36

critical, 143

elementary, 36

empy, 37

grey, 93
circuit of maximum weight, 195
circuit representdion, 49
clock

absolue, 221

global, 20
closed convexunction, 280
closure

algebraic, 287

dioid, 203, 286

linear, 133

polynomial, 286

rational, 203, 286

series 287

topological, 287

transitive, 36
communicatio time, 4, 62
commutaive variades, 197
commutaivity

of addition, 41, 154

of multiplication, 49
competition, 60, 444
compostion

of graphs, 41

of matiices, 41
compostion operator, 307
concave mapping, 120
concavity

with respect to initial marking, 380,

386
concavivied polynomial, 121
concurrency, Xi
conflict, 57
congruence, 154, 157
continuity, 168
continuous fluid system, 25
control, 427
controllability

structual, 300

controller representation, 207, 260

convex maping, 120
convexset,119
conwexity
stodhastic, 413
convolution, 198
coordinate transformation, 220
corner, 122
multiplicity, 122
nonzero, 122
pole, 124
root, 124
ze, 122,124
correlation, 295
correlaion principle, 297
cost function, 429
counter, 5, 216, 244, 375
dynamic equation, 248
counter description, 25, 67, 217
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counter realization, 260
coupling, 315, 342, 360
Craner formula, 134
Craner system 135
Craner transbrm, 432
Cramer-Legendre transform, 390, 393
customer, 18
cycle nmean, 46
maximum, 47, 111
cycletime, 29, 324, 384
bounds, 389, 390
computation of, 373
lower bound, 373
upper bound, 373
cydicity, 150
asynptotic, 150

dater, 72, 215, 223, 271, 375
backward equation, 251
coding of, 230
y-transform, 224
greatest, 226
least, 226

dater description, 25, 217

dater realization, 259

De Morgan laws, 166

deadlock, 60, 257, 260, 299

decision, 57

decomposition, 125, 131

DEDS, see discrete event dynamic sys-

tem

degree, 117, 198, 235

delay operator, 207

s-transform, 216

descendant, 36

description
two-dimensional, 207

descriptor system, 448

destination, 36

deterninant, 134
negative, 135
positive, 135

difference equation, 3
first order, 8
higher order, 8

diffusion process, 429, 436

digraph, 36
acydic, 36
weighted, 46
dioid, 154
Archimedian, 163
commutaive, 155
complde, 162
distributive, 165, 166
entire, 155
matix, 194
quotient of, 221
dioid of systems, 273
dioid structure, 222
diophantine equation, 148
disassembly, 95
discrete event dynamic system, Xi
distance
shortest, 9
distributivity, 41, 154
division, 103, 179
domain, 49
dominant, 420
dynamic programming, 11, 15, 32, 429
dynamics, 71

earliest poch, 4
edge, 35
eigenfunction, 261
eigepair, 370
random, 310, 335, 352
eigenspace, 145
random, 370
eigenvalue, 28
maximum, 112
numerical procedure, 452
Peron-Frobenius, 394
random, 315
eigenvector, 28
generalized, 28
random, 315
enabled trasition, 55
enabling of tansition, 63
entrance time, 69, 76
epigraph, 119, 245
g-input, 239
equation
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affine, 203
bilinear, 22
canonical form, 127
degenerated, 128
homogeneous, 190
implicit, 12
equivalence class
minimum repreentaive, 228
equivalence relation, 37
ergodic process
Kingman'’s theorem, 322
ergodic sequence, 88
statonary, 307
ergodic shift, 308
ergodic theorem, 369
multiplicative, 317
Erlangdistribution function, 383
Euclidean diision, 125
evaluaion honomorphism, 118, 262,
264, 281
evert, 215
renovating, 361, 369
type of, 215
eventdomain, 207
description, 215
event gaph, 59
equivalent, 79
FIFO, 70
live, 61
safe, 62
stable 366
stodhastic, 87, 305
timed, 62
two-dimensional description, 215
eventnumbering, 70
evolution tree, 446
executiontime, 20
expectation
mathematical, 307
exponential, 419
extrenal algdora, 211
extrenal point, 120

facet
balanced, 138
factorization, 122, 139

feedback, 17, 273
feedback connection, 30
feedback stabilization, 294, 300
Fendel algorithm
fast, 432
Fendel transform, 119, 280
FIFO, 69
filter, 167
finite capacity, 18, 89
firing, 55
compldion of, 72
index, 63
sgjuence, 58
serialzed, 63
time, 62 374
firstin first out, 69
firstorder theorem, 305, 317, 319
fixed-point, 184
fixed-point equation, 184
flow
cumulaed,26
flow limitation, 26
flow limiter, 275
flow-shop, 15
fork, 328
fork-join network, 327
formal polynomial, 116
formal polynomials
setd, 117
formal power series, 197
Fourier transform, 280
frequency response, 261
fundamental theorem, 123
furnace, 96

gain, 273, 274
amgification, 261, 268
y-transform, 30, 218
Gaussian elinmation, 204
general Petri net, 437
cycletime, 456
generalized semi-Brkov process, xiii
graph, 35
bipartite, 37
concatenated, 42
connected, 36
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critical, 143
cydicity of, 143
directed, 35
PERT, 382
precedence, 39
reduced, 37, 38
saturdion, 143
strongly connected, 37
transition, 39
weighted, 38
graph theory, 4
Green funtion, 429
Green kernel, 435
group, 101
group structure, 156
growth rate, 317

Hamilton-Ja®bi-Bellman, 434
Hamiltonian system 253
Hankel matrix, 424

Hasse diatgam, 158

Hausdorff topology, 432

head monomial, 117

heat equation, 435

higher order statistics, 341
Hilbert space, 119

HJB, see Hamilton-Jacobi-Bellman
holding time, 62, 63, 217, 374
homomorphism, 157
hypograph, 119

i.i.d., see independent and identically
distributed
ideal, 167
idenmpotency, 44, 155
idempotent algebra, 107
idempotent integration, 459
identity, 274
identity element, 12, 41, 155, 194
identity matrix, 107
transition graph, 43
idle, 91
impulse, 218
impulse response, 240, 276—286
nondecreasing, 279
periodic behavior, 290

shift-invariant, 278
incline algebra, 211
independent and identically distributed,

317
indicator function, 309
inf-convolution, 27
inf-semilattice

complde, 160
infinite series, 31
infinite sum, 162
information, 230, 238

cone of, 264
inhibitor arc, 98
initial condition, 69, 75

canonical, 95

compatilbe, 76

weakly compéble, 69, 84
initialization, 95

canonical, 93
injection

canonical, 191
inner dimension, 206
input, 6, 30, 272
input channel, 4
input sequence

weakly compéble, 84
input-output behavior, 90
integral guation, 411
integrdion, 27
integrabr, 275
inter-input time, 321
interarrival time, 341
internal representation

reduction, 243
inverseoperator

left, 196
inverson, 249
invertible element, 131
involution, 432
irreducibility, 44

calculation of, 45
isomorphism, 157
isotone, 160

Jenseris inequality, 412
join, 328
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join queue, 364

kanban, 98

Karp’s theorem, 47

Kingman'’s theorem, 322, 329, 369
Kolmogorov equation, 435

l.s.c.,see lower-semicontinuity
lag time, 69, 241, 341
initial, 314
language
computer science, Xiii
Laplace transform, 269, 280
lattice, 160
complde, 160
distributive, 160
inf-semilattice, 160
sup-semildtice, 160
lattice theory, 158
lattice-ordered group, 166
Laurent ®ries, 197
Lavenberg’s theorem, 341
law of largenumbers, 433
left division, 179
left multiplication, 178
length, 36
of transition graph, 43
linear dpendency, 425
linear fundion, 105
linear system tleory; 271
Little’s formula, 388
local integator, 275
log-concave function, 382
loop, 36, 58
loop shaping, 301
low-pass dfect, 268
lower bound, 159, 164
lower %t, 167
closed 167
lower-semicontiuity, 162, 168, 272
Lyapunov exponent
maximal,321, 370
Lyapunov exponents, 317

m.s.c.s.seesubgraph, maximal strongly
connected

majorant, 159
manufacturing system, 15
mapping
closure, 177
continuous, 167
dual closure, 177
greatest dual closure, 185
isotone, 160, 167
least closure, 185
residuated, 172
marked gaph, 59
marking, 54
concavity, 380
destination, 58
initial, 54, 374
reachable, 57
Markov chain, 14, 400
Markov parameter, 424
matiix, 38
adjacency, 40
correlation, 295
diagonizable, 28
identity, 10, 12, 30
incidence, 40, 58
inverse, 13
invertibility, 212
positive, 353
sojourn-time, 294
transer, 30
transition, 18
matiix dioid, 194
max trangorm, 459
max-plus algebra, 19, 28, 32, 102
symmetrzation, 129
maximal elenent 159
maximal strongly connected, 37
maximizdion, 3, 7
maximum elenent 159
maximum representative, 140,171, 194,
225,234
mean weight, 46
memory, 21
MIMO system, 254
min operation, 103
minimal polynomial equation, 53
minimal realizéion, 292, 424, 425
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minimal reprsentdion, 292
minimax algebra 211
minimization, 9
minimum elenent 159
minimum representate, 171, 225, 227,
235
minmaxy §, 232
minmax sytem 447
minorant, 159
minus sign, 130
mixing, 68
modeling power, 55, 88
moduloid, 106
monomial, 117, 198
monotonicity
properties, 375
stodhastic, 375, 380
with respect to initial marking, 376
with respect to timing sequence,
375
with respect to topology, 378
multi-arc, 55
multigraph, 35, 88
multiplication, 3, 7, 41
cancellative, 155

negative element, 130
net,see Petri net
network, 4
auonomous, 56
data driven, 20
neutral element, 7
node, 4, 35
blocked, 21
downsteam, 36
final, 36
initial, 36
input-, 36
internal, 6
output-, 36
upstream, 36
noise, 14
nonautonomous equation, 83
nondeterminism, 57
number of tokens, 115
numerical function, 198, 261

obswvability
structual, 300
observable, 67
observation, 14
observer representation, 207, 260
optimal control, 249
or-convergence, 56
or-divergence, 56
order
lexicographic, 171
pattial, 158
total, 158, 162
order relation, 158, 160
ordered set, 158
ordering
convex 374
increasing and convex, 374
stodhastic, 374
origin, 36
Osekdecs theaem, 370

outer dimension, 206
output, 6, 30, 272
output channel, 4

pdlet, 15
Palminversion formula, 369
Pdm probability, 369
parallel composition, 41, 273
parallel computation, 20
parallel connection, 30
patial permutation, 49
weight of, 50
pattially ordered set, 38
path, 36
critical, 11, 382
elementary, 36
shortest, 9
path algebra, 211
performance, 20
performance evaluation, 28, 62
periodic behavior, 93, 450
periodicity, 29, 254, 255
permanent, 420
permutation, 49
Peron-Frobenius, 101



482 Synchronization and Linearity
PERT graph division, 201
stodhastic, 382 formal, 216

PERT-exponential distribution function,
382, 383
perturbation analysis, xiii
Petri net, 53, 54
bounded, 60
conservatie, 60
consistent, 60, 456
continuous, 98
deadlocked, 60
decision free, 59
equivalence of, 66, 89
general timed, 437
live, 60
safe, 60
strictly conservative, 60
synchronous, 60
timing of, 63
weakly consitent, 60
phase shift, 261, 268
pixel, 238
place, 53
downsteam, 54
FIFO, 70
grey, 93
input, 54
output, 54
stable 366
upstream, 54
planning, 9
pointwise ergodic theorem, 309
polynomial, 198
formal, 116
polynomial equation, 127
degree of, 127
polynomial function, 116, 117
canonical form, 121
closed 140
polynomial matrix, 201
polynomial system, 287
Pontryagin’s minimum principle, 253
positive eement, 130
positivily homogeneous, 262
post-condition, 54
power series, 224

subtraction, 201
pre-condition, 54
prececessor, 36
principal filter, 167
principal ideal, 167
probability calculus, 429
probability law, 307
probability space, 307

canonical, 309
producer-consumer system, 307
product, 41
product carrier, 15
production, 15
productiontime, 5
projector

spectral, 146
proper function, 280

quadratic form, 430
guantization, 67
queue
fork-join network of, 327
GI/G/1lko, 307
gueuing system, 18
quotient, 157

railway system, 22
random variable, 88
ratio equation, 330, 348
statbnary solution, 331
ratio of daters, 305
ratio process, 330
rational closure, 203
rational element, 208
rational function, 124
decomposition, 126
proper, 126
rational system, 286
rationality, 255
reachabity, 305, 356
by coupling, 356
direct, 355
reachabity graph, 57
reachabity tree, 57
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reachable endition, 95
redizability, 255
realizdaion
finite dimensional, 253
minimd, 254
realization theory, 423
recycling, 63, 92
reduction of lalance, 132
repregntdion
internal, 250
minimd, 206
rational, 205
reservoir, 26
residual, 172
dual, 174, 245
residuation, 171, 249
dual, 173
residuation theory, 216
resource, 54, 90
response
finite, 257
Riccati equation, 253
right division, 179
rightmultiplication, 178
ring, 155
rival, 57
root, 127, 140
routing, 23

scalar funtion, 116
scheluling, 11
seond-order theorem, 305, 317, 329,
335, 348
second-order theory, 294
semifield 41, 101
commutaive, 101
idenmpotent, 101
semgroup
lattice-odered, 211
semiring, 210
absorling, 210
idenmpotent, 210
sejuence
dominating, 374
seriesconposition, 41, 42, 273
seriesconnection, 30

seriesexpansion, 13
server, 18
servicetime, 341
set
partially ordered, 38
shift, 274
ergodic, 308
shift operator, 207, 307
backward, 224, 231, 308
forward, 224
shortest pathmatiix, 10
signal, 261, 271
signature, 49, 134
signaturé, 49
signed element, 131
signed vector, 133
simple eements
decampostion in, 126
simutaneity, 93
sink, 36
SISO system, 240
skekton, 121
slope, 290
asynptotic, 298
Sobolev spce, 435
sojourn time, 294
soluion, 110
extrenal, 191
greatest, 189
least, 189
particular, 190
source, 36
source subgraph, 324
spectral projector, 146
spectral thery, 111
stahility, 268
internal, 298

stahility condition, 312, 315, 343

stablization
feedback, 300
standard form
of evolution equation, 82
of system, 67
stae, 3
state pace
extended, 82
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redwced, 80
state spce realization, 90
state wariabk, 72, 375
statbnary regime

computation of, 373

finitenessof, 312

reachabity, 305
stodhastic concavity, 380
stodhastic event graph

statonary regime, 305
storage, 92
subdifferential, 267
subdioid, 156

least, 203
subdistributivity, 164
subgradient, 267
subgraph, 36

maximal strongly connected, 37
subsolution, 110, 172

greatest, 110,172
subditution

repeated, 12
subsystem, 30
subtraction, 179
successor, 36
sum, 41
sup-convolution, 27, 222
sup-samilattice

complde, 160
super-eigenpair

right, 352
superdigributivity, 165
supersolution, 172

least, 173
support, 40, 78,117, 198

full, 118
switching, 443
switching function, 444
symmetrizedalgebra, 130
synchronization, xi, 59, 93
system

causal, 277

continuous-time, 25

discreteevent, 25

linear, 133

max-plus linear, 272

repregntdion of, 32
shift-invariant, 278
stodadic, 24
unstable, 19
system oflinearequations, 108
systolic system, 98

tail monomial, 117
target time, 13
Tarski's fixedpoint theorem, 186
text reognition, 14
@-invariant, 309
0-shift, 307
f-staionarity, 308
thredold effect, 268
throughput, 29, 301, 324, 384
time domain, 207
time domain epreserstion, 32
time-donain description, 215
timed eent grgh, 62
timing
constant, 63
variable, 63
timing sejuence, 374
token, 54
distribution, 57
overtakng, 64
reserved, 62
top element158, 163
absorling, 163
trace, 46
track, 22
traffic, 22
trajectory
nondecreasing, 154
nonmonotonic, 154
transer function, 238
eigenfunction, 264
numerical, 281
rational, 205
transfer matrix, 30
transent,255, 261
transition, 53
compeing, 57
enabled, 55
FIFO, 70
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firing of, 55

fork-type, 56

inlet, 95

input, 83

join-type, 56

outlet, 95

recycked, 72

sink, 56

source, 56
transitiveclosure, 36
transktion, 178
transportation time, 4, 62
trangosition, 134
traveling time, 4
tree, 45
Turing machine, 98
two-dimensional

description, 221

domain, 221

domain description, 215, 230

u.S.C.,see upper-semicontinuity
unit matrix, see matrix, identity
upper bound, 159
upper set, 167

closed 167
upper triangular block, 44
upper-semicontinuity, 168
utilization factor, 19

valudion, 117, 198, 235
value unction, 429
variational problem, 436
vertex, 35

Viterbi algorithm, 14,15, 32

weak convergence, 410
weaksubditution, 132
weak transitrity, 132
weight, 38, 55

weight of a path, 42

z-domain, 30

z-transform, 30

zemo divisor, 102, 155

zero element] 2, 41, 42, 155

absorlng, 41, 102, 155
zero matrx, 107, 194

transition graph, 43
zero sysem, 274
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