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Preface to the Web Edition

The first edition of this book was published in 1992 by Wiley (ISBN 0 471 93609 X).
Since this book is now out of print, and to answer the request of several colleagues,
the authors have decided to make it available freely on the Web, while retaining the
copyright, for the benefit of the scientific community.

Copyright Statement

This electronic document is in PDF format. One needs Acrobat Reader (available
freely for most platforms from the Adobe web site) to benefit from the full interactive
machinery: using the packagehyperref by Sebastian Rahtz, the table of contents
and all LATEX cross-references are automatically converted into clickable hyperlinks,
bookmarks are generated automatically, etc.. So, do not hesitate to click on references
to equation or section numbers, on items of the table ofcontents and of the index, etc..

One may freely use and print thisdocument for one’s own purpose or even dis-
tribute it freely, but not commercially, provided it is distributed in its entirety and
without modifications, including this preface and copyright statement. Any use of
the contents should be acknowledgedaccording to the standard scientific practice. The
authors will appreciate receiving any comments by e-mail or other means; all modifica-
tions resulting from these comments in future releases will be adequately and gratefully
acknowledged.

About This and Future Releases

We have taken the opportunity of this electronic edition to make corrections of mis-
prints and slight mistakes we have become aware of since the book was published for
the first time. In the present release, alterations of the original text are mild and need no
special mention: they concern typographic style (which may result in a different pagi-
nation with respect to the original paper version of the book), the way some equations
are displayed, and obvious mistakes. Some sentences may even have been rephrased
for better clarity without altering the original meaning. There are, however, no changes
in the numbering of equations, theorems, remarks, etc..

Fromtime to time in the near future, we plan to offer new releases in which more
substantial alterations of the original text will be provided. Indeed, we consider some
material as somewhat outdated (and sometimes even wrong). These more important
modifications will initially be listed explicitly and provided separately from the original
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text. In a more remote future, we may consider providing a true “second edition” in
which these changes will be incorporatedin the main text itself, sometimes removing
the obsolete or wrong corresponding portions.
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Preface

The mathematical theory developed in this book finds its initial motivation in the mod-
eling and the analysis of the time behavior of a class of dynamic systems now often
referred to as ‘discrete event (dynamic) systems’ (DEDS). This class essentially con-
tains man-made systems that consist of a finite number of resources (processors or
memories, communication channels, machines) shared by several users (jobs, packets,
manufactured objects) which all contribute to the achievement of some common goal
(a parallel computation, the end-to-end transmission of a set of packets, the assembly
of a product in an automated manufacturing line). The coordination of the user ac-
cess to these resourcesrequires complex control mechanisms which usually make it
impossible to describe the dynamic behavior of such systems in terms of differential
equations, as in physical phenomena. The dynamics of such systems can in fact be
described using the two (Petri net like) paradigms of ‘synchronization’ and ‘concur-
rency’ . Synchronization requires the availability of several resources or users at the
sametime, whereas concurrency appears for instance when, at a certain time, some
user must choose among several resources. The following example only contains the
synchronization aspect which is the main topic of this book.

Consider a railway station. A departing train must wait for certain incoming trains
so as toallow passengers to change, which reflects the synchronization feature. Con-
sider anetwork of such stations where the traveling times between stations are known.
The variables of interest are thearrival and departure times, assuming that trains leave
as soon as possible. The departure time of a train is related to the maximum of the
arrival times of the trains conditioning this departure. Hence the max operation is the
basic operator through which variables interact. The arrival time at a station is the sum
of the departure time from the previous station and the traveling time. There is no
concurrency since it has tacitly been assumed thateach train has been assigned a fixed
route.

The thesis developed here is that there exists an algebra in which DEDS that do not
involve concurrency can naturally be modeled as linear systems. A linear model is a
set of equations in which variables can be added together and in which variables can
alsobemultiplied by coefficients which are a part of the data of the model. The train
example showed that the max is the essential operation that captures the synchroniza-
tion phenomenon by operating on arrival times to compute departure times. Therefore
the basic idea is to treat the max as the ‘addition’ of the algebra (hence this max will
be written⊕ to suggest ‘addition’). The same example indicates that we also need
conventional addition to transform variables from one end of an arc of the network to

ix
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the other end (the addition of the traveling time, the data, to the departure time). This
is why+ will be treated as multiplication in this algebra (and it will be denoted⊗).
Theoperations⊕ and⊗ will play their own roles and inother examples they are not
necessarily confined to operate as max and+, respectively.

The basic mathematical feature of⊕ is that it is idempotent:x ⊕ x = x . In
practice, it may be the max or the min of numbers, depending on the nature of the
variables which are handled (either the times at which events occur, or the numbers of
eventsduring given intervals). But the main feature is again idempotency of addition.
The role of⊗ is generallyplayed by conventional addition, but the important thing
is that it behaves well with respect to addition (e.g. that it distributes with respect to
⊕). The algebraic structure outlined is known under the name of ‘dioid’, among other
names. It has connections with standard linear algebra with which it shares many com-
binatorial properties (associativity and commutativity of addition, etc.), but also with
lattice-ordered semigroup theory for, speaking of an idempotent addition is equivalent
to speaking of the ‘least upper bound’ in lattices.

Conventional system theory studies networks of integrators or ‘adders’ connected
in series, parallel and feedback. Similarly, queuing theory or Petri net theory build up
complex systems from elementary objects (namely, queues, or transitions and places).
The theory proposed here studies complex systems which are made up of elementary
systems interacting through a basic operation, called synchronization, located at the
nodes of a network.

The mathematical contributions of the book can be viewed as the first steps to-
ward the development of a theory oflinear systems on dioids. Both deterministic and
stochastic systems are considered. Classical concepts of system theory such as ‘state
space’ recursive equations, input-output (transfer) functions, feedback loops, etc. are
introduced. Overall, this theory offers a unifying framework for systems in which the
basic ‘engine’ of dynamics is synchronization, when these systems are considered from
thepoint of view of performance evaluation. In other words, dioid algebra appears to be
the right tool to handle synchronization in alinear manner, whereasthis phenomenon
seems to be very nonlinear, or even nonsmooth, ‘through the glasses’ of conventional
algebraic tools. Moreover, this theory may be a good starting point to encompass other
basic features of discrete event systems such as concurrency, but at the price of consid-
ering systems which arenonlinear even inthis new framework. Some perspectives are
opened in this respect in the last chapter.

Although the initial motivation was essentially found in the study of discrete event
systems, it turns outthat this theory may be appropriate for other purposes too. This
happens frequently with mathematical theories which often go beyond their initial
scope, as long as other objects can be found with the same basic features. In this
particular case the common feature may be expressed by saying that the input-output
relation has the form of an inf- (or a sup-) convolution. In the same way, the scope
of conventional system theory is the study of input-output relations which are convo-
lutions. In Chapter 1 it is suggested that this theory is also relevant for some systems
which either are continuous or do not involve synchronization. Systems which mix
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fluids in certain proportions and which involve flow constraints fall in the former cate-
gory. Recursive ‘optimization processes’, of which dynamic programming is the most
immediate example, fall in the latter category. All these systems involve max (or min)
and+ as the basic operations. Another situation where dioid algebra naturally shows
up is the asymptotic behavior of exponential functions. In mathematical terms, the
conventional operations+ and× over positivenumbers, say, are transformed into max
and+, respectively, bythe mapping: x �→ lims→+∞ exp(sx). This is relevant, for
example, in the theory of large deviations, and, coming back to conventional system
theory, when outlining Bode diagrams by their asymptotes.

There are numerous concurrent approaches for constructing a mathematical frame-
work for discrete event systems. An important dichotomy arises depending on whether
the framework is intended to assess the logical behavior of the system or its temporal
behavior. Among the first class, we would quote theoretical computer science lan-
guages like CSPor CCSand recent system-theoretic extensions of automata theory
[114]. The algebraic approach that is proposed here is clearly of the latter type, which
makes it comparable with such formalisms as timed (or stochastic) Petri nets [1], gen-
eralized semi-Markov processes [63] and ina sensequeuing network theory. Another
approach, that emphasizes computational aspects, is known as Perturbation Analysis
[70].

A natural question of interest concerns the scope of the methodology that we de-
velop here. Most DEDS involve concurrency at an early stage of their design. However,
it is often necessary to handle this concurrency by choosing certain priority rules (by
specifying routing and/or scheduling, etc.), in order to completely specify their behav-
ior. The theory developed in this book may then be used to evaluate the consequences
of these choices interms of performance. If the delimitation of the class of queuing
systems that admit a max-plus representation is not an easy task within the frame-
work of queuing theory, the problem becomes almost transparent within the setting of
Petri networks developed in Chapter 2: stochastic event graphs coincide with the class
of discrete event systems that have a representation as a max-plus linear system in a
random medium (i.e. the matrices of the linear system are random); any topological
violation of the event graph structure, be it a competition like in multiserver queues,
or a superimposition like in certain Jackson networks, results in a min-type nonlinear-
ity (see Chapter 9). Although it is beyond the scope of the book to review the list of
queuing systems that are stochastic event graphs, several examples of such systems are
provided ranging from manufacturing models (e.g. assembly/disassembly queues, also
called fork-join queues, jobshop and flowshop models, production lines, etc.) to com-
munication and computer science models (communication blocking, wave front arrays,
etc.)

Another important issue is that of the design gains offered by this approach. The
most important structural results are probably those pertaining to the existence of pe-
riodic and stationary regimes. Within the deterministic setting, we would quote the
interpretation of the pair (cycle time, periodic regime) in terms of eigenpairs together
with the polynomial algorithms that can be used to compute them. Moreover, because
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bottlenecks of the systems are explicitly revealed (through the notion of critical cir-
cuits), this approach provides an efficientwaynot only to evaluate the performance but
also to assess certain design choices made at earlier stages. In the stochastic case, this
approach first yields new characterizations of throughput or cycle times as Lyapunov
exponents associated with the matrices of the underlying linear system, whereas the
steady-state regime receives a natural characterization in terms of ‘stochastic eigenval-
ues’ in max-plus algebra, very much in the flavor of Oseledec¸’s multiplicative ergodic
theorems. Thanks to this, queuing theory and timed Petri nets find some sort of (linear)
garden where several known results concerning small dimensional systems can be de-
rived from a few classical theorems (or more precisely from the max-plus counterpart
of classical theorems).

The theory of DEDS came into existence only at the beginning of the 1980s, though
it is fair to say that max-plus algebra is older, see [49], [130], [67]. The field of DEDS is
in full development and this book presents in a coherent fashion the results obtained so
far by this algebraic approach. The book can be used as a textbook, but it also presents
the current state of the theory. Short historical notes and other remarks are given in the
note sections at the end of most chapters. The book should be of interest to (applied)
mathematicians, operations researchers, electrical engineers, computer scientists, prob-
abilists, statisticians, management scientists and in general to those with a professional
interest in parallel and distributed processing, manufacturing, etc. An undergraduate
degree in mathematics should be sufficient to follow the flow of thought (though some
parts go beyond this level). Introductory courses in algebra, probability theory and lin-
earsystem theory form an ideal background. For algebra, [61] for instance provides
suitable background material; for probability theory this role is for instance played by
[20], and for linear system theory it is [72] or the more recent [122].

The heart of the book consists of four main parts,each of which consists of two
chapters. Part I (Chapters 1 and 2) provides a natural motivation for DEDS, it is
devoted to a general introduction and relationships with graph theory and Petri nets.
Part II (Chapters 3 and 4) is devoted to the underlying algebras. Once the reader has
gone through this part, he will also appreciate the more abstract approach presented
in Parts III and IV. Part III (Chapters 5 and 6) deals with deterministic system theory,
where the systems are mostly DEDS, but continuous max-plus linear systems also are
discussed in Chapter 6. Part IV (Chapters 7 and 8) deals with stochastic DEDS. Many
interplays of comparable results between the deterministic and the stochastic frame-
work are shown. There is a fifth part,consisting of onechapter (Chapter 9), which
deals with related areas and some open problems. The notation introduced in Parts I
and II i s used throughout the other parts.

The idea of writing this book took form during the summer of 1989, during which
the third author (GJO) spent a mini-sabbatical at the second author’s (GC’s) institute.
The other two authors (FB and JPQ) joined in the fall of 1989. During the process
of writing, correcting, cutting, pasting, etc., the authors met frequently, mostly in
Fontainebleau, the latter being situated close to the center of gravity of the authors’
own home towns. We acknowledge the working conditions and support of our home
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institutions that made this project possible. The Systems and Control Theory Net-
work in the Netherlands is acknowledged for providing some financial support for the
necessary travels. Mr. J. Schonewille of Delft University of Technology is acknowl-
edged for preparing many of the figures using Adobe Illustrator. Mr. G. Ouanounou
of INRIA-Rocquencourt deserves also many thanks for his help in producing the final
manuscript using the high-resolution equipment of this Institute. The contents of the
book have been improved by remarks of P. Bougerol of the University of Paris VI, and
of A. Jean-Marie and Z. Liu of INRIA-Sophia Antipolis who were all involved in the
proofreading of some parts of the manuscript. The authors are grateful to them. The
second (GC) and fourth (JPQ) authors wish to acknowledge the permanent interaction
with the other past or present membersof the so-called Max Plus working group at
INRIA-Rocquencourt. Among them, M. Viot and S. Gaubert deserve special mention.
Moreover, S. Gaubert helped us to check some examples included in this book, thanks
to his handy computer software MAX manipulating theMax

in[[γ, δ]] algebra. Finally,
the publisher, in the person of Ms. Helen Ramsey, is also to be thanked, specifically
because of her tolerant view with respect to deadlines.

We would like to stress that the material covered in this book has been and is still
in fast evolution. Owing to our different backgrounds, it became clear to us that many
different cultures within mathematics exist with regard to style, notation, etc. We did
our best to come up with one, uniform style throughout the book. Chances are, how-
ever, that, when the reader notices a higher density of Theorems, Definitions, etc., GC
and/or JPQ were the primary authors of the corresponding parts1. As a lastremark,
the third author can always be consulted on the problem of coping with three French
co-authors.

François Baccelli, Sophia Antipolis
Guy Cohen, Fontainebleau
Geert Jan Olsder, Delft
Jean-Pierre Quadrat, Rocquencourt

June 1992

1GC: I donot agree. FB is more prone to that than any of us!
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Chapter 1

Intro duction and Motivation

1.1 Preliminary Remarks and Some Notation

Probably the most well-known equation in the theory of difference equations is

x(t + 1) = Ax(t) , t = 0, 1, 2, . . . . (1.1)

The vectorx ∈ R
n represents the ‘state’ of an underlying model and this state evolves

in time according to this equation;x(t) denotes the state at timet . The symbol A
represents a givenn × n matrix. If an initial condition

x(0) = x0 (1.2)

is given, then the whole future evolution of (1.1) is determined.
Implicit in the text above is that (1.1) is a vector equation. Written out in scalar

equations it becomes

xi (t + 1) =
n∑

j=1

Ai j x j(t) , i = 1, . . . , n ; t = 0, 1, . . . . (1.3)

The symbol xi denotes thei-th component of the vectorx ; the elementsAi j are the
entries of the square matrixA. If Ai j , i, j = 1, . . . , n, andx j (t), j = 1, . . . , n, are
given, thenx j (t + 1), j = 1, . . . , n, can be calculated according to (1.3).

Theonly operations used in (1.3) are multiplication (Ai j × x j (t)) andaddition (the∑
symbol). Most of this book can be considered as a study of formulæ of the form

(1.1), in which the operations are changed. Suppose that the two operations in (1.3)
are changed in thefollowing way: addition becomes maximization and multiplication
becomes addition. Then (1.3) becomes

xi (k + 1) = max(Ai1 + x1(k), Ai2 + x2(k), . . . , Ain + xn(k))
= maxj (Ai j + x j (k)) , i = 1, . . . , n .

(1.4)

If the initial condition (1.2) also holds for (1.4), then the time evolution of (1.4) is
completely determined again. Of course the time evolutions of (1.3) and (1.4) will be
different in general. Equation (1.4), as it stands, is a nonlinear difference equation. As

3
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an example taken = 2, suchthat A is a 2× 2 matrix. Suppose

A =
(

3 7
2 4

)
(1.5)

and that the initial condition is

x0 =
(

1
0

)
. (1.6)

Thetime evolution of (1.1) becomes

x(0) =
(

1
0

)
, x(1) =

(
3
2

)
, x(2) =

(
23
14

)
, x(3) =

(
167
102

)
, . . .

and thetime evolution of (1.4) becomes

x(0) =
(

1
0

)
, x(1) =

(
7
4

)
, x(2) =

(
11
9

)
, x(3) =

(
16
13

)
, . . . . (1.7)

We are used to thinking of the argumentt in x(t) as time; at timet the state is
x(t). With respect to (1.4) we will introduce a different meaning for this argument.
In order to emphasize this different meaning, the argumentt has been replaced byk.
For this new meaning we need to think of a network, which consists of a number of
nodes and some arcs connecting these nodes. The network corresponding to (1.4) has
n nodes; one foreach componentxi . Entry Ai j corresponds to the arc from nodej to
nodei. In terms ofgraph theory such a network is called a directed graph (‘directed’
because the individual arcs between thenodes are one-way arrows). Therefore the arcs
corresponding toAi j and A ji , if both exist, are considered to be different.

Thenodes in the network can perform certain activities;eachnode has its own kind
of activity. Such activities take a finite time, called the activity time, to be performed.
These activity timesmay be different for different nodes. It is assumed that an activity
at a certain node can only start when all preceding (‘directly upstream’)nodes have
finished their activities and sent the results of these activities along the arcs to the
current node. Thus, the arc corresponding toAi j can be interpreted as an output channel
for node j and simultaneously as an input channel for nodei. Suppose that this nodei
starts its activity as soon as all precedingnodes have sent their results (the rather neutral
word ‘results’ is used, it could equally have been messages, ingredients or products,
etc.) to nodei, then (1.4) describes when theactivities take place. The interpretation
of the quantities used is:

• xi (k) is theearliest epoch at which nodei becomes active for thek-th time;

• Ai j is the sum of the activity time of nodej and the traveling time from nodej
to nodei (the rather neutral expression ‘traveling time’ is used instead of, for
instance, ‘transportation time’ or ‘communication time’).

The fact that we writeAi j ratherthan A ji for a quantity connected to the arc from
node j to nodei has to do with matrix equations which will be written in the classical
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3 4

node 1 node 2

2

7

Figure 1.1: Network corresponding to Equation (1.5)

way with column vectors, as will be seen later on. For the example given above, the
network has two nodes and four arcs, as given in Figure 1.1. The interpretation of the
number 3 in this figure is that if node 1 has started an activity, the next activity cannot
start within the next 3 time units. Similarly, the time between two subsequent activities
of node 2 is at least 4 time units. Node 1 sends its results to node 2 and once an activity
starts in node 1, it takes 2 time units before the result of this activity reachesnode 2.
Similarly it takes 7 time units after the initiation of an activity of node 2 for the result
of that activity to reachnode 1. Suppose that an activity refers to some production. The
production time of node 1 could for instance be 1 time unit; after that, node 1 needs
2 time units for recovery (lubrication say) and the traveling time of the result (the final
product) from node 1 to node 2 is 1 time unit. Thus the numberA11 = 3 is made up
of a production time 1 and a recovery time 2 and the numberA21 = 2 is made up of
the same production time 1 and a traveling time 1. Similarly, if the production time at
node 2 is 4, then this node does not need any time for recovery (becauseA22 = 4), and
the traveling time from node 2 to node 1 is 3 (becauseA12 = 7= 4+ 3).

If we now look at the sequence (1.7) again, the interpretation of the vectorsx(k) is
different from theinitial one. The argumentk is no longer a time instant but a counter
which states how many timesthe various nodes have been active. At time 14, node 1
has been active twice (more precisely, node 1 has started two activities, respectively at
times7 and 11). At the same time 14, node 2 has been active three times (it started
activities at times 4, 9 and 13). The counting of the activities is such that it coincides
with the argument of thex vector. The initial condition is henceforth considered to be
thezeroth activity.

In Figure 1.1 there was an arc from any node to any other node. In many networks
referring to more practical situations, this will not be the case. If there is no arc from
node j to nodei, then nodei does not need any result from nodej . Therefore nodej
does not have a direct influence on the behavior of nodei. In such a situation it is useful
to consider the entryAi j to be equal to−∞. In (1.4) the term−∞ + x j(k) does not
influencexi (k + 1) as long asx j(k) is finite. The number−∞ will occur frequently in
what follows and will be indicated byε.

For reasonswhich will become clear later on, Equation (1.4) will be written as

xi (k + 1) =
⊕

j

Ai j ⊗ x j(k) , i = 1, . . . , n ,
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or in vector notation,

x(k + 1) = A⊗ x(k) . (1.8)

The symbol
⊕

j c( j ) refers to the maximum of the elementsc( j ) with respect to all
appropriatej , and⊗ (pronounced ‘o-times’) refers to addition. Later on the symbol⊕
(pronounced ‘o-plus’) will also be used;a ⊕ b refers to the maximum of the scalarsa
andb. If the initial condition for (1.8) isx(0) = x0, then

x(1) = A⊗ x0 ,

x(2) = A⊗ x(1) = A ⊗ (A ⊗ x0) = (A ⊗ A) ⊗ x0 = A2 ⊗ x0 .

It will be shown in Chapter 3 that indeedA ⊗ (A ⊗ x0) = (A ⊗ A) ⊗ x0. For the
example given above it is easy to check this by hand. Instead ofA⊗ A we simply write
A2. Weobtain

x(3) = A ⊗ x(2) = A ⊗ (A2 ⊗ x0) = (A ⊗ A2)⊗ x0 = A3 ⊗ x0 ,

and in general

x(k) = (A ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
k times

)⊗ x0 = Ak ⊗ x0 .

The matricesA2, A3, . . . , can be calculated directly. Let us consider theA-matrix of
(1.5) again, then

A2 =
(

max(3+ 3, 7+ 2) max(3+ 7, 7+ 4)
max(2+ 3, 4+ 2) max(2+ 7, 4+ 4)

)
=
(

9 11
6 9

)
.

In general

(A2)i j =
⊕

l

Ail ⊗ Al j = max
l

(Ail + Al j ) . (1.9)

An extension of (1.8) is

x(k + 1) = (A ⊗ x(k)) ⊕ (B ⊗ u(k)) ,

y(k) = C ⊗ x(k) .

}
(1.10)

The symbol⊕ in this formula refers to componentwise maximization. Them-vector
u is called the input to the system; thep-vector y is the output of the system. The
components ofu refer to nodes which have no predecessors. Similarly, the components
of y refer to nodes with no successors. The components ofx now refer to internal
nodes, i.e. to nodes which have both successors and predecessors. The matricesB =
{Bi j } andC = {Ci j } havesizesn × m and p × n, respectively. The traditional way of
writing (1.10) would be

xi (k + 1) = max(Ai1 + x1(k), . . . , Ain + xn(k),
Bi1 + u1(k), . . . , Bim + um(k)) , i = 1, . . . , n ;

yi(k) = max(Ci1 + x1(k), . . . ,Cin + xn(k)) , i = 1, . . . , p .
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Sometimes (1.10) is written as

x(k + 1) = A ⊗ x(k) ⊕ B ⊗ u(k) ,

y(k) = C ⊗ x(k) ,

}
(1.11)

where it isunderstood that multiplication has priority over addition. Usually, however,
(1.10) is written as

x(k + 1) = Ax(k) ⊕ Bu(k) ,

y(k) = Cx(k) .

}
(1.12)

If it is clear where the ‘⊗’-symbols are used, they are sometimes omitted, as
shown in (1.12). This practice is exactly the same one as with respect to the
more common multiplication ‘ × ’ or ‘ . ’ symbol in conventional algebra. In
the same vein, in conventional algebra 1×x is the same as 1x , which isusually
written asx . Within the context of the⊗ and⊕ symbols, 0⊗ x is exactly the
same asx . The symbol ε is the neutral element with respect to maximization;
its numerical value equals−∞. Similarly, the symbole denotes the neutral
element with respect to addition; it assumes the numerical value 0. Also note
that 1⊗ x is differentfrom x .

If one wants to think in terms of a network again, thenu(k) is a vector indicating when
certain resources become available for thek-th time. Subsequently it takesBi j time
units before the j -th resource reachesnodei of the network. The vectory(k) refers to
the epoch at which the final products of the network are delivered to the outside world.

Take for example

x(k + 1) =
(

3 7
2 4

)
x(k) ⊕

(
ε

1

)
u(k) ,

y(k) = ( 3 ε )x(k) .





(1.13)

The corresponding network is shown in Figure 1.2. BecauseB11 = ε ( = −∞), the

3 41

7

2
3

u(k )

y(k )

Figure 1.2: Network with input and output

inputu(k) only goes to node 2. If one were to replaceB by ( 2 1 )′ for instance,
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where the prime denotes transposition, then each input would ‘spread’ itself over the
two nodes. In this example from epochu(k) on, it takes 2 time units for the input to
reachnode 1 and 1 time unit to reachnode 2. In many practical situations an input will
enter the network through one node. That is why, as in this example, only oneB-entry
per column is different fromε. Similar remarks can be made with respect to the output.
Suppose that we have (1.6) as an initial condition and that

u(0) = 1 , u(1) = 7 , u(2) = 13 , u(3) = 19 , . . . ,

then it easily follows that

x(0) =
(

1
0

)
, x(1) =

(
7
4

)
, x(2) =

(
11
9

)
, x(3) =

(
16
14

)
, . . . ,

y(0) = 4 , y(1) = 10 , y(2) = 14 , y(3) = 19 , . . . .

We started this section with the difference equation (1.1), which is a first-order
linear vector difference equation. It is well known that a higher order linear scalar
difference equation

z(k + 1) = a1z(k) + a2z(k − 1)+ · · · + anz(k − n + 1) (1.14)

canbe written in the form of Equation (1.1). If we introduce the vector(z(k), z(k −
1), . . . , z(k − n + 1))′, then (1.14) canbewritten as




z(k + 1)
z(k)
...
...

z(k − n + 2)




=





a1 a2 . . . . . . an

1 0 . . . . . . 0
0
...

0 . . . 0 1 0









z(k)
z(k − 1)
...
...

z(k − n + 1)




. (1.15)

This equation has exactly the form of (1.1). If we change the operations in (1.14) in the
standard way, addition becomes maximization and multiplication becomes addition;
then the numerical evaluation of (1.14) becomes

z(k + 1) = max(a1 + z(k), a2 + z(k − 1), . . . , an + z(k − n + 1)) . (1.16)

This equation can also be written as a first-order linear vector difference equation. In
fact this equation is almost Equation (1.15), which must now be evaluated with the
operations maximization and addition. The only difference is that the 1’s and 0’s in
(1.15) must be replaced bye’s andε’s, respectively.

1.2 Miscellaneous Examples

In this section, seven examples from different application areas are presented, with a
special emphasis on the modeling process. The examples can be read independently.
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It is shown that all problems formulated lead to equations of the kind (1.8), (1.10),
or related ones. Solutions to the problems which are formulated are not given in this
section. To solve these problems, the theory must first be developed and that will be
done in the next chapters. Although some of the examples deal with equations with the
look of (1.8), the operations used will again be different. The mathematical expressions
are the same for many applications. The underlying algebra, however, differs. The
emphasis of this book is on these algebras and their relationships.

1.2.1 Planning

Planning is one of the traditional fields in which the max-operation plays a crucial
role. In fact, many problems in planning areas are more naturally formulated with
the min-operation than with the max-operation. However, one can easily switch from
minimization to maximization and vice versa. Two applicationswill be considered in
this subsection; the first one is the shortestpath problem, the second one is a scheduling
problem. Solutions to such problems have been known for some time, but here the
emphasis is on the notation introduced in§1.1 and on some analysis pertaining to this
notation.

1.2.1.1 Shortest Path

Consider a network ofn cities; these cities are the nodes in a network. Between some
cities there are road connections; the distance between cityj and city i is indicated
by Ai j . A road corresponds to an arc in the network. If there is no road fromj to i,
then we setAi j = ε. In this exampleε = +∞; nonexisting roads get assigned a value
+∞ ratherthan−∞. The reason is that wewill deal with minimization rather than
maximization. Owing to the possibility of one-way traffic, it is allowed thatAi j 
= A ji .
Matrix A is defined asA = (Ai j ).

The entryAi j denotes the distance betweenj and i if only one link is allowed.
Sometimes it may be more advantageous to go fromj to i via k. This will be the case
if Aik + Akj < Ai j . The shortest distance fromj to i using exactly two links is

min
k=1,... ,n

(Aik + Akj ) . (1.17)

When we use the shorthand symbol⊕ for the minimum operation, then (1.17) becomes

⊕

k

Aik ⊗ Akj .

Note that
⊕

has been used for both the maximum and the minimum operation.
It should be clear from the context which is meant. The symbol⊕ will be used
similarly. The reason for not distinguishing between these two operations is that
(R ∪ {−∞},max,+) and (R ∪ {+∞},min,+) are isomorphic algebraic structures.
Chapters 3 and 4 will deal with such structures. It is only when the operations max
and min appear in the same formulathat this convention would lead to ambiguity. This
situation will occur in Chapter 9 and different symbols for the two operations will be



10 Synchronization and Linearity

used there. Expression (1.17) is thei j -th entry ofA2:

(A2)i j =
⊕

k

Aik ⊗ Akj .

Note that the expressionA2 can have different meanings also. In (1.9) the max-
operation was used whereas the min-operation is used here.

If one isinterested in the shortest path fromj to i using oneor two links, then the
length of the shortest path becomes

(A ⊕ A2)i j .

If we continue, and if one, two or three links are allowed, then the length of the shortest
path from j to i becomes

(A ⊕ A2 ⊕ A3)i j ,

whereA3 = A2 ⊗ A, and soon for more than three links. We want to find the shortest
path whereby any number of links is allowed. It is easily seen that a road connection
consisting of more thann − 1 links can never be optimal. If it were optimal, the
traveler would visit one city at least twice. The road from this city to itself forms a part
of the total road connection and is called a circuit. Since it is (tacitly) assumed that
all distances are nonnegative, this circuit adds to the total distance and can hence be
disregarded. The conclusion is that the length of the shortest path fromj to i is given
by

(A ⊕ A2 ⊕ · · · ⊕ An−1)i j .

Equivalently one can use the following infinite series for the shortest path (the terms
Ak , k ≥ n do not contribute to the sum):

A+ def= A⊕ A2 ⊕ · · · ⊕ An ⊕ An+1 ⊕ · · · . (1.18)

The matrixA+, sometimes referred to as theshortest path matrix, also showsup inthe
scheduling problem that we define below shortly.

Notethat(A+)ii refers to a path which first leaves nodei and then comes back to it.
If one wants to include the possibility of staying at a node, then the shortest path matrix
should be defined ase⊕ A+, wheree denotesthe identity matrix of the same size asA.
An identity matrix in this set-up has zeros onthe diagonal and the other entries have
the value+∞. In general,e is an identity matrix of appropriate size.

The shortest path problem can also be formulated according to a difference equation
of the form (1.8). To that end, consider ann × n matrix X : the i j -th entry ofX refers
to a connection from cityj to city i, Xi j (k) is the minimum length with respect to all
roads fromj to i with k li nks. Then it is not difficult to see that this vector satisfies the
equation

Xi j (k) = min
l=1,... ,n

(Xil (k − 1)+ Al j ) , i, j = 1, . . . , n . (1.19)



1.2. Miscellaneous Examples 11

Formally this equation can be written as

X (k) = X (k − 1)A = X (k − 1)⊗ A ,

but it cannot be seen from this equation that the operations to be used are minimization
and addition. Pleasenote that the matrixA in the last equation, which is of sizen2×n2,
is different from the originalA, of sizen × n, as introduced at the beginning of this
subsection. The principle of dynamic programming can be recognized in (1.19). The
following formula gives exactlythe same results as (1.19):

Xi j (k) = min
l=1,... ,n

(Ail + Xl j (k − 1)) , i, j = 1, . . . , n .

The difference betweenthis formula and (1.19) is that one uses the principle of forward
dynamic programming and the other one uses backward dynamic programming.

1.2.1.2 Scheduling

Consider a project which consists of various tasks. Some of these tasks cannot be
started before some others have been finished. The dependence of these tasks can be
given in a directed graph in which eachnode coincides with a task (or, equivalently,
with an activity). Asan example, consider the graph of Figure 1.3. There are six

1

2

212

4

5
4

3

8 6

4

5

3

5

Figure 1.3: Ordering of activities in a project

nodes, numbered 1, . . . , 6. Node 1 represents the initial activity and node 6 represents
the final activity. It is assumed that the activities, except the final one, take a certain
time to be performed. In addition, there may be traveling times. The fact that the final
activity has a zero cost is not a restriction. If it were to have a nonzero cost, a fictitious
node 7 could be added to node 6. Node 7 would represent the final activity. The arcs
between the nodes in Figure 1.3 denote the precedence constraints. For instance,node
4 cannot start before nodes 2 and 5 have finished their activities. The numberAi j

associated with the arc from nodej to nodei denotes the minimum time that should
elapsebetween the beginning of an activity at nodej and thebeginning of an activity
at nodei.

By means of the principle of dynamic programming it is not difficult to calculate
the critical path in the graph. Critical hererefers to ‘slowest’. The total duration of
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the overall project cannot be smaller than the summation of all numbersAi j along the
critical path.

Another way of finding the time at which the activity at nodei can start at the
earliest, whichwill be denotedxi , is the following. Suppose activity 1 can start at
epochu at the earliest. This quantityu is an input variable which must be given from
theoutside. Hencex1 = u. For the otherxi ’s we can write

xi = max
j=1,... ,6

(Ai j + x j) .

If there is no arc from nodei to j , then Ai j gets assigned the valueε (= −∞). If
x = (x1, . . . , x6)

′ and A = (Ai j ), then wecan compactly write

x = Ax ⊕ Bu , (1.20)

where

A =




ε ε ε ε ε ε

5 ε ε ε ε ε

3 ε ε ε ε ε

ε 2 ε ε 5 ε

ε 1 4 ε ε ε

ε ε 8 2 4 ε



, B =




e
ε

ε

ε

ε

ε



.

Notethate in B equals 0 in this context. Here we recognize the form of (1.11), although
in (1.20) timedoes not play a role;x in the left-hand side equals thex in the right-hand
side. Hence (1.20) is an implicit equation for the vectorx . Let us see what weobtain
by repeated substitution of the complete right-hand side of (1.20) intox of this same
right-hand side. After one substitution:

x = A2x ⊕ ABu ⊕ Bu
= A2x ⊕ (A ⊕ e)Bu ,

and aftern substitutions:

x = An x ⊕ (An−1 ⊕ An−2 ⊕ · · · ⊕ A⊕ e)Bu .

In the formulæ above,e refers to the identity matrix; zeros on the diagonal and
ε’s elsewhere. The symbol e will be used as the identity element for all spaces
that will be encountered in this book. Similarly,ε will be used todenote the
zero element of any space to be encountered.

Since the entries of An denote the weights of paths with lengthn in the corresponding
graph andA does not have paths of length greater than 4, we getAn = −∞ for n ≥ 5.
Therefore the solution x in the current example becomes

x = (A4 ⊕ A3 ⊕ A2 ⊕ A ⊕ e)Bu , (1.21)

for whichwe can write

x = (e ⊕ A+)Bu ,



1.2. Miscellaneous Examples 13

whereA+ was defined in (1.18).
In (1.21), we made use of the series

A∗ def= e⊕ A⊕ · · · ⊕ An ⊕ An+1 ⊕ · · · , (1.22)

although it was concluded thatAk , k > n, does not contribute to the sum. With the
conventional matrix calculus in mindone might be tempted to write for (1.22):

(e ⊕ A ⊕ A2 ⊕ · · · ) = (e � A)−1 . (1.23)

Of course, we have not defined the inverse of a matrix within the current setting and
so (1.23) is anempty statement. It is also strange to have a ‘minus’ sign� in (1.23)
and it isnot known how to interpret this sign in the context of the max-operation at the
left-hand side of the equation. It should be the reverse operation of⊕. If we dare to
continue along these shaky lines, one could write the solution of (1.20) as

(e � A)x = Bu ⇒ x = (e � A)−1 Bu .

Quite often one can guide one’s intuition by considering formal expressions of the kind
(1.23). One tries to find formal analogies in the notation using conventional analysis.
In Chapter 3it will be shown that an inverse as in(1.23) does not exist in general and
therefore we get ‘stuck’ with the series expansion.

There is a dual way to analyze the critical path of Figure 1.3. Instead of starting at
the initial node 1, one could start at the final node 6 and then work backward in time.
This latter approach is useful when a target time for the completion of the project has
been set. The question then is: what is the latest moment at which eachnode has to
start its activity in such a way that the target time can still be fulfilled? If we call the
starting timesxi again, then itis not difficult to see that

xi = min

[
min

j

((
Â
)

i j
+ x j

)
,
(
B̂
)

i
+ u

]
, i = 1, . . . , 6 ,

where

Â =




ε 5 3 ε ε ε

ε ε ε 2 1 ε

ε ε ε ε 4 8
ε ε ε ε ε 2
ε ε ε 5 ε 4
ε ε ε ε ε ε



, B̂ =




ε

ε

ε

ε

ε

e




.

It is easily seen that̂A is equal to the transpose ofA in (1.20); x6 has been chosen as
the completion time of theproject. In matrix form, we can write

x = ( Â⊗ x
)⊕ (B̂ ⊗ u

)
,

where⊗ is now the matrix multiplication using min as addition of scalars and+ as
multiplication, whereas⊕ is the min of vectors, componentwise. This topic of target
times will be addressed in§5.6.
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1.2.2 Communication

This subsection focuses on the Viterbi algorithm. It can conveniently be described by
a formulaof the form (1.1). The operations to be used this time are maximization and
multiplication.

The stochastic process of interest in this section,ν(k), k ≥ 0, is a time homoge-
neous Markov chain with state space{1, 2, . . . , n}, defined on some probability space
(�,F,P). The Markovproperty means that

P
[
ν(k + 1) = ik+1 | ν(0) = i0, . . . , ν(k) = ik

] = P
[
ν(k + 1) = ik+1 | ν(k) = ik

]
,

whereP [A | B] denotesthe conditional probability of the eventA given the eventB
andA andB are inF. Let Mi j denote thetransition probability1 from state j to i. The
initial distribution of the Markov chain will be denotedp.

The processν = (ν(0), . . . , ν(K )) is assumed to be observed with some noise.
This means that there exists a sequence of{1, 2, . . . , n}-valued random variables

z(k), k = 0, . . . , K , called theobservation, and such that Nik jk
def= P[z(k) = ik |

ν(k) = jk] does not depend onk and such that the joint law of (ν, z), where
z = (z(0), . . . , z(K )), is given by the relation

P[ν = j, z = i] =
(

K∏

k=1

Nik jk M jk jk−1

)
Ni0 j0 p j0 , (1.24)

wherei = (i0, . . . , iK ) and j = ( j0, . . . , jK).
Given such asequencez of observations, the question to be answered is to find

the sequencej for which the probabilityP [ν = j | z] is maximal. This problem is a
highly simplified version of a text recognition problem. A machine reads handwritten
text, symbol after symbol, but makes mistakes (the observation errors). The underlying
model of thetext is such that after having read a symbol, the probability of the occur-
rence of the next one is known. More precisely, the sequence of symbols is assumed to
be produced by a Markov chain.

Wewant to compute the quantity

x jK (K ) = max
j0,... , jK−1

P [ν = j, z = i] . (1.25)

This quantity is also a function ofi, but this dependence will not be made explicit. The
argument that achieves the maximum in the right-hand side of (1.25) is the most likely
text up to the(K−1)-st symbol for the observationi; similarly, the argumentjK which
maximizesx jK (K ) is the most likelyK -th symbol given that the firstK observations
arei. From (1.24), we obtain

x jK (K ) = max
j0,... , jK−1

(
K∏

k=1

(
Nik jk M jk jk−1

)
Ni0 j0 p j0

)

= max
jK−1

((
NiK jK M jK jK−1

)
x jK−1(K − 1)

)
,

1Classically, in Markov chains,Mij would rather be denotedM ji .
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with initial conditionx j0(0) = Ni0 j0 p j0. The reader will recognize the above algorithm
as a simple version of (forward) dynamic programming. IfNik jk M jk jk−1 is denoted
A jk jk−1, then the general formula is

xm(k) = max
�=1,... ,n

(Am�x�(k − 1)) , m = 1, . . . , n . (1.26)

This formula is similar to (1.1) if addition is replaced by maximization and multiplica-
tion remains multiplication.

The Viterbi algorithmmaximizesP[ν, z] as given in (1.24). If we take the logarithm
of (1.24), and multiply the result by−1, (1.26) becomes

− ln(xm(k)) = min
�=1,... ,n

[− ln(Am�)− ln(x�(k − 1))] , m = 1, . . . , n .

The form of this equation exactly matches (1.19). Thus the Viterbi algorithm is identi-
cal to an algorithm which determines the shortest path in a network. Actually, it is this
latter algorithm—minimizing− ln(P[ν | z])—which is quite often referred to as the
Viterbi algorithm, rather than the one expressed by (1.26).

1.2.3 Production

Consider a manufacturing system consisting of three machines. It is supposed to pro-
duce three kinds of parts according to a certain product mix. The routes to be followed
by each part and each machine are depicted in Figure 1.4 in whichMi , i = 1, 2, 3,
are the machines andPi , i = 1, 2, 3, are the parts. Processing times are given in

P1

P3

P2

M 3M 2M 1

Figure 1.4: Routing of parts along machines

Table 1.1. Note that this manufacturing system has a flow-shop structure, i.e. all parts
follow the same sequence on the machines (although they may skip some) and every
machine is visited at most once by each part. We assume that there are no set-up times
on machines when they switch from one part type to another. Parts are carried on a
limited number of pallets (or, equivalently, product carriers). For reasons of simplicity
it is assumed that

1. only onepallet is available for each part type;

2. the final product mix is balanced in the sense that it can be obtained by means of
a periodic input of parts, here chosen to beP1, P2, P3;

3. there are no set-up times or traveling times;



16 Synchronization and Linearity

Table 1.1: Processing times

P1 P2 P3

M1 1 5
M2 3 2 3
M3 4 3

4. the sequencing of part types on the machines is known and it is(P2, P3) on M1,
(P1, P2, P3) on M2 and(P1, P2) on M3.

The lastpoint mentioned is not for reasons of simplicity. If any machine were to start
working on the part which arrived first instead of waiting for the appropriate part, the
modeling would be different. Manufacturing systems in which machines start working
on the first arriving part (if it has finished its current activity) will be dealt with in
Chapter 9. We can draw a graph in which eachnode corresponds to a combination of
a machine and a part. SinceM1 works on 2 parts,M2 on 3 andM3 on 2, this graph has
seven nodes. The arcs between the nodes express the precedence constraints between
operationsdue to the sequencing of operations on the machines. To eachnodei in
Figure 1.5 corresponds a numberxi which denotes the earliest epoch at which the node
canstart its activity. In order to be able to calculate these quantities, the epochs at which
the machines and parts (together called the resources) are available must be given. This
is done by means of a six-dimensional input vectoru (six since there are six resources:
three machines and three parts). There is an output vector also; the components of
the six-dimensional vectory denote the epochs at which the parts are ready and the
machines have finished their jobs (for one cycle). The model becomes

x = Ax ⊕ Bu ; (1.27)

y = Cx , (1.28)

in which the matrices are

A =




ε ε ε ε ε ε ε

1 ε ε ε ε ε ε

ε ε ε ε ε ε ε

1 ε 3 ε ε ε ε

ε 5 ε 2 ε ε ε

ε ε 3 ε ε ε ε

ε ε ε 2 ε 4 ε




; B =




e ε ε ε e ε

ε ε ε ε ε e
ε e ε e ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε e ε ε ε

ε ε ε ε ε ε




;



1.2. Miscellaneous Examples 17

C =





ε 5 ε ε ε ε ε

ε ε ε ε 3 ε ε

ε ε ε ε ε ε 3
ε ε ε ε ε 4 ε

ε ε ε ε ε ε 3
ε ε ε ε 3 ε ε




.

Equation (1.27) is an implicit equation inx which can be solved as we did in the

1 2

3 4 5

6 7
M 3

u3

M 2
u2

M 1

P2

y4

y2

y1
u4

u1

u5 u6

P3P1

y6y3

y5

Figure 1.5: Theorderingof activities in the flexible manufacturing system

subsection on Planning;

x = A∗Bu .

Now we add feedbackarcsto Figure 1.5 as illustrated in Figure 1.6. In this graph

Figure 1.6: Production system with feedback arcs

the feedback arcs are indicated by dotted lines. The meaning of these feedback arcs is
the following. After a machine has finished a sequence of products, it starts with the
next sequence. If the pallet on which productPi was mounted is at the end, the finished
product is removed and the empty pallet immediately goes back to the starting point
to pick up a new partPi . If it is assumed that the feedback arcs have zero cost, then
u(k) = y(k − 1), whereu(k) is thek-th input cycle andy(k) thek-th output. Thus we
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can write

y(k) = Cx(k) = C A∗ Bu(k)
= C A∗ By(k − 1) .

(1.29)

The transition matrix from y(k − 1) to y(k) canbe calculated (it can be done by hand,
but a simplecomputerprogram does the job also):

M
def= C A∗B =




6 ε ε ε 6 5
9 8 ε 8 9 8
6 10 7 10 6 ε

ε 7 4 7 ε ε

6 10 7 10 6 ε

9 8 ε 8 9 8



.

This matrix M determines the speed with which the manufacturing system can work.
We will return to this issue in§1.3

1.2.4 Queuing System with Finite Capacity

Let us consider four servers,Si, i = 1, . . . , 4, in series(see Figure 1.7). Each cus-

S 1 S 2 S 3 S 4

Figure 1.7: Queuing system with four servers

tomer is to be served byS1, S2, S3 andS4, and specifically in this order. It takesτi (k)
time units forSi to serve customerk (k = 1, 2, . . . ). Customerk arrives at epochu(k)
into the buffer associated withS1. If this buffer is empty andS1 is idle, then this
customer is served directly byS1. Between the servers there are no buffers. The con-
sequence is that ifSi, i = 1, 2, 3, has finished serving customerk, but Si+1 is still busy
serving customerk − 1, thenSi cannot start serving the new customerk + 1. He must
wait. To complete the description of the queuing system, it is assumed that the travel-
ing times between the servers are zero. Letxi (k) denote the beginning of the service
of customerk by serverSi . BeforeSi can start serving customerk + 1, the following
three conditions must be fulfilled:

• Si must have finished serving customerk;

• Si+1 must be idle (for i = 4 this condition is an empty one);

• Si−1 must have finished serving customerk + 1 (for i = 1 this condition is an
empty one and must be related to the arrival of customerk + 1 in thequeuing
system).
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It is not difficult to see that the vectorx , consisting of the fourx-components, satisfies

x(k + 1) =





ε ε ε ε

τ1(k + 1) ε ε ε

ε τ2(k + 1) ε ε

ε ε τ3(k + 1) ε



 x(k + 1)

(1.30)

⊕





τ1(k) e ε ε

ε τ2(k) e ε

ε ε τ3(k) e
ε ε ε τ4(k)



 x(k) ⊕





e
ε

ε

ε



 u(k + 1) .

We will not discuss issues related to initial conditions here. For those questions, the
reader is referred to Chapters 2 and 7. Equation (1.30), which we write formally as

x(k + 1) = A2(k + 1, k + 1)x(k + 1)⊕ A1(k + 1, k)x(k) ⊕ Bu(k + 1) ,

is an implicit equation inx(k + 1) which can be solved again, as done before. The
result is

x(k + 1) = (A2(k + 1, k + 1))∗ (A1(k + 1, k)x(k) ⊕ Bu(k + 1)) ,

where(A2(k + 1, k + 1))∗ equals



e ε ε ε

τ1(k + 1) e ε ε

τ1(k + 1)τ2(k + 1) τ2(k + 1) e ε

τ1(k + 1)τ2(k + 1)τ3(k + 1) τ2(k + 1)τ3(k + 1) τ3(k + 1) e


 .

The customers who arrive in the queuing system and cannot directly be served by
S1, wait in thebufferassociated withS1. If one isinterested in the buffer contents, i.e.
the number of waiting customers, at a certain moment, one should use a counter (of
customers) at the entry of the buffer and one at the exit of the buffer. The difference of
the two counters yields the buffer contents, but this operation is nonlinear in the max-
plus algebra framework. In§1.2.6 we will return to the ‘counter’-descriptionof discrete
event systems. The counters just mentioned are nondecreasing with time, whereas the
buffercontentsitself is fluctuating as a function of time.

The design of buffer sizes is a basic problem in manufacturing systems. If the buffer
contents tends to go to∞, one speaks of an unstable system. Of course, an unstable
system is an example of abadly designed system. In the current example, buffering
between the servers was not allowed. Finite buffers can also be modeled within the
max-plus algebra context as shown in the next subsection and more generally in§2.6.2.
Another useful parameter is the utilization factor of a server. It is defined by the ‘busy
time’ divided by the total time elapsed.

Notethat we didnot make any assumptions on the service timeτi(k). If oneis faced
with unpredictable breakdowns (and subsequently a repair time) of the servers, then
the service times might be modeled stochastically. For a deterministic and invariant
(‘customer invariant’) system, the serving times do not, by definition, depend on the
particular customer.
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1.2.5 Parallel Computation

The application of this subsection belongs to the field of VLSI array processors (VLSI
stands for ‘Very Large Scale Integration’). The theory of discrete events provides a
method for analyzing the performances of so-called systolic and wavefront array pro-
cessors. In both processors, the individual processing nodes are connected together in
a nearest neighbor fashion to form a regular lattice. In the application to be described,
all i ndividual processing nodes perform the same basic operation.

The difference between systolic and wavefront array processors is the following.
In a systolic array processor, the individual processors, i.e. the nodes of the network,
operate synchronously and the only clock required is a simple global clock. The wave-
front array processor does not operate synchronously, although the required processing
function and network configuration are exactly the same as for the systolic processor.
The operation of each individual processor in the wavefront case is controlled locally.
It depends on the necessary input data available and on the output of the previous cycle
having been delivered to the appropriate (i.e. directly downstream) nodes. For this
reason a wavefront array processor is also called a data-driven net.

Wewill consider a network in which the execution times of the nodes (the individ-
ual processors) depend on the input data. In the case of a simple multiplication, the
difference in execution time is a consequence of whether at least one of the operands is
azero or aone. We assumethat if one of the operands is a zero or a one, the multiplica-
tion becomes trivial and, more importantly, faster. Data driven networks are at least as
fast as systolic networks since in the latter case the period of the synchronization clock
must be large enough to include the slowest local cycle or largest execution time.

1 2

3 4

0 0

0 0
. . . ;A 22;A 21

. . . ;A 12;A 11

...
B 21

B 11

...
B 22

B 12

Figure 1.8: Thenetwork which multiplies two matrices

Consider the network shown in Figure 1.8. In this network four nodes are connec-
ted. Each of these nodes has an input/output behavior as given in Figure 1.9. The
purpose of this network is to multiply two matricesA and B; A has size 2× n andB
has sizen× 2. The numbern is large (� 2), but otherwise arbitrary. The entries of the
rows of A are fedinto the network as indicated in Figure 1.8; they enter the two nodes
on the left. Similarly, the entries ofB enter the two top nodes. Each node will start
its activity as soon as each of the input channels contains a data item, provided it has
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...
Bl+1,m
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Figure 1.9: Input and output of individual node, before and after one activity

finishedits previous activity and sent theoutput of that previous activity downstream.
Note that in the initial situation—see Figure 1.8—not all channels contain data. Only
node 1 can start its activity immediately. Also note that initially all loops contain the
number zero.

The activities will stop when all entries ofA and B have been processed. Then
each of the fournodes contains an entry of the productAB. Thus for instance, node 2
contains(AB)12. It is assumed that eachnode has a local memory ateach of its input
channels which functions as a buffer and in which at most one data item can be stored
if necessary. Such a necessity arises when the upstream node has finished an activity
and wants to send the result downstream while the downstream node is still busy with
an activity. If the buffer is empty, the output of the upstream node can temporarily
be stored in this buffer and the upstream node can start a new activity (provided the
input channels contain data). If the upstream node cannot send out its data because
one or more of the downstream buffers are full, then it cannot start a new activity (it is
‘blocked’).

Since it is assumed that eachnode starts its activities as soon as possible, the net-
work of nodes can be referred to as a wavefront array processor. The execution time of
a node is eitherτ1 or τ2 units oftime. It isτ1 if at least one of the input items, from the
left and from above (Ai j andBi j ), is a zero or a one. Then the product to be performed
becomes a trivial one. The execution time isτ2 if neither input contains a zero or a one.

It is assumed that the entryAi j of A equals zero or one with probabilityp, 0 ≤
p ≤ 1, and thatAi j is neither zero nor one with probability 1− p. The entries of B
are assumed to be neither zero nor one (or,if such anumber would occur, it will not be
detected and exploited).

If xi (k) is the epoch at which nodei becomes active for thek-th time, then it follows
from the description above that

x1(k + 1) = α1(k)x1(k) ⊕ x2(k − 1)⊕ x3(k − 1) ,

x2(k + 1) = α1(k)x2(k) ⊕ α1(k + 1)x1(k + 1)⊕ x4(k − 1) ,

x3(k + 1) = α2(k)x3(k) ⊕ α1(k + 1)x1(k + 1)⊕ x4(k − 1) ,

x4(k + 1) = α2(k)x4(k) ⊕ α1(k + 1)x2(k + 1)
⊕ α2(k + 1)x3(k + 1) .






(1.31)

In these equations, the coefficientsαi(k) are eitherτ1 (if the entry is either azero or a
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one) orτ2 (otherwise);αi(k + 1) have the same meaning with respect to the next entry.
Systems of this type will be considered in Chapter 7.

There is a correlation among the coefficients of (1.31) during different time steps.
By replacingx2(k) andx3(k) by x2(k+1) andx3(k+1), respectively,x4(k) by x4(k+2)
andα2(k) by α2(k + 1), weobtain

x1(k + 1) = α1(k)x1(k) ⊕ x2(k) ⊕ x3(k) ,

x2(k + 1) = α1(k − 1)x2(k) ⊕ α1(k)x1(k) ⊕ x4(k) ,

x3(k + 1) = α2(k)x3(k) ⊕ α1(k)x1(k) ⊕ x4(k) ,

x4(k + 1) = α2(k − 1)x4(k) ⊕ α1(k − 1)x2(k) ⊕ α2(k)x3(k) .





(1.32)

The correlation between some of theαi -coefficients still exists. The standard proce-
dure to avoid problems connected to this correlation is to augment the state vectorx .
Two new state variables are introduced:x5(k + 1) = α1(k) andx6(k + 1) = α2(k).
Equation (1.32) can now be written as

x1(k + 1)= α1(k)x1(k) ⊕ x2(k) ⊕ x3(k) ,

x2(k + 1)= x5(k)x2(k) ⊕ α1(k)x1(k) ⊕ x4(k) ,

x3(k + 1)= α2(k)x3(k) ⊕ α1(k)x1(k) ⊕ x4(k) ,

x4(k + 1)= x6(k)x4(k) ⊕ x5(k)x2(k) ⊕ α2(k)x3(k) ,

x5(k + 1)= α1(k) ,

x6(k + 1)= α2(k) .






(1.33)

The correlation in time of the coefficientsαi has disappeared at the expense of a larger
state vector. Alsonote that Equation (1.33) has termsx j (k) ⊗ xl(k), which cause the
equation to become nonlinear (actually, bilinear). For our purposes of calculating the
performance of the array processor, this does not constitute basic difficulties, as will
be seen in Chapter 8. Equation (1.32) is non-Markovian and linear, whereas (1.33) is
Markovian and nonlinear.

1.2.6 Traffic

In a metropolitan area there are three railway stations,S1, S2, andS3, which are con-
nected by a railway system as indicated in Figure 1.10. The railway system consists of
two inner circles, along which the trains run in opposite direction, and of three outer
circles. The trains on these outer circles deliver and pick up passengers at local stations.
These local stationshave not been indicated in Figure 1.10 since they do not play any
role in the problem tobe formulated.

There are nine railway tracks. TrackSi S j denotes the direct railway connection
from station Si to stationS j ; trackSi Si denotes the outer circleconnected to stationSi .
Initially, a train runs alongeach of these nine tracks. At each station the trains must
wait for the trains arriving from the other directions (except for the trains coming from
the direction the current train is heading for) in order to allow for transfers. Another
assumption to be satisfied is that trains on the same circle cannot bypass one another.
If xi(k) denotes thek-th departuretime of the train in directioni (see Figure 1.10) then
these departure times are described byx(k + 1) = A1 ⊗ x(k), whereA1 is the 9× 9
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Figure 1.10: The railway system, routing no. 1

matrix

A1 =




e ε s31 ε ε ε s11 ε ε

s12 e ε ε ε ε ε s22 ε

ε s23 e ε ε ε ε ε s33

ε ε ε e s21 ε s11 ε ε

ε ε ε ε e s32 ε s22 ε

ε ε ε s13 ε e ε ε s33

ε ε s31 ε s21 ε s11 ε ε

s12 ε ε ε ε s32 ε s22 ε

ε s23 ε s13 ε ε ε ε s33




.

An entrysi j refers to the traveling time on trackSi S j . Thesequantities include transfer
timesat the stations. The diagonal entriese prevent trains from bypassing one another
on the same track at a station. The routing of the trains was according to Figure 1.10;
trainson the two inner circles stay on these inner circles and keep the same direction;
trainson the outer circles remain there. Other routings of the trains are possible; two
such different routings are given inFigures 1.11 and 1.12. Ifxi (k) denotes thek-th
departure time from the same station as given in Figure 1.10, then the departure times
are described again by a model of the formx(k + 1) = A ⊗ x(k). The A-matrix
corresponding to Figure 1.11 is indicated byA2 and theA-matrix corresponding to
Figure 1.12 byA3. If we definematricesFi of size 3× 3 in the following way:

F1 =



ε ε ε

ε ε ε

ε ε ε



 , F2 =



ε ε s31

s12 ε ε

ε s23 ε



 ,

F3 =



s11 ε ε

ε s22 ε

ε ε s33



 , F4 =



ε s21 ε

ε ε s32

s13 ε ε



 ,
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S 1

S 3 S 2

Figure 1.11: Routing no. 2

S 1

S 3 S 2

Figure 1.12: Routing no. 3

then the matricesA1, A2 and A3 canbecompactly written as

A1 =



e ⊕ F2 F1 F3

F1 e⊕ F4 F3

F2 F4 F3



 , A2 =



e⊕ F2 F4 F3

F2 e ⊕ F4 F3

F2 F4 F3



 ,

A3 =



e ⊕ F2 F1 F3

F1 e F3

F2 F4 e



 .

It is seen that for different routing schemes, different models are obtained. In gen-
eral, depending on the numerical values ofsi j , thetime evolutions of these three models
will be different. One needs a criterion for deciding which of the routing schemes is
preferable.

Depending on the application, it may be more realistic to introduce stochasticsi j -
quantities. Suppose for instance that there is a swing bridge in the railway track from
S3 to S1 (only in this track; there is no bridge in the track fromS1 to S3). Each time
a trainruns fromS3 to S1 there is a probabilityp, 0 ≤ p ≤ 1, thatthe train will be
delayed, i.e.s31 becomes larger. Thus the matricesAi becomek-dependent;Ai (k).
The system has becomestochastic. In this situation one may also have a preference for
one of the three routings, or for another one.

The last part of the discussion of this example will be devoted to thedeterministic
model of routing no. 1 again. However, to avoid some mathematical subtleties which
are not essential at this stage, we assume that there is at least a difference ofτ time
units between two subsequent departures of trains in the directions 1 to 6 (τ > e).
Consequently, the equations are nowx(k + 1) = Â1 ⊗ x(k), where Â1 equalsthe
previousA1 except for the first six diagonal entries that are replaced byτ (instead ofe
earlier), and the last three diagonal entriessii that are replaced bysii ⊕ τ respectively.

Wethen introduce a quantityχi (t) which is related toxi (k). The argumentt of χi (t)
refers to the actual clocktime andχi (t) itself refers to the number of train departures
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in the directioni which have occurred up to (and including) timet . The quantity χi

can henceforth only assume the values 0, 1, 2, . . . . At an arbitrary time t , thenumber
of trains which left in the direction 1 can exceed at most by one:

• the samenumber of trainsτ units oftime earlier;

• thenumber of trains that left in the direction 3s31 time units earlier (recall that
initially a train was already traveling oneach track);

• thenumber of trains that left in the direction 7s11 time units earlier.

Therefore, we have

χ1(t) = min (χ1(t − τ )+ 1, χ3(t − s31)+ 1, χ7(t − s11)+ 1) .

Forχ2 one similarly obtains

χ2(t) = min (χ1(t − s12)+ 1, χ2(t − τ )+ 1, χ8(t − s2)+ 1) ,

etc. If all quantitiessi j andτ are equal to 1, then one can compactly write

χ(t) = A ⊗ χ(t − 1) ,

whereχ(t) = (χ1(t), . . . , χ9(t))′, and where the matrix A is derived from A1 by
replacing all entries equal toε by+∞ and theother entries by 1. This equation must
be read in the min-plus algebra setting. In case we want something more general than
si j andτ equal to 1, we will consider the situation when all these quantities are integer
multiples of a positive constantgc; thengc can be interpreted as the time unit along
which the evolution will be expressed. One then obtains

χ(t) = A1⊗ χ(t − 1)⊕ A2⊗ χ(t − 2)⊕ · · · ⊕ Al ⊗ χ(t − l) (1.34)

for some finitel. The latter equation (in the min-plus algebra) andx(k+1) = Â1⊗x(k)
(in the max-plus algebra) describe the same system. Equation (1.34) is referred to as
the counter description and theother one as thedater description. The word‘dater’
mustbe understood as ‘timer’, but since the word ‘time’ and its declinations are already
used in various ways in this book, we will stick to the word ‘dater’. The awareness of
these two different descriptions for the same problem has far-reaching consequences
as will be shown in Chapter 5.

The reader should contemplate that the stochastic problem (in which some of the
si j are random) is more difficult to handle in the counter description, since the delays
in (1.34) become stochastic (see§8.2.4).

1.2.7 Continuous System Subject to Flow Bounds and Mixing

So far, the examples have been related to the realm of discrete eventsystems, and dy-
namic equations have been obtained under the form of recursive equations involving
max (or min) and+-operations. We close this section by showing that a continuous-
time system may naturally lead to essentially the same type of equations whenever
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someflow limitation and mixing phenomena are involved. Had we adopted the point
of view of conventional system theory, the model of such a system in terms of differ-
ential equations would have exhibited very complex nonlinearities. With the following
approach, we will see that this system is ‘linear’ in a precise mathematical sense (see
Chapter 6). An analogous discrete event model will be discussed in Example 2.48.

In Figure 1.13, a fluid is poured through a long pipe into a first reservoir (empty

Figure 1.13: A continuous system

at time t = 0). The inputu(t) denotes thecumulated flow at theinlet of the pipe
up to time t (hence u(t) is a nondecreasing time function andu(t) = 0 for t ≤ 0).
It is assumed that it takes a delay of 2 units of time (say, 2 seconds) for the fluid to
travel through the pipe. From the first reservoir, the fluid drops into a second reservoir
through an aperture which limits the instantaneous flow to a maximum value of, say,
0.5 liter per second. The volume of fluid at timet in this second reservoir is denoted
y(t), and itis assumed thaty(0) = 3 liters.

Let us establish dynamic equations for such a system relating the outputy to the
inputu. Because of the flow limitation into the second reservoir, we have:

∀t , ∀s ≥ 0 , y(t + s) ≤ y(t)+ 0.5s . (1.35)

Onthe otherhand, since there is a delay of 2 seconds caused by the pipe,y(t) should be
compared withu(t − 2), andbecause there is a stock of 3liters in the second reservoir
at t = 0, we have:

∀t , y(t) ≤ u(t − 2)+ 3 . (1.36)

It follows that

∀t , ∀s ≥ 0 , y(t) ≤ y(t − s) + 0.5s

≤ u(t − 2− s)+ 3+ 0.5s ,

hence,

∀t , y(t) ≤ inf
s≥0

[u(t − 2− s)+ 3+ 0.5s]

= inf
τ≥2

[u(t − τ )+ 3+ 0.5(τ − 2)] . (1.37)
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Let

h(t)
def=
{

3 if t ≤ 2;

3+ 0.5(t − 2) otherwise.
(1.38)

and consider

∀t , y(t)
def= inf

τ∈R

[u(t − τ )+ h(τ )] . (1.39)

Indeed, in (1.39), the range ofτ may belimited to τ ≥ 2 since, for τ < 2, h(τ )
remains equal to 3 whereasu(t − τ ) ≥ u(t −2) (remember thatu(·) is nondecreasing).
Therefore, comparing (1.39) with (1.37), it is clear thaty(t) ≤ y(t), ∀t .

Moreover, choosingτ = 2 at the right-hand side of (1.39), we see thaty satisfies
(1.36). In addition, since for alls and allϑ ≥ 0, h(s + ϑ) ≤ h(s) + 0.5ϑ , then

∀t , ∀θ ≥ 0 , y(t + ϑ) = inf
τ∈R

[u(t + ϑ − τ )+ h(τ )]

= inf
s∈R

[u(t − s)+ h(s + ϑ)]

≤ inf
s∈R

[u(t − s)+ h(s)] + 0.5ϑ

= y(t)+ 0.5ϑ .

Thus,y satisfies (1.35).

Finally, we have proved thaty is the maximum solution of (1.35)–(1.36). It can
also be checked that (1.39) yieldsy(t) = 3, ∀t ≤ 2. Therefore,y is the solution which
will be physically realized if we assume that, subject to (1.37)–(1.39), the fluid flows
asfast as possible. This output trajectory is related to the input historyu by an ‘inf-
convolution’ (see Equation (1.39)). In order to make this inf-convolution more visible,
the inf-operator should be viewed as an ‘integration’ (which is nothing else than the
⊕-operator ranging over the real numbers). If moreover+ in (1.39) is replaced by⊗
one obtains the appearance of the conventional convolution. The same kind of input-
output relationship (indeed, a ‘sup-convolution’ in that context) can be obtained from
the recursive equations (1.12) by developing the recursion from any initial condition.

As a final remark, observe that if wehave two systems similar to the one shown in
Figure 1.13, one producing a red fluid and the other producing a white fluid, and if we
want to produce a pink fluid by mixing them in equal proportions, then the new output
is related to the two inputs by essentially the same type of equations. More specifically,
let yr(t) andyw(t) be the quantities of red and white fluids that have been produced in
the two downstream reservoirs up to timet (including the initial reserves). Suppose
that the two taps at their outlets are opened so that the same (very large) outflow of red
and white liquids canbe obtained unless one of the two reservoirs is empty, in which
case the two taps are closed immediately. Then, min(yr(t), yw(t)) is directly related to
the quantityyp(t) of pink fluid produced up to timet . Therefore, this mixing operation
does not introduce new mathematical operators.



28 Synchronization and Linearity

1.3 Issues and Problems in Performance Evaluation

In the previous sections we dealt with equations of the formx(k+1) = Ax(k), or more
generallyx(k+1) = A(k)x(k)⊕ B(k)u(k). In the applicationsthree different interpre-
tations in terms of the operations were given: maximization and addition, minimization
and addition and lastly, maximization and multiplication. In this section only the first
interpretation will be considered (we will say that the system under consideration is in
the max-plus algebra framework). Before that a brief introduction to the solution of the
conventional equation (1.1) is needed.

Assumethat the initial vector (1.2) equals an eigenvector ofA; the corresponding
eigenvalueis denoted byλ. Thesolution of (1.1) can be written as

x(t) = λt x0 , t = 0, 1, . . . . (1.40)

More generally, if the initial vector can be written as a linear combination of the set of
linearly independent eigenvectors,

x0 =
∑

j

c jv j , (1.41)

wherev j is the j -th eigenvector with corresponding eigenvalueλ j , thec j are coeffi-
cients, then

x(t) =
∑

j

c jλ
t
jv j .

If the matrix A is diagonalizable, then the set of linearly independent eigenvectors
spansRn , and any initial conditionx0 can be expressed as in (1.41). IfA is not diag-
onalizable, then one must work with generalized eigenvectors and the formula which
expressesx(t) in terms of eigenvalues andx0 is slightly more complicated. This com-
plication does not occur in the max-plus algebra context and therefore will not be dealt
with explicitly.

In Chapter 3 it will be shown that under quite general conditions an eigenvalue
(λ) and corresponding eigenvector (v) also existin the max-plus algebra context for a
square matrix ( A). The definition is

A⊗ v = λ⊗ v .

To exclude degenerate cases, it is assumed that not all components ofv are identical to
ε. As an example of a (nondegenerate) eigenvalue:

(
3 7
2 4

)(
2.5
e

)
= 4.5

(
2.5
e

)
.

Thus itis seen that the matrixA of (1.5) has an eigenvalue 4.5. Equation (1.40) is also
valid in the current setting. Ifx0 is aneigenvectorof A, with corresponding eigenvalue
λ, then thesolution of the difference equation (1.8) can be written as

x(k) = λkx0 ( = λk ⊗ x0) , k = 0, 1, . . . . (1.42)
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The numerical evaluation ofλk in this formula equalskλ in conventional analysis. The
eigenvalueλ canbe interpreted as the cycle time (defined as the inverse of the through-
put) of the underlying system;eachnode of the corresponding network becomes active
everyλ units of time, since it follows straightforwardly from (1.42). Also, the relative
order in which the nodes become active for thek-th time, as expressed by the compo-
nentsxi(k), is exactly the same as the relative order in which the nodes become active
for the (k + 1)-st time. More precisely, Equation (1.42) yields

xl(k + 1)− x j (k + 1) = xl(k) − x j(k) , j, l = 1, . . . , n .

Thus the solution (1.42) exhibits a kind of periodicity. Procedures exist for the calcula-
tion of eigenvalues and eigenvectors; an efficient one is the procedure known as Karp’s
algorithm for which the reader is referred to Chapter 2. More discussion about related
issues can be found in Chapter 3. Under suitable conditions the eigenvalue turns out to
be unique (which differs from the situation in conventional analysis). It can be shown
for instance thatA of (1.5) has only one eigenvalue. Similarly, the matrixM of §1.2.3
also has aunique eigenvalue:





6 ε ε ε 6 5
9 8 ε 8 9 8
6 10 7 10 6 ε

ε 7 4 7 ε ε

6 10 7 10 6 ε

9 8 ε 8 9 8









e
3
3.5
0.5
3.5
3




= 9.5





e
3
3.5
0.5
3.5
3




.

It follows that the eigenvalue equals 9.5, which means in more practical terms that the
manufacturing system ‘delivers’ an item (a product or a machine) at all of its output
channels every 9.5 units of time. The eigenvector of this example is also unique, apart
from adding the same constant to all components. Ifv is aneigenvector, thencv, where
c is a scalar, also is an eigenvector, as it follows directly from the definition of eigen-
value. Itis possible that several eigenvectors can be associated with the only eigenvalue
of a matrix, i.e. eigenvectors may not be identical up to an additional constant.

Suppose that we deal with the system characterized by the matrix of (1.5); then
it is known from earlier that the ‘cycle time’ is 9/2 units of time. The throughput
is defined as the inverse of the cycle time and equals 2/9. If we had the choice of
reducing one arbitrary entry ofA by 2, which entry should we choose such that the
cycletime becomes as small as possible? To put it differently, if a piece of equipment
were available which reduces the traveling time at any connection by 2, where should
this piece of equipment be placed? By trial and error it is found that eitherA12 or A21

should be reduced by 2; in both cases the new cycle time becomes 4. If one reduces
A11 or A22 by this amount instead ofA12 or A21, then the cycletime remains 9/2. The
consequences of the four potential ways of reduction are expressed by
(

1 7
2 4

)(
2.5
e

)
= 4.5

(
2.5
e

)
;
(

3 5
2 4

)(
1
e

)
= 4

(
1
e

)
;

(
3 7
0 4

)(
3
e

)
= 4

(
3
e

)
;

(
3 7
2 2

)(
2.5
e

)
= 4.5

(
2.5
e

)
.
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To answer thequestion of which ‘transportation line’ to speed up for more general
networks, application of the trial and error method as used above would become very
laborious. Fortunately more elegant and more efficient methods exist. For those one
needs the notion of a critical circuit, which is elaborated upon in Chapters 2 and 3.
Without defining such a circuit in this section formally let us mention that, in Fig-
ure 1.1, this critical circuit consists of the arcs determined byA12 and A21. Note that
(A12 + A21)/2= λ = 9/2, and this equality is not a coincidence.

Stochastic extensions are possible. Towards that end, consider

x(k + 1) = A(k)x(k) ,

where thematrix A now depends onk in a stochastic way. Assume thatx ∈ R
2 and

that for eachk the matrixA is one of the following two matrices:
(

3 7
2 4

)
,

(
3 5
2 4

)
.

Both matrices occur with probability 1/2 and there is no correlation in time. A suitable
definition of cycle time turns out to be

lim
k→∞

E [xi (k + 1)− xi(k)] ,

whereE denotes mathematical expectation. Application of the theory presented in
Chapters 7 and 8 shows that this cycle time is independent ofi and is equal to 13/3.

Conventional linear systems with inputs and outputs are of the form (1.10), al-
though (1.10) itself has the max-plus algebra interpretation. This equation is a rep-
resentation of a linear system in the time domain. Its representation in thez-domain
equals

Y (z) = C(z I − A)−1 BU (z) ,

whereY (z) andU (z) are defined by

Y (z) =
∞∑

i=0

y(i)z−i , U (z) =
∞∑

i=0

u(i)z−i ,

where it is tacitly assumed that the system was at rest fort ≤ 0. The matrixH (z)
def=

C(z I − A)−1 B is called the transfer matrix of the system. HereI refers to the identity
matrix in conventional algebra. The notion of transfer matrix is especially useful when
subsystems are combined to build larger systems, by means of parallel, series and
feedback connections.

In the max-plus algebracontext, the z-transform also exists (see [72]), but here
we will rather refer to theγ -transform whereγ operates asz−1. For instance, the
γ -transform ofu is defined as

U (γ ) =
∞⊕

i=0

u(i) ⊗ γ i ,
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andY (γ ) andX (γ ) are defined likewise. Multiplication of (1.12) byγ k yields

γ −1x(k + 1)γ k+1 = A ⊗ x(k)γ k ⊕ B ⊗ u(k)γ k ,

y(k)γ k = C ⊗ x(k)γ k .

}
(1.43)

If these equations are summed with respect tok = 0, 1, . . . , then weobtain

γ −1X (γ ) = A ⊗ X (γ )⊕ B ⊗U (γ )⊕ γ −1x0 ,

Y (γ ) = C ⊗ X (γ ) .

}
(1.44)

The first of these equations can be solved by first multiplying (max-plus algebra),
equivalently adding (conventional) the left- and right-hand sides byγ and then repeat-
edly substituting the right-hand side forX (γ ) within this right-hand side. This results
in

X (γ ) = (γ A)∗(γ BU (γ )⊕ x0) .

Thus we obtainY (γ ) = H (γ )U (γ ), provided thatx0 = ε, and where the transfer
matrix H (γ ) is defined by

H (γ ) = C ⊗ (γ A)∗ ⊗ γ ⊗ B = γC B ⊕ γ 2C AB ⊕ γ 3C A2 B ⊕ · · · . (1.45)

The transfer matrix is defined by means of an infinite series and the convergence de-
pends on the value ofγ . If the series isconvergent forγ = γ ′, then it is also convergent
for all γ ’s which are smaller thanγ ′. If theseriesdoesnotconverge, it still has a mean-
ing as a formal series.

Exactly asin conventional system theory, the product of two transfer matrices (in
which it is tacitly assumed that the sizes of these matrices are such that the multiplica-
tion is possible), is a new transfer matrix which refers to a system which consists of the
original systems connected in series. In the same way, the sum of two transfer matrices
refers to two systemsput in parallel. This section will be concluded by an example of
such a parallel connection.

We are given two systems. The first one is given in (1.13), and is characterized by
the 1× 1 transfer matrix

H1 = εγ ⊕ 11γ 2⊕ 15γ 3⊕ 20γ 4⊕ 24γ 5⊕ 29γ 6⊕ · · · .

It is easily shown that this series converges forγ ≤ −4.5; the number 4.5 corresponds
to the eigenvalue ofA. The second system is given by

x(k + 1) =



e ε 4
1 1 ε

ε 6 3



 x(k) ⊕



ε

2
e



 u(k) ,

y(k) = ( 1 1 4 )x(k) ,

andits transfer matrix is

H2 = 4γ ⊕ 12γ 2⊕ 15γ 3⊕ 18γ 4⊕ 23γ 5⊕ 26γ 6⊕ · · · .
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The transfer matrix of the two systems put in parallel has size 1×1 again (one cantalk
about a transfer function) and is obtained as

Hpar= H1⊕ H2 = 4γ ⊕ 12γ 2⊕ 15γ 3⊕ 20γ 4⊕ 24γ 5⊕ 29γ 6⊕ · · · . (1.46)

A transfer function caneasily be visualized. IfH (γ ) is a scalar function, i.e. the system
has one input and one output, then it is a continuous and piecewise linear function.
As an example, the transfer function of the parallel connection considered above is
pictured in Figure 1.14.

Above it was shown how to derive the transfer matrix of a system if the represen-
tation of the system in the ‘time domain’ is given. This time domain representation is
characterized by the matricesA, B andC. Now one could pose the opposite question:
How can we obtain a time domain representation, or equivalently, how can we find
A, B andC if the transfer matrix is given? A partial answer to this question is given in
[103]. For the example above, one would like to obtain a time domain representation
of the two systems put in parallel starting from (1.46). This avenue will not be pursued
now. Instead, one can always obtain such a representation by connecting the underly-
ing networks of the two original systems in the appropriate (‘parallel’) way and then
derive the state equations directly. In this way one gets for the above example,

x(k + 1) =




3 7 ε ε ε

2 4 ε ε ε

ε ε e ε 4
ε ε 1 1 ε

ε ε ε 6 3




x(k) ⊕




ε

1
ε

2
e




u(k) ,

y(k) = ( 3 ε 1 1 4 )x(k) .

1.4 Notes

A few times, reference has been made to (linear) system theory. Classic texts are [81], [32] or
[72]. A few examples could be phrased in terms of dynamic programming. There are many
elementary texts which explain the theory of dynamic programming. A more advanced text is
[18]. Systems in the context of max-plus algebra were probably first described in [49], though
most theory in this book is algebraically rather than system oriented. It was in [39] where the
relation between system theory and max-plus algebra was clearly shown. The shortest path
problem is a standard example in dynamic programming texts. The Viterbi algorithm was found
in [59]. The example on production was presented in [38], the examples of parallel computation
and traffic can be found in [97]. Other simple examples can be found in [101]. A max-plus
modeling of the Dutch intercity railway net is given in [27]. An application to chemical batch
processing is given in [107]. A good introductory text to design methods of processors for
parallel computation is [79]. The relation between eigenvalue and cycle time was developed in
[39]. Stochastic extensions were given in [104]. The connection between transfer matrices and
state equations in the max-plus algebra context was investigatedin [103]; see also§9.2.3.
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Chapter 2

Graph Theory and Petri Nets

2.1 Introduction

An overview of various results in the theories of graphs and Petri nets will be given.
Several properties of DEDS can be expressed in terms of graph-theoretic notions such
as strong connectedness and critical circuits.

A rich relationship exists between graphs and matrices, about which many books
have beenwritten. Here, we will emphasize some of these relationships between di-
rected graphs and matrices, together with their consequences if such matrices and
graphs are composed to build larger ones. The way to construct such compositions
is by means of parallel and series connections.

Petri nets, which describe DEDS pictorially, can be viewed as bipartite graphs.
An essential feature of Petri nets, not present in conventional graphs, is that they are
dynamic systems. Tokens are used to reflect this dynamic behavior.

There is an equivalence between DEDS without concurrency and a subclass of
Petri netscalled ‘event graphs’. For any timed event graph, we will show how to ob-
tain a mathematical model in terms of recurrence equations. In the proper algebraic
framework, these equations are linear and the model offers a strong analogy with con-
ventional linear dynamic systems.

In the last part of this chapter, starting from the point of view of resources involved
in DEDS, we propose a methodolgy to go from the specifications of a concrete system
to its modeling by eventgraphs.

2.2 Directed Graphs

A directed graph G is definedas a pair(V, E), whereV is a set ofelements callednodes
and whereE is a set the elements of which are ordered (not necessarily different) pairs
of nodes, calledarcs. The possibilityof several arcs between two nodes exists (one then
speaks about a multigraph); in this chapter, however, we almost exclusively deal with
directed graphs in which there is at most one (i.e. zero or one) arc between any two
nodes. One distinguishes graphs and directed graphs. The difference between the two
is that in a graph the elements ofE arenot ordered while they are in a directed graph.
Instead of nodes and arcs, one also speaks about vertices and edges, respectively. The
origin of the symbolsV andE in the definition of a (directed) graph is due to the first

35
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letters of the latter two names. Instead of directed graph one often uses the shorter
word ‘digraph’, or even ‘graph’ if it is clear from the context that digraph is meant. In
this chapter we will almost exclusively deal with digraphs (hence also called graphs).

Denote the number of nodes byn, and number the individual nodes 1, 2, . . . , n.
If (i, j ) ∈ E , theni is called the initial node or the origin of the arc(i, j ), and j the
final node or the destination of the arc(i, j ). Graphically, the nodes are represented by
points, and the arc(i, j ) is represented by an ‘arrow’ from i to j .

We now give alist of conceptsof graph theory which will be used later on.

Predecessor, successor.If in a graph(i, j ) ∈ E , then i is called a predecessor ofj
and j is called a successor ofi. The set of allpredecessors ofj is indicated by
π( j ) and the set of all successors ofi is indicated byσ(i). A predecessor is also
called anupstream node and a successor is also called adownstream node.

Source, sink. If π(i) = ∅, then nodei is called a source; ifσ(i) = ∅ theni is called
a sink. Depending on the application, a source, respectively sink, is also called
an input(-node), respectively anoutput(-node) of the graph.

Path, circuit, loop, length. A path ρ is a sequence of nodes(i1, i2, . . . , ip), p > 1,
suchthat i j ∈ π(i j+1), j = 1, . . . , p − 1. Nodei1 is the initial node andip is
the finalone of this path. Equivalently, one also says that a path is a sequence of
arcswhich connects a sequence of nodes. Anelementary path is a path in which
no node appears more than once. When the initial and the final nodes coincide,
one speaks of acircuit. A circuit (i1, i2, . . . , ip = i1) is anelementary circuit if
the path(i1, i2, . . . , ip−1) is elementary. Aloop is a circuit(i, i), that is,a circuit
composed of a single node which is initial and final. This definition assumes that
i ∈ π(i), that is, there does exist an arc fromi to i. The length of a path or
a circuit is equal to the sum of the lengths of the arcs of which it is composed,
the lengths of the arcs being 1 unless otherwise specified. With this convention,
the length of a loop is 1. The length of pathρ is denoted|ρ|l . The subscript ‘l’
here refers to the word ‘length’ (later on, another subscript ‘w’ will appear for a
different concept). The set of all paths and circuits in a graph is denotedR. A
digraph is said to beacyclic if R contains no circuits.

Descendant, ascendant.The set ofdescendantsσ+(i) of nodei consists of all nodes
j such that a path exists fromi to j . Similarly the set of ascendantsπ+(i) of
nodei is the set of all nodesj such that a path exists fromj to i. Onehas, e.g.,
π+(i) = π(i) ∪ π(π(i)) ∪ . . . . The mapping i �→ π∗(i) = {i} ∪ π+(i) is the
transitive closure ofπ ; the mapping i �→ σ ∗(i) = {i} ∪ σ+(i) is the transitive
closure ofσ .

Subgraph. Given a graphG = (V, E), a graphG′ = (V ′, E ′) is said to be a subgraph
of G if V ′ ⊂ V and ifE ′ consists of the set of arcs ofG which have their origins
and destinations inV ′.

Chain, connected graph. A graph is called connected if for all pairs of nodesi
and j there exists achain joining i and j . A chain is a sequence of nodes
(i1, i2, . . . , ip) such that between each pair of successivenodes either the
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arc (i j , i j+1) or the arc(i j+1, i j ) exists. If one disregards the directions of the
arcsin the definition of a path, one obtains a chain.

Strongly connected graph.A graph is called strongly connected if for any two dif-
ferent nodesi and j there exists a pathfrom i to j . Equivalently, i ∈ σ ∗( j ) for
all i, j ∈ V, with i 
= j . Note that, according to this definition, an isolated node,
with or without a loop, is a strongly connected graph.

Bipartit e graph. If the set of nodesV of a graphG canbepartitioned into two disjoint
subsetsV1 andV2 such that every arc ofG connects an element of V1 with one
of V2 or the other way around, thenG is called bipartite.

In §2.3, it will be useful to introduce the notion of an ‘empty circuit’ the length
of which is equal to 0 by definition. An empty circuit contains no arcs. The
circuit (i) is anempty circuit which should not be confused with the loop(i, i)
of length 1 (the latter makes sense only if there exists an arc from nodei to
itself). Empty circuits arenot included in the setR of paths.

To exemplify the various concepts introduced, consider the graph presented in Fig-
ure 2.1. It is a digraph since the arcs are indeed directed. The graph has seven nodes.
Node 3 is a predecessor of node 6; 3∈ π(6). Similarly, 6 ∈ σ(3). The sequence of
nodes 1, 3, 6, 4, 3, 2 is a nonelementary path. The arc(1, 1) is a loop and the sequence
of nodes 3, 6, 4, 3 is an elementary circuit of length 3. The sequence of nodes 2, 3, 6 is
a chain. It should be clear that the graph of Figure 2.1 is connected.

Definition 2.1 (Equivalence relationR ) Let i, j ∈ V be two nodes of a graph. We
say that iR j , if either i = j or there exist paths from i to j and from j to i.

ThenV is split up into equivalence classesV1, . . . ,Vq , with respect to the relationR.
Note that if nodei belongs toV�, thenV� = σ ∗(i) ∩ π∗(i). To each equivalence class
V� corresponds a subgraphG� = (V�, E�), whereE� is the restriction ofE to V�, which
is strongly connected.

Definition 2.2 (Maximal strongly connected subgraphs–m.s.c.s.)The subgraphs
Gi = (Vi , Ei ) corresponding to the equivalence classes determined by R are the
maximal strongly connected subgraphsof G.

Notation 2.3

• The subset of nodes of the m.s.c.s. containing nodei (and possibly reduced toi)
is denoted [i].

• The subset of nodes
⋃

j∈π∗(i)[ j ] is denoted [≤ i].

• The symbol [< i] represents the subset of nodes [≤ i] \ [i].

The graph of Figure 2.1 has two m.s.c.s.’s, namely the subgraphs consisting of the
nodes 1, 3, 6, 4 and 2, 5, 7, respectively. If one ‘lumps’ the nodes ofeach m.s.c.s. into
a single node, one obtains the so-calledreduced graph.
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Figure 2.1: A digraph Figure 2.2: The reduced graph

Definition 2.4 (Reduced graph) The reduced graph of G is the graph with nodes V def=
{1, . . . , q} (one node per m.s.c.s.), and with arcs E, where (i, j ) ∈ E if (k, l) ∈ E for
some node k of Vi and some node l of V j .

Figure 2.2 shows the reduced graph of the graph in Figure 2.1.

Notation 2.5 A nodei of the reduced graph corresponds to a collection of nodes of
the original graph. Letx be a vector the entries of which are associated with nodes of
the original graph. If we want to refer to the subvector associated with the nodes of
m.s.c.s.i, we will use the notationx(i). Similarly, for a matrix A, A(i)( j) is the block
extracted fromA by keeping the rows associated with the nodes of m.s.c.s.i and the
columns associatedwith thenodes of m.s.c.s.j . If node� of the original graph belongs
to m.s.c.s.i, thenotationx[�] is equivalent tox(i). Similarly, x(<i), respectivelyx(≤i), is
equivalent tox[<�], respectivelyx[≤�].

Lemma 2.6 The reduced graph is acyclic.

Proof If there is a path fromk ∈ Vi to l ∈ V j , then there is no path from any node of
V j to any node ofVi (otherwise,k andl would be in the same m.s.c.s.).

Denote the existence of a path from one subgraphGi to another oneG j by the binary
relation R′; GiR′G j . Then these subgraphsG1, . . . ,Gq, together with the relationR′

form a partially ordered set, see Chapter 4 and also [85].

2.3 Graphs and Matrices

In this section we consider matrices with entries belonging to an abstract alphabet
C in which some algebraic operations will be defined in§2.3.1. Some relationships
between these matrices and ‘weighted graphs’ will be introduced. Consider a graph
G = (V, E) and associate an elementAi j ∈ C with each arc( j, i) ∈ E : thenG is called
a weighted graph. The quantity Ai j is called theweight of arc ( j, i). Note that the
second subscript ofAi j refers to the initial (and not the final) node. The reason is that,
in the algebraic context, we will work with column vectors (and not with row vectors)
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later on. In addition, we will also consider compositions of matrices and the resulting
consequences for the corresponding graphs.

The alphabetC contains a special symbolε the properties of which will be given in
§2.3.1.

Definition 2.7 (Transition graph) If an m × n matrix A = (Ai j ) with entries in C is
given, the transition graphof A is a weighted, bipartite graph with n+m nodes, labeled
1, . . . ,m,m+1, . . . ,m+n, such that each row of A corresponds to one of the nodes
1, . . . ,m; each column of A corresponds to one of the nodes m + 1, . . . ,m + n. An
arc from j to n + i, 1 ≤ i ≤ m, 1 ≤ j ≤ n, is introduced with weight Ai j if Ai j 
= ε.

As an example, consider the matrix

A =





3 ε ε 7 ε ε ε

ε ε 2 ε ε ε 1
e ε ε 2 ε ε ε

ε ε ε ε ε 5 ε

ε 4 ε ε ε 8 6
4 ε 1 ε ε ε ε

ε ε ε ε e ε ε





. (2.1)

Its transition graph is depicted in Figure 2.3.
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Figure 2.3: Thetransition graph ofA

Defini tion 2.8 (Precedence graph)The precedence graph of a squaren× n matrix A
with entries in C is a weighted digraph with n nodes and an arc ( j, i) if Ai j 
= ε, in
which case the weight of this arc receives the numerical value of Ai j . The precedence
graph is denoted G(A).

It is not difficult to see that any weighted digraphG = (V, E) is the precedence graph
of an appropriately defined square matrix. The weightAi j of the arc from nodej to
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nodei defines thei j -th entry of a matrixA. If an arc does not exist, the corresponding
entry of A is set toε. The matrix A thus defined hasG as its precedence graph.

The transition graph of a squaren × n matrix, which has 2n nodes, can be trans-
formed into a precedence graph ofn nodes. Towards that end, one combines the nodes
i and n + i of the transition graph into one single node for the precedence graph,
i = 1, . . . , n. As an example, Figure 2.4 gives the precedence graph of the matrixA
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Figure 2.4: The precedence graph ofA

defined in (2.1). One directly recognizes the relation of this graph with the transition
graph in Figure 2.3. The latter graph has been ‘folded’ so as to obtain the precedence
graph.

It may be convenient to considerthat entriesAi j equal to ε definedummy arcs
(which are not drawn) in the associated precedence or transition graph. Later, a path
including a dummy arc will be called a dummy path. Dummy paths are not included
in the setR of paths (which were taken into account in Definition 2.1; therefore these
dummypaths are not involved in the definition of m.s.c.s.’s). The interest of the notion
of dummy arcs is that these arcs may be considered as being of the same length as arcs
associated with entriesAi j 
= ε (generally this length is 1); hence arcs of the same
length can be associated with all entries of a matrix.

Notation 2.9 The number of m.s.c.s.’s ofG(A) is denotedNA.

For later reference, the following definitions are given.

Definition 2.10 (Incidence matrix) The incidence matrixF = (Fi j ) of a graph G =
(V, E) is a matrix the number of columns of which equals the number of arcs and the
number of rows of which equals the number of nodes of the graph. The entries of F
can take the values 0, 1 or −1. If l = (i, j ) ∈ E , i 
= j , then Fil = 1, Fjl = −1 and
the other entries of column l are 0. If l = (i, i) ∈ E , then Fil = 0.

Definition 2.11 (Adjacency matrix) The adjacency matrixG = (Gi j ) of a graph G =
(V, E) is a matrix the numbers of rows and columns of which are equal to the number
of nodes of the graph. The entry Gi j is equal to 1 if j ∈ π(i) and to 0 otherwise.

Notethat if G = G(A), thenGi j = 1 if andonly if Ai j 
= ε (G describes the ‘support’
of A).
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2.3.1 Composition of Matrices and Graphs

We now study two kinds of compositions of matrices, and the relation between the
transition graph of these compositions and the original transition graphs. These com-
positions are, respectively, theparallel composition, denoted⊕, and theseries compo-
sition, denoted⊗. These compositions will be defined by means of the corresponding
composition operations of elements in the alphabetC, for which the samesymbols⊕
and⊗ will be used. The operation⊕ is usually referred to as ‘addition’ or ‘sum’, and
the operation⊗ as‘multiplication’ or ‘product’. The alphabetC includes twospecial
elementsε ande with specific properties to be defined in the following set of axioms:

Associativity of addition:

∀a, b, c ∈ C , (a ⊕ b)⊕ c = a ⊕ (b ⊕ c) .

Commutativity of addition:

∀a, b ∈ C , a ⊕ b = b ⊕ a .

Associativity of multiplication:

∀a, b, c ∈ C , (a ⊗ b)⊗ c = a ⊗ (b ⊗ c) .

Right and left distributivity of multiplication over addition:

∀a, b, c ∈ C , (a ⊕ b)⊗ c = (a ⊗ c)⊕ (b ⊗ c) ,

∀a, b, c ∈ C , c⊗ (a ⊕ b) = (c ⊗ a)⊕ (c ⊗ b) .

Existence of a zero element:

∃ε ∈ C : ∀a ∈ C , a ⊕ ε = a .

Absorbing zero element:

∀a ∈ C , a ⊗ ε = ε .

Existence of an identity element:

∃e ∈ C : ∀a ∈ C , a ⊗ e = e ⊗ a = a .

In Chapter 3 other related axioms will be discussed in detail. There the notion of a
semifield will be introduced and its relation to axioms of this type will be made clear.

Theparallel composition⊕ of matrices is defined for matrices of the same size by
the following rule: if A = (Ai j ) andB = (Bi j ) have the same size, then

(A ⊕ B)i j = Ai j ⊕ Bi j .
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A transition graph can of course be associated with the matrixC = A ⊕ B. This
transition graph has the same set of nodes as the transition graph ofA (and therefore
of B) and there exists a (nondummy) arc from nodej to nodei if and only if at least
oneof the transition graphs ofA and B has a (nondummy) arc fromj to i. This is
a consequence of the axiomAi j ⊕ ε = Ai j . In general, this arc receives the weight
Ai j ⊕ Bi j . It may beviewedasthe arc resulting from the merging of two parallel arcs
(if both Ai j and Bi j are different fromε). The symbolε is called thezero element of
the operation⊕. Two other axioms are that⊕ is associative and commutative and they
have obviousconsequencesfor theparallel composition of transition graphs.

Theseries composition⊗ of matricesA andB is definedonly when the number of
columns ofA equals the number of rows ofB (say,A is m × n andB is n × p) by the
following rule:

(A ⊗ B)i j =
n⊕

k=1

Aik ⊗ Bkj . (2.2)

A transition graph can be associated with the matrixC = A ⊗ B of sizem × p. With
the help of Figure 2.5, we explain how this graph is obtained. First, the transition

B A

j

k i

p nodes n nodes m nodes

Figure 2.5: Theseriescomposition of two transition matrices

graphs of matricesB andA are concatenated. Thegraph so obtained isnota transition
graph since it hasn intermediate nodes in addition of itsp input nodes and itsm
output nodes. These intermediate nodes are removed, and an arc from nodej to nodei
exists in the transition graph ofC if and only if there exists at least one (nondummy)
path from nodej to nodei in the concatenated graph shown inFigure 2.5. This arc
receives the weight indicated by Equation (2.2). In order to interpret this formula, let
us first define the weight of a pathρ = (i1, . . . , ip) in a weighted graph as the product
Aip ,ip−1 ⊗ · · · ⊗ Ai2 ,i1 of weights of arcs composing this path (observe the order). This
weight is denoted|ρ|w, where the subscript w refers to the word ‘weight’. Notethat a
dummy path always has a weightε thanks to the absorbing property ofε in products.
Then, each term of the sum in (2.2) can be interpreted as the weight of some parallel
path of length 2 from nodej to nodei, characterized by the intermediate nodek it
passes through (see Figure 2.5). The previous rule pertaining to the weights of parallel
compositions of arcs is thus extended to parallel paths. Sinceε is the zero element for
addition, dummy paths do not contribute to (nonzero) weights in parallel compositions.
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For theseriescomposition of matrices, we have(A⊗ B)⊗C = A⊗ (B⊗C). This
associativity property of matrix multiplication is a direct consequence of the axioms
given above, namely the associativity of⊗ and the right and left distributivity of ⊗
over⊕. It is easily seen that these right and left distributivities also hold for matrices
of appropriate sizes.

The notion (Ap ) j i, p = 1, 2, . . . , whereA is square, is defined by(Ap ) j i = (A ⊗
Ap−1) j i . Observe that this involves the enumeration and the sums of weights of all
paths of lengthp with initial nodei and final nodej . This definition makes sense for
both thetransition graph ofA, concatenatedp times, and the precedence graph ofA.
We get

(Ap ) j i =
⊕

{ρ| |ρ|l=p;i0=i;ip= j}
Aip ,ip−1 ⊗ Aip−1 ,ip−2 ⊗ · · · ⊗ Ai1,i0 .

Because we removed the intermediatenodes in the graph of Figure 2.5 in order to
obtain thetransition graph ofC = A ⊗ B, and similarly whenone considers the tran-
sition graph of a matrixC equal toAp , the information that weights of the graph ofC
have been obtained as weights of paths of length larger than 1 (namely 2 andp, respec-
tively) hasbeen lost. In order to keep track of this information, one may introduce the
notion of length of a transition graph. This length is an integer number associated with
the transition graph and hence also with all its individual arcs, including dummy arcs,
and finally with the matrix associated with this graph. These considerations explain
why the lengths of arcs may be taken greater than 1 and why dummy arcs may also
have a nonzero length.

We now consider the transition graph corresponding to matricesA0 whereA is an
n × n matrix. In the same way asAp , for p ≥ 1, describes the weights of paths of
length p, A0 should describe the weights of paths of length 0, that is, empty circuits
(i) corresponding to ‘no transition at all’. Pictorially, the corresponding transition
graph of such matrices has the special form depicted in Figure 2.6a in which input

�

(a) (b) (c)

e

e

e

Figure 2.6: Thetransition graphs ofA0, ε ande

and output nodes are not distinguishable. This transition graph must not be confused
either with that of the ‘zero matrix’ (with all entries equal toε) or with that of the
‘identity matrix’ (with diagonal entries equal toe and all off-diagonal entries equal
to ε). The transition graph of the zero matrix is depicted in Figure 2.6b: all its arcs
are dummy with length 1. The transition graph of the identity matrix is depicted in
Figure 2.6c: weights are indicated in the figure and the length is 1 for all dummy and
nondummy arcs. The length associated with all entries ofA0 is 0, that is, the series
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composition of the transition graph ofA0 with any other bipartite graph do not modify
the lengths of paths. In the same way, we would like the weights not to be modified in
that operation: this requires that the entries ofA0 bethe same as those of the identity
matrix e. Butagain therespective lengthsand transition graphs ofA0 ande are different
(see Figure 2.6a–c). Also, dummy loops(i, i) of the transition graph of the zero matrix
should not be confused with empty circuits(i) (see Figure 2.6a–b) even if it is difficult
to distinguish them with the help of precedence, rather than transition, graphs.

In Chapter 1we already met several examples of⊕ and⊗ operations which satisfy
the axioms just stated. A particular example is thatC equalsR, e = 0, ε = −∞, ⊕
equals maximization and⊗ equals addition. Note that the max-operation is idempotent,
i.e. a ⊕ a = a, but this property is not (yet) assumed as an axiom.

Remark 2.12 An example of operations which donot satisfy some ofthe axioms is
one where⊕ is addition and⊗ is minimization. The axioms of distributivity are not
satisfied. Indeed,

min(5, 3+ 6) 
= min(5, 3)+min(5, 6) .

As a consequence, associativity of multiplication with respect to matrices does not
hold. If for instance,

A =
(

1 3
2 2

)
, B =

(
3 2
1 5

)
, C =

(
4 2
2 5

)
,

then
(

4 6
5 6

)
= (AB)C 
= A(BC) =

(
4 4
4 4

)
.

A practical interpretation of a system with these operations is in terms of the calcula-
tion of the capacity of a network in which the arcs are pipes through which there is a
continuous flow. The capacity of a pipe is assumed to be proportional to the diameter
of this pipe. Then it is easilyseen that the capacity of two pipes in parallel equals the
sum of thetwo capacities. Similarly, the capacity of two pipes in series equals the min-
imum of their capacities. The reader should contemplate the physical consequences of
the lack of associativity.

Defini tion 2.13 (I rr educibility) The (square) matrix A is called irreducible if no per-
mutation matrix P exists such that the matrix Ã, defined by

Ã = P ′AP ,

has an upper triangular block structure.

The reader should be aware of the fact that this definition is invariant with respect to
the algebra used. Premultiplication ofA by P ′ and postmultiplication by P simply
refers to a renumbering of the nodes of the corresponding graph. Hence renumbering
of the nodes of the same graph leads to differentA-matrices. In an upper triangular
block structure, diagonal blocks with non-ε entries are allowed.If one also wants
the diagonal blocks to haveε-entries only, one should speak about a strictly upper
triangular block structure.
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Theorem 2.14 A necessary and sufficient condition for the square matrix A to be irre-
ducible is that its precedence graph be strongly connected.

Proof Suppose thatA is such that by an appropriate renumbering of the nodes,Ã has
an upper triangular block structure. Call the diagonal blocksAd

1, . . . , Ad
q . If Ad

q has
sizenq×nq , then there are no paths from any of the (renumbered) nodes 1, . . . , n−nq,

to any of the nodesn − nq + 1, . . . , n. Hencethis graph is not strongly connected.
On the other hand, if the graph is not strongly connected, determine its m.s.c.s.’s

Gi , i = 1, . . . , q. These subgraphs form a partially ordered set. Number the individual
nodes ofV in such a way that if GiR′G j , then the nodes ofVi have lower indices
than those ofV j (R′ was defined in§2.2). With this numbering of the nodes, the
corresponding matrixA will be upper block triangular.

Definition 2.15 (Aperiodicity) The square matrix A is aperiodic if there exists an in-
teger N such that for all n ≥ N and for all i, j , (An)i j 
= ε.

Theorem 2.16 An irreducible matrix A such that A j j 
= ε for all j is aperiodic.

Proof FromTheorem 2.14, the irreducibility assumption implies that for alli, j , there
exists n suchthat (An)i j 
= ε. This together with the assumptionA j j 
= ε in turn im-
plies that(Am )i j 
= ε for all m ≥ n. The assertion of the theorem follows immediately
from this since the number of nodes is finite.

Definition 2.17 A digraph is called a treeif there exists a single node such that there
is a unique path from this node to any other node.

1
6

4 0 72

2 4

7 5

4

3

1

3 6

2

5

0
8

1

Figure 2.7: Weighted digraph consisting of two m.s.c.s.’s

In order to determine whetherA is irreducible, one can calculateA+ (see (1.18)).
Matrix A is irreducible if and only if all entries ofA+ are different from ε. This
algorithm for determining whetherA is irreducible can be simplified by considering
only Boolean variables. ReplaceA by the adjacency matrixG of its precedence graph
(seeDefinition 2.11), except that 0 and 1 are replaced byε ande, respectively, in the
present context. ThenA is irreducible if and only if all entries ofG+ are identical toe.
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As an example, consider the matrix given in (2.1). The matrixG+ becomes




e ε e e ε e ε

e e e e e e e
e ε e e ε e ε

e ε e e ε e ε

e e e e e e e
e ε e e ε e ε

e e e e e e e





. (2.3)

HenceA is not irreducible. In fact it follows directly from (2.3) that the nodes 1, 3, 4
and 6 form a m.s.c.s., as do the nodes 2, 5 and 7. If one rearranges the nodes and
arcs of Figure 2.4, one obtains Figure 2.7, in which the weights of the arcs have been
indicated, and the two m.s.c.s.’s are clearly visible. Figure 2.7 is identical to Figure 2.1
apart from the fact that weights are given.

2.3.2 Maximum Cycle Mean

In this subsection the maximum cycle mean will be defined and some of its properties
will be derived. The maximum cycle mean has aclear relation with eigenvalues of
matrices within the context of the max algebra and with periodic regimes of systems
described by linear equations, also within the same context. These relationships will
be described in Chapter 3.

Let G = (V, E) be a weighted digraph withn nodes. The weights are real numbers
here and are given by means of then× n matrix A. As discussed before, the numerical
value of Ai j equals the weight of the arc from nodej to nodei. If no such arc exists,
then Ai j = ε. It is known from Chapter 1 that the entry(i, j ) of Ak = A ⊗ · · · ⊗ A,

considered within the algebraic structureRmax
def= (R ∪ {−∞},max,+), denotes the

maximum weight with respect to all paths of lengthk which go from nodej to nodei.
If no such pathexists, then(Ak )i j = ε. Within this algebraic structure,ε gets assigned
thenumerical value−∞ ande = 0. In this subsection we will confine ourselves to the
algebraic structure Rmax.

Definition 2.18 (Cycle mean)The mean weightof a pathis defined as the sum of the
weights of the individual arcs of this path, divided by the length of this path. If the path
is denoted ρ, then the mean weight equals |ρ|w/|ρ|l. If such a path is a circuit one
talks about the mean weight of the circuit, or simply the cycle mean.

We are interested in the maximum of these cycle means, where the maximum is taken
over all circuits in the graph (empty circuits are not considered here). Consider an
n × n matrix A with corresponding precedence graphG = (V, E). The maximum
weight of all circuits of lengthj which pass through nodei of G can be written as
(A j )ii . The maximum of these maximum weights over all nodes is

⊕n
i=1(A j )ii which

canbewritten trace(A j ). The average weight isobtained by dividing this number byj
in the conventional sense, but this can be written(trace(A j ))1/j in the max-plus algebra
notation. Finally, we have to take the maximum with respect to the lengthj . It is not
necessary to consider lengths larger than the numbern of nodes since it is enough to
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limit ourselves to elementary circuits. It follows that a formula for the maximum cycle
meanλ in the max-plus algebra notation is

λ =
n⊕

j=1

(trace(A j ))1/j .

The following theorem provides an expression, due to R. Karp, for this maximum
value. All circuits with a cycle mean equal to the maximum cycle mean are called
critical circuits. Karp’s theorem does not give the critical circuit(s).

Theorem 2.19 (Karp’s theorem) Given is an n × n matrix A with corresponding
precedence graph G = (V, E). The maximum cycle mean is given by

λ = max
i=1,... ,n

min
k=0,... ,n−1

(An )i j − (Ak )i j

n − k
, ∀ j . (2.4)

In this equation, An and Ak are to be evaluated in Rmax; the other operations are
conventional ones.

Proof Notethat the indexj in (2.4) is arbitrary (it will be shown in this proof that one
can take anyj ∈ {1, . . . , n}). The resulting value ofλ is independent ofj .

Without loss of generality, we may assume thatG is strongly connected. If it were
not, we would consider each of its m.s.c.s.’s—sinceG is assumed to be finite, there are
only a finite number of such m.s.c.s.’s—and determine the maximum cycle mean of
each of them and then take the maximum one.

We first assume thatthe maximum cycle mean is 0. Then it must be shown that

max
i=1,... ,n

min
k=0,... ,n−1

(An )i j − (Ak )i j

n − k
= 0 .

Sinceλ = 0 there exists a circuit of weight 0 and there exists no circuit with posi-
tive weight. Because there are no circuits (or loops) with positive weight, there is a
maximum weight of all paths from nodej to nodei which is equal to

χi j
def= max

k∑

l=1

Ail ,il−1 , subject to i0 = j , ik = i ,

where the maximum is taken with respect to all paths and allk. Since fork ≥ n the path
would contain a circuit and since all circuits have nonpositive weight, we can restrict
ourselves tok < n. Therefore we get

χi j = max
k=0,... ,n−1

(Ak )i j .

Also, (An )i j ≤ χi j , andhence

(An )i j − χi j = min
k=0,... ,n−1

(An )i j − (Ak )i j ≤ 0 .
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Equivalently,

min
k=0,... ,n−1

(An )i j − (Ak )i j

n − k
≤ 0 . (2.5)

Equality in (2.5) will only hold if (An )i j = χi j . It will be shown that indeed an index
i exists such that this is true. Letζ be a circuit of weight 0 and letl be a node ofζ .
Let ρl j be a path fromj to l with corresponding maximum weight|ρl j |w = χl j . Now
this path is extended by appending to it a number of repetitions ofζ such that the total
length of this extended path, denotedρe, becomes greater than or equal ton. This is
again a path of maximum weight from j to l. Now considerthe path consisting of the
first n arcs ofρe; its initial node is j and denote its final nodel ′. Of coursel ′ ∈ ζ .
Since any subpath of any path of maximum weight is of maximum weight itself, the
path from j to l ′ is of maximum weight. Therefore(An )l′ j = χl′ j . Now choosei = l ′

and we get

max
i=1,... ,n

[
min

k=0,... ,n−1

(An)i j − (Ak )i j

n − k

]
= 0 .

This completes the part of the proof withλ = 0.
Now consideran arbitrary finiteλ. A constantc isnow subtracted from each weight

Ai j . Then clearlyλ will be reduced byc. Since(Ak )i j is reduced bykc, we getthat

(An )i j − (Ak )i j

n − k

is reduced byc, for all i, j andk, andhence

max
i=1,... ,n

min
k=0,... ,n−1

(An )i j − (Ak )i j

n − k

is also reduced byc. Hence both sides of (2.4) are affected equally when all weights
Ai j are reduced by the same amount. Now choose this amount such thatλ becomes 0
and then we are back in the previous situation whereλ = 0.

2.3.3 The Cayley-Hamilton Theorem

The Cayley-Hamilton theorem states that, in conventional algebra, a square matrix
satisfies its own characteristic equation. In mathematical terms, letA be ann × n
matrix and let

pA(x)
def= det(x I − A) = xn + c1xn−1 + · · · + cn−1x + cn x0 , (2.6)

where I is the identity matrix, be its characteristic polynomial. The termx0 in the
polynomial equals 1. ThenpA(A) = 0, where 0 isthezero matrix. The coefficients
ci , i = 1, . . . , n, in (2.6) satisfy

ck = (−1)k
∑

i1<i2<···<ik

det




Ai1 ,i1 . . . Ai1 ,ik
...

...

Aik ,i1 . . . Aik ,ik



 . (2.7)
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The reason for studying the Cayley-Hamilton theorem is the following. In con-
ventional system theory, this theorem is used for the manipulation of different system
descriptions and for analyzing such properties as controllability (see [72]). In the con-
text of discrete event systems, a utilization of this theorem will be shown in§9.2.2.

In this section it will be shown that a Cayley-Hamilton theorem also exists in an
algebraic structure defined by a setC of elements supplied with two operations denoted
⊕ and⊗ whichobey some of the axioms given in§2.3.1, namely

• associativityof addition,

• commutativity of addition,

• associativity of multiplication,

• both right and left distributivity of multiplication over addition,

• existence of an identity element,

provided wealso have

Commutativity of multiplication:

∀a, b ∈ C , a ⊗ b = b ⊗ a .

Notethat the existence of a zero element (and its absorbing property) is not required in
this subsection.

A partial permutation of {1, . . . , n} is a bijectionς of a subset of{1, . . . , n} onto
itself. Thedomain ofς is denoted by dom(ς) and its cardinality is denoted|ς |l . A par-
tial permutationς for which|ς |l = n is called a complete permutation. The completion
ς̂ of a partial permutationς is defined by

ς̂ (i) =
{

ς(i) if i ∈ dom(ς) ,

i if i ∈ {1, . . . , n} \ dom(ς) .

Thesignature ∗ of a partial permutationς , denoted sgn∗(ς), is defined by

sgn∗(ς) = sgn(ς̂)(−1)|ς |l ,

where sgn(ς̂), sometimes also written as(−1)ς̂ , denotes the conventional signature of
the permutation̂ς , see [61].

Every (partial) permutation has a unique representation as a set of disjoint circuits.
For example, thepermutation

(
1 2 3 4 5 6
4 6 3 5 1 2

)

has the circuit representation

{(1, 4, 5), (3), (2, 6)} .
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With the graph-theoretic interpretation of permutations in mind, these disjoint circuits
correspond to m.s.c.s.’s. The unique partial permutation of cardinality 0 has the empty
set asits circuit representation. If ς is a partial permutation with cardinalityk consist-
ing of a single circuit, then sgn∗ = (−1)k−1(−1)k = −1. It easily follows that for any
partial permutationς , sgn∗ = (−1)r , wherer is the number of circuits appearing in
the circuit representation ofς .

Given ann × n matrix A = (Ai j ), the weight ofς is defined by

|ς |w =
⊗

i∈dom(ς)

Aς(i),i .

The weight of the partial permutation with cardinality 0 equalse, in accordance with
the theory presented in§2.3.1. Let 1≤ i, j ≤ n and letT+j i be the set ofall pairs(ς, ρ)
whereς is a partial permutation and whereρ is a path from i (the initial node) toj (the
final node) in such a way that

|ς |l + |ρ|l = n , sgn∗(ς) = 1 .

The setT −j i is defined identically except for the fact that the condition sgn∗(ς) = 1 is
replaced by sgn∗(ς) = −1.

Lemma 2.20 For each pair ( j, i), with 1 ≤ i, j ≤ n, there is a bijection η j i : T+j i →
T −j i in such a way that η j i (ς, ρ) = (ς ′, ρ ′) implies |ς |w ⊗ |ρ|w = |ς ′|w ⊗ |ρ ′|w.

Proof Each pair(ς, ρ) ∈ T +j i ∪ T −j i is represented by a directed graph with nodes
{1, . . . , n}. The set of arcs consists oftwo classes of arcs:

E ς = {(i, ς(i)) | i ∈ dom(ς)} , Eρ = {(l, k) | (l, k) is anarc ofρ} .

This graph will, in general, contain multiple arcs, sinceρ may traverse the same arc
more than once, or the same arc may appear in bothE ς andEρ. The expression|ς |w⊗
|ρ|w is the series composition, with multiplicities taken intoaccount, of all theAlk for
which (k, l) is anarc of the graph associated with(ς, ρ).

Let ρ be the path connecting the nodesi0, i1, . . . , iq , in this order. There is a
smallestintegerv ≥ 0 such that either iu = iv for someu < v, or iv ∈ dom(ς). If such
av did not exist, thenρ must have|ρ|l +1 distinct nodes (because there are nou andv
with iv = iu ). But then there are at least|ς |l+|ρ|l +1 = n+1 distinct nodes (because
ς andρ do not have any node in common), which is a contradiction. Furthermore,
it is easily seen that this smallest integerv cannot have both properties. Hence either
iu = iv for someu < v or iv ∈ dom(ς). An exampleof the first property is given in
Figure 2.8 and an example of the second property is given in Figure 2.9. The dashed
arcs refer to the setE ς and the solid arcs refer to the setEρ. In Figure 2.8,v equals 3,
and in Figure 2.9,v equals 1 (i.e. i1 = 2).

Consider the situation with the first property such as pictured in Figure 2.8. We
haveiu = iv for someu andv. The circuit passing throughiu is removed fromρ and
adjoined as a new circuit toς . Thenew path fromi0 to iq is denotedρ ′ and thenew,
longer, partial permutation is denotedς ′. The mappingη j i is defined asη j i(ς, ρ) =
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1 2
3

4 5 6

Figure 2.8: Example of a graph with
the first property

1 2 3

4 5 6

Figure 2.9: Example of a graph with
the second property

1 2
3

4 5 6

Figure 2.10:η31 applied to Figure 2.8

1 2 3

4 5 6

Figure 2.11:η31 applied to Figure 2.9

(ς ′, ρ ′). Application of themappingη31 to Figure 2.8 isgiven in Figure 2.10. Since
the number of circuits ofς ′ and ofς differ by one, we have sgn∗(ς ′) = −sgn∗(ς) and
thereforeη j i mapsT+j i into T −j i and vice versa.

Consider next the situation with the second property such as pictured in Figure 2.9.
The mapping η j i(ς, ρ) = (ς ′, ρ ′) is obtained by removing the circuit containingiv
from ς and adjoining it toρ. Application of η31 to Figure 2.9 is given in Figure 2.11.
Also in this situation, the numbers of circuits ofς ′ and ofς differ by one, and again
we have sgn∗(ς ′) = −sgn∗(ς) which results in the fact thatη j i mapsT+j i into T −j i and
vice versa. In both situations|ς |w ⊗ |ρ|w = |ς ′|w ⊗ |ρ ′|w, sincenothing has changed
in the graph of(ς, ρ). It is in thederivation of this equality that the associativity and
commutativity of multiplication, and the existence of an identity element, have been
used. What remains to be shown is that the mappingη j i is surjective. For this reason
considerthe iterationη j i◦η j i . It easily follows that this mapping is the identity on
T +j i ∪ T−j i , which isonly possible ifη j i is surjective.

Definition 2.21 (Characteristic equation) The characteristic equation is given by

p+A (x) = p−A (x) , (2.8)

where

p+A (x) =
n⊕

k=0




⊕

|ς |l=k,sgn∗(ς)=1




⊗

i∈dom(ς)

Aς(i),i







 xn−k ,

and

p−A(x) =
n⊕

k=0




⊕

|ς |l=k,sgn∗(ς)=−1




⊗

i∈dom(ς)

Aς(i),i







 xn−k .
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It is easily verified that this characteristic equation, if considered the conventional alge-
bra, coincides with the equation obtained by setting the characteristic polynomial (2.6)
equal to zero. The crucial feature of (2.8) is that there are no terms with ‘negative’
coefficients (in contrast with the conventional characteristic equation, which can have
negative coefficients). Sincethe inverse of⊕ does not exist, the terms in (2.8) cannot
freely be moved from one side to the other side of the equation.

Theorem 2.22 (The Cayley-Hamilton theorem)The following identity holds true:

p+A(A) = p−A (A) .

Proof For k = 0, . . . , n,

(An−k ) j i =
⊕

|ρ|l = n−k
initial node ofρ equalsi
final node ofρ equals j

|ρ|w .

It follows that

p+A (A) j i =
⊕

(ς,ρ)∈T+j i

|ς |w ⊗ |ρ|w , p−A(A) j i =
⊕

(ς,ρ)∈T−j i

|ς |w ⊗ |ρ|w .

Owing to Lemma 2.20, these two sums are identical. It is in these two equalities that
the associativity and commutativity of addition, the distributivity and the existence of
anidentity element have been used.

Let us give an example. For the 3× 3 matrix A = (Ai j ), the characteristic equation is
p+A (x) = p−A(x), where

p+A(x) = x3⊕ (A11A22⊕ A11A33⊕ A22A33)x ⊕ A13A22A31

⊕ A12A21A33⊕ A11A32A23 ,

p−A(x) = (A11⊕ A22⊕ A33)x2 ⊕ (A12A21⊕ A13A31⊕ A23A32)x
⊕ A11A22A33⊕ A12A23A31⊕ A21A13A32 ,

where, as usual, the⊗-symbols have beenomitted. If we consider

A =



1 2 3
4 1 ε

e 5 3





in the algebraic structureRmax, then the characteristic equation becomes

x3⊕ 4x ⊕ 9= 3x2⊕ 6x ⊕ 12 ,

whichcan be simplified to

x3 = 3x2⊕ 6x ⊕ 12 ,
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since the omitted terms are dominated by the corresponding terms at the other side of
the equality. A simple calculation shows that if one substitutesA in the latter equation,
oneobtainsanidentity indeed:



12 11 9
10 12 10
12 11 12



 =



9 11 9
8 9 10

12 11 9



⊕



7 8 9

10 7 ε

6 11 9



⊕



12 ε ε

ε 12 ε

ε ε 12



 .

This section will be concluded with some remarks on minimal polynomial equa-
tions. The Cayley-Hamilton theorem shows that there exists at least one polynomial
equation satisfied by a givenn × n matrix A. This polynomial equation is of degreen.
For example, ifA is the 3× 3 identity matrix, then

p+A(x) = x3⊕ x , p−A (x) = x2⊕ e ,

and A satisfies the equationA3 ⊕ A = A2 ⊕ e. There may exist equations of lower
degree also satisfied byA. With the previousA, we also haveA = e andx = e is a
polynomial equation of degree 1 also satisfied by the identity matrix. A slightly less
trivial exampleis obtained for

A =



ε 1 ε

1 ε ε

ε ε 1



 .

The characteristic equation is

x3⊕ 3= 1x2⊕ 2x .

It is easily seen thatA satisfies bothx3 = 2x and 3= 1x2. These equations have been
obtained by a ‘partitioning’ of the characteristic equation; ‘adding’ these partitioned
equations, one obtains the characteristic equation again. In this case, 3= 1x2 is of
degree 2. We may call a polynomial equation of least degree satisfied by a matrix,
with the additional requirement that the coefficient of thehighest power be equal to
e, a minimal polynomial equation of this matrix. This is the counterpart of the notion
of the minimal polynomial in conventional algebra and it is known that this minimal
polynomial is a divisor of the characteristic polynomial [61]. In the present situation,
it is not clear whether the minimal polynomial equation of a matrix is unique and how
to extend the idea of division of polynomials to polynomial equations. In Chapter 3, a
more detailed discussion on polynomials is given.

2.4 Petri Nets

2.4.1 Definition

Petri nets are directed bipartite graphs. They are named after C.A. Petri, see [96].
The set of nodesV is partitioned into two disjoint subsetsP andQ. The elements
of P are called places and those ofQ are called transitions. Places will be denoted
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pi , i = 1, . . . , |P|, and transitions,q j , j = 1, . . . , |Q|. Thedirected arcs go from a
placeto a transition or vice versa. Since a Petri net is bipartite, there are no arcs from
placeto place or from transition to transition. In the graphical representation of Petri
nets, places are drawn as circles and transitions asbars (the orientation of these bars
can be anything). An example of a Petri net is given in Figure 2.12.

Figure 2.12: A Petri net with sources and sinks

In order to complete theformal definition of a Petri net, an initial marking must be
introduced. The initial marking assigns a nonnegative integerµi to each placepi . It is
saidthat pi is marked withµi initial tokens. Pictorially,µi dots (the tokens) areplaced
in the circle representing placepi . The componentsµi form the vectorµ, called the
initial marking of the Petri net.

Definition 2.23 A Petri net is a pair (G, µ), where G = (V, E) is a bipartite graph
with a finite number of nodes (the set V) which are partitioned into the disjoint sets P
and Q; E consists of pairs of the form (pi , q j) and (q j , pi), with pi ∈ P and q j ∈ Q;
the initial marking µ is a |P|-vector of nonnegative integers.

Notation 2.24 If pi ∈ π(q j ) (or equivalently (pi , q j) ∈ E), then pi is anupstream
place forq j . Downstream places are defined likewise. The following additional nota-
tion will also be used when we have to play with indices: ifpi ∈ π(q j ), we write
i ∈ πq( j ), i = 1, . . . , |P|, j = 1, . . . , |Q|; similarly, if q j ∈ π(pi ), we write
j ∈ π p(i), with ananalogous meaning forσ p or σ q .

Roughly speaking, places represent conditions and transitions represent events. A tran-
sition (i.e. an event) has a certain number of input and output places representing the
pre-conditions and the post-conditions of the event, respectively. The presence of a to-
ken in aplaceis interpreted as the condition associated with that place being fulfilled.
In another interpretation,µi tokens are put into a place to indicate thatµi dataitems or
resourcesare available. If a token represents data, then a typical example of a transition
is a computation step for which these data are needed as an input. In Figure 2.13, the
Petri net of the production example in§1.2.3 is given. The tokens in this figure are
located in such a way that machineM1 starts working on productP2 and M2 on P1.
Notethat M1 cannot work onP3 in Figure 2.13.
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Figure 2.13: Petri net of the manufacturing system of§1.2.3

Within the classical Petri-net setting, the marking of the Petri net is identified with
the state. Changes occur according to the following rules:

• A transition is said to beenabled if each upstream place contains at least one
token.

• A firing of an enabled transition removes one token fromeach of its upstream
places and adds one token to each of its downstream places.

Remark 2.25 The enabling rule given above is not the most general one. Sometimes
integer valued ‘weights’ are attached to arcs. A transition is enabled if the upstream
place contains at least the number of tokens given by the weight of the connecting arc.
Similarly, after the firing of a transition, a downstream place receives the number of to-
kens given by the weight of the connecting arc. Instead of talking about such ‘weights’,
one sometimes talks about multi-arcs; the weight equals the number of arcs between
a transition and a place or between a place and a transition. In terms of ‘modeling
power’, see [96] and [108] for a definition, this generalization is not more powerful
than the rules which will beused here. The word ‘weight’ of an arc will be used in a
different sense later on.

For q j to be enabled, we need that

µi ≥ 1 , ∀ pi ∈ π(q j ) .

If the enabled transitionq j fires, then anew marking̃µ is obtained with

µ̃i =






µi − 1 if pi ∈ π(q j ) ,

µi + 1 if pi ∈ σ(q j ) ,

µi otherwise.
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In case bothpi ∈ π(q j ) and pi ∈ σ(q j ) for the same placepi , thenµ̃i = µi .
In Figure 2.13, onceM1 has completed its work onP2 andM2 its work onP1, then

Figure 2.14 is obtained. The next transitions that are now enabled are described by the
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q6 q7

q3 q4 q5

q1 q2

Figure 2.14: The tokens after the firing ofq1 andq3

combinations(M1, P3), (M2, P2) and(M3, P1). Note that in general the total amount
of tokens in the net is not left invariant by the firing of a transition, although this does
not happen in Figure 2.13. If we have a ‘join’-type transition (Figure 2.15), which
is called anand-convergence, or a ‘fo rk’-t ypetransition (Figure 2.16), called anand-
divergence, then clearly the number of tokens changes after a firing has taken place. In

Figure 2.15: And-convergence before
and after firing

Figure 2.16: And-divergence before
and after firing

the same vein, anor-convergence refers to two or more arcs entering one place, and an
or-divergence refers to two or more arcs originating from oneplace.

A transition without predecessor(s) iscalled a source transition or simply a source;
it is enabled by the outside world. Similarly, a transition which does not have succes-
sor(s), is called a sink (or sink transition). Sink transitions deliver tokens to the outside
world. In Figure 2.12 there are two transitions which are sources and there is one tran-
sition which is a sink. If there are no sources in the network, as in Figure 2.17, then we
talk about anautonomous network. It is assumed that only transitions can be sources
or sinks. This is no loss of generality, since one can always add a transition upstream
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or downstream of a place if necessary. A source transition is an input of the network, a
sink transition is an output of the network.

The structure of a placepi having two or more output transitions, as shown in
Figure 2.18, is referred to as aconflict, sincethe transitions are competing for the

Figure 2.17: An autonomous Petri net
Figure 2.18: Part of a Petri net

with a conflict

token in theplace. The transitions concerned will be said to berivals. There are no
general rules as to which transition should fire first. One says that a Petri net with such
anor-divergence exhibits nondeterminism. Depending on the application, one can also
talk about a choice (between the transitions) or a decision.

The firing of an enabled transition will change the distribution of tokens. A se-
quence of firings will result in a sequence of markings. A markingµ is said to be
reachable from a markingµ if there exists a sequence of enabled firings that trans-
formsµ intoµ.

Defini tion 2.26 (Reachability tree) The reachability tree of a Petri net (G, µ) is a tree
with nodes in N

|P| which is obtained as follows: the initial marking µ is a node of this
tree; for each q enabled in µ, the marking µ obtained by firing q is a new node of
the reachability tree; arcs connect nodes which are reachable from one another in one
step; this process is applied recursively from each such µ.

Defini tion 2.27 (Reachability graph) The reachability graph is obtained from the
reachability tree by merging all nodes corresponding to the same marking into a single
node.

Take as an example the Petri net depicted in Figure 2.19. The initial marking is
(1, 1, 1, 1). Both transitions are enabled. Ifq1 fires first, the next marking is(1, 1, 0, 2).
If q2 fires instead, the marking becomes(1, 1, 2, 0). From(1, 1, 0, 2), only the initial
marking can be reached immediately by firingq2; starting from(1, 1, 2, 0), only q1 can
fire,which also leads to the initial marking. Thus it has been shown that there are three
different markings in the reachability graph of (1, 1, 1, 1).
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(1,1,1,1)

(1,1,0,2) (1,1,2,0)

(1,1,1,1)(1,1,1,1)

(1,1,0,2) (1,1,0,2)(1,1,2,0) (1,1,2,0)

(1,1,0,2) (1,1,2,0)

(1,1,1,1)

p1 p2

p3

p4

q1 q2

Figure 2.19: A Petri net with corresponding reachability graph and reachability tree

Definition 2.28 For a Petri net with n transitions and m places, the incidence matrix
G = (Gi j ) is an n ×m matrix of integers−1, 0 and +1. The entry Gi j is defined by

Gi j = Gout
i j − G in

i j ,

where Gout
i j = 1 (0) if there is an (no) arc from qi to p j and G in

i j = 1 (0) if there is
an (no) arc from p j to qi . Matrices Gout and G in are defined as Gout = (Gout

i j ) and
G in = (G in

i j ), respectively.

Note that G does not uniquely define a Petri net since, ifGii = 0, a path including
exactly one place around the transitionqi is also possible. A circuit consisting of one
transition and one place is called aloop in the context of Petri nets. If each place in
the Petri net hadonly one upstream and one downstream transition, then the incidence
matrix G would reduce to the well-known incidence matrixF introduced in Defini-
tion 2.10 by identifying each placep with theunique arc fromπ(p) to σ(p).

Transition q j is enabled if and only if a markingµ is given such that

µ ≥ (G in)′e j ,

wheree j = (0, . . . , 0, 1, 0, . . . , 0)′, with the 1 being thej -th component. If this
transition fires, then the next marking̃µ is given by

µ̃ = µ+ G′e j .

A destination markingµ is reachable fromµ if a firing sequencee j1, . . . , e jd exists
suchthat

µ = µ+ G′
d∑

l=1

e jl .

Hence a necessary condition for µ to be reachable fromµ is that ann-vector x of
nonnegative integers exists such that

G′x = µ− µ . (2.9)
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The existence of such a vectorx is not a sufficient condition; for a counterexample see
for instance [108]. The vectorx does not reflect the order in which the firings take
place. In the next subsection a necessary and sufficient condition for reachability will
be given for a subclass of Petri nets. An integer solutionx to (2.9), with its components
not necessarily nonnegative, exists if and only ifµ′y = µ′ y, for any y that satisfies
Gy = 0. The necessity of this statement easily follows if one takes the inner products
of the left- and right-hand sides of (2.9) with respect toy. The sufficiency is easily
shown if one assumes thatx does not exist, i.e. rank[G] <rank[G, µ−µ]—the notation
[G, µ − µ] refers to the matrix consisting ofG and the extra columnµ − µ. Then a
vectory exists with y′G′ = 0 andy′(µ− µ) 
= 0, which is a contradiction.

2.4.2 Subclasses and Properties of Petri Nets

In this subsection we introduce some subclasses of Petri nets and analyze their basic
properties. Not all of these properties areused later on;this subsection is also meant
to give some background information on distinct features of Petri nets. The emphasis
will be on event graphs.

Definition 2.29 (Event graph) A Petri net is called an event graph if each place has
exactly one upstream and one downstream transition.

Definition 2.30 (State machine)A Petri net is called a state machine if each transition
has exactly one upstream and one downstream place.

Event graphs have neither or-divergences nor or-convergences. In event graphs each
place together with its incoming and outgoing arcs can be interpreted as an arc itself,
connecting the upstream and downstream transition, directly.

In the literature, event graphs are sometimes also referred to asmarked graphs or
asdecision free Petri nets. Figure 2.20 shows both a state machine which is not an

Figure 2.20: A state machine and an event graph

event graphand an eventgraph which is not a state machine. An event graph does
not allow and cannot model conflicts; a token in a place can be consumed by only
onepredetermined transition. In an event graph several places can precede a given
transition. It is said that event graphs canmodel synchronization. State machines do
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notadmit synchronization; however, they do allow competition. The number of tokens
in an autonomous state machine never changes (Petri nets in which the number of
tokens remains constant are called strictly conservative; a discussion follows later).

It can be shown [108] that state machines are equivalent to the finite state machines
or automata in theoretical computer science. Each automaton can be rephrased as a
state machine Petri net. This shows that Petri nets have more modeling power than
automata.

Basic definitions and properties of Petri nets are now given.

Definition 2.31 (Bounded and safe nets)A Petri net, with initial marking µ, is said
to be k-bounded if the number of tokens in each place does not exceed a finite number
k for any marking reachable from µ. Instead of 1-bounded (k = 1) Petri nets, one
speaks of safe Petri nets.

Concerning (practical) applications, it is important to know whether one deals with a
bounded or safe Petri net, since one is then sure that there will be no overflows in the
buffers or registers, no matter what thefiring sequence will be.

Definition 2.32 (Live net) A Petri net is said to be live for the initial marking µ if for
each marking ν reachable from µ and for each transition q, there exists a marking o
which is reachable from ν and such that q is enabled on o. A Petri net which is not live
is called deadlocked.

A Petri net is deadlocked if its reachability tree has a marking where a transition, or a set
of transitions, can never fire whatever the firing sequences of the other transitions. For
a live Petri net, whatever the finite initial sequence of firings, from that point onwards,
any arbitrary transition can be fired an infinite number of times.

An example of a live net is a state machine the underlying graph of which is strongly
connectedand theinitial marking of which has at least one token.

Definition 2.33 (Consistent net)A Petri net is called consistent(weakly consistent) if
there exists a firing sequence, characterized by the x-vector with positive (nonnegative)
integers as components, such that G′x = 0, where G is the incidence matrix.

In a consistent Petri net we can choose a finite sequence of firings such that repeating
this sequence results in a periodic behavior.

Definition 2.34 (Synchronous net)A consistent net is called synchronousif the only
solutions x of G′x = 0 are of the form x = k(1, 1, . . . , 1)′.

Definition 2.35 (Strictly conservative net) A Petri net with initial marking µ is called
strictly conservativeif, for all reachable markings µ, we have

∑
pi∈P µi =

∑
pi∈P µi .

Definition 2.36 (Conservative net)A Petri net with initial marking µ is called con-
servativeif positive integers ci exist such that, for all reachable markings µ, we have∑

pi∈P ciµi =
∑

pi∈P ciµi .

Theorem 2.37 The number of tokens in any circuit of an event graph is constant.
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Proof If a transition is part of an elementary circuit, then exactly one of its incoming
arcs and one of its outgoing arcs belong to the circuit. The firing of the transition
removes one token from the upstream place connected to the incoming arc (it may
remove tokens from other places as well, but they do not belong to the circuit) and
it adds one token to the downstream place connected to the outgoing arc (it may add
tokensto other downstream places as well, but they do not belong to the circuit).

An event graphis not necessarily strictly conservative. Consider an and-
convergence,where two circuits merge. The firing of this transition removes one token
from each of the upstream places and adds one token to the only downstream place.
At anand-divergence,where two circuits split up, the firing of the transition removes
onetoken from theonly upstream place and adds one token to each of the downstream
places.

Theorem 2.38 An autonomous event graph is live if and only if every circuit contains
at least one token with respect to the initial marking.

Proof

Only if part: If there are no tokens in a circuit of the initial marking of an event graph,
then this circuit will remain free of tokens and thus all transitions along this
circuit never fire.

If part: If a transition is never enabled by any firing sequence, then by backtracking
token-free places, one can find a token-free circuit. Indeed, if in an event graph
a transition never fires, there is at least one upstream transition that never fires
also(this statement cannot be made for general Petri nets). This backtracking is
only possible if each place has a transition as predecessor and each transition has
at least one place as predecessor. This holds for autonomous event graphs. Thus
the theorem has been proved.

Theorem 2.39 For a connected event graph, with initial marking µ, a firing sequence
can lead back to µ if and only if it fires every transition an equal number of times.

Proof In a connected event graph all transitions are either and-divergences, and-
convergences or they are simple, i.e. they have one upstream place as well as one
downstream place. These categories may overlap one another. If an and-divergence is
enabled and it fires, then the number of tokens in all downstream places is increased
by one. In order to dispose of these extra tokens, the downstream transitions in each
of these places must fire also (in fact, they must fire as many times as the originally
enabled transition fired in order to keep the number of tokens of the places in between
constant). If an and-convergence wants to fire, then the upstream transitions of its up-
stream places must fire first in order that the number of tokens of the places in between
do not change. Lastly, if a transition is simple and it can fire, both the unique down-
streamtransition and upstream transition must fire the same number of times in order
that the number of tokens in the places in between do not change. The reasoning above
only fails for loops. Since loops are connected to the event graph also and since a firing
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of a transition in a loop does not change the number of tokens in the place in the loop,
these loops can be disregarded in the above reasoning.

This theorem states that the equationG′x = 0 hasonly one positive independent solu-
tion x = (k, . . . , k)′. An immediate consequence is that every connected event graph
is synchronous.

Theorem 2.40 Consider an autonomous live event graph. It is safe if and only if the
total number of tokens in each circuit equals one.

Proof The if part of the proof is straightforward. Now consider the only if part. As-
sume thatthe graph is safe and that the total number of tokens in a circuitζk , indicated
byµ(ζk ), is not necessarily one. Consider all circuits(ζ1, ζ2, . . . , ζm) passing through
a placepi and its upstream transitiont j . Bringas many tokens as possible to each of the
upstream places oft j and subsequently firet j as many times as possible. It can be seen
that the maximum number of tokens that can be brought inpi is bounded from above
by min{µ(ζ1), µ(ζ2), . . . , µ(ζm )}. In particular, if this minimumequals one, then this
maximumnumber of tokens is less than or equal to one. Since the event graph is live,
t j can be enabled, and therefore this maximum equals one.

The following theorem is stated in [95].

Theorem 2.41 In a live event graph µ is reachable from µ if and only if µ′y = µ′y,
for any y that satisfies Gy = 0.

This last theorem sharpens the resultmentioned at the end of§2.4.1, where the condi-
tionµ′y = µ′ y wasonly a necessary condition.

2.5 Timed Event Graphs

The original theory of Petri nets deals with the ordering of events, and questions per-
taining to when events take place are not addressed. However, for questions related to
performance evaluation (how fast can a network produce?) it is necessary to introduce
time. This can be done in two basic ways by associating durations with either transition
firingsor with the sojourn of tokensin places.

Durations associated with firing times can be used to represent production times
in a manufacturing environment, where transitions represent machines, the length of a
code in a computer science setting, etc. We adopt the following definition.

Definition 2.42 (Firing time) The firing time of a transition is the time that elapses
between the starting and the completion of the firing of the transition.

We alsoadopt the additional convention that the tokens to be consumed by a transition
remain in the preceding places during the firing time; they are calledreserved tokens.

Durationsassociated with places can be used to represent transportation or commu-
nication time. When a transition produces a token into a place, this token cannot im-
mediately contribute to the enabling of the downstream transitions; it must first spend
someholding time in that place, which actually represents the time it takes to transport
this token from the initial transition to the place.
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Definition 2.43 (Holding time) The holding time of a place is the time a token must
spend in the place before contributing to the enabling of the downstream transitions.

Observe that there is a basic asymmetry between both types of durations: firing
times represent the actual time it takes to fire a transition, while holding times can be
viewed as the minimal time tokens have to spend in places (indeed it is not because
a specific token has completed its holding time in a place that it can immediately be
consumed by some transition; it may be that no transition capable of consuming this
token is enabled at this time). In practical situations, both types of durations may be
present. However, as we shall see later on, if one deals with event graphs, one can
disregard durations associated with transitions without loss of generality.

Roughly speaking, a Petri net is said to be timed if such durations are given as
new data associated with the network. A basic dichotomy arises depending on whether
these durations are constant or variable. Throughout the book, only the dependence
on the index of the firing (the firing of transitionq of index k is thek-th to be initi-
ated), or on the index of the token (the token ofp of indexk is thek-th token of p to
contribute enablingσ(p)) will be considered. The other possible dependences, like for
instance the dependence on time,or on some possibly changing environment, will not
be addressed.

The timing of a Petri net will be said to be variable if the firing times of a
transition depend on the index of the firing or if the holding times of tokens in
a place depend on the index of the token. The timing is constant otherwise.

In the constant case, the first, thek-th and(k+1)-st firingsof transitionq take the same
amount of time; this common firing time may however depend onq (see the examples
below).

Remark 2.44 With our definitions, nothing prevents a transition from having several
ongoing firings (indeed, a transition does not have to wait for the completion of an
ongoing firing in order to initiate a new firing). If one wants to prevent such a phe-
nomenon, one may add an extra place associated with this transition. This extra place
should have the transition under consideration as unique predecessor andsuccessor,
and onetoken in the initial marking, as indicated in Figure 2.21. The addition of this
loop models a mechanism that will be called arecycling of the transition. Owing to
this mechanism, the firings of the transition are properly serialized in the sense that its
(k + 1)-st firing can only start after the completion of thek-th firing.

In the rest of this chapter,unless otherwise specified,⊕ will be maximization and
⊗ addition, so thatε = −∞ ande = 0. We will also use the symbol◦/ to denote
subtraction.

2.5.1 Simple Examples

The global aim of the present section is to derive evolution equations for the variables
xi (k), i = 1, . . . , |Q|, k ≥ 0, not counting the sources and sinks, and wherexi(k) is
definedasthe epoch at which transitionqi startsfiring for thek-th time. Both constant
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Figure 2.21: Recycling of a transition

and variabletimings will be considered. Forgeneral Petri nets, such equations are
difficult to derive. This problem will only be addressed in Chapter 9. For the moment,
we shall confine ourselves to event graphs. We start with some simple examples with
constant timing before addressing the general case. The issue of the initial condition
will not be addressed in these simple examples either (see§2.5.2.1). The general rule
(to which we will return in the next subsection) is that transitions start firing as soon as
they are enabled.

Example 2.45 (An autonomous timed event graph) The first exampledeals withthe
manufacturing system of§1.2.3, as depicted in Figure 1.5. The related Petri net, given
in Figure 2.13, is the starting point for discussing the way the evolution equations are
derived. The timing under consideration is limited to constant holding times on places,
which areindicated in the figure. The firing times are all assumed to be 0. We have the
following evolution equations:

x1(k + 1) = 5x2(k) ⊕ 3x7(k) ,

x2(k + 1) = 1x1(k + 1)⊕ 3x5(k) ,

x3(k + 1) = 3x5(k) ⊕ 4x6(k) ,

x4(k + 1) = 1x1(k + 1)⊕ 3x3(k + 1) ,

x5(k + 1) = 5x2(k + 1)⊕ 2x4(k + 1) ,

x6(k + 1) = 3x3(k + 1)⊕ 3x7(k) ,

x7(k + 1) = 2x4(k + 1)⊕ 4x6(k + 1) .

In order to get this set of equations, one must first observe that owing to our assumption
that holding times are constant, overtaking of tokens in places is not possible: the
k-th token to enter a place will be thek-th token to leave that place (at least if the
initial marking in that place is 0). If one uses this observation, the equation forx6 (for
instance) is obtained as follows: q6 is enabled for the(k +1)-st time at the latest of the
two epochs when the(k + 1)-st token to enterthe placebetweenq3 andq6 completes
its holding time there, and when thek-th token to enterthe placebetweenq7 andq6

completes its holding time. The difference between the argumentsk andk + 1 comes
from the factthat the place betweenq7 andq6 has onetoken in the initial marking. If
onenow uses thedefinition of holding times, it is easily seen that the first of these two
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epochs isx3(k + 1)+ 3, while the second one isx7(k)+ 3, which concludes the proof.
There are clearly some further problems to be addressed regarding the initial condition,
but let usforget them for the moment. In matrix form this equation can be written as

x(k + 1) = A0x(k + 1)⊕ A1x(k) , (2.10)

where

A0 =





ε ε ε ε ε ε ε

1 ε ε ε ε ε ε

ε ε ε ε ε ε ε

1 ε 3 ε ε ε ε

ε 5 ε 2 ε ε ε

ε ε 3 ε ε ε ε

ε ε ε 2 ε 4 ε





, A1 =





ε 5 ε ε ε ε 3
ε ε ε ε 3 ε ε

ε ε ε ε 3 4 ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε 3
ε ε ε ε ε ε ε





.

The equation is written in a more convenient way as

x(k + 1) = Ax(k) , (2.11)

whereA = A∗0 A1 (see(1.22)), or, written out,

A =





ε 5 ε ε ε ε 3
ε 6 ε ε 3 ε 4
ε ε ε ε 3 4 ε

ε 6 ε ε 6 7 4
ε 11 ε ε 8 9 9
ε ε ε ε 6 7 3
ε 8 ε ε 10 11 7





.

Remark 2.46 Both equations (2.11) and (1.29) describe the evolution of the firing
times, the first equation with respect to the statex , the second one with respect tothe
outputy. Using thenotation of§1.2.3, one cancheck that

y(k + 1) = Cx(k + 1) = C Ax(k)

and that

y(k + 1) = M y(k) = MCx(k) ,

whereA is definedabove, and whereC A equalsMC.

Conversely, it is easy to derive a Petri net from (2.11); such a net has 7 transitions
(thedimension of the state vector) and 22 places (the number of entries inA which are
not equal toε). Each of these places has a token in the initial marking. The holding
time associated with the place connecting transitionj to transitioni is given by the
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Figure 2.22: Petri net of Example 2.47

appropriateAi j entry. Thus at least two different Petri nets exist which both yield the
same set of evolution equations. In this sense these Petri nets are equivalent.

Example 2.47 (A nonautonomous timed event graph)The starting point for the
next example is Figure 2.22, which coincides with Figure 2.12 with an initial marking
added. The timing is again limited to places. The evolution equations are given by

x(k + 1) = A0x(k + 1)⊕ A1x(k) ⊕ A2x(k − 1)⊕ B0u(k + 1)⊕ B1u(k) ,

y(k) = C0x(k) ⊕ C1x(k − 1) ,

where

A0 =



ε ε ε

3 ε ε

3 4 ε



 , A1 =



ε 4 ε

ε ε ε

ε ε ε



 , A2 =



ε ε ε

ε ε ε

ε ε 2



 ,

B0 =



1 ε

ε ε

ε ε



 , B1 =



ε ε

ε 5
ε ε



 ,

C0 = ( ε ε 2 ) , C1 =
(
ε e ε

)
.

If one usesA∗0, this system can be written as

x(k + 1) =



ε 4 ε

ε 7 ε

ε 11 ε



 x(k) ⊕



ε ε ε

ε ε ε

ε ε 2



 x(k − 1)

⊕



1 ε

4 ε

8 ε



 u(k + 1)⊕



ε ε

ε 5
ε 9



 u(k) ,

y(k) = (
ε ε 2

)
x(k) ⊕ ( ε e ε

)
x(k − 1) .
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This equation can be put into standard form by augmenting the state space: if one
defines

x̃(k) = (x1(k), x1(k − 1), x2(k), x2(k − 1), x3(k), x3(k − 1), u1(k), u2(k))
′ ,

the system can be written as

x̃(k + 1) = Ãx̃(k) ⊕ B̃u(k + 1) ,

y(k) = C̃ x̃(k) ,
(2.12)

where

Ã =





ε ε 4 ε ε ε ε ε

e ε ε ε ε ε ε ε

ε ε 7 ε ε ε ε 5
ε ε e ε ε ε ε ε

ε ε 11 ε ε 2 ε 9
ε ε ε ε e ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε





, B =





1 ε

ε ε

4 ε

ε ε

8 ε

ε ε

e ε

ε e





,

and

C̃ = ( ε ε ε e 2 ε ε ε
)

.

Further simplifications are possible in this equation. Sincex1 is not observable (see
[72]) and since it does not influence the dynamics ofx2 or x3 either, it can be discarded
from the state, as canu1. Thus a five-dimensional state vector suffices. Equation (2.12)
is still not in the standard form since the argument ofu is k + 1 instead ofk. If one
insists on the ‘precise’ standard form, it can be shown that (2.12) and

x̂(k + 1) = Ãx̂(k) ⊕ ÃB̃u(k) ,

y(k) = C̃ x̂(k) ⊕ C̃ B̃u(k) ,
(2.13)

are identical in the sense that theirγ -transforms (see Chapter 1) are identical. This
is left as an exercise to the reader. The latter equation does have the standard form,
though there is a direct throughput term (the inputu(k) has a direct influence on the
outputy(k)).

Example 2.48 (Discrete analogue of the system of§1.2.7)Thepurpose of this exam-
ple is to play again with the ‘counter’ description already alluded to in Chapter 1, and
to show that discrete event systems may obey similar equations as some continuous
systems, up to the problem of ‘quantization’. Figure 2.23 (left-hand side) represents
a simple event graph: the three transitions are labelledu, x and y, holding times of
places are indicated by numbers (firing times are all zero) and an initial marking is
shown. With each transition, e.g. x , is associated a function of time t having the same
name, e.g.t �→ x(t), with the following meaning:x(t) represents the number of firings
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Figure 2.23: An event graph and its continuous analogue

of transitionx up to time t , and itis assumed thatx(t) = e for t < 0. The following
equations are obtainedin the min-plus algebra:

x(t) = 1x(t − 2)⊕ u(t − 2) ; y(t) = 3x(t) ,

where thedelays in time originate from the holding times and where the coefficients are
connectedwith the initial number of tokens in the places. By successive substitutions,
one obtains:

y(t) = 3u(t − 2)⊕ 4x(t − 2)

= 3u(t − 2)⊕ 4u(t − 4)⊕ 5x(t − 4)
...

=
⊕

2≤τ≤t+2
τ even

h(τ )u(t − τ ) ,

whereh is the function defined by (1.38). Observe that the min-summation can be
limited to t + 2 becauseu(−1) = u(−2) = · · · = x(−1) = x(−2) = · · · = e and
the coefficient ofx(t) is larger than that ofu(t). Indeed, for the same reason, the min-
summation can beextended toτ < +∞, and also to−∞ < τ becauseh(τ ) remains
equal to 3 for values ofτ below 2, whereasu(t − τ ) is nonincreasing withτ . Finally,
one obtains that

y(t) =
⊕

−∞<τ<+∞
τ even

h(τ )u(t − τ ) ,

which compares with (1.39), except that nowτ ranges in 2Z instead ofR.
The right-hand side of Figure 2.23 suggests the correspondence of continuous ele-

ments (extracted from Figure 1.13) with their discrete counterparts.
Recalling the mixing operation explained in the last paragraph of§1.2.7, we see

that the discrete analogous operation consists here in ‘synchronizing’ two event graphs
similar to that of Figure 2.23 by a join at their output transitiony.

2.5.2 The Basic Autonomous Equation

The event graphs of this section are assumed to be autonomous. The nonautonomous
case will be considered in§2.5.5. We now turn to the derivation of a set of evolution
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equations for event graphs with variable timing, under the general assumptions that

• the transitions start firing as soon as they are enabled;

• the tokens of a place start enabling the transitions downstream as soon as they
have completed their holding times.

The problems that arise with variable timing are slightly more complex than in the
preceding examples. The main reason for this lies in the fact that tokens can then
overtake one another when traversing places or transitions. As we will see in Chapter 9,
this precludes a simpleordering of events to hold, and event graphs with overtaking lose
the nice linearity property emphasized in the preceding examples. The discussion will
hence be limited to thecase of event graphs with First In First Out (FIFO) places and
transitions, where the ordering of events preserves linearity.

2.5.2.1 Initial Condition

We start with a first discussion of theinitial condition which is here understood as a
set of initial delays attached to the tokens of the initial marking in a way that general-
izeswhat is often done in queuing theory. This topic will be revisited in§5.4.4.1 and
§5.4.4.2, and further considered from a system-theoretic point of view in§5.4.4.3.

Assumethat one starts looking at the system evolution at timet = 0, and that the
piecewise constant functionNi (t) describing the evolution of the number of tokens
present in pi , i = 1, . . . , |P|, at time t ∈ R, is right continuous. LetNi (0) = µi ,
whereµi denotesthe initial marking in placepi .

The general idea behind the initial condition is as follows: theNi (0) ( = µi ) tokens
visible at timet = 0 in pi are assumed to have enteredpi beforetime 0; at time 0, each
token is completing its holding time or it is being consumed by the transition (namely
it is a reserved token), or it is ready to be consumed. We can equivalently define the
initial condition through the entrance times of the initial tokens, or through the vector
of R-valuedlag times, where

Definition 2.49 (Lag time) The lag time of a token of the initial marking of pi is the
epoch when this token starts contributing to enabling σ(pi ).

However, these lag times should be compatible with the general rules that transitions
fire as soonasthey are enabled and that tokens start enabling the transition downstream
as soon as they have completed their holding times. For instance

• if the lag time of an initial token exceeds its holding time, this token cannot have
entered the placebefore time 0;

• if the lag times (whichare possibly negative) are such that one of the transitions
completes firing and consumes tokens of the initial marking beforet = 0, these
tokens cannot be part of the marking seen at time 0 since they must have left
before time 0.

Definition 2.50 (Weakly compatible initial condition) The initial condition of a
timed event graph consists of an initial marking and a vector of lag times. This ini-
tial condition is weakly compatible if
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1. the lag time of each initial token does not exceed its holding time;

2. the first epoch when a transition completes firing is nonnegative.

2.5.2.2 FIFO Places and Transitions

A basic assumption that will be made throughout the chapter is that both places and
transitions are First In First Out (FIFO) channels.

Definition 2.51 (FIFO place) A place pi is FIFO if the k-th token to enter this place
is also the k-th which becomes available in this place.

In view of the interpretation of holding times as communication or transportation times,
this definition just means that the transportation or communication medium is overtake
free. For instance, a place with constant holding times is FIFO.

Definition 2.52 (FIFO transition) A transition q j is FIFO if the k-th firing of q j to
start is also the k-th to complete.

The interpretation is that tokens cannot overtake one another because of the firing
mechanism, namely the tokens produced by the(k + 1)-st firing of q j to be initi-
atedcannot enter the places ofσ(q j ) earlier than those of thek-th firing. For instance,
a transition with constant firing times is always FIFO. If a transition is recycled, its
(k + 1)-st firing cannot start before the completion of thek-th one, so that a recycled
transition is necessarily FIFO, regardless of the firing times.

Definition 2.53 (FIFO event graph) An event graph is FIFO if all its places and tran-
sitions are FIFO.

A typical example of a FIFO timed event graph is that of a system with constant holding
times and recycled transitions with possibly variable firing times. An event graph with
constant holding and firing times is always FIFO, even if its transitions are not recycled.
Since the FIFOproperty is essential in order to establish the evolution equations of the
present section,it is important to keep in mind that:

The classes of timedevent graphs considered throughout the book are those
with

1. constant firing and holding times;

2. constant holding times and variable firing times, provided all transitions
are recycled.

2.5.2.3 Numbering of Events

The following way of numbering the tokens that traverse a place and the firings of a
transition will be adopted.
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By convention, thek-th token,k ≥ 1, of placepi is thek-th token to contribute
enablingσ(pi ) during the evolution of the event graph, including the tokens
of the initial marking. Thek-th firing, k ≥ 1, of transitionqi is thek-th firing
of qi to be initiated, including the firings that consume initial tokens.

It may happen that two tokens inpi contribute enablingσ(pi ) at the same epoch, or
that two firings of a transition are initiated at the same time (when the transition is not
recycled). In thiscase, some ordering of these simultaneous events is chosen, keeping
in mind that it should be compatible with the FIFO assumptions.

2.5.2.4 Dynamics

In what follows, the sequences of holding timesαi(k), i = 1, . . . , |P|, k ∈ Z, and of
firing timesβ j (k), j = 1, . . . , |Q|, k ∈ Z, are assumed to be givennonnegative and
finite real numbers. Initially, only the restriction of these sequences tok ≥ 1 will be
needed. However, we assume that these sequences can be continued tok ≤ 0. Such a
continuation is clear in the case of a constant timing, and we will see in due time how
to define the continuation in more general circumstances (see§2.5.7).

Weare now in a position to define the dynamics of the event graph more formally.

• Thek-th token of placepi incurs theholding timeαi(k).

• Once thek-th firingof transitionq j is enabled, the time forq j to complete itsk-th
firing is thefiring timeβ j (k). When this firing is completed, the reserved token
is removed from each of the places ofπ(q j ), and each place ofσ(q j ) receives
one token.

We now state a few basic properties of thenumbering in a FIFO event graph with a
weakly compatible initial condition. Fori suchthatµi ≥ 1, denotewi(1) ≤ wi(2) ≤
· · · ≤ wi(µi ) ∈ R, the lag times of the initial tokens of placepi ordered in a nonde-
creasing way.

Lemma 2.54 If the initial condition is weakly compatible and if the timed event graph
is FIFO, then for all i and for all k such that 1≤ k ≤ µi and µi ≥ 1, the initial token
with lag time wi(k) is also the k-th token of place pi (that is the k-th token to enable
σ(pi )).

Proof If this last property does not hold for some placepi , then a token which does not
belong to the initial marking ofpi , and which hence enterspi after time 0 (the initial
condition is weakly compatible), contributes to enablingσ(pi ) before one of the tokens
of the initial marking does. Since the tokens of the initial marking enterpi before time
0 (the initial condition is weakly compatible), this contradicts the assumption thatpi is
FIFO.

Lemma 2.55 The firing of q j that consumes the k-th token of pi (for all pi ∈ π(q j ))
is the k-th firing of qi .
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Proof Owing tothenumbering convention, the set ofk-th tokens ofpi ∈ π(q j) enables
q j before the set of(k + 1)-st tokens.

Lemma 2.56 The completion of the k-th firing of q j , k ≥ 1, produces the (k + µi )-th
token of pi , for all pi ∈ σ(q j ).

Proof The FIFO assumptionson transitions imply that the completion of thek-th firing
of q j produces thek-th token to enter the places that followpi . Theproperty follows
immediately from the FIFO assumption on places and from Lemma 2.54.

2.5.2.5 Evolution Equations

Definition 2.57 (Statevariables, daters) The state variable x j(k), j = 1, . . . , |Q|,
k ≥ 1, of the event graph is the epoch when transition q j starts firing for the k-th time,
with the convention that for all qi , xi (k) = ∞ if qi fires less than k times. These state
variables will be called daters.

These state variables are continued to negative values ofk by the relation x j (k) = ε,
for all k ≤ 0. Let

M = max
i=1,... ,|P|

µi . (2.14)

In what follows, we will adopt the convention that the⊕-sumover an empty set isε.
Define the|Q| × |Q|matricesA(k, k), A(k, k − 1), . . . , A(k, k − M), by

A jl (k, k −m)
def=



⊕

{i∈πq ( j)|π p(i)=l,µi=m}
αi(k)



 ⊗ βl (k −m) , (2.15)

and the|Q|-dimensional vectorv(k), k = 1, . . . , M, by

v j (k)
def=

⊕

{i∈πq ( j)|µi≥k}
wi(k) . (2.16)

Theorem 2.58 For a timed event graph with recycled transitions, the state vector
x(k) = (x j (k)) satisfies the evolution equations:

x(k) = A(k, k)x(k) ⊕ A(k, k − 1)x(k − 1)⊕ · · · ⊕ A(k, k − M)x(k − M) ,

k = M + 1, M + 2, . . . , (2.17)

with the initial conditions

x(k) = A(k, k)x(k) ⊕ · · · ⊕ A(k, k − M)x(k − M)⊕ v(k) ,

k = 1, 2, . . . , M , (2.18)

where x j(k)
def= ε for all k ≤ 0.
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Proof We first prove thatthe variablesx j (k), j = 1, . . . , |Q|, satisfy the evolution
equations:

x j(k) =
⊕

{i∈πq ( j)|k>µi }

(
αi(k) ⊗ βπ p (i)(k − µi )⊗ xπ p (i)(k − µi )

)

⊕



⊕

{i∈πq ( j)|k≤µi }
wi(k)



 , k = 1, 2, . . . . (2.19)

Thek-th firing,k ≥ 1, of transitionq j startsas soon as, for alli ∈ πq( j ), thek-th token
of pi contributes to enablingq j . In view of Lemmas 2.55 and 2.56, fork > µi , thisk-th
token is produced by the(k − µi )-th firingof transitionπ(pi ), so that the epoch when
this token contributes enablingσ(pi ) is αi (k) ⊗ βπ p (i)(k − µi ) ⊗ xπ p (i)(k − µi ). For
k ≤ µi , this event takes place at timewi(k), in view of Lemma 2.54, which completes
the proof of (2.19).

We now use associativity and commutativity of ⊕, together with ourconvention on
⊕-sumsover emptysets, to rewrite x j(k), k > M, as

M⊕

m=0

|Q|⊕

l=1

⊕

{i∈πq ( j)|π p(i)=l, µi=m}
αi(k) ⊗ βl (k − m)⊗ xl (k − m) .

The distributivity of ⊗ with respect to⊕ implies in turn

x j (k) =
M⊕

m=0

|Q|⊕

l=1




⊕

{i∈πq ( j)|π p(i)=l, µi=m}
αi (k)



 ⊗ βl (k − m)⊗ xl (k − m) ,

which completes the proof of (2.17), in view of the definition ofA.
The proof of (2.18) follows the same lines (using the continuation of the functions

x j (k) to ε for k ≤ 0).

Remark 2.59 Owing to the dynamics, the first transition to complete its firing is nec-
essarily within the set of transitionsq j havingat least one token in the initial marking
of pi for all pi ∈ π(q j). Sincethe set of tokens with the smallest lag times is the
first to be consumed, the second weak compatibility condition in Definition 2.50 can
be translated intothe requirement that

β j (1)⊗ v j (1) ≥ e , (2.20)

for all j suchthatµi ≥ 1 ∀ pi ∈ π(q j ), which can be seen as a first set of linear
constraints on the lag times in view of (2.16). Similarly, the first weak compatibility
relation is translated into the followingadditional set of linear constraints:

wi(k) ≤ αi(k) , i = 1, . . . , |P| , 1≤ k ≤ µi . (2.21)

For instance, if wi(k) = αi (k) for all i = 1, . . . , |P|, 1 ≤ k ≤ µi , then the initial
condition is weakly compatible, provided the conditionwi(1) ≤ wi(2) ≤ . . . ≤ wi(µi )

is satisfied.
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Figure 2.24: Event graph of Example 2.60

Example 2.60Consider the timed event graph of Figure 2.24. The firing times are as-
sumed to be equal toe. Theplace connecting q j to ql is denotedpl j . Theholding times
in this placeare denotedαl j (k), and the lag times of the initial tokenswl j (k). In order
to have a FIFO event graph, places should be overtake free. This will always be true
for p11 and p22, regardless of the holding time sequences in these places (since there is
always at most one token each of these places). A simple sufficient condition ensuring
that the other places are overtake free is that the associated holding time sequences are
non decreasing ink (for instance constant). Under the assumption that the event graph
is FIFO, the matrices and vectors involved in the evolution equations are

A(k, k) =




ε ε ε ε

ε ε ε ε

ε ε ε ε

ε α42(k) α43(k) ε


 , A(k, k − 1) =




α11(k) ε ε α14(k)
α21(k) ε ε ε

ε ε ε ε

ε ε ε α44(k)


 ,

A(k, k − 2) =





ε ε ε ε

ε ε ε ε

α31(k) ε ε ε

ε ε ε ε



 ,

and

v(1) =





w11(1)⊕w14(1)
w21(1)
w31(1)
w44(1)



 , v(2) =





ε

ε

w31(2)
ε



 .

The constraints (2.21) and (2.20) are translated into the boundswl j (k) ≤ αl j (k), and
w11(1)⊕w14(1) ≥ e, w21(1) ≥ e, w31(1) ≥ e.

2.5.2.6 Simplifications

Firing Times The evolution equations (2.19) are unchanged if one sets all the firing
times equal toe and ifαi(k) receives the valueαi (k) ⊗ βπ p (i)(k − µi ). Thus, one can
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always modify the holding times in order to get an ‘equivalent’ event graph with firing
times of duratione, where equivalence means that the epochs when transitions fire are
the same in both systems.

It may be assumed without loss of generality that the firing times are equal to
e = 0.

Observe that under this assumption the state variablex j (k) is also the epoch when
transitionq j completes itsk-th firing. Graphically, this is exemplified in Figure 2.25.
If a firing time were assigned to a transition within an event graph, then this time can
always be assigned to (i.e. added to) the holding times of all the upstream places.
Consider Figure 2.25a, in which the transition has a firing time of 5 time units. The

3 4

6

(a) (b) (c)

11

0 0

6

8 9 3 4

5

5

(e)

0

3 4

6

5

(d)

3 4

6

Figure 2.25: Firing times set toe

holdingtimes of the places are 3, 4 and 6 as indicated in this figure. Figure 2.25b shows
assignment of the firing time to the places. The firing of the transition in Figure 2.25b,
which is instantaneous, corresponds to the completion of the firing of the transition in
Figure 2.25a. Another, similar, solution is provided in Figure 2.25c, where the holding
time has been assigned to all the downstream places. The firing of the transition in this
figure corresponds to the initiation of the firing of the transition in Figure 2.25a.

A different solution is provided in Figure 2.25d. In this figure, both the beginning
and completion of the firing are now explicitly represented. In Figure 2.25e, the holding
time at the transitions is also 0, but in contrast to the previous solutions the transitions
cannot fire twice (or more times) within 5 time units. The transitions cannot be engaged
in (partly) parallel activities.

In what follows, we shall therefore often assume that the firing times are zero. The
practical implication of this mathematical simplification is clear in the constant firing
and holding time case. In the variable case, one should however always keep in mind
that the only meaningful initial situation is that of variable firing times (on recycled
transitions) and constant holding times.

Init ial Condition The end of this subsection is devoted to a discussion of the initial
condition. It is shown that Equation (2.18), defining the initial condition, can be further
simplified whenever the lag times satisfy certain additional and natural constraints.
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For all i suchthatµi > 0, denote byyi(k), k ≤ 0, theentrance time function
associated with placepi , defined by the relation

yi(k − µi )
def=
{
wi (k)◦/αi(k) if 1 ≤ k ≤ µi ;

ε if k > µi ,
(2.22)

where we recall that◦/ denotes conventional subtraction.
The initial condition is said to becompatible if it is wealky compatible and if for

any pair of placespi and p j which follow the same transition, the entrance timesyi (k)
andy j(k) coincide providedk ≥ min(µi , µ j ).

Definition 2.61 (Compatible initial condition) The initial condition is compatible if
it is weakly compatible and if there exist functions z j(k), j = 1, . . . , |Q|, k ≤ 0, such
that

yi(k) = zπ p (i)(k) , ∀i, k such that − µi + 1≤ k ≤ 0 . (2.23)

This condition is quite natural, should the initial condition result from a past evolution
of the event graph: for instance, the last tokens of the initial marking to enter two places
pi and pi ′ that follow the same transitionq j , have then been produced at the same time
z j (0) by a firing ofq j .

Let
M j

def= max
i∈σ q ( j)

(µi ) .

Observe that the functionz j (k) is only defined through (2.23) for−M j < k ≤ 0,
providedM j ≥ 1. For othervalues ofk, or if M j = 0, we takez j (k) = ε.

Instead of the former continuation ofx(k) to k ≤ 0 (which consisted in taking
x j (k) = ε for k ≤ 0), we now take

x j (k) = z j(k) , ∀k ≤ 0 , j = 1, . . . , |Q| . (2.24)

Corollary 2.62 For a FIFO timed event graph with a compatible initial condition, the
state vector x(k) = (x j (k)) satisfies the evolution equations:

x(k) = A(k, k)x(k) ⊕ A(k, k − 1)x(k − 1)⊕ · · · ⊕ A(k, k − M)x(k − M) ,

k = 1, 2, . . . , (2.25)

provided the continuation of x(k) to negative values of k is the one defined by (2.24).

Proof By successively using (2.22) and (2.23), one gets

⊕

{i∈πq ( j)|k≤µi }
wi(k) =

⊕

{i∈πq ( j)|k≤µi }
αi(k) ⊗ yi(k − µi )

=
⊕

{i∈πq ( j)|k≤µi }
αi(k) ⊗ zπ p(i)(k − µi ) ,
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for all k = 1, 2, . . . , so thatone can rewrite (2.19) as

x j(k) =
⊕

{i∈πq ( j)}

(
xπ p (i)(k − µi )⊗ αi (k)

)
, k = 1, 2, . . . , (2.26)

when using the continuation ofx proposed in (2.24). Equation (2.25) follows immedi-
ately from (2.26).

Remark 2.63 A simple example of compatible initial condition is obtained when
choosingwi(k) = αi (k) for all 1 ≤ k ≤ µi . Practically speaking, this means that
all the initial tokens enter at time 0. This corresponds to the continuation

x j(k) =
{

e if −M j < k ≤ 0 ;

ε if k ≤ M j .
(2.27)

Example 2.64 (Example 2.60 continued)If the initial condition is compatible, let

z1(0)
def= w11(1)◦/α11(1) = w21(1)◦/α21(1) = w31(2)◦/α31(2) ,

z1(−1) def= w31(1)◦/α31(1) ,

z4(0)
def= w14(1)◦/α14(1) = w44(1)◦/α44(1) .

Define

x(0) =





z1(0)
ε

ε

z4(0)



 , x(−1) =





z1(−1)
ε

ε

ε



 .

It is easily checked that
v(2) = A(2, 0)x(0)

and that
v(1) = A(1, 0)x(0) ⊕ A(1,−1)x(−1) .

Thus

x(k) = A(k, k)x(k) ⊕ A(k, k − 1)x(k − 1)⊕ A(k, k − 2)x(k − 2), k = 1, 2, . . . .

2.5.3 Constructiveness of the Evolution Equations

The first naturalquestion concerning Equation (2.17) is: is it implicit or constructive?
The main result of this section establishes that the evolution equations (2.17) are not
implicit and that they allow one to recursively define the value ofx j(k) for all j =
1, . . . , |Q|, andk ≥ 1, provided the event graph under consideration is live.
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Lemma 2.65 The event graph is live if and only if there exists a permutation P of the
coordinates for which the matrix P

′
A(k, k)P is strictly lower triangular for all k.

Proof If the matrix P
′
A(k, k)P is strictly lower triangular for some permutationP,

then there is no circuit with 0 initial marking, in view of the definition ofA(k, k) (see
(2.15)). Conversely, if the event graphis live, the matrixA(k, k) has no circuit, and
there exists apermutation of the coordinates that makesA strictly lower triangular. The
proof is then concluded from Theorem 2.38.

Observe that the fact thatP does not depend onk comes from the fact that the
support of A(k, k) does not depend onk (by ‘the support’ of matrixA we mean the
matrix S with the same dimension asA defined bySi j = 1Aij 
=ε).

If the matrix P ′A(k, k)P is strictly lower triangular,An(k, k) = ε for n ≥ |Q|, and
the matrix

A∗(k, k)
def= e ⊕ A(k, k) ⊕ A2(k, k) ⊕ · · ·

is finite. Let

A(k, k − l)
def= A∗(k, k)A(k, k − l) , k ∈ Z , l = 1, . . . , M , (2.28)

and
v(k)

def= A∗(k, k)v(k) , k ∈ Z ,

with v j (k)
def= ε for k ≤ 0 or k > M.

Theorem 2.66 If the event graph is live, the evolution equations (2.17) and (2.18) can
be rewritten as

x(k) = A(k, k − 1)x(k − 1)⊕ · · · ⊕ A(k, k − M)x(k − M)⊕ v(k) ,

k = 1, 2, . . . , (2.29)

where x j(k)
def= ε, for all k ≤ 0.

Proof From (2.17) and (2.18), we obtain by induction onn that

x(k) = An+1(k, k)x(k)

⊕
(

n⊕

m=0

Am (k, k)

) (
M⊕

l=1

A(k, k − l)x(k − l)⊕ v(k)

)
, k = 1, 2, . . . .

Equation (2.29) follows from the last relation by lettingn go to∞.

Remark 2.67 If the initial condition is compatible and if one now takes the continu-
ation of x(k) for k ≤ 0, as defined in (2.24), the same type of arguments shows that
(2.25) becomes

x(k) =
M⊕

l=1

A(k, k − l)x(k − l) , k = 1, 2, . . . .
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Corollary 2.68 If the event graph is live and if the holding times and the lag times are
all finite, so are the state variables x j (k), j = 1, . . . , |Q|, k ≥ 1.

Proof The proof is by induction based on (2.29).

Remark 2.69 The matrixA(k, k−l), l ≥ 1, has a simple graph-theoretic interpretation.
Let S( j ′, j, l) be the set of paths in the graphG of the event graph, of length at least 2,
with initial transitionq j ′, with final transitionq j , and suchthat the first two transitions
of the path are connected by a place with initial marking equal tol, while the other
transitions are connected by places with 0 initial marking. It is easily checked, using
the results of§2.4, thatA j j ′(k, k − l) is defined by the relation

A j j ′(k, k − l) =
⊕

{ρ=( j1,i1, j2,i2··· ,ih−1, jh)∈S( j ′, j,l)}

h−1⊗

n=1

αin (k) , (2.30)

with the usual convention if the setS( j ′, j, l) is empty. The entryA j j ′(k, k − l) is
hence simply the longest path inS( j ′, j, l).

Example 2.70 (Example 2.60 continued)We have

A∗(k, k) =





e ε ε ε

ε e ε ε

ε ε e ε

ε α42(k) α43(k) e



 ,

so that

A(k, k − 1) =





α11(k) ε ε α14(k)
α21(k) ε ε ε

ε ε ε ε

α42(k)α21(k) ε ε α44(k)



 ,

A(k, k − 2) =





ε ε ε ε

ε ε ε ε

α31(k) ε ε ε

α43(k)α31(k) ε ε ε



 ,

and

v(1) =




w11(1)⊕w14(1)
w21(1)
w31(1)

w21(1)α42(1)⊕ w31(1)α43(1)⊕w44(1)


 , v(2) =




ε

ε

w31(2)
w31(2)α43(2)


 .

Remark 2.71 (Equivalent event graph with positive initial marking) With the evo-
lution equation (2.29), one canassociate aderived event graphwith the same set of
transitions as the initial event graph, and where the initial marking is such thatµi > 0
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for all placespi . This event graph is equivalent to the initial one in the sense that cor-
responding transitions fire at the same times. The derived event graph associated with
the eventgraph of Example 2.60 is given in Figure 2.26, left-hand side. This derived
event graphcan be defined from theoriginal one by the following transformation rules:

1. take the same set of transitions as in the original event graph;

2. for each path ofS( j ′, j, l), l ≥ 1, in the original event graph, create a place
connectingj ′ to j with l tokens and with the weight of the path as holding time.

q3

q1

q2

q4

α14

α31

α21

α11 α44

α43α31

α42α21

q1 q4

α14

α11 α44

α43α31

α42α21

Figure 2.26: Illustration of Remarks 2.71 and 2.72

Remark 2.72 (Equivalent event graph with reduced state space)The dimensionof
the state space can be reduced using the followingobservation: the transitions followed
by places all having a 0 initial marking, or equivalently the transitionsq j such that the
entries of the j -th column of A(k, k − l) areε, arenot present in the right-hand side
of (2.29). LetQ′ be the set of transitions followed by at least one place with a positive
initial marking. One can take as reduced state variablesx j (k), j ∈ Q′, k ≥ 1. The
remaining variables are obtained from them via (2.29).

Example 2.73 (Example 2.60 continued)Here we haveQ′ = {q1, q4}. With these
new state variables, the evolution equations are reduced to

(
x1(k)
x4(k)

)
=
(

α11(k) α14(k)
α42(k)α21(k) α44(k)

)(
x1(k − 1)
x4(k − 1)

)

⊕
(

ε ε

α43(k)α31(k) ε

)(
x1(k − 2)
x4(k − 2)

)
⊕
(

v1(k)
v4(k)

)
.

The event graph corresponding to these equations is depicted in Figure 2.26, right-hand
side. It isobtained from the derived graph by deleting the transitions that do not belong
toQ′.
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The other state variables are obtained from the reduced state variables by the rela-
tion

(
x2(k)
x3(k)

)
=
(

α21(k) ε

ε ε

)(
x1(k − 1)
x4(k − 1)

)

⊕
(

ε ε

α31(k) ε

)(
x1(k − 2)
x4(k − 2)

)
⊕
(

v2(k)
v3(k)

)
.

The variables(x2(k), x3(k)) areoutput variables in the derived event graph. Equiva-
lently, transitionsq2 andq3 are sinks of the derived event graph.

2.5.4 Standard Autonomous Equations

The data of this section is a live event graphsatisfying the evolution equations (2.29),
with the reduction of the state space mentioned in Remark 2.72. We will assume that
the transitionsof Q′ arenumbered 1, . . . , |Q′|, which introduces no loss of generality.

It may be desirable to replace the initial recurrence (2.29), which is of orderM,
by an equivalent recurrence of order 1. This is done by using the standard technique
which consists in extending the state vector. As a new state vector, take the

(|Q′| × M
)
-

dimensional vector

x̃(k)
def=





x(k)
x(k − 1)

...

x(k + 1− M)



 .

Let Ã(k), k ∈ Z, be the(|Q′| × M)× (|Q′| × M) matrix defined by the relation

Ã(k) =





A(k + 1, k) A(k + 1, k − 1) . . . . . . A(k + 1, k + 1− M)

e ε . . . ε ε

ε e
. . .

...
...

...
. . . e ε ε

ε . . . ε e ε




,

wheree andε denote the|Q′| × |Q′| identity and zero matrices, respectively, and let
ṽ(k) be the

(|Q′| × M
)
-dimensional vector

ṽ(k)
def=





v(k + 1)
ε
...

ε



 ,

whereε represents here the|Q′|-dimensionalzero vector.
Adopting the convention thatx j (k) andv j (k) are equal toε for k ≤ 0, it should be

clearthat Equation (2.31) in the following corollary is a mere rewriting of the evolution
equations (2.29).
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Corollary 2.74 The extended state space vector x̃(k) satisfies the
(
M × |Q′|)-

dimensional recurrence relation of order 1

x̃(k + 1) = Ã(k)̃x (k) ⊕ ṽ(k) , k = 1, 2, . . . . (2.31)

Equation (2.31) will be referred to as thestandard form of the evolution equations of
anautonomous timed event graph satisfying (2.29).

Remark 2.75 In the particular case of a compatible initial condition, these equations
read

x̃(k + 1) = Ã(k)̃x (k) , k = 1, 2, . . . , (2.32)

providedthe continuation ofx j(k) for k ≤ 0, is that of Equation (2.24). Whenever the
entrance times of the tokens of the initial marking are all equal toe (see Remark 2.63),
it is easily checked from (2.27) that in this case

x̃l|Q′ |+ j (0) =
{

e if 0 ≤ l < M j ;

ε for l ≥ M j ,
(2.33)

for l = 0, . . . , M − 1; j = 1, . . . , |Q′|.

Example 2.76 (Example 2.60 continued)Here we have

x̃(k) =




x1(k)
x4(k)

x1(k − 1)
x4(k − 1)


 , ṽ(k) =




v1(k + 1)
v4(k + 1)

ε

ε


 ,

and

Ã(k) =





α11(k + 1) α14(k + 1) ε ε

α42(k + 1)α21(k + 1) α44(k + 1) α43(k + 1)α31(k + 1) ε

e ε ε ε

ε e ε ε



 .

In the special case mentioned at the end of the preceding remark, we havex̃(0) =
(e, e, e, ε)′.

Remark 2.77 (Equivalent net with at most one token in the initial marking) One
can associate a timed event graph with the evolution equations (2.31). The interest-
ing property of this event graph is that its initial marking is such thatM = 1 (more
precisely, eachµi in this event graph is 1).

In view of Corollary 2.74, one can hence state that for any timed event graph, one
canconstruct another ‘equivalent’ event graph with initial marking equal to 1 every-
where. The equivalence means here that one can find a bijective mapping from the
set of transitions of the initial event graph to a subset of the transitions of the second
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one, such that two corresponding transitions fire at the same time. In particular, any
observation of these transitions will be identical.

For instance, in the case of a compatible initial condition, this event graph can be
obtained from the original one by first transforming it into an event graph with positive
initial marking (as it was done in Remark 2.71), and by then applying the following
transformation rules:

1. for each transition q j of Q′ in the original event graph, createM transitions
q jl, l = 0, . . . , M − 1;

2. for eachq jl , l = 0, . . . , M − 2, create a place that connectsq jl to qi,l+1, with 0
holdingtimes. Put one token in its initial marking, with initial lag timez j(−l);

3. for each place connectingqi ∈ Q′ to q j , andwith l + 1 initial tokens,l ≥ 0,
in the original system, create a place with one token with initial lag timezi(−l),
and with the same holding times sequence as the original place. This new place
hasqil asinput transition, andq j0 asoutput transition.

For Example 2.60, the corresponding event graph is given in Figure 2.27. The behavior
of q10 in this graph is the same as that ofq1 in Figure 2.24. The same property holds
for q40 andq4 respectively.

0
0

z4(0)

z1(0) z1(−1)

q10 q40 q41

α11 α44

α43α31
q11

α42α21

α14

Figure 2.27: Illustration of Remark 2.77

2.5.5 The Nonautonomous Case

This subsection focuses on FIFO timed event graphs with external inputs. The firing
times can be taken equal to 0, without loss of generality.

To theframework of the preceding sections, we add a new class of transitions called
input transitions. This setof transitions will be denotedI.

Definition 2.78 (Input transition) An input transition consists of a source transition
and of a nondecreasing real valued sequence, called the input sequence .
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The input sequence associated with transitionq j ∈ I will be denotedu j (k), k ≥ 1; the
interpretation of this sequence is thatu j (k), k ≥ 1, gives the epoch whenq j fires for
thek-th time, due to some external trigger action. The input sequences are assumed to
be given.

Definition 2.79 (Weakly compatible input sequence)The input sequence u j (k), k ∈
Z, is weakly compatible if u j (1) ≥ 0.

In what follows, all input sequences will be assumed to be weakly compatible. As in
the autonomous case, the initial condition is said to be weakly compatible if in addition

• the entrance times of the tokens of the initial marking are nonpositive;

• the firings which consume tokens of the initial marking complete at nonnega-
tiveepochs (the assumption that the input sequences are weakly compatible may
contribute ensuring that this holds).

The definition of compatibility is the same as in the autonomous case. For instance,
if the lagtimesof a nonautonomous event graph are compatible, one can continue the
input sequence{u j (k)} (with j ∈ I) to a nondecreasing sequence{u j (k)}k∈Z , with
u j (0) ≤ 0, such that for all pi ∈ σ(q j ) with µi ≥ 1,

wi(k) = αi(k) ⊗ u j (k − µi ) , ∀k : 1≤ k ≤ µi . (2.34)

2.5.5.1 Basic Nonautonomous Equations

The derivation of theevolution equations is based on the same type of assumptions as
in the autonomous case, namely the event graph is FIFO and the initial condition is
weakly compatible.

Define the|Q| × |I|matricesB(k, k), . . . , B(k, k − M) by

B jl (k, k − m)
def=

⊕

{i∈πq ( j)|π p(i)=l,µi=m}
αi(k) , (2.35)

and the|I|-dimensional vectoru(k) = (u1(k), . . . , u|I|(k)), k = 1, 2, . . . . Using the
same argumentsas in Theorem 2.58, we get the following result.

Theorem 2.80 Under the foregoing assumptions, the state vector x(k) =
(x1(k), . . . , x|Q|(k))′ satisfies the evolution equations:

x(k) = A(k, k)x(k) ⊕ · · · ⊕ A(k, k − M)x(k − M)⊕ B(k, k)u(k)
⊕ · · · ⊕ B(k, k − M)u(k − M)⊕ v(k) , k = 1, 2, . . . ,

(2.36)

where x j (k)
def= ε and u j (k) = ε for all k ≤ 0; v j (k) is defined as in (2.16) for

1 ≤ k ≤ M and it is equal to ε otherwise.
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If the initial lag times and the input sequences are both compatible, this equation can
be simplified by using the same arguments as in Corollary 2.62, which leads to the
equation

x(k) = A(k, k)x(k) ⊕ · · · ⊕ A(k, k − M)x(k − M)⊕ B(k, k)u(k)
⊕ · · · ⊕ B(k, k − M)u(k − M) , k = 1, 2, . . . ,

(2.37)

where thecontinuations that are taken forx(k) andu(k), k ≤ 0, are now those defined
in Corollary 2.62and Equation 2.34, respectively.

In what follows, we will say that the nonautonomous event graph is live if the
associated autonomous event graph (namely the one associated with the equation
x(k) = A(k, k)x(k) ⊕ · · · ⊕ A(k, k − M)x(k − M)) is live. Let

B(k, k − l)
def= A∗(k, k)B(k, k − m) , k ∈ Z , l = 0, . . . , M .

The following theorem is proved like Theorem 2.66.

Theorem 2.81 If the event graph is live, the evolution equations (2.36) can be rewrit-
ten as

x(k) = A(k, k − 1)x(k − 1)⊕ · · · ⊕ A(k, k − M)x(k − M)

⊕ B(k, k)u(k) ⊕ · · · ⊕ B(k, k − M)u(k − M)⊕ v(k) ,

k = 1, 2, . . . ,
(2.38)

with the same simplification as in Corollary 2.62, provided the initial lag times and the
input sequences are compatible.

The graph theoretic interpretation ofB j j ′(k, k−l) isagain the longest path inS( j ′, j, l)
(see Remark 2.69).

2.5.5.2 Standard Nonautonomous Equations

Define the(M × |I|)-dimensional vector

ũ(k)
def=





u(k + 1)
u(k)
...

u(k + 2− M)



 ,

and the(|I| × M)× (|Q′| × M) matrix

B̃(k) =





B(k + 1, k + 1) B(k + 1, k) . . . B(k + 1, k + 2− M)

ε ε . . . ε
...

...
...

...

ε ε . . . ε



 .
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Corollary 2.82 (Standard nonautonomous equation)The extended state space vec-
tor x̃(k) satisfies the

(
M × |Q′|)-dimensional recurrence of order 1:

x̃(k + 1) = Ã(k)̃x (k) ⊕ B̃(k)̃u(k) ⊕ ṽ(k) , k = 1, 2, . . . , (2.39)

with the same simplification as in Corollary 2.62, provided the initial lag times and the
input sequences are compatible.

Remark 2.83 Formally, the autonomous equation (2.17) can also be seen as that of
a nonautonomous event graph with a set of input transitionsI = {q ′1, q ′2, . . . } of the
samecardinality as the setQ′, with input sequence vectorv(k), andwith B(k, k) = e,
B(k, k − l) = ε for l = 1, . . . , M (the input transitionq ′j is connected tothe internal
transitionq j by a single place with 0 initial marking).

However, the requirement that an input sequence should be nondecreasing con-
tradicts our foregoing assumption onv(k) (with our definitions,v j (k) eventually be-
comesε for k large,as it can be seen from (2.16)). However, when using the fact that
the sequencesx j(k) are nondecreasing, it is easy to check that one can take the input
sequenceu j (k) defined by the function

u j (k)
def=
{
v j (k) if 1 ≤ k ≤ M j ;

v j (M j ) if k ≥ M j ,

instead ofv(k), without altering the values ofx(k).
This representation of an autonomous event graph as a nonautonomous one, where

all i nitial lag times can be taken equal toε, is exemplified on the eventgraph of Exam-
ple 2.60 in Figure 2.28.

q1 q4
q2

q3

u2(k ) = w21(1) , k ≥ 1

u4(k ) = w44(1)
k ≥ 1

u3(1) = w31(1)
u3(k ) = w31(2) k ≥ 2,

u1(k ) = w14(1)⊕w11(1)
k ≥ 1

Figure 2.28: Illustration of Remark 2.83
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2.5.6 Construction of the Marking

This subsection is concerned with the construction of the marking from the state vari-
ables. We will limit ourselves to the construction of the marking at certain epochs for
which their expression is quite simple. However, the formulæ that are obtained are
nonlinearin the max-plus algebra. We will therefore return to classicalalgebra, at least
in this subsection. For the sake of simplicity, it is assumed that the initial condition is
compatible. Pick some placepi in P, and letq j = π(pi ), ql = σ(pi ). Let Ni (t) be the
number of tokens in placepi at time t, t ≥ 0, with the convention that this piecewise
constant function is right-continuous.

Let

N−
i (k)

def= Ni
(
xπ p (i)(k)

)
, k ≥ 1 , (2.40)

N+
i (k)

def= Ni
(
xσ p(i)(k)

)
, k ≥ 1 . (2.41)

Owing toour definitions,N−
i (k) is the number of tokens inpi just after thek-th token

entrance intopi after t = 0, while N+
i (k) is thenumber of tokenspi just after the

departure of thek-th token to leavepi aftert = 0.

Lemma 2.84 Under the foregoing assumptions,

N−
i (k) =

k+µi∑

h=1

1{xl(h)>x j (k)} , k = 1, 2, . . . , (2.42)

N+
i (k) =

∞∑

h=k+1−µi

1{xl(k)≥x j (h)} , k = 1, 2, . . . . (2.43)

Proof The tokens present inpi at time (just after)x j (k) are those that arrived intopi

no later thanx j(k) and which are still in pi at time x j (k). The tokens that arrived no
later thanx j(k) are those with indexh with respect to this place, with 1≤ h ≤ k+ µi .
Among these tokens, those which satisfy the relationxl(h) > x j (k) are still in pi at
time x j(k). Similarly, the only tokens that can be present in placepi just after time
xl (k) are those with indexh > k with respect topi . The token of indexh with respect
to pi is the token produced by transitionj at time x j(h − µi ) (where the continuation
of x j (k) to k ≤ 0 is theone defined in§2.5.2.6). Among these tokens, those which
enteredpi no later than timexl(k) are in pi at time xl (k).

2.5.7 Stochastic Event Graphs

Definition 2.85 (Stochastic event graph)A timed event graph is a stochastic event
graph if the holding times, the firing times and the lag times are all random variables
defined on a common probability space.

Different levels of generality can be considered. The most general situation that
will be considered in Chapters 7 and 8 is the case when the sequences{αi (k)}k∈Z ,

i = 1, . . . , |P|, and {β j (k)}k∈Z , j = 1, . . . , |Q|, are jointly stationary and ergodic
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sequences of nonnegative and integrable random variables defined on a common prob-
ability space(�,F,P). Similarly, the lag timeswi (k − µl ), 1≤ k ≤ µi , are assumed
to be finite and integrable random variables defined on(�,F,P).

More specific situations will also be considered, like for instance the case when
the sequences{αl (k)}k∈N , l = 1, . . . , |P|, and{βi (k)}k∈N , i = 1, . . . , |Q|, are mutu-
ally independent sequences of independent and identically distributed (i.i.d.) random
variables. For instance, all these variables could be exponentially distributed, with a
parameter that depends onl or i, namely

P[αl (k) ≤ x ] =
{

1− exp(al x) if x ≥ 0 ;

0 otherwise,
(2.44)

and

P[βi (k) ≤ x ] =
{

1− exp(bi x) if x ≥ 0 ;

0 otherwise,
(2.45)

wherea j > 0 andb j > 0. Another particular case arises when all the sequences are
constant and deterministic, and the case withconstant timing is thusa special (and
degenerate) case of the i.i.d. situation.

2.6 Modeling Issues

In this section some issues related to the modeling of Petri nets will be described briefly.

2.6.1 Multigraphs

Multigraphs are graphs in which more than one arc between two nodes is allowed. The
fact that in this chapter no such multigraphs have been considered is twofold.

The first reason is that the modeling power of Petri nets with multiple arcs and
Petri nets with single arcs is the same [108]. This ‘modeling power’ is defined in terms
of ‘reachability’, as discussed in§2.4.1. Petri nets with multiple arcs can straightfor-
wardly be represented by Petri nets with single arcs, as shown in Figure 2.29. Note,

Figure 2.29: The changeof multiple arcs into single arcs

however, that in the second of these figures a conflict situation has arisen. In order that



2.6. Modeling Issues 89

this single arc representation of the originally multiple arc from place to transition be-
haves in thesameway as this multiple arc, it is necessary that the tworival transitions
receive tokens alternately.

The second reason is that it is not at all clear how toobtain equations for timed
Petri nets in which there are multiple arcs. Observe that such nets are not event graphs,
as is directly seen from Figure 2.29. It seems that some transitions fire in the long run
twice as often as some other transitions; the 2k-th enabling of such a ‘fast’ transition is
caused by thek-th firing (approximately) of such a ‘slow’ transition.

2.6.2 Places withFinite Capacity

For the rule for enabling transitions it has tacitly been assumed thateach place can
accommodate an unlimited number of tokens. For the modeling of manyphysical
systems it is natural to consider an upper limit for the number of tokens thateach place
can hold. Such a Petri net is referred to as a finite capacity net. In such a net, each place
has an associated capacityKi , being the maximumnumber of tokens thatpi can hold
at any time. For a transition in a finite capacity net to be enabled, there is the additional
condition that the number of tokens ineachpi ∈ σ(q j ) cannot exceed its capacity after
the firing ofq j .

In the discussion to come we confine ourselves to event graphs, although the ex-
tension to Petri nets is quite straightforward, see [96]. Suppose that placepi has a
capacity constraintKi , then the finite capacity net will be ‘remodeled’ as another event
graph, without capacity constraints. Ifπ(pi) ∩ σ(pi ) 
= ∅, then there is a loop. The
number of tokens in a loop before and after the firing is the same and hence the capac-
ity constraint is never violated (provided the initial number of tokens was admissible).
Assume now that π(pi) ∩ σ(pi ) = ∅. Add another placepi ′ to the net. This new
place will haveµi ′ = Ki − µi tokens. Add an arc fromσ(pi ) to pi ′ and an arcfrom
pi ′ to π(pi ). Thenumber of tokensin this new circuit is constant according to Theo-
rem 2.37. The liveness of theevent graph is not influenced by the addition of such a
new circuit, see Theorem 2.38. An example is provided in Figure 2.30 whereKi = 3.

K i = 3
pi

pi

p′i

Figure 2.30: Node with and without a capacity constraint

It is easily verified that this newly constructed Petri net, without capacity constraints,
behaves in exactly the same way in terms of possible firing sequences as the original
finite capacity net. In this sense the nets are ‘equivalent’.
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2.6.3 Synthesis of Event Graphs from Interacting Resources

This aim of this subsection is to show how, starting from the physical understanding
of ‘resources’, and some assumptions, one can build up event graphs in a somewhat
systematic way. This approach leads to a subclass of event graphs (essentially restricted
by the kind of initial marking they can receive) for which the issue of initial conditions
is transparent.

2.6.3.1 General Observations

The exercise of modeling is more an art than an activity which obeys rigid and precise
rules. For example, the degree of detailsretained in a model is a matter of appraisal
with respect to future uses of the model. Models may be equivalent in some respects but
they may differ in the physical insights they provide. These observations are classical
in conventional system theory: it is well known that different state space realizations,
evenwith different dimensions, may yield the same input-output behavior, but some of
these reali zations may capture a physical meaning of the state variables whereas others
maynot.

To be more specific, a clear identification of what corresponds to ‘resources’ in an
abstract Petri net model may not be crucial if available resources are given once and for
all and ifthe problem only consists in evaluating the performance of a specified system,
but it may become a fundamental issue when resource quantities enter the decision
variables,e.g. in optimal resource sizing at the design stage. It has already been noticed
that, in an event graph, although the number of tokens ineach circuit is invariant during
the evolution of the system, this is notgenerally the case of thetotal number of tokens
in the system, even if the graph is strongly connected and autonomous. In this case, it
is unclear how tokens and physical resources are related toeach other.

Figure 2.31 shows the simplest example of this type for which there are only two
distinct situations for the distribution of tokens, the total number of tokens being either
one or two. Indeed, if we redraw this event graph as in Figure 2.32, it becomes pos-

(a) (b)

Figure 2.31: Merging two resources

(a) (b)

Figure 2.32: An alternative model

sible to interpret the two tokens as two resourcescirculating in the system sometimes
alone (case (a)) and sometimes jointly (case (b)). The problem with the former model
of Figure 2.31 is that, when they stay together (case (b)), the two resources are rep-
resented by a single token. Obviously, these two models are equivalent if one is only
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interested in the number of transition firings within a certain time (assuming that some
holding times have been defined properly in corresponding places), but the difference
becomes relevant if oneis willing to play with individual resource quantities in order
to ‘optimize’ the design.

As long as modeling is an art, what is described hereafter should be considered as
a set of practical guidelines—rather than as a rigorous theory—which should help in
trying to construct models which capture as much physical meaning as possible. The
dynamic systems we have in mind are supposed to involve the combined evolution of
several interacting resources designed to achieve some specific overall task or service.
Our approach isin three stages:

1. we first describethe evolution of each type of resource individually;

2. then we describe the mechanism of interaction between resources;

3. finally, we discuss the problem of initialization.

2.6.3.2 State Evolution of Individual Resources

The word ‘resource’ should be understood in the broadest sense: a machine, a tool, a
part, achannel, a transportation link, a position in a storage or in a buffer, etc. are all
resources. Of course, in practice, it is worthwhile modeling a resource explicitly as
long as it is a ‘scarce’ resource, that is a resource the limited availability of which may
have some influence on the evolution of the system at some time. The capacity of a
buffer may be large enough for the buffer to behave as if it were infinite. Again, it is
a matter of feeling to decide whether an explicit model of the finite capacity is a priori
needed or not.

The evolution of each resource in the system is modeled by a sequence of ‘stages’.
What is considered a ‘stage’ is a matter of judgment since severalconsecutive stages
may be aggregated intoa single stage. For example, considering the evolution of a part
in a workshop, traveling to the next machine and then waiting for the temperature to be
cool enough before entering this next machine may be considered a single stage. We
assume that

• the nature and the order of the stages experienced by each type of resource are
known in advance;

• for agiven resource, every stage is preceded (followed)—if it is not the first (last)
stage—by asingle other stage.

Consequently, for a given type of resource, if we draw a graph such that nodes (drawn
as places in a Petri net) represent stages, and arcs indicate precedence of the upstream
stages over the downstream stages, then this graph is a path (i.e. it has neither circuits
nor branches) and itreflects the total order of stages.

Obviously, in a workshop, this assumes that a ‘deterministic scheduling’ of oper-
ations has been defined a priori. For example, a machine is supposed to work on a
specified sequence of parts in a specified order, each operation being represented by a
particular stage. If the stage ‘idle’ is possible between two such operations (i.e. the
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machine may deliver the part it holds without receiving its next part—hence it stays
alone for a while), then additional stages should be introduced in between. Notice that

• the stage ‘idle’ isnot represented by aunique node, but that a node of this type
is introduced if necessary betweenany two successive operations;

• a machine may be idle, while still holding the part it was working on, because
there is no storage available downstream, and the next operation of this machine
cannot be undertaken before the downstream machine can absorb the present
part. In this case, it is not necessary to introduce an additional stage, that is,
the stage ‘working’ and the stage ‘waiting for downstream delivery’ need not be
distinguished.

For a part, it is also assumed that the sequence of machines visited is specified in
advance, but notice that storages visited should be considered as an operation of the
same type as machines visited. Therefore, a storage position, if it is common to several
types of parts, must know in advance the order in which it will be visited by these
different parts, which is certainly a restrictive constraint in the modeling phase, but this
is the price to pay for remaining eventually in the class of event graphs.

Finally, the evolution of a resource is simplya path (inother words, this evolution
is represented by a serial automaton). For convenience, each arc will be ‘cut’ by a bar
resembling a transition, which will serve later on for synchronization purposes. Each
stage receives a sequence of holding times representingminimal times spent in this
stage by the successive resources. For example, waiting in a storage should involve a
minimal time equal to 0. At any time, the present stage of a given resource is repre-
sented by a token marking the corresponding place. Transitions represent changes of
stages and they are instantaneous.

Resources may enter the system and leave it after a while (nonreusable resources)
or they may revisit the same stages indefinitely because they are ‘recycled’ (reusable
resources). For example, raw materials come in a workshop and leave after a trans-
formation, whereas machines may indefinitely resume their work on the same repeti-
tive sequences of parts. Sometimes, nonreusable resources are tightly associated with
reusable resources so that it is only important to model these reusable resources: for
example, parts may be fixed on pallets that are recycled after the parts leave the work-
shop. For reusable resources, we introduce an additional stage called the ‘recycling
stage’, and we put an arc from the last stage (of an elementary sequence) to this recy-
cling stage and another arc from the recycling stage to the first stage. Hence we obtain a
circuit. Physically, the recycling stage mightrepresent a certain ‘reconditioning’ oper-
ation (possibly involving other resources too), and therefore it might receive anonzero
holding time (transportationtime, set-up time, etc.). However, it will be preferable to
suppose that the recycling stage of any resource corresponds to an abstract operation
which involvesonly this resource, and which is immediate (holding time 0). The posi-
tioning of this recycling stage with respect to the true reconditioning operation (before
or after it) is left to the appraisal of the user in each specific situation. Indeed, each
stage along the circuit of the reusable resource where this resource stands alone may
be a candidate to play the role of the recycling stage, a remark which should be kept in
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mind when we speak of canonical initialization later on (this is related to the issue of
thepoint at which one starts a periodic behavior).

2.6.3.3 Synchronization Mechanism

Any elementaryoperation may involve only one particular type of resource, or it may
also involve several different resources. For example, a part waiting in a storage in-
volves both the part and the storage position (whereas an idle machine involves only
this machine). It should be realized that, so far, the same physical operation, as long
as it involvesn different resources simultaneously, has been represented byn different
places.

If two stages belonging to two distinct resource paths (or circuits) correspond to
the same operation, we must express that these stages are entered and left simultane-
ously by the two resources (moreover, the holding times of these stages should be the
same). This may be achieved by putting two synchronization circuits, one connecting
the ‘beginning’ transitions, the other connecting the ‘end’ transitions, as indicated in
Figure 2.33. In order to comply with the standard event graph representation, we have
put new places—represented here in grey color—over the arcs of these circuits. How-
ever, these grey places do not represent ‘stages’ as other places do. They are never
marked with tokens and they have holding times equal to 0. Then, it is realized that
these circuits involving no tokens and having a total holding time equal to 0 express
simultaneity of events, that is entering or leaving the considered stage by anyone of the
two resources precedes the same type of event achieved by the other resource and vice
versa.

Remark 2.86 What we have just done here is nonstandard from the point of view of
Petri net theory, although it is mathematically correct for the purpose of expressing
simultaneity. Indeed, having alive Petri net which includes circuits with no tokens
seems to contradict Theorem 2.38. More specifically, every transition having a ‘grey
place’ upstream (which will never receive tokens) will never fire if we stick to the
general rule about how transition firings are enabled. We propose the following (tricky)
adaptation of this rule to getout of this contradiction:‘in a timedPetri net, a transition
may “borrow” tokens to enable its own firing during a duration of 0 time units, that is,
provided that it can “return” the same amount of tokens immediately’. This condition
is satisfied for transitions preceded and followed by (the same number of) ‘grey places’
since tokensmay be ‘borrowed’ in upstream ‘grey places’ only at the epoch of firing
(since those tokens are then immediately available—holding time 0), and, for the same
reason, tokens produced in downstream ‘grey places’ can immediately be ‘returned’
after firing(they are immediately available when produced).

Mathematically, consider the pair of transitions at the left-hand side of Figure 2.33
and letx1(k) andx2(k) denote their respective daters (see Definition 2.57). The ‘grey
circuit’ translates into the following two inequalities:

x1(k) ≥ x2(k) and x2(k) ≥ x1(k) ,

which imply equality: this is exactly what we want and everything is consistent.
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Onthe contrary, the reader should think of what happens if one of the holding times
puton‘grey places’ is strictly positive and there are still no tokens in the initial marking
of these places.

To avoid this discussion, two alternative solutions can be adopted. The first one
consists in merging the simultaneous transitions as shown by Figure 2.34, which re-

Figure 2.33: Synchronization mecha-
nism

Figure 2.34: Alternative representation
of synchronization

moves the synchronization circuits and the ‘grey places’. We then come up with a rep-
resentation similar to that of Figure 2.32.A further step towards simplification would
beto merge the places and arcs in between so as to arrive at a representation similar to
that of Figure 2.31, but then the resource interpretation would be obscured.

The second solution involves the introduction of fake transitionsx ′1 andx ′2 upstream
the real transitions to be synchronized. This mechanism is explained by Figure 2.35
with the equations proving that the firing times ofx1 andx2 (denoted after the name of
the transitions) are equal.

x1 = x ′1
x ′1 ⊕ x ′2

x2

x1

x2
= x ′1⊕ x ′2x ′2

}
⇒ x1 = x2

Figure 2.35: Another synchronization mechanism

Notice that the holding times of two synchronized stages, which were equal by
construction, can now be different—e.g. one of the two may be taken to be 0—since
only the greater holding time is important. All the above considerations extend to the
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case ofn, rather than 2, resources simultaneously. It is realized that, withthis approach,
every transition has as many output arcs as it has input arcs. A problem arises with
resources which are physically merged into a single product (assembly) or split up into
two or more products (disassembly). That is, the end nodes of a resource path do not
correspond to inlet or outlet nodes of the system. There is a choice of considering that
a cluster of two resources that enter the system separately is still made of two resources
traveling together (which amounts to doubling all arcs and places after the assembly
operation)or to accept that the number of output arcs at some transition (representing
the beginning of an assembly operation) be less than the number of input arcs (which
means that anew type of resource starts its life at that point of the system). Dual
considerations apply to the problem of disassembly.

2.6.3.4 Initialization

As already indicated, during the evolution of the system the present stage of each re-
source will be marked on the graph by a token in a certain place along the path or the
circuit of that resource. Two resources of the same type, e.g. two machines performing
exactly the same sequence of operations, may use the same path or circuit as long as
theynever need to be distinguished. For example, a storage withn positions, and which
is dedicated to a single type of stored resource, will be represented by a circuit with two
stages, ‘occupied’ and ‘available’ (the only distinguishable stages of a single position),
and with n tokens the distribution of which in the circuit indicates how many positions
are available at any time. For a storage accommodating several types of resources, we
refer the reader to the example at the end of this section.

Epochs at which resources move from one stage to the next one will be given by the
dater attached to the transition in between. We now define a canonical initial condition.
For reusable resources, it corresponds to all tokens put at the corresponding recycling
stages. As discussed earlier, these recycling stages are supposed to involve a single type
of resource each, and a holding time equal to 0 (therefore, it is irrelevant to know when
the tokens had been put there). For any nonreusable resource, since it passes through
the system, we first complete its path by adding an inlet transition (upstream from the
first place) and an outlet transition (downstream from the last place) so as to attach
the epochs of inputs and outputs to these transitions (unless one of these transitions
is already represented because the resource participates in an assembly operation, or
because it is issued from a disassembly operation). The canonical initial condition
for nonreusable resources corresponds to their paths beingempty: all tokens must be
introduced at the inlet transitionsafter the origin of time. Observe that the canonical
initial condition is compatible in the sense of Definition 2.61.

From this given canonical initial condition, and given a sequence of epochs at all
input transitions at which tokens are introduced into the system (see Definition 2.78),
tokenswill evolvewithin the system (whereas other tokens will leave) according to the
general rules of timed event graphs, and they will reach some positions at some other
given epoch. Obviously, all situations thus obtained, which we may call ‘reachable
conditions’, are also acceptable ‘initial conditions’ by changing the origin of time to
the present time. Such a candidate to play the role of an initial condition obviously
fulfills some constraints (see hereafter), and it is not defined only by the positions of
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(a) (b)

Figure 2.36: Two plus one resources

tokens (called the ‘initial marking’): the time already spent byeach token of the initial
marking in this position before the (new) origin of time is also part of the definition
of the ‘initial condition’ (at least for places where the holding time isnonzero). Alter-
natively, thefirst epoch at which each token of the initial marking may be consumed
must be given: this corresponds to the notion of lag time introduced in Definition 2.49.
Necessary, but maybe not sufficient, requirements of reachability from the canonical
initial condition can be stated for all places included between any pair of synchronized
(Figure 2.33) or merged (Figure 2.34) transitions. Say there aren such places, then the
same number of tokens must mark all these places, sayp tokensper place, and there
must existp n-tuples of tokens (with one token per place) with the same difference
between their holding times and theirlag times. This assumption that there must exist
exactly the same numberp of tokens in each of then places makes this notion of an
‘initial condition reachable from the canonical initial condition’ even more restrictive
than the notion of a ‘compatible initial condition’ of Definition 2.61.

For example, if we return to thegraph of Figure 2.32, with the interpretation of
two reusable resources, position (a) corresponds to the canonical initial condition, po-
sition (b) is anotheracceptable initial marking. Suppose now that we add an additional
exemplary of the resource represented by the left-hand circuit. Figure 2.36a repre-
sents an initial marking which we can interpret, but Figure 2.36b does not, although
it is perfectly correct from the abstract point of view of event graphs. Moreover, it
may be noted that the graph of Figure 2.36b is not reducible to something similar to
Figure 2.31.

2.6.3.5 An Example

We consider two types of parts, say♠ and♥, which can waitin separate buffers of
large capacities before being heated individually by a furnace. The furnace deals with
parts♠ and♥ alternately. The parts can then waitin a stove having the room for three
parts, each one of either type, the purpose being to maintain the temperature of the
parts until they are assembled in pairs(♠,♥) by a machine. Finally, partsleave the
workshop. A part must stay in the furnace if it cannot enter the stove. In the same way,
parts can leave the stove in pairs(♠,♥) only when the assembly machine can handle
them.

Figure 2.37 represents the stage sequences of parts♠ and♥ as vertical paths on
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Table 2.1: An example: stage interpretation

Stage label Stage interpretation Holding time
A Part♠ waits in buffer 0
B Part♠ stays in furnace α1

C Part♠ waits in stove 0
D Part♠ is assembled with part♥ α2

E Part♥ waits in buffer 0
F Part♥ stays in furnace α3

G Part♥ waits in stove 0
H Part♥ is assembled with part♠ α2

I Furnace waits for part of type♠ 0
J Furnace holds part of type♠ α1

K Furnace waits for part of type♥ 0
L Furnace holds part of type♥ α3

M Oneposition in stove waits for part of type♠ 0
N Oneposition in stove holds part of type♠ 0
O Oneposition in stove waits for part of type♥ 0
P Oneposition in stove holds part of type♥ 0
Q Machine assembles a pair(♠,♥) α2

R Machine waits for a pair(♠,♥) 0

the left-hand and right-hand sides, respectively. In the middle, from top to bottom,
the three circuits represent the stage sequences of the furnace, of the stove and of the
machine. Each stage is labeled by a letter and Table 2.1 gives the interpretation of these
stages together with their holding times.

The transitions which are synchronized are connected by a dotted line. The initial
marking assumes that the furnace starts with a part♠ and that two positions out of the
three in thestoveaccept a part♠ first.

Figure 2.38 shows the reduced event graph obtained by merging the synchronized
transitions and the stages representing the same operation. However, we keep multiple
labels when appropriate so that the order of multiplicity of places between synchro-
nized transitions is still apparent. Single labels on places in circuits indicate possi-
ble recycling stages. Observe that, for any transition, the total number of labels of
places upstream balances the total number of labels of places downstream. Indeed, the
Petri net of Figure 2.37 (with transitions connectedby dottedlines merged together) is
strictly conservative (Definition 2.35) whereas that of Figure 2.38 is conservative (Def-
inition 2.36) with weights (used in that definition) indicated by the number of labels.

2.7 Notes

Graph theory is a standard course in many mathematical curricula. The terminology varies, how-
ever. Here we followed the terminology as used in [67] as much as possible. Karp’s algorithm,
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Figure 2.38: Reduced model

the subject of§2.3.2, was first published in [73]. The proof of the Cayley-Hamilton theorem in
§2.3.3 is due to Straubing [124]. Since the 1970s, a lot of attention has been paid to the theory
of Petri nets. This theory has the potential of being suitable as an excellent modeling aid in
many fields of application. Its modeling power is larger than the one of automata. If one were to
allow inhibitor arcs, see [1], then the modeling power is the same as that of Turing machines. A
‘system theory’ including maximization, addition as well as negation (which is what an inhibitor
arc represents), has not yet been developed. An excellent overview of the theory of Petri nets is
given in [96], where also many other references can be found. The section on timed Petri nets,
however, is rather brief in [96]. Some material on cycle times can be found in [47] and [115],
which is also discussed in Chapter 9. A good, though somewhat dated, introduction to Petri nets
is [108]. Other sources which contain a lot of material on Petri nets are [30] and [29]. For a
recent discussion on modeling power related to Petri nets, see [82]. Section 2.5 on equations for
timed Petri nets is mainly based on [39] for the constant timing case and on [11] for the general
case. Equivalence of systems represented by different graphs is also discussed in [84]. This ref-
erence, however, deals with systolic systems,in which there is a fixed clock frequency. Some of
the results obtained there also seem plausible within the timed event graph setting. Relationships
between graphs and binary dynamic systems are described in [25].

In [92] a novel scheme, calledkanban, is described and analyzed for the coordination of
tokens in an event graph. The essence is that the introduction of a new circuit with enough
tokens regulates the ‘speed’ of the original event graph and it controls the number of tokens in
various places.

For a recent development in continuous Petri nets, where the the number of tokens is real
rather than integer valued, see [53] and [99]. In the latter reference some results given in Chap-
ter 3 for ‘discrete’ Petri nets are directly extended to continuous ones.
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Chapter 3

Max-Plus Algebra

3.1 Introduction

In this chapter we systematically revisit the classical algebraic structures used in con-
ventional calculus and we substitute the idempotent semifieldRmax (the set of real
numbers endowed with the operations max and plus) for the field of scalars. The pur-
pose is to provide the mathematical tools needed to study linear dynamical systems in
(Rmax)

n .
This chapter is dividedin three main parts. In the first part we study linear systems

of equations and polynomial functions inRmax. In the second part we consider a more
advanced topic which can beskipped in a first reading. Thistopic is the problem of
the linear closure ofRmax andits consequences for solving systems of linear and poly-
nomial equations (the linear closure is the extension of a set in such a way that any
nondegenerated linear equation has one and only one solution). The third part is con-
cerned with a max-plus extension of the Perron-Frobenius theory. It gives conditions
under which event graphs reach a periodic behavior and it characterizes their periodici-
ties. It can be seen as a more advanced topic of the spectral theory of max-plus matrices
given in the first part of this chapter.

Wefirst introduce the algebraic structureRmax and we study its basic properties.

3.1.1 Definitions

Definition 3.1 (Semifield) A semifieldK is a set endowed with two operations⊕ and
⊗ such that:

• the operation⊕ is associative, commutative and has a zero elementε;

• the operation⊗ defines a group on K ∗
def= K \ {ε}, it is distributive with respect

to ⊕ and its identity elemente satisfies ε ⊗ e = e ⊗ ε = ε.

We say that the semifield is

• idempotentif the first operation is idempotent, that is, if a ⊕ a = a, ∀a ∈ K;

• commutative if the group is commutative.

101
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Theorem 3.2 The zero element ε of an idempotent semifield is absorbingfor the second
operation, that is ε ⊗ a = a ⊗ ε = ε, ∀a ∈ K.

Proof We have that

ε = εe = ε(ε ⊕ e) = ε2⊕ ε = ε2 ,

and then,

∀a ∈ K ∗ , ε = εe = εa−1a = ε(a−1⊕ ε)a = εa−1a ⊕ ε2a = ε2a = εa .

Definition 3.3 (The algebraic structure Rmax) The symbol Rmax denotes the set R ∪
{−∞} with maxand + as the two binary operations⊕ and ⊗, respectively.

We call this structurethe max-plus algebra. Sometimes this is also called an ordered
group. We remark that the natural order onRmax may be defined using the⊕ operation

a ≤ b if a ⊕ b = b .

Definition 3.4 (The algebraic structure Rmax) The set R ∪ {−∞} ∪ {+∞} endowed
with the operations maxand + as⊕ and ⊗ and with the convention that (−∞)+∞ =
−∞ is denoted Rmax. The element +∞ is denoted �.

Theorem 3.5 The algebraic structure Rmax is an idempotent commutative semifield.

The proof is straightforward. If we compare the properties of⊕ and⊗ with those of+
and×, we seethat:

• wehave lost the symmetry of addition (for a givena, an elementb does not exist
such that max(b, a) = −∞ whenevera 
= −∞);

• we havegained the idempotency of addition;

• there areno zero divisors inRmax (a ⊕ b = −∞ ⇒ a = −∞ or b = −∞).

If we try to make some algebraic calculations in this structure, we soon realize that
idempotency is as useful as the existence of a symmetric element in the simplification
of formulæ. For example, the analogue of the binomial formula

(a + b)n =
(

n
0

)
an +
(

n
1

)
an−1b + · · · +

(
n

n − 1

)
abn−1+

(
n
0

)
bn

is n max(a, b) = max(na, nb), which is much simpler. On the other hand, we now
face the difficulty that the max operation is no longer cancellative, e.g. max(a, b) = b
does not imply thata = −∞.
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3.1.2 Notation

First of all, to emphasize the analogy with conventional calculus, max has been denoted
⊕ , and+ has been denoted⊗. We also introduce the symbol◦/ for the conventional
− (the inverse operation of+ which plays the role of multiplication, that is, the ‘di-
vision’). Hencea◦/b meansa − b. Another notation fora◦/b is the two-dimensional
display notation

a

b
.

We will omit the sign⊗ if this does not leadto confusion. To prevent mistakes, we
useε and e for the ‘zero’ and the ‘one’, that is, the neutral elements of⊕ and⊗,
respectively, namely−∞ and 0. To get the reader acquainted with this new notation,
we propose the following table.

Rmax notation Conventional notation =
2⊕ 3 max(2, 3) 3

1⊕ 2⊕ 3⊕ 4⊕ 5 max(1, 2, 3, 4, 5) 5
2⊗ 3 = 5 2+ 3 5

2⊕ ε max(2,−∞) 2
ε = ε ⊗ 2 −∞+ 2 −∞
(−1) ⊗ 3 −1+ 3 2

e⊗ 3 0+ 3 3
32 = 23 = 3⊗ 3= 2⊗ 2⊗ 2 3× 2= 2× 3= 3+ 3= 2+ 2+ 2 6

e = e2 = 20 0× 2 = 2× 0 0
(2⊗ 3)◦/(2⊕ 3) (2+ 3)−max(2, 3) 2

(2⊕ 3)3 = 23⊕ 33 3×max(2, 3) = max(3× 2, 3× 3) 9
6◦/e 6− 0 6
e◦/3 0− 3 −3

2
√

8 8/2 4
5
√

15 15/5 3

There is no distinction, hence there are risks of confusion, between the two
systems of notation as far as the power operation is concerned. As a general
rule, a formula is written in one system of notation. Therefore if, in a formula,
an operator of the max-plus algebra appears explicitly, then usually all the
operators of this formula are max-plus operators.

3.1.3 The min Operation in the Max-Plus Algebra

It is possible to derive the min operation from the two operations⊗ and⊕ as follows:

min(a, b) = ab

a ⊕ b
.

Let us now prove the classical properties of the min by pure rational calculations in the
max-plus algebra.
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• −min(a, b) = max(−a,−b):

e
ab

a ⊕ b

= a ⊕ b

ab
= e

b
⊕ e

a
;

• −max(a, b) = min(−a,−b):

e

a ⊕ b
=

e

ab
a ⊕ b

ab

=
e

a
⊗ e

b
e

a
⊕ e

b

;

• min(a,min(b, c)) = min(min(a, b), c):

a
bc

b ⊕ c

a ⊕ bc

b ⊕ c

= abc

ab⊕ ac⊕ bc

and the symmetry of the formula with respect toa, b andc proves the result;

• max(c,min(a, b)) = min(max(c, a),max(c, b)):
{

c⊕ ab

a ⊕ b
= (c ⊕ a)(c ⊕ b)

(c ⊕ a)⊕ (c ⊕ b)

}
⇔
{

ca ⊕ cb ⊕ ab

a ⊕ b
= (c ⊕ a)(c ⊕ b)

a ⊕ b⊕ c

}

⇔ {(ca ⊕ cb ⊕ ab)(a ⊕ b ⊕ c) = (c ⊕ a)(c ⊕ b)(a ⊕ b)} .

To check the last identity, we consider the expressions in both sides as polyno-
mials inc and we first remark that the coefficient ofc2, namely a⊕b, is the same
in both sides. The coefficient of c0, namely ab(a ⊕ b), also is thesame inboth
sides. Now, considering the coefficient ofc, it is equal to(a ⊕ b)2 ⊕ ab in the
left-hand side, and to(a ⊕ b)2 in the right-hand side: these two expressions are
clearly always equal.

• min(c,max(a, b)) = max(min(c, a),min(c, b)):
{

c(a ⊕ b)

c ⊕ a ⊕ b
= ca

c ⊕ a
⊕ cb

c⊕ b

}
⇔
{

a ⊕ b

c⊕ a ⊕ b
= a

c⊕ a
⊕ b

c ⊕ b

}
.

The latter identity is amenable to the same verification as earlier.

3.2 Matrices in Rmax

In this section we are mainly concerned with systems of linear equations. There are two
kinds of linear systems inRmax for which we are able to compute solutions:x = Ax⊕b
and Ax = b (the general system beingAx ⊕ b = Cx ⊕ d). We alsostudy the spectral
theory of matrices. There exist good notions of eigenvalue and eigenvector but there is
often only oneeigenvalue: this occurs when the precedence graph associated with the
matrix is strongly connected (see Theorem 2.14).
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3.2.1 Linear and Affine Scalar Functions

Definition 3.6 (Linear function) The function f : Rmax→ Rmax is linearif it satisfies

f (c) = c ⊗ f (e) , ∀c ∈ Rmax .

Thus any linear function is of the formy = f (c) = a ⊗ c, wherea = f (e). The
graph of such a function consists of a straight line with slope equal to one and which
intersects they-axis ata (see Figure 3.1).

Definition 3.7 (Affine function) The function f : Rmax→ Rmax, f (c) = ac⊕ b, a ∈
Rmax, b ∈ Rmax is called affine.

Observe that, as usual,b = f (ε) anda = limc→∞ f (c)◦/c, but here thelimit is reached
for a finite value ofx (see Figure 3.2).

Rmax

Rmax

y
=

ac

a

slo
pe

=
1

0

Figure 3.1: A linear function

0

a

b

Rmax

Rmax

y =
ac ⊕

b

Figure 3.2: An affine function

In the primary school, the first algebraic problem that we have to solve is to find
the solution of a scalar affine equation.

Definition 3.8 (Affine equation) The general scalar affine equationis

ax ⊕ b = a′x ⊕ b′ . (3.1)

Indeed, since⊕ has no inverse, Equation (3.1) cannot be reduced to the usual form
ax ⊕ b = ε, whichmotivates the definition above.

Theorem 3.9 The solution of the general scalar affine equation is obtained as follows:

• if

((a′ < a) and (b < b′)) or ((a < a′) and (b′ < b)) (3.2)

hold true, then the solution is unique and it is given by x = (b ⊕ b′)◦/(a ⊕ a′);

• if a 
= a′, b 
= b′, and (3.2) does not hold, no solutions exist in Rmax;

• if a = a′ and b 
= b′, the solution is nonunique and all solutions are given by
x ≥ (b ⊕ b′)◦/a;
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• if a 
= a′ and b = b′, the solution is nonunique and all solutions are given by
x ≤ b◦/(a ⊕ a′);

• if a = a′ and b = b′, all x ∈ R are solutions.

The proof is straightforward from the geometric interpretation of affine equations as
depicted in Figure 3.3.

0

Rmax

Rmax

y =
ax ⊕

b

y =
a
′ x ⊕

b
′

Figure 3.3: An affine equation

In practice, it is better to simplify (3.1) before solving it. For example, ifa > a′

andb′ > b, thenax ⊕ b = a′x ⊕ b′ ⇔ ax = b′. Let usgive all different kinds of
simplified equations that may come up.

Definition 3.10 (Canonical form of an affine equation)An affine equation is in
canonical formif it is in one of the simplified forms:

• ax = b;

• ax ⊕ b = ε;

• ax ⊕ b = ax;

• ax ⊕ b = b.

3.2.2 Structures

The moduloid structure is a kind of module structure which, in turn, is a kind of vector
space, that is, a set of vectors with an internal operation and an external operation
defined over an idempotent semifield.

Definition 3.11 (Moduloid) A moduloidM over an idempotent semifield K (with op-
erations⊕ and ⊗, zero element ε and identity element e) is a set endowed with

• an internal operation also denoted ⊕ with a zero element also denoted ε;

• an external operation defined on K × M with values in M indicated by the
simple juxtaposition of the scalar and vector symbols;

which satisfies the following properties:
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• ⊕ is associative, commutative;

• α(x ⊕ y) = αx ⊕ αy;

• (α ⊕ β)x = αx ⊕ βx;

• α(βx) = (αβ)x;

• ex = x;

• εx = ε;

for all α, β ∈ K and all x, y ∈M.

We will only be concerned with somespecial cases of such a structure.

Example 3.12 (Rmax)
n is a moduloid overRmax. Its zero element is(ε, . . . , ε)′.

Other examples of moduloids will be presented later on.

Definition 3.13 (Idempotent algebra) A moduloid with an additional internal oper-
ation also denoted ⊗ is called an idempotent algebraif ⊗ is associative, if it has an
identity element also denoted e, and if it is distributive with respect to ⊕.

This idempotent algebra is the main structure in which the forthcoming system theory
is going to be developed.

Example 3.14 Let (Rmax)
n×n be the set ofn × n matrices withcoefficients inRmax

endowed with the following two internal operations:

• the componentwise addition denoted⊕;

• the matrix multiplication already used in Chapters 1 and 2 denoted⊗:

(A ⊗ B)i j =
n⊕

k=1

Aik ⊗ Bkj ;

and the external operation:

• ∀α ∈ Rmax, ∀A ∈ (Rmax)
n×n , αA = (αAi j ).

The set(Rmax)
n×n is an idempotent algebra with

• thezero matrix, again denotedε, whichhas allits entries equal toε;

• the identity matrix, again denotede, which has the diagonal entries equal toe
and theother entries equal toε.
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3.2.3 Systems of Linear Equations in(Rmax)
n

In this subsection we are mainly interested in systems of linear equations. To define
such systems, we use matrix notation. A linear mapping(Rmax)

n → (Rmax)
n will be

represented by a matrix as it was done in the previous chapters. With the max-plus
algebra, the general system of equations is

Ax ⊕ b = Cx ⊕ d ,

whereA andC aren × n matrices andb andd aren-vectors. This system can be put
in canonical form in the same way as we have done in the scalar case.

Definition 3.15 (Canonical form of a system of affine equations) The system
Ax ⊕ b = Cx ⊕ d is said to be in canonical formif A,C, b, and d satisfy

• Ci j = ε if Ai j > Ci j , and Ai j = ε if Ai j < Ci j ;

• di = ε if bi > di , and bi = ε if bi < di .

Example 3.16 Consider the system

(
3 2
ε 2

)(
x1

x2

)
⊕
(

1
2

)
=
(

4 1
1 1

)(
x1

x2

)
⊕
(

e
3

)
,

whichcan be simplified as follows:

(
ε 2
ε 2

)(
x1

x2

)
⊕
(

1
ε

)
=
(

4 ε

1 ε

)(
x1

x2

)
⊕
(

ε

3

)
,

which implies

2x2⊕ 1= 4x1

2x2 = 1x1⊕ 3

}
⇒ 4x1 = 1x1⊕ 3⇒ 4x1 = 3⇒ x1 = −1⇒ x2 = 1 .

This system has a solution. In general, a linear system may or may not have a solution.
Moreover, even if a solution exists, it may be nonunique.

There are two classes of linear systems for which we have a satisfactory theory,
namely,

• x = Ax ⊕ b;

• Ax = b.

Let us study the former case first.
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3.2.3.1 Solution ofx = Ax ⊕ b

Theorem 3.17 If there are only circuits of nonpositive weight in G(A), there is a so-
lution to x = Ax ⊕ b which is given by x = A∗b. Moreover, if the circuit weights are
negative, the solution is unique.

The reader should recall the definition of A∗ as given by (1.22).

Proof If A∗b does exist, it is a solution; as a matter of fact,

A(A∗b)⊕ b = (e ⊕ AA∗ )b = A∗b .

Existence ofA∗b. The meaning of(A∗)i j is the maximum weightof all paths of any
length from j to i. Thus, anecessary and sufficient condition for the existence of
(A∗)i j is thatno strongly connected components ofG(A) have a circuit with pos-
itive weight. Otherwise, there would exist a path fromj to i of arbitrarily large
weight for all j andi belonging to the strongly connected component which in-
cludes the circuit of positive weight (by traversing this circuit a sufficient number
of times).

Uniqueness of the solution.Suppose thatx is a solution ofx = Ax ⊕ b. Then x
satisfies

x = b ⊕ Ab ⊕ A2x ,

x = b ⊕ Ab ⊕ · · · ⊕ Ak−1b ⊕ Ak x , (3.3)

and thus x ≥ A∗b. Moreover, if all thecircuits of the graphhave negative
weights, thenAk → ε whenk → ∞. Indeed, the entries ofAk are the weights
of the paths of lengthk which necessarilytraverse some circuits ofA anumber of
times going to∞ with k, but the weights of these circuits are all negative. Using
this property in Equation (3.3) fork large enough, we obtain thatx = A∗b.

Remark 3.18 If the maximum circuit weight is zero, a solution does exist, but there
is nouniqueness anymore. For example, the equationx = x ⊕ b admits the solution
x = a∗b = b but all x > b are solutions too.

Example 3.19 Consider the two-dimensional equation

x =
( −1 2
−3 −1

)
x ⊕
(

e
2

)
.

Then,

b =
(

e
2

)
, Ab =

(
4
1

)
, A2b =

(
3
1

)
, A3b =

(
3
e

)
, A4b =

(
2
e

)
. . . .

Thus,

x =
(

e
2

)
⊕
(

4
1

)
⊕
(

3
e

)
⊕
(

2
e

)
⊕ · · · =

(
4
2

)
.

This is theunique solution.
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Theorem 3.20 If G(A) has no circuit with positive weight, then

A∗ = e⊕ A ⊕ · · · ⊕ An−1 ,

where n is the dimension of matrix A.

Proof All the paths of length greater than or equal ton are necessarilymadeup of a
circuit and of a path with length strictly less thann. Therefore, because the weights of
circuits are nonpositive by assumption, we have

∀m ≥ n , Am ≤ e⊕ · · · ⊕ An−1 .

Returning to Example 3.19, we remark thatA2b, A3b, . . . are less thanb ⊕ Ab.

3.2.3.2 Solution ofAx = b

The second class of linear systems for which wecan obtain a general result consists of
the systemsAx = b. However, we must first consider the problem inRmax ratherthan
in Rmax, and second, we must somewhat weaken the notion of ‘solution’. Asubsolution
of Ax = b is anx which satisfies Ax ≤ b, where the order relation on the vectors can
also bedefined byx ≤ y if x ⊕ y = y.

Theorem 3.21 Given an n × n matrix A and an n-vector b with entries in Rmax, the
greatest subsolution of Ax = b exists and is given by

−x j = max
i

(−bi + Ai j ) .

For reasons that will become apparent in§4.4.4 and§4.6.2, the vector form of this
formulacanbewrittene◦/x = (e◦/b)A.

Proof We have that

{Ax ≤ b} ⇔




⊕

j

Ai j x j ≤ bi , ∀i






⇔ {
x j ≤ bi − Ai j , ∀i, j

}

⇔
{

x j ≤ min
i

(
bi − Ai j

)
, ∀ j

}

⇔
{
−x j ≥ max

i

(−bi + Ai j
)

, ∀ j

}
.

Conversely, it can be checked similarly that the vectorx defined by−x j =
maxi
(−bi + Ai j

)
, ∀ j, is a subsolution. Therefore, it is the greatest one.

As a consequence, in order to attempt to solve the systemAx = b, we may first
compute its greatest subsolution and then check by inspection whether it satisfies the
equality.
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Example 3.22 Let us compute thegreatest subsolution of the following equality:
(

2 3
4 5

)(
x1

x2

)
=
(

6
7

)
.

According to the preceding considerations, let us first compute

(e◦/b)A = ( −6 −7
)( 2 3

4 5

)
= ( −3 −2

)
.

Then the greatest subsolution is(x1, x2) = (3, 2); indeed,
(

2 3
4 5

)(
3
2

)
=
(

5
7

)
≤
(

6
7

)
.

It is easily verified that the second inequality would not be satisfied if we increasex1

and/orx2. Therefore, the first inequality cannot be reduced to an equality.

3.2.4 Spectral Theory of Matrices

Given amatrix A with entries inRmax, we consider the problem of existence of eigen-
valuesand eigenvectors, that is, the existence of (nonzero)λ andx suchthat

Ax = λx . (3.4)

The main result is as follows.

Theorem 3.23 If A is irreducible, or equivalently if G(A) is strongly connected, there
exists one and only one eigenvalue (but possibly several eigenvectors). This eigenvalue
is equal to the maximum cycle mean of the graph (see § 2.3.2):

λ = max
ζ

|ζ |w
|ζ |l ,

where ζ ranges over the set of circuits of G(A).

Proof

Existence ofx and λ. Consider matrix B = A◦/λ def= (e◦/λ)A, where λ =
maxζ |ζ |w/|ζ |l . The maximum circuit weight ofG(B) is e. Hence B∗ and
B+ = B B∗ exist. Matrix B+ has some columns with diagonal entries equal toe.
To prove this claim, pick a nodek of a circuit ξ suchthatξ ∈ arg maxζ |ζ |w/|ζ |l .
The maximumweight of paths fromk to k is e. Therefore we havee = B+kk . Let
B·k denote thek-th column ofB. Then, since, generally speaking,B+ = B B∗

andB∗ = e ⊕ B+ (e the identity matrix), for thatk,

B+·k = B∗·k ⇒ B B∗·k = B+·k = B∗·k ⇒ AB∗·k = λB∗·k .

Hencex = B∗·k = B+·k is aneigenvectorof A corresponding to the eigenvalue
λ. The set of nodes ofG(A) corresponding to nonzero entries ofx is called the
support of x .
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Graph interp retation of λ. If λ satisfies Equation (3.4), there exists a nonzero com-
ponent ofx , sayxi1. Then we have(Ax)i1 = λxi1 and there exists an indexi2
suchthat Ai1 i2 xi2 = λxi1. Hence xi2 
= ε and A1i2 
= ε. We can repeat this
argument and obtain a sequence{i j } suchthat Aij−1 i j xi j = λxi j−1 , xi j 
= ε and
Aij−1 i j 
= ε. At some stage we must reach an indexil already encountered in
the sequence since the number of nodes is finite. Therefore, we obtain a circuit
β = (il , im, . . . , il+1, il ). By multiplication along this circuit, we obtain

Ail il+1 Ail+1 il+2 . . . Aim il xil+1 xil+2 . . . xim xil = λm−l+1xil xil+1 . . . xim .

Sincexi j 
= ε for all i j , we may simplify the equation above which shows that
λm−l+1 is the weight of the circuit of lengthm − l + 1, or, otherwise stated,λ is
the average weight of circuitβ. Observe that this partof the proof did not use
the irreducibility assumption.

If A is irreducible, all the components ofx are different from ε. Suppose that the
support ofx does not cover the whole graph. Then, there are arcs going from
the support ofx to other nodes because the graphG(A) has only one strongly
connected component. Therefore, the support ofAx is larger thanthe support of
x , whichcontradicts Equation (3.4).

Uniqueness in the irreducible case.Consider any circuitγ = (i1, . . . , ip, i1) such
that its nodes belong to the support ofx (here any node ofG(A)). We have

Ai2 i1 xi1 ≤ λxi2 , . . . , Aip ip−1 xip−1 ≤ λxip , Ai1 ip xip ≤ λxi1 .

Hence, by the same argument as in theparagraph on the graph interpretation
of λ, we seethatλ is greater than the average weight ofγ . Therefore λ is the
maximum cycle meanand thus it is unique.

It is important to understand the role of the support ofx in the previous proof. IfG(A)
is not strongly connected, the support ofx is not necessarily the whole set of nodes
and, in general, there is no unique eigenvalue (see Example 3.26 below).

Remark 3.24 The part of theproof on the graph interpretation ofλ indeed showed
that, fora general matrixA, any eigenvalue is equal to some cycle mean. Therefore the
maximum cycle mean is equal to the maximum eigenvalue of the matrix.

Example 3.25 (Nonunique eigenvector)With the only assumption of Theorem 3.23
onirreducibility, the uniqueness of the eigenvector is not guaranteed as is shown by the
following example:

(
1 e
e 1

)(
e

−1

)
=
(

1
e

)
= 1

(
e

−1

)
,

and (
1 e
e 1

)( −1
e

)
=
(

e
1

)
= 1

( −1
e

)
.

The two eigenvectors are obviously not ‘proportional’.
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Example 3.26 (A not irreducible)

• The followingexample is a trivial counterexample to the uniqueness of the eigen-
value whenG(A) is not connected:

(
1 ε

ε 2

)(
e
ε

)
= 1

(
e
ε

)
,

(
1 ε

ε 2

)(
ε

e

)
= 2

(
ε

e

)
.

• In the following exampleG(A) is connected but not strongly connected. Never-
theless there isonly one eigenvalue:

(
1 e
ε e

)(
e
ε

)
= 1

(
e
ε

)
,

but (
1 e
ε e

)(
a
e

)
= λ

(
a
e

)

has no solutionsbecause the second equation impliesλ = e, and thenthe first
equation has no solutions for the unknowna.

• In the following exampleG(A) is connected but not strongly connected and there
are two eigenvalues:

(
e e
ε 1

)(
e
ε

)
= e

(
e
ε

)
,

(
e e
ε 1

)(
e
1

)
= 1

(
e
1

)
.

More generally, consider the block triangular matrix

F =
(

A ε

B C

)
,

whereG(A) andG(C) are strongly connected, andG(C) is downstream ofG(A). Let
λA andλC , be the eigenvalues of blocksA andC, respectively, and letx A andxC be
the corresponding eigenvectors. Observe that

(
ε xC

)′
is aneigenvectorof F for the

eigenvalueλC . In addition, if λA > λC , the expression(C◦/λA)
∗ is well-defined. The

vector (
x A

(C◦/λA)
∗(B◦/λA)x A

)

is aneigenvector of F for the eigenvalueλA. In conclusion,F has two eigenvalues
if the upstream m.s.c.s. is ‘slower’ than the downstream one. Clearly this kind of
result can be generalized to a decomposition into an arbitrary number of blocks. This
generalization will not be considered here (see [62]).
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3.2.5 Application to Event Graphs

Consider an autonomous event graph withn transitions, that is, an event graph without
sources, with constant holding times and zero firing times. In§2.5.2 we sawthatit can
be modeled by

x(k) =
M⊕

i=0

A(i)x(k − i) , (3.5)

where theA(i) are n × n matrices with entries inRmax. We assume thatthe event
graph (in which transitions are viewed as the nodes and places as the arcs) is strongly
connected. In§2.5.4, it was shown that an equation in the standard form

x(k + 1) = Ax(k) (3.6)

canalsodescribe the same physical system. A new event graph (with a different num-
ber of transitionsin general) can be associated with (3.6). In this new event graph, each
placehas exactly one token in the initial marking. Therefore, in this graph, the length
of a circuit or path can either be defined as the total number of arcs, or as the total
number of tokensin the initial marking along this circuit or path.

We refer the reader to the transformations explained in§2.5.2 to§2.5.4 to see that
some transitions in the two graphs can be identified to each other and that the circuits
are in one-to-one correspondence. Since the original event graph is assumed to be
strongly connected, the new event graph can also be assumed to be strongly connected,
provided unnecessary transitions (not involved in circuits) becanceled. ThenA is
irreducible. Hence there exists a unique eigenvalueλ, and at least one eigenvector
x . By starting the recurrence in (3.6) with the initial valuex(0) = x , we obtain that
x(k) = λkx for all k in N. Therefore, a token leaves each transition everyλ units of
time,or, otherwise stated, the throughput ofeach transition is 1/λ.

It was shown thatλ can be evaluated as the maximum cycle mean ofG
(

A
)
, that

is, as the maximum ratio‘weight divided by length’ over all the circuits ofG
(
A
)
. The

purpose of the following theorem is to show thatλ can also be evaluated as the same
maximum ratio over the circuits of theoriginal graph, provided the length of an arc be
understood as the number of tokens in the initial marking of the corresponding place
(theweight is still defined as the holding time).

Let us return to (3.5). The graphG(A(i)) describes the subgraph of the original
graph obtained by retaining only the arcs corresponding to places marked withi tokens.
SinceA(i) is ann × n matrix, all original nodes are retained in this subgraph which is
however not necessarily connected. Consider the followingn × n matrix:

B(λ)
def=

M⊕

i=0

λ−i A(i) ,

whereλ is any real number.

Remark 3.27 For a given value ofλ, a circuit of B(λ) can bedefined by a sequence
of nodes (in which the last node equals the first). Indeed, once this sequence of nodes
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is given, the arc between a pair of successive nodes(a, b) is selected by the argument
iλ(a, b) of the maxi which is implicit in the expression of(B(λ))ba . If this iλ(a, b) is
not unique, it does not matter which one is selected since any choice leads to the same
weight. Therefore, the set of circuits of G(B(λ)) is a subset of the set of circuits of
the original graph (a circuit of the original graph can be specified by a given sequence
of nodesand by a mapping(a, b) �→ i(a, b) in order to specify one of the possible
parallel arcs between nodesa andb). The set of circuits ofG(B(λ)) is thus changing
with λ. However, for any given value ofλ, if we areonly interested in the maximum
circuit weight ofG(B(λ)) (or in the maximum cycle mean, assuming that the length of
a circuit is defined as thenumber of arcs inG(B(λ))), the maximum can be takenover
the whole set of circuits of the original graph (this set is independent ofλ). Indeed,
the additional circuits thus considered donot contribute to the maximum since they
correspond to choices ofi(a, b) which are not optimal.

Theorem 3.28 We assume that

1. G(B(e)) is strongly connected;

2. G(A(0)) has circuits of negative weight only;

3. there exists at least one circuit of G(B(λ)) containing at least one token.

Then, there exist a vector x and a unique scalar λ satisfying x = B(λ)x. The graph
interpretation of λ is

λ = max
ζ

|ζ |w
|ζ |t , (3.7)

where ζ ranges over the set of circuits of the original event graph and |ζ |t denotes the
number of tokens in circuit ζ .

Proof To solve theequationx = B(λ)x , we must find λ and x suchthat e is an
eigenvalue of the matrixB(λ). ThegraphG(B(e)) being strongly connected,G(B(λ))
is alsostrongly connected for any real value ofλ and thereforeB(λ) admits aunique
eigenvalue�(λ). Owing tothe graph interpretation of�(λ), �(λ) = maxζ |ζ |w/|ζ |l ,
whereζ ranges over the set of circuits ofG(B(λ)). However, Remark 3.27 showed
that wecan as well consider thatζ ranges over the set of circuits of the original graph.
Hence, in conventionalnotation, we have

�(λ) = max
ζ



 1

|ζ |l
∑

(a,b)∈ζ
(B(λ))ba





= max
ζ



 1

|ζ |l
∑

(a,b)∈ζ
max

i∈{1,... ,M}
((A(i))ba − i × λ)





= max
ζ



 1

|ζ |l max
i(a,b)

∑

(a,b)∈ζ
((A(i(a, b))ba − i(a, b) × λ)



 . (3.8)
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If we assume that there exists aλ suchthat�(λ) = e = 0, then, forany circuitζ of
the original graph, and thus for any mappingi(·, ·) which completes the specification
of the circuit, we have

λ ≥
∑

(a,b)∈ζ (A(i(a, b)))ba∑
(a,b)∈ζ i(a, b)

,

and theequality is obtained for some circuitζ . This justifies the interpretation (3.7)
of λ.

Let us nowprove that�(λ) = e has a uniquesolution. Because of (3.8), and
since, according to Remark 3.27, the mappingsi(·, ·) can be viewed asranging in a set
independent ofλ, �(·) is theupper hull of a collection of affine functions (ofλ). Each
affine function has a nonpositive slope which, in absolute value, equals the number
of tokens in a circuit divided by the number of arcs in the circuit. Therefore,� is a
nonincreasing function ofλ. Moreover, due tothe third assumption of the theorem,
there is at least one strictly negative slope. Hence limλ→−∞�(λ) = +∞. On theother
hand, owing to the second assumption, and since the affine functions with zero slope
stem necessarilyfrom the circuits ofA(0), limλ→+∞�(λ) < 0. Finally� is a convex
nonincreasing function which decreases from+∞ to a strictly negative value, and thus
its graph crosses thex-axis at a single point.

It is easy to see that if we start the recurrence (3.5) withx(0) = x, x(1) = λ ⊗
x, . . . , x(M) = λM ⊗ x, thenx(k) = λk ⊗ x for all k. Hence 1/λ is the throughput of
the system at theperiodic regime. At the end of this chapter, we will give conditions
under which this regime is asymptotically reached, and conditions under which it is
reached after a finite time, whatever the initial condition is.

3.3 Scalar Functions inRmax

In this section we discuss nonlinear real-valued functions of one real variable, consid-
ered as mappings fromRmax into Rmax. We classify them in polynomial, rational and
algebraic functions in the max-plus algebrasense.

3.3.1 Polynomial FunctionsP(Rmax)

Polynomial functions are a subset of piecewise linear functions (in the conventional
sense) for which we have the analogue of the fundamental theorem of algebra. This
set is not isomorphic to the set of formal polynomials ofRmax, that is, the set offinite
sequences endowed with a product which is the sup-convolution of sequences.

3.3.1.1 Formal Polynomials and Polynomial Functions

Definition 3.29 (Formal polynomials) We consider the set of finite real sequences of
any length

p = (p(k), . . . , p(i) . . . p(n)) , k, i, n ∈ N , p(i) ∈ Rmax .
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If the extreme values k and n are such that p(k) and p(n) are different from ε, then

val(p)
def= k is called the valuation of p, and deg(p)

def= n is called the degreeof p.
This set is endowed with the following two internal operations:

• componentwise addition⊕;

• sup-convolution⊗ of sequences, that is,

(p ⊗ q)(l)
def=

⊕

i+ j=l
val(p)≤i≤deg(p)
val(q)≤ j≤deg(q)

p(i)q( j ) ,

and with the following external operation involving scalars in Rmax:

• multiplication of all the elements of the sequence p by the same scalar of Rmax,

We thus define Rmax[γ ] which is called the set of formal polynomials.

Note that if thepolynomialγ is defined by

γ (k) =
{

e if k = 1 ;

ε otherwise,

thenany polynomial ofRmax[γ ] canbewritten asp =⊕n
l=k p(l)γ l .

Let us give alist of definitions related to the notion of formal polynomials.

Definition 3.30

Polynomial functions: associated with a formal polynomial p, we define the polyno-
mial function by

p̂ : Rmax→ Rmax , c �→ p̂(c) = p(k)ck ⊕ · · · ⊕ p(n)cn .

The set of polynomial functions is denoted P(Rmax).

Support: the support supp(p) is the set of indices of the nonzero elements of p, that
is, supp(p) = {i | k ≤ i ≤ n, p(i) 
= ε}.

Monomial: a formal polynomial reduced to a sequence of one element is called a
monomial1.

Head monomial: the monomial of highest degree one can extract from a polynomial
p, that is p(n)γ n, is called the head monomial.

Tail monomial: the monomial of lowest degree out of p, that is, p(k)γ k , is called the
tail monomial.

1We do not to make the distinction between formal monomials and monomial functions because, unlike
polynomials-see Remark 3.34 below-a formal monomial is in one-to-one correspondence with its associated
function.
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Full Support: we say that a formal polynomial has a full support if

p(i) 
= ε , ∀i : k ≤ i ≤ n .

The following two theorems are obvious.

Theorem 3.31 The set of formal polynomials Rmax[γ ] is an idempotent algebra.

Remark 3.32 Because we can identify scalars with monomials of degree 0, this idem-
potent algebra can be viewed as the idempotent semiring obtained by considering the
two internal operations only, since the external multiplication by a scalar is amenable
to the internal multiplication by a monomial.

Theorem 3.33 The set of polynomial functionsP(Rmax) endowed with the two internal
operations:

• pointwise addition denoted⊕, that is, ( p̂ ⊕ q̂)(c)
def= p̂(c)⊕ q̂(c);

• pointwise multiplication denoted ⊗, that is, ( p̂ ⊗ q̂)(c)
def= p̂(c)⊗ q̂(c),

and the external operation over Rmax× P(Rmax), namely,

• (b p̂)(c)
def= b ⊗ p̂(c),

is an idempotent algebra.

The same remark as above applies to this idempotent algebra too.
Polynomial functions are convex piecewise linear integer-sloped nondecreasing

functions (see Figure 3.4). Indeed the monomialp(i)ci is nothing but the conventional
affine functionic+ p(i). Owing to the meaning of addition of monomials, polynomial
functions are thus upper hulls of such affine functions.

Remark 3.34 There is no one-to-one correspondence between formal polynomials and
polynomial functions. For example,

∀c , c2⊕ 2 = (c ⊕ 1)2 = c2⊕ 1c⊕ 2 .

The monomial 1c is dominated byc2⊕ 2. In other words, 1c does not contribute to the
graph ofc2⊕ 1c ⊕ 2 (see Figure 3.5), and thus, two different formal polynomials are
associated with the same function.

The following lemma should be obvious.

Lemma 3.35 (Evaluation homomorphism)Consider the mapping F : Rmax[γ ] →
P(Rmax), p �→ p̂. Then, F is a homomorphism between the algebraic structures de-
fined in Theorems 3.31 and 3.33. It will be referred to as the evaluation homomorphism.
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Rmax

Figure 3.4: The graph ofy = (−1)c2⊕1c⊕2
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Rmax

Rmax

Figure 3.5: The graph ofy = (c ⊕ 1)2

Unlike in conventional algebra, the evaluation homomorphism is not a one-to-one cor-
respondence, as shown in Remark 3.34. More precisely, it is surjective but not injective.
This is why it is important to distinguish between formal objects and their associated
numerical functions.

Remark 3.36 The mappingF is in factclosely related to the Fenchel transform [58].
In convexity theory [119],with a numerical functionf over a Hilbert spaceV , the
Fenchel transformFe associates a numerical functionFe( f ) over thedual Hilbert space
V ∗ as follows:

∀c ∈ V ∗ , [Fe( f )] (c) = sup
z∈V

(〈c, z〉 − f (z)) ,

where〈·, ·〉 denotes the duality product overV ∗ × V . If we consider the formal poly-
nomial p as a function fromN into Rmax, p : l �→ p(l) (the domain of which can be
extended to the wholeN by setting p(l) = ε if l < val(p) or l > deg(p)), then,

p̂(c) = max
l∈N

(lc + p(l)) = Fe(−p)(c) . (3.9)

Before studying the properties ofF and the equivalence relation it induces in
Rmax[γ ], let us first give some terminology related to convexity that we will use later
on.

Definition 3.37

Convex set in a disconnected domain: we say that a subset F ⊂ E = N × R is
convex if, for all µ ∈ [0, 1] and for all x, y ∈ F for which µx + (1− µ)y ∈ E,
it follows that µx + (1− µ)y ∈ F.

Hypograph and epigraph of a real function f : X → R: these are the sets defined
respectively by

hypo( f )
def= {(x, y) | x ∈ X, y ∈ R, y ≤ f (x)} ,
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epi( f )
def= {(x, y) | x ∈ X, y ∈ R, y ≥ f (x)} .

Convex (concave) mapping: a function f : X → R is convex (respectively concave)
if its epigraph (respectively its hypograph) is convex.

Extremal point of a convex setF : it is a point which is not a convex combination of
two other distinct points of F.

Theorem 3.38 Consider the equivalence relation

∀p, q ∈ Rmax[γ ] , p
F≡ q ⇔ p̂ = q̂ ⇔ q ∈ F−1 ( p̂) .

1. With a given p ∈ Rmax[γ ], we associate two other elements of Rmax[γ ] denoted
p�

1 and p�

2, such that, for all l ∈ N,

p�

1(l)
def= max

0≤µ≤1
i, j∈N

(µp(i) + (1− µ)p( j )) ,

subject to l = µi + (1− µ) j ,

(3.10)

p�

2(l)
def= min

c∈Rmax

( p̂(c)− lc) . (3.11)

Then p�
1 = p�

2 (denoted simply p�) and p� belongs to the same equivalence class
as p of which it is the maximum element. The mapping l �→ p�(l) is the concave
upper hull of l �→ p(l). Hence hypo

(
p�
)

is convex.

2. Let now p� ∈ Rmax[γ ] be obtained from p by canceling the monomials of p
which do not correspond to extremal points of hypo

(
p�
)
. Then p� belongs to the

same equivalence class as p of which it is the minimum element.

3. Two members p and q of the same equivalence class have the same degree and
valuation. Moreover p� = q� and p� = q�.

Proof

1. Using (3.10) with the particular valuesµ = 1, hencel = i, we first prove that
p�

1 ≥ p for the pointwise conventional order (which is also the natural order
associatedwith the addition inRmax[γ ]). Combining (3.9) (written forp�

1) with
(3.10), we obtain

p̂�

1(c) = max
l

(
lc + max

0≤µ≤1, i, j∈N

(µp(i) + (1− µ)p( j ))

)

subject to l = µi + (1− µ) j

= max
0≤µ≤1

(
µmax

i
(ic + p(i)) + (1− µ)max

j
( j c+ p( j ))

)

= max
0≤µ≤1

(µ p̂(c) + (1− µ) p̂(c))

= p̂(c) .
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This shows thatp�

1 belongs to the same equivalence class asp and that it is
greater than any suchp, hence it is the maximum element in this equivalence
class.

On the other hand, combining (3.11) with (3.9), we get

p�

2(l) = min
c∈Rmax

(
max
m∈N

(mc+ p(m)) − lc

)
.

By choosing particular valuem = l, it is shown thatp�

2 ≥ p. SinceF is a

homomorphism, it preserves the order, and thusp̂�

2 ≥ p̂. But, if we combine
(3.9) (written for p�

2) with (3.11), we get

p̂�

2(c) = max
l∈N

(
lc + min

c′∈Rmax

(
p̂(c′)− lc′

))
.

By picking the particular valuec′ = c, it is shown that̂p�

2 ≤ p̂. Hence, we have

proved that̂p�

2 = p̂ and thatp�

2 ≥ p. Therefore p�

2 is the maximumelement in
the equivalence class ofp. Sincethe maximumelement is unique (see§ 4.3.1),
it follows that p�

1 = p�

2.

From (3.11), it is apparent thatp�

2 is concave as the lower hull of a family of
affine functions. Hence, since it is greater thanp, it is greater than its concave
upper hull, but (3.10) shows that indeed it coincides with this hull.

2. It is now clearthat the equivalence class ofp can be characterized byp�, or
equivalently by its hypograph which is a convex set. Since a convex set is fully
characterized by the collection of its extreme points, this collection is another
characterization of the class. Sincep� has precisely been defined from this col-
lection of extreme points, it is clearly anelement of the same class and the min-
imum one (dropping any further monomial would change the collection of ex-
tremepoints and thus the equivalence class).

3. In particular, the head and tail monomials of a givenp correspond to members of
the collection of extreme points. Therefore, all elements of an equivalence class
have the same degree and valuation.

Definition 3.39 (Canonical forms of polynomial functions)According to the previ-
ous theorem, we may call p� and p� the concavified polynomialand the skeletonof p,
respectively.

• The skeleton p� is also called the minimum canonical formof the polynomial
function p̂;

• the concavified polynomial p� is also called the maximum canonical formof p̂.

Figure 3.6 illustrates these notions. It should be clear that necessarilyp� has full sup-
port.
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Example 3.40 For p = γ 2⊕ γ ⊕ 2, we havep� = γ 2⊕ 2. For p = γ 3⊕ 3, we have
p� = γ 3⊕ 1γ 2⊕ 2γ ⊕ 3.

Lemma 3.41 A formal polynomial p of valuation k and degree n is a maximal canon-
ical form of a polynomial function p̂, that is, p = p�, if and only if p has full support
(hence p(l) 
= ε, for l = k, . . . , n), and

p(n − 1)

p(n)
≥ p(n − 2)

p(n − 1)
≥ · · · ≥ p(k)

p(k + 1)
. (3.12)

Proof The fact that a maximal canonical form must have full support has been es-
tablished earlier and this ensures that the ‘ratios’ in (3.12) are well defined. In the
proof of Theorem 3.38 it has also been shown thatp� is the concave upper hull of
the functionl �→ p(l) (concavity in the sense of Definition 3.37). Conversely, ifp
is concave, it is equal to its own concave upper hull, and thusp = p�. Now, (3.12)
simply expresses that the slopes of the lines defined by the successive pairs of points
((l − 1, p(l − 1)), (l, p(l))) are decreasing withl, which isobviously a necessary and
sufficient condition for p to be concave.

3.3.1.2 Factorization of Polynomials

Let us now show that polynomial functions and concave formal polynomials can be
factored into a product of linear factors.

Definition 3.42 (Corners, multiplicity) The nonzero cornersof a polynomial function
p̂ are the abscissæ of the extremal points of the epigraph of p̂. Since p̂ is convex,
at such a corner, the (integer) slope increases by some integer which is called the
multiplicity of the corner. A corner is called multiple if the multiplicity is larger than
one.

The zero cornerexists if the least slope appearing in the graph of p̂ is nonzero: the
multiplicity of this zero corner is then equal to that (integer) slope.

Figure 3.7 shows anonzero corner of multiplicity 2.

N
0

p�

p�

p

Rmax

Figure 3.6: The functionsp, p� and p�

0

Corner of 
multiplicity 2

Rmax

Rmax

Figure 3.7: Corner of a
polynomial function
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Theorem 3.43 (Fundamental theorem of algebra)

1. Any formal polynomial of the form p = p(n)
⊗n

i=1(γ ⊕ ci ) (where some ci may
be equal to ε) satisfies p = p�.

2. Conversely, if a formal polynomial p = p(k)γ k ⊕ p(k+1)γ k+1⊕ · · ·⊕ p(n)γ n

is such that p = p�, then it has full support, the numbers ci ∈ Rmax defined by

ci
def=
{

p(n − i)◦/ p(n − i + 1) for 1≤ i ≤ n − k ;

ε for n − k < i ≤ n ,
(3.13)

are such that

c1 ≥ c2 ≥ · · · ≥ cn , (3.14)

and p can be factored as p = p(n)
(⊗n

i=1(γ ⊕ ci )
)
.

3. Any polynomial function p̂ can be factored as

p̂(c) = p(n)

(
n⊗

i=1

(c ⊕ ci )

)
,

where the ci are the zero and/or nonzero corners of the polynomial function p̂
repeated with their order of multiplicity. These corners are obtained by Equa-
tion (3.13) using the maximum canonical form.

Proof

1. Let p = ⊗n
i=1 p(n)(γ ⊕ ci ) and assume without loss of generality that theci

have been numbered in such a way that (3.14) holds. We consider the nontrivial
casep(n) 
= ε. By direct calculation, it can be seen thatp(n − k) = p(n)σk ,
whereσk is thek-th symmetric product of the cornersci , that is,

σ1 =
n⊕

i=1

ci , σ2 =
⊕

i 
= j=1

ci c j , . . . .

Owing toour assumption on the ordering of theci , it is clear thatσk =
⊗k

i=1 c j .
Therefore,

pn−k

pn−k+1
= σk

σk−1
= ck ≤ ck−1 = pn−k+1

pn−k+2
.

Thus p = p� by Lemma 3.41.

2. If p = p�, theci canbe defined by (3.13) unambiguously and then (3.14) follows
from Lemma 3.41. The fact thatp can be factored as indicated is checked as
previously by direct calculation.
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3. Fromthe preceding considerations, provided that we representp̂ with the help of
its maximum canonical form, the factored form can be obtained if we define the
ci with Equation (3.13). To complete the proof, it must be shown that any suchci

is a corner in the sense of Definition 3.42 and that, if aci appearski times, then
the slope jumps byki at ci . To see this, rewrite the factored form in conventional
notation, which yields

p̂(c) =
n∑

i=1

max(c, ci ) .

Each elementary termc ⊕ ci has a graph represented in Figure 3.2 with a slope
discontinuity equal to one atci . If a ci appearski times, the termki ×max(c, ci )

causes aslope discontinuity equal toki . All other terms with c j 
= ci do not
cause any slope discontinuity at ci .

Example 3.44 The formal polynomialγ 2 ⊕ 3γ ⊕ 2 is amaximum canonical form
becausec1 = 3◦/e = 3 ≥ c2 = 2◦/3 = −1, and therefore itcan be factored into
(γ ⊕ 3)(γ ⊕ (−1)). The formal polynomial(γ 2⊕ 2)� = γ 2⊕ 1γ ⊕ 2 can be factored
into (γ ⊕ 1)2.

3.3.2 Rational Functions

In this subsection we study rational functions in theRmax algebra. These functions
are continuous, piecewise linear, integer-sloped functions. We give the multiplicative
form of such functions, which completely defines the points where the slope changes.
Moreover, we show that the Euclidean division and the decomposition into simple
elements is not always possible.

3.3.2.1 Definitions

Definition 3.45 Given p(0), . . . , p(n), q(0), . . . , q(m) ∈ Rmax, p(n) and q(m) 
= ε,
the rational function̂r , associated with these coefficients, is given by

r̂ : Rmax→ Rmax , c �→ r̂(c) = p(0)⊕ · · · ⊕ p(n)cn

q(0)⊕ · · · ⊕ q(m)cm
.

Sucha function is equal to the difference of two polynomial functions (see Figure 3.8):
hence it is still continuous, piecewise linear, integer-sloped, but it is neither convex nor
increasing anymore.

Definition 3.46 The corners of the numerator are called zero cornersor root corners,
and the corners of the denominator are called pole corners.

Using the fundamental theorem of algebra, we can write any rational functionr̂ as

r̂(c) = a

⊗n
i=1(c ⊕ ci )⊗m
j=1(c ⊕ d j)

,
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where thezero and pole corners are possibly repeatedwith their order of multiplicity.
At a zero corner of multiplicity ki , the change of slope iski (unless this zero corner
coincides with some pole corner). At a pole corner of multiplicityl j , the change of
slope is−l j (see Figure 3.9).

y c 2 ⊕ 2c ⊕ 3=

y = e◦/(1c2⊕ 4c⊕ 5)

0

Rmax

Rmax

Figure 3.8: Graph of
y = (c2 ⊕ 2c⊕ 3)◦/(1c2 ⊕ 4c⊕ 5)

max

max

0

root corner

pole  corner

k i

lj

R

R

Figure 3.9: Root and pole corners

3.3.2.2 Euclidean Division

In general, a polynomial̂p cannot be expressed aŝbq̂ ⊕ r̂ with deg(̂r ) < deg(̂b) for
somegiven polynomial̂b as shown by Example3.47. Nevertheless, sometimes we can
obtain such a decomposition, as shown by Example 3.48.

Example 3.47 The equationc2 ⊕ e = q̂(c ⊕ 1) ⊕ r̂ has no solutions. Indeed,̂q
must beof degree 1 and̂r of degree 0; thusq = q(1)γ ⊕ q(0), r = r(0), with
q(0), q(1), r(0) ∈ Rmax. By identifying the coefficients of degree 2 in both sides, we
must haveq(1) = e. Now, since the maximal canonical form in the left-hand side is
c2 ⊕ c ⊕ e, by considering the coefficient of degree 1 in the right-hand side, we must
haveq(0)⊕ 1q(1) ≤ e, whichcontradictsq(1) = e.

Example 3.48 For p̂(c) = c2⊕ 3 andb̂ = c⊕ 1, we have

c2⊕ 3 = (c ⊕ 1)2⊕ 3= (c ⊕ 1)(c ⊕ 1.5)⊕ 3 .

As in conventional algebra, this issue of the Euclidean division leads to solving a
triangular system of linear equations. However, inRmax, thedifficulty dwells in the
fact that a triangular system of linear equations with nonzero diagonal elements may
have no solutions.

Example 3.49 The system(x1 = 1, x1⊕ x2 = e) has no solutions inRmax.
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3.3.2.3 Decomposition of a Rational Function into Simple Elements

Definition 3.50 A proper rational function̂r ◦/q̂ is a rational function which satisfies
deg(̂r ) < deg(̂q).

In general, it is not possible to express a rational functionp̂◦/q̂ aŝs⊕ r̂◦/q̂, wherêr◦/q̂ is
proper and̂s is a polynomial function. Nevertheless, given a proper rational function,
we may attempt to decompose it into simple elements.

Definition 3.51 A proper rational function r̂ is decomposableinto simple elementsif
it can be written as

r̂ =
n⊕

i=1

Ki⊕

k=1

aik◦/(c ⊕ ci )
k ,

where the aik are constants.

Such a decomposition is not always possible.

Example 3.52 We first consider a rational function for which the decomposition into
simple elements is possible:

c⊕ 1

(c ⊕ e)2
= c ⊕ e

(c ⊕ e)2
⊕ 1

(c ⊕ e)2
= e

c ⊕ e
⊕ 1

(c ⊕ e)2
.

The rational function(c⊕e)◦/(c⊕1)2, however, cannot be decomposed. Indeed, if such
a decomposition exists, we would have

c ⊕ e

(c⊕ 1)2
= a

c ⊕ 1
⊕ b

(c⊕ 1)2
.

Thena(c ⊕ 1) ⊕ b = c ⊕ e, hence a = e, and alsoa1⊕ b = 1⊕ b = e, which is
impossible.

The graphof a proper rational function which can be decomposed into simple ele-
ments is necessarily nonincreasing because it is theupper hull of nonincreasing func-
tions. But a rational function with the degree of thenumerator lower than the degree of
the denominator is not always nonincreasing: this depends on the relative ordering of
its pole and zero corners.

Example 3.53 The functiony = 2(c ⊕ e)◦/(c ⊕ 1)2 is proper but not monotonic (see
Figure 3.10).

However, being nonincreasing is a necessary but not a sufficient condition to be
decomposable into simple elements as shown by the following example.

Example 3.54 The function r̂(c) = e◦/(c2 ⊕ c), thegraph of which is displayed in
Figure 3.11, cannot be decomposed into simple elements. Indeed,

{
r̂ (c) = a

c
⊕ b

c ⊕ e

}
⇒ {a(c ⊕ e)⊕ bc = e} ⇒

{
a ⊕ b = ε

a = e

}
,

which is impossible inRmax.
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Figure 3.10: Graph ofy = 2(c ⊕ e)◦/(c ⊕ 1)2
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Figure 3.11: Graph ofy = e◦/(c2⊕c)

Theorem 3.55 A proper rational function has a simple element decomposition if and
only if it has general root corners and special pole corners which are at the intersection
of a zero-sloped line and a negative-integer-sloped line (Figure 3.12).

Proof If r̂ is decomposable, it can be written asr̂ =⊕ ri with

r̂i (c) =
Ki⊕

k=1

aik ◦/(c ⊕ ci )
k .

Reducing the right-hand side to a common denominator(c ⊕ ci )
Ki , we obtain r̂i =

p̂(c⊕ci )◦/(c⊕ci )
Ki , wherep̂ isapolynomial function of degreeKi−1. The polynomial

function p̂ is characterized by the fact that the abscissæ of its corners are greater than
ci . Therefore r̂i (c) is constant on the left-hand side ofci , has apole corner of orderKi

at ci , and a root corner on the right-hand side ofci . Conversely, a function having this
shapecan easily be realized by an̂ri . Theproof is completed by considering the fact
that r̂ is the supremumof a finite number of sucĥri .

3.3.3 Algebraic Equations

Definition 3.56 (Polynomial equation)Given two polynomial functions p̂ and q̂ of
degree n and m, respectively, the equality p̂(c) = q̂(c) is called a polynomial equation.
Solutions to this equation are called roots. The degreeof the polynomial equation is
the integer max(n,m).

Somepolynomial equations have roots, some do not. For example,cn = a has the
rootc = n

√
a, that is,c = a/n in conventional algebra. On the other hand, the equation

p̂(c) = ε has no roots whenp is a general polynomial of degreen ≥ 1.

3.3.3.1 Canonical Form of an Equation

Before studying equations, it is useful to write them in their simplest form. An equation
p̂(c) = q̂(c) can generally be simplified even if it is in the formp̂�(c) = q̂�(c). Indeed,
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if two monomialsp�(k)γ k andq�(k)γ k of the same degree appear simultaneously, and
if p�(k) < q�(k), we can further simplify the equation by canceling the monomial
p�(k)γ k .

Example 3.57The equationc2⊕3c⊕2= 3c2⊕2c⊕e can be reduced to 3c⊕2= 3c2

(see Figure 3.13).

root
corners admissible

corner

0

pole

Rmax

Rmax

Figure 3.12: A rational function
decomposableinto simple elements

0

Rmax

y
=

3c
2
⊕

2c
⊕

e

y =
c
2 ⊕ 3c

⊕ 2

Rmax

Figure 3.13: Equation
c2⊕3c⊕2= 3c2⊕2c⊕ e

Definition 3.58 If there exist two identical monomials on both sides of the equation,
we say that the equation is degenerated. The nondegenerated equation p̂(c) = q̂(c) is
in minimal canonical formif (p ⊕ q)� = p ⊕ q.

In the case of a degenerated equation, there is a segment of solutions.

3.3.3.2 Solving Polynomial Equations

Theorem 3.59 Any root of the nondegenerated equation p̂(c) = q̂(c) is a corner of
p̂ ⊕ q.

Proof Let us take the canonical form of the equation. Any root ofp̂(c) = q̂(c) is the
solution of p(k)ck = q(l)cl for some differentk andl and thus it is a corner of̂p ⊕ q
because the equation is in minimal canonical form.

The converse of this theorem is not true, i.e. a corner is not always a root of the equation
p̂(c) = q̂(c).

Example 3.60 The polynomial equation 3c ⊕ 2 = 3c2 has the cornerc = −1 which
is not a root (3(−1)⊕ 2 = 2, 3(−1)2 = 1).
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Now we give a characterization of the situation where the polynomial equation of
degreen has exactlyn roots.

Theorem 3.61 Suppose that n is even (the case when n is odd is similar). Let

p̂(c) = p(0)⊕ p(2)c2 ⊕ · · · ⊕ p(2k)c2k ,

q̂(c) = p(1)c ⊕ p(3)c3 ⊕ · · · ⊕ p(2k − 1)c2k−1 ,

and suppose that p̂(c) = q̂(c) is a nondegenerated equation in canonical form, then

ci
def= p(i − 1)◦/p(i), i = 1, . . . , n, are the n roots of the equation.

Proof No corner of p̂ ⊕ q is multiple. Henceeach one is obtained as the intersection of
two monomials of consecutive degrees. Therefore, these monomials belong to different
sides of the equation. Thus the corresponding corners are roots of the equation.

Conversely if the equation hasn roots, p̂ ⊕ q hasn corners which therefore are
distinct. But each of these corners is a root, hence these corners are characterized
by the intersection of two monomial functions of consecutive degrees, the monomials
being in different sides of the equation.

3.4 Symmetrization of the Max-Plus Algebra

We have seen that the theory of linear system ofequations in the max-plus algebra is
not satisfactory at all, not even inthe scalar case. We now extendRmax to a larger
setS for which Rmax can be viewed as the positive part. The construction is similar
to the construction ofZ as an extension ofN in conventional algebra, but we cannot
avoid some complications coming from the idempotency of the max operator. With
this new set, wecan generalize the notion of an equation that we call a balance. Then
all nondegenerated scalar linear balances have a unique solution. Thus a linear closure
of Rmax has been achieved.

3.4.1 The Algebraic StructureS

A natural approach toour problem is to embed the max-plus algebra into a structure in
which every nontrivial scalar linear equation has at least one solution. In particular we
would like to have a solution to the equationa⊕ x = ε, that is, wewould like to find a
symmetric element toa. But this not possible, as shown by the following theorem.

Theorem 3.62 Every idempotent group is reduced to the zero element.

Proof Assume thatthe group(G,⊕) is idempotent with zero elementε. Let b be the
symmetric element ofa ∈ G. Then

a = a ⊕ ε = a ⊕ (a ⊕ b) = (a ⊕ a)⊕ b = a ⊕ b = ε .

Nevertheless we canadapt the idea of the construction ofZ from N to build a ‘bal-
ancing’ element rather than a symmetricone. This is the purpose of the following
subsections.
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3.4.1.1 The Algebra of Pairs

Let us consider the set of pairsR2
max endowed with the natural idempotent semifield

structure:
(x ′, x ′′)⊕ (y′, y′′) = (x ′ ⊕ y′, x ′′ ⊕ y′′) ,

(x ′, x ′′)⊗ (y′, y′′) = (x ′y′ ⊕ x ′′y′′, x ′y′′ ⊕ x ′′y′) ,

with (ε, ε) as the zero element and(e, ε) asthe identity element.
Let x = (x ′, x ′′) and define theminus sign as�x = (x ′′, x ′), theabsolute value of

x as|x | = x ′ ⊕ x ′′ and thebalance operator asx• = x � x = (|x |, |x |). Clearly, these
operators have the following properties:

1. a• = (�a)•;

2. a•• = a•;

3. ab• = (ab)•;

4. �(�a) = a;

5. �(a ⊕ b) = (�a)⊕ (�b);

6. �(a ⊗ b) = (�a)⊗ b.

These properties allow us to writea ⊕ (�b) = a � b as usual.

3.4.1.2 Quotient Structure

Definition 3.63 (Balance relation)Let x = (x ′, x ′′) and y = (y′, y′′). We say that x
balances y (which is denoted x ∇ y) if x ′ ⊕ y′′ = x ′′ ⊕ y′ .

It is fundamental to notice that∇ is not transitive and thus is not anequivalence relation.
For instance, consider(e, 1)∇ (1, 1), (1, 1)∇ (1, e), but(e, 1) 
∇ (1, e)! Since∇ cannot
be an equivalence relation, it is not possible to define the quotient structure ofR

2
max by

means of∇ (unlike in conventional algebrain which N
2/ ∇  Z). However, we can

introduce the equivalence relationR on R
2
max closely related to the balance relation,

namely,

(x ′, x ′′)R(y′, y′′)⇔
{

x ′ ⊕ y′′ = x ′′ ⊕ y′ if x ′ 
= x ′′, y′ 
= y′′ ,

(x ′, x ′′) = (y′, y′′) otherwise.

It is easy to check thatR is compatible with the addition and multiplication ofR
2
max,

the balance relation∇, and the�, | · | and• operators.

Definition 3.64 The symmetrizedalgebraR
2
max/R of Rmax is called S.

We distinguish three kinds of equivalence classes:

(t,−∞) = {(t, x ′′) | x ′′ < t} , called positive elements;
(−∞, t) = {(x ′, t) | x ′ < t} , called negative elements;
(t, t) = {(t, t)} , called balanced elements.
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By associating(t,−∞) with t ∈ Rmax, we can identifyRmax with the semifield of
positive or zero classes denotedS

⊕. The set of negative or zero classes (of the form
�x for x ∈ S

⊕) will be denotedS�. This set is not stable by multiplication and thus it
is not a semifield. The set of balanced classes (of the formx•) is denotedS

•; it is also
isomorphic toRmax. This yields the decomposition

S = S
⊕ ∪ S

� ∪ S
• . (3.15)

The elementε is theonly element common toS⊕ andS
� andS

•. This decomposition
of S should be compared withZ = N

+ ∪ N
−. This notation allows us to write 3� 2

instead of(3,−∞) ⊕ (−∞, 2). We thus have 3� 2 = (3, 2) = (3,−∞) = 3. More
generally, calculations inS can be summarized as follows:

a � b = a , if a > b ;
b � a = �a , if a > b ;
a � a = a• .

(3.16)

Because of its importance, we introduce the notationS∨ for the setS⊕ ∪ S
� and

S
∨
� = S

∨ \{ε}. The elements ofS∨ are calledsigned elements. They are either positive,
negative or zero.

Theorem 3.65 The set S
∨
� = S \ S

• is the set of all invertible elements of S.

Proof The obvious identityt ⊗ (−t) = (�t)⊗ (�− t) = e for t ∈ Rmax\ {ε} implies
that every nonzero element of S

∨ is invertible. Moreover, the absorbing properties of
the balance operator show thatS∨ is absorbing for the product. Thus,x•y 
= e for all
y ∈ S sincee 
∈ S

•.

Remark 3.66 Thus, inS, with each elementa ∈ S
∨, wecan associate an element�a

suchthatb = a � a ∈ S
• but in generalb 
= ε. This is the maindifference with the

usual symmetrization. Here the whole setS
• plays the role of the usual zero element.

3.4.2 Linear Balances

Before solving general linear balances, we need to understand the meaning of the gen-
eralization of equations inRmax by balances inS. This can be done by studying the
properties of balances.

Theorem 3.67 The relation ∇ satisfies the following properties:

1. a ∇ a;

2. a ∇ b ⇔ b ∇ a;

3. a ∇ b ⇔ a � b ∇ ε;

4. {a ∇ b, c∇ d} ⇒ a ⊕ c ∇ b ⊕ d;

5. a ∇ b ⇒ ac ∇ bc.
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Proof Let us prove Property 5. Obviously, a ∇ b ⇔ a � b ∈ S
• and, sinceS

• is
absorbing,(a � b)c = ac � bc ∈ S

•, i.e. ac ∇ bc.

Although∇ is not transitive, when some variables are signed, we can manipulate bal-
ances in the same way as we manipulate equations.

Theorem 3.68

1. Weak substitution If x ∇ a, cx ∇ b and x ∈ S
∨, we have ca ∇ b.

2. Weak transitivity If a ∇ x, x ∇ b and x ∈ S
∨, we have a ∇ b.

3. Reduction of balancesIf x ∇ y and x, y ∈ S
∨, we have x = y.

Proof

1. We have eitherx ∈ S
⊕ or x ∈ S

�. Assume for instance that x ∈ S
⊕, that is,

x = (x ′, ε). With the usual notation,x ′ ⊕ a′′ = a′ andc′x ′ ⊕ b′′ = c′′x ′ ⊕ b′.
Addingc′a′′ ⊕ c′′a′′ to the last equality, we get

c′x ′ ⊕ c′a′′ ⊕ c′′a′′ ⊕ b′′ = c′′x ′ ⊕ c′a′′ ⊕ c′′a′′ ⊕ b′ ,

which yields, by usingx ′ ⊕ a′′ = a′,

c′a′ ⊕ c′′a′′ ⊕ b′′ = c′′a′ ⊕ c′a′′ ⊕ b′ ,

that is,ca ∇ b.

2. This a consequence of the weak substitution forc = e.

3. This point is trivial but is important in order to derive equalities from balances.

The introduction of these new notions is justified by the fact that any linear balance
(which is not degenerated) has one and only one solution inS

∨.

Theorem 3.69 Let a ∈ S
∨
� and b ∈ S

∨, then x = �a−1b is the unique solution of the
balance

ax ⊕ b ∇ ε , (3.17)

which belongs to S
∨.

Proof From the properties of balances it follows thatax⊕b∇ ε⇔ x∇ � a−1b. Then
using the reduction property and the fact that�a−1b ∈ S

∨, weobtainx = �a−1b.

Remark 3.70 If b 
∈ S
∨, we lose the uniqueness of signed solutions. Everyx such

that |ax | ≤ |b| (i.e. |x | ≤ |a−1b|) is a solution of the balance (3.17). Ifa 
∈ S
∨, we

again lose uniqueness. Assumeb ∈ S
∨ (otherwise, the balance holds for all values of

x), theneveryx suchthat|ax | ≥ |b| is a solution.
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Remark 3.71 We can describe all the solutions of (3.17). For allt ∈ Rmax, we obvi-
ously haveat • ∇ ε. Adding this balance toax ⊕ b ∇ ε, wherex is the unique signed
solution, we obtaina(x ⊕ t •)⊕ b ∇ ε. Thus,

xt = x ⊕ t • (3.18)

is a solution of (3.17). If t ≥ |x |, thenxt = t • is balanced. Conversely, it can be
checked that every solution of (3.17) may be written as in (3.18). Finally theunique
signed solutionx is also the least solution.

Remark 3.72 Nontrivial linear balances (withdatain S
∨) always have solutions inS;

this is whyS may be considered as alinear closure of Rmax.

3.5 Linear Systems inS

It is straightforward to extend balances to the vector case. Theorems 3.67 and 3.68
still hold whena, b, x, y andc are matrices with appropriatedimensions, provided we
replace ‘belongs toS∨’ by ‘every entry belongs toS∨’. Therefore, we say that a vector
or a matrix issigned if all its entries are signed.

We now consider a solutionx ∈ Rmax of the equation

Ax ⊕ b = Cx ⊕ d . (3.19)

Thenthe definition of the balance relation implies that

(A � C)x ⊕ (b � d) ∇ ε . (3.20)

Conversely, assuming thatx is a positive solution of (3.20), we obtain

Ax ⊕ b ∇ Cx ⊕ d ,

with Ax ⊕ b andCx ⊕ d ∈ S
⊕. Using Theorem 3.68, we obtain

Ax ⊕ b = Cx ⊕ d .

Therefore we have the following theorem.

Theorem 3.73 The set of solutions of the general system of linear equations (3.19)
in Rmax and the set of positivesolutions of the associated linear balance (3.20) in S

coincide.

Hence, studying Equation (3.19) is reduced to solving linear balances inS.

Remark 3.74 The case when a solution x of (3.20) has some negative and some
positive entries is also of interest. We writex = x+ � x− with x+, x− ∈ (S⊕)n .
Partitioning the columns ofA andC according to the sign of the entries ofx , weobtain
A = A+⊕ A−, C = C+⊕C−, so thatAx = A+x+� A−x− andCx = C+x+�C−x−.
We can thus claim the existence of a solution inRmax to the newproblem

A+x+ ⊕ C−x− ⊕ b = A−x− ⊕ C+x+ ⊕ d .

The solution of nondegenerated problems is not unique, but the set of solutions forms
a single class ofR2

max (for the equivalence relationR ).



134 Synchronization and Linearity

3.5.1 Determinant

Before dealing with general systems, we need to extend the determinant machinery to
theS-context. We define the signature of a permutationσ by

sgn(σ) =
{

e if σ is even;

�e otherwise.

Then the determinant of ann × n matrix A = (Ai j ) is given (asusual) by

⊕

σ

sgn(σ)
n⊗

i=1

Aiσ (i) ,

and is denoted either|A| or det(A). The transpose of the matrix of cofactors is denoted

A� (
(

A�
)

i j

def= cof j i(A)). The classical properties of the determinant are still true.

Theorem 3.75 The determinant has the following properties:

linearity:

|(u1, . . . , λui ⊕µvi , . . . , un)| = λ|(u1, .. , ui , .. , un)|⊕µ|(u1, .. , vi , .. , un)| ;

antisymmetry:
|(uσ (1), . . . , uσ (n))| = sgn(σ)|(u1, . . . , un)| ;

and consequently

|(u1, . . . , v, . . . , v, . . . , un)| ∇ ε ;

expansion with respect to a row:

|A| =
n⊕

k=1

aikcofik (A) ;

transposition: |A| = |A′ |.
A direct consequence is that some classical proofs lead to classical identities in this
new setting. Sometimes weak substitution limits the scope of this approach.

Theorem 3.76 For an n × n matrix A with entries in S, we have

Cramer formula: AA� ∇ |A|e, and if |A| is signed, then the diagonal of AA� is
signed;

recursive computation of the determinant:

|A| =
∣∣∣∣
(

F G
H ann

)∣∣∣∣ = |F |ann � H F �G

for a partition of matrix A where ann is a scalar;
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Cayley-Hamilton theorem: p being the characteristic polynomial of matrix A, i.e.

p(λ)
def= |A� λe|, we have p(A) ∇ ε.

Remark 3.77 We define the positive determinant of a matrixA, denoted|A|+, by the
sum of terms

⊗
i Aiσ (i) where the sum islimited to even permutations, and a negative

determinant, denoted|A|−, by the samesumlimited to odd permutations. The matrix
of positive cofactors is defined by

(
A�+)

i j
=
{
|A ji |+ if i + j is even,

|A ji |− if i + j is odd,

where A ji denotes the matrix derived from A by deleting row j and column i. The
matrix of negative cofactorsA�− is defined similarly. With this notation, Theorem 3.76
canberewritten as follows:

AA�+ ⊕ |A|−e = AA�− ⊕ |A|+e .

This formula does not use the� sign and is valid in any semiring. The symmetrized
algebra appears to be a natural way of handling such identities (and giving proofs in an
algebraic way).

3.5.2 Solving Systems of Linear Balances by the Cramer Rule

In this subsection we study solutions of systems of linear equations with entries inS.
We only consider the solutions belonging to(S∨)n , that is, weonly considersigned
solutions. Indeed, in a more general setting we cannot hope to have a result of unique-
ness; see Remark 3.70. We can now state the fundamental result for the existence and
uniqueness of signed solutions of linear systems.

Theorem 3.78 (Cramer system) Let A be an n×n matrix with entries in S, |A| ∈ S
∨
� ,

b ∈ S
n and A�b ∈ (S∨)n . Then, in S

∨ there exists a unique solution of

Ax ∇ b , (3.21)

and it satisfies

x ∇ A�b◦/|A| . (3.22)

Proof By right-multiplying the identityAA� ∇ |A|e by |A|−1b, we seethat x is a
solution. Let us now prove uniqueness. The proof is by induction on the size of the
matrix. It is based on Gauss elimination in which we manage the balances using weak
substitution. Let us prove (3.22) for the last row, i.e.|A|xn ∇ (A�b)n . Developing
|A| with respect to the last column,|A| =⊕n

k=1 akncofkn(A), we see that at least one
term is invertible, saya1ncof1n(A). We now partition A, b andx in sucha way that the
scalara1n becomes a block:

A =
(

H a1n

F G

)
, b =

(
b1

B

)
, x =

(
X
xn

)
.
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Then Ax ∇ b canbewritten as

H X ⊕ a1nxn ∇ b1 , (3.23)

F X ⊕ Gxn ∇ B . (3.24)

Since|F | = (�e)n+1cof1n(A) is invertible, we can apply the induction hypothesis to
(3.24). This implies that

X ∇ |F |−1F �(B � Gxn) .

Using the weak substitution property, we can replaceX ∈ (S∨)n−1 in Equation (3.23)
to obtain

|F |−1H F �(B � Gxn)⊕ a1nxn ∇ b1 ,

that is,
xn(|F |a1n � H F �G) ∇ |F |b1� H F �B .

Here we recognize the developments of|A| and(A�b)n , therefore

xn ∇ (A�b)n◦/|A| .

Since the same reasoning can be applied to the entries ofx other thann, this concludes
the proof.

Remark 3.79 Let us write Di for the determinant of the matrix obtained by replacing

thei-th column ofA by the column vectorb; thenDi = (A�b)i . Assume thatD
def= |A|

is invertible, then Equation (3.22) is equivalent to

xi ∇ D−1Di , ∀i .

If A�b ∈ (S∨)n , then by using the reduction of balances (see Theorem 3.68), we obtain

xi = D−1Di ,

which is exactly the classical Cramer formula.

Example 3.80 TheRmax equation
(

e −4
3 2

)
⊗
(

x1

x2

)
⊕
(

1
−5

)
=
( −1 1

ε 2

)
⊗
(

x1

x2

)
⊕
(

2
7

)
, (3.25)

corresponds to the balance
(

e �1
3 2•

)(
x1

x2

)
∇
(

2
7

)
. (3.26)

Its determinant is D = 4.

D1 =
∣∣∣∣
(

2 �1
7 2•

)∣∣∣∣ = 8 , D2 =
∣∣∣∣
(

e 2
3 7

)∣∣∣∣ = 7 ,
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ε

y
=

a
′ x
⊕

b
′

y =
ax ⊕

b

�
S

�
S

S
⊕

S
⊕

Figure 3.14: A(2, 2) linear system ofequations

A�b =
(

D1

D2

)
=
(

8
7

)
∈ (S∨)2 .

The system is invertible and has a unique solution. Thus(x1 = D1◦/D = 8 − 4 =
4, x2 = D2◦/D = 7− 4 = 3) is the unique positive solution inS of the balance (3.26).
Hence it is the unique solution inRmax of Equation (3.25).

Example 3.81 In the two-dimensional case the conditionA�b ∈ (S∨)n has a very clear
geometric interpretation (see Figure 3.14) as the intersection of straight lines inS. First
we canchoose an exponential scaling of thex1 andx2 axes. The exponential mapsS⊕

to R
+ andS

� to R
−, if we identify S

� with iπ + R ∪ {−∞}. We donot represent the
balance axis in this representation. Therefore the straight lineax2⊕ bx1⊕ c ∇ ε is a
broken line (in the usual sense) composed of four segments:

• two of them are symmetric with respect of the origin; they correspond to the
contribution ofax2 ⊕ bx1 to the balance (they belong to the conventional line
ax2+ bx1 = 0);

• thehorizontal segment corresponds to the contribution ofax2⊕ c to the balance;

• the vertical segment corresponds to the contribution ofbx1⊕ c to the balance.

Then it is easy to see that two suchlines haveone and only one point of intersection,
or there exists a complete segment of solutions. This latter case is called singular and
is not further considered here.

Remark 3.82 The invertibility of |A| is not a necessary condition for the existence of
a signed solution to the systemAx ∇ b for some value ofb. Let usconsider

A =



e e ε

e e ε

e e ε



 .
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Because|A| = ε, the matrix A is not invertible. Lett ∈ S
∨ be suchthat |bi | ≤ |t | for

all i, and letx = ( t �t ε
)′

. ThenAx ∇ b. But in this case, the signed solution is
not unique.

Remark 3.83 As already noticed, in [65] for example, determinants have a natural
interpretation in terms of assignment problems. So the Cramer calculations have the
same complexity asn + 1 assignment problems, which can be solved using flow algo-
rithms.

3.6 Polynomials with Coefficients inS

We havebuilt the linear closureS of Rmax. Therefore anylinear equation inS has in
general a solution in this set. The purpose of this section is to show thatS is almost
algebraically closed, that is, any ‘closed’ polynomial equation of degreen in S has
n solutions. The term ‘closed’ refers to the fact that the class of formal polynomials
having the same polynomial function defined onS isnot always closed (in a topological
sense that will be made precise later). We will see thatS is algebraically closed only for
the subset of ‘closed’ polynomial equations. Moreover, we will see that any polynomial
function can be transformed into a closed function by modifying it in a finite number
of points.

3.6.1 Some Polynomial Functions

We cangeneralize the notions of formal polynomials and of polynomial functions to

the setS. We restrict our study to polynomial functions inP(S∨) def= F(S∨[γ ]), where
S
∨[γ ] denotes the class of formal polynomials with coefficients inS

∨ andF is the
straightforward extension of the evaluation homomorphism introduced in Lemma 3.35.
We will see that such functions assume values inS

∨ when their argument ranges inS∨,
except perhaps at a finite number of points. For the more general class of polynomial
functions with coefficients inS, denotedP(S), it may happen that the function takes a
balanced value on a continuous set of points ofS

∨ (in which case we say that we have
a balanced facet). Because we are mainly interested in the analogy with conventional
polynomials, we do not deal with this latter situation.

To get a better understanding of polynomial functions onS we study someparticu-
lar cases. Let us start by plotting the graphs of polynomial functions of degree one, two
and three (see Figure 3.15). We must study the graphs over each of the three compo-
nentsS⊕ , S� andS

•. The value of the functionitself, however,is anelement ofS which
also belongs to one of these components. Therefore the plot is quite complicated. In
order to simplify the study, only the plot overS

∨ is considered. Moreover we will use
the exponential system of coordinates that we have discussed in the previous section.
Figure 3.15 shows the points of discontinuity of the three component functions. These
discontinuities always appear at abscissæ which are symmetric with respect to corner
abscissæ. At these discontinuities the polynomial functions take balanced values (in
the graph, we see sign changes). They correspond to what we call ‘roots’ of polyno-
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Figure 3.15: Polynomial functions of degree one, two and three

mial functions. If a polynomial is of degreen, it has ingeneraln corners andn points
in S

∨ where the polynomial function takes balanced values.
Let us study the polynomial functions of degree two in more detail. We consider

p̂(c) = p(0)⊕ p(1)c ⊕ p(2)c2 , p(i) ∈ S
∨ , i = 0, 1, 2 .

The polynomial function| p̂| ∈ P(Rmax) is defined as p̂(c) = |p(0)| ⊕ |p(1)|c ⊕
|p(2)|c2. We will later prove, but it should be clear, that ifc is a root of p̂, then|c| is
a corner of |p|. Owing to Theorem 3.43,| p̂| canbe factored into the product of two
linear polynomials. We have the following four possibilities:

1. If |p(1)◦/p(2)| > |p(0)◦/p(1)|, then| p̂| has two distinct cornersc1 = |p(1)◦/p(2)|
andc2 = |p(0)◦/p(1)|. It can be checked that̂p = p(2)(c ⊕ p(1)◦/p(2))(c ⊕
p(0)◦/p(1)) and that this factorization is unique. In addition, the moduli of the
roots arec1 andc2.

2. If |p(1)◦/p(2)| = |p(0)◦/p(1)|, then | p̂| has a corner c1 = |p(0)◦/p(2)|1/2 of
multiplicity 2 and the roots of̂p = p(2)(c ⊕ p(1)◦/p(2))(c ⊕ p(0)◦/p(1)) have
modulusc1.

3. If |p(1)◦/p(2)| < |p(0)◦/p(1)| and p(2)p(0) ∈ S
⊕, then| p̂| has a corner c1 =

|p(0)◦/p(2)|1/2 of multiplicity 2 and p̂ cannot be factored. Indeed atc1 and�c1,
p̂ has signed values. We havêp = p(2)(c2 ⊕ p(0)◦/p(2)).

4. If |p(1)◦/p(2)| < |p(0)◦/p(1)| and p(2)p(0) ∈ S
�, then the polynomial| p̂| has a

cornerc1 = |p(0)◦/p(2)|1/2 of multiplicity 2. We havep̂ = p(2)(c⊕ c1)(c� c1)

and thus p̂ has been factored.

This discussion suggests that if the corners of| p̂| (now a polynomial function of de-
green) are distinct, then there aren roots; but if| p̂| has multiple corners, then we are
not guaranteed to have a factorization in linear factors. We now study the situation in
more detail.

3.6.2 Factorization of Polynomial Functions

We canconsider formal polynomialsS[γ ] and polynomial functionsP(S) with coef-
ficients inS aswe have done for polynomials with coefficients inRmax. They define
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algebras. The following mapping fromP(S) intoP(Rmax)

p = p(k)γ k ⊕ · · · ⊕ p(n)γ n �→ |p| = |p(k)|γ k ⊕ · · · ⊕ |p(n)|γ n

is a surjective morphism.

Definition 3.84 (Root) The root of a polynomial function p̂ ∈ P(S) is an element
c ∈ S

∨ such that p̂(c) ∇ ε.

Remark 3.85 It should be clear that the computation of the linear factors of a polyno-
mial yieldsits roots. Indeed we have

⊗

i

(c � ci ) ∇ ε ⇔ c � ci ∇ ε .

Lemma 3.86 If, for a polynomial p̂ ∈ P(S∨), c is a root of p̂(c), then |c| is a corner
of |̂p|.

Proof If c is a root, then p̂(c) is balancedand hence| p̂(c)| = | p̂(|c|)| is a quantity
which isachieved by twodistinct monomials of̂p since, by assumption, the coefficients
of p̂ belong toS

∨. Thus|c| is a corner of|p|.

For the same reason as in theRmax case, the mapping

F : S[γ ] → P(S) , p �→ p̂ ,

is not injective. In order to study the set valued-inverse mappingF−1, we introduce the
notion of a closed polynomial function.

Definition 3.87 (Closed polynomial function)We say that the polynomial function
p̂ ∈ P(S∨) is closed if F−1( p̂) admits a maximum element denoted p� ∈ P(S). This
element is called the maximum representative of p̂.

Example 3.88 Thepolynomial functionc2� e is closed because it has the same graph
as c2 ⊕ e•c � e. The polynomial functionc2 ⊕ e is not closed because its graph is
different from that of any polynomial̂pa = c2⊕ ac⊕ e with a ∈ {e,�e, e•} although
it is the same for alla < e.

The notion of closed polynomial function is relevant because the inverse of the evalua-
tion homomorphismis simple for this class, and because this class is exactly the set of
polynomial functions which can be factored into linear factors.

Theorem 3.89 A polynomial function p̂ ∈ P(S∨) can be factored in linear factors if
and only if it is closed.
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Proof
Any polynomial which can be factored is closed.Let us suppose that the degree of
p̂ is n, its valuation 0, and the coefficient of its head monomial ise (the proof can be
generalized to avoid these assumptions). Let us suppose that the degree ofp̂ is n, its
valuation 0, and the coefficient of its head monomial ise (the proof can be adapted to
the general case). Letci , i = 1, . . . , n, denote the roots of̂p numbered according to
the decreasing order of their modulus. If theci are all distinct, we have

p̂(c) =
n⊕

i=0

mi with mi
def=



i⊗

j=1

c j



 cn−i .

Because
mi > m j , ∀ j > i , ∀c : ci+1 < c < ci ,

we cannot increase the coefficient of a monomial without changing the graph ofp̂ and
therefore it is closed. The situation is more complicated when there is a multiple root
because then at least three monomials take the same value in modulus at this root. To
understand what happens at such a multiple root, let us consider the case whenp̂ has
only the rootse or �e, that is, p̂(c) = (c ⊕ e)n−m (c � e)m . The expansion of this
polynomial gives five kinds of polynomials:

• cn ⊕ cn−1⊕ · · · ⊕ e ;
• cn � cn−1⊕ cn−2 · · · ⊕ e ;
• cn � cn−1⊕ cn−2 · · · � e ;
• cn ⊕ e•cn−1⊕ e•cn−2 · · · ⊕ e ;
• cn ⊕ e•cn−1⊕ e•cn−2 · · · � e .

By inspection, we verify that we cannot increase any coefficient of these polynomials
without changing their graphs. Therefore, they are closed.

Weremark that some polynomials considered in this enumeration do not belong to
P(S∨). For example, it is the case of(c � e)2(c ⊕ e). Some other polynomials have
their coefficients inS

• and do not seem to belong to the class that we study here, but
they haveother representatives inP(S∨). For example, we have

(c� e)(c ⊕ e) = c2⊕ e•c� e = c2� e .

Any closed polynomial can be factored. If p̂ is closed, let p denote its maximum
representative. Its coefficientsci = p(n − i)◦/ p(n − i + 1) are nonincreasing with
i in modulus. Indeed, if that were not the case, there would existi and k suchthat
|ci−k | > |ci+1| > |ci |. Then it would be possible to increasepn−i while preserving the
inequalities|ci−k | > |ci+1| > |ci |. Because this operation would not change the graph
of p̂, we would have contradictedthe maximality ofp.

Now, if the |ci | arestrictly decreasing withi, we directly verify by expansion that
p̂(c) = ⊗i (c ⊕ ci ). If the ci are simply nonincreasing, we will only examine the
particular case when theci have their modulus equal toe. There are four subcases:
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1. p̂(e) 
∇ ε and p̂(�e) 
∇ ε;

2. p̂(e) 
∇ ε and p̂(�e) ∇ ε;

3. p̂(e) ∇ ε and p̂(�e) 
∇ ε;

4. p̂(e) ∇ ε and p̂(�e) ∇ ε.

The first case can appear only ifn is evenand

p̂(c) = cn ⊕ cn−2 ⊕ · · · ⊕ e ,

which contradicts the fact theci are nonincreasing. The other cases correspond to a
factorization studied in the first part of the proof.

Corollary 3.90 A sufficient condition for p̂ ∈ P(S∨) to be closed is that |̂p| has dis-
tinct corners.

Example 3.91

• c2⊕ e is always positive and therefore cannot be factored;

• c2⊕ c⊕ e is closed and can be factored into(c ⊕ e)2;

• (γ � e)(γ ⊕ e)2 = (γ ⊕ e)(γ � e)2 = γ 3 ⊕ e•γ 2 ⊕ e•γ ⊕ e is a maximum
representative of a closed polynomial;

• γ 3⊕ e•γ 2⊕ eγ ⊕ e is not a maximum representative of a closed polynomial.

In the following theorem the form of the inverse function ofF , which is a set-
valued mapping, is made precise.

Theorem 3.92 The set F−1 ( p̂), with p̂ ∈ P(S∨), admits the minimum element p� ∈
S
∨[γ ] and the maximum element p� ∈ S[γ ] which satisfy

• p� ≤ F−1( p̂) ≤ p�;

• p�, p� ∈ F−1( p̂);

• |p�| = |p|�;
• |p�| = |p|�.

Proof The proof follows from the epimorphism property ofp �→ |p|, from the corre-
sponding result inRmax, and from the previous result on closed polynomial functions.

Example 3.93 For p̂ = c2 ⊕ 1c ⊕ e we havep� = p� = γ 2 ⊕ 1γ ⊕ e. For p̂ =
c2 ⊕ (−1)c ⊕ e we havep� = γ 2⊕ e, but p� does not exist in this case.
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3.7 Asymptotic Behavior of Ak

In this section we prove a max-plus algebra analogue of the Perron-Frobenius theorem,
that is, we study the asymptotic behavior of the mappingk �→ Ak , whereA is ann× n
matrix with entries inRmax. Wecan restrict ourselves to the case whenG(A) contains
at least a circuit since, otherwise,A is nilpotent, that is,Ak = ε for k sufficiently large.

We suppose that the maximum cycle mean is equal toe. If this is not thecase,
the matrixA is normalizedby dividing all its entries by the maximum cycle meanλ.
Then the behavior of the general recurrent equation is easily derived from the formula
Ak = λk(λ−1A)k . Therefore, in this section all circuits have nonpositive weights and
some dohave a weight equal toe = 0 which isalso the maximum cycle mean. We
recall that, in this situation,e is the maximumeigenvalueof A (see Remark 3.24).

3.7.1 Critical Graph of a Matrix A

Definition 3.94 For an n × n normalized matrix A, the following notions are defined:

Crit ical circuit: a circuit ζ of the precedence graph G(A) is called critical if it has
maximum weight, that is, |ζ |w = e.

Crit ical graph: the critical graph Gc(A) consists of those nodes and arcs of G(A)
which belong to a critical circuit of G(A). Its nodes constitute the set Vc.

Saturation graph: given an eigenvector y associated with the eigenvalue e, the sat-
uration graph S(A, y) consists of those nodes and arcs of G(A) such that
Ai j y j = yi for some i and j with yi , y j 
= ε.

Cyclicity of a graph: the cyclicity of a m.s.c.s. is the gcd (greatest common divisor)
of the lengths of all its circuits. The cyclicity c(G) of a graph G is the lcm (least
common multiple) of the cyclicities of all its m.s.c.s.’s.

Example 3.95 Consider the matrix

A =





e e ε ε

−1 −2 ε ε

ε −1 −1 e
ε ε e e



 .

• Its precedence graphG(A) has three critical circuits{1}, {3, 4},{4}.

• Its criti cal graph is the precedence graph of the matrix

C =





e ε ε ε

ε ε ε ε

ε ε ε e
ε ε e e



 .
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• Matrix A has the eigenvector
(

e −1 −2 −2
)′

associated with the eigen-
valuee. The corresponding saturation graph is the precedence graph of the ma-
trix

S =





e ε ε ε

−1 ε ε ε

ε −1 ε e
ε ε e e



 .

• The cyclicity of the critical graph is 1. Indeed, the critical graph has two m.s.c.s.’s
with nodes{1} and{3, 4}, respectively. The second one has two critical circuits,
{4} and{3, 4}, of length 1 and 2, respectively. The cyclicity of the first m.s.c.s.
is 1, the cyclicity of the second m.s.c.s. is gcd(1, 2) = 1. Therefore the cyclicity
of Gc(A) is lcm(1, 1) = 1.

Let us give now somesimple results about these graphs which will be useful in the
following subsections.

Theorem 3.96 Every circuit of Gc(A) is critical.

Proof If this were not thecase, we could find a circuitζ , composed of subpathsζi of
critical circuitsγi , with a weightdifferent from e. If this circuit had a weight greater
thane, it would contradict the assumption that the maximum circuit weight ofG(A)
is e. If the weight of ζ were less thane, the circuit ζ ′ composedof the union of the
complements ofζi in γi would be a circuit of weight greater thane and this would also
be a contradiction.

Corollary 3.97 Given a pair of nodes (i, j ) in Gc(A), all paths connecting i to j in
Gc(A) have the same weight.

Proof If there exists a pathp from i to j in Gc(A), it can be completed by a pathp′

from j to i also inGc(A) to form a critical circuit. If there exists another pathp′′ from
i to j in Gc(A), the concatenations ofp and p′ on the one hand, and ofp′′ and p′ on
the other hand, form two critical circuits with the same weight. Hencep and p′′ must
have the same weight.

Theorem 3.98 For each node in a saturation graph, there exists a circuit upstream in
this graph. The circuits of any saturation graph belong to Gc(A).

Proof Indeed, if i is one of its nodes, there exists another nodej , upstreamwith
respect to i, such that yi = Ai j y j ; yi, y j 
= ε. The same reasoning shows that there
exists another node upstream with respect toj , etc. Because the number ofnodes of
S(A, y) is finite, the path(i, j, . . . ) obtained by this construction contains a circuit. A
circuit (i0, i1, . . . , ik , i0) of a saturation graphS(A, y) satisfies

yi1 = Ai1 i0 yi0 , . . . , yi0 = Ai0 ik yik .

The multiplication of all these equalities shows that the weight of the circuit
(i, i1, . . . , ik, i) is e.
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Example 3.99 In Example 3.95, node 2 has the critical circuit (indeed a loop){1}
upstream.

3.7.2 Eigenspace Associated with the Maximum Eigenvalue

In this subsection we describe the set of eigenvectors of matrixA associated with the
eigenvaluee. Clearly, this set is a moduloid. We characterize a nonredundant set of
generators of this moduloid as a subset of the columns ofA+.

Here the word ‘eigenvector’ must be understood as ‘eigenvector associated
with the eigenvaluee’. We will use the notationAp

i j for (Ap)i j and A+i j for
(A+)i j .

Theorem 3.100 If y is an eigenvector of A, it is also an eigenvector of A+ . It is the
linear combination of the columns A+·i , i ∈ Vc. More precisely,

y =
⊕

i∈Vc

yi A+·i . (3.27)

Proof The first part of the theorem is trivial. Let usprove Formula (3.27). Consider
two nodesi and j in the same m.s.c.s. of the saturation graphS(A, y). There exists a
path(i, i1, . . . , ik, j ) which satisfies

yi1 = Ai1 i yi , . . . , y j = A jik yik .

Therefore,y j = wyi with

w = A jik · · · Ai1 i ≤ A+j i ,

and we have

A+l j y j = A+l jwyi ≤ A+l j A+j i yi ≤ A+li yi , ∀l . (3.28)

We could have choseni in a circuit of the saturation graph according to Theorem 3.98.
This i will be calledi( j ) in the following. We have

yl =
⊕

j∈S(A,y)

A+l j y j (by definition of S(A, y)

≤
⊕

j∈S(A,y)

A+li( j) yi( j) (by (3.28))

≤
⊕

i∈Vc

A+li yi , ∀l ,

where thelast inequality stems from the fact thati( j ), belonging to a circuit of a sat-
uration graph, belongs also toVc by Theorem 3.98. The reverseinequality is derived
immediately from the fact thaty is aneigenvectorof A+.
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Theorem 3.101 Given a matrix A with maximum circuit weight e, any eigenvector
associated with the eigenvalue e is obtained by a linear combination of Nc

A columns of
A+ , where Nc

A denotes the number of m.s.c.s.’s of Gc(A). More precisely we have

1. the columns A+·i , i ∈ Vc, are eigenvectors;

2. if nodes i and j belong to the same m.s.c.s. of Gc(A) , then A+·i and A+· j are
‘proportional’;

3. no A+·i can be expressed as a linear combination of columns A+· j which only
makes use of nodes j belonging to m.s.c.s.’s of Gc(A) distinct from [i].

Proof The first statementhas already been proved in Theorem 3.23. Consider now the
second statement: sinceA+A+ ≤ A+ and A+i j A+j i = e, if nodesi and j belong to the
same m.s.c.s. ofGc(A), hence to the same critical circuit by Theorem 3.96, we have

A+l j A+j i ≤ A+li = A+li A+i j A+j i ≤ A+l j A+j i , ∀l ,

which shows that

A+l j A+j i = A+li , ∀l .

This result, together with (3.27), show thatNc
A columns ofA+ are sufficient to generate

all eigenvectors.
The third statement of the theorem claims that we cannot further reduce this num-

ber of columns. Otherwise, one column ofA+, sayi, could be expressed as a linear
combination of other columns ofA+ selected in other m.s.c.s.’s ofGc(A). Let K de-
note the set of columns involved in this linear combination. Then, construct a matrix
B as follows. LetJ = K ∪ {i}. Matrix B is obtained fromA+ by deleting all rows and
columns with indices outof J . By construction,Bkk = e, ∀k, and the weights of all cir-
cuits of G(B) are less than or equal toe. Thelinear combination of the columns ofA+

is preserved when restricting this combination to matrixB. Owing to the multilinear-
ity and antisymmetry of the determinant, and to the decomposition of any permutation
into circular permutations, detB = e•. Since

⊗
k Bkk = e, there must exist another

permutationς suchthat
⊗

k Bkς(k) = e. Stated differently, there must exist a critical
circuit connecting some m.s.c.s.’s ofGc(A) and this yields a contradiction.

Example 3.102 If we return to Example 3.95,matrix A+ is equal to





e e ε ε

−1 −1 ε ε

−2 −1 e e
−2 −1 e e



 .

Nodes 1, 3, 4 belong toGc(A) which hastwo m.s.c.s.’s, namely{1} and {3,4}.
Columns 1 and 3 are independent eigenvectors. Column 4 is equal to column 3.
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3.7.3 Spectral Projector

In this subsection we build the spectral projector on the eigenspace (invariant modu-
loid) associated with the eigenvaluee.

Definition 3.103 (Spectral proj ector) A matrix Q satisfying AQ = Q A = Q2 is
called a spectral projector of A associated with the eigenvalue e.

Theorem 3.104The matrices

Qi
def= A+·i A+i· , i ∈ Vc , (3.29)

are spectral projectors of A.

Proof The propertiesAQi = Qi A = Qi follow from the fact that the columnsA+·i , i ∈
Vc, are eigenvectors ofA (from which we deduce by transposition that the rows ofA+

suchthat A+ii = e are left eigenvectors). Let us prove thatQ2
i = Qi , that is,

A+·i A+i· =
⊕

k

A+·i A+ik A+ki A+i· .

This relation is true becauseA+ii = e implies
⊕

k A+ik A+ki = e.

Theorem 3.105The matrix Q
def= ⊕i∈Vc Qi , where the matrices Qi are defined by

(3.29), is a spectral projector.

Proof The only nontrivial fact to prove is thatQ2 = Q. This relation will be proved if
we prove thatQi Q j ≤ Qi ⊕ Q j . This last inequality is true because it means that the
greatest weight of the paths connecting a pair of nodes and traversingi and j is less
thanthe maximum weight of the paths connecting the same pair of nodes and traversing
either i or j .

Example 3.106 Continuing with Example 3.95, we obtain two elementary spectral
projectors:

Q1 =





e
−1
−2
−2




(

e e ε ε
) =





e e ε ε

−1 −1 ε ε

−2 −2 ε ε

−2 −2 ε ε



 ,

Q2 =





ε

ε

e
e




( −2 −1 e e

) =





ε ε ε ε

ε ε ε ε

−2 −1 e e
−2 −1 e e



 ,

Q = Q1⊕ Q2 =





e e ε ε

−1 −1 ε ε

−2 −1 e e
−2 −1 e e



 .
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3.7.4 Convergence ofAk with k

In this subsection we give a necessary and sufficient condition for the convergence of
the powers of matrix A. To achievethis goal, we equipRmax with the topology: when
n →+∞,

xn → x ⇔ |xn − x |e def= | exp(xn)− exp(x)| → 0 .

The purpose of this topology is to simplify the study of the convergence towardsε.
Indeed, because exp(ε) = e, limn |xn − ε|e = 0 andlimn |x ′n − ε|e = 0 imply that
limn |xn − x ′n|e = 0. This property, which is not truewith respect to the usual absolute
value inR, is useful for the asymptotic cyclicity notion that we will introduce later on.
We first recall the following result on the diophantine linear equation (see [33]).

Lemma 3.107 For all p and n which are coprime and for all q ≥ (p − 1)(n − 1),
there exist two integers a(q) and b(q) such that q = a(q)p + b(q)n.

Theorem 3.108 A necessary and sufficient condition to have limk→∞ Ak = Q is that
the cyclicity-see Definition 3.94-of each m.s.c.s. of Gc(A) is equal to 1.

Proof Let us prove the sufficient condition first. Consider a nodei in Gc(A). For any
other nodej , there exists a path fromi to j of maximum weight (possibly equal toε).
If there happens to be more than one such path, we take the one with the least length
and call this lengthp(i, j ) which is less thann − 1 if A is ann × n matrix. If the
maximum weight isε, we consider that the length is equal to 1. By Lemma 3.107 and
the assumption on cyclicity, there exists some integerM(i) such that, for allm greater
than M(i), there exists a critical circuit of lengthm in [i]Gc(A) (the m.s.c.s. ofGc(A)
to which i belongs). Therefore, because the maximum weight of the circuits ise, any
maximum-weight path fromi to j of lengthq greater thanM(i) + p is composed of a
critical circuit of lengthq − p traversingi and a maximum-weight path fromi to j (of
any length). ThereforeAq

ji = A+j i for all q greater thanp+ M(i) and thisholds for all
i in Gc(A). SinceA+ii = e, we also haveAq

ji = A+j i A+ii .
Consider now another nodel which does not belong toGc(A). Let i be a node in

Gc(A), let q be large enough and letp ≤ n be suchthat Ap
il = A+il (such ap exists

because circuits have weights less thane, hence the lengths of maximum-weight paths
between any two nodes do not need to exceedn). We have

Aq
jl ≥ Aq−p

j i Ap
il = A+j i A+il ,

where the inequality is a consequence of the matrix product inRmax whereas the equal-
ity arises from the previous part of the proof and from the property ofp. If we have
a strict inequality, it means that the paths with maximum weight fromj to l do not
traversei, and since this is true for anyi in Gc(A), thesepaths do not traverseGc(A).
On the other hand, forq large enough, they must traverse some circuits which therefore
have a strictly negative weight. Whenq increases, these paths have weights arbitrarily
close toε. Finally, this situation is possible only if there is no node ofGc(A) located
downstream ofl in G(A). In thiscaseA+il = ε for all i in Gc(A) and therefore

lim
q→∞ Aq

jl = ε =
⊕

i∈Vc

A+j i A+il .
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By collecting all the above results, we have proved that

lim
q→∞ Aq

jl =
⊕

i∈Vc

A+j i A+il , ∀ j, l ∈ G(A) .

Conversely, suppose that the above limit property holds true and that at the same
time the cyclicity ofGc(A) is strictly greater than 1. Let us consider a nodei ∈ Gc(A)
(hence A+ii = e). We have

exp(Ak×d
ii ) = exp(e) = exp(Ak×d+1

ii )+ η ,

whereη can be arbitrarily small because of the assumed limit. ButAk×d+1
ii = Ap

ii
for 0 ≤ p ≤ n (again because circuits havenonpositive weights). Therefore,Ak×d+1

ii
canassume valuesout of a finite set. From the relation above, it should be clear that
Ak×d+1

ii = e. This means that there exists a circuit of lengthk × d + 1. But the gcd of
kd andk × d + 1 is 1, which is a contradiction.

Theorem 3.109Suppose that G(A) is strongly connected. Then there exists a K such
that

∀k ≥ K , Ak = Q ,

if and only if the cyclicity of each m.s.c.s. of Gc(A) is equal to 1.

Proof The proof is similar to the previous one. The only difference lies in the second
part of the ‘if’ part. Under the assumption thatG(A) is strongly connected, a path
of maximum weight froml to j with length large enough necessarilycrossesGc(A).
Therefore, forq large enough we have

Aq
jl = A+j i A+il ,

wherei belongs toGc(A).

Example 3.110

• Using Example 3.95 once more, we have

A2 =





e e ε ε

−1 −1 ε ε

−2 −2 e e
ε −1 e e



 ,

A3 = A4 = · · · =





e e ε ε

−1 −1 ε ε

−2 −1 e e
−2 −1 e e



 .

ThereforeAn , n ≥ 3, is equal toQ1⊕ Q2 given in Example 3.106.
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• In the previousexample the periodic regime is reached after a finite number of
steps. This is true for the submatrix associated with the nodes of the critical
graph but it is not true in general for the complete matrix. To show this, take the
example

A =
( −1 ε

ε e

)
.

• In the previous example there is an entry which goes toε. When allentries
converge to a finite number, the periodic regime can be reached also, but the
time neededmay be arbitrarily long. Consider the matrix

A =
( −η −1

e e

)
.

The matrixAk converges to the matrix
( −1 −1

e e

)

if η is a small positivenumber. But we have to wait for a power of order 1/η to
reach the asymptote.

3.7.5 Cyclic Matrices

In this subsection we use the previous theorem to describe the general behavior of the
successive powers of matrixA which turns out to be essentially cyclic.

Definition 3.111

Cyclicity of a matrix: a matrix A is said to be cyclic if there exist d and M such that
∀m ≥ M, Am+d = Am . The least such d is called the cyclicity of matrix A and
A is said to be d-cyclic.

Asymptotic cyclicity: a matrix A is said to be asymptotically cyclic if there ex-
ists d such that, for all η > 0, there exists M such that, for all m ≥ M,
supi j |(Am+d )i j−(Am )i j |e ≤ η. The least such d is called the asymptotic cyclicity
of matrix A and A is said to be d-asymptotically cyclic.

Theorem 3.112 Any matrix is asymptotically cyclic. The asymptotic cyclicity d of ma-
trix A is equal to the cyclicity ρ of Gc(A). Moreover if G(A) and G(Aρ ) are connected,
the matrix is ρ-cyclic.

Proof This result has already been proved in the caseρ = 1. For anymatrix A, if
we considerB = Aρ , then the asympoticcyclicity ρ ′ of B is equal to 1. Indeed, the
nodes of the critical graph ofB are a subset ofGc(A), and aroundeach suchnode
there exists a loop. The necessary and sufficient conditions of convergence of the
powers of a matrix can be applied toB (see Theorems 3.108 and 3.109). They show
the convergence (possibly in a finite number of stages) ofBk = Ak×ρ to the spectral
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projector Q associated withB. Because anym can be written h + k × ρ, Am =
Ah+k×ρ = Ah Bk converges toAh Q whenk goes to infinity. This is equivalent to saying
that matrixA is d-asymptotically-cyclic (ord-cyclic in the case of finite convergence),
with d ≤ ρ.

Let us prove thatthe asymptotic cyclicityd of matrix A is greater than or equal to
ρ (hence it is equal toρ). The proof when the matrix isnot only asymptotically cyclic
but cyclic is similar. Consider a node of the m.s.c.s.l = [i]Gc(A) of Gc(A) and letρl

denote its cyclicity. By definition ofd, we have

exp
(

Ak×ρl
ii

)
= exp(e) = exp(Ak×ρl+d

ii )+ η ,

for η arbitrarily small and fork large enough. ThereforeAk×ρl

ii = Ak×ρl+d
ii and there is

a circuit of lengthd in the m.s.c.s.l of Gc(A). Thereforeρl dividesd. But this is true
for all m.s.c.s.’s ofGc(A) and therefored is divided by the lcm of all theρl which isρ.

Example 3.113 The matrix

A =



−1 ε ε

ε ε e
ε e ε





has cyclicity 2. Indeed,

A2n =



−2n ε ε

ε e ε

ε ε e



 , A2n+1 =



−(2n + 1) ε ε

ε ε e
ε e ε



 .

3.8 Notes

The max-plus algebra is a special case of a more general structure which is called a dioid struc-
ture. This is the topic of the next chapter. Nevertheless the max-plus algebra, and the algebras of
vector objects built up on it, are important examples of dioids for this book because they are per-
fectly tailored to describe synchronization mechanisms. They were also used to compute paths
of maximum length in a graph in operations research. This is why they are sometimes called
‘path algebra’ [ 67].

Linear systems of equations in the max-plus algebra were systematically studied in [49].
Some other very interesting references on this topic are [67], [130]. In these references the
Gauss elimination algorithm can be found. It was not discussed here. Linear dependence has
been studied in [49], [65], [93], [126] and [62]. Several points of view exist but none of them is
completely satisfactory. Moreover the geometry of linear manifolds in the max-plus algebra is
not well understood (on this aspect, see [126]).

The only paper that we know on a systematic study of polynomial and rational functions in
the max-plus algebra is [51]. In this paperone can find some results on rational functions not
detailed in this book.
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The symmetrization of the max-plus algebra was discussed earlier in [109] and [110]. The
presentation given here is based on these references. This symmetrization is more deeply studied
in [62]. Reference [65] has been an important source of ideas even though symmetrization has
been avoided in this paper. The proof of the Cramer formula is mainly due to S. Gaubert and
M. Akian. Relevantreferences are [118], [124], [93].

The attempt made here to discuss polynomials inS is new. It could give a new insight into
the eigenvalue problem. Because of the lack of space this discussion has not been continued
here.

The section on the max-plus Perron-Frobenius theorem is a new version of the report [37].
The proof is mainly due to M. Viot. Some other relevant references are [64], [49], [127].



Chapter 4

Dioids

4.1 Introduction

In previous chapters, the setR ∪ {−∞} (respectively R ∪ {+∞}) endowed with the
max (respectively the min) operation as addition and the usual addition as multipli-
cation has appeared as a suitable algebraic structure for obtaining ‘linear’ models of
some discrete event systems. In Chapter 5 it will be shown that another slightly more
complex structure is also appropriate for the sameclass of systems.

All these algebraic structures share some common features that will be studied
in the present chapter. However, there is yet nouniversal name nor a definite set of
axiomseverybody agrees upon in this general field. We refer the reader to the notes at
the end of this chapter where some related works are briefly discussed. Here we adopt
the following point of view: we introduce a first ‘minimal’ set of axiomsaccording
to what seems to be the intersection of axioms generally retained in the works alluded
to above, and also according to what seems to be appropriate for the linear system
theory wearegoing to develop in Chapter 5. Starting from this minimal set of axioms,
we derive some basic results. To obtain further results we may need to introduce some
additional assumptions or properties, which we do only when necessary: it is then clear
where this added structure is really needed.

We use the word ‘dioid’ as the generic name for the algebraic structure studied in
this chapter. The linguistic roots of this name and its introduction in the literature are
discussed in the notes section.

Dioids are structures that lie somewhere between conventional linear algebra and
semilattices endowed with an internal operation generally called multiplication. With
the former, it shares combinatorial properties such as associativity and commutativity
of addition, associativity of multiplication, distributivity of multiplication with respect
to addition, and of course the existence of zero and identity elements. With the latter,
it sharesthe features of an ordered structure (adding is then simply taking the upper
bound) endowed with another ‘compatible’ operation. Therefore one may expect that
the results of linear algebra which depend only on combinatorial properties will gen-
eralize to dioids. A typical case is the Cayley-Hamilton theorem. On the other hand,
since neither addition nor multiplication are invertible in general dioids (in this respect
the max-plus algebra isspecial since the structure associated with+ is a group), one
appeals to theclassical theory of residuation in lattice structures to provide alternative

153
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notions of inversion of the basic operations and of other order-preserving mappings.
This yields a way to ‘solve’ some equations in a certain sense related to the order
structure even if there isno solution in a more classical sense.

A section of this chapter is devoted to rational calculus, in the sense in which this
expression is used in automata and formal languages theory. The motivation in terms
of system theory and especially in terms of realization theory should be clear and this
will be illustrated by Chapter 5. However, the problem ofminimal realization is yet
unsolved in the present framework (see also Chapters 6 and 9).

In this chapter we will also be interested in constructing more elaborate dioids
from given basic dioids. This is generally done by considering the quotient of simple
dioids by certain ‘congruences’ (equivalence relations which are compatible with the
original dioid structure). Particular congruences will be considered for their usefulness
regarding the developments in Chapter 5. As a motivation, the reader may think of this
quotient operation yielding a ‘coarser’ dioid as a way to ‘filter’ elements of the original
dioid that are ‘undesirable’ for the system theory one is concerned with. For example,
if trajectories of discrete event systems are the basic objects, one is often interested
in nondecreasing trajectories whereas the basic dioid may also contain nonmonotonic
trajectories. Nonmonotonic trajectories are then mapped to nondecreasing ones in a
canonical way by special congruences.

4.2 Basic Definitions and Examples

4.2.1 Axiomatics

Definition 4.1 (Dioid) A dioid is a set D endowed with two operations denoted ⊕ and
⊗ (called ‘sum’ or ‘addition’, and ‘product’ or ‘multiplication’) obeying the following
axioms:

Axiom 4.2 (Associativity of addition)

∀a, b, c ∈ D , (a ⊕ b)⊕ c = a ⊕ (b ⊕ c) .

Axiom 4.3 (Commutativity of addition)

∀a, b ∈ D , a ⊕ b = b ⊕ a .

Axiom 4.4 (Associativity of multiplication)

∀a, b, c ∈ D , (a ⊗ b)⊗ c = a ⊗ (b ⊗ c) .

Axiom 4.5 (Distributivity of multiplication with respect to addition)

∀a, b, c ∈ D , (a ⊕ b)⊗ c = (a ⊗ c)⊕ (b ⊗ c) ,

c⊗ (a ⊕ b) = c ⊗ a ⊕ c ⊗ b .

This is right, respectively left, distributivity of product with respect to sum. One state-
ment does not follow from the other since multiplication is not assumed to be commu-
tative.
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Axiom 4.6 (Existence of a zero element)

∃ε ∈ D : ∀a ∈ D , a ⊕ ε = a .

Axiom 4.7 (Absorbing zero element)

∀a ∈ D , a ⊗ ε = ε ⊗ a = ε .

Axiom 4.8 (Existence of an identity element)

∃e ∈ D : ∀a ∈ D , a ⊗ e = e ⊗ a = a .

Axiom 4.9 (Idempotency of addition)

∀a ∈ D , a ⊕ a = a .

Definition 4.10 (Commutative dioid) A dioid is commutative if multiplication is
commutative.

Most of the time, the symbol ‘⊗’ i s omitted as is the case in conventional
algebra. Moreover,ak, k ∈ N, will of course denotea ⊗ · · · ⊗ a︸ ︷︷ ︸

k times

anda0 = e.

With thenoticeable exception of Axiom 4.9, most of the axioms of dioids are required
for rings too. Indeed, Axiom 4.9 is the most distinguishing feature of dioids. Because
of this axiom, addition cannot be cancellative, that is,a ⊕ b = a ⊕ c does not imply
b = c in general, for otherwiseD would be reduced toε (see Theorem 3.62). In fact,
Axiom 4.9 is at the basis of the introduction of an order relation; as mentioned in the
introduction, this is the other aspect of dioids, their lattice structure. This aspect is dealt
with in §4.3.

Multiplication is not necessarily cancellative either (of course, because of Ax-
iom 4.7, cancellation would anyway only apply to elements different fromε). We
refer the reader to Example 4.15 below. A weaker requirement would be that the dioid
be ‘entire’.

Definition 4.11 (Entire dioid) A dioid is entire if

ab = ε⇒ a = ε or b = ε .

If a 
= ε, b 
= ε, andab = ε, thena andb are calledzero divisors. Hence, an entire
dioid is a dioid which does not contain zero divisors. Not every dioid is entire (see
Example 4.81 below). If multiplication is cancellative, the dioid is entire. As a matter
of fact,ab = ε ⇒ ab = aε ⇒ b = ε if a 
= ε by cancellation of a.

4.2.2 Some Examples

For the following examples of dioids, we let the reader check the axioms and define
whatε ande should be. All of them are commutative dioids.
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Example 4.12 The first example of a dioid encountered in this book wasR ∪ {−∞}
with max as⊕ and+ as⊗. It wasdenotedRmax.

Example 4.13 (R∪ {+∞},min,+) is another dioid which is isomorphic—this termi-
nology is precisely defined later on—to the previous one by the compatible bijection:
x �→ −x . It will be denotedRmin.

Example 4.14 Using the bijection x �→ exp(x), R ∪ {−∞} is mapped ontoR+. For
this bijection to preserve the dioid structure ofRmax, one has to define⊕ in R

+ as max
again and⊗ as× (the conventional product). This yields the dioid(R+,max,×).

Example 4.15 Consider the setR ∪ {−∞} ∪ {+∞} and define⊕ as max and⊗ as
min.

Example 4.16 In the previous example, replace the set by{0, 1} and keep the same
operations: this is the Boole algebra and also the unique dioid (up to an isomorphism)
reduced to{ε, e}.

Example 4.17 Let 2R
2

denote the set of all subsets of theR
2 plane, including∅ and

the wholeR
2 itself. Then define⊕ as∪ and⊗ as+, that is, the ‘vector sum’ of subsets

∀A, B ⊆ R
2 , A⊗ B = A + B = {x ∈ R

2 | x = y + z, y ∈ A, z ∈ B
}

.

Example 4.18A similar example in dimension 1 is provided byconsidering the subset
of 2R consisting only of half-lines infinite to the left, that is, intervals(−∞, x ] for all
x ∈ R, including∅ but not R itself, with again∪ as⊕ and+ as⊗. Observe that
this subset of half-lines is closed—see below—for these two operations. This dioid is
isomorphic toRmax by the bijectionx ∈ R �→ (−∞, x ] ∈ 2R andε = −∞ �→ ∅.

In all the examples above, except Examples 4.15 and 4.17,⊗ induces a group struc-
ture onD \ {ε} (D minusε). This implies of course that⊗ is cancellative. Obviously
⊗ is not cancellative in Example 4.15. Thisis also true for Example 4.17: this fact
follows from Theorem 4.35 below. However, inboth cases the dioid is entire.

4.2.3 Subdioids

Definition 4.19 (Subdioid) A subset C of a dioid is called a subdioidof D if

• ε ∈ C and e ∈ C;

• C is closed for⊕ and⊗.

The second statement means that∀a, b ∈ C, a ⊕ b ∈ C anda ⊗ b ∈ C. We emphasize
the first condition. For example, the dioid in Example 4.16 (Boole algebra) isnot a
subdioid of the one in Example 4.15. The dioid(N ∪ {−∞},max,+) is a subdioid
of Rmax.
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4.2.4 Homomorphisms, Isomorphisms and Congruences

Most of the material in this subsection is notvery specific tothe dioid structure and can
be found in elementary textbooks on algebra. Here, we reconsider this material in the
framework of dioids.

Definition 4.20 (Homomorphism) A mapping � from a dioid D into another dioid C
is a homomorphismif

∀a, b ∈ D , �(a ⊕ b) = �(a)⊕�(b) and �(ε) = ε , (4.1)

�(a ⊗ b) = �(a)⊗�(b) and �(e) = e . (4.2)

Of course the operations and neutral elements on the left-hand (respectively right-hand)
side are those ofD (respectively C). If � is surjective, it is clear that the former part of
(4.1) (respectively (4.2)) implies the latter part which is thus redundant.

A mapping having only property (4.1) will be called ‘a⊕-morphism’, and a map-
ping having property (4.2) will be called ‘a⊗-morphism’.

Definition 4.21 (Isomorphism) A mapping � from a dioid D into another dioid C is
an isomorphismif �−1 is defined over C and � and �−1 are homomorphisms.

Lemma 4.22 If � is a homomorphism from D to C and if it is a bijection, then it is an
isomorphism.

Proof It suffices to prove that�−1 satisfies (4.1)–(4.2). Applying (4.1) toa =
�−1(x), x ∈ C andb = �−1(y), y ∈ C, we get

�
(
�−1(x)⊕�−1(y)

) = �
(
�−1(x)

) ⊕�
(
�−1(y)

) = x ⊕ y ,

and therefore
�−1(x)⊕�−1(y) = �−1(x ⊕ y) .

Also
�(ε) = ε⇒ ε = �−1(ε) ,

which proves that�−1 is a⊕-morphism. The same reasoning can be applied to (4.2).

Definition 4.23 (Congruence)A congruencein a dioid D is an equivalence relation
(denoted ≡) in D which is compatible with⊕ and ⊗, that is,

∀a, b, c ∈ D , a ≡ b ⇒ a ⊕ c ≡ b ⊕ c ,

and the same for⊗.

Lemma 4.24 The quotient of D by a congruence (that is, the set of equivalence
classes) is a dioid for the addition and multiplication induced by those of D.
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Proof The main difficulty here is to show how⊕ and⊗ can beproperly defined in the
quotient. Let [a] denote the equivalence class ofa (b ∈ [a] ⇔ b ≡ a ⇔ [b] = [a]).
Then define [a] ⊕ [b] by [a ⊕ b]. This definition is correct because ifa′ ∈ [a] and
b′ ∈ [b], then [a′ ⊕ b′] = [a ⊕ b] from thecompatibility of ≡ with⊕, that is, [a ⊕ b]
only depends on [a] and [b], not on particular representatives of these classes. The
same considerations apply to⊗ too.

Example 4.25 One special instance of a congruence is the following. Let� be a
homomorphism from a dioidD to another dioidC. We can define an equivalence
relation inD as follows:

∀a, b ∈ D , a
�≡ b ⇔ �(a) = �(b) . (4.3)

Corollary 4.26 If � is a homomorphism,
�≡ is a congruence. Therefore, the quotient

set denoted D/� is a dioid; it is isomorphic to �(D).

The proof is straightforward. Of course,D/� is isomorphic toD if � is injective.

4.3 Lattice Properties of Dioids

4.3.1 Basic Notions in Lattice Theory

Hereafter, we list a few basic notions from lattice theory, the main purpose being to
make our vocabulary more precise, especially when there are some variations with
respect to other authors. The interested reader may refer to [22] or [57]. In a set, we
adopt the following definitions.

Order rel ation: a binary relation (denoted≥) which is reflexive, transitive and anti-
symmetric.

Total (part ial) order: the order istotal if for each pair of elements(a, b), theorder
relation holds true either for(a, b) or for (b, a), or otherwisestated, if a andb
are always ‘comparable’; otherwise, the order ispartial.

Ordered set: a setendowed with an order relation; it is sometimes useful to represent
an ordered set by an undirected graph the nodes of which are the elements of
the set; two nodes are connected by an arc if the corresponding elements are
comparable, the greater onebeing higher in the diagram; the minimal number of
arcs is represented, the other possible comparisons being derived by transitivity.
Figure 4.1 below gives an example of such a graph called a‘Hasse diagram’.

Chain: a totally ordered set; its Hasse diagram is ‘linear’.

Please note that the following elements do not necessarily exist.

Top element (of an ordered set): an element which is greater than any other element
of the set (elsewhere also called ‘universal’).
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Bottom element (of an ordered set):similar definition (elsewhere also called ‘zero’,
but we keepthis terminology for the neutral element of addition, although, as it
will be seen hereafter, both notions coincide in a dioid).

Maximum element (of a subset):an elementof the subset which is greater than any
other element of the subset; if it exists, it is unique; it coincides with the top
element if the subset isequal to the whole set.

Minimum element (of a subset): similar definition.

Maximal element (of a subset):an elementof the subset which is not lessthanany
other element of the subset; Figure 4.1 shows the difference between a maximum
and a maximal element; if the subset has a maximum element, it is the unique
maximal element.

Majorant (of a subset): an elementnot necessarily belonging to the subset which
is greater than any other element of the subset (elsewhere also called ‘upper
bound’ but we keep this terminology for a notion introduced below); if a majo-
rant belongs to the subset, it is the maximum element.

Minorant (of a subset): similar definition (elsewhere also called ‘lower bound’, but
we reserve this for a more specific notion).

Upper bound (of a subset): the least majorant, that is, the minimum element of the
subset of majorants (elsewhere, when ‘majorant’ is called ‘upper bound’, this
notion is called ‘least upper bound’).

Lower bound (of a subset): similar definition (elsewhere also called ‘greatest lower
bound’).

Maximal
elements of
subset         

Majorants of subsets
and

Top element
Maximum
element of
subset         

Figure 4.1: Top, maximum, majorants and maximal elements

The following items introduce more specific ordered sets and mappings between these
sets.
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Sup-semilattice: anordered set such that there exists an upper bound foreach pair of
elements.

In f-semilattice: similar definition.

Lattice: an ordered set which is both a sup- and an inf-semilattice.

Complete sup-semilattice: an ordered set such that there exists an upper bound for
each finite or infinite subset.

Complete inf-semilattice: similar definition.

Complete lattice: obvious definition.

Distributive lattice: let a ∨ b (respectively, a ∧ b) denote the upper (respectively,
lower) bound ofa andb in a lattice; then the lattice isdistributive if

∀a, b, c , a ∨ (b ∧ c) = (a ∨ b)∧ (a ∨ c) ;

in fact, as shown in [57, p. 188], if this equality holds true, the same equality
with ∨ and∧ interchanged also holds true, and conversely.

Isotone mapping: a mapping� from an ordered setD into an ordered setC suchthat

∀a, b ∈ D , a ≥ b ⇒ �(a) ≥ �(b) .

We conclude this brief enumeration (more facts from lattice theory will be recalled
later on) by mentioning a fundamental result [57, pp. 175–176].

Theorem 4.27 A complete sup-semilattice having a bottom element is a complete lat-
tice.

Proof Let C bea subset of a complete sup-semilatticeD; we must provethat it admits
a lowerbound. Consider the subsetT of minorants ofC. This subset is nonempty since
it contains at least the bottom element. Letc be the upper bound ofT , which exists
sinceD is a complete sup-semilattice. Let us check whetherc obeys the definition of
the lower bound ofC. First,c itself is belowC (that is, it belongs toT —it is thus the
maximum element ofT ). As a matter of fact,T is bounded from above by allb ∈ C
(by definition). Sincec is less than, or equal to, every element greater thanT (by
definition of the upper bound),c ≤ b, ∀b ∈ C, hencec ∈ T . Therefore, c is less than,
or equal to, all elements ofC and greater than every other element belowC, namely the
elements inT . Henceit is the lowerbound ofC.

4.3.2 Order Structure of Dioids

Theorem 4.28 (Order relation) In a dioid D, one has the following equivalence:

∀a, b : a = a ⊕ b ⇔ ∃c : a = b ⊕ c .
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Moreover these equivalent statements define a (partial) order relation denoted ≥ as
follows:

a ≥ b ⇔ a = a ⊕ b .

This order relation is compatible with addition, namely

a ≥ b ⇒ {∀c , a ⊕ c ≥ b ⊕ c} ,

and multiplication, that is,

a ≥ b ⇒ {∀c , ac ≥ bc}

(the same for the left product). Two elements a and b in D always have an upper
bound, namely a ⊕ b, and ε is the bottom element of D.

Proof

• Clearly, ifa = a⊕b, then∃c : a = b⊕c, namely c = a. Conversely, ifa = b⊕c,
thenaddingb onboth sides of this equality yieldsa⊕b = b⊕(b⊕c) = b⊕c = a.

• The relation≥ is reflexive (a = a⊕a from Axiom 4.9), antisymmetric (a = a⊕b
andb = b ⊕ a impliesa = b), and transitive since

{
a = a ⊕ b
b = b ⊕ c

}
⇒





a ⊕ c = a ⊕ b ⊕ c
b = b ⊕ c
a = a ⊕ b




⇒
{

a ⊕ c = a ⊕ b
a = a ⊕ b

}
⇒ {a ⊕ c = a

}
.

Therefore≥ is an order relation.

• The compatibility of ≥ with addition is a straightforward consequence of Ax-
ioms 4.2 and 4.3. The compatibility of multiplication involves Axiom 4.5. The
expression ‘the(left or right) multiplication is isotone’ is also used for this prop-
erty. But, as will be discussed in§4.4.1, the mappingx �→ ax is more than
simply isotone: it is a⊕-morphism.

• Obviously,a ⊕ b is greater thana andb. Moreover, if c ≥ a andc ≥ b, then
c = c⊕ c ≥ a ⊕ b. Hencea ⊕ b is theupper bound ofa andb.

• Finally,
{∀a , a = a ⊕ ε} ⇔ {∀a , a ≥ ε} ,

which means thatε is the bottom element ofD.

Notation 4.29 As usual, we may usea ≤ b as an equivalent statement forb ≥ a, and
b > a (or a < b) as an equivalent statement for [b ≥ a and b 
= a].

The following lemma deals with the problem ofwhether the order relation induced by
⊕ is total or only partial.
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Lemma 4.30 (Total order) The order relation defined in Theorem 4.28 is total if and
only if

∀a, b ∈ D , a ⊕ b = either a or b .

Proof It is just a matter of rewriting the claim ‘eithera ≥ b or b ≥ a’ using⊕ and the
very definition of ≥.

Let us revisit the previous examples of dioids and discover what is the order relation
associated with⊕. It is the conventional orderof numbers for Examples 4.12, 4.14,
4.15 and 4.16. However, in Example 4.13 it is thereversed order: 2≥ 3 in this dioid
since 2= 2⊕ 3. As for Examples 4.17 and 4.18,≥ is simply⊇. All these dioids are
chains except for Example 4.17.

Theorem 4.28 essentially shows that an idempotent addition inD induces a struc-
ture of sup-semilattice overD. But we could have done it the other way around: con-
sidering a sup-semilattice, we can define the result of the addition of two elements as
their upper bound; this obviously defines an idempotent addition. The sup-semilattice
has then to be endowed with another operation called⊗. This multiplication should be
assumed notonly isotone but also distributive,except that isotony is sufficient ifD is
a chain (see§4.4.1). We now present a counterexample to the statement that isotony
of multiplication implies distributivity (and therefore of the statement that isotony of a
mapping would imply that this mapping is a⊕-morphism).

Example 4.31 Consider Example 4.17 again but change addition to∩ instead of∪.
Now A ≥ B meansA ⊆ B and it is true that this implies A⊗C ≥ B⊗C or equivalently
A + C ⊆ B + C. Since⊗ = + is isotone, we do have, as a translation of (4.12),

(B ∩ C) + D ⊆ (B + D) ∩ (C + D) (4.4)

(because here≥ is⊆, not⊇!), but equality does not hold in general, as shown by the
particular case:B is the subsetreduced to the point(1, 0) ∈ R

2, C is similarly reduced
to thepoint (0, 1), whereasD is the square [−1, 1] × [−1, 1]. Clearly, the left-hand
sideof (4.4) is equal to∅, whereas the right-hand side is thesquare [0, 1]× [0, 1] (see

Figure 4.2). In conclusion,
(
2R

2
,∩,+
)

is not a dioid.

4.3.3 Complete Dioids, Archimedian Dioids

In accordance with the definition of complete sup-semilattices, we adopt the following
definition.

Definition 4.32 (Complete dioid) A dioid is complete if it is closed for infinite sums
and Axiom 4.5 extends to infinite sums.

With the former requirement, the upper bound of any subset is simply the sum of
all its elements. The latter requirement may be viewed as a property of ‘lower-
semicontinuity’ of multiplication.
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︸ ︷︷ ︸

D

C + D













B + D
︷ ︸︸ ︷

Figure 4.2:+ is not distributive with respect to∩

In a complete dioid the top element of the dioid, denoted�, exists and is equal to
the sumof all elements inD. Thetop element is always absorbing for addition since
obviously∀a,�⊕ a = �. Also

�⊗ ε = ε , (4.5)

because of Axiom 4.7.
If we consider our previous examples again, Examples 4.12, 4.13, 4.14 and 4.18

are not complete dioids, whereas Examples 4.15, 4.16 and 4.17 are. ForRmax to be
complete, we should add the top element� = +∞ with the rule−∞ +∞ = −∞
which is atranslation of (4.5). This completed dioid is calledRmax andR denotes
R ∪ {−∞} ∪ {+∞}. Similarly, the dioid in Example 4.18 is not complete but can be
completed by adding the ‘half-line’R itself to theconsidered set. However something
is lost when doing this completion since multiplication does not remain cancellative
(see Theorem 4.35 below). Of course, a subdioid of a complete dioid may not be
complete. For example(Q ∪ {−∞} ∪ {+∞},max,+) is a subdioid ofRmax which is
not complete.

Thequestion arises whether� is in general absorbing for multiplication, that is,

∀a ∈ D , a 
= ε , �⊗ a = a ⊗� = � ? (4.6)

Property (4.6) can be proved for ‘Archimedian’ dioids.

Definition 4.33 (Archimedian dioid) A dioid is Archimedianif

∀a 
= ε , ∀b ∈ D , ∃c and d ∈ D : ac ≥ b and da ≥ b .

Theorem 4.34 In a complete Archimedian dioid, the absorbing property (4.6) holds
true.

Proof We give the proof only for right multiplication by�. From Definition 4.33,
givena, for all b, thereexistscb suchthatacb ≥ b. Onehas that
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a� = a

(
⊕

b∈D
b

)
≥ a

(
⊕

b∈D
cb

)
=
⊕

b∈D
acb ≥

⊕

b∈D
b = � .

Among our previous examples, all dioids, except for the one in Example 4.15, are
Archimedian, but only Examples 4.16 and 4.17 correspond to complete dioids for
which (4.6) holds true. Example 4.15 is a case of a dioid which is complete but not
Archimedian, and (4.6) fails to be true.

Theorem 4.35 If a dioid is complete, Archimedian, and if it has a cancellative multi-
plication, then it is isomorphic to the Boole algebra.

Proof Since (4.6) holds true and since⊗ is cancellative, it is realized that every element
differentfrom ε is equal to�. Hence, the dioid is reduced to{ε,�}.

4.3.4 Lower Bound

Since a complete dioid is a complete sup-semilattice, and since there is also a bottom
elementε, the lower bound can be constructed for any subsetC of elements ofD and
the semilattice becomes then a complete lattice (Theorem 4.27). IfC = {x, y, z, . . . },
its lower bound is denotedx ∧ y ∧ z ∧ . . . . In general, we use the notation

∧
x∈C x .

One has the following equivalences:

a ≥ b ⇔ a = a ⊕ b ⇔ b = a ∧ b . (4.7)

This operation∧ is alsoassociative, commutative, idempotent and has� as neutral
element (� ∧ a = a, ∀a). The following property, called ‘absorption law’, holds true
[57, p. 184]:

∀a, b ∈ D , a ∧ (a ⊕ b) = a ⊕ (a ∧ b) = a .

Returning to our examples, the reader should apply the formal construction of the
lower bound recalled in Theorem4.27 to Example 4.17 (a complete dioid) and prove
that∧ is simply∩ in this case. As for the other examples, since all of them are chains,
and even when thedioid isnotcomplete, a simpler definition ofa ∧ b canbe adopted:
indeed, owing to Lemma 4.30, (4.7) may serve as a definition. Moreover, in the case
of a chain, since a lower bound can be defined anyway, and because there exists a
bottom elementε, thedioid is acomplete inf-semilattice even if it is not a complete
sup-semilattice.

Equivalences (4.7) may leave the impression that⊕ and∧ play symmetric roles in
a complete dioid. This is true from the lattice point of view, but this is not true when
considering the behavior with respect to the other operation of the dioid, namely⊗.
Since multiplication is isotone, from Lemma 4.42 in§4.4.1 below itfollows that

(a ∧ b)c ≤ (ac) ∧ (bc) (4.8)

(similarly for left multiplication) what we may call ‘subdistributivity’ of⊗with respect
to∧. The same lemma shows that distributivityholds true for chains. But this is not true
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in general for partially-ordered dioids. A counterexample is provided by Example 4.17
(⊕ is∪,⊗ is+ and∧ is∩). In Example 4.31 we showed that+ is not distributive with
respect to∩. There are, however, situations in which distributivity of⊗ with respect to
∧ occurs forcertain elements. Here is such a case.

Lemma 4.36 If a admits a left inverse b and a right inverse c, then

• b = c and this unique inverse is denoted a−1;

• moreover, ∀x, y, a(x ∧ y) = ax ∧ ay.

The same holds true for right multiplication by a, and also for right and left multipli-
cation by a−1.

Proof

• One hasb = b(ac) = (ba)c = c, proving uniqueness of a right and left inverse.

• Then,∀x, y, defineξ andη according to(ξ = ax, η = ay), whichis equivalent
to (x = a−1ξ, y = a−1η). Onehas

ξ ∧ η = aa−1(ξ ∧ η) ≤ a[a−1ξ ∧ a−1η] = a[x ∧ y] ≤ ax ∧ ay = ξ ∧ η .

Hence equality holds throughout.

4.3.5 Distributive Dioids

Once the lower bound has been introduced, this raises the issue of the mutual behav-
ior of ⊕ and∧. In fact,∧ is not necessarily distributive with respect to⊕ and con-
versely, except again for chains. The following inequalities are again consequences of
Lemma 4.42 in§4.4.1 below, and of the fact thatx �→ x⊕c andx �→ x∧c are isotone:

∀a, b, c ∈ D ,
(a ∧ b)⊕ c ≤ (a ⊕ c) ∧ (b ⊕ c) ,

(a ⊕ b) ∧ c ≥ (a ∧ c)⊕ (b ∧ c) ,

which means that⊕ is subdistributive with respect to∧, and∧ is superdistributive with
respect to⊕.

As already defined, a lattice is distributive when equality holds true in the two
inequalities above.

Example 4.37 Here is an example of a complete lattice which is not distributive.
Consider all the intervals ofR (including∅ andR itself) with⊆ as≤. The upper bound
⊕ of any (finite orinfinite) collection of intervals is the smallest interval which contains
the whole collection, that is, it is the convex hull of the union of all the intervals in the
collection. The lower bound∧ is simply∩. Then, considera = [−3,−2], b = [2, 3]
andc = [−1, 1]. We have that(a ⊕ b)∧ c = c, whereas(a ∧ c)⊕ (b ⊕ c) = ∅.

The following theorem can be found in [57, p. 207].
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Theorem 4.38 A necessary and sufficient condition for a lattice to be distributive is
that

∀a, b ,

{
∃c :

a ∧ c = b ∧ c
a ⊕ c = b ⊕ c

}
⇒ {a = b} .

In [57] it is also shown that ifG is a multiplicative ‘lattice-ordered group’, which means
that, in addition to being a group and a lattice, the multiplication is isotone, then

• the multiplication is necessarily distributive with respect to both the upper and
the lowerbounds (G is called a ‘reticulated group’),

• moreover, the lattice is distributive (that is, upper and lower bounds are distribu-
tive with respectto one another).

Also, one has the remarkable formulæ:

(a ∧ b)−1 = a−1⊕ b−1 , (4.9)

(a ⊕ b)−1 = a−1 ∧ b−1 , (4.10)

a ∧ b = a(a ⊕ b)−1b , (4.11)

which should remind us of the De Morgan laws in Boolean algebra, and also the sim-
ple formula min(a, b) = −max(−a,−b). However, this situation is far from being
representative for the general case as shown by Examples 4.15 (total order) and 4.17
(partial order). Nevertheless, these examples correspond to ‘distributive dioids’ in the
following sense.

Definition 4.39 (Distributive dioid) A dioid D is distributiveif it is complete and, for
all subsets C of D,

∀a ∈ D ,

(
∧

c∈C
c

)
⊕ a =

∧

c∈C
(c ⊕ a) ,

(
⊕

c∈C
c

)
∧ a =

⊕

c∈C
(c ∧ a) .

Notice that here distributivity is required to extend to infinite subsets. Both properties
should be required now since one does not imply the other in the infinite case [57,
p. 189]. Using the terminology of§4.4.1, we may state the preceding definition in
other words by saying that a dioid is distributive if and only if the mappingsx �→ a∧ x
andx �→ a ⊕ x are both continuous for everya. All complete dioids considered so far
are distributive. Example 4.37 can be extended to provide a nondistributive dioid. It
suffices to define⊗ as the ‘sum’ of intervals (conventional arithmetic sum). Of course,
⊕ is theupper bound as defined in that example (the reader may check the distributivity
of ⊗ with respect to⊕).
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Remark 4.40 A distributive dioid may also be considered as a dioid with the two

operationŝ⊕ def= ⊕ and⊗̂ def= ∧. But one can also choosẽ⊕ def= ∧ and⊗̃ def= ⊕. Special
features of these dioid structures are that∀x, ε̂ ≤ x ≤ ê and that multiplication is
commutative and idempotent. Examples 4.15 and 4.16 are instances of such dioids.

4.4 Isotone Mappings and Residuation

Most of the material in this section is classical in Lattice Theory. The structure added
by⊗ in dioids plays virtually no role, except of course when the mappings considered
themselves involve multiplication (for example when considering the residual of the
mappingx �→ ax). A basic reference is the book by Blyth and Janowitz [24].

4.4.1 Isotony and Continuity of Mappings

We are going to characterize isotone mappings in terms of ‘lower’ and ‘upper sets’.

Definition 4.41 (Lower, upper set) A lower setis a nonempty subset L of D such that

(x ∈ L andy ≤ x)⇒ y ∈ L .

A closed lower set(generated by x) is a lower set denoted [←, x ] of the form
{y | y ≤ x}. An upper setis a subset U such that

(x ∈ U andy ≥ x)⇒ y ∈ U .

A closed upper set(generated by x) is an upper set denoted [x,→] of the form
{y | y ≥ x}.
The names ‘(principal) ideal’ and ‘(principal) filter’ are used for ‘(closed) lower set’
and ‘(closed) upper set’, respectively, in [24].

A closed lower set is alower set which contains the upper bound of its elements.
Similarly, a closed upper set is an upper set containing the lower bound of its elements.
For a chain, sayRmax, closed lowersetscorrespond to closed half-lines(−∞, x ], lower
sets are open or closed half-lines, whereas closed upper sets are of the type [x,+∞).
Figure 4.3 gives examples of such sets in a partially-ordered lattice.

Obviously, if � is a⊕- or a∧-morphism, it is isotone (see§4.3.1). For example,
for everya ∈ D, the mappingx �→ ax fromD into itself is a⊕-morphism, hence it is
isotone. But, conversely, if� is isotone, it is neither necessarily a⊕- nor necessarily a
∧-morphism.

Lemma 4.42 Let � be a mapping from a dioid D into another dioid C. The following
statements are equivalent:

1. the mapping � is isotone;

2. the ‘pre-image’ �−1([←, x ]) of every closed lower set is a lower set or it is
empty;
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lower set

closed lower set

Figure 4.3: Lower set and closedlower set

3. the pre-image �−1([x,→]) of every closed upper set is an upper set or it is
empty;

4. the mapping � is a ⊕-supermorphism, that is,

∀a, b ∈ D , �(a ⊕ b) ≥ �(a)⊕�(b) ; (4.12)

5. if lower bounds exist in D and C, � is a ∧-submorphism, that is,

∀a, b ∈ D , �(a ∧ b) ≤ �(a)∧�(b) . (4.13)

Proof Suppose that� is isotone. Leta ∈ �−1([←, x ]) if this subset is nonempty.
Then�(a) ≤ x . Let b ≤ a. Then�(b) ≤ �(a), hence�(b) ≤ x andb ∈ �−1([←
, x ]). Therefore�−1([←, x ]) is a lower set. Conversely, letb ≤ a. Since obviously
a ∈ �−1([←, �(a)]) and since this latter is a lower set by assumption, thenb belongs
to this subset. Hence�(b) ≤ �(a) and� is isotone. A similar proof involving upper
setsis left to the reader.

Suppose that� is isotone. Sincea and b are less thana ⊕ b, then�(a) and
�(b), and thus their upper bound�(a)⊕�(b), are less than�(a⊕ b) proving (4.12).
Conversely, let b ≤ a, or equivalently, a = a ⊕ b. Then, under the assumption that
(4.12) holds true,�(a) = �(a⊕b) ≥ �(a)⊕�(b), proving that�(b) ≤ �(a). Thus
� is isotone. A similar proof involving∧ instead of⊕ can begiven.

If D is a chain,a⊕b is equal to eithera or b, hence�(a⊕b) is equal to either�(a)
or�(b), hence to�(a)⊕�(b). That is,� is a⊕-morphism inthis case. Similarly, it
is a∧-morphism too.

If D andC are complete dioids, it is easy to see that (4.12) (respectively (4.13))
extends to⊕ (respectively ∧) operating over infinite subsets ofD.

Definition 4.43 (Continuity) A mapping � from a complete dioid D into a complete
dioid C is lower-semicontinuous, abbreviated as l.s.c. respectively, upper-semicon-
tinuous, abbreviated as u.s.c. if, for every (finite or infinite) subset X of D,

�

(
⊕

x∈X

x

)
=
⊕

x∈X

�(x) ,
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respectively,

�

(
∧

x∈X

x

)
=
∧

x∈X

�(x) .

The mapping � is continuousif it is both l.s.c. and u.s.c.

Of course, a l.s.c. (respectively an u.s.c.) mapping is a⊕- (respectively a∧-) morphism.
If � is a⊕-morphism, it is isotone and thus it is a∧-submorphism, but not necessarily
a∧-morphism. This hasalready beenillustrated by Example 4.31.

To justify the terminology ‘l.s.c.’, one should consider the example of anondecreas-
ing mapping� from R to itself (because here we are interested inisotone mappings
between ordered sets), and check that, in this case, the lower-semicontinuity in the
previous sense coincides with the conventional notion of lower-semicontinuity (which
requires that lim infxi→x �(xi) ≥ �(x)). The same observation holds true for upper-
semicontinuity.

Lemma 4.44 One has the following equivalences:

• � is l.s.c.;

• the pre-image �−1([←, x ]) of every closed lower set is a closedlower set or it
is empty.

Similarly, the following two statements are equivalent:

• � is u.s.c.;

• the pre-image �−1([x,→]) of every closed upper set is a closedupper set or it
is empty.

Proof Weprove the former equivalence only. Suppose that� is l.s.c. In particular it is
isotone and the pre-imageX = �−1([←, x ]) of every closed lower set, if nonempty,
is a lower set. Ifa ∈ X , then�(a) ≤ x . Thus

�

(
⊕

a∈X
a

)
=
⊕

a∈X
�(a) ≤ x .

Hence the upper bound ofX belongs toX : X is closed.
Conversely, suppose that the pre-image of every closed lower set is a closed lower

set. In particular, according to Lemma 4.42,� is isotone and for every nonempty
subsetX ⊆ D, one has that

�

(
⊕

x∈X
x

)
≥
⊕

x∈X
�(x) . (4.14)

On the other hand, it isobvious that

X ⊆ �−1

(
[←,
⊕

x∈X
�(x)]

)
.
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But the latter subset is a closed lower set by assumption, hence it contains the upper
bound of its elements and a fortiori it contains the upper bound ofX . This implies the
reverse inequality in (4.14). Therefore equality holds true and� is l.s.c.

Example 4.45 Let D = Rmax andC = Nmax, let� : D→ C defined by

� : x �→ y =
⊕

y∈C,y≤x

y ,

where thesymbol ≤ has its usual meaning. Indeed,� is the residual of the mapping
x �→ x from C intoD (not fromD to C!)—see§4.4.2 below. More simply,�(x) is just
the integerpart of the real numberx . Then, � is a⊕- and a∧-morphism, it is u.s.c.
(this is a consequence of being a residual) but not l.s.c.

Lemma 4.46 The set of l.s.c. mappings from a complete dioid D into itself is a com-
plete dioid when endowed with the following addition ⊕̂ and multiplication ⊗̂:

�⊕̂� : x �→ �(x)⊕�(x) ;
�⊗̂� : x �→ �(�(x)) .

(4.15)

Similarly, the set of u.s.c. mappings from D into D is a complete dioid when endowed
with the following addition ⊕̃ and multiplication ⊗̃:

�⊕̃� : x �→ �(x)∧ �(x) ;
�⊗̃� : x �→ �(�(x)) .

(4.16)

Proof We only prove the former statement. It is easy to check thatl.s.-continuity
is preserved by addition and composition of mappings. The other axioms of dioids
are also easily checked. In particular,ε̂ is the mapping identically equal toε and
ê = ID (identity of D). Distributivity of right multiplication with respect to addition
is straightforward from the very definitions of̂⊕ and ⊗̂, whereas left distributivity
involves the assumption of l.s.-continuity.

Remark 4.47 Observe that since Lemma 4.46 defines a complete dioid structure for
the set of l.s.c.mappings from a complete dioidD into itself, this dioid of mappings
has a lower bound operation (Theorem 4.27) also denoted∧. However, in general, for
two mappings� and�, (� ∧ �)(x) 
= �(x) ∧ �(x) since the right-hand side is in
general not a l.s.c. function ofx .

Example 4.48 ConsiderD =
(
Rmax

)2
(operations ofD are those ofRmax operating

componentwise). LetC =
(
R

2
, ⊕̂,⊗

)
for which the underlying set is the same as that

of D and⊗ is also the same. But̂⊕ is defined as follows:

∀x, y ∈ R
2
, x⊕̂y =

{
x if (x1 > y1) or (x1 = y1 andx2 ≥ y2) ;
y if (x1 < y1) or (x1 = y1 andx2 ≤ y2) .
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The order inD is the usual partial order inR
2

whereasC is totally ordered by the
lexicographic order. Let� : D → C be simply the canonical bijectionx �→ x . This
is an isotone mapping sincex ≤ y in D implies x ≤ y in C. However, this mapping
is neither l.s.c. nor u.s.c. Figure 4.4 depicts the shape of a closed lower set generated
by the pointx = (2, 3) in C (shaded area). It is a half-plane including the border

Figure 4.4: A closed lower set for the lexicographic order

for x2 ≤ 3 but not for x2 > 3. Since�−1 is also the canonical bijection inR
2
, the

pre-image of this closed lower set is itself and it is not a closed lower set inD: closed
lower sets inD consist ofclosed south-west orthants. Hence� is not l.s.c.

This example is also interesting because it shows that an isotone bijection� may
have an inverse mapping�−1 which is not isotone. As a matter of fact,x ≤ y in C
does not imply the same inequality inD in general. However, we leave to thereader
to prove that an isotone bijection from atotally ordered dioid D onto another dioidC
has an isotone inverse and, moreover, if both dioids are complete, the mapping and its
inverse are continuous.

Lemma 4.49 Let D and C be complete dioids and � be a homomorphism from D into
C. Consider the congruence defined in Example 4.25. If � is l.s.c. (respectively u.s.c.),
then every equivalence class has a maximum (respectively minimum) element, which is
therefore a canonical representative of the equivalence class.

Proof We consider the case of a l.s.c. mapping. Let [x ] denote the equivalence class

of anyx ∈ D, then
︷︷
x

def=⊕y∈[x] y is theupper bound of [x ], and it belongs to [x ] since,
by lower-semicontinuity,

�(
︷︷
x) = �




⊕

y∈[x]

y



 =
⊕

y∈[x]

�(y) = �(x) .

4.4.2 Elements of Residuation Theory

Residuation has to do with ‘inverting’ isotone mappings and with solving equations.
Let � be an isotone mapping from a dioidD into another dioidC. To guarantee the
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existence of upper and lower bounds, we assume throughout this subsection thatD
andC are complete. If� is not surjective, the equation inx : �(x) = b will have
no solution for some values ofb, and if � is not injective, the same equation may
have nonunique solutions. One way to always give a unique answer to this problem of
equation solving is to consider the subset of so-called ‘subsolutions’, that is, values of
x satisfying �(x) ≤ b, if this subset is nonempty, and then to take the upper bound
of the subset, if it exists: it remains to be checked whether the upper bound itself is
a subsolution, namely, that it is the maximum element of the subset of subsolutions,
which hasto do with l.s.-continuity of�. In thiscase, this maximum elementwill be
denoted��(b) and we have

��(b) =
⊕

{x|�(x)≤b}
x and �

(
��(b)
) ≤ b . (4.17)

Dually, one may consider ‘supersolutions’ satisfying�(x) ≥ b, if again this subset
is nonempty, and then take the lower bound assuming it exists: again it remains to
checkwhether the lower bound is itself a supersolution, namely, that it is the minimum
element of the subset of supersolutions, which has to do with u.s.-continuity of�. In
this case this minimum element will be denoted��(b) and we have

��(b) =
∧

{x|�(x)≥b}
x and �

(
��(b)
) ≥ b . (4.18)

Theorem 4.50 Let � be an isotone mapping from the complete dioid D into the com-
plete dioid C. The following three statements are equivalent:

1. For all b ∈ C, there exists a greatest subsolution to the equation �(x) = b
(by this we mean that the subset of subsolutions is nonempty and that it has a
maximum element).

2. �(ε) = ε and � is l.s.c. (or equivalently, the pre-image of every closed lower
set is nonempty and it is a closed lower set).

3. There exists a mapping �� from C into D which is isotone and u.s.c. such that

�◦�� ≤ IC (identity of C) ; (4.19)

��◦� ≥ ID (identity of D) . (4.20)

Consequently, �� is unique. When � satisfies these properties, it is said to be residu-
atedand �� is called its residual.

Proof First of all, it should be clear that the two statements in ‘2.’ above are equivalent.
In the rest of the proof, we always refer to the former of these two statements.

1⇒ 3: As a matter of fact,∀b ∈ C, there exists a greatest subsolution that we de-
note��(b). It is obvious that the mapping�� thus defined is isotone. Inequal-
ity (4.19) is immediate from the definition of a subsolution. Now,∀x ∈ D, let
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b = �(x). Sincex is a subsolution corresponding to thatb, from thedefinition
of ��(b), x ≤ ��(b) = ��◦�(x), from which (4.20) follows.

We now prove that�� is u.s.c. Since�� is isotone, using (4.13), for a subset
B ⊆ C, one has that

��

(
∧

b∈B

b

)
≤
∧

b∈B

��(b) . (4.21)

Using (4.13) again, we obtain

�

(
∧

b∈B

��(b)

)
≤
∧

b∈B

�◦��(b) ≤
∧

b∈B

b ,

in which the latter inequality follows from (4.19). Hence
∧

b∈B ��(b) is a subso-
lution corresponding to the right-hand side

∧
b∈B b. Thus, thereverse inequality

alsoholdstrue in (4.21), and equality is obtained, proving that�� is u.s.c.

3⇒ 2: From (4.19),�◦��(ε) ≤ ε ⇒ �◦��(ε) = ε. But��(ε) ≥ ε ⇒ �◦��(ε) ≥
�(ε). If we combine the two facts, it follows thatε ≥ �(ε), provingthe equality
of the two sides.

Let X ⊆ D. Since� is isotone, it follows from (4.12) that

⊕

x∈X

�(x) ≤ �

(
⊕

x∈X

x

)
. (4.22)

For all x ∈ X , let bx = �(x). Because of (4.20),��(bx) ≥ x , hence

�

(
⊕

x∈X

x

)
≤ �

(
⊕

x∈X

��(bx )

)
≤ �◦��

(
⊕

x∈X

bx

)
≤
⊕

x∈X

bx =
⊕

x∈X

�(x) ,

where we used (4.12) for�� and then (4.19). This is thereverse inequality of
(4.22), henceequality holds true and the l.s.-continuity of� is proved.

2⇒ 1: Since�(ε) = ε, the subset of subsolutionsXb ⊆ D is nonempty∀b ∈ C.
Then, by l.s.-continuity of�, and since everyx ∈ Xb is a subsolution,

�




⊕

x∈Xb

x



 =
⊕

x∈Xb

�(x) ≤ b .

This proves that
⊕

x∈Xb
x is a subsolution too.

Finally, since the greatest subsolution isunique by definition, the equivalences above
imply that�� is unique as well.

Remark 4.51 It is clear that�−1([←, x ]) = [←, ��(x)]. Moreover, since�(�) ≤
�, then��(�) ≥ �, hence��(�) = �.

Now, instead of being interested in the greatest subsolution, we may search for the
least supersolution. This is dual residuation. The dual of Theorem 4.50 can be stated.
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Theorem 4.52 Let � be an isotone mapping from the complete dioid D into the com-
plete dioid C. The following three statements are equivalent:

1. For all b ∈ C, there exists a least supersolution to the equation�(x) = b (by this
we mean that the subset of supersolutions is nonempty and that it has a minimum
element).

2. �(�) = � and � is u.s.c. (or equivalently, the pre-image of every closed upper
set is nonempty and it is a closed upper set).

3. There exists a mapping �� from C into D which is isotone and l.s.c. such that

�◦�� ≥ IC (identity of C) ; (4.23)

��◦� ≤ ID (identity of D) . (4.24)

Consequently, �� is unique. When � satisfies these properties, it is said to be dually
residuatedand �� is called its dual residual.

Remark 4.53 One hasthat

�−1([x,→]) = [��(x),→] ,

and
��(ε) = ε .

It should also be clear that if� is residuated, itsresidual is dually residuated and

(��)� = � .

Example 4.54An example of a residuated mapping was encountered in Example 4.45.
Indeed, if we letD = Nmax andC = Rmax, the canonical injection fromN into R is
residuated and its residual is the mapping described in that example, that is, the ‘integer
part’ of a real number ‘from below’. The same injection is also dually residuated and
its dual residual is the ‘integer part from above’.

Example 4.55 Another interesting example is provided by the mapping� : x �→
(x, x) from a complete dioidD into D2. This mapping again is residuated and dually
residuated and it is easy to check that

��(x, y) = x ∧ y and ��(x, y) = x ⊕ y .

Subsection 4.4.4 provides other examples on residuation. The following theorem lists
additional properties of residuated mappings and residuals, and dual properties when
appropriate.
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Theorem 4.56

• If � is a residuated mapping from D into C, then

�◦��◦� = � ; (4.25)

��◦�◦�� = �� . (4.26)

One has the following equivalences:

��◦� = ID ⇔ � injective⇔ �� surjective ; (4.27)

�◦�� = IC ⇔ �� injective⇔ � surjective . (4.28)

The same statements hold true for dually residuated mappings by changing �

into �.

• If � : D → C and � : C → B are residuated mappings, then �◦� is also
residuated and

(�◦�)� = ��◦�� . (4.29)

Again, the same statement holds true with � instead of �.

• If �,�,� and � are mappings from D into itself, and if � and � are residu-
ated, then

�◦� ≤ �◦�⇔ �◦�� ≤ ��◦� . (4.30)

As corollaries, one has that

� ≤ �⇔ �� ≤ �� , (4.31)

and

� ≤ ID ⇔ �� ≥ ID , (4.32)

� ≥ ID ⇔ �� ≤ ID . (4.33)

Similar statements hold true for dual residuals with appropriate assumptions; in
particular, the analogue of (4.30) is

�◦� ≤ �◦� ⇔ ��◦� ≤ �◦�� . (4.34)

• If � and � are two residuated mappings from a dioid D (in which ∧ exists) into
itself, then �⊕� is residuated and

(�⊕�)� = �� ∧�� . (4.35)

If � and � are dually residuated, then �∧ � is dually residuated and

(� ∧�)� = �� ⊕�� . (4.36)
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• If � and � are two residuated mappings from a dioid D (in which ∧ exists) into
itself and if �∧ � is residuated, then

(�∧ �)� ≥ �� ⊕�� . (4.37)

With dual assumptions,

(�⊕�)� ≤ �� ∧�� . (4.38)

Proof

About (4.25)–(4.26):One hasthat

�◦��◦� = �◦
(
��◦�
) ≥ � ,

which follows from (4.20). But one also has that

�◦��◦� = (�◦��
)
◦� ≤ � ,

by making use of (4.19), hence (4.25) follows. Equation (4.26) is similarly
proved by remembering that�� is isotone.

About (4.27)–(4.28):Assume that��◦� = ID and suppose that�(x) = �(y).
Applying ��, we conclude thatx = y, hence � is injective. Also, since
��◦�(x) = x , it means that everyx belongs to Im��, hence�� is surjective.
Conversely, if��◦� 
= ID, thereexists y suchthatx = ��◦�(y) 
= y. However,
because of (4.25),�(x) = �(y). Hence� cannot be injective. On the other
hand, if�� is surjective,∀x ∈ D, ∃b ∈ C : ��(b) = x . Sincex is a subsolution
corresponding to the right-hand sideb,�(x) ≤ b, hence��◦�(x) ≤ ��(b) = x .
We conclude that��◦� ≤ ID, but equality must hold true because of (4.20).
This completes the proof of (4.27). The proof of (4.28) is similar.

About (4.29): Asalready noticed l.s.- or u.s.-continuity is preserved by composition of
two similarly semicontinuous mappings and the same holds true for the property
of being residuated (consider the conditions stated in item 2 of Theorem 4.50).
Also��◦�� is an isotone and u.s.c. mapping. Finally,

�◦�◦��◦�� = �◦
(
�◦��
)
◦�� ≤ �◦�� ≤ IC ,

by repeated applications of (4.19), showing that��◦�� satisfies (4.19) together
with �◦�. Likewise, it can beproved that (4.20) is met by the two composed
functions. From the uniqueness of the residual, we conclude that (4.29) holds
true.

About (4.30)–(4.34): If �◦� ≤ �◦�, then
(
��◦�
)
◦�◦�� ≤ ��◦�◦

(
�◦��
)

which
implies that�◦�� ≤ ��◦� using (4.19)–(4.20). The converse proof is left to the
reader (use a dual trick). Then (4.31) is obvious whereas to prove (4.32)–(4.33),
we use the straightforward fact thatID is residuated and is its own residual. The
proof of (4.34) is similar to that of (4.30).
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About (4.35)–(4.36):We give a proof of (4.35) only. First it is clear that the sum of
two residuated mappings is residuated (l.s.-continuity is preserved by⊕). Now
consider the composition� = �3◦�2◦�1 of the following three mappings:

�1 : D → D2 , x �→ (
x x

)
,

�2 : D2 → D2 ,
(

x y
) �→ (

�(x) �(y)
)

,

�3 : D2 → D ,
(

x y
) �→ x ⊕ y .

Thus
� : D→ D , x �→ (�⊕�)(x) .

Then,

�
�
1 : D2 → D ,

(
x y

) �→ x ∧ y (see Example 4.55),
�

�

2 : D2 → D2 ,
(

x y
) �→ ( ��(x) ��(y)

)
(trivial),

�
�

3 : D→ D2 , x �→ ( x x
)

,

the last statement following also from Example 4.55 since it was explained there
that(��

3)
� is indeed�3. Then, it suffices to calculate�� by using (4.29) repeat-

edly to prove (4.35).

About (4.37)–(4.38):We prove (4.37)only. Observe first that it is necessary toassume
that�∧ � is residuated since this is not automatically true. Then

(� ∧�) ◦
(
�� ⊕��

) = (�∧ �) ◦�� ⊕ (� ∧�) ◦�� ,

since�∧� is assumed residuated and hence l.s.c. The former term at the right-
hand side is less than�◦�� which is less thanID; the latter term is less than
�◦�� which again is less thanID, and so isthe left-hand side. This suffices to
prove (4.37).

Remark 4.57 Returning to Lemma 4.49, if� is residuated, it should be clear that
︷︷
x

considered inthe proof of this lemma is nothing but��◦�(x).

4.4.3 Closure Mappings

Here we study a special class of mappings of a dioid into itself which will be of interest
later on.

Definition 4.58 (Closure mapping) Let D be an ordered set and � : D → D be an
isotone mapping such that � = �◦� ≥ ID , then � is a called a closure mapping. If
� = �◦� ≤ ID , then � is called a dual closure mapping.

Theorem 4.59 If � : D → D is a residuated mapping, then the following four state-
ments are equivalent:

�◦� = � ≥ ID (i.e. � is a closure mapping), (4.39)

��◦�� = �� ≤ ID (i.e. �� is a dual closure mapping), (4.40)

�� = �◦�� , (4.41)

� = ��◦� . (4.42)
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Proof

(4.39)⇒ (4.40): This follows from (4.29) and (4.33).

(4.40)⇒ (4.41): From (4.40) it follows that�◦��◦�� = �◦��. The left-hand side is
less than orequal to�� because of (4.19). The right-hand side is greater than or
equal to�� because�� ≤ ID ⇒ � ≥ ID (see (4.33)). Hence (4.41) is proved.

(4.41)⇒ (4.42): From (4.41), it follows that�◦��◦� = ��◦�. But the left-hand side
is equal to� (see (4.25)). Hence (4.42) results.

(4.42)⇒ (4.39): Since� = ��◦�, then� ≥ ID because of (4.20). On the other
hand, (4.42)⇒ �◦��◦� = �◦� but the left-hand side is equal to� (see (4.25)).

Theorem 4.59 states thatall residuated closure mappings can be expressed as in (4.42).
Indeed,all closure mappings� onD can be factored as��◦� for some� : D → C,
whereC is another ordered set [24, Theorem 2.7]. Another characterization of l.s.c.
closure mappings will be given in Corollary 4.69.

Theorem 4.60 If � : D→ D is a dually residuated mapping, then the following four
statements are equivalent:

�◦� = � ≤ ID (i.e. � is a dual closure mapping), (4.43)

��◦�� = �� ≥ ID (i.e. �� is a closure mapping), (4.44)

� = �◦�� , (4.45)

�� = ��◦� . (4.46)

Lemma 4.61 If � and � are closure mappings on D and if they are ∧-morphisms,
then �∧� also is a closure mapping. Likewise, if � and � are dual closure mappings
and if they are⊕-morphisms, then �⊕� is a dual closure mapping. These statements
extend to infinite numbers of mappings if the mappings are u.s.c., respectively l.s.c.

Proof Let us prove the former statement. Clearly,� ∧� ≥ ID. Moreover,

(� ∧ �)◦(� ∧�) = � ∧�◦� ∧ �◦� ∧� = � ∧ � ,

since� and� are greater thanID.

4.4.4 Residuation of Addition and Multiplication

In this subsection we consider the following mappings from a dioidD into itself:

Ta : x �→ a ⊕ x (translation by a);
La : x �→ a ⊗ x (left multiplication by a);
Ra : x �→ x ⊗ a (rightmultiplication by a).

Observe that

Ta◦Tb = Tb◦Ta = Ta⊕b = Ta ⊕ Tb . (4.47)
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Moreover, ifD is a distributive dioid,

Ta ∧ Tb = Ta∧b . (4.48)

As for multiplication, the associativity of⊗ implies that

La◦Lb = Lab , (4.49)

and also that

La◦Rb = Rb◦La . (4.50)

The distributivity of ⊗ with respect to⊕ implies that

La ⊕ Lb = La⊕b , (4.51)

and also that

La◦Tb = Tab◦La . (4.52)

Observe thatLa is l.s.c. if and only if (left) multiplication is distributivewith respect
to addition of infinitely many elements, which we assume here, and, since moreover
La(ε) = ε, La is residuated. The same considerations apply to right multiplicationRa .

Notation 4.62 We use the one-dimensional display notationL �
a(x) = a ◦\x (‘left divi-

sion’ by a—reads ‘a (left) dividesx ’), respectively,R�
a(x) = x◦/a (‘right division’ by

a—reads ‘x (right) divided bya’), and the two-dimensional display notation

L �
a(x) =

x

a
, R�

a(x) =
x

a
.

As for Ta , sinceTa(ε) 
= ε unlessa = ε, this mapping is not residuated. Actually,
by restraining the range ofTa to a ⊕ D, that is, tothe subset of elements greater than
or equal toa (call this new mappinĝAa : D → a ⊕ D), we could define a residual
Â�

a with domain equal to a ⊕ D. However, this is not very interesting sincêA�
a is

simply the identity ofa ⊕ D. Indeed, sincêAa is surjective (by definition), Âa ◦Â
�
a is

the identityaccording to (4.28). On the other hand, sinceÂa is obviously a closure
mapping, Âa ◦ Â�

a = Â�
a (see (4.41)). Thisis why we assume thatD is a distributive

dioid—see Definition 4.39—and, as a consequence of that,Ta is u.s.c.Since moreover
Ta(�) = �, Ta is dually residuated.

Notation 4.63 We use the notationT �
a (x) = x ◦− a.

It should be clear that:
x ◦− a = ε⇔ a ≥ x .

We aregoing to list a collection of formulæ and properties for these two new op-
erations, ‘division’ and ‘subtraction’, which are direct consequences of the general
properties enumerated in§4.4.2. For the sake of easy reference, the main formulæ have
beengathered in Tables 4.1 and 4.2. In Table 4.1, left and right multiplication and
division are both considered.



180 Synchronization and Linearity

Remember that, when we consider properties involving◦− , the dioid D is
tacitly assumed to be complete (hence multiplication is infinitely distributive)
and also distributive.

Table 4.1: Formulæinvolving division

x ∧ y

a
= x

a
∧ y

a

x ∧ y

a
= x

a
∧ y

a
(f.1)

x ⊕ y

a
≥ x

a
⊕ y

a

x ⊕ y

a
≥ x

a
⊕ y

a
(f.2)

x

a ⊕ b
= x

a
∧ x

b

x

a ⊕ b
= x

a
∧ x

b
(f.3)

x

a ∧ b
≥ x

a
⊕ x

b

x

a ∧ b
≥ x

a
⊕ x

b
(f.4)

a
x

a
≤ x

x

a
a ≤ x (f.5)

ax

a
≥ x

xa

a
≥ x (f.6)

a
ax

a
= ax

xa

a
a = xa (f.7)

a(a ◦\x)

a
= x

a

(x◦/a)a

a
= x

a
(f.8)

x

ab
= a ◦\x

b

x

ba
= x◦/a

b
(f.9)

a ◦\x
b

= x◦/b

a

x◦/a

b
= b ◦\x

a
(f.10)

b
x

a
≤ x

a◦/b

x

a
b ≤ x

b ◦\a (f.11)

x

a
b ≤ xb

a
b

x

a
≤ bx

a
(f.12)

x

a
⊕ b ≤ x ⊕ ab

a

x

a
⊕ b ≤ x ⊕ ba

a
(f.13)

For Table 4.1, we only prove the left-hand side versions of the formulæ. Formulæ (f.1)
and (f.2) are consequences of the fact thatL �

a is u.s.c.and isotone. Dually, For-
mulæ(f.14) and (f.15) result fromT �

a being l.s.c. and isotone. Inequalities (4.19)–
(4.20) imply (f.5)–(f.6). However, if multiplication is cancellative, thenLa is injective
and (see (4.27)) a ◦\(ax) = x and x �→ a ◦\x is surjective. If a is invertible, then
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Table 4.2: Formulæinvolving subtraction

(x ⊕ y) ◦− a = (x ◦− a)⊕ (y ◦− a) (f.14)

(x ∧ y) ◦− a ≤ (x ◦− a)∧ (y ◦− a) (f.15)

(x ◦− a)⊕ a = x ⊕ a (f.16)

(x ⊕ a) ◦− a = x ◦− a (f.17)

x ◦− (a ⊕ b) = (x ◦− a) ◦− b = (x ◦− b) ◦− a (f.18)

x ◦− (a ∧ b) = (x ◦− a)⊕ (x ◦− b) (f.19)

ax ◦− ab ≤ a(x ◦− b) (f.20)

x = (x ∧ y)⊕ (x ◦− y) (f.21)

a ◦\x = a−1x . Dually, (4.23)–(4.24) yields

(x ◦− a)⊕ a ≤ x and (x ⊕ a) ◦− a ≤ x .

But this is weaker than what results from Theorem 4.60. ClearlyTa is a closure map-
ping, hence from (4.44),

(x ◦− a) ◦− a = x ◦− a ,

and one alsogets (f.16)–(f.17) from (4.45)–(4.46). It follows that

x ≥ a ⇒ (x ◦− a)⊕ a = x and (x ≥ a, y ≥ a, x ◦− a = y ◦− a)⇒ (x = y) ,

which mayalso be viewed as consequences of the dual of (4.28) by observing thatTa

is surjective if its range is restrained toa ⊕D.
Formulæ(f.7)–(f.8) are consequences of (4.25)–(4.26). The dual result stated for

⊕ and ◦− is weaker than (f.16)–(f.17).
As a consequence of (4.31) or its dual,

a ≤ b ⇔
{ x

a
≥ x

b
, ∀x

}
⇔ {x ◦− a ≥ x ◦− b , ∀x} .

In particular,a ≥ e ⇔ a ◦\x ≤ x, ∀x andx ◦− a ≤ x, ∀a, ∀x sincea is alwaysgreater
than orequal toε andx ◦− ε = x .

Using (4.29) and (4.49), one gets (f.9). Dually, using (4.47), Formula (f.18) is
derived. Formula (f.10) is a consequence of (4.50) and (4.29). To obtain (f.12), one
makes useof (4.30) with� = � = La and� = � = Rb , and alsoof (4.50). The
proof of (f.11) essentially uses (f.5) twice:x ≥ a (a ◦\x) ≥ (a◦/b) b (a ◦\x) (the latter
inequality arising from the version of (f.5) written forright multiplication and division
applied to the pair(a, b) instead of(x, a)); by associativity of the product, and from
the very definition ofL �

a◦/b(x), one obtains (f.11).
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Equations (4.35) and (4.51) yield Formula (f.3) (which should be compared with
(4.10)), whereas (4.36) and (4.48) yield (f.19). Because of (4.8),La∧b ≤ La ∧ Lb.
If La ∧ Lb were residuated, we could use Inequality (4.37) to get thatL �

a∧b ≥
(La ∧ Lb)

� ≥ L �
a ⊕ L �

b, which would prove (f.4). Unfortunately,La ∧ Lb is not resid-
uated in general, unless multiplication is distributive with respect to∧. A direct proof
of (f.4) is as follows: La∧b ≤ La, hence L �

a∧b ≥ L �
a; similarly L �

a∧b ≥ L �
b; hence

L �

a∧b ≥ L �
a ⊕ L �

b.
As for (4.38) applied toTa⊕Tb , it would yield a weaker result than Equality (f.18).

Finally, consider (4.52) and use (4.30) with� = � = La, � = Tb, � = Tab; this
yields(f.13). Considering (4.52) again, but now in connection with (4.34), and setting
� = � = La, � = Tb, � = Tab yield (f.20).

An interesting consequence of some of these formulæ is the decomposition of any
x with respect to anyy as given by (f.21). Indeed,

(x ∧ y)⊕ (x ◦− y) = (x ⊕ (x ◦− y)) ∧ (y ⊕ (x ◦− y))

= x ∧ (x ⊕ y)

= x ,

the first equality following from the assumption of distributivity, the second based on
the fact thatx ◦− y ≤ x on the one hand, and (f.16) on the other hand, the last equality
being obvious. As a corollary,

x ⊕ y = (x ◦− y)⊕ (x ∧ y)⊕ (y ◦− x) ,

which is straightforward using the decompositions ofx with respect toy and ofy with
respect tox .

Remark 4.64 Formula (f.3) canbewritten L �

a⊕b(x) = La(x)� ∧ L �

b(x), whereas (f.9)

can be written L �
ab(x) = L �

b◦L
�
a(x). Then considering the dioid structure of u.s.c.

mappings fromD into D described in Lemma 4.46 (see (4.16)), it is realized that the
mappinga �→ L �

a is ahomomorphism fromD into that dioid of u.s.c. mappings.
Likewise, (f.19) canbewritten T �

a∧b(x) = T �
a (x) ⊕ T �

b (x), whereas (f.18) can be
writtenT �

a⊕b(x) = T �
b (x)◦T

�
a (x). Remember that nowD is supposed to be a distributive

dioid. Consider the dioid of l.s.c. mappings with the operations defined by (4.15).
Observe that̂⊗ is commutative and idempotent when restricted to elements of the form
T �

a . For the mapping a �→ T �
a to be a homomorphism, we must supplyD with the

addition⊕ def= ∧ and themultiplication⊗ def= ⊕ (see Remark 4.40).

Example 4.65 Let us consider the complete dioid Rmax. From thevery definition of
◦− , we have that

∀a, b ∈ R , a ◦− b =
{

a if b < a ;

ε otherwise.

As for a◦/b (or b ◦\a, which is the same since the multiplication is commutative), it
is equal toa − b (conventional subtraction) whenever there is no ambiguity in this
expression, that is, in all cases except whena = b = ε = −∞ and whena = b =
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� = +∞. Returning to the definition of◦/, it should be clear thatε◦/ε = �◦/� = �,
which yields the rule∞−∞ = +∞ in conventional notation.

Note that the conventional notation should be avoided because it may be mislead-
ing. As a matter of fact, we also have that�⊗ ε = ε (according to Axiom 4.7), which
yields the rule∞−∞ = −∞: this seems to contradict the previous rule, at least when
using conventional notation.

Example 4.66 In order to illustrate the operations◦− and◦/ in the case of thecommu-
tative dioid of Example 4.17, consider first Figure 4.5 in whichA andB are two disks
(respectively, transparent and grey). The subsetC = B ◦− A is the smallest subset such
thatC ∪ A ⊇ B: it is depicted in the figure which also illustrates Formula (f.16) in this
particular case. Consider now Figure 4.6 in whichA is a disk centered at the origin,
whereasB is a square. Then,C = B◦/A is the largest subset such thatC + A ⊆ B: it
is the dark small square in the middle of thefigure. The right-hand side of this figure
illustrates Formula (f.5) (written here forright divisionand multiplication).

(B ◦− A )⊕ A = B ⊕ AB ◦− AA B

Figure 4.5: The operation◦− in
(
2R

2
,∪,+
)

B

A

B ◦/A (B ◦/A )⊗ A ≤ B

Figure 4.6: The operation◦/ in
(
2R

2
,∪,+
)

We conclude this subsection by considering the problem of ‘solving’ equations of
the form

ax ⊕ b = c (4.53)

in the senseof the greatest subsolution. This amounts to computing��(c) with � =
Âb ◦La . Notice that, as discussed at the beginning of this subsection, we have to restrain
the image of Tb to b ⊕ D for the mappingÂb to be residuated. More directly, it is
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obvious that the subset of subsolutions of (4.53) is nonempty if and only ifc ≥ b.
Then��(c) = L �

a because of (4.29) and sincêA�

b = Ib⊕D as already discussed. We
summarize this discussionin the following lemma.

Lemma 4.67 There exists a greatest subsolution x̂ to (4.53) if and only if b ≤ c. Then
x̂ = a ◦\c.

Of course, other similar equations may be considered as well, for example those in-
volving the residuated mappingsT �

b ◦La andLa◦T
�

b , or thedually residuated mappings
Tb◦L

�
a andL �

a◦Tb .

4.5 Fixed-Point Equations, Closure of Mappings and
Best Approximation

In this section we first study general fixed-point equations in complete dioids. The
general results are then applied to specialcases of interest. These special cases are
motivated by some problems of ‘best approximation’ of elements of a dioid by other
elements subject to ‘linear constraints’. This kind ofquestions will arise frequently in
Chapter 5 and therefore they are discussed here in some detail.

4.5.1 General Fixed-Point Equations

Let D be a complete dioid and consider the following ‘fixed-point’ equation and in-
equalities:

�(x) = x , (4.54)

�(x) ≤ x , (4.55)

�(x) ≥ x , (4.56)

where� is an isotone mapping fromD intoD. Observe that the notion of ‘inequality’
is somewhat redundant in complete dioids: indeed, Inequalities (4.55) and (4.56) can
bewritten as equations, namely�(x)⊕ x = x and�(x) ∧ x = x , respectively.

Let us again consider the operations defined by (4.15) or (4.16). We will use⊕
instead of⊕̂ and∧ instead of⊕̃. Accordingly,� ≥ � will mean� = �⊕�, or else
� = � ∧� (which would not be the case if∧ were considered as the ‘sum’);�k will
denote�◦ . . . ◦�︸ ︷︷ ︸

k times

and�0 = ID. We introduce the following additional notation:

�∗ =
+∞⊕

k=0

�k ; �∗ =
+∞∧

k=0

�k . (4.57)

Although (4.15) (respectively (4.16)) has been defined only for l.s.c. (respectively
u.s.c.) mappings, there is no difficulty in defining�∗ or �∗ for mappings� which
are neither l.s.c. nor u.s.c. We will also use the following notation:

�+ =
+∞⊕

k=1

�k ; �+ =
+∞∧

k=1

�k .
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Obviously

�∗ = ID ⊕�+ , hence �∗ ≥ �+ , (4.58)

but equality holds true if� ≥ ID. Also, because of (4.12),

�◦�∗ ≥ �∗◦� = �+ , (4.59)

but equality holds true if� is l.s.c. Similarly,

�∗ = ID ∧�+ , hence �∗ ≤ �+ , (4.60)

but equality holds true if� ≤ ID. Also, because of (4.13),

�◦�∗ ≤ �∗◦� = �+ , (4.61)

but equality holds true if� is u.s.c.
If � is a closuremapping, then�∗ = �, and if� is a dual closure mapping, then

�∗ = �. Indeed, when� is not a closure(respectively dual closure) mapping,�∗

(respectively �∗) is its ‘closure’ (respectively ‘dual closure’) under a semicontinuity
assumption.

Lemma 4.68 Let � be a mapping from a complete dioid D into itself. If � is l.s.c.,
then �∗ is the least closure mapping which is greater than �. Likewise, if � is u.s.c.,
then �∗ is the greatest dual closure mapping which is less than �.

Proof We give the proof of the first statement only. By direct calculations using the
assumption of lower-semicontinuity, it is first checked that

(
�∗)2 = �∗ . (4.62)

Since moreover �∗ ≥ ID, �∗ meets properties (4.39) and it is a closure mapping
greater than�.

Then, assume that� is another closure mapping greater than�. We have� ≥ ID,
and successively,� ≥ �, � = �2 ≥ �◦� ≥ �2 and�k ≥ �k, ∀k ∈ N. Therefore,
by summingup these inequalities,

� ≥
+∞⊕

k=0

�k = �∗ ,

which completes the proof.

Corollary 4.69 Let � be a mapping from a complete dioid D into itself. If � is l.s.c.,
then

� is a closure mapping⇔ � = �∗ .

If � is u.s.c., then

� is a dual closure mapping⇔ � = �∗ .
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This corollary provides an additional equivalent statement to Theorem 4.59, respec-
tively Theorem 4.60.

We now return to (4.54), (4.55) and (4.56) and we set

D
�
� = {x | �(x) = x}, D

�
� = {x | �(x) ≤ x}, D

�
� = {x | �(x) ≥ x}. (4.63)

Obviously, D�

� = D
�

� ∩ D
�

�. With the only assumption that� is isotone, Tarski’s
fixed-point theorem (see [22]) states thatD�

� is nonempty (thus,D�
� andD

�
� are also

nonempty).

Theorem 4.70

1. Given two mappings � and � , if � ≥ � , then D
�
� ⊆ D

�
� .

2. If C ⊆ D
�
�, then

∧
x∈C x ∈ D

�
�; otherwise stated, the set D

�
� with the order

induced by that of D is a complete inf-semilattice having the same lower bound
operation ∧ as D. Moreover, � ∈ D

�

�. Hence (by Theorem 4.27, or rather by
its dual), D

�
� is also a complete lattice, but the upper bound operation does not

need to be the same as that of D, the latter being denoted ⊕.

3. If � is l.s.c., then C ⊆ D
�
� implies

⊕
x∈C x ∈ D

�
�; otherwise stated, the set

D
�
� with the order induced by that of D is a complete sup-semilattice having the

same upper bound operation⊕ as D.

4. Statement 3 holds true also for D
�
�.

5. In general, D
�
� = D

�
�∗ = D

�
�∗ . Otherwise stated,

�(x) ≤ x ⇔ �∗(x) ≤ x ⇔ �∗(x) = x . (4.64)

6. If � is l.s.c., then D
�

� = �∗(D). The minimum element is �∗(ε) which also
belongs to D

�
�, and thus is the minimum element of this subset too.

Proof

1. Straightforward.

2. Since� is isotone, if x, y ∈ D
�
�, thenx ∧ y ≥ �(x) ∧�(y) ≥ �(x ∧ y) (see

(4.13)). Hencex ∧ y ∈ D
�
�. This result obviously extendsto any finite or infinite

subset ofD�

�. Also � ≥ �(�), hence� ∈ D
�

�. The dual of Theorem 4.27
shows that any (finite or infinite) number of elements ofD�

� admit an upper
bound inD

�
�. But this does not mean that, ifx, y ∈ D

�
�, thenx ⊕ y ∈ D

�
�,

where of course⊕ denotesthe addition ofD.

3. Since� is assumed to be l.s.c., forx, y ∈ D
�
�, x⊕y ≥ �(x)⊕�(y) = �(x⊕y).

Hencex ⊕ y ∈ D
�

�. This result obviously extends to any finite or infinite subset
of D

�
�.
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4. Same argument.

5. If � ≥ ID and if x ∈ D
�

� , thenx ≥ �(x) ≥ x , hence x = �(x) andx ∈ D
�

� ,
thusD

�
� = D

�
� . In particular, this is true for� = �∗. Now, if x ∈ D

�
�,

x ≥ �(x) ≥ �2(x) ≥ · · · , andby summing up,x ≥ �∗(x), hencex ∈ D
�

�∗ and
D

�
� ⊆ D

�
�∗ . But since�∗ ≥ �, the reverse inclusion also holds true and thus

D
�
� = D

�
�∗ = D

�
�∗ .

6. From its very definition,D�
�∗ ⊆ �∗(D). On theother hand, letx ∈ �∗(D),

hence∃y ∈ D : x = �∗(y). Then, �(x) = �◦�∗(y) = �+(y), the latter
equality being true because� is assumed to be l.s.c. From (4.58), it follows that
�(x) = �+(y) ≤ �∗(y) = x , hence x ∈ D

�
� and�∗(D) ⊆ D

�
�. But since it

has been proved thatD
�
� = D

�
�∗ , finally D

�
� = D

�
�∗ = D

�
�∗ = �∗(D).

Sinceξ = �∗(ε) is clearly the minimum element of�∗(D), it is also that ofD�

�,
but sinceD�

� ⊆ D
�
�, ξ is a minorant ofD�

�. It remains tobe proved thatξ indeed
belongs toD�

�. This follows from the fact that�∗(ε) = �+(ε) = �◦�∗(ε),
henceξ = �(ξ).

Lemma 4.71 If � is residuated, then �∗ is also residuated, and
[
x ≥ �(x)⇔ ��(x) ≥ x

]
, that is, D

�
� = D

�

�� . (4.65)

Moreover,
(
�∗)� = (��

)
∗ . (4.66)

Proof If � is residuated, the fact that�∗ is also residuated is immediate from its
definition. Then (4.65) is a direct consequence of (4.19)–(4.20). Equality (4.66) can be
proved using (4.29) and (4.35) (or rather its extension to infinitely many operations⊕
and∧).

The following dual of Theorem 4.70 is stated without proof.

Theorem 4.72

1. If � ≥ � , then D
�

� ⊇ D
�

� .

2. If C ⊆ D
�
�, then

⊕
x∈C x ∈ D

�
�; otherwise stated, the set D

�
� with the order

induced by that of D is a complete sup-semilattice having the same upper bound
operation ⊕ as D. Moreover, ε ∈ D

�
�. Hence (by Theorem 4.27), D

�
� also is a

complete lattice, but the lower bound operation does not need to be the same as
that of D, the latter being denoted ∧.

3. If � is u.s.c., then C ⊆ D
�

� implies
∧

x∈C x ∈ D
�

�; otherwise stated, the set D
�

�

with the order induced by that of D is a complete inf-semilattice having the same
lower bound operation ∧ as D.

4. The same statement holds true for D
�
�.
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5. In general, D
�

� = D
�

�∗ = D
�

�∗ .

6. If � is u.s.c., then D
�
� = �∗(D). The maximum element is �∗(�) which also

belongs to D
�
�, and thus is the maximum element of this subset too.

4.5.2 The Case�(x) = a ◦\x ∧ b

Givena andb in a complete dioidD, we considerthe equation

x = a ◦\x ∧ b , (4.67)

and theinequality

x ≤ a ◦\x ∧ b . (4.68)

We may useall the conclusions of Theorem 4.72 since the corresponding� is u.s.c.
(� is the composition of two u.s.c. mappings, namelyL �

a introduced in§4.4.4, and
x �→ x ∧ b). Let us evaluate�∗(x). By using(f.1) and (f.9) of Table 4.1, it follows
that

�2(x) = a ◦\x ∧ b

a
∧ b = x

a2
∧ b ∧ b

a
,

...

�k(x) = x

ak
∧ b ∧ b

a
∧ · · · ∧ b

ak−1
.

Taking the lower bound on both sides of these equalities fork = 0, 1, 2, . . . , andusing
(f.3) (more properly, using its extension to infinitely many operations), it follows that

�∗(x) = x ∧ x

a
∧ x

a2
∧ · · · ∧ b ∧ b

a
∧ b

a2
∧ · · ·

= x

e⊕ a ⊕ a2⊕ · · · ∧
b

e⊕ a ⊕ a2⊕ · · ·
= x ∧ b

e⊕ a ⊕ a2⊕ · · ·
= x ∧ b

a∗
, (4.69)

with

a∗ = e ⊕ a ⊕ a2⊕ · · · . (4.70)

Returning to Theorem 4.72, we know that�∗(�) = a∗ ◦\b is the maximum element
of both subsets of solutions to (4.67) and (4.68). On the other hand,ε solves (4.68),
but it also solves (4.67), unlessa = ε andb 
= ε (note thatε ◦\ε = �). Because of
statement 5 of Theorem 4.72, ifx solves (4.68), and a fortiori if itsolves (4.67), that
is, if x ∈ D

�

�, thenx ∈ D
�

�∗ , that is,x = �∗(x) = a∗ ◦\(x ∧ b). This implies that
x = a∗ ◦\x sincex ≤ b as a solution of (4.68). We summarize these results in the
following theorem.
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Theorem 4.73 Consider Equation (4.67) and Inequality (4.68) with a and b given in
a complete dioid D. Then,

1. a∗ ◦\b is the greatest solution of (4.67) and (4.68);

2. every solution x of (4.67) and (4.68) satisfies x = a∗ ◦\x;

3. ε is the least solution of (4.68), and it is also the least solution of (4.67) provided
that a 
= ε or b = ε.

Remark 4.74 (Some identities involvinga∗) Observe that the notationa∗ of (4.70)
may be justified by the fact that

L∗a = La∗ , (4.71)

which is a consequence of (4.57), (4.49) and (4.51). SinceL∗a is a closure mapping,(
L∗a
)2 = L∗a and with (4.49) and (4.71), it follows that

(a∗)2 = a∗, hence (a∗)∗ = a∗ . (4.72)

Consideragain�(x) = a ◦\x (derived from the previous� by letting b = �). This
mapping� is nothing butL �

a. By using (4.69) in this case, we see that

(L �
a)∗ = (La∗)

� = (L∗a
)�

, (4.73)

the latter equality following from (4.71). Indeed, this is a particular instance of Equa-
tion (4.66). Since

(
L∗a
)�

is a dual closuremapping, it is equal to its square, hence, with
(4.73),

∀x ,
x

a∗
= a∗ ◦\x

a∗
. (4.74)

SinceLa∗ is a closure mapping, and since its residual is(La∗)
�, from (4.42), it follows

that

∀x , a∗x = (a∗x)
a∗

(
in particular, a∗ = a∗

a∗

)
. (4.75)

From (4.41), weobtain

∀x ,
x

a∗
= a∗
( x

a∗

)
. (4.76)

4.5.3 The Case�(x) = ax ⊕ b

Givena andb in a complete dioidD, we considerthe equation

x = ax ⊕ b , (4.77)
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and theinequality

x ≥ ax ⊕ b . (4.78)

We may useall the conclusions of Theorem 4.70 since the corresponding� is l.s.c. A
direct calculation shows that

�∗(x) = a∗(x ⊕ b) .

Then,�∗(ε) = a∗b is the minimum element of both subsets of solutions to (4.77) and
(4.78). On the other hand,� solves (4.78), but it also solves (4.77) ifD is Archimedian,
unlessa = ε andb 
= �. Because of (4.64), ifx solves (4.78), and a fortiori if it solves
(4.77), thenx = a∗(x ⊕ b). This implies thatx = a∗x sincex ≥ b as a solution of
(4.78). We summarizethese results in the following theorem.

Theorem 4.75 Consider Equation (4.77) and Inequality (4.78) with a and b given in
a complete dioid D. Then,

1. a∗b is the least solution of (4.77) and (4.78);

2. every solution x of (4.77) and (4.78) satisfies x = a∗x;

3. � is the greatest solution of (4.78), and, if D is Archimedian, it is also the
greatest solution of (4.77) provided that a 
= ε or b = �.

We conclude this subsection by showing a result which is analogous to a classical
resultin conventional linear algebra. Namely, in conventional algebra, letA be ann×n
matrix and b be ann-dimensional column vector, it is known that all the solutions of
Ax = b can beobtained by summing up a particular solution of this equation with all
solutions of the ‘homogeneous’ equationAx = 0. More precisely, ifAx = b and if
Ay = 0, then, by summing up the two equations, one obtainsA(x + y) = b. This
statement and proof also hold true for equation (4.77) in a dioid, where

x = ax (4.79)

plays the part of the homogeneous equation.
Conversely, in conventional algebra, ifAx = b and Ax ′ = b, by subtraction,

y = x − x ′ satisfies Ay = 0. This latter argument cannot be translated straightfor-
wardly to the dioid situation. Indeed, one should first observe that, since ‘adding’ also
means ‘increasing’ in a dioid, one cannot recoverall solutions of (4.77) by adding
something to a particular solution,unless this is the least solution. Moreover, the proof
by subtraction has to be replaced by another argument. We are going to see that the
‘minus’ operation◦− indeed plays a part in proving essentially the expected result, al-
though, admittedly, things are somewhat more tricky. Since we are playing with◦− ,
we recall thatD has to be assumed distributive.

Theorem 4.76 Let D be a distributivedioid (which may as well be a matrix dioid—see
§4.6). A necessary and sufficient condition for x to be a solution of (4.77) is that x can
be written y ⊕ a∗b, where y is a solution of (4.79).
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Proof Let x be a solution of (4.77). Consider the decomposition ofx with respect to
a∗b (see (f.21) of Table 4.2), that is,

x = (x ∧ a∗b)⊕ (x ◦− a∗b)
= a∗b ⊕ (x ◦− a∗b)

sincex ≥ a∗b by Theorem 4.75. Letr = x ◦− a∗b. Onehas that

r = (ax ⊕ b) ◦− a∗b owing to (4.77),
= (ax ◦− a∗b)⊕ (b ◦− a∗b) using (f.14),
= ax ◦− a∗b sinceb ◦− a∗b = ε becausee ≤ a∗,
≤ ax ◦− a+b sincea∗ ≥ a+,
≤ a(x ◦− a∗b) = ar using (f.20).

Sincex = a∗b ⊕ r, one also hasa∗x = a∗a∗b ⊕ a∗r = a∗b ⊕ a∗r from (4.62). But

x = a∗x (by Theorem 4.75) and thusx = a∗b ⊕ y with y
def= a∗r. Observe that

y = a∗y (from (4.62) again). Sincer ≤ ar, theny ≤ ay, and hence,multiplying by
a∗, weobtainy = a∗y ≤ a+y ≤ a∗y = y. Finally, we have proved thaty = ay and
thatx = a∗ ⊕ y.

4.5.4 Some Problems of Best Approximation

Let us give thepractical rationale behind solving inequalities such as (4.68) or (4.78)
in the sense of finding an ‘extremal’ solution (respectively the maximum or the mini-
mum). This motivation will be encountered several times in Chapter 5. In a complete
dioid D, for somegiven a, D

�

La
is the subset{x ∈ D | x ≥ ax} . Such subsets en-

joy nice properties that willbe described later on. LetI be the ‘canonical injection’
from D

�
La

into D, namely I : x �→ x . Givenany b, if b 
∈ D
�
La

, thereis no solution

to I(x) = b, x ∈ D
�

La
. However, residuation theory provides an answer by looking

for the maximum element in D
�
La

which is less thanb, or the minimum element inD
�
La

which is greater thanb, as long asI is both residuated and dually residuated (which we
will check later on). In some sense, these solutions canbe viewed as ‘best approxima-
tions from above or from below’ ofb by elements ofD�

La
. It will be shown that these

two residuation problems are directly related to the problems of§4.5.2 and§4.5.3.
We firststudy several equivalent characterizations ofD�

La
and the structure of this

subset.

Lemma 4.77

1. We have the following equivalences:

x ≥ ax︸ ︷︷ ︸
(i)

⇔ x = a∗x︸ ︷︷ ︸
(ii)

⇔ x ≤ a ◦\x︸ ︷︷ ︸
(iii )

⇔ x = a∗ ◦\x︸ ︷︷ ︸
(iv)

. (4.80)

2. The subset D
�

La
contains ε and �; it is closed for addition; it is a left multiplica-

tive ideal, that is,

∀x ∈ D
�
La

, ∀y ∈ D , x y ∈ D
�
La
;

a fortiori, it is closed for multiplication.
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3. The subset D
�

La
is the image of D by La∗ and also by (La∗)

�, that is, ∀y ∈ D,

a∗y ∈ D
�
La

and a∗ ◦\y ∈ D
�
La

; the subset D
�
La

is a complete dioid with a∗ as its

identity element (it is a subdioid of D only if a ≤ e and D
�

La
= D).

Proof

1. The equivalences(i) ⇔ (ii ) and(iii ) ⇔ (iv) are direct consequences of Theo-
rems 4.70 and 4.72 (statement 5), respectively, applied to� = La and� = L �

a.
The equivalence(i)⇔ (iii ) comesfrom (4.65).

2. We may use any of the equivalent characterizations ofD�
La

to prove the rest of
the statements of this lemma. For each statement, we choose the most adequate
characterization, but, as an exercise, we invite the reader to use the other ones
to prove the same statements. Of courseε ≥ aε and� ≥ a�. We have [x ≥
ax, y ≥ ay] ⇒ x ⊕ y ≥ a(x ⊕ y). Also x ≥ ax ⇒ ∀y ∈ D, x y ≥ a(x y).

3. The first part of the statement is a direct consequence of statements 6 of Theo-
rems 4.70 and 4.72 (applied to� = La and to� = L �

a , respectively), andof
(4.73). For allx ∈ D

�

La
, a∗x = x , andhencea∗ behaves as theidentity element

in D
�
La

. Therefore, D�
La

satisfies all the axioms of a dioid; it is even a complete
dioid since it is also closed for infinite sums. It is a subdioid ofD if a∗ coincides
with e. Sincea ≤ a∗, this implies thata ≤ e. In this case,D�

La
coincides with

D, which isa rather trivial situation.

SinceD
�

La
= La∗(D), from now on we will prefer the more suggestive notationa∗D

instead ofD�
La

.
Let us now return to the problem of the best approximation ofb by the ‘closest’

element ofa∗D among those which are either ‘below’ or ‘above’b. More precisely,
we look for the greatestx ∈ a∗D suchthatI(x) ≤ b or for the leastx ∈ a∗D such
thatI(x) ≥ b. Such problems are well-posed ifI is residuated ordually residuated
respectively. This is indeed the case thanks to the fact thata∗D is a complete dioid
containingε and� which aremapped to the same elements ofD (and all continuity
assumptions needed are satisfied byI).

Consider the former problem of approximation from below, the solution of which
is I�(b) by definition. We show that this problem is the same as that of finding the
greatest element ofD�

� with �(x) = a ◦\x ∧ b. Indeed,x must be less thanb; it must
also belong toa∗D, hence x ≤ a ◦\x , thusx ≤ a ◦\x ∧ b. Conversely, this inequality
implies thatx is less thanb and less thana ◦\x , hence it belongs toa∗D. Therefore,
from the results of§4.5.2, we conclude thatI�(b) = a∗ ◦\b.

Similarly, it can be shown that findingI�(b) is the same problem as finding the
least elementof D

�
� with �(x) = ax ⊕ b. The solution hasbeen given in§4.5.3 and

thereforeI�(b) = a∗b.
We consider the mapping which associates with anyb ∈ D its bestapproximation

from below (or from above) ina∗D. This mapping is of course surjective (any element
of a∗D is its own approximation) but not injective: severalb having the same best
approximation are said to be ‘equivalent’. We can partitionD into equivalence classes.
The following theorem summarizes and completes this discussion.
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Theorem 4.78

1. Let I : a∗D → D be such that I(x) = x. The canonical injection I is both
residuated and dually residuated and

I�(b) = b

a∗
, I�(b) = a∗b .

2. The mapping I� : D→ a∗D is a surjective l.s.c. dioid homomorphism. Consid-

ering the equivalence relation
I�

≡ in D (see (4.3)), then for any b ∈ D, its equiv-
alence class [b] contains one and only one element which can also be viewed as
an element of a∗D and which, moreover, is the maximum element in [b]. This
element is precisely given by I

(
I�(b)
) = a∗b.

3. The mapping I� : D→ a∗D is surjective and u.s.c. (it is not a homomorphism).

Considering the equivalence relation
I�

≡ in D, then for any b ∈ D, its equiva-
lence class [b] contains one and only one element which can also be viewed as
an element of a∗D and which, moreover, is the minimum element in [b]. This
element is precisely given by I

(
I�(b)
) = a∗ ◦\b.

Proof

1. Already done.

2. The fact thatI� is ahomomorphism is obvious from its explicit expression; it is
l.s.c. (as adual residual) and surjective as already discussed. Each equivalence

class by
I�

≡ has a maximum element
︷︷

b by Lemma 4.49, and an explicit expression
for

︷︷
b has been given in Remark 4.57: here� = I� and hence�� = I, thus

︷︷
b = I(a∗b). Clearly,

︷︷
b may be considered as an element ofa∗D. If anotherb′

belongs at the same time to [b] (hencea∗b′ = a∗b) and toa∗D (henceb′ = a∗b′),
thenb′ = a∗b = a∗

︷︷

b =
︷︷

b andb′ coincides with
︷︷

b.

3. Dual arguments can be used here. The main difference is that
I�

≡ is not a congru-
ence becauseI� is only a∧-morphism (indeed it is u.s.c.), but it does not behave
well with respect to⊕ and⊗.

Concrete applications of these results will be given in Chapter 6 and 5.

Remark 4.79 Most of the results of this subsection can be generalized to the situation
when the subseta∗D characterized by (4.80) is replaced byD

�

� (see (4.63)) with �

residuated. Theorems 4.70 and 4.72, and Lemma 4.71 show that other characterizations
of D

�
� are

x = �∗(x)⇔ x ≤ ��(x)⇔ x = (��
)
∗ (x) =

(
�∗)� (x) ;

that this subset containsε and�; that it is closed for addition (but it is no longer a left
multiplicative ideal, unless� satisfies�(x)y ≥ �(x y), ∀x, y, which isequivalent to
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��(x)y ≤ ��(x y)); thatit is the image of the wholeD by �∗ and also by (�∗)�. The
best approximation of someb from above inD�

� is given by�∗(b). It is themaximum

representative of the equivalence class [b] of b for the equivalence relation
�∗
≡ and the

only element in [b] ∩D
�
�. Dual statementshold true for the best approximation from

below given by(�∗)� (b).

4.6 Matrix Dioids

4.6.1 From ‘Scalars’ to Matrices

Starting from a ‘scalar’ dioidD, consider squaren× n matrices with entries inD. The
sum and product of matrices are defined conventionally after the sum and product of
scalars inD.

The set ofn × n matrices endowed with these two operations is also a dioid which
is denotedDn×n . The only point that deserves some attention is the existence of an
identity element. Thanks to Axiom 4.7, the usual identity matrix with entries equal toe
on the diagonal and toε elsewhere is theidentity element ofDn×n . This identity matrix
will also bedenotede and the zero matrix will simply be denotedε.

Remark 4.80 We prefer to move from ‘scalars’ directly to square matrices. In this way
the product of two matrices is a matrix of the same type andDn×n can begiven a dioid
structure too (multiplication remains an ‘internal’ operation). In fact, from a practical
point of view and for most issues that will be considered later on, in particular linear
equations, we can deal with nonsquare matrices, and especially with row or column
vectors, as well. This is just a matter of completing the nonsquare matrices by rows
or columns with entries equal toε in order to convert them into square matrices, and
to check that, for the problem considered, this artificial part does not interfere with the
real part of the problem and that it only adds a trivial part to that problem.

Notice that ifD is a commutative dioid, this is not the case forDn×n in general.
Even ifD is entire,Dn×n is not so.

Example 4.81 Let n = 2 and

A =
(

ε a
ε ε

)
.

Then A2 = A ⊗ A = ε althoughA 
= ε.

Of course

A ≥ B in Dn×n ⇔ {Ai j ≥ Bi j in D , i = 1, . . . , n , j = 1, . . . , n} .

Even ifD is a chain,Dn×n is only partiallyordered. IfD is complete,Dn×n is complete
too. Moreover

(A ∧ B)i j = Ai j ∧ Bi j .
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If D is distributive,Dn×n is also distributive. Even if D is Archimedian,Dn×n is not
Archimedian. Here is a counterexample.

Example 4.82 Let n = 2 and considerthe matrices

A =
(

a ε

ε ε

)
and B =

(
ε ε

ε b

)
.

Then there is obviously no matrixC suchthat AC ≥ B.

In §2.3 it was shown how weighted graphscan be associated with matrices, and
moreover, inthe case when the entries lie in sets endowed with two operations⊕ and
⊗ satisfying certain axioms, how the sum and the product of two matrices can be
interpreted in termsof those graphs (see§2.3.1). These considerations are valid for
matriceswith entries belonging to a general dioid. The only point that deserves some
attention is the notion of ‘circuit of maximum weight’ in the case when the underlying
dioid is not a chain. We will discuss this issue in the case of polynomial matrices in
§4.7.3.

4.6.2 Residuation of Matrices and Invertibility

We consider the mappingL A from Dn intoDn defined byx �→ Ax , whereA ∈ Dn×n

andD is a dioid in which∧ exists. Returning to Remark 4.80, we could rather define
a mapping fromDn×n (which is a dioid unlikeDn) intoDn×n , namely X �→ AX and
then use it for X ∈ Dn×n having its first column equal tox ∈ Dn andits n − 1 last
columns identically equal toε. Thepurpose here is to establish a formula forL �

A and
then to study conditions of exact invertibility to the left of matrixA.

Indeed, it is not more difficult to consider a ‘matrix of operators’ in the following
way. To keep notation simple,we taken = 3 but the generalization is straightforward.
Then, considersix dioids{Di }i=1,2,3 and{C j } j=1,2,3 and nine residuated mappings�i j

from D j to Ci . The mapping� mapsD1 × D2 ×D3 into C1 × C2 × C3 and is defined
as follows:

� : x =



x1

x2

x3



 �→ y =



y1

y2

y3



 =



�11(x1)⊕�12(x2)⊕�13(x3)

�21(x1)⊕�22(x2)⊕�23(x3)

�31(x1)⊕�32(x2)⊕�33(x3)



 .

It is interesting to consider� as the sumof the following three mappings:

�1(x) =



�11(x1)

�22(x2)

�33(x3)



 , �2(x) =



�12(x2)

�23(x3)

�31(x1)



 , �3(x) =



�13(x3)

�21(x1)

�32(x2)



 .

The reason for considering these mappings is that their residuals should be obvious
since eachyi depends upon a singlex j (or otherwise stated, they are ‘diagonal’ up to a
permutation of ‘rows’). For instance,

x = �
�

3(y) =



�

�

21(y2)

�
�

32(y3)

�
�

13(y1)



 .
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Then, since� = �1⊕�2⊕�3, by application of (4.35), one obtains

��(y) =



�

�

11(y1) ∧�
�

21(y2) ∧�
�

31(y3)

�
�
12(y1) ∧�

�
22(y2) ∧�

�
32(y3)

�
�

13(y1) ∧�
�

23(y2) ∧�
�

33(y3)



 .

Returning to the mappingL A : x �→ Ax , we will use the natural notationA ◦\y for
L �

A(y). It should be kept in mind thatL �

A is not a ‘linear’ operator in general, that is, it
is not expressible as the left product by some matrix. The following lemma is indeed
just a corollary of the considerations just made.

Lemma 4.83 If A = (Ai j
) ∈ Dn×n where D is a dioid in which ∧ exists, and y ∈

Dn×1, then

(A ◦\y)i =
n∧

j=1

(
A ji ◦\y j

)
. (4.81)

Therefore, calculatingA ◦\y amounts to performing a kind of (left) matrix product of
the vector y by the transpose of matrix A where multiplication is replaced by (left)
division and addition is replaced by lowerbound. Recall that ◦\ is distributive with
respect to∧ as shown by Formula(f.1).

With A, D ∈ Dm×n, B ∈ Dm×p,C ∈ Dn×p , it is straightforward to obtain the
following more general formulæ forC = A ◦\B andD = B◦/C:

Ci j =
m∧

k=1

(
Aki ◦\Bkj

)
, Di j =

p∧

k=1

(
Bik◦/C jk

)
. (4.82)

We now consider conditions under which there exists a left inverse toA ∈ Dn×n ,
that is, an operatorB from Dn to Dn suchthat B◦A = I (here we useI instead of
IDn to denote identity). IfD is a commutative dioid, andB ∈ Dn×n (as A does),
Reutenauer and Straubing [118] proved thatB A = I ⇔ AB = I . In what follows we
do not assume that the operatorB canbe expressed as the left product by a matrix (see
Remark 4.85 below) nor that there exists a right inverse toA.

Lemma 4.84 Let D be a complete Archimedian dioid and let A be an n × n matrix
with entries in D. A necessary and sufficient condition for the existence of a left inverse
operator to A is that there is one and only one entry in each row and column of A which
is different from ε and each such an entry has a left inverse.

Proof Notice first that ifB◦A = I , it can beproved thatA is injective by using a similar
argument as that used in the proof of (4.27). Then (4.27) again shows thatA ◦\A = I .
Hencex = A ◦\(Ax), ∀x . Fix any i ∈ {1, . . . , n} and setxi = ε andx j = �, ∀ j 
= i.
Using (4.81) and the conventional matrix product formula, one obtains

xi = ε =
n∧

k=1

( ⊕
j 
=i Akj x j

Aki

)
. (4.83)
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For the lower bound, we can limit ourselves to the indicesk ∈ K (i), whereK (i) =
{k | Aki 
= ε}, sinceAki = ε ⇒ (Aki ◦\y = �, ∀y). This subset is nonempty for all
i since otherwise the right-hand side of (4.83) would be equal to� for the reason
just given, yielding a contradiction (or equivalently, becauseA is injective and there
is no column ofA which is identically equal toε). For all k ∈ K (i), we consider
J (i, k) = { j | j 
= i, Akj 
= ε

}
. If none of theseJ (i, k) was empty, we would again

reach a contradiction since the right-hand side of (4.83) would again be equal to�.
Therefore we have proved that for every columni, there exists at least one rowk

suchthat Aki 
= ε and all other entries in the same row are equal toε. Since such a row
can obviously be associated with only one indexi, there are exactly n rows in A with
a single nonzero entry. HenceA contains exactlyn nonzero entries, but since it has
no column identically zero, each column must also contain exactly onenonzero entry.
Therefore, up to a permutation of rows and columns,A is a diagonal matrix. Then,
using vectorsx which are columns of the identity matrix, it is easy to prove thateach
diagonal term has a left inverse.

This result generalizes similar results by Wedderburn [128] and Rutherford [120]
for Boolean matrices (observe that the Boole algebra is a complete Archimedian dioid).
Other extensions using different assumptions on the dioidD are discussed in the notes
section.

Remark 4.85 Of course, the mappingy �→ A ◦\y (denotedA ◦\·) is a∧-morphism, but
when A has a leftinverse,A ◦\· is also a⊕-morphism when restricted to the image of
A. As a matter of fact,

x ⊕ y = A ◦\(Ax ⊕ Ay) ≥ A ◦\(Ax) ⊕ A ◦\(Ay) ,

since A ◦\· is isotone. But the last term is also equal tox ⊕ y, hence equality holds
throughout. However, whenD is not commutative, this isnot sufficient to associate a
matrix with this operator.

4.7 Dioids of Polynomials and Power Series

4.7.1 Definitions and Properties of Formal Polynomials and Power
Series

Starting from a ‘scalar’ dioidD, we can consider the set of formal polynomials and
power series in one or several variables with coefficients inD. If several variables are
involved (e.g.z1 andz2), we only considerthe situation ofcommutative variables (e.g.
z1z2 andz2z1 are considered to be the same object). Exponentski of zi can be taken in
N or in Z: in the latter case, one usually speaks of ‘Laurent series’.

Definition 4.86 (Formal power series)A formal power seriesin p (commutative) vari-
ables with coefficients in D is a mapping f from N

p or Z
p into D: ∀k = (k1, . . . , kp)



198 Synchronization and Linearity

∈ N
p or Z

p, f (k) represents the coefficient of zk1
1 . . . z

kp
p . Another equivalent represen-

tation is

f =
⊕

k∈Np or Zp

f (k1, . . . , kp)z
k1
1 . . . z

kp
p . (4.84)

Remember that e.g. f (3) denotes the coefficient ofz3, not the ‘numerical’
value of theseriesfor z = 3. First,this has no meaning ifD is not a dioid of
numbers but just an abstract dioid. Second, even ifD is a setof numbers, we
are not dealing here withnumerical functions defined by either polynomials
or series, we only deal withformal objects. The relationship between a formal
polynomial and its related numerical function was discussed in Chapter 3.

Definition 4.87 (Support, degree, valuation)The support supp( f ) of a series f in p
variables is defined as

supp( f ) = {k ∈ Z
p | f (k) 
= ε

}
.

The degree deg( f ) (respectively valuation val( f )) is the upper bound (respectively
lower bound) of supp( f ) in the completed lattice Z

p
, where Z denotes Z ∪ {−∞} ∪

{+∞}.

Example 4.88 For p = 2 and f = z1z4
2⊕ z2

1z3
2, deg( f ) = (2, 4) and val( f ) = (1, 3).

Definition 4.89 (Polynomial, monomial)A polynomial(respectively a monomial) is
a series with a finite support (respectively with a support reduced to a singleton).

The set of formal series is endowed with the following two operations:

f ⊕ g : ( f ⊕ g)(k) = f (k) ⊕ g(k) ,

f ⊗ g : ( f ⊗ g)(k) =
⊕

i+ j=k

f (i) ⊗ g( j ) .




 (4.85)

These are the conventional definitions of sum and product of power series. The product
is nothing other than a ‘convolution’. As usual, there is no ambiguity in using the same
⊕ symbol in (4.84) and for the sum of series. It is easy to see that the set of series
endowed with these two operations is a dioid denotedD[[ z1, ..., z p ]]. In particular, its
zero element, still denotedε, is defined byf (k) = ε, ∀k, and its identity elemente
corresponds tof (0, . . . , 0) = e and f (k) = ε otherwise. Most ofthe time, we will
consider exponentski ∈ Z; we will not use a different notation whenki ∈ N but we will
state it explicitly when necessary. Notice that whenk lies inZ

p, thedefinition of f ⊗ g
involves infinite sums: for this definition to make sense, it is then necessary toassume
thatD is complete. This is not required for polynomials. The subset of polynomials is
a subdioid ofD[[z1, ..., z p ]] denotedD[z1, ..., z p ].

One hasthat
f ≥ g ⇔ { f (k) ≥ g(k) , ∀k} .
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Of course,D[[ z1, ..., z p ]] is only partially ordered even ifD is a chain. The dioid
D[[ z1, ..., z p ]] is commutative if D is commutative (this holds true because we con-
sider commutative variablesonly). If D is complete,D[[ z1, ..., z p ]] is complete, but
D[z1, ..., z p ] i snot. Here is a counterexample.

Example 4.90 For p = 1, consider the infinite subset of polynomials
{
zk
}

k∈N
. Their

sum isnot a polynomial.

However, if lower bounds can be defined inD, in particular whenD is complete,
these lower bounds extend toD[z1, ..., z p ] andD[[ z1, ..., z p ]] ‘coefficientwise’. Dis-
tributivity of D implies distributivity ofD[[ z1, ..., z p ]]. But even ifD is Archimedian,
D[[ z1, ..., z p ]] andD[z1, ..., z p ] are not necessarily so when exponents are inN

p . Here
is a counterexample.

Example 4.91 Let p = 1, f = z and g = e. Obviously, there is noh suchthat
f h ≥ g, sincez is alwaysa factorof f h, that is,( f h)(0) = ε, which cannot dominate
g(0) = e.

Lemma 4.92 If D is Archimedian, D[z1, ..., z p ] and D[[ z1, ..., z p ]] are Archimedian
too provided the exponents lie in Z

p.

Proof Given f 
= ε and g (Laurent series or polynomials), we must findh such
that f h ≥ g. Since f 
= ε, there exists at least one� suchthat f (�) 
= ε. Let
f ′ denote the corresponding monomial, that is,f ′(�) = f (�) and f ′(k) = ε when
k 
= �. Of course, f ≥ f ′, hence it suffices to findh suchthat f ′h ≥ g. Onehas that
( f ′h)(k) = f ′(�)h(k − �). SinceD is Archimedian, for allk, there exists anak such
that f ′(�)ak ≥ g(k). It suffices to seth(k) = ak+�. Of course, ifg is a polynomial,h
canbe a polynomial too.

Lemma 4.93 We consider supp(.) as a mapping from the dioid D[[ z1, ..., z p ]] into the
dioid
(
2Z

p
,∪,+) in which ∧ is ∩, and deg(.) and val(.) as mappings from the dioid

D[[ z1, ..., z p ]] into the dioid
(
Z,max,+

)p
in which all operations are componentwise,

in particular ∧ is min componentwise. Then

supp( f ⊕ g) = supp( f )⊕ supp(g) , (4.86)

supp( f ∧ g) = supp( f ) ∧ supp(g) , (4.87)

supp( f ⊗ g) ≤ supp( f )⊗ supp(g) , (4.88)

deg( f ⊕ g) = deg( f )⊕ deg(g) , (4.89)

deg( f ∧ g) = deg( f )∧ deg(g) , (4.90)

deg( f ⊗ g) ≤ deg( f )⊗ deg(g) , (4.91)

val( f ⊕ g) = val( f ) ∧ val(g) , (4.92)

val( f ∧ g) = val( f )⊕ val(g) , (4.93)

val( f ⊗ g) ≥ val( f )⊗ val(g) . (4.94)
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Of course, equalities and inequalities involving the lower bound in D[[ z1, ..., z p ]] are
meaningful only if this lower bound exists. Moreover, all inequalities become equalities
if D is entire, and then suppand degare homomorphisms, whereas val would be a

homomorphism if considered as a mapping from D[[z1, ..., z p ]] into
(
Z,min,+

)p
.

Proof Equation (4.86)—respectively, (4.87)—results from the fact that

f (k) ⊕ g(k) 
= ε ⇔ { f (k) 
= ε or g(k) 
= ε}
—respectively,

f (k) ∧ g(k) 
= ε⇔ { f (k) 
= ε andg(k) 
= ε} .

Inequality (4.88) results from the fact that

( f ⊗ g)(k) 
= ε ⇒ {∃i, j : i + j = k , f (i) 
= ε , g( j ) 
= ε} .

But the converse statement is also true ifD is entire, proving equality in (4.88).
Now, to prove the corresponding statements for deg (respectively, val), it suffices to

take the upper bound (respectively, the lower bound) at both sides of (4.86)–(4.88) and

to observe that, in theparticular case of
(
Z,max,+

)p
, ⊕,⊗,∧ are distributive with

respect to one another.

Remark 4.94 Since⊕, and therefore≤, operate componentwise for power series, it is
clear that∧ operates also componentwise, as was claimed in Lemma 4.93. However,
there is another interesting way of viewing this question. Consider a family{ f j } j∈J ⊆
D[[ z]] (we limit ourselves to a single variablez simplyto alleviate thenotation) and the
expression ∧

j∈J

f j =
∧

j∈J

⊕

k∈Z

f j (k)z
k .

Notethat the general formula of distributivity of any abstract operation
∏

with respect
to some other operation

∐
is
∏

j∈J

∐

k∈K

a jk =
∐

ϕ∈K J

∏

j∈J

a jϕ( j) , (4.95)

whereK J is the set ofmappings fromJ into K . Applying this formula to our situation,
we obtain ∧

j∈J

f j =
⊕

ϕ∈ZJ

∧

j∈J

f j (ϕ( j ))zϕ( j) .

Then, since for anya, b ∈ D, azk ∧ bz� = ε wheneverk 
= �, we can limit ourselves
to constant mappingsϕ in the above formula. Therefore, we finally obtain

∧

j∈J

f j =
⊕

k∈Z

∧

j∈J

f j (k)z
k , (4.96)

which is the expected result.
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4.7.2 Subtraction and Division of Power Series

Since⊕ operates componentwise, so does◦− for power series. Let usconsider ◦\
which is more involved since⊗ is a ‘convolution’. We again limit ourselves to a single
variablez without loss of generality. We also assume that the exponentk ranges inZ
ratherthan inN. A power seriesf with exponents inN is nothing but a series with
exponents inZ for which f (k) = ε for k < 0. However, if one considersf = z, for
example, it should be clear, from the very definition of◦\, thatz ◦\e = z−1 if exponents
are allowed to range inZ andz ◦\e = ε if exponents are restricted to belong toN.

Since we considerk ∈ Z, recall thatD should be complete.

Lemma 4.95 Under the foregoing assumptions, for any given f and h in D[[ z]] , one
has

g
def= h

f
=
⊕

k∈Z

∧

�∈Z

h(�)

f (� − k)
zk . (4.97)

Proof This is another consequence of the considerations preceding Formula (4.81).
If h = f ⊗ g, thenh(�) = ⊕k ��k(g(k)), where��k(x) = f (� − k)x . Therefore,
g(k) =∧� �

�
�k(h(�)), whichyields (4.97).

Remark 4.96 There is another way to derive (4.97), which makes use of Formula (f.3)
of Table 4.1, plus a remark concerning the division by monomial, namely:

⊕
� h(�)z�

f (m)zm
=
⊕

�

h(�)

f (m)
z�−m . (4.98)

This formula should be obvious, but note that it is stronger than theinequality derived
from (f.2). Now, to derive (4.97), we have

⊕
k g(k)zk =

⊕
n h(n)zn

⊕
m f (m)zm by definition,

=∧m

⊕
n h(n)zn

f (m)zm by (f.3),

=∧m

⊕
n

h(n)
f (m)

zn−m by (4.98),

=∧m

⊕
k

h(m+k)
f (m)

zk by setting n = m + k,

=⊕k

∧
m

h(m+k)
f (m)

zk by (4.96),

=⊕k

∧
�

h(�)
f (�−k) zk by setting m = �− k.

4.7.3 Polynomial Matrices

SinceD[z1, ..., z p ] is a dioid, we may consider squaren × n matrices with entries

in this dioid: this is the dioid
(
D[z1, ..., z p]

)n×n
. Here, we justwant toreturnto the
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interpretation of such matrices in terms of precedence graphs, and discuss the issue of
‘path or circuit of maximum weight’ through an example.

Example 4.97 SupposeD is the dioid of Example 4.12 and letp = 1 andn = 2.
Consider the matrix

A =
(

ε e⊕ z
3⊕ z e ⊕ 2z

)
,

Figure 4.7 features the weighted graphG(A). We have

node 2node 1

3⊕ z

e ⊕ z

e ⊕ 2z

Figure 4.7: A graph representation of a polynomial matrix

A2 =
(

3⊕ 3z⊕ z2 e ⊕ 2z ⊕ 2z2

3⊕ 5z ⊕ 2z2 3⊕ 3z ⊕ 4z2

)
.

The term(A2)22 = 3⊕ 3z⊕ 4z2 gives the upper bound of weights of circuits of length
2 passing through node 2. Butno circuit of length 2 corresponds to this weight in Fig-
ure 4.7. This is due to the fact thatD[z1, ..., z p ] is only partially ordered. To figure out
whathappens, one may adopt the alternative representation shown in Figure 4.8, which
amounts to viewingA as being equal to the sumB⊕C of two matrices withmonomial

node 2node 1

3

z

z

e

e2z

Figure 4.8: Another graph representation of the same matrix

entries (according to the rule of parallel composition of graphs explained in§2.3.1—
the pair(B,C) is of course not uniquely defined). The advantage is that monomials of
the same degree can always be compared. It is then seen that the monomial 3 of(A2)22

is obtained by going from node 2 to node 1 using the arc weighted 3 and coming back
using the arc weightede; the monomial 3z of (A2)22 is obtained by going from node 2
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to node 1 using the arc weighted 3 and coming back using the arc weightedz; finally,
the monomial 4z2 is obtained by using the loop weighted 2z twice.

Therefore, each entry ofA2 can always be interpreted as the weight of a path or a
circuit made up of arcs belonging to eitherG(B) or G(C).

4.8 Rational Closure and Rational Representations

The main motivation of this section arises from system theory over dioids, and in par-
ticular from realization theory. Therefore, this material forms a bridge to Chapter 5.
However, since the results hold true in general dioids, this theory of rational calculus
has its natural place in the present chapter.

4.8.1 Rational Closure and Rational Calculus

We consider a complete dioidD and a subsetT ⊆ D which containsε ande. For
example, think of D as the set of formal power series in one or several variables with
coefficients in a complete dioid, and ofT asthe corresponding subset of polynomials.
In general,T does not need to be a subdioid.

Definition 4.98 (Dioid closure) The dioid closureof a subset T of a dioid D, denoted
T %, is the least subdioid of D containing T .

This definition is well-posed since the set of subdioids containingT is nonempty (it
containsD itself) and this set has a minimum element (for the order relation⊆) since
the intersection (lower bound) of a collection of subdioids is a subdioid. The termi-
nology ‘closure’ i s justified becauseT % ⊇ T andT %% = T %. Notice that we donot
requireT % to be complete. It should be clear thatT % contains, and is indeed reduced to,
all elements ofD whichcan beobtained byfinite sets ofoperations⊕ and⊗ involving
elements ofT only.

The idea is now to consider ‘scalar’ equations like (4.77), subsequently called
‘affine equations’, with dataa and b in T (or, equivalently, in T %). The least solu-
tion a∗b exists in D sinceD is complete, but it doesnot necessarily belong toT %
since the star operation involves an infinite sum. Thus, one may produce elements out
of T % from data inT or T %. Onecan then use these new elements as data of other
affine equations, and so on and so forth. The ‘rational closure’ ofT , hereafter de-
fined, is essentially the stable structure that contains all elements one can produce by
repeating these operations afinite number of times. We shall see that if we consider
matrix, instead ofscalar, affine equations (with data inT ), but of arbitrary large, albeit
finite, dimensions, it isnot necessary to repeat the process of using solutions as data
for further equations. In the case whenD is a commutative dioid, it is even enough to
limit ourselves to weighted sums of solutions to sets of decoupled scalar equations (the
weights belonging toT ).

Definition 4.99 (Rational closure) The rational closureof a subset T of a complete
dioid D, denoted T �, is the least subdioid of D containing T and all finite sums,
products and star operations over its elements. A subset T is rationally closedif T � =
T .
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This definition is well-posed for the same reason as previously. Moreover, it is clear
that(T %)� = T � and thatT �� = T � (hence the terminology ‘closure’).

If we go from scalars to matrices, we may first consider the subsetT n×n ⊆ Dn×n

of n × n matrices with entries inT andits rational closure
(
T n×n
)�

. This is a subdioid
of Dn×n . On the other hand, we may consider the subdioid(T �)n×n ⊆ Dn×n . We state
a first result which will be needed soon in itspresent form, but which will be improved
later on (Theorem 4.104).

Lemma 4.100 The subdioid
(
T n×n
)�

is included in the subdioid (T �)n×n .

The proof is based on the following technical lemma.

Lemma 4.101 For a ∈ Dn×n partitioned into four blocks, namely

a =
(

a11 a12

a21 a22

)
, (4.99)

a∗ is equal to
(

a∗11⊕ a∗11a12(a21a∗11a12⊕ a22)
∗a21a∗11 a∗11a12(a21a∗11a12⊕ a22)

∗

(a21a∗11a12⊕ a22)
∗a21a∗11 (a21a∗11a12⊕ a22)

∗

)
. (4.100)

Proof We use the fact thata∗ is the least solution of equationx = ax⊕e, whichyields
the system

x11 = a11x11⊕ a12x21⊕ e , (4.101)

x12 = a11x12⊕ a12x22 , (4.102)

x21 = a21x11⊕ a22x21 , (4.103)

x22 = a21x12⊕ a22x22⊕ e . (4.104)

We can solve this system in a progressive manner, using Gaussian elimination. From
(4.101) and (4.102), we first calculate

x11= a∗11(a12x21⊕ e) and x12= a∗11a12x22 ,

which we substitute into (4.103)–(4.104). These equations are then solved forx21, x22,
and the solutions are placed back in the equations above, yielding the claimed formulæ.
Note that placing partial least solutions in other equations preserves the objective of
getting overall least solutions since all operations involved are isotone.

Another path to solve the system is to first getx21 andx22 from (4.103)–(4.104), and
then to calculatex11 andx12. This amounts to interchanging the roles ofa11 anda12

with those ofa22 anda21, respectively. Identifying the expressionof the solution which
onegets in this way with the previous expression, the following identity is obtained:

(a21a∗11a12⊕ a22)
∗ = a∗22⊕ a∗22a21(a12a∗22a21⊕ a11)

∗a12a
∗
22 . (4.105)

Proof of Lemma 4.100The sums and products of matrices inT n×n belong to(T �)n×n .
To prove that

(
T n×n
)�

is included in(T �)n×n , it remains tobe proved that one stays
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in (T �)n×n when performing star operations over elements ofT n×n . This is done by
induction over the dimensionn. The statementholds true forn = 1. Assuming it
holds true up to somen − 1, let us prove it is also true forn. It suffices to consider a
partitioning of an element ofT n×n into blocks as in (4.99) such thata11 is (n − 1) ×
(n− 1)-dimensional. By inspection of (4.100), and by using the induction assumption,
the proof is easily completed.

4.8.2 Rational Representations

We aregoing to establish some results on representations of rational elements. Here
the connection with realization theory of rational transfer functions should be clear.
For reasons that will become more apparent in Chapter 5, we distinguish two particular
subsets ofT , namely B andC. There is no special requirement about these subsets
except that they both must containε ande. Hence, we allowB andC to beoverlapping
and even identical. The extreme cases areB = C = {ε, e} andB = C = T .

Theorem 4.102The rational closure T � coincides with the set of elements x which
can be written as

x = cx A∗x bx , (4.106)

where Ax ∈ T nx×nx , bx ∈ Bnx×1 (column vector), and cx ∈ C1×nx (row vector). The
dimension nx is finite but may depend on x. For short, a representation of x like in
(4.106) will be called a (B, C)-representation.

Proof Let F be the subset of all elements ofD having a(B, C)-representation. This
subset includesT because of the following identity:

x = ( e ε
) ( ε x

ε ε

)∗ (
ε

e

)
.

Suppose that we have already proved thatF is stable by addition, multiplication and
staroperation, which we postpone to the end of this proof, thenF is of course equal to
its rational closureF �. SinceF includesT , F � = F includesT �. On theother hand,
from Lemma 4.100,A∗x hasits entries inT �. From (4.106), it is thus clear thatF is
included inT �. Finally, we conclude thatF = F � = T �.

For theproof to be complete, we have to show that, considering two elements of
F , sayx andy, which, by definition, have(B, C)-representations,x ⊕ y, x ⊗ y andx∗

also have(B, C)-representations. This is a consequence of the following formulæ:

cx A∗x bx ⊕ cy A∗yby =
(

cx cy
) ( Ax ε

ε Ay

)∗ (
bx

by

)
,

cx A∗x bx ⊗ cy A∗yby =
(

cx ε ε
)



Ax bx ε

ε ε cy

ε ε Ay




∗


ε

ε

by



 ,



206 Synchronization and Linearity

(cx A∗x bx)
∗ = ( ε e

)( Ax bx

cx ε

)∗ (
ε

e

)
.

These formulæ can be proved by making repeated use of (4.100). However, the reader
already familiar with system theory will have recognized the arithmetics of transfer
functions in parallel, series and feedback.

Remark 4.103 As already mentioned,B andC can be any subsets ofT ranging from
{ε, e} to T itself. Let B = {ε, e}. For a fixedx ∈ T �, and for two pairs(B′, C′) and
(B, C) suchthatB′ ⊆ B andC′ ⊆ C, a (B′, C′)-representation can also be considered
as a(B, C)-representation. Conversely, every(B, C)-representation can yield a(B,B)-
representation thanks to the formula (which is again a consequence of (4.100) used
repeatedly)

cA∗b = ( ε ε e
)



A b ε

ε ε ε

c ε ε




∗


ε

e
ε



 .

However, we note that the corresponding inner dimensionn increases when passing
from the(B, C)- to the(B,B)-representation (which is also a(B′, C′)-representation).

In fact, this discussion cannot be pursued satisfactorily until one is able to clarify
the issue of ‘minimal representation’, that is, for a given pair(B, C), and for agiven
x ∈ T �, arepresentation yielding the minimal (canonical) value ofnx . This problem is
yet unsolved.

Theorem 4.104 The subdioids
(
T n×n
)�

and (T �)n×n are identical. Consequently,
(T �)n×n is rationally closed.

Proof The inclusion in one direction has been stated in Lemma 4.100. Therefore, we
need only to prove the reverse inclusion. LetX ∈ (T �)n×n and assume thatn = 2 for
the sake of simplicity and without loss of generality. ThenX canbewritten as

X =
(

x1 x2

x3 x4

)

with entriesxi ∈ T �. Every xi has a(B, C)-representation consisting of a triple
(Axi , bxi , cxi ), with Axi ∈ T ni×ni . Then

X =
(

cx1 A∗x1
bx1 cx2 A∗x2

bx2

cx3 A∗x3
bx3 cx4 A∗x4

bx4

)

=
(

cx1 cx2 ε ε

ε ε cx3 cx4

)




Ax1 ε ε ε

ε Ax2 ε ε

ε ε Ax3 ε

ε ε ε Ax4





∗


bx1 ε

ε bx2

bx3 ε

ε bx4



 .

The inner dimension is
∑4

i=1 ni , but it can be artificially augmented to the next multiple
of 2 (and more generally ofn) by adding enough rows and columns with entries equal
to ε in the matrices. Then, since the outer dimension is 2 and the inner dimension
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is now a multiple of 2, by appropriately partitioning these matrices in 2× 2 blocks,
one may consider thisrepresentation as a

(
B2×2, C2×2

)
-representation.Application of

Theorem 4.102 inthe dioidD2×2 proves thatX belongs to
(
T 2×2
)�

.

4.8.3 Yet Other Rational Representations

So far, we haveconsidered representations of elements ofT � by triples(A, b, c), such
that the entries ofA are taken inT , whereas those ofb andc are allowed to lie in subsets
B andC of T which are arbitrary, up to the fact that they must containB = {ε, e}.
Recall thatB andC need to be neither distinct nor disjoint.

As an example to be encountered in Chapter 5, consider againT as the subset of
polynomials ofD which is thedioid of formal power series in one or several variables.
ThenB andC may be subsets of particular polynomials, or they may be reduced toB.
Since formal variables are going to be interpreted as ‘shift’ or ‘delay’ operators in the
system theory setting, it means that no ‘dynamics’ is allowed inb andc in the latter
case, whereas‘some’ dynamics is allowed in the former case. In Chapter 5, we are go-
ing to consider a two-dimensional domain description involving two shift operatorsγ

andδ in the event, respectively the time, domain. To describe the connection between
this two-dimensional description and the more classical one-dimensional description
(either in the event or in the time domain), it is necessary to study other rational rep-
resentations. They correspond to other choices for the subsets in which the entries of
A, b, c assume their values.

Let us introduce the following notation. For two subsetsU andV of D, let

U� ⊗ V def=
{

x

∣∣∣∣∣ ∃k ∈ N : x =
k⊕

i=1

ci bi , ci ∈ U�, bi ∈ V
}

.

ThenotationV⊗U� is similarly defined. Notice thatε belongs to the subsets so defined.
We now consider a ‘covering’(U,V) of T (that is,T = U ∪ V butU ∩ V does not

need to be empty). We always assume thatB ⊆ U whenconsideringU�.

Theorem 4.105The rational closure T � coincides with the set of elements x which
can be written as in (4.106), but with entries of Ax lying in U� ⊗ V, those of bx in
U� ⊗ B and those of cx in C (we call this an observerrepresentation).

Alternatively, there exist other representations such that the entries of Ax are in
V ⊗ U�, those of bx are in B, and those of cx are in C ⊗ U� (we call these controller
representations).

Proof Only the former statement will be proved. The latter can be proved similarly.
We first prove that if x ∈ T �, then x does have an observer representation. From
Theorem 4.102, we know thatx has a(B, C)-representation, say(A, b, c). The matrix
A can be written AV ⊕ AU in such a way that AV contains only entries which are
elements ofV, andAU only elements ofU . If V ∩ U is nonempty, entries ofA which
lie in the intersection of those sets may be arbitrarily put either inAV or in AU , or
even inboth matrices thanks to Axiom 4.9. Therefore, we havex = c (AV ⊕ AU )

∗ b.
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Consider (4.105) witha11 = ε, a12= e, a21= a anda22 = b. Weobtain

(a ⊕ b)∗ = b∗ ⊕ b∗a(b∗a)∗b∗ ,

= (e ⊕ (b∗a)+)b∗ ,

hence theidentity

(a ⊕ b)∗ = (b∗a)∗b∗ . (4.107)

If we use this witha = AV andb = AU , weobtain

x = c
(

A∗U AV
)∗

A∗Ub ,

which is an observer representation.
Conversely, ifx has an observer representation(Ax , bx, cx), thenx ∈ T �. As a

matter of fact, it is easy to realize that the entries ofAx , bx, cx lie in subsets ofT � (in
particular, remember thatT �� = T �). The conclusion follows from Theorem 4.102.

Remark 4.106 Another form of (4.107) isobtained by letting a11= ε, a21= e, a12=
a, a22= b in (4.105), which yields

(a ⊕ b)∗ = b∗(ab∗)∗ . (4.108)

If we return to our example ofD being the dioid of power series in two variablesγ

andδ (say, with exponents inN), we may for example assume thatT = {ε, e, γ, δ}—
the dioid closure of which is the dioid of polynomials inγ, δ—and we may choose
B = C = {ε, e}, U = {ε, e, γ } andV = {δ}. A more explicit interpretation of this
situation will be discussed in Chapter 5.

4.8.4 Rational Representations in Commutative Dioids

We havedefined ‘rational elements’ (i.e. elements ofT �) as those elements which
can be obtained by a finite number of operations such as sums, products and stars,
starting from elements ofT . This can also be viewed as the process of obtaining
(least) solutions from equations like (4.77), which in turn serve as coefficients of further
equations of the same type, this process being repeated a finite number of times, starting
with coefficients inT . The results of the previous subsections showed that, indeed, all
rational elements can also be obtained by solving equations with coefficients inT only
once, but these should bematrix equations—or systems of equations—of arbitrary,
albeit finite, dimensions.

What we are goingto discuss here is the possibility, in the context of commutative
dioids (Definition 4.10), of limiting ourselves to linear combinations of solutions of
scalar equations with coefficients inT , or otherwisestated, of solving only ‘decoupled’
systems of equations with coefficients inT .
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Lemma 4.107 Let D be a complete commutative dioid, then

∀a, b ∈ D , (a ⊕ b)∗ = a∗b∗ . (4.109)

Proof One wayto prove this is by direct calculations, starting from the very definition
of the left-hand side above, and reducing it to the right-hand side using commutativity.
Alternatively, one may start from (4.107) (for scalars) and remark that(a ⊕ b)∗ =
(b∗a)∗b∗ = (b∗a∗)b∗ = a∗(b∗)2 = a∗b∗ whencommutativity holds true.

A third, maybe more involved, but interesting, argument is based on considering an
equationlike (4.54) with�(x) = ax ⊕ xb ⊕ c. With or without commutativity, the
least solution�∗(ε) is easily proved to be equal toa∗cb∗. But, with commutativity, the
sameequation can be writtenx = (a⊕b)x⊕c, the least solution of which is(a⊕b)∗c.
Setting c = e, we obtain the identity (4.109).

With this formula at hand, (4.100) can be given a new useful form, at least when
a22 is a scalar (i.e. a 1× 1 block).

Lemma 4.108 In a commutative dioid, for a matrix a partitioned into four blocks as
in (4.99), where a22 is 1× 1, and a12 and a21 are respectively column and row vectors,
then a∗ is equal to

(
a∗11(e ⊕ a∗22a12a21(a11⊕ a12a21)

∗) a∗22(a11⊕ a12a21)
∗a12

a∗22a21(a11⊕ a12a21)
∗ a∗22(e⊕ a21(a11⊕ a12a21)

∗a12)

)
. (4.110)

Proof Sincea22 anda21a∗11a12 are scalars, using (4.109), one obtains

(a21a
∗
11a12⊕ a22)

∗ = (a21a
∗
11a12)

∗a∗22 .

Moreover, from (4.105) witha22 = ε, we find that

(a21a
∗
11a12)

∗ = e⊕ a21(a11⊕ a12a21)
∗a12 .

Therefore
(a21a∗11a12⊕ a22)

∗ = a∗22⊕ a∗22a21(a11⊕ a12a21)
∗a12 .

These are the lower right-hand blocks of (4.100) and (4.110), respectively.
Consider now the upper right-hand block of (4.100) which is equal (see (4.100)) to

the lower right-hand block premultiplied bya∗11a12. Using (4.108),

a∗11a12(a21a
∗
11a12⊕ u)∗ = a∗22a

∗
11a12
(
e⊕ a21(a11⊕ a12a21)

∗a12
)

= a∗22a
∗
11a12
(
e⊕ a21a

∗
11(a12a21a

∗
11)

∗a12
)

= a∗22a
∗
11

(
e⊕ (a12a21a

∗
11)

+) a12

= a∗22a
∗
11(a12a21a

∗
11)
∗a12

= a∗22(a
∗
11⊕ a12a21)

∗a12 .

Similar calculations yield the left-hand blocks of (4.110).



210 Synchronization and Linearity

Theorem 4.109 Let a ∈ Dn×n where D is a complete commutative dioid. Then all
entries of a∗ are finite sums of the form

⊕
i ci (bi )

∗, where each ci is a finite product of
entries of a and each bi is a finite sum of weights of circuits of the precedence graph
G(a).

Proof The proof is by induction. The statement is true forn = 1. Suppose that it also
holds true up to dimensionn−1. Consider the partitioning (4.99) ofA with a22 scalar.
In the graph associated witha, matrixa12a21 describes the weights of paths of length 2
which start from one of the firstn−1 nodes, then go to then-th node, and finally come
back to one of the firstn − 1 nodes. The paths coming back to their initial nodes are
circuits of length 2, among other circuits of the graph associated witha. Matrix a12a21

can be considered as describing a graph withn − 1 nodes in which the previous paths
or circuits of length 2 can be considered as arcs (i.e. paths of length 1) or loops. As for
a11, it describesthe subgraph associated with the firstn−1 nodes. Matrixa11⊕ a12a21

corresponds to a graph with the samen− 1 nodes but with weights calculated as upper
bounds of the weights of the two previous graphs. The weights of paths of this graph
are among the weights of paths of the graph ofa. The induction assumption applies to
(a11 ⊕ a12a21)

∗. The conclusion follows easily by considering the expressions of the
four blocks in (4.110) and by remembering that products of stars of scalar elements can
be converted to stars of sums of these elements using (4.109).

Theorem 4.110 Let T be a subset of the complete commutative dioid D. Then, T �

coincides with the set of elements x which can be written as

x =
kx⊕

i=1

ci (bi )
∗ , (4.111)

where kx is an arbitrary finite integer and ci , bi ∈ T % (the dioid closure of T ).

This is a straightforward consequence of Theorems 4.60 and 4.109.

4.9 Notes

4.9.1 Dioids and Related Structures
Dioids, as defined and studied in this chapter, are members of a larger family of algebraic struc-
tures that stem from various fields of mathematics and from several works motivated by a wide
range of applications. We shall not attempt to be exhaustive in describing the origins of these
theories. The interested may refer e.g. to [66] where some references are given. In all these
works, the setof axioms and the terminology are subject to some variations. The notion of
‘semiring’ has already been defined in Chapter 3. ‘Absorbing semiring’ is sometimes used when
the first operation is supposed to be idempotent (Axiom 4.9), but ‘idempotent semiring’ would
be a more appropriate denomination in this case. As already discussed, this axiom prevents the
addition from being cancellative. This is why Gondran and Minoux reject the name ‘semiring’
which may suggest that the structure can be embedded into that of a ring. Hence they propose
the appellation ‘dioid’ which they attribute to Kuntzmann [80]. In French (or Latin), ‘di’ is a
prefix for ‘two’ as ‘mono’ is a prefix for ‘one’. A ‘dioid’ is thus ‘twice a monoid’.



4.9. Notes 211

As discussed in§4.3.2, Axiom 4.9 is closely related to the introduction of a partial order
relation and to a semilattice structure. However, weaker axioms may serve the same purpose.
The following axiom is proposed in [66]:

{a = b ⊕ c and b = a ⊕ d} ⇒ a = b , (4.112)

and this axiom is sufficient for stating Theorem 4.28. We retained Axiom 4.9 because all dioids
of interest to us naturally satisfy it. An example of a dioid satisfying (4.112) but not Axiom 4.9
is (R+,+,×). However, this example corresponds to a cancellative addition and it is natural to
embed this structure in(R,+,×), that is, inthe conventional algebra.

Helbig [69], whohimself refers to Zimmermann [130], defines an ‘extremal algebra’ with
axioms which are very close to but stronger than ours on two points:

• the multiplication is commutative;

• Axiom 4.9 is replaced by the stronger one:

x ⊕ y = either x or y .

As stated by Lemma 4.30, the latter axiom corresponds to a total order.
Cuninghame-Green [49] studies structures that we calledRmax andRmin under the name of

‘minimax algebra’. The term ‘path algebra’ may also be found, owing to the relevance of these
particular dioids in graph theory. Reference [34] is about ‘incline algebra’ which is a structure
close to our dioid algebra, but with the following additional axiom:

∀a, b , a ⊕ ab = a , (4.113)

which says thatab ≤ a. This suggests that the multiplication is close to the lowerbound
(although these two operations may be different), and that every element is less thane (the
identity element—although the existence of an identity element is not required a priori). Indeed,
Proposition 1.1.1 of [34] states that an incline algebra is exactly a distributive lattice (that is,
multiplication and lowerbounds are the same) ifa2 = a (that is, the multiplication itself is
idempotent). The dioid of Example 4.15 is an incline algebra. The structure([0, 1],max,×)
is an example of an incline algebra for which multiplication and lowerbound do not coincide.
Observe that Axiom (4.113) prevents the corresponding dioid from being Archimedian, unless it
is isomorphic to the Boole algebra (Example 4.16).

Finally, since an idempotent addition can indirectly be introduced through the introduction
of a semilattice or a lattice structure, in the literature on ordered sets, owing to the properties
of the second operation (multiplication), the name ‘lattice-ordered semigroup’ is frequently en-
countered.

4.9.2 Related Results
Results of §4.3 and§4.4, which are not very specific to dioid theory, are largely based on the cor-
responding quoted references, with a few variations with respect to terminology (these variations
have been indicated) and to presentation.

The main topic of§4.5 is about solving implicit equations likex = ax ⊕ b for example.
Unlike [67] or Chapter 3 of this book, we only considered the case of complete dioids (in which
a∗ always exists), which makes the problem of the existence of a solution easier, but at the price
of losing uniqueness in general (for example, in an Archimedian dioid,� is a trivial solution
of x = ax ⊕ b). Theorem 4.76 is an original result, first published in [44] with a slightly
different proof. In this same reference, a discussion of the form of the general solution of the
homogeneous equation (4.79) can be found.
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The problem of invertibility of matrices (§4.6.2) has been considered by several authors, first
for Boolean matrices ([128], [120]), then for more general dioids ([23], [34]). Formula (4.81)
appears in [49] in the special case ofRmax. As for the condition of exact invertibility (see
Lemma 4.84 which appears here for the first time), it is similar to that obtained in the above
mentioned references, but under quite different assumptions: like [34], reference [23] is more or
less in the context of an incline algebra—or at least of an algebra in which every element lies
betweenε ande—whereas our result deals with Archimedian dioids.

Finally, the rational theory of§4.8, which appeared first in [44], is largely inspired by the
use of it we are going to make in Chapter 5 in a system theoretic context.
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Chapter 5

Two-Dimensional Domain Description
of Event Graphs

5.1 Introduction

In Chapter 2 a class of Petri nets called event graphs has been discussed. This class pic-
torially describes discrete event systems. The dynamics of such systems is essentially
driven by synchronization phenomena. In§2.5, it was shown that linear equations can
be obtained for event graphs by appealing to some descriptive variables and to some
associated dioid algebras.

To beprecise, we will call an ‘event’ any occurrence which is instantaneous, such
asthe beginning of a transition firing, the end of a transition firing (these two events
are simultaneous if transition firings are themselves immediate), the arrival of a token
at, or the departure of a token from, a place, etc. In fact, we distinguish ‘events’, which
are uniquesince they occur only once, from ‘types of events’ which refer to families
of events of the same nature. For example, ‘a message pops up on the screen of my
computer’ is a type of event, whereas ‘a message pops up on the screen of my computer
at five o’clock’ is a particular event of this type. In the context of event graphs, a type
of event will very often correspond to the successive firings of a particular transition
(we assume that firings have a zero duration).

In the ‘dater’ description, one essentially deals with variablesd(k) associated with
types of events such that, for a given type:

• k is an index inZ which numbers successive events of this type (from an initial,
possibly negative, value onwards);

• d(k) is the epoch (or ‘date’) at which the event numberedk takes place.

The mappingk �→ d(k) is called thedater associated with the type of event. Because
of the meaning of the indexk, one may call this an ‘event-domain description’. For
this description, the appropriate underlying dioid isRmax in continuous time orZmax

in discrete time. Using theγ -transform (which is analogous to thez-transform of con-
ventional system theory—see Chapter 1), daters can be represented by formal power
series with exponents inZ and with coefficients inRmax or Zmax.

In conventional system theory, a ‘time-domain’ description is rather used. For event
graphs, this description involves variablesc(t) such that:

215
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• t has the usual meaning of time (either in a continuous or in a discrete domain);

• c(t) is thenumber1 of the last event of the considered type which happens before
or at time t .

In fact, there is a discrepancy between the definitions of daters and counters. Toeach
k, at least from a certaink0 (the initial value of the numbering process) to a certain
k1 which can be infinite, corresponds a uniqued(k) which is well defined. On the
contrary, for anyt , it may be that no event takes place att , a single event happens
at t , or several events occur simultaneously att . Consequently, the definition ofc(t)
adopted above is just one among several possible definitions. A purpose of this chapter
is to discuss two ‘canonical’ definitions and their relationship with daters. In any case,
the mapping t �→ c(t), definedover the whole time domain, will be called acounter.
The appropriate dioid algebra of counters turns out to beZmin (seee.g. Example 2.48).
In order to enhance the symmetry between counter and dater descriptions, from now
on in this chapter, time will be discrete. Then, theδ-transform ofc(·) is classically
definedas the formal power series

⊕
t∈Z

c(t)δt with coefficients inZmin.

In viewof what happensin conventional system theory, this dual possibility of de-
scribingevent graphsby models written down either in the event domain or in the time
domain is not usual. This arises because of the fact that trajectories exhibit a mono-
tonic behavior, due to the numbering of events in the order they take place. Roughly
speaking, the mappingsk �→ d(k) andt �→ c(t) are inverses of each other. Indeed, to
give to this statement a precise meaning, it will be necessary to appeal to residuation
theory(see§4.4). Anyway, thisinversion is a nonlinear operation. Nevertheless, the
dater and counter descriptions are both ‘linear’, but of course not in the same dioid.

We will discuss the fact that neither description has a definite superiority over the
other one. Then, we will study another description, namely in a two-dimensional do-
main which is the cartesian product of the event and time domains. In this new domain,
a description involving formal power series in(γ, δ) will be proposed. UnlikeZmax and
Zmin, the corresponding dioid is no longer totally ordered, and it is not the straightfor-
ward product of these two dioids.

Section 5.6 addresses the issue of obtaining equations for ‘dual’ systems. We as-
sume that desired outputs of an event graph are given and we wish to find the ‘best
possible’ inputs which meet this target, that is, to compute the latest input dates which
cause output dates to be less than or equal to the given target. This problem of ‘invert-
ing a system’ is solved via residuation and the equations so obtained are reminiscent of
adjoint- or co-state equations in conventional optimal control.

Section 5.7 discusses the equivalence of three notions related to transfer functions,
namely rationality, periodicity and realizability. Finally,§5.8 studies the response of ra-
tional systems to some periodic inputs which are shown to be eigenfunctions of rational
transfer functions (in the same way as sine functions are eigenfunctions in conventional
system theory). Thenotions of phase shift, amplification gain and Black plots can then
be demonstrated for timed event graphs.

1In French, ‘numéro’ rather than ‘nombre’, the former being a numerical label assigned to each event.
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5.2 A Comparison Between Counter and Dater Des-
cript ions

We consider the simple example of Figure 5.1 and we compare the equations obtained

y

u

x1 x2

Figure 5.1: An event graph

for daters and counters.

Bars in places indicate the holding times of these places (in time units). Each
transition receives a name (indicated in the figure) and this name is also that
of the descriptive variable attached to this transition, be it a dater or a counter.
The name of the argument, eitherk or t , will indicate whether we are dealing
with a dater or with a counter description. It should also be remembered that
the symbol ‘⊕’ has a different meaning in each context: it stands for the max
operation when used in conjunction with daters, and for the min operation in
conjunction with counters.

According to§5.1, we consider that, e.g.,x(t) is the number of the last firing of tran-
sition x occurring before or at timet . Thenumbering of firings starts with 1, say, for
all transitions. For the event graph of Figure 5.1, the following equations are then ob-
tained (we do not discuss the issue of initial conditions at this moment—see§5.4.4.1,
page 241).

Dater equations:
x1(k) = 1x1(k − 2)⊕ 1x2(k − 1)⊕ 1u(k) ;
x2(k) = 1x1(k − 1)⊕ 2u(k) ;
y(k) = x1(k) ⊕ x2(k) .

(5.1)

Counter equations:
x1(t) = 2x1(t − 1)⊕ 1x2(t − 1)⊕ u(t − 1) ;
x2(t) = 1x1(t − 1)⊕ u(t − 2) ;
y(t) = x1(t)⊕ x2(t) .

(5.2)
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Using the former representation,we derive

y(k) = x1(k) ⊕ x2(k)

= 1(x1(k − 1)⊕ x1(k − 2))⊕ 1x2(k − 1)⊕ (1⊕ 2)u(k)

= 1x1(k − 1)⊕ 1x2(k − 1)⊕ 2u(k)

= 1y(k − 1)⊕ 2u(k) .

Thus a first order input-output relation has been obtained. It should be noticed that
we haveused two different rules in our simplifications. On the one hand, 2⊕ 1 = 2
because we are working with the dioidZmax. On theother hand, we have used that
x1(k − 1)⊕ x1(k − 2) = x1(k − 1) because we are interested only in trajectories ofx1

which are nondecreasing functions ofk.

Remark 5.1 The nondecreasingness is not an intrinsic property of solutions of (5.1).
For example, ifu(k) = ε for k < 0 andu(k) = e( = 0) for k ≥ 0 (such inputs will be
interpreted as ‘impulses’ in§5.4.4.1), then one can check that

∀k ∈ Z ,
(

x1(k) x2(k)
)′ =





(
k + 1 k + 3

)′
if k even;

(
k + 3 k + 1

)′
if k odd,

is anonmonotonic solution to (5.1).

In terms ofγ -transforms, the preceding simplification rules can be summarized as
follows:

tγ � ⊕ τγ � = max(t, τ )γ � ; tγ �⊕ tγ m = tγ min(�,m) . (5.3)

In terms of event graphs, this corresponds to the graph reductions displayed in Fig-
ure 5.2.

Figure 5.2: Two rules for graph reduction

Remark 5.2 Since we left apart the issue of initial conditions, one should be aware
of the fact that the reduction shown on the right-hand side of Figure 5.2 is only valid
for certain initial conditions (in particular, it holds true for canonical initial conditions
discussed at§5.4.4.1, page 241).
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Now, using the counter representation, we derive

y(t) = x1(t)⊕ x2(t)

= (2⊕ 1)x1(t − 1)⊕ 1x2(t − 1)⊕ u(t − 1)⊕ u(t − 2)

= 1(x1(t − 1)⊕ x2(t − 1))⊕ u(t − 2)

= 1y(t − 1)⊕ u(t − 2) .

We haveused that 1⊕2= 1 inZmin, and thatu(t−1)⊕u(t−2) = u(t−2) becauseu is
anondecreasing function oft . In terms ofδ-transforms, these rules can be summarized
by

kδτ ⊕ �δτ = min(k, �)δτ ; kδτ ⊕ kδθ = kδmax(τ,θ) . (5.4)

These rules are similar to those of (5.3) but the roles of the exponents and coefficients
are, roughly speaking, interchanged. In terms of event graphs, the rules (5.4) also
express the graph reductions of Figure 5.2 (in reverse order).

The above example also shows that in both approaches we reach a kind of ‘ARMA’
(Auto-Regressive-Moving-Average) equation which, in this specific case, involves the
same delay in the AR part in both representations, but different delays in the MA part.
Consequently, we would need state vectors of different dimensions in both cases to
convert this ARMA equation into standard state space equations (with only unit delays
on the right-hand side). Otherwise stated, the same physical system appears to be of a
different order in the dater and in the counter descriptions.

These discrepancies and dissymmetries are not very satisfactory and we could fur-
ther accumulate remarks in the same vein. Let us just mention another intriguing fact.
Figure 5.3 represents an event graph before and after the firing of the transition named
x1 or ξ1. The following equations are obtained for the dater description before and after
firing.

Before firing After firing
x1(k) = 1x1(k − 1)⊕ x2(k − 1) , ξ1(k) = 1ξ1(k − 1)⊕ ξ2(k) ,

x2(k) = x1(k) ⊕ u(k) , ξ2(k) = ξ1(k − 1)⊕ u(k) ,

y(k) = x2(k) , y(k) = ξ2(k) .

Somesubstitutions yield the following equivalent descriptions:

Before firing(
x1(k)
x2(k)

)
=
(

1 e
1 e

)(
x1(k − 1)
x2(k − 1)

)
⊕
(

ε

e

)
u(k) ,

y(k) = ( ε e
) ( x1(k)

x2(k)

)
,

After firing(
ξ1(k)
ξ2(k)

)
=
(

1 ε

e ε

)(
ξ1(k − 1)
ξ2(k − 1)

)
⊕
(

e
e

)
u(k) ,

y(k) = ( ε e
) ( ξ1(k)

ξ2(k)

)
.
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These are two state space realizations of the sameγ -transfer function (which can be
proved to be equal toe⊕γ (1γ )∗ provided that all possible simplification rules be used).
In matrix notation, we have

before firing after firing

uu

x 1 x 2 ξ1 ξ2

y y

Figure 5.3: Firing a transition

x(k) = Ax(k − 1)⊕ Bu(k) , y(k) = Cx(k) ,

ξ(k) = Aξ(k − 1)⊕ Bu(k) , y(k) = Cξ(k) .

But one cannot find a linear coordinate transformation to pass from one realization to
the other. As a matter of fact, this would require that an invertible 2×2 matrixT exists
suchthatx = T ξ , implying for example that

B = T B , i.e.

(
ε

e

)
=
(

T11 T12

T21 T22

)(
e
e

)
.

The first row of this matrix relation implies thatT11⊕ T12 = ε, hence T11 = T12 = ε,
which isnot compatible with the fact thatT is invertible.

Indeed, from the physical interpretation of this situation (remember that an inter-
nal transition fired once), or directly from the equations, it is apparent that the true
relationship betweenξ andx is ξ2(k) = x2(k); ξ1(k) = x1(k + 1). However, thiscan-
not becaptured by a (static) linear change of basis in the state space. Because, in the
counter description, coefficients and delays are, roughly speaking, exchanged, this is-
sue of finding a linear change of basis in the state spacecan be solved positively when
moving to the counter description for the same example. In this description, entries
of matrices correspond to numbers of tokens in the initial marking. Firing an internal
transition removes one token fromeach upstream place: this subtracts 1—in conven-
tional algebra—from each entry of the row of matrixA corresponding to that transition,
and it does the same on the corresponding row ofB. Similarly, the same transition fir-
ing addsonetoken to each downstream place: algebraically, this adds 1 to each entry
of the corresponding column ofA andC. Theseoperations can be realized inZmin by
pre-, respectively post-multiplicationby appropriate matrices which are inverse ofeach
other. For theaboveexample, the pre-multiplication involves the matrix:

( −1 ε

ε e

)
.
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We let the reader works out this example completely in the counter description and
check this claim.

Remark 5.3 From the above example, one should not conclude any superiority of the
counter over the dater description. When it is possible, consider removing one bar from
all places upstream of a giveninternal transition, and adding one bar to all downstream
places: this leaves the input-output relation unchanged, and this is indeed the dual
situation of firing a transition (which moves tokens instead of bars). Therefore, playing
with bars instead of tokens will correspond to a change of basis in the dater description,
but not in the counter description.

In the next sections we move smoothly to a two-dimensional description in which,
roughly speaking, monomials such astγ k in γ -transforms andkδt in δ-transforms will
be represented by monomials of the formγ kδt ; thebasic objects will be power series in
(γ, δ) with Boolean coefficients; and, in addition to the conventional sum and product
of series, we will be allowed to use the rules

γ kδt ⊕ γ �δt = γ min(k,�)δt , γ kδt ⊕ γ kδτ = γ kδmax(t,τ ) , (5.5)

which arejust the synthesis of (5.3) and (5.4). However, this requires an algebraic
foundation which appeals to isomorphisms, quotients of dioids by congruences and
residuation theory. As an introduction to these algebraic manipulations, the next sec-
tion discusses how the set of daters can be embedded into a more general set of non-
monotonic functions fromZ to Zmax.

5.3 Daters and theirEmbedding in Nonmonotonic Func-
tions

5.3.1 A Dioid of Nondecreasing Mappings

Recall that with each type of event is associated a numbering mechanism which assigns
a number to each event of this type in the order of these events taking place, starting
from an initial finite (but possibly negative) valuek0 ∈ Z. We also consider a special
type of event which corresponds to ticks of an absolute clock. These ticks are also
numbered in increasing order, starting from an initial valuet0 ∈ Z (the originof time).
At each event of a given type, the current clock value is instantaneously read and the
pair (event number, clock value) is saved. The dater associated with a type of event is
just the mapping fromZ into Z the graphof which is the set of all such pairs.

Obviously, daters are nondecreasing functions, but they may not be strictly increas-
ing since several events of the sametype may occur simultaneously. We used as a
generic notation for a dater. Strictly speaking, the functiond is definedover an inter-
val of Z possibly extending to infinity to the right (if events of the same type occur
infinitely often), and, wherever it is defined,d assumes finite, but a priori unbounded
values inZ. Indeed, in order to extend the definition ofd to the wholedomainZ, it is
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convenient to assumethat the range set isZ
def= Z ∪ {−∞} ∪ {+∞}. The convention is

that

d(k) =






−∞ if k < k0 (theinitial value of the numbering);

+∞ if the k-th event of the considered type never

tookplace;

any finite value otherwise.

From a mathematical point of view, it may sometimes be useful to see daters as map-
pings from a complete dioid into a complete dioid. For this reason, we may extend the
domain ofd by setting

d(−∞) = −∞ and d(+∞) = +∞ . (5.6)

Obviously, these end-point conditions are always compatible with the nondecreasing-
ness property ofd.

As already discussed, the natural algebra for the range space ofd is Zmax, that is,(
Z,max,+

)
. It should be remembered that, inZmax,

(−∞) + (+∞) = ε ⊗� = ε = −∞ (5.7)

according to Axiom 4.7. As for the domain space ofd, the algebraic structure we need
consists of the conventional order relation ofZ (this is necessary in order to speak of the
nondecreasingness property ofd), and theconventional addition (which will be needed
for defining the product of daters). At this stage, it is immaterial to decide whether the
domain will be called Zmin or Zmax. Indeed, if we adopt the former option, the only
consequence is that we should speak of ‘nonincreasing’, rather than ‘nondecreasing’
functionsd with regardto the order relations implied by the dioid structures in the
domain and in the range. There is however a more important criterion to decide which
name is to be given to the domain of daters. In this dioid, do we wish that+∞−∞ =
+∞⊗ (−∞) = −∞ or +∞? Thisquestion involves+, i.e.⊗, rather than⊕ which
is related to the order relation. We leave the answer open until Remark 5.4 below.

The next stage is to endow the set of daters with a dioid structure which already
appeared to be appropriate for our purpose. Namely,

• addition is just the conventional pointwise maximum, or otherwise stated

∀k ∈ Z , (d1⊕ d2)(k) = d1(k) ⊕ d2(k) ,

in which thesymbol ‘⊕’ on the left-hand side denotes the addition of daters,
whereasit denotes addition in the range dioidZmax on the right-hand side; this
definition is extended to infinite sums without difficulty since the range is a com-
plete dioid;

• multiplication is the conventional ‘sup-convolution’, that is, for allk ∈ Z,

(d1⊗ d2)(k) =
⊕

�∈Z

(d1(�)⊗ d2(k − �)) = sup
�∈Z

(d1(�) + d2(k − �)) .
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Remark 5.4 The aboveformulacanbewritten

(d1⊗ d2)(k) =
sup

(
d1(−∞) + d2(k +∞), d1(+∞) + d2(k −∞), sup

�∈Z

(d1(�) + d2(k − �))

)
.

Using (5.6) and (5.7), it can be proved by inspection that

• for finite k,
(d1⊗ d2)(k) = sup

�∈Z

(d1(�) + d2(k − �)) ,

that is, the result is the same whether we consider that the domain isZ or Z;

• for k = −∞, weobtain(d1 ⊗ d2)(−∞) = −∞, whatever we decide upon the
value to be given to+∞−∞ in the domain of� (event domain);

• for k = +∞, one has that

(d1⊗ d2)(+∞) = sup

(
−∞,+∞ + d2(+∞−∞), sup

�∈Z

(d1(�)+∞)

)
.

For the class of functions satisfying (5.6) to be closed by multiplication (it is
obviously closed by addition), we want to ensure that(d1 ⊗ d2)(+∞) = +∞,
even ifd1(�) = −∞, ∀� < +∞. Then, wemust decide that

+∞−∞ = +∞ in the event domain. (5.8)

In conclusion,

• we should consider that the event domain isZmin ratherthanZmax (however, we
will keep on speaking of ‘nondecreasing’ functions);

• we also observed that one may first consider that addition and multiplication
operate on functions fromZ (instead ofZ) into Zmax, and thencomplete the
results of these operations by the end-point conditions (5.6).

We summarize this subsection with the following definition.

Definition 5.5 (Daters) Daters are nondecreasing mappings from Zmin into Zmaxobey-
ing the end-point conditions (5.6) (‘nondecreasing’ refers to the conventional order of
Z in both the domain and the range). The set of daters is endowed with the pointwise
maximum of functions as the addition, and with the sup-convolution as the multiplica-
tion.

Onecancheckthat the zero and identity elements of the dioid of daters are respectively:

έ(k) =
{
−∞ if k < +∞ ;

+∞ otherwise;
é(k) =






−∞ if k < 0 ;

0 if 0 ≤ k < +∞ ;

+∞ otherwise.

(5.9)
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5.3.2 γ -Transforms of Daters and Representation by Power Series
in γ

5.3.2.1 Power Series inγ and the Nondecreasingness Property

A convenient way to manipulate daters is to encode them using theirγ -transforms.
This yields formal power series with coefficients inZmax. As for exponents, owing to
the last observation in Remark 5.4, we may restrict them to belong toZ. For a daterd,
D will denote itsγ -transform and we have

D =
⊕

k∈Z

d(k)γ k .

As is usual, if some monomialγ k is missing in the explicit expression of some
D, this just means that the corresponding coefficient is ‘zero’, that is, it is
equal toε.

If the set ofγ -transforms of daters is endowed with the addition and multiplication
introduced in Chapter 4 (see (4.85)), then daters and theirγ -transforms constitute two,
isomorphic dioids. The latter will be denotedD[[γ ]]. In D[[γ ]], the zero element can
be denoted simplyε because, owing to (5.9), it is the zero series with all coefficients
equal toε = −∞. As for the identity element, it is theγ -transform ofé given in (5.9),
and this isγ ∗ = γ 0⊕ γ ⊕ γ 2⊕ · · · .

Remark 5.6 Observe that the interpretation ofγ is that of the ‘backward shift operator
in numbering’ (or ‘in the event domain’) since the seriesγ D corresponds to theγ -
transform of the daterk �→ d(k − 1). The expression ‘backward shift’ is traditional
in system theory as is the name ‘forward shift’ for the operatorz (see [72]). However,
this appellation is somewhat misleading since it should be realized that, if we plot the
graphs ofk �→ d(k) andk �→ d(k−1), then the latter is shiftedto the right with respect
to the former.

Note that γ itself, viewed as a formal power series which has all its coefficients
equal toε except that ofγ 1 which is equal toe, may beconsidered as theγ -transform
of the function

k �→ γ (k)
def=
{

e if k = 1 ;

ε otherwise.
(5.10)

Shifting a dater may be considered as achieving its sup-convolution withγ ; with γ -
transforms, this operation amounts to ‘multiplying byγ ’. Of course, the functionγ
itself i s not a dater since it is not monotonic, henceγ 
∈ D[[γ ]]. Therefore, to give
a meaning to this ‘multiplication byγ ’, we must embed elements ofD[[γ ]] in to a
larger set, namely the set of(general) formal power series with coefficients inZmax and
exponents inZ. According to§4.7.1, once endowed with the same operations asD[[γ ]]
(see (4.85)), this set is a complete commutative distributive Archimedian dioid denoted
Zmax[[γ ]].
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The zero elementε of Zmax[[γ ]] is again the zero series (all coefficients equal to
ε), but the identity elemente of Zmax[[γ ]] is the series which hasonly one coefficient
differentfrom ε, namely that ofγ 0 which is equal toe = 0 (in Zmax). It is reali zed that
thise = γ 0 of Zmax[[γ ]] is not formally equal toγ ∗ which is the identity element in the
dioidD[[γ ]]. HenceD[[γ ]] is not a subdioid ofZmax[[γ ]].

Actually, this situation is pretty much related to that considered in Theorem 4.78.
To show this, let us firstobserve that the property of a functionf : Z → Zmax to be
nondecreasing can be characterized by

∀k ∈ Z , f (k) ≥ f (k − 1) .

In terms of theγ -transformF ∈ Zmax[[γ ]], this translates into

f nondecreasing⇔ F ≥ γ F . (5.11)

This should be compared with (4.80) which provides other characterizations of nonde-
creasing functions.

Remark 5.7 If we let k range inZ instead ofZ, without imposing the end-point
conditions (5.6), then (5.11) is no longer a characterization of nondecreasing functions.
For instance, consider the functionf suchthat f (−∞) = 2 and f (k) = 1 for k >

−∞: it satisfies f (k) ≥ f (k−1), and thus also (5.11), although it isnot nondecreasing
over Z. If (5.11) cannot be retained as a characterization of nondecreasing functions,
then it is not clear how to solve in a simple way the best approximation problems
addressed below.

It is thus realized that, as a subset of elements ofZmax[[γ ]] meeting condition (5.11),
D[[γ ]] is nothing but what we have denotedγ ∗Zmax[[γ ]] in §4.5.4. The following theo-
rem is just a rephrasing of Theorem 4.78 in the present context.

Theorem 5.8 Let I denote the canonical injection from D[[γ ]] into Zmax[[γ ]] , and con-
sider some F ∈ Zmax[[γ ]] .

1. The greatest element
︸︸
F in I (D[[γ ]]) which is less than or equal to F is given by

︸︸
F = γ ∗ ◦\F = F ∧ γ −1F ∧ γ −2F ∧ · · · . (5.12)

In the equivalence class of elements F of Zmax[[γ ]] which have the same ‘best
approximation from below’

︸︸
F, this

︸︸
F is the unique element which belongs to

I (D[[γ ]]) and it is also the minimum representative in the equivalence class.

2. The least element
︷︷

F in I (D[[γ ]] ) which is greater than or equal to F is given by

︷︷

F = γ ∗F . (5.13)

In the equivalence class of elements F of Zmax[[γ ]] which have the same ‘best
approximation from above’

︷︷

F, this
︷︷

F is the unique element which belongs to
I (D[[γ ]]) and it is also the maximum representative in the equivalence class.
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Corollary 5.9 The greatest dater
︸︸
f which is less than or equal to a given (not nec-

essarily monotonic) mapping f from the event domain into Zmax is obtained by the
formula

∀k ∈ Z ,
︸︸
f (k) =

∧

�≥k

f (�) = inf
�≥k

f (�) . (5.14)

The least dater
︷︷
f which is greater than or equal to f is obtained by

∀k ∈ Z ,
︷︷
f (k) =

⊕

�≤k

f (�) = sup
�≤k

f (�) . (5.15)

Of course, these formulæ should be completed by the end-point conditions (5.6).

Proof The formulæ (5.14) and (5.15) are straightforward consequences of (5.12) and
(5.13).

The mapping I� which associates withF ∈ Zmax[[γ ]] its best approximation from
below inD[[γ ]] is u.s.c., but it is neither a⊕- nor a⊗-morphism. On the contrary,
the mappingI� which selects thebest approximation from above is a l.s.c. surjective
dioid homomorphism. This is why in what follows we concentrate on this type of
approximation.

Remark 5.10 Because of (5.13) and of Lemma 4.77, statement 2, it should be clear
thatD[[γ ]] is a multiplicative ideal and that

∀F, G ∈ Zmax[[γ ]] ,
︷ ︷
F ⊗ G =

︷︷

F ⊗
︷︷

G = F ⊗
︷︷

G =
︷︷

F ⊗ G .

Figure 5.4 explains how to geometrically construct the graph of the mappingk �→

Figure 5.4: Featuring the construction ofγ ∗F

︷︷
f (k) associated with the power series

︷︷

F for a given F (represented by the graph of
k �→ f (k)): to each point of this discrete graph is attached a ‘horizontal half line’
extending to the right (corresponding to the multiplication byγ ∗) and then, the graph
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of
︷︷
f is obtained as the ‘upper hull’ of this set of half lines. Of course, when we speak

of ‘lines’, only the trace of those lines overZ
2 is significant.

The practical consequence of the preceding results is that an element ofD[[γ ]] can
be viewed as a particular representative (indeed the maximum one) of an equivalence
class of elements ofZmax[[γ ]] for the equivalence relation

F ≡ G ⇔ γ ∗F = γ ∗G . (5.16)

Calculations inD[[γ ]] can beperformed using the general rules of power series withany
representative of an equivalence class (i.e. not necessarily a series with nondecreasing
coefficients); however, the second simplification rule (5.3) is now available (the first
one is of course also valid since it arisesfrom the fact that the coefficientslie in Zmax).
The symbol ‘=’ i n the second rule must be understood as the fact that both sides are in
the same equivalence class.

Because of (5.16), there is no meaning in speaking of the degree of an element
of D[[γ ]] , because an element is an equivalence class, and two representatives of the
same class may have different degrees. For example,e = γ 0 (which is of degree zero
in Zmax[[γ ]]) and γ ∗ (which is of infinite degree inZmax[[γ ]]) are the same element in
D[[γ ]]. The situation is better for the valuation which is invariant in an equivalence
class. This is stated by the next lemma which also exhibits another invariant of equiv-
alence classes.

Lemma 5.11 Consider F =⊕k∈Z
f (k)γ k and G =⊕k∈Z

g(k)γ k in Zmax[[γ ]] . If F
and G are in the same equivalence class, then

1. val(F) = val(G), i.e. inf{k | f (k) 
= ε} = inf{k | g(k) 
= ε};
2.
⊕

k∈Z
f (k) =⊕k∈Z

g(k), i.e. supk∈Z
f (k) = supk∈Z

g(k).

Proof

1. We haveγ ∗F = γ ∗G. But val(γ ∗F) = val(γ ∗)⊗ val(F) from (4.94) (equality
holds true sinceZmax is entire), but val(γ ∗) = e and hence val(F) = val(γ ∗F) =
val(γ ∗G) = val(G).

2. Since the two formal power series in (5.16) must be equal, the corresponding
values inZmax, obtained by substituting a numerical value inZmax for γ , must
also be the same. Therefore, setγ = e and the result follows.

5.3.2.2 Minimum Representative

In general, there is no minimum representative of an equivalence class becauseI� is
not a∧-morphism (check thatI�(F ∧ G) < I�(F) ∧ I�(G) with F = e ⊕ 1γ and
G = 1⊕ γ ). However, it turns outthat some equivalence classes do have a minimum
representative. We address this question now. LetF define an equivalence class. If
there were to exist a minimum member, saỹF , of that equivalence class, then we
would have that

γ ∗F = γ ∗ F̃ = F̃ ⊕ γ γ ∗ F̃ = F̃ ⊕ γ γ ∗F ,
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where thefollowing identities have been used:

γ ∗ = e⊕ γ + and γ + = γ γ ∗ . (5.17)

Hence, if such anF̃ were to exist, it should be the smallest one satisfyingγ ∗F =
F̃ ⊕ γ +F , and therefore it should be equal toγ ∗F ◦− γ +F .

Theorem 5.12 (Minimum representative) Let F =⊕ f (k)γ k ∈ Zmax[[γ ]] and F̃
def=

γ ∗F ◦− γ +F. Then, one also has that

F̃ = F ◦− γ +F (5.18)

(equality in Zmax[[γ ]]). Moreover, this F̃ depends only on the equivalence class of F
of which it is a minorant. Finally, the following three statements are equivalent:

1. F̃ belongs to the equivalence class of F of which it is the minimum representa-
tive;

2. val(F̃) = val(F);

3. limk→−∞ f (k) = ε.

Before giving a proof, let us consider Figure 5.5 which illustrates howF̃ is obtained
in practice using a geometric construction ofγ ∗F ◦− γ +F : theblack graph represents

Points belonging to
the graph of the

minimal representative

Figure 5.5: Featuring the construction ofγ ∗F ◦− γ +F

γ ∗F (a nondecreasing mapping fromZ to Z); the grey graph representsγ +F and
is obtained from the previous one by a unit shift along thex-axis; finally, only the
coefficients corresponding to points where the black graph differs from the grey graph
are nonzero coefficients of̃F .

Proof of Theorem 5.12 First, wehave that

F̃ = γ ∗F ◦− γ +F = (F ⊕ γ +F) ◦− γ +F = F ◦− γ +F

according to Formula (f.17) of Table 4.2.
The former expression shows that̃F depends only on the equivalence class ofF

(sinceγ +F = γ γ ∗F andγ ∗F characterizes an equivalence class). The latter expres-
sion shows that̃F ≤ F , hence F̃ is a minorant of the equivalence class ofF since this
inequality can be obtained for anyF in this subset.



5.3. Daters and theirEmbedding in Nonmonotonic Functions 229

1⇒ 2 If F̃ belongs to the equivalence class ofF , then Lemma 5.11 shows that val(F̃) =
val(F).

2⇒ 3 Suppose that val(F̃) = val(F). We also assume thatF 
= ε since otherwise
F̃ = ε and the theorem is trivial. Then, either val(F) > −∞ —in this case
the equality with val(F̃) need not be assumed since it can indeed be proved, see
Remark 5.13 below—or it is equal to−∞. In the formercase, clearlyf (k) = ε

for all k < val(F) and statement 3 is trivially true. In the latter case, we are
going to prove that statement 3 also holds true. Indeed, since val(F̃) = −∞, for
all k0, thereexists k′0 ≤ k0 suchthat f̃ (k′0) > ε. Since (5.18) says that̃f (k′0) =
f (k′0) ◦− sup�≤k′0−1 f (�), it is necessary that sup�≤k′0−1 f (�) ≤ f (k′0) − 1. Let
k1 = k′0 − 1 < k0. By repeating the same argument, we can construct a strictly
decreasing subsequence{ki } such that sup�≤ki

f (�) ≤ f (ki +1)−1. Thisclearly
shows thatlimki→−∞ sup�≤ki

f (�) = ε, and since the mappingk �→ sup�≤k f (l)
is nondecreasing, then limk→−∞ sup�≤k f (�) = ε. This property is equivalent to
statement 3.

3⇒ 1 Statement 1 is equivalent to the fact thatA = B with A
def= γ ∗ F̃ andB

def= γ ∗F ,
which is also equivalent to the fact thatB ◦− A = ε becausẽF ≤ F and thus
A ≤ B. From (5.17), we have thatA = γ A⊕ F̃ andB = γ B⊕F . With the help
of Formula (f.16) of Table 4.2, we have thatB = γ B ⊕ (F ◦− γ B) = γ B ⊕ F̃ .
Moreover,

B ◦− A = (γ B ⊕ F̃) ◦− (γ A⊕ F̃)

= (γ B ◦− (γ A⊕ F̃))⊕ (F̃ ◦− (γ A ⊕ F̃)) using (f.14),
= γ B ◦− (γ A ⊕ F̃) sinceF̃ ◦− (γ A⊕ F̃) = ε,

= (γ B ◦− γ A) ◦− F̃ using (f.18),
≤ γ (B ◦− A) ◦− F̃ using (f.20),
≤ γ (B ◦− A) (obvious).

It follows thatX
def= B ◦− A satisfiesX ≤ γ X which means thatx(·) = b(·) ◦− a(·)

is nonincreasing. In addition, for all k,

x(k) ≤ b(k) = sup
�≤k

f (�) and lim
k→−∞

b(k) = ε

from the assumption that statement 3 holds true. Therefore,x being nonincreas-
ing and tending toε at−∞ is alwaysequal toε.

Remark 5.13 If −∞ < val(F) < +∞, then val(γ +F) = val(γ +) ⊗ val(F) =
1+ val(F) > val(F). From (5.18), we have thatF ≤ γ +F ⊕ F̃ , hence, with (4.92),
val(F) ≥ min(val(γ +F), val(F̃)). But val(γ +F) > val(F), hence val(F) ≥ val(F̃).
On the other hand, sinceF̃ ≤ F , val(F̃) ≥ val(F) and finally val(F̃) = val(F). If
val(F) = +∞, then F̃ = F = ε. Therefore, statement 2 of the theorem can be
replaced by the statement{val(F) = −∞ ⇒ val(F̃) = −∞}.
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5.4 Moving to the Two-Dimensional Description

In (5.3), the simplification rule on exponents is dual to the one which applies to coeffi-
cients. Therefore, it seems more natural to preserve the symmetry between exponents
and coefficients. This is realizedby a new coding of daters usingtwo shift operators
instead ofone, the so-called two-dimensional domain description. Then a nice inter-
pretation of this new coding will be given in terms of ‘information’ about events.

5.4.1 TheZmax Algebra through Another Shift Operator

In Examples 4.17 and 4.18 we observed that a dioid of vectors or scalars can be made
isomorphic to a dioid of some subsets of this vector or scalar set in which∪ plays the
role of addition and+ (‘vector sum’) that of multiplication. For our present purpose,
we considerZmax on the one hand, and(L,∪,+) on the other hand, whereL is the
subset of 2Z consisting of ‘half lines ofZ’ extending to the left, and including∅ andZ

itself. More precisely, we consider the mapping

� : Z → 2Z , t �−→






{s ∈ Z | s ≤ t} if t ∈ Z ;

∅ if t = ε = −∞ ;

Z if t = � = +∞ .

(5.19)

Hence�
(
Z

)
= L and� is a dioid isomorphism between the two complete dioids

Zmax and(L,∪,+) (in thelatter,ε = ∅ ande = (−∞, 0]).
We now consider the set of power series in one variableδ, with ‘Booleancoeffi-

cients’ (denotedε ande) belonging to the dioid of Example 4.16, and with exponents
in Z, this set of series being endowed with the conventional sum and product of series;
this dioid is denotedB[[δ]]. With any subsetS of Z, we associate a power series via the
mapping

S = {t}t∈JS �→
⊕

t∈JS

δt . (5.20)

This expression should be interpreted as a series in which only coefficients equal to
e are explicitly mentioned, the missing monomials having a coefficient equal toε.
Clearly,S ∪ S′ is represented by the series obtained by summing up the series related
to S andS′. The empty subset is represented by the zero series (all coefficients equal
to ε) and the subsetZ is represented by the series� having all coefficients equal toe.
Also, if

S ⊗ S′ def= S + S′ = {t + t ′ | t ∈ JS, t ′ ∈ JS ′
}

,

then the product of the series associated withS and S′ is the series associated with
S ⊗ S′. Theidentity element consists of the subset{0}, and is represented by the series
δ0 also denotede.

The mapping (5.20) is an isomorphism between the two complete dioids
(
2Z,∪,+)

andB[[δ]]. ThesubsetL of 2Z is mapped to some subset ofB[[δ]] which we are going to
characterize. Note first thatδ is the series representing the subset{1}, and ‘multiplying



5.4. Moving to the Two-Dimensional Description 231

by δ’ amounts to shifting a subset to the right by one (later on,δ will be called a
‘backward shift operator in timing’ or ‘in the time domain’ for reasons akin to those
put forward in Remark 5.6). Then, a half lineL ∈ L is a subsetcharacterized by the
fact that it is included in its own image obtained by translation to the right: in terms
of associated series, and keeping the same letter to denote the half line and its coding
series, this means thatL ≤ δL or

L ≥ δ−1L . (5.21)

Given any subsetS, we may look for the smallest half lineL larger than (i.e. contain-
ing) S: in the algebraic setting, this amounts to solving the algebraic problem of the
‘best approximation from above’ of a seriesS by a seriesL satisfying (5.21). By direct
application of Theorem 4.78, the solution of this problem is obtained by using the for-
mulaL = (δ−1)∗S. ThedioidL[[δ]] of seriesrepresenting half linesL is isomorphic to
thequotient ofB[[δ]] by the congruence

∀S, S′ ∈ B[[δ]] , S ≡ S′ ⇔ (δ−1)∗S = (δ−1)∗S′ , (5.22)

and it is also isomorphic to the multiplicative ideal(δ−1)∗B[[δ]]. Calculations inL[[δ]],
which amount to manipulations of half lines—and hence also of numbers inZmax ac-
cording to the mapping (5.19)—can be done with any representative of an equivalence
class inB[[δ]], provided that the following simplification rule be remembered (which
should remind us of the second rule in (5.4)):

δt ⊕ δτ = δmax(t,τ ) .

This indeed expresses the equivalence of both sides of the equation.

Remark 5.14 The composition of (5.19) and (5.20) (direct correspondence fromZmax

to (δ−1)∗B[[δ]]) is given by

t �→






δt(δ−1)∗ if t ∈ Z ;

ε (zero series) ift = ε = −∞ ;

(δ−1)∗δ∗ = (δ−1⊕ δ)∗ = (δ−1)∗ ⊕ δ∗ if t = � = +∞ .

(5.23)

In the first two cases there exist minimum representatives in the corresponding equiv-
alence classes ofB[[δ]] which are respectively δt andε (the latter class contains only
this element), but there is no minimum representative in the class of� (the lastcase).
If we attempt to allow infinite exponents for power series inB[[δ]] in order to say that
δ+∞ is a minimum representative of�, then expression (5.22) of the congruence is
no longer valid sinceδ+∞ andδ∗, which should both represent�, donot appear to be
algebraically equivalent through (5.22), that is,δ+∞

(
δ−1
)∗ 
= δ∗

(
δ−1
)∗

. The reason is
that a subset ofZ which is aleft half line can no longer be characterized by the fact that
this subset is included in its image by a right unit shift: this fails for the subset{+∞}.
Thisobservation is similar to that of Remark 5.7.
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5.4.2 TheM
ax
in [[γ, δ]] Algebra

We startfrom the set of formal powerseries intwo variables(γ, δ) with Booleancoef-
ficients and with exponents inZ, this set being endowed with the conventional addition
and multiplication of series: this dioid is calledB[[γ, δ]]. In two stages, that is, by two
successive quotients by equivalence relations, we reach an algebraic structure, called
M

ax
in[[γ, δ]] (pronounced ‘min maxγ δ’), which is isomorphic toD[[γ ]] (the dioid of

γ -transforms ofnondecreasing functions fromZ to Zmax). At the first stage, we reach
a dioid which is isomorphic toZmax[[γ ]] (γ -transforms ofgeneral functions). We also
show that the two steps can be combined into a single one. For each stage, we give
algebraic and geometric points of view.

5.4.2.1 From Sets of Points in the Plane to Hypographs of Functions

The dioid B[[γ, δ]] is complete, commutative, distributive and Archimedian. It is iso-

morphic to the dioid
(
2Z

2
,∪,+
)

via the one-to-one correspondence:

F ∈ 2Z
2
, F = {(k, t)}(k,t)∈JF �−→

⊕

(k,t)∈JF

γ kδt ∈ B[[γ, δ]] . (5.24)

The lowerbound operation∧ in B[[γ, δ]] corresponds to the intersection∩ in 2Z
2
.

Instead of subsets of points inZ2, wecan manipulate their indicator functions over
Z

2 which assumethe valuee at a point belonging to the corresponding subset and
the valueε elsewhere. This set of Boolean functions is a complete dioid once endowed
with the pointwise maximum as the addition and the two-dimensional max-convolution
asthe multiplication. Then, elements ofB[[γ, δ]] appear as(γ, δ)-transforms of these
functions in an obvious sense.

From analgebraic point of view,B[[γ, δ]] is alsoisomorphic toB[[δ]][[ γ ]] which is
the dioid of power series in one variableγ with coefficients inB[[δ]]. The equivalence
relation (5.22) can be extended to elements ofB[[γ, δ]] by using the same definition
(note that(δ−1)∗ is another notation for(δ−1)∗γ 0 in B[[γ, δ]]). The quotient ofB[[γ, δ]]
by this equivalence relation, denoted(δ−1)∗B[[γ, δ]] because it is isomorphic to this
multiplicative ideal, is also isomorphic to

(
(δ−1)∗B[[δ]]

)
[[γ ]] which is thedioid of power

series inγ with coefficients in(δ−1)∗B[[δ]]. Since this one is isomorphic toZmax by
the correspondence (5.23), we are back to the dioidZmax[[γ ]]. We summarize these
considerations withthe following lemma.

Lemma 5.15 The dioids (δ−1)∗B[[γ, δ]] and Zmax[[γ ]] are isomorphic.

Geometrically, if one starts from a collection of points inZ2 (coded by an element
of B[[γ, δ]] as indicated by (5.24)), the quotient by (5.22) corresponds to ‘hanging a
vertical half line’ (extending downwards) at each point as shown in Figure 5.6. This
operation is the counterpart of the isomorphism described in§5.4.1 whichassociates
a half line extending to the left with each number ofZmax (but nowZmax is disposed
vertically along they-axis). All the subsets ofZ2 yielding the same collection of points
under this transformation are equivalent. We obtain the geometric representation of
an element of

(
(δ−1)∗B[[δ]]

)
[[γ ]] (in f act, a maximum representative of an equivalence
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Figure 5.6: Hypograph

class). Since
(
(δ−1)∗B[[δ]]

)
[[γ ]] is isomorphic toZmax[[γ ]], this geometric figure is in

turn in one-to-one correspondence with theγ -transform of some functionk �→ f (k)
of which it is the ‘hypograph’ (see Definition 3.37). This function is determined by

f : k �→ f (k) = sup
(k,t)∈JF

t . (5.25)

Conversely, given a functionf : Z → Zmax, it follows from (5.23) that one represen-
tativeof the corresponding elementF ∈ (δ−1)∗B[[γ, δ]] is obtained by

F =



⊕

{k|−∞< f (k)<+∞}
γ kδ f (k)



⊕



⊕

{k| f (k)=+∞}
γ kδ∗



 . (5.26)

5.4.2.2 From Hypographs of General Functions to Hypographs of Nondecreas-
ing Functions

The next step is to restrict ourselves tonondecreasing functions. This amounts to
making the quotient of(δ−1)∗B[[γ, δ]]—isomorphic toZmax[[γ ]]—by the equivalence
relation (5.16): the result is isomorphic to the multiplicative idealγ ∗(δ−1)∗B[[γ, δ]],
and it will be denotedMax

in[[γ, δ]]. This dioid is isomorphic toD[[γ ]].

Lemma 5.16 The dioids D[[γ ]] (dioid of γ -transforms of daters) and M
ax
in[[γ, δ]]

def=
γ ∗(δ−1)∗B[[γ, δ]] are isomorphic.

Geometrically, this new quotient amounts to attaching a horizontal right half line
to each point of thehypograph of a general function (as we did in Figure 5.4) to obtain
thehypograph of a nondecreasing functiond which is determined by

d : k �→ d(k) = sup
(�,t)∈JF

�≤k

t . (5.27)

This formula is derived from (5.25) and (5.15). Conversely, given a nondecreasing
functiond, one representative inM

ax
in[[γ, δ]] of this dater isobtained by (5.26) withd

replacing f , that is,

F =



⊕

{k|−∞<d(k)<+∞}
γ kδd(k)



⊕



⊕

{k|d(k)=+∞}
γ kδ∗



 . (5.28)
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5.4.2.3 Directly from B[[γ, δ]] to M
ax
in[[γ, δ]]

It is realized that the quotients associated with(δ−1)∗ and with γ ∗ done sequentially
canbe condensed into a single one using the new equivalence relation inB[[γ, δ]]:

∀A, B ∈ B[[γ, δ]] , A ≡ B ⇔ γ ∗(δ−1)∗ A = γ ∗(δ−1)∗B . (5.29)

Because of Formula (4.109),M
ax
in[[γ, δ]] is alsoequal to(γ ⊕ δ−1)∗B[[γ, δ]].

Geometrically, starting from a collection of points inZ2 (in one-to-one correspon-
dence with anelement ofB[[γ, δ]]), onefirstattaches vertical half lines down from each
point, and then horizontal right half lines to all the points so obtained: this amounts to
fixing a cone extending in south-east directions with vertical and horizontal borders to
each original point. Note that the cone with its vertex at the origin is coded byγ ∗(δ−1)∗

in B[[γ, δ]] ; it corresponds to the identity element in the quotient dioid.

Notation 5.17 Weintroduce the following notation:∀(k, t), (�, τ ) ∈ Z
2,

{(�, τ ) & (k, t) or (k, t) ' (�, τ )} ⇔ {� ≥ k andτ ≤ t} ,

{(�, τ ) ≺ (k, t) or (k, t) ) (�, τ )} ⇔ {(�, τ ) & (k, t) and(�, τ ) 
= (k, t)} .

Geometrically, the point (�, τ ) lies in a south, east or south-east direction with
respect to(k, t). The elements ofMax

in[[γ, δ]] could have been obtained by raising the
geometric problem of finding the smallest set of points inZ

2 containing a given set of
points and closed by translations to the right and downwards (that is, a set containing its
own images by these translations). The corresponding algebraic formulation inB[[γ, δ]]
is the following: for a givenA ∈ B[[γ, δ]], find the ‘best approximation from above’ by
a B satisfying

B ≥ γ B , B ≥ δ−1B or equivalently B ≥ (γ ⊕ δ−1)B .

By application of Theorem 4.78, thisB is equal toγ ∗(δ−1)∗A and it is themaximum
representative of the equivalence class ofA. Theproblem of minimum representatives
is addressed later on.

Note that there is another path to obtainMax
in[[γ, δ]] from B[[γ, δ]]: it consists in

making the quotient byγ ∗ first, followed by thequotient by(δ−1)∗. This procedure
may be interpretedin terms of functionst �→ g(t), which amounts to inverting the role
of thex- andy-axes. This is what we will do when considering counter descriptions in
§5.5. Finally, we obtain the commutative diagram of Figure 5.7.

The practical rule for manipulating elements ofMax
in[[γ, δ]] is to use any represen-

tative in each equivalence class and the usual rules of addition and multiplication of
power series in two variables plus the rules (5.5) which should be understood as equiv-
alenceswith respect to the congruence (5.29). The symbolM

ax
in[[γ, δ]] is supposed to

suggest the rules (5.5) which involve min and max. These rules can be summarized by
the followingone:

(�, τ ) & (k, t)⇒ γ kδt ⊕ γ �δτ = γ kδt . (5.30)
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γ ∗

γ ∗ γ ∗

B[[γ, δ]]

B[[γ, δ]] (δ−1)∗(δ−1)∗

(δ−1)∗

B[[γ, δ]]

γ, δ

(γ ⊕ δ−1)∗

M
ax
in[[ ]]

Figure 5.7: Commutative diagram

The comments preceding Lemma 5.11 can be repeated here with some adaptation.
Because of (5.29), it is clearly meaningless to speak of the degree inγ , or of the
valuation in δ, of an elementof Max

in[[γ, δ]]: two members of the same equivalence class
may have different such characteristics. The next lemma is a rephrasing of Lemma 5.11
in the context ofMax

in[[γ, δ]].

Lemma 5.18 Consider F and G in B[[γ, δ]] . If F and G represent the same element
of M

ax
in[[γ, δ]] , then the valuations of F and G in γ are equal, and so are the degrees

of F and G in δ.

Proof Essentially, the proof uses the same argument as at point 1 of the proof of
Lemma 5.11. We start from the equality ofγ ∗(δ−1)∗F andγ ∗(δ−1)∗G (equality in
B[[γ, δ]]). Then weapply (4.91), respectively (4.94), to the degree inδ, respectively
the valuation inγ , of those series. These are equalities since{ε, e} is an entire dioid.
We finally observe that deg((δ−1)∗) = val(γ ∗) = e.

Definition 5.19 For any element F of M
ax
in[[γ, δ]] , its valuation (still denoted val(F)),

respectively its degree(still denoted deg(F)), is the valuation in γ , respectively the
degree in δ, of any representative (in B[[γ, δ]] ) of F. Such an F is a polynomialif it is
equal to ε, or if its valuation and its degree are both finite. It is a monomialif it is a
polynomial and, when it is not equal to ε, if it is equal (in M

ax
in[[γ, δ]]) to γ val(F)δdeg(F).

Of course, we cannot claim here that val(F) ≤ deg(F) as is the case for conventional
nonzero polynomials or power series. However, it is straightforward to see that the
relevant properties of Lemma 4.93 are still valid (with equality). Also, for a given
polynomialF , any monomial which is greater than or equal toF must have a valuation
not largerthan val(F) and a degree not smaller than deg(F). Therefore, the smallest
such monomial isγ val(F)δdeg(F) .

5.4.2.4 Minimum Representative

Let us return to the problem of the minimum representative in each equivalence class.



236 Synchronization and Linearity

Theorem 5.20 (Minimum representative inM
ax
in[[γ, δ]]) Let F = ⊕ f (k, t)γ kδt ∈

B[[γ, δ]] ( f (k, t) ∈ B) and F̃
def= (γ ⊕ δ−1)∗F ◦− (γ ⊕ δ−1)+F. Then, one has that

F̃ = F ◦− (γ ⊕ δ−1)+F (5.31)

(equality in B[[γ, δ]]). Moreover, F̃ depends only on the equivalence class of F of
which it is a minorant (the equivalence relation is (5.29)). Finally, the following three
statements are equivalent:

1. F̃ belongs to the equivalence class of F of which it is the minimum representa-
tive;

2. val(F̃) = val(F) and deg(F̃) = deg(F);

3. the following two conditions are satisfied:

∀t ∈ Z , ∃k ∈ Z : ∀(�, τ ) ' (k, t) , f (�, τ ) = ε , (5.32)

∀k ∈ Z , ∃t ∈ Z : ∀(�, τ ) ' (k, t) , f (�, τ ) = ε . (5.33)

Figure 5.8 illustrates the geometric construction of the minimum representative: the set

Points belonging to the
minimal representative

Figure 5.8: Featuring the construction of(γ ⊕ δ−1)∗F ◦− (γ ⊕ δ−1)+F

of points ofγ ∗F (in white) is shifted downwards (shift byδ−1 which yields the light
grey set) and to the right (shift byγ which yields the darkgrey set), and only the points
of the white set which are not ‘covered’ by points of at least one of the grey sets are
kept for the minimum representative.

Proof of Theorem 5.20 The fact thatF̃ only depends on the equivalence class of
F and that it is a minorant of this equivalence class is proved in the same way as in
Theorem 5.12,γ ⊕ δ−1 now replacingγ .

1⇒ 2 This is an immediate consequence of Lemma 5.18.
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2⇒ 3 Weconsider the equality of valuations and show that it implies (5.32). A similar
proof, not given here, canbemade for theequality of degrees implying (5.33).
The case whenF = ε is trivial. Moreover, when val(F) is finite, itcan beproved,
as shown in Remark 5.13, that this implies that val(F̃) is equal to it,and (5.32) is
again obvious. Finally, suppose that val(F̃) = val(F) = −∞ and F 
= ε. Pick
somek0; there mustexist somek′0 ≤ k0 and somet ′0 suchthat f̃ (k′0, t ′0) = e,
which implies that f (k′0, t ′0) = e and, for all (�, τ ) ) (k′0, t ′0), f (�, τ ) = ε,
since otherwisẽf (k′0, t ′0) would be equal toε by (5.31). Set(k1, t1) = (k′0 −
1, t ′0 − 1). We can repeat the same argument and find some(k′1, t ′1) suchthat
k′1 ≤ k1, f (k′1, t ′1) = e and, for all (�, τ ) ) (k′1, t ′1), f (�, τ ) = ε. Necessarily,
t ′1 ≤ t ′0 − 1 since otherwise, we would have found a(k′1, t ′1) ) (k′0, t ′0) such
that f (k′1, t ′1) = e, which is a contradiction. Hence we can construct a sequence{
(k′i , t ′i )

}
with the mentioned property and such thatk′i+1 < k′i and t ′i+1 < t ′i .

Hence(k′i , t ′i ) → (−∞,−∞) as i → +∞. Let any t be given. Pick the next
(k′i , t ′i) suchthatt ′i ≤ t . Setk = k′i −1. Thisk fulfills the condition expressed by
(5.32).

3⇒ 1 Let X
def= B ◦− A with A

def= (γ ⊕ δ−1)∗ F̃ and B
def= (γ ⊕ δ−1)∗F . To prove

that F̃ belongs to the equivalence class determined byF , we need to prove that
A = B. Since weknow thatA ≤ B, it suffices to prove thatX = ε. In a way
similar to that of theproof of Theorem 5.12, it can be proved that

X ≤ (γ ⊕ δ−1)X . (5.34)

Suppose that there exists(k0, t0) suchthatx(k0, t0) = e. Then, because of (5.34),
either x(k, t + 1) or x(k − 1, t) is alsoequal toe. Call this newpoint (k1, t1),
wherex assumes the valuee. This argument can be repeated at the point(k1, t1),
providing the next point(k2, t2) ) (k1, t1) at whichx is equal toe, etc. Therefore,
we can construct an infinite sequence of points such that(ki+1, ti+1) ) (ki , ti)

and at each pointx(ki , ti) = e, which also implies thatb(ki , ti) = e, since
x = b ◦− a. Oneof the following three possibilities must then occur:

• the sequence {ti} is bounded from above, hence it stays at some value t for
i large enough; thenki must go to−∞ when i increases; consequently,
there existarbitrarily small values ofk suchthat b(k, t) = e; on theother
hand, according to (5.32), there exists ak suchthat f (�, τ ) = ε for all

(�, τ ) ' (k, t) which also implies thatb(�, t)
def=⊕(�′,τ ′)'(�,t) f (�′, τ ′) = ε;

this yields a contradiction;

• the sequence {ki } is bounded from below, hence it stays at some value k
for i large enough; thenti must go to+∞ wheni increases; consequently,
there exist arbitrarily large values oft suchthat b(k, t) = e; on theother
hand, according to (5.33), there exists at suchthat f (�, τ ) = ε for all

(�, τ ) ' (k, t) which also implies thatb(k, τ )
def= ⊕(�′,τ ′)'(k,τ ) f (�′, τ ′) =

ε; this yields a contradiction;

• the sequences {ki } and {ti } are both unbounded and converge to −∞ and
+∞, respectively; this again yields a contradiction with both (5.32) and
(5.33).
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Finally, x cannot assume the valuee anywhere.

Remark 5.21 With the aid of (5.27), it is seen that the condition (5.32) is equivalent to
the fact that limk→−∞ d(k) = ε which is statement 2 of Theorem 5.12. But now there
is an extra condition, namely (5.33), which is equivalent to saying thatd(k) remains
finite for all finite k. Thereason for this extra condition is that, inZmax[[γ ]], the point
+∞ does belong to they-axis, whereas inB[[γ, δ]] it does not. About this issue, the
reader should refer to Remark 5.14.

5.4.3 Algebra of Information about Events

We aregoing to provide an interpretation of the algebraic manipulation of power series
of B[[γ, δ]] using the additional rule (5.30) in terms of the manipulation of information
about events. Consequently, the relation order& introduced earlier will be interpreted
as the domination of pieces of information over one another.

Given a power seriesF (see (5.24)), we may view each pair(k, t) ∈ JF as the
coordinates of a ‘pixel’ inZ2 which is ‘on’ (whereas pairs of exponents of(γ, δ) cor-
responding to zero coefficients inF represent pixels which are ‘off’). Each such pixel
which is ‘on’ gives a piece of information about the associated daterd evaluated by
(5.27): it says that∀� ≥ k, d(�) ≥ t , or, in words, ‘the event numberedk and thesub-
sequent ones take place atthe earliest at timet ’. Geometrically, the graph ofd cannot
cross the region ofZ2 delineated by the south-east cone{(ell, τ ) | (�, τ ) & (k, t − 1)}.

Now, given two pixels(k1, t1) and (k2, t2), the forbidden region is of course the
union of the two corresponding cones. Obviously, if(k1, t1) & (k2, t2), thepiece of
information associated with the latter pixel is at least as informative as the two pieces
of information together (for one cone is included in the other one) and hence the latter
piece of information only may be kept. Indeed, we are just rephrasing the rule (5.30). In
summary, power series inMax

in[[γ, δ]] can be interpreted as representations of collections
of pieces of information about events, and summing up two power series consists in
gathering all the pieces of information brought by the two series about the same type of
event. At any stage, the reduction of the representation using the rule (5.30) amounts to
canceling the pieces of information which are redundant. The relation order associated
with this idempotent addition expresses the domination of collections of information
over one another. The particularelementε, which corresponds to the power series with
zero coefficients, has all its pixels ‘off’ andtherefore it brings no information at all. It
is the neutral element for the addition of information.

To complete our interpretation of the manipulations inMax
in[[γ, δ]], we discuss the

product operation in the next subsection in which we return to event graphs.

5.4.4 M
ax
in [[γ, δ]] Equations for Event Graphs

5.4.4.1 Transfer Function

Let us refer back to Figure 5.1. With each transition is associated a power series in
M

ax
in[[γ, δ]] (with the same name as the transition itself) which encodes the information

available about the corresponding dater trajectory. For the sake of simplicity, in the
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same way as we have assumed that there is a global clock delivering the ticks num-
beredt for all the transitions, we assume that there is acommon initial value of the
numbering mechanisms at all transitions (assigning numbersk at successive transition
firings). Then, each arc between two transitions, indeed the place on this arc, trans-
mits information from upstream to downstream, but this information is ‘shifted’ by the
number of ‘bars’ in terms of timing and by the number of ‘dots’ in terms of number-
ing. Algebraically, this shift is obtained by multiplication of the corresponding series
by the appropriate monomial. For example, since the place betweenu andx1 has one
bar, and since e.g. u denotes the information available about the transition with the
same name, the arcu → x1 carries the informationδu. Hence x1 ≥ δu, that is, the
information available atx1 is at least δu. In the same way,x1 ≥ γ 2δx1 andx1 ≥ γ δx2.
The transition x1 gathers the information brought by all incoming arcs. Finally,

x1 ≥ γ 2δx1⊕ γ δx2⊕ δu .

In the same way, we can obtain inequalities forx2 and y. In matrix form (remember
thatall elements belong toM

ax
in[[γ, δ]]), we obtain

(
x1

x2

)
≥
(

γ 2δ γ δ

γ δ ε

)(
x1

x2

)
⊕
(

δ

δ2

)
u ,

y ≥ ( e e
) ( x1

x2

)
,

of the general form

x ≥ Ax ⊕ Bu , y ≥ Cx . (5.35)

These inequalities should be compared with the equations obtained in§5.2.

Remark 5.22 Without our assumption of a common initial value of all the numbering
mechanisms, corrections should have been made as for the exponent ofγ in the shift
operator associated with each place in order to account for the difference in numbering
initial values between the upstream and downstream transitions of this place.

We make the following assumption which is different from that made in§2.5.2.3,
but which will find a justification later on in this section.

The initial global clock value ist = 0 by convention, and the numbering
mechanism at each transition assigns the valuek = 0 to the first transition
firing occurring at or after time 0.

This convention does not mean that tokens cannot be brought from the outside world
before time 0: it suffices to include these tokens in the initial marking of the place
connecting the input transition with other internal transitions.

Remark 5.23 (Interpretation of ε inputs) Becauseε is the bottom element, anε input
is the least constraining input possible: it is less constraining than any inputγ nδ−t for
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arbitrarily large n andt . Therefore, one may viewε inputs as those which correspond
to bringing an infinity of tokens at time−∞.

Sofar, only the inequalities (5.35) have been obtained. Without further information,
the behavior of the system is not completely specified andnothing more can be said.
In particular, lag times of tokens of the initial marking (see Definition 2.49) have not
been stipulated. For the time being, we give a mathematical answer to this lack of
information by selecting a ‘canonical’ solution to the system of inequalities. Later on,
a more concreteinterpretation of this uniquely defined solution in terms of arrival times
of tokens of the initial marking in places will be given.

From Theorem 4.75, we know that the least solution of (5.35) is given by

x = A∗Bu , y = Cx = C A∗ Bu , (5.36)

and that it satisfies the equalities in (5.35). This solution corresponds to the earliest
possible occurrences of all events. For the time being, let us assume thatthe least
solution is indeed the one of interest. We will return to this issue later on. As an exer-
cise, the reader may try to evaluate the expressionC A∗ B for the considered example.
This canbe done either by Gaussian elimination (hint: first expressx2 with respect to
x1 andu, then solve a fixed-point equation inx1), or, equivalently, by using the for-
mulæ (4.100), or preferably (4.110), and (4.109), plus the simplification rules (5.5).
Finally, oneobtains

y = δ2(γ δ)∗u . (5.37)

Under the assumption that the earliest possible behavior is the one which will occur,
we reach the conclusion that the input-output relation of the event graph of Figure 5.1
is given by (5.37): in generalC A∗B will be called thetransfer function of the system
(for single-input-single-output (SISO) systems).

NotethatC A∗B encodes the output dater caused by the input datere. Onepossible
representation of e is δ0(γ 0⊕ γ 1⊕ γ 2⊕ · · · ). Due to the convention adopted earlier
regarding the initial time and the initial numbering value of events, the inpute may be
interpreted as the action of firing the transitionu an infinite number of times at time 0
(or putting an infinite amount of tokens at time 0 at the inlet of this transition)2. This
is the analogue of animpulse in conventional system theory, and therefore the transfer
function may be viewed as the coding of theimpulse response.

We now return to the issue of selecting the ‘earliest possible solution’ of (5.35).
This solution corresponds to the least constraining conditions. It does not only mean
that transitions are fired immediately after being enabled, but also that ‘the best initial
condition’ must be selected: this concerns the time at which tokens of the initial mark-
ing are available; these tokens must not determine the firing epochs of transitions they
contribute to enable, whatever the inputu is, and whatever the holding times are. For
the relations (5.36) to be valid for allu, irrespective of theinitial marking and holding
times, we thus assume the following condition.

2With the convention of§2.5.2.3 regarding the numbering of events, the same sequence of events would
be coded byδ0(γ 1 ⊕ γ 2⊕ · · · ) = γ .



5.4. Moving to the Two-Dimensional Description 241

Tokensof the initial marking are available at time−∞.

This convention corresponds to always choosing lag times equal to−∞. These lag
times may fail to fulfill item 2 of Definition 2.50 of weakly compatible lag times. If
other lag times are desired, there is a way to introduce them without changing the above
convention. This is the topic of the following discussion.

5.4.4.2 Introduction of More General Lag Times

Considera placep of anevent graphwith, say, two tokens in the initial marking and a
holding time equal to two time units (see Figure 5.9a). Suppose that for the two tokens

x 1 x 2x 1 x 2p p

w

(a) (b)

Figure 5.9: The introduction of lag times

of the initial marking, we wish to have the lag timesw(0) andw(1), respectively. Then
the event graph is modified locally in such a way as to introduce an additional place
and two additional transitions, one of which is an input transition (labeledw) as shown
in Figure 5.9b. The new additional place keeps the original initial marking and holding
time. The original placep is now free of any initial marking and holding time. The lag
timesare forced by the additional input

w = γ 0δw(0) ⊕ γ 1δw(1)
(⊕ γ 2δw(1) ⊕ · · · ) , (5.38)

that is, the first token is introducedat time w(0) and infinitely many tokens are in-
troducedat time w(1). Since the convention that tokens of the initial marking are
available since−∞ is still assumed, it is seen that indeed the first token of the initial
marking starts enabling transitionx2 at timew(0) and the second token does the same
at timew(1), which is consistent with the definition of lag times. After timew(1), the
input defined by (5.38) is no longer constraining for the rest of the life of the system.

Consider again Figure 5.9a, and assume now that this figure represents an isolated
event graph, instead of a part of a larger event graph (that is, grey arrows are discarded).
Renamex1 andx2 asu andy, respectively. The input-output relation of such a system
is y = γ 2δ2u. If, say, u = e (u is an impulse at time 0),then weobtain that the
corresponding output is equal to

y = δ2(γ 2⊕ γ 3⊕ · · · ) . (5.39)

In terms of information, we thus learn that thethird token (numbered 2) and the next
ones get out at time 2. Nothing is said about the first two tokens (those of the initial
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marking). Alternatively, by completing the missing information in a canonical way
(behavior ‘at the earliest possible time’), it can be said that these two initial tokens
went out at−∞. This contradicts the fact that they are part of the initial marking, if
this initial marking is meant to represent the exact position of tokens at time 0. This
paradoxoccurs because the lag times, equal to−∞ after our convention, are not weakly
compatible in this case (transitiony is enabled twicebefore the initial time). We now
discuss two different ways of resolving this contradiction. The first one is described
below. The second one is the topic of the next paragraph.

Along the lines of Chapter 2, we consider the modification shown in Figure 5.9b,
and we only accept weakly compatible lag times (they serve to determine the additional
inputw asin (5.38)). In this specific case, these lag times must be nonnegative and less
than orequal to 2, the holding time ofp. Then, the input-output relation is given by

yw = γ 2δ2u ⊕w . (5.40)

Notice that this is now anaffine, rather than alinear, function ofu. Foru = e and for
w given by (5.38), we obtain the information already provided by (5.39) for the output
tokens numbered 2, 3,. . . , but weobtain additional information regarding the epochs
at which tokens numbered 0 and 1 get out. We see thatyw, given by (5.40), is not
less thany, given by (5.39), from both theMax

in[[γ, δ]] (algebraic) and the informational
points of view (of course, these two points of view are consistent according to§5.4.3).

The input-output relation (5.40) can be considered to be linear, rather than affine,
if we restrict ourselves to inputsu not lessthanγ −2δ−2w (w being given by (5.38)),
which amounts to considering that the two tokens of the initial marking have also been
produced by the input: this discussion will not be pursued further here but it obviously
related to the notion of acompatible initial condition (seeDefinition 2.61).

5.4.4.3 System-Theoretic View of Event Graphs

From a different point of view, we may consider event graphs as playing the role of
block-diagrams in conventional system theory. Recall that, for block-diagrams, the
‘initial conditions’ are not directly related to the operators shown in the blocks of the
diagram, but they are either set to zero canonically (in which case the input-output
relation is indeed linear), or they are forced by additional (Dirac-like) inputs which
make the ‘states’ (i.e. the initial values of the integrators in continuous time models)
jump to nonzero values at the initial time.

In an analogous way, we may view places of event graphs as serving the only
purpose of representing elementary shift operators in the event domain (number of
‘dots’) and in the time domain (number of ‘bars’) in a pictorial way. In this more ab-
stract (or more system-theoretic) point of view, there is no notion of ‘circulation of
tokens’ involved, and therefore no applicability of any ‘initial position of tokens’. The
conventional rules of Petri nets which make tokens ‘move’ inside the net (and pos-
sibly get outside) are not viewed as describing any dynamic evolution, but they are
ratherconsidered as transformation rules affecting the internal representation but not
the input-output relation (at least when tokens do not get outside the system; they add
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a shift in counting between input and output when some tokens get outside the system
during these ‘moves’). As discussed in Remark 5.3, there is a counterpart to trans-
formations which move tokens, namely transformations which move bars, and both
classes of transformations correspond to linear changes of basis in the internal repre-
sentation. That is, the vectorsx—see (5.35)—of twosuchequivalent representations
can be obtained from each other by multiplication by an invertible matrix with entries
in M

ax
in[[γ, δ]] (a shift of the outputy may also be necessary whentokens or bars cross

theoutput transitions during their moves).
To illustrate this point with an example which is even simpler than that of Fig-

ure 5.9, consider an output transitiony connected to an input transitionu by a place
with one token and a zero holding time. This is the representation of the elementary
shift operatorγ . There is no way to represent this elementary input-output relation
y = γ u for any u by an event graph which at the sametime preserves the elementary
view of this object: for the token of the initial marking to be ‘here’ at time zero, we
need an extra inputw = e (as in Figure 5.9b), but this modified graph represents the
input-output relationy = γ u ⊕ e which coincides with y = γ u only for u ≥ γ −1.

Remark 5.24 Note also that this is not the first time in this book that we meet a
situation in which the naive interpretation of event graphs raises problems which do
not appear in a purely algebraic conception: recall the discussion of Remark 2.86 on
circuits with no tokens and no bars.

5.4.4.4 Reduction of the Internal Representation

It should be realized that (5.37) is also the input-output relation of the event graph
shown in Figure 5.10 which is thus equivalent to the previous one from this ‘external’

u y

Figure 5.10: An equivalent simpler event graph

(i.e. input-output) point of view: this illustrates the dramatic simplifications provided
by algebraic manipulations. As in conventional system theory, the internal structure
is not uniquely determined by the transfer function, and several more or less complex
realizations of the same transfer function can be given.

Of course, this equivalence of internal realizations assumes our convention that
tokens of the initial marking are available since−∞. To handle differentlag times,
one must first appeal to the transformation described above, then compute the transfer
function, and finally find a reduced representation of this transfer function taking lag
times (that is, additional inputs) intoaccount. As an example, the left-hand side of
Figure 5.11 displays the event graph of Figure 5.1 for which additional inputs allow
the choice of lag times for all tokens of the initial marking. For this new event graph,
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y

x2x1

x3

x5
x 4

y

uw1 w2 w3 u w1 w2 w3

Figure 5.11: Event graph with lag times and its reduced representation

the input-output relation turns out to bey = (γ δ)∗
(
δ2u ⊕w1⊕w2⊕ w3

)
: another

simpler eventgraph which has the same transfer function.

Remark 5.25 (Multiple-Input Multiple-Output—MIMO—systems) All t he no-
tions presented in this section extend without difficulty to the case when the inputu
and theoutputy are (column) vectors of respective dimensionm and p. In particular,
C A∗ B (see (5.36)) is then ap × m matrix (called the transfer matrix), the entries of
which are polynomial elements ofMax

in[[γ, δ]].

5.5 Counters

5.5.1 A First Derivation of Counters

As already mentioned in§5.1, discrete event systems, and in particular event graphs,
canbe described in the event domain by daters, or in the time domain by counters. We
also mentioned that for a countert �→ c(t) associated with some type of event, the
precise meaning given toc(t) deserves some attention: roughly speaking, it represents
the value reached by the corresponding numbering mechanism of events at timet ;
however, several events may take place simultaneously at timet . On the contrary,
there is no ambiguity in speaking of the epochd(k) of the event numberedk. From
a mathematical point of view, this issue about counters will receive a natural solution
in this section. Yet, from an intuitive point of view, the interpretation given toc(t)
might not appear as the most natural one. This interpretation will be given only after
the relationship with the corresponding dater has been established.

At this stage, we can discuss the two possibilities of describing event graphs, by
daters or by counters, from an abstract point of view. Consider two different ways of
moving from the upper left-hand corner to the lower right-hand corner of the commu-
tative diagram of Figure 5.7, namely via the eastern then southerndirections on the
one hand, and via the southern then eastern directions on the other hand. The former
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path has been described in some detail: the first move is developed in§5.4.2.1, and the
second move in§5.4.2.2.

Wecan interpret the latter path in the same way. The first move goes fromB[[γ, δ]]
to γ ∗B[[γ, δ]] which is isomorphic to(γ ∗B[[γ ]] ) [[δ]]. For reasonsdual to those given in
§5.4.1,γ ∗B[[γ ]] is isomorphic toZmin by the correspondence fromZmin to γ ∗B[[γ ]]:

k �→






γ kγ ∗ if k ∈ Z ;

ε (zero series) ifk = ε = +∞ ;

(γ −1)∗γ ∗ = (γ −1⊕ γ )∗ = (γ −1)∗ ⊕ γ ∗ if k = � = −∞ ,

(5.41)

which is the counterpart of (5.23). Therefore,(γ ∗B[[γ ]])[[δ]] can be viewed as the subset
of B[[γ, δ]] (the latter encodes collections of points inZ2) corresponding to epigraphs
of mappingsg : t �→ g(t) from Z into Zmin, or alternatively, as the set ofδ-transforms
of those mappingsg.

Remark 5.26 Westill speak of ‘epigraph’, that is the part of the plane above the graph
(see Definition 3.37), although, inZmin, thedioid order is reversed with respect to the
conventional order.

The second move in the diagram, namely that going fromγ ∗B[[γ, δ]] to M
ax
in[[γ, δ]]

through the south, corresponds to selecting only the nondecreasing mappings fromZ to
Zmin which are precisely the counters. The approximation of nonmonotonic functions
by nondecreasing ones is ‘from below’. Again, the words ‘nondecreasing’ and ‘from
below’ should be understood with reference to the conventional order.

These two movescanbe summarized by the following formulæ which are the coun-
terparts of (5.25) and (5.27): the mappingsg andc defined by

g : t �→ g(t) = inf
(k,t)∈JF

k , c : t �→ inf
s≥t

g(s) = inf
(k,s)∈JF

s≥t

k (5.42)

are successively associated with a power seriesF ∈ B[[γ, δ]] , or with the corresponding
collection of points inZ

2 (see (5.24)). In terms of ‘information’, a pixel(k, t) ∈ JF ,
tells that,at time t , the counter reaches at most the value k (since, from (5.42),c(s) ≤ k
for all s ≤ t ). Conversely, to a counterc : Z → Zmin corresponds a power series in
M

ax
in[[γ, δ]], namely




⊕

{t |−∞<c(t)<+∞}
γ c(t)δt



⊕



⊕

{t |c(t)=−∞}
(γ −1)∗δt



 , (5.43)

a formula which follows from (5.41). This formula is the counterpart of (5.28).

5.5.2 Counters Derived from Daters

Let us now discuss the relationship that exists between the dater and the counter as-
sociated with the same type of event. We are going to prove that under some mild
condition, the counter is the dual residual of the dater, i.e.c = d �.
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However, for this to be possible,d must first beconsidered as anisotone function
between two complete dioids. Indeed, as already discussed,d is a monotonic mapping
from Zmin into Zmax; as such, it is antitone ratherthan isotone (that is, with the dioid
orders in the domain and the range, it is ‘decreasing’ rather than ‘increasing’). How-
ever, we may as well consider the mappinĝd from Z (with the natural order) into itself
having the same graph asd. This d̂ is an isotone mapping from a complete lattice into
itself. Because of the end-point conditions (5.6) that we imposed on purpose,d̂ can be
both residuated and dually residuated, provided that the required semicontinuity con-
ditions be fulfilled (see Theorems 4.50 and 4.52, statements 2). The following theorem
discusses the dual residuation. By abuse of expression, we speak of the residuation of
d ratherthan ofd̂.

Theorem 5.27 A dater d is dually residuated if and only if

lim
k→−∞

d(k) = −∞ . (5.44)

Then, if a power series in M
ax
in[[γ, δ]] is associated with d by (5.28), and if c is derived

from this series by (5.42), then c = d �.

Proof Sinced is a mapping between two totally ordered and discrete sets, the required
upper-semicontinuity condition (see Definition 4.43) has to be checked only for subsets
{ki } suchthat

∧
i ki = −∞. Since weimposedd(−∞) = −∞, condition (5.44)

follows.
Then, the set of pixels{(k, t)} defined by




⋃

−∞<d(k)<+∞
(k, d(k))



 ∪




⋃

d(k)=+∞
τ≥0

(k, τ )





is associated withd. Indeed, this isone possible collection, since a south-east cone
can be attached to any pixel of the collection. The above formula follows from (5.28).
Finally, looking at (5.42), it should be clear that

c(t) = inf
d(k)≥t

k , (5.45)

which is nothing but a possible definition ofd � (see statement 1 of Theorem 4.52).

Remark 5.28 If (5.44) is satisfied, then it follows from (4.23) and (4.24) that

∀t , d(c(t)) ≥ t and ∀k , c(d(k)) ≤ k . (5.46)

Moreover, sincec = d �, thend = c�, hence

d(k) = sup
c(t)≤k

t . (5.47)

Relation (5.45) always holds true, even if condition (5.44) is not fulfilled. But then,
wecannot say thatc is the dual residual ofd since the other statements of Theorem 4.52
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do not hold true, in particular (5.46) and (5.47) may be wrong. For example, consider
the mapping defined by (5.6) andd(k) = 0 for all finite k. Then the correspondingc
is such thatc(t) = +∞ for t > 0 andc(t) = −∞ otherwise.Therefore,d(c(0)) =
d(−∞) = −∞ < 0, in contradiction with (5.46). Also, supc(t)≤−∞ t = 0 > d(−∞) =
−∞, in contradiction with (5.47).

However, this discussion isof purely mathematical interest since, given our con-
ventions, any realistic dater, even after somefinite shift in numbering due to the initial
marking, will be such thatd(k) = −∞, ∀k < k0 for some finitek0. That is, condi-
tion (5.44) will always be satisfied in practice.

Remark 5.29 (Interpretati on of counters) In words, the relation (5.45) expresses
that c(t) is the smallest value the numbering mechanism will reach at or after time
t ; otherwisestated, c(t) is the number of the next event to come at or after time t .
This explains the inequalities (5.46) which may seem counterintuitive at first sight. An
alternative definition of counters is considered in the next subsection.

5.5.3 Alternative Definition of Counters

Another possible definition of counters is̃c = d�, provided thatd be residuated. A
necessary and sufficient condition is thatd be l.s.c., which here is implied by the dual
condition of (5.44), namely

lim
k→+∞

d(k) = +∞ . (5.48)

This condition means that no infinite numbers of events occur in finite time. Then, the
residuated mapping̃c of d is, by definition, equal to

c̃(t) = sup
d(k)≤t

k . (5.49)

Even if (5.48) is not fulfilled, we can take (5.49) as the definition ofc̃ (but then, we
cannot say that, conversely,d(k) = infc̃(t)≥k t ). The meaning of this new counterc̃(t)
is the number of the last event which occurs before or at t . This might seem a more
natural definition for counters than the one corresponding toc(t). However, from a
mathematical pointof view, there is a drawback in manipulating this alternative notion
of counters. To explain this point, we first establish the following result.

Lemma 5.30 If c and c̃ are derived from the same d by (5.45) and (5.49), respectively,
then

∀t , c(t) = c̃(t − 1)+ 1 .

Proof Let us startfrom (5.45). A c(t) so defined ischaracterized by the fact that
d(c(t)) ≥ t but alsod(c(t) − 1) < t , that is,d(c(t) − 1) ≤ t − 1. Observe that if we

setk def= c(t)− 1, these inequalities also tell us thatk = supd(�)≤t−1 �, which isnothing
but c̃(t − 1).
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Given c, a two-dimensional representative inMax
in[[γ, δ]] can be associated withc

by (5.43). Therefore, owing to the above lemma, givenc̃, the corresponding two-
dimensional representative is given by




⊕

{t |−∞<c̃(t)<+∞}
γ c̃(t)+1δt+1



⊕



⊕

{t |̃c(t)=−∞}
(γ −1)∗δt+1



 ,

which is of course not as convenient as withc.

5.5.4 Dynamic Equations of Counters

We return to the definition (5.45) of counters. We introduce the following notation:

• Equation (5.45) defines a functionalZ from the set of nondecreasing mappings
d : Z → Zmax (referred to as the ‘dater set’) to the set of nondecreasing map-
pingsc : Z → Zmin (referred to as the ‘counter set’); if we restrict ourselves
to mappingsd which satisfy (5.6) and(5.44), thenZ (d) is simplyd � (and then,
Z−1(c) = c�);

• in the dater set, the pointwise addition of mappings (denoted⊕) is theoperation
of upper hull; in the counter set, the pointwise addition (denoted⊕̂) is the lower
hull;

• in the dater set, the ‘shift’{k �→ d(k)} �→ {k �→ d(k − 1)} is denotedγ for
obvious reasons (see Remark 5.6); similarly, the same kind of shift in the counter
set is denotedδ;

• in the dater set, the ‘gain’{k �→ d(k)} �→ {k �→ d(k) + 1} is denoted1d; the
analogous unit gain in the counter set is denoted1c.

Lemma 5.31 With the previous notation, we have, for all d or di in the dater set:

Z (d1⊕ d2) = Z (d1)⊕̂Z (d2) , (5.50)

Z (γ d) = 1cZ (d) , (5.51)

Z (1dd) = δZ (d) . (5.52)

Proof A proof canbegiven by playing with Definition (5.45) ofZ and with the mean-
ing of thenotationγ , δ, . . . . A smarter proof is obtained in the following way. For a
givend, let D denote the element inMax

in[[γ, δ]] definedby the right-hand side of (5.28).
Similarly, for a givenc, let C denote the element inMax

in[[γ, δ]] definedby (5.43). If
c = Z (d), it should be clear thatC = D in M

ax
in[[γ, δ]] (that is, C and D are two rep-

resentatives of the same equivalence class). The seriesγ D corresponds to the dater
γ d, hence the series associated with the counterZ (γ d) must beγC, but this series
corresponds, through (5.43), to the series associated with the counter1cc = 1cZ (d).
This proves (5.51). Formula (5.52) can be similarly proved (by noticing that the series
associated with1dd is δD).
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As for (5.50), let Di , i = 1, 2, be the series associated with the datersdi , i = 1, 2.
Then, because of the second rule (5.5), which can be used inM

ax
in[[γ, δ]], D1 ⊕ D2

(here⊕ is the addition inMax
in[[γ, δ]]) is associated withd1⊕ d2 (pointwise maximum

of the mappingsd1 andd2). Similarly, for counters,C1 ⊕ C2 is associated withc1⊕̂c2

because of the first rule (5.5). With these observations at hand, the proof of (5.50) is
easily completed.

Remark 5.32 In the case whenZ (d) = d �, and with the necessary adaptation of
notation, (5.50) can be viewed as a stronger version of (4.38).

As a consequence of Lemma 5.31, Equations (5.2) can be derived from (5.1). For
example, 1x1(k−2) is the value atk of the dater1dγ

2x1 with which the counterδ(1c)
2x1

is associated according to (5.51)–(5.52) (here, the dater and its associated counter are
denoted with the same symbol, as we did in§5.2). Therefore, the term 2x1(t − 1)
corresponds to the term 1x1(k − 2) in the counter equations. And⊕ in dater equa-
tions (that is, max) is converted tô⊕ in counter equations (that is, min)according to
(5.50). Afterwards,it is realized that1d, respectively 1c, could have been denotedδ,
respectivelyγ .

Using Lemma 5.30, once Equations (5.2) have been established using one notion
of counters (given by (5.45)), it is clear that these equations are also valid with the
alternative notion of counters (given by (5.49)).

5.6 Backward Equations

Sofar we have been interested in computing outputs produced by given inputs. In the
dater description, outputs are sequences of theearliest dates at which events (numbered
sequentially) can occur. Sometimes, it may also be useful to derive inputs from outputs,
which, roughly speaking, corresponds to ‘inverse’ the system. More precisely, and still
in the dater setting, we may be given a sequence of dates at which one would like to
see events occur at the latest, and we are asked to provide thelatest input dates that
would meet this objective. It is the topic of this section to discuss this problem.

From a mathematical point of view, as long as the transfer function (matrix, in the
MIMO case) has to be inverted, it is no surprise that residuation plays an essential
role. This inversion translates into the fact that recurrent equations in the event domain
for daters, respectively in the time domain for counters, now proceed backwards in
eventnumbering, respectively in time. Moreover, the ‘algebra’(∧, ◦\) is substituted for
(⊕,⊗) in these backward equations. These equations offer a strong analogy with the
adjoint-state (or co-state) equations of optimal control theory.

5.6.1 M
ax
in [[γ, δ]] Backward Equations

Consider a system inMax
in[[γ, δ]] described by Equation (5.35) or (5.36) (recall that

(5.36) yields the least solutiony of (5.35)with either inequalities or equalities). Lety
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be given. The greatestu suchthat

z = Hu
def= C A∗ Bu ≤ y (5.53)

is, by definition, obtained as

u = H �y = C A∗B ◦\y . (5.54)

From the previous results, in practice (5.53) means that, in the dater description, the
output events produced byu occur not later than those described byy; moreover, u
being the ‘greatest’ input having property (5.53), the input events corresponding tou
occurnot earlier thanwith any other input having property (5.53).

Recall thaty = C A∗ Bu can be also described as the least solution of

x = Ax ⊕ Bu ,

y = Cx .

}
(5.55)

We aregoing to give a similar ‘internal’ representation for the mappingH � defined by
(5.54).

Lemma 5.33 Let u be derived from y by Equation (5.54). Then u is the greatest solu-
tion of the system

ξ = ξ

A
∧ y

C
, (5.56)

u = ξ

B
. (5.57)

This is equivalent to saying that ξ must be selected as the greatest solution of (5.56).
Moreover, the symbol ‘=’ can be replaced by ‘≤’ in (5.56)–(5.57).

Proof We have

u = C A∗B ◦\y owing to (5.54),
= A∗B ◦\ (C ◦\y) thanks to(f.9),
= B ◦\ (A∗ ◦\ (C ◦\y)) (same reason).

Let ξ
def= A∗ ◦\ (C ◦\y). By Theorem 4.73, we know thatξ is the greatest solution of

(5.56)with equality or with the inequality≤.

If x (hence ξ ) is n-dimensional, and if u, respectively y, is p-dimensional, re-
spectively m-dimensional, then, by using Formula (4.81), (5.56)–(5.57) can be more
explicitly written as

∀i = 1, . . . , n , ξi =



n∧

j=1

ξ j

A ji



 ∧
(

p∧

r=1

yr

Cri

)
,

∀� = 1, . . . ,m , u� =
n∧

s=1

ξs

Bs�
.






(5.58)
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Observe again the transposition of matrices and the substitution of the operation∧,
respectively ◦\, to theoperation⊕, respectively⊗. However, theseequations are not
‘linear’. Owing to (f.1) and (f.9), the mappingH � rather obeys the dual properties:

H �(y ∧ z) = H �(y) ∧ H �(z) , H �(α ◦\y) = α ◦\H �(y) ,

whereα is a ‘scalar’ (i.e.α ∈M
ax
in[[γ, δ]]).

5.6.2 Backward Equations for Daters

Weare going to translate the preceding equations in the setting of the dater description.
Consider a system described by equations of the form (2.36), but with matrices (that
is, holding times) which do not depend on the event numberk (hence wewill write
e.g. A(�) for A(k, k − �)). More specifically, we consider a system described byRmax

equations of the form:

x(k) = A(0)x(k) ⊕ · · · ⊕ A(M)x(k − M)

⊕ B(0)u(k) ⊕ · · · ⊕ B(M)u(k − M) ,

y(k) = C(0)x(k) ⊕ · · · ⊕ C(M)x(k − M) .




 (5.59)

There is of courseno loss of generality in assuming that there is the same delayM for
x andu and in both equations (this possibly amounts to completing the expressions
with terms having zero matrix coefficients). Theγ -transforms of these equations yield
(5.55) wherex , u, y now denote theγ -transforms of signals, and similarly, e.g.

A =
M⊕

�=1

A(�)γ � .

In the same way, (5.56)–(5.57) are still valid with the new interpretation of notation.
Using (4.97), we can write these equations more explicitly in terms of power series
in γ . Taking into account thatA, B, C are in factpolynomials, i.e. power series for
which coefficients areε for powers ofγ out of the set{0, . . . , M}, we finally obtain
the relations, for allk:

ξ(k) = ξ(k)

A(0)
∧ . . . ∧ ξ(k + M)

A(M)
∧ y(k)

C(0)
∧ . . . ∧ y(k + M)

C(M)
,

u(k) = ξ(k)

B(0)
∧ . . . ∧ ξ(k + M)

B(M)
.





(5.60)

From these equations, the backward recursion is clear. To alleviate notation, let us now
limit ourselves toM = 1, that is, consider the standard form (2.39), namely,

x(k + 1) = Ax(k) ⊕ Bu(k) ; y(k) = Cx(k) . (5.61)
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Then, combining (5.60) with (5.58), we obtain

∀i = 1, . . . , n , ξi (k) =



n∧

j=1

ξ j (k + 1)

A ji



 ∧
(

p∧

r=1

yr (k + 1)

Cri

)
,

∀� = 1, . . . ,m , u�(k) =
n∧

s=1

ξs(k)

Bs�
.






(5.62)

Let us rewrite these equations with conventionalnotation. We refer the reader to Ex-
ample 4.65, to the rule regarding the ambiguous expression∞−∞ that may show up
if ratios such asε ◦\ε are encountered, and finally to the warning about the ambiguity of
conventionalnotation since the expression∞−∞may also beobtained as the result of
ε⊗� which yields a different value. With this warning in mind, (5.62) can be written:

ξi (k) = min

[
n

min
j=1

(
ξ j (k + 1)− A ji

)
,

p
min
r=1

(yr (k + 1)− Cri )

]
,

u�(k) =
n

min
s=1

(ξs(k) − Bs�) .





(5.63)

The reader is invited to establish these equations by a direct reasoning with an event
graph for which the sequence{y(k)}k∈Z of desired output dates is given. It is then
realized that the recursion is not only backward in event numbering (indexk) but also
backward in the graph (from output transitions to input transitions through internal
transitions).

A fewwords are in order regarding ‘initial conditions’ of the recursion (5.63). This
problem arises when the backward recursion starts at some finite event number, say
kf (‘f ’ f or ‘fi nal’), because desired objectives{y(k)} areonly given up to this number
kf . In accordance with the idea of finding the ‘latest input dates’, that is the greatest
subsolution ofC A∗Bu ≤ y assupposed by residuation theory, the missing information
must be set to the maximum possible value. This amounts to saying thaty(k) must be
set to� = +∞ beyondkf , and more importantly ξ(k) = � for k > kf . As for
the tokens of the initial marking, they are still supposed to be available at time−∞
(see page 241) since this is the assumption under which the ‘direct’ system obeys the
input-output relation at the left-hand side of Inequality (5.53).

At the end of this section, let us consider the following situation. Suppose that
someoutput trajectoryy(·) has been produced by processing some inputv(·) through
a systemobeying Equations (5.61). This output trajectory is taken as the desired latest
output trajectory. Of course, it is feasible since it is an actual output of the system.
Then, if we compute the latest possible input, sayu, that meets thegiven objective by
using Equations (5.62), thisu will alsoproduce the outputy, and it will be greater than
or equal tov. Therefore, the pairs(v, y) and (u, y) areboth solutions of (5.61), but
two different internal state trajectories, sayx and x , respectively, would beobtained
with x ≤ x . Moreover, the trajectoryx is also different fromξ which is computed
by (5.62) usingy asthe input. The differencesξi(k) − xi(k), i = 1, . . . , n; k ∈ Z,

are nonnegative since (5.62) corresponds to the backward operation at ‘the latest time’
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whereas(5.61) describes the forward operation ‘at the earliest time’ for the same input-
output pair(u, y). For thek-th firing of thei-th transition, the differenceξi(k) − xi (k)
indicates the time margin which is available, that is, the maximum delay by which
this firing may be postponed, with respect to its earliest possible occurrence, without
affecting the output transition firing. This kind of information is of course very useful
in practical situations.

Let us finally summarize the equations satisfied by the pair(x, ξ ). The following is
derived from (5.61)–(5.62) in whichu andy are replaced by their expressions, namely
u = B ◦\ξ andy = Cx , respectively. Then we obtain the system

x(k + 1) = Ax(k) ⊕ B
ξ(k)

B
,

ξ(k) = Cx(k + 1)

C
∧ ξ(k + 1)

A
.





(5.64)

This system is veryreminiscent of state/co-state (or Hamiltonian) equations derived
for example from Pontryagin’s minimum principle for optimal control problems in
conventional control theory. Moreover, the differenceξi(k)− xi(k) alluded to above is
thei-th diagonal entry of the matrixξ(k)◦/x(k). Pursuing the analogy withconventional
control problems, it is known that introducing the ‘ratio’ of the co-state vector by the
state vector yields a matrix which satisfies a Riccati equation.

5.7 Rationality, Realizability and Periodicity

5.7.1 Preliminaries

At this point, we know that event graphs can be described by general equations of
the form (5.55) in which the mathematical form ofu, x, y, A, B,C depends on the
description adopted. Essentiallyu, x, y may be:

• power series inγ with coefficients inZmax;

• power series inδ with coefficients inZmin;

• power series in(γ, δ) with coefficients in{ε, e}.
As for A, B,C, they are matrices with polynomial entries of the same nature as the
power seriesu, x, y, but with only nonnegative exponents since tokens of the initial
marking and holding times introduce nonnegative ‘backward’ shifts (see Remark 5.6)
in event numbering, respectively in time. The input-output relationu �→ y is given
by y = C A∗Bu, hence the entries of this so-called transfer matrix belong to the ratio-
nal closure (see Definition 4.99) of the corresponding class of polynomials with non-
negative exponents. One purpose of this section is to study the converse implication,
namelythat a system with a ‘rational’ transfer matrix does have a finite-dimensional
‘realization’ of the form (5.55) with polynomial matrices. In fact, this is an immediate
consequence of Theorem 4.102. Moreover, playing with the various possibilities of
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realizations provided by Theorem 4.105, we will recover essentially the three possible
descriptions of systems alluded to above by starting from a single framework, namely
theone offered by theMax

in[[γ, δ]] algebra.

Remark 5.34 In an event graph, if there are direct arcs from input to output transitions,
one obtains an output equation of the formy = Cx ⊕ Du and a transfermatrix of the
form C A∗B ⊕ D. However, by redefining the ‘state’ vector as̃x = ( x ′ u′

)′
, it

is possible to come back tothe formC̃ Ã∗ B̃ with C̃ = ( C D
)
, B̃ ′ = ( B ′ e

)

and Ã = diag(A, ε), but at the price of increasing the ‘state’ dimensionality. Indeed,
in what follows the issue of the ‘minimal’ realization will not be addressed since only
partial results have been obtained so far.

The equivalence between rationality of the transfer matrix and its ‘realizability’ is
a classical result in both conventional linear system theory and in automata and formal
language theory. However, there is here a third ingredient coming in: rationality is
also equivalent to some ‘periodicity’ property of the transfer function or the impulse
response. This is analogous to the situation of rational numbers which have a periodic
decimal expansion.

We will only address the SISO case. The MIMO case (e.g. 2 inputs, 2 outputs)
can be dealt with in a trivialmanner by considering all the individual scalar transfer
functionsHi j : u j �→ yi , j = 1, 2, i = 1, 2, first. Suppose that 3-tuples(Ai j , Bi j ,Ci j )

have been found to realizeHi j in the form (5.55) (Ai j is in general a matrix, not a
scalar). Then, it is easy to check that the 3-tuple

A =





A11 ε ε ε

ε A12 ε ε

ε ε A21 ε

ε ε ε A22



 , B =





B11 ε

ε B12

B21 ε

ε B22



 ,

C =
(

C11 C12 ε ε

ε ε C21 C22

)
,

is a realization of the 2×2 transfer matrix. Of course, this way of handling MIMO sys-
tems does not consider the dimensionality of the realization explicitly. In the following,
we will comment on the MIMO case when appropriate.

5.7.2 Definitions

We start with the following definitions.

Definition 5.35 (Causality) An element h of M
ax
in[[γ, δ]] is causaleither if h = ε or if

val(h) ≥ 0 and h ≥ γ val(h) .

This definition is somewhat technical, due to the fact thath, as an elementof Max
in[[γ, δ]],

has various formal representations, and among them e.g. the maximal one which in-
volves the multiplication by(δ−1)∗ (hence it may have monomials with negative ex-
ponents inδ). However, the definition, while using the language ofM

ax
in[[γ, δ]], clearly
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says thatthe graph of the associated dater lies in the right-half plane and above the
x-axis. It can then be formally checked that the set of causal elements ofM

ax
in[[γ, δ]]

is a subdioid ofMax
in[[γ, δ]]. For example, if p andq are causal, then val(p ⊕ q) =

min(val(p), val(q)) ≥ 0, andγ val(p⊕q) = γ min(val(p),val(q)) = γ val(p) ⊕ γ val(q) ≤ p ⊕ q,
proving thatp ⊕ q is also causal. A similar proof can be given forp ⊗ q.

Definition 5.36 (Rationality) An element of M
ax
in[[γ, δ]] is rationalif it belongs to the

rational closure of the subset T def= {ε, e, γ, δ}. A vector or matrix is rational if its
entries are all rational.

Indeed, because of the choice of the basic set, the rational elements will also be causal.

Defini tion 5.37 (Realizability) A matrix H ∈ (Max
in[[γ, δ]]

)p×m
is realizableif it can

be written as

H = C(γ A1 ⊕ δA2)
∗B (5.65)

where A1 and A2 are n× n matrices, n being an arbitrary but finite integer (depending
on H), C and B are n × m and p × n matrices respectively, and each entry of these
matrices is equal to either ε or e.

Definition 5.38 (Periodicity) An element h of M
ax
in[[γ, δ]] is periodicif there exist two

polynomials p and q and a monomial m (all causal) such that

h = p ⊕ qm∗ . (5.66)

A matrix H is periodic if its entries are all periodic.

Here, we adopt a ‘mild’ definition of periodicity. It is however mathematically equiv-
alent to seemingly other more sophisticated definitions which put further constraints
on the polynomialsp andq. This point will be discussed in§5.7.4. At this stage, it
sufficesto understand that, if one considersh as the(γ, δ)-transform of a trajectory,
say an impulse response, the intuitive meaning of Formula (5.66) is that a certain pat-
ternrepresented byq is reproduced indefinitely, since the multiplication bym = γ rδs

represents a shift byr units along thex-axis—event domain—ands units along the
y-axis—time domain—andqm∗ = q ⊕ qm ⊕ qm2 ⊕ · · · is the union of all these
shifted versions ofq. This periodic behavior occurs after a certain transient which is
essentially (but not always exactly, as we shall see) represented byp. The ratio s/r
representsthe asymptotic slope of the graph of the dater associated withh, and thus the
asymptotic output rate: on the average,r events occur everys time units. The extreme
casess = 0 andr = 0 will be discussed in§5.7.4.

5.7.3 Main Theorem

Theorem 5.39 For H ∈ (Max
in[[γ, δ]]

)p×m
, the following three statements are equiva-

lent
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(i) H is realizable;

(ii) H is rational;

(iii) H is periodic.

Proof The implication (i) ⇒ (ii) is straightforward. The converse (ii)⇒ (i) follows,
at least for the SISO case, from Theorem 4.105 withB = C = U = B = {ε, e} and
V = {γ, δ}. We then observethatU� = U henceU� ⊗ V = {ε, γ, δ, γ ⊕ δ}. It remains
to split up matrixAx , whichappears in the(B, C)-representation (4.106) (with entries
in U� ⊗ V), into γ A1⊕ δA2, whichoffers no difficulty. The MIMO case is handled as
indicated previously.

We now outline the proof of the equivalence (ii)⇔ (iii). Since the definitions of
periodicity and rationality refer to the entries ofH individually, it suffices to deal with
the SISO case. The implication (iii)⇒ (ii) is obvious: if h canbewritten as in (5.66),
thenclearly h ∈ T �. Conversely, ifh is rational, sinceMax

in[[γ, δ]] is a commutative
dioid, we can use Theorem 4.110 (applied to the dioid closure ofT ) to seethath can
bewritten as

h =
⊕

i∈I

γ αiδβi




⊕

j∈Ji

γ r j δs j




∗

=
⊕

i∈I

γ αiδβi
⊗

j∈Ji

(
γ r j δs j
)∗

, (5.67)

where I and theJi are finite sets,αi , βi , r j , s j are nonnegative integers, and (5.67)
follows from (4.109). The proof is then completed by showing that (5.67) is amenable
to the form (5.66) wherem is essentially the monomialγ r j δs j with maximal ‘slope’
s j/r j . Indeed, the term(γ r j δs j )∗ tends to asymptotically dominate all other similar
terms in sums and products. When the monomial with maximal slope is nonunique,
the precise rules for obtaining the monomialm used in (5.66) will be given in the proof
of Theorem 6.32 in the next chapter. The precise derivation of this last part of the proof,
which is rather technical, will be skipped here. The reader is referred to [44] for a more
detailed outline and to [62] for a full treatment.

In the above proof, instead of attempting to prove the implication (ii)⇒ (iii), we
might have proved the implication (i)⇒ (iii) using Theorem 4.109 and Formula (4.110).
This would have provided some insight into how the monomialmi j appearing in the
representation (5.66) of eachHi j (in the form ofm∗

i j ) is related to the weights of cir-
cuits of G(A), whereA = γ A1 ⊕ δA2 appears in (5.65). The graphG(A) is drawn as
explained in§4.7.3 (see Figure 4.8). Then, for an input-output pair(u j , yi), we con-
sider all (oriented) paths connecting these transitions and all circuits which have at least
one node in common with those paths. These are the circuits of interest to determine
the maximal ratiosi j /ri j . If there is no such circuit, this means that the polynomial
q of (5.66) isε and thusmi j is irrelevant. As a consequence, if matrixA is strongly
connected (which in particular precludes any direct path from the input to the output,
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given that we have not included a termDu — see Remark5.34), then the ratiossi j /ri j

take aunique value for all themi j .
Wecould also have proved that (iii)⇒ (i) directly by providing an explicit realiza-

tion of a periodic element. This essentially follows the scheme illustrated by Figure 6.4
in the next chapter.

5.7.4 On the Coding of Rational Elements

In this subsection, it is helpful to use the pictorial representation of (causal) elements
of M

ax
in[[γ, δ]] by collection of points in theN

2-plane: a monomialγ kδt is represented
by a point with coordinates(k, t) and we assume that polynomials are represented by
their minimum representatives (which do exist—see Theorem 5.20).

Let the monomialm involved in (5.66) be equal toγ r δs.

• If s = 0, thena = p⊕ qm∗ = p⊕ q sincem∗ = (γ r )∗ = e, that is, the impulse
responsea is a polynomial : this is the behavior of an event graph having either
no circuits or only circuits with zero holding time. Such a system is able to work
at infinite speed. This ‘finite’ impulse response thus corresponds to the situation
whenan infinite number of tokens get out at timet = deg(a); the first tokens
get out earlier as described by p ⊕ q. From thepoint of view of the minimum
coding ofa, thereno way but to retain the minimum representative ofp ⊕ q.

• If s 
= 0 but r = 0 (andq 
= ε), and since m∗ = (δs)∗ corresponds to an
infinite slope, the impulse response is ‘frozen’ after a transient during which
some tokens get out (those numbered from 0 to val(q) − 1): this is indeed the
kind of behavior one would like to call a ‘finite response’. It happens when
there is acircuit without tokens but with a positive holding time: the system is
‘deadlocked’. The nontrivial part ofa is provided byp ◦− γ val(q)δ∗ (the part of
the plot ofa which lies at the left hand of the vertical asymptote) which should
again be coded by its minimum representative.

These two particular cases will no longer be considered in detail. Hence, from now on,
we assume thatr > 0 ands > 0 unless stated otherwise.

With (5.66), we have adopted a characterization of rational (or periodic) elements
which is mathematically simple. The forthcoming lemma shows that this characteri-
zation is equivalent to another one which puts further constraints on the polynomials
p andq. The latter definition will be used in Chapter 6 (see Theorem 6.32). It has
the advantageof making the interpretation of the newp as the transientpart and of the
new q as the periodic pattern (see Figure 6.2) possible. Indeed,p can then be repre-
sentedby points contained in a box of widthν − 1 andheightτ − 1 with its lower
left-hand corner located at the origin. The periodic patternq can be encapsulated in a
box of widthr − 1 andheights − 1 with its lower left-hand corner located at the point
(ν, τ ). Thisbox istranslated indefinitely by the vector(r, s). These conditions are now
expressed mathematicallyin the following lemma.

Lemma 5.40 An element a ∈M
ax
in[[γ, δ]] is rational if and only if it is a polynomial, or

an element of the form p ⊕ γ νδ∗ (p is a polynomial), or if there exist positive integers
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r and s, nonnegative integers ν and τ , and polynomials

p =
⊕

(k,t)∈Jp

γ kδt with k ≤ ν − 1, t ≤ τ − 1, ∀(k, t) ∈ Jp ,

q =
⊕

(κ,θ)∈Jq

γ κδθ with ν ≤ κ ≤ ν + r − 1, τ ≤ θ ≤ s + τ − 1, ∀(κ, θ) ∈ Jq ,

(Jp and Jq are necessarily finite) such that a = p ⊕ q (γ rδs)∗.

Proof Only thecase whenr > 0, s > 0 andq 
= ε is of interest here. Moreover, since
the new characterization of rational elements is a particular case of (5.66), it suffices to
prove that, conversely, (5.66)is amenable to the new characterization. Considera =
p⊕q(γ r δs)∗ for any polynomialsp andq. Let τ

def= max(deg(p)+1, deg(q)− s +1).
For any(k, t) ∈ Jq , there exists aunique�(k,t) ∈ Z suchthatτ ≤ t+�(k,t)s ≤ τ+s−1.
Because deg(q) ≤ τ + s − 1 ands > 0, necessarily�(k,t) ≥ 0. We consider

q̃
def=
⊕

(k,t)∈Jq

γ k+�(k,t)r δt+�(k,t)s . (5.68)

In addition, letα def= max(k,t)∈Jq �(k,t) andν def= val (̃q). Observe that all points rep-
resenting monomials appearing at the right-hand side of (5.68) lie in a strip of height
s − 1 delimited by the horizontal linesy = τ andy = τ + s − 1, and at the right-hand
closed halfplane bordered by the vertical line atx = ν.

Let a minimum representative ofa bewritten
⊕

(k,t)∈Ja
γ kδt (Ja is countably infi-

nite). This minimum representative does exist since we deal with causal elements and
since we assume thatr > 0 (see Theorem 5.20). Consider any(k, t) ∈ Ja . If t ≥ τ ,
then the corresponding monomial cannot belong top sinceτ > deg(p). Hence, it
necessarily belongs to someqmn . If t < τ , then this monomial may belong to either
p or to someqmn but thenn < α: indeed, forn ≥ α, we have by construction that

t ≥ τ . Hence, if we set̃p def= p ⊕ q ⊕ qm ⊕ · · · ⊕ qmα−1, we can consider all pairs
(k, t) ∈ Ja with t < τ as coming from̃p. We now prove thatthe other pairs can be
explained by monomials of̃qm∗. If (k, t) ∈ Ja andt ≥ τ , then there exist

(̃
k, t̃
) ∈ Jq

and� ≥ 0 such that(k, t) = (̃k, t̃
)+ �× (r, s). Moreover,� ≥ �(k̃ ,̃t), hence

(k, t) = (̂k, t̂
)+
(
�− �(̃k,̃t)

)
× (r, s) ,

whereγ k̂δ t̂ is one of the polynomials involved in (5.68).
At this point, we have proved that all monomials ofa = p ⊕ qm∗ are among the

monomials of̃p ⊕ q̃m∗, hencea ≤ p̃ ⊕ q̃m∗. But the converse statement is also true
since the monomials iñp andq̃ have been obtained froma. Hence p̃⊕ q̃m∗ is another
expression fora.

To complete the proof, we must delete monomials which are useless from this
expression (because they are dominated by other polynomials in the same expression
in the sense of the order relation ofM

ax
in[[γ, δ]]). Firstly, concerning̃p, if monomials of



5.7. Rationality, Realizability and Periodicity 259

p̃, thus also ofa, have a degree greaterthan orequal toτ , theycan also be obtained by
other monomials of̃qm∗ (proceed as previously) and thus they can be dropped from
p̃. Let m̃ = γ νδτ̃ be the monomial of̃q with valuationν (recall thatν = val (̃q)).
Observe that̃τ ≥ τ . This monomial dominates the monomialsγ kδt of p̃ with t < τ

butk ≥ ν which canthus also be dropped from̃p. Finally, thenew p̃ stays in the lower
left-hand part of the plane delimited by the horizontal liney = τ − 1 and the vertical
line x = ν − 1. Secondly, concerning̃q, consider the monomials of̃q with valuation
greater thanν+s−1: their degree beingnecessarilyless thanτ+s, they aredominated
by the monomialγ ν+rδτ̃+s contained iñqm. This observation is of course preserved
by the successivetranslations(r, s). Therefore, a new̃q can be used which staysin the
box given in the statement of the lemma.

We refer the reader to [62] in which an algorithm is provided to obtain the ‘best’
possible representation of the type described by the lemma. The following example
shows that by redefining not onlyp andq but alsom, more compact representations
may be obtained (the reader is invited to make the drawing corresponding toeach
example, which is thebest way to quickly grasp the situation).

Example 5.41 The expression(e ⊕ γ δ)(γ 2δ2)∗ is already in the form of Lemma 5.40
but it can be simplified to(γ δ)∗ by redefiningm asγ δ instead ofγ 2δ2.

Consider now the following example.

Example 5.42 Let a = p ⊕ qm∗ with p = e⊕ γ 2δ2⊕ γ 5δ3⊕ γ 6δ4⊕ γ 8δ6⊕ γ 11δ7,
q = γ 12δ8(e ⊕ γ 2δ) andm = γ 3δ2. Another representation ofa as p̃ ⊕ q̃m∗ involves
p̃ = γ 2δ2⊕ γ 8δ6 andq̃ = e ⊕ γ 2δ.

In this example, what happens is thatp can partlybe explained by ‘noncausal shifts’
qm−l of q. Algebraically, there exists somen (heren = 4) such that addingb =⊕n

l=1 qm−l to a does not changea. Hence

a = a ⊕ b = p ⊕ qm∗ ⊕ b = (p ◦− b)⊕ b ⊕ qm∗ = p̃ ⊕ q̃m∗ ,

where p̃ = p ◦− b andq̃ = qm−n . Now p̃ does not any longer appear as the transient
part, but rather as a transient perturbation of the periodic regime. Now the contributions
of p̃ andq̃ to the transient partare interweaved.

5.7.5 Realizations byγ - and δ-Transforms

In the proof of Theorem 5.39, Theorem 4.105 has been used with the choiceB = C =
U = B andV = {γ, δ}. Other possibilities have been suggested at the end of§4.8.3.

5.7.5.1 Dater Realization

If we consider the possibilityB = C = B, U = B ∪ {δ} and V = {γ }, then
U� = {ε, e, δ, δ2, . . . , δ∗} since all sums of such elements are reducible to one of
them by the ruleδt ⊕ δτ = δmax(t,τ ). HenceU�, beingobviously a complete dioid in
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this case, is isomorphic to (and will be identified with)Nmax (with δ∗ identified with
� = +∞). Consequently, in an observer representation(C, Ã, B) of a rational matrix
H as provided by Theorem 4.105, B hasits entries inNmax and Ã = γ A where A
is also a matrix with entries inNmax; C is a Boolean matrix. This realization may be
interpreted as the one directly derived, by theγ -transform, from the dater equations

x(k) = Ax(k − 1)⊕ Bu(k) , y(k) = Cx(k) ,

where in addition y is a subvectorof x (hence the name ‘observer representation’).
For a controller representation,B is a Boolean matrix whereasC makes any linear

combination of thexi with weights inNmax.

Remark 5.43 It is thus always possible, starting from any timed event graph, to obtain
anequivalent event graph with a structure corresponding to the observer (respectively,
the controller) representation, that is, the initial marking consists of exactly one token
in internal places, no tokens in the input and output places, and in addition, zeroholding
timesfor the output (respectively, the input) places.

It should be realized that there is a trick here to represent deadlocked systems in this
way, i.e. event graphs circuitswith no tokens and positive holding times. These systems
will berealized in ‘state space’ form by matricesA, B or C having some entries equal
to δ∗. Indeed, an arc with weight δ∗ introduces an unbounded holding time, which is
sufficient to block some parts of the system. For example, for the graph of Figure 5.12
(the transfer function of which isδ∗), an observer (dater) realization isC = e, Ã = γ ,

xu y

Figure 5.12: A deadlocked event graph

B = δ∗.

5.7.5.2 Counter Realization

The counter realization corresponds to the dual possibility offered by Theorem 4.105,
namely to chooseU = B ∪ {γ } andV = {δ}. ThenU� = {ε, e, γ, γ 2, . . . }. This is
a complete dioid. Due to the ruleγ k ⊕ γ κ = γ min(k,κ), thisU� is now identified with
Nmin (note also thatγ ∗ = e).

Remark 5.44 In Nmax, all elements are greater thane exceptε. In Nmin, all elements
lie betweenε = +∞ and� = e = 0.

In this new context, the realizations one obtains appear to be derived, by theδ-
transform, from counter equations in ‘state space’ form with, in addition, Boolean
matricesC or B.
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Deadlocked systems can be represented directly since a weight ofe means no to-
kens in the corresponding place (or arc). For the graph of Figure 5.12, an observer
(counter) realization isC = B = e and Ã = δ.

5.8 Frequency Response of Event Graphs

In conventional system theory, with a continuous time-domain, rational transfer func-
tions may be viewed as rational expressions of a formal operator denoteds, which can
be interpreted as the derivative with respect to time. However, transfer functions, say
H (s), are alsousedas numerical functions when an imaginary numerical valuejω
is substituted fors. It is well known that when a signal of pure frequencyω is used
asthe input of a (stable) linear time-invariant system, the corresponding output is, af-
ter a possible transient, a signal of the same frequencyω which is phase-shifted by
argH ( jω) and amplified by the gain|H ( jω)| with respect to the input. The transient
can be avoided by starting at time−∞. Then sine functions of any frequencyω appear
as eigenfunctions of any rational transfer functionH with corresponding eigenvalue
H ( jω).

The main purpose of this section is to discuss analogous results for event graphs.
We will confine ourselves to the SISO case. Since we can consider transfer func-
tions under three different forms as recalled at thebeginning of§5.7 (referred to as
dater, counter or two-dimensional representations), the following developments could
be made from these three different points of view. We will favor the two-dimensional
point of view, but the analogy of certain quantities to phase shift or amplification gain
depends on which of the first two points of view is adopted. In§6.4, this topic will be
revisited from the dater point of view and with a continuous domain.

5.8.1 Numerical Functions Associated with Elements ofB[[γ, δ]]

In this section,an elementF of B[[γ, δ]] or of M
ax
in[[γ, δ]] will be written either as

⊕

(k,t)∈JF

γ kδt (5.69)

or as

⊕

(k,t)∈Z2

F(k, t)γ kδt with F(k, t) =
{

e if (k, t) ∈ JF ;

ε otherwise.
(5.70)

Guided bythe analogy with conventional system theory alluded to above, we are
going to use such a formal expression as a numerical function. This means that numer-
ical integer values will be substituted for the formal variablesγ andδ, and the quantity
thus obtained will be evaluated numerically. Therefore, the symbols⊕ and⊗ (the latter
being implicit in the above expressions) must be given a meaning in order to operate on
numbers. We choose the max-plus interpretation, that is,⊕ will be interpreted as max
(or sup) and⊗ as+. Consistently, a coefficiente is interpreted as 0 andε as−∞. For
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the time being, let us considerF as an element ofB[[γ, δ]] and define the associated
numerical function, denotedF(F), as the mapping fromZ

2 into Z:

(g, d) �→
⊕

(k,t)∈Z2

F(k, t)gkdt = sup
(k,t)∈Z2

(F(k, t)+ gk + dt)

= sup
(k,t)∈JF

(gk + dt) .
(5.71)

In this section, according to our general convention, the multiplication, de-
noted by mere juxtaposition of elements, must be interpreted as the conven-
tional× when the+, −, supor inf symbols are involved in the same expres-
sion.

Lemma 5.45 The set of mappings from Z
2 into Z endowed with the pointwise max-

imum as addition, and the pointwise (conventional) addition as multiplication, is a
complete dioid. The mapping F introduced above is a l.s.c. dioid homomorphism from
B[[γ, δ]] into this dioid of numerical functions.

The proof is straightforward.
The mappingF will be referred to as theevaluation homomorphism in this chapter

and thenext one (see§6.4.1), although the context is somewhat different in the two
chapters. Equations (5.71) show that not all numerical functions are in the range ofF
for at least two reasons.

• If the functionF(F) was extended to the continuous domainR
2 instead ofZ2

(with range inR instead ofZ) in an obvious manner, then it would be aconvex
function as the supremum of a family of linear functions.

• The functionF(F) is positively homogeneous of degree 1, thatis, [F(F)](a ×
g, a × d) = a × [F(F)](g, d) for any nonnegative (integer) numbera (in par-
ticular, [F(F)](0, 0) = 0).

For the latter reason, it suffices practically to know the value ofF(F) for all values of
the ratiog/d which ranges inQ.

From the geometric point of view, since an elementF of B[[γ, δ]] encodes a subset
of pointsJF in theZ

2 plane, it is realized thatF(F) isnothing but the so-called ‘support
function’ of this subset [119]. It is well known that support functions characterize only
the convex hulls of subsets: this amounts to saying thatF is certainly not injective; its
value atF depends only on the extreme points of the subset associated withF .

Being l.s.c. and such thatF(ε) = ε, the mappingF is residuated.

Lemma 5.46 Let F̂ be a mapping from Z
2 into Z. If F̂ is positively homogeneous of

degree 1, then F = F �
(
F̂
)

is obtained by

F(k, t) = inf
(g,d)∈Z2

(
F̂(g, d)− gk − dt

)
. (5.72)
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Proof Recall thatF is the largestelement inB[[γ, δ]] such thatF(F) ≤ F̂ . Because
of (5.71), for all(k, t) ∈ Z

2, we must have

∀(g, d) ∈ Z
2 , F(k, t) ≤ F̂(g, d)− (gk + dt) ,

hence,

F(k, t) ≤ inf
(g,d)∈Z2

(
F̂(g, d)− (gk + dt)

)
. (5.73)

The largest suchF is defined by the equality in (5.73). For thisF , we must prove that:

1. F(k, t) assumes only the values−∞ and 0;

2. the inequalityF(F) ≤ F̂ is still verified for thisF .

The first fact stemsfrom the homogeneity of̂F . Indeed, if we setg = d = 0 at the
right-hand side of (5.73), this shows thatF(k, t) ≤ 0. Then, it suffices to realize that
the inf cannot be equal to anyfinite and strictly negative value: as a matter of fact, for
anypositively homogeneous functionϕ, we have

inf
(g,d)∈Z2

ϕ(g, d) = inf
a∈N

(
a ×
[

inf
(g,d)∈Z2

ϕ(g, d)

])
,

and a contradiction would be obtained for any value of this inf different from 0 and
−∞.

As for item 2above, according to (5.71) and the definition of F , weobtain

[F(F)] (g, d) = sup
(k,t)∈Z2

(
gk + dt + inf

(g,d)

(
F̂(g, d)− gk − dt

))

≤ inf
(g,d)

sup
(k,t)∈Z2

(
(g − g)k + (d − d)t + F̂(g, d)

)

= F̂(g, d) .

5.8.2 Specialization toMax
in [[γ, δ]]

We are now interested in redefining a similar evaluation homomorphism, but for el-
ements ofMax

in[[γ, δ]]. We have seen that elements ofMax
in[[γ, δ]], which are indeed

equivalence classes, may be represented by different formal expressions inB[[γ, δ]].
All these expressions are characterized by the fact that they yield the same element of
B[[γ, δ]] (themaximum representative)whenthey are multiplied byγ ∗(δ−1)∗. By mere
application of (5.71), we have that

[
F
(
γ ∗(δ−1)∗

)]
(g, d) =

{
0 if g ≤ 0 andd ≥ 0 ;

+∞ otherwise.
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Therefore, by application of the homomorphism property ofF , it is seen that, for all
(g, d) suchthatg ≤ 0 (denotedg ∈ (−N)) andd ≥ 0,

Fγ ∗(δ−1)∗ = Gγ ∗(δ−1)∗ (in B[[γ, δ]]) ⇒ [F(F)](g, d) = [F(G)](g, d) .

It is readily checked that we can repeat all the proofs and results of§5.8.1, using any
representatives inB[[γ, δ]] of elements inMax

in[[γ, δ]], provided that we restrict the pairs
(g, d) to belong to(−N) × N.

Remark 5.47 For (g, d) 
∈ (−N) × N, the value ofF(F) can consistently be set to
+∞ wheneverF is considered as an element ofMax

in[[γ, δ]], except if F = ε, for this is
the value obtained with the maximum representative ofF . This maybe explained by
recalling the geometric interpretation ofF(F) asa support function of a subset, and
by observing that the ‘cones of information’ introduced in§5.4.3 extend indefinitely in
the South and East directions (characterized byg > 0 or d < 0).

Observe that the subset of numerical functions equal to+∞ outside(−N) × N,
plus the functionε equal to−∞ everywhere, is also a complete dioid for the operations
defined at Lemma 5.45.

We will keep on using the notationF for this mapping defined overMax
in[[γ, δ]]

(since the previousF definedover B[[γ, δ]] will no longer be in use). The following
definition and lemma, which should now be clear, summarizes the situation.

Definition 5.48 (Evaluation homomorphism) The mapping F from M
ax
in[[γ, δ]] into

the dioid of numerical functions (introduced at Lemma 5.45) is defined as follows:

• F(ε) = ε;

• if F 
= ε,

– if (g, d) ∈ (−N) × N, then [F(F)](g, d) is defined by Equations (5.71)
using any representative of F;

– if (g, d) 
∈ (−N)× N, then [F(F)](g, d) = +∞.

Lemma 5.49 The mappingF just defined is a l.s.c. dioid homomorphism over M
ax
in[[γ, δ]]

which is residuated, and F � can be defined by (5.72) in which the inf is restricted to
g ∈ (−N) and d ∈ N.

5.8.3 Eigenfunctions of Rational Transfer Functions

We now introduce particular elements ofM
ax
in[[γ, δ]] which will be shown to play the

role of sine functions in conventional system theory.

Definition 5.50 For two positive integers k and t , we set

L (k,t)
def= F �
(
F
((
γ kδt ⊕ γ −kδ−t

)∗))
.
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It is easy to check that

M(k,t)
def= (γ kδt ⊕ γ −kδ−t

)∗ = (γ kδt
)∗ (

γ −kδ−t
)∗ = (γ kδt

)∗ ⊕ (γ −kδ−t
)∗

.

Lemma 5.51 The element L (k,t) depends only on the ratio c = t/k > 0 (therefore it
will be denoted simply Lc with c > 0) and it is given explicitly by

Lc =
⊕

s≤c×l

γ lδs .

If one draws the line of slopec > 0 in theR
2-plane,Lc is the coding of the points ofZ2

which lie below this line.In other words,Lc representsthe best discrete approximation
of this line from below. For example, withk = 3 and t = 2 hence c = 2/3 (see
Figure 5.13), then

Lc = (e ⊕ γ 2δ)
(
γ 3δ2)∗ (γ −3δ−2)∗ .

Figure 5.13: A ‘linear’ function

Proofof Lemma 5.51We haveM(k,t)(l, s) = e if (l, s) = (n × k, n × t) with n ∈ Z

andM(k,t)(l, s) = ε otherwise. Then, according to (5.71),

[
F
(
M(k,t)
)]
(g, d) = sup

n∈Z

n(gk + dt) =
{

0 if gk + dt = 0 ;

+∞ otherwise.

Obviously, this expression depends only on the ratioc = t/k. Finally, according to
Lemma5.49,

[F �
(
F
(
M(k,t)

))
](l, s) = inf

g∈(−N),d∈N

gk+dt=0

(−(gl + ds))

= inf
d∈N

d(lc − s) (5.74)

=
{

0 if s ≤ cl ;

−∞ otherwise.
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The elementLc describes a sequence of events which occurs at the average rate of
1/c events perunit of time. Consider a SISO event graph with transfer functionH .
SinceH is realizable, hence periodic (see Definition 5.38), it can be written asP ⊕
Q
(
γ kδt
)∗

(P and Q are polynomials). We will confine ourselves to the nontrivial

cases whenQ 
= ε andk > 0, t > 0. The ratio k/t (the inverse of the asymptotic
‘slope’ of the impulse response) characterizes the limit of the rate of events the system
can process. IfLc is used as the input of the event graph, and if 1/c exceeds this limit,
then there will be an indefinite accumulation of tokens inside the system and the output
is indefinitely delayed with respect to the input. Otherwise, the following theorem
states that, usingLc asthe input produces an outputγ κcδθc Lc, that is,essentially the
same trajectory as the input up to shifts byκc along thex-axis (event domain) and
θc along they-axis (time domain). The theorem also shows how(κc, θc) is related to
[F(H )](g, d) for any(g, d) suchthatg = −d × c.

Theorem 5.52 Consider a SISO system with rational transfer function H = P ⊕
Q
(
γ kδt
)∗

, where P and Q are polynomials in M
ax
in[[γ, δ]] , Q is supposed to be differ-

ent from ε, and k and t are supposed to be strictly positive. Then,

1. for all g ≤ 0 and d ≥ 0, [F(H )](g, d) is different from +∞ if and only if

c = −g/d ≥ t/k , (5.75)

and then

[F(H )](g, d) = [F(P ⊕ Q)](g, d) = κcg + θcd (5.76)

for some finite nonnegative integers κc and θc;

2. those κc and θc are not necessarily unique, but any selection yields nonincreasing
functions of c;

3. let c
def= t/k and assume that c satisfies (5.75); then we have

H Lc = γ κcδθc Lc . (5.77)

Proof

1. Let R =
(
γ kδt
)∗

. Since for theminimum representative ofR, R(l, s) = e when

(l, s) = n(k, t) with n ∈ N, andR(l, s) = ε otherwise, we have that

[F(R)](g, d) = sup
n∈N

n
(
gk + dt

) =
{

0 if (g, d) satisfies (5.75);

+∞ otherwise.

Onthe otherhand, for a polynomial, sayP, the minimum representative involves
a finite number of points, andF(P) is the convex hull of a finite number of
linear functions. Therefore, by the homomorphism property ofF , F(H ) =
F(P) ⊕ F(Q) ⊗ F(R), and since Q 
= ε, [F(H )](g, d) is finite if and only
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if (g, d) satisfies (5.75), and thenF(H ) = F(P) ⊕ F(Q). For any such pair
(g, d) ∈ (−N) ×N, we thus have

[F(H )](g, d) = sup
(l,s)∈JP∪JQ

(gl + ds) ,

and the supremum is reached at some (not necessarily unique) point(κc, θc)

which clearly depends only on the ratioc = −g/d > 0.

2. By a well known result of convexity theory [119],(κc, θc) belongs to the subd-
ifferential of the convex functionF(H ) at thepoint (g, d). Hence the mappings
(g, d) �→ (κc, θc), for any choices of(κc, θc), are monotone, that is, for two pairs
(gi , di), i = 1, 2, and any associatedsubgradients(κi , θi ), we have

(g1 − g2)(κ1 − κ2)+ (d1 − d2)(θ1 − θ2) ≥ 0 .

Since we areonly concerned with the ratiosci = −gi/di , wecan either takeg1 =
g2 or d1 = d2 in the above inequality. This shows the monotonicity property
claimed forκ andθ as functions ofc.

3. Let Y = H Lc with c = t/k satisfying (5.75).Then, for all(l, s) ∈ Z
2,

Y (l, s) = sup
(m,r)∈Z2

(H (m, r) + Lc(l − m, s − r))

= sup
(m,r)∈Z2

(
H (m, r) + inf

d∈N

d((l − m)c − (s − r))

)
(from (5.74))

= sup
(m,r)∈Z2

inf
d∈N

(H (m, r) + d(−mc + r) + d(lc − s)) . (5.78)

Onone hand, by inverting the sup and the inf, we obtain a new expression which
is larger than (5.78), and which turns out to be equal to

inf
d∈N

([F(H )](−dc, d)+ d(lc − s)) = inf
d∈N

d ((l − κc)c + θc − s)

= Lc(l − κc, s − θc) , (5.79)

the latter equality being true because of (5.74). On the other hand, if we choose
the particular value(m, r) = (κc, θc) instead ofperforming the supremum, we
obtain an expression which is less than (5.78), and which turns out to be iden-
tical to (5.79) (the clue here is that(κc, θc) which realizes the maximum in the
evaluation of [F(H )](−dc, d) does not depend ond indeed). Finally, we have
proved that

∀(l, s) ∈ Z
2 , Y (l, s) = Lc(l − κc, s − θc) ,

which is equivalent to (5.77).

It is intuitively appealing that the ‘shifts’κc andθc arenonincreasing withc. Indeed,
recall that whenc decreases, the average time between two successive events at the
input decreases, hence the input is faster: the delays introduced by the system, in terms
of counters or in terms of daters, are likely to increase. Moreover, there is a ‘threshold’
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effect (or a ‘low-pass’ effect) in that, above a certain speed which is defined by the
asymptotic slope of the impulse response, the system, driven by an input which is
too fast, ‘blows up’, and the delays become infinite. This corresponds to an unstable
situation (using the same calculations as inthe above proof, it can be proved in this
case thatY = �). This is also similar to conventional system theory in which the
sine functions are eigenfunctions only in the stable case. The difference is here that
the stability property is not an intrinsic feature of the system (at least in the SISO case
considered here), but it depends on the mutual speeds of the input and of the system
itself.

Let us conclude thissection by an example.

Example 5.53 ConsiderH = γ δ2⊕ (γ 2δ)∗, the impulse response of which is repre-
sented at the left-hand side of Figure 5.14. This system cannot process events faster

Figure 5.14: The impulse response ofH = γ δ2⊕ (γ 2δ)∗ and the response toL2/3

than 2 events per time unit. Let us study the functionsκc andθc with respect toc:
the subset of points with coordinates(κc, θc) in theN

2-plane, whenc varies, may be
considered as the Black plot by analogy with conventional system theory in which
the Black plot is the curvegenerated by the points(argH ( jω), log|H ( jω)|) whenω
varies. In thiscase, it is easy to see that

(κc, θc) =
{
(0, 0) if 2 ≤ c < +∞ ;

(1, 2) if 1/2≤ c ≤ 2 .

The points belonging to the Black plot are circled in the figure. At the right-hand side
of this figure, the ‘trajectory’ ofLc is represented by a solid black line forc = 2/3 (see
also Figure 5.13) and the response of the system to this input is indicated by a gray
line. The shifts along the two axes is indicated by a curved arrow.In the dater point of
view, one may say thatthe ‘phase shift’ isκc whereas the ‘amplification gain’ isθc. In
the counter point of view (which is closer to conventional system theory since the time
domain is usually represented as thex-axis), the role ofκc andθc asphase shift and
amplification gain are reversed.

5.9 Notes

The first papers on a new linear theory of some discrete event systems have been published in
early 1983 [37, 38]. They were based on the dater representation and, hence, on the max-plus
algebra. The connection of these linear models with timed event graphs was established in 1984
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[41]. In 1985, it has been realized that specific algebraic problems arise from the fact that daters,
as time sequences, are nondecreasing [42]. At about the same time, the idea of the counter
representation has been introduced by Caspi and Halbwachs [35] to whom this terminology is
due. This finally resulted in the two-dimensional representation first published in [43]. A more
detailed account of the so-calledM

ax
in [[γ, δ]] algebra was given in [44] together with some of the

formulæ about residuation of⊕ and⊗. A large part of thematerial ofthis (and the previous)
chapter(s) is based on that paper—e.g. the sections on backward equations and on rationality,
realizability and periodicity—although the presentation has been somewhat improved here. In
particular, the role of residuation theory has been clarified in the process of establishing backward
equations, and in the relationships between dater and counter representations. Only the results
on ‘minimum representatives’ appear for the first time in this book. The idea of using the formal
transfer function as a numerical function, the fact that the Fenchel transform plays a role similar
to that played by the Laplace transform in conventional system theory, the parallel notion of
eigenfunctions of linear transfer functions in discrete event and conventional system theories,
. . . , were all discovered and published in 1989 [40]. However, here, the presentation has been
more tightly confined in the two-dimensional point of view.
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Chapter 6

Max-Plus Linear System Theory

6.1 Introduction

In this chapter a linear system theory is developed for a class of max-plus linear systems
with discrete or continuous domain and range. This class provides a generalization of
the class of event graphs which have been considered in Chapter 2. We will start with
an input-output point of view. We will view a max-plus linear system as a max-plus
linearoperator mapping an input, which is a function over some domain, to an output,
which is another function over the same domain. For this max-plus linear operator, we
will review the classical notions of conventional linear system theory. In particular, the
notions of causality, shift-invariance, impulseresponse, convolution, transfer function,
rationality, realization and stability will be considered.

The outline of the chapter is as follows. In§6.2 we give general definitions, we
present the system algebra and we discuss some fundamental elementary systems. In
§6.3 we define some subalgebras of the system algebra by progressively specializ-
ing the systems, starting with the most general ones, and finishing with causal shift-
invariant systems with nondecreasing impulse responses. Most practical examples of
discrete event systemsfall into this last category. In the dater description, their output is
the result of a sup-convolution between their input and their impulse response. In§6.4
weintroduce the notion of transfer functions which are related to impulse responses by
means of theFenchel transform. In§6.5 we discuss rationality in the max-plus con-
text, and characterize rational elements in terms of periodicity. We also discuss the
problem of minimal realization of these max-plus systems. In§6.6 we give adefinition
of internally stable systems andcharacterize them in terms of equations which are the
analogue of the conventional Lyapunov equation. In this chapter, mainly single-input
single-output (SISO) linear max-plus systems are considered.

6.2 System Algebra

6.2.1 Definitions

Definition 6.1 (Signal) A signalu is a mapping from R into Rmax. When a signal is a
nondecreasing function it is called a dater.

The signal set isR
R

max. This signal set is endowed with two operations, namely

271
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• pointwise maximum of signals which plays the role of addition:

∀k ∈ R , ∀u, v ∈ R
R

max , (u ⊕ v)(k)
def= u(k) ⊕ v(k) = max(u(k), v(k)) ;

• addition of a constant to a signal, which plays the role of the external product of
a signal by a scalar:

∀k ∈ R , ∀a ∈ Rmax , ∀u ∈ R
R

max , (au)(k)
def= a ⊗ u(k) = a + u(k) .

Therefore the set of signals is endowed with a moduloid structure. This algebraic
structure iscalled U .

In previous chapters the domain of signals wasZ (event domain) and trajectories
were nondecreasing. In this chapter we develop the theory in the more general frame-
work of Definition 6.1.

Definition 6.2 (Max-plus linear system) A systemis an operator S : U → U, u �→
y. The signal u (respectively y) is called the input(respectively output) of the system.
We say that the system is max-plus linearwhen the corresponding operator satisfies

S

(
⊕

i∈I

ui

)
=
⊕

i∈I

S(ui ) , (6.1)

for any finite or infinite set {ui }i∈I , and

S(au) = aS(u) , ∀a ∈ Rmax , ∀u ∈ U .

Remark 6.3 Equation (6.1) is indeed the requirement of lower-semicontinuity ofS
andnot only the requirement thatS is an⊕-morphism. Here is an example of a system
which is an⊕-morphism but which fails to be l.s.c.:

[S(u)](t) = lim sup
s→t

u(s) .

This system is clearly an⊕-morphism, but to show that it is not l.s.c., consider

∀n ≥ 1, un(k) =






0 if k ≤ 0 ;

n × k if 0 < k < 1
n ;

1 if 1
n ≤ k .

For all n ≥ 1, we have [S(un)](0) = 0, and

⊕

n≥1

un(t) =
{

0 if t ≤ 0 ;

1 otherwise.

This yields
[
S
(⊕

n un

)]
(0) = 1, which is different from

[⊕
n S(un)

]
(0) = 0 .

The set of linear systems is endowed with two internal and one external operations,
namely
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parallel composition: S = S1⊕ S2 is defined as follows:

[S(u)](k) = [S1(u)](k) ⊕ [S2(u)](k) ; (6.2)

series composition: S = S1⊗ S2, 1 or more briefly,S1S2 is defined as follows:

[S(u)](k) = [S1(S2(u))](k) ; (6.3)

amplification: T = a ⊗ S, a ∈ Rmax is definedby:

T (k) = a ⊗ S(k) .

In addition to these basic operations, we have another important one, the feedback:

feedback: S∗ defined by the mapping fromU intoU : u �→ y, wherey (see Figure 6.1)
is the least solution of

y = S(y)⊕ u . (6.4)

The notationS∗ is justified by the fact that the least solution of (6.4) does exist by
Theorem 4.75 andit is given byu ⊕ S(u)⊕ S(S(u)) ⊕ · · · .

⊕
u

S

y

Figure 6.1: The feedback operationy = S∗u

The set of systems endowed with the first three operations defines an idempotent
algebra called the algebra of systems. We do not lose anything by considering only the
two internal operations because the amplification can be realized by a series composi-
tion where the downstreamsystem is what we call again in the next section. Whenever
we speak of the set of systems endowed with the two internal operations, we refer to it
as the ‘dioid of systems’. The second operation is not invertible, and therefore this set
is not an idempotent semifield (see Chapter 3), it is only a dioid.

6.2.2 Some Elementary Systems

We havediscussed how we can combine systems using compositions and feedbacks.
Here, we describe some elementary though fundamental systems with which more
complex systems can be built up.

Wefirst introduce the following notation.
1Wemakethe usual abuse of notation which consists in using the same symbol for external multiplication

by a scalarand for internal multiplication of systems. This will be justified later on.



274 Synchronization and Linearity

Notation 6.4 For f : R → Rmax, �
∫ b

s
a

f (s) denotes the supremum off (s) whens ranges
in the interval [a, b] (or e.g.(a, b] if a = −∞). We may also usethe notation�

∫
s
R

f (s)
if a = −∞ andb = +∞.

The following elementary systems are now introduced.

Zero systemε: this systemproduces the constant outputε whateverthe input is:y(k) =
ε for all k. It satisfies

ε ⊕ ε = ε ⊗ ε = ε∗ = ε .

Identity e: this systemproduces an output equal to the inputy(k) = u(k) for all k. It
satisfies

e ⊕ e = e⊗ e = e∗ = e .

Shift �g: thissystemmaps inputs to outputsaccording to the equationy(k) = u(k−g)
for all k. Thenotation�g is justified by the following rule of series composition
which should be obvious to the reader:

�g ⊗ �g′ = �g+g′ = �g⊗g′ .

Therefore�1 may be denoted�. If we restrict ourselves to signals that are
nondecreasing signals (see the discussion just above Remark 5.1), we have the
simplification rule

�g ⊕ �g′ = �min(g,g′) . (6.5)

In the context of event graphs, an initial stock ofc tokens in a place introduces
such a shift between inputs and outputs in the domain where we ‘count’ events.
In the framework of the continuous system depicted in Figure 1.13, the same
role is played by the initial amount of fluid in the reservoir at the outlet. Note
however that, in that example, equations were written in a counter, rather than
in a dater, representation, and consequently, this device operated as a gain rather
thanas a shift.

Gain "d : this system maps inputs to outputsaccording to the equationy(k) = d ⊗
u(k) = d + u(k) for all k. Again, thenotation"d is justified by the following
rule of series composition:

"d ⊗"d ′ = "d+d ′ = "d⊗d ′ .

Therefore"1 may be denoted". We also have the simplification rule (which
holds true for any input signal)

"d ⊕"d ′ = "d⊕d ′ = "max(d,d ′) .

In the context of timed event graphs, this is the general input-output relation
induced by a place with holding timed. For the system of Figure 1.13,this
input-output relation is that of along pipe at the inlet of a funnel.
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Flow limiter �a : this systemmaps inputs to outputsaccording to the relation

y(k) = �
∫ k

s−∞
u(s)ak−s . (6.6)

Unlike �c and"d , we use thenotation�a with a as a subscript, becausea does
not behave like an exponent. Indeed, the following parallel, series and feedback
composition rules can be checked by direct calculation:

�a ⊕�a′ = �a ⊗�a′ = �max(a,a′) = �a⊕a′ . (6.7)

Moreover,�a > e and hence�a = (�a)
∗.

Physically, this system corresponds to the input-output relation between the cu-
mulated quantities traversing a pipe which limits the flow to 1/a (of course, here
a is a positive number). This is the case of the aperture of the funnel in Fig-
ure 1.13 (recall that this example is worked out using counter rather than dater
equations). This system plays the role of the SISO system governed by the dif-
ferential equation

ẏ = ay + u

in conventional system theory, the solution of which is

y(t) =
∫ t

−∞
u(s)exp(a(t − s))ds ,

which is the analogue of (6.6).

Integrator é: this is another notation for�0. It maps inputs to outputsaccording to
the equationy(k) = �

∫ k
s−∞u(s). The output of such a system is always nonde-

creasing. It plays the role of an identity element for shift-invariant systems with
nondecreasing impulse responses as we shall see later on. This role justifies the
notationé. It satisfies

é ⊕ é = é ⊗ é = (é)∗ = é .

Local integrator #w: this system maps inputs to outputsaccording to the relation
y(k) = �

∫ k
s
k−wu(s). It is the analogue of a conventional system recursively av-

eraging the input in a window of widthw. The following series, parallel and
feedback compositions of local integrators can beeasily checked:

#w ⊕ #w′ = #w⊕w′ ,

#w ⊗ #w′ = #w+w′ = #w⊗w′ ,

(#w)∗ = #∞ = é , ∀w > 0 .
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6.3 Impulse Responses of Linear Systems

In this section we introduce the notion of impulse response for a max-plus linear sys-
tem. The algebra of impulse responses is isomorphic to the algebra of systems. The for-
mer algebra is first specialized to the case of shift-invariant systems and subsequently
to thecase of systems with nondecreasing impulse responses.

6.3.1 The Algebra of Impulse Responses

We saw that the set of systems can be endowed with a moduloid structure. The next
stepis to introduce a kind of ‘canonical basis’ for this algebraic structure. Classically,
for time functions, this basis is provided bythe Dirac function at 0, and all its shifted
versions at other time instants. Therefore, we now introduce

e(·) : k �→ e(k)
def=
{

e if k = 0 ;

ε otherwise,
(6.8)

and

γ s(·) def= �s(e(·)) i.e. γ s(k) = e(k − s) , ∀k . (6.9)

The justification of the notatione(·) will come from the fact that this particular signal
is the identity element for sup-convolution which will be the internal multiplication in
the system set. Indeed, it can be checked by direct calculation that

∀u , ∀k , u(k) = �
∫

s
R

u(s)e(k − s) . (6.10)

In viewof (6.9), this can be rewritten

u = �
∫

s
R

u(s)γ s , (6.11)

which shows thatu is obtained as a linear combination of the signalsγ s . This is the
decomposition of signals with respect to the canonical basis. This decomposition is
unique since, if there exists another functionv : R → Rmax suchthat u = �

∫
s
R

v(s)γ s ,
we conclude thatv(s) = u(s), ∀s, because of Identity (6.10) applied to the functionv.

Now we can state the following theorem which introducesthe notion ofimpulse
response.

Theorem 6.5 Let S be a linear system, then there exists a unique function h(k, s)
(called the impulse response) such that y = S(u) can be obtained by

∀k , y(k) = sup
s∈R

[h(k, s) + u(s)] = �
∫

s
R

h(k, s)u(s) , (6.12)

for all input-output pairs (u,y).
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Proof We have

y(k) = [S(u)](k) =
[

S

(
�
∫

s
R

u(s)γ s

)]
(k) ,

which, owing to the linearity assumption, implies

y(k) = �
∫

s
R

([
S(γ s)
]
(k)
)

u(s) = �
∫

s
R

h(k, s)u(s) ,

where we have seth(k, s)
def= [S(γ s)](k). To prove uniqueness, suppose that there

exists another functionf (·, ·) which satisfies (6.12). Then using inputsu = γ s, we
obtain

h(k, s)
def= [S(γ s)](k)

= �
∫

τ

R

f (k, τ )γ s (τ )

= f (k, s) ,

for all s, k ∈ R, where the last equality is (6.10) applied to the functionf (k, ·).

To the series,parallel, amplification and feedback compositions of systems correspond
operations on the impulse responses.

Theorem 6.6 Given a ∈ Rmax and the systems S, S1 and S2 with respective impulse
responses h, h1 and h2, then,

• the impulse response of S1⊕ S2 is [h1⊕ h2](k, s)
def= h1(k, s) ⊕ h2(k, s);

• the impulse response of S1⊗ S2 is [h1⊗ h2](k, s)
def= �
∫

r
R

h1(k, r)h2(r, s);

• the impulse response of aS is [ah](k, s)
def= ah(k, s);

• the impulse response of S∗ is h∗ def= ⊕i∈N
hi .

The set of impulse responses endowed with the first three operations (respectively the
first two operations) defines an idempotent algebra (respectively a dioid), called the
algebra (respectively the dioid) of impulse responses which is denotedH. Impulse
responses are representations of systems written in a canonical basis, just like matrices
are finite dimensional linear operators written in a particular basis.

Definition 6.7 A linear system S is causal if, for all inputs u1 and u2 with correspond-
ing outputs y1 and y2,

∀s , ∀k ≤ s , u1(k) = u2(k)⇒ y1(s) = y2(s) .

Theorem 6.8 A system S is causal if its impulse response h(k, s) equals ε for k ≤ s.
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Proof If S is causal,S(γ s) = h(k, s) coincides with S(ε) = ε for k ≤ s.

Remark 6.9 The impulse responseh of a series composition of two causal systems of
impulse responsesh1 andh2 has the simplified form

h(k, s) = �
∫ k

r
s

h1(k, r)h2(r, s) .

6.3.2 Shift-Invariant Systems

Let us specialize the algebraH to shift-invariant systems.

Definition 6.10 A linear system S is called shift-invariant if it commutes with all shift
operators, that is, if

∀u , ∀c , S(�c(u)) = �c(S(u)) .

Theorem 6.11 A system S is shift-invariant if and only if its impulse response h(k, s)
depends only on the difference k − s. With the usual abuse of notation, the impulse
response is denoted h(k − s) in this case. It is equal to h(·) = [S(e)](·).

Proof We have

h(k, s)
def= [S(γ s)](k) = [S(�s(e))](k) = [�s(S(e))](k) = [S(e)](k − s) .

Consequently, in the shift-invariant case, the kernel defining the impulse response is
reduced to a function. The input-output relation can be expressed as follows:

y(k) = (h ⊗ u)(k)
def= �
∫

s
R

h(k − s)u(s) .

This newoperation, also denoted⊗, isnothing but thesup-convolution which plays the
role of the convolution in conventional system theory. We also note that the series com-
position corresponds to the sup-convolution of the corresponding impulse responses.

Definition 6.12 The algebra of shift-invariant impulse responses, denoted S, is the set

R
R

max endowed with:

• the pointwise maximum of functions denoted ⊕;

• the sup-convolution denoted ⊗;

• the external operation which consists in adding a constant to the function.

The zero elementdenotedε(·) is defined byε(k) = ε, ∀k . It is absorbingfor multipli-
cation. The identity element denotede(·) is described by (6.8).
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Remark 6.13

1. This idempotent algebraS can simply be considered as a dioid.

2. Because signals and SISO systems can be represented by functions, we do not
have to distinguish them.

3. Impulse responses of shift-invariant causal systems satisfyh(k) = ε for k < 0.

Example 6.14 The elementary systemsintroduced in§6.2.2 are shift-invariant linear
systems. Their impulse responses are given later in Table 6.2. Notice thatγ 0 = δ0 =
φε = e if φε denotes the pointwise limit ofφa whena goes to−∞.

6.3.3 Systems with NondecreasingImpulse Response

In the context of event graphs, input signals have the meaning of sequences of dates at
which successive events occur, and therefore they are nondecreasing functions. In the
case of the continuous system depicted in Figure 1.13, the input and the output are also
nondecreasing.

A nondecreasing signalu canbecharacterized by the inequalityu ≥ #wu for any
arbitrary positivew. From an algebraic point of view, this situation is identical to that
described by Inequality (5.11) if #w plays the role earlier played byγ , now that the

domain is continuous. Hence from Theorem 5.8, we know thatv́
def= (#w)∗ v is the

best approximation from above of a signalv in the subset of nondecreasing signals.
Recall that(#w)∗ = é (seeend of§6.2.2). In particular, a nondecreasing functionu is
characterized byu = ú = éu.

Consider a system with impulse responseh. Then, if only nondecreasing inputsu
are considered, the outputs are also nondecreasing as shown by the following equalities:

y = h ⊗ u = h ⊗ (é ⊗ u
) = é ⊗ (h ⊗ u) = é ⊗ y .

We also notice that, for this class of nondecreasing inputs, the systems with impulse
responsesh andh́ = é⊗ h yield the same outputs. Thiśh is called the ‘nondecreasing
version’ of the impulse responseh. The subset of nondecreasing signals and impulse
responses, denoted́S, is adioid with the same addition and multiplication asS, but the
identity element iśe.

The following are the nondecreasing versions of the impulse responses of some
elementary systems encountered earlier, the nonmonotonic versions of which are given
in Table 6.2 below:

é(k) =
{

e if k ≥ 0 ;

ε otherwise;
γ́ c(k) =

{
e if k ≥ c ;

ε otherwise;
δ́d(k) =

{
d if k ≥ 0 ;

ε otherwise.
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6.4 Transfer Functions

6.4.1 Evaluation Homomorphism

In this section we discuss the notion of transfer functions associated with shift-invariant
max-plus linear systems. Transfer functions are related to impulse responses by a trans-
formation which plays the role of the Fourier or Laplace transform in conventional
system theory, and which, in our case, is similar to theFenchel transform of convex
analysis.

We saw that signals and impulse responses are functions belonging to the same
idempotent algebra and that, in the canonical basis, they can be written

f = �
∫

s
R

f (s)γ s .

We associate a transfer functiong, which will be a mapping fromRmax into Rmax,
with suchanimpulse response viewed as a generalization of a formal polynomial intro-
ducedin Chapter 3. The value at a point of this latter function is obtained by substitut-
ing anumerical variable inRmax for γ in the expressionof f . Theresulting expression
is evaluated using the calculation rules ofRmax. This substitution of a numerical value
for the generator should be compared with what one does in conventional system the-
ory when substituting numerical values inC for the formal operator of the derivative
(denoteds) in continuous time, or the shift operator (denotedz) in discrete time. To
formalize this notion, we introduce the idempotent algebra of convex functions. Recall
that a closed convex function is a function which is

1. l.s.c.in the conventional sense, that is, it satisfies limxn→x f (xn) ≥ f (x);

2. convex;

3. proper, that is, nowhere equal to−∞;

or a function which is always equal to−∞. It is exactly the set of the upper hulls of
collections of affine functions [119, Theorem 12.1].

Definition 6.15 The set of closed convex functions endowed with the pointwise max-
imum denoted ⊕, the pointwise addition denoted ⊗ and the addition of a scalar as
external operation, is called the algebra of convex functions and is denoted Ccx.

Oncemore, there is no loss of generality in considering the dioid of convex functions
endowed with two internal operations only. Indeed, the product by a scalar or the
pointwise product by a constant function gives the same result.

Definition 6.16 For f = �
∫

s
R

f (s)γ s ∈ S, let

g : R→ Rmax , c �→ �
∫

s
R

f (s) ⊗ cs . (6.13)
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Then g is called the numerical transfer function2 associated with f . The transform F
which maps f to g is called the evaluation homomorphism(as will be justified by the
forthcoming Theorem 6.17).

Five different complete and commutative idempotent algebras and dioids have been
considered, and consequently five different meanings of⊕ and⊗ have been used.
As usual, the context should indicate which one is meantaccording to the nature of
elements on which these binary operations operate. Table 6.1 recalls the meaning of
these operations. The application of the evaluation homomorphism to the impulse

Table 6.1: Five dioids

Dioid Rmax H S
⊕ max pointwise max
⊗ + max-plus kernel product sup-convolution
ε −∞ ε(k, l) = −∞ , ∀k, l ε(k) = −∞ , ∀k

e 0 e(k, l) =
{

0 ifk=l

−∞ otherwise
e(k) =

{
0 if k = 0

−∞ otherwise

Dioid Ś = é ⊗ S Ccx

⊕ pointwise max
⊗ sup-convolution pointwiseaddition
ε ε(k) = −∞ , ∀k ε(c) = −∞ , ∀c

e é(k) =
{

0 if k ≥ 0

−∞ otherwise
e(c) = 0 , ∀c

responses of the elementary systems is given in Table 6.2.

Theorem 6.17 The evaluation homomorphism F is a l.s.c. (in the sense of Defini-
tion 4.43) epimorphism (surjective homomorphism) from S onto Ccx.

Proof The homomorphism and l.s.c. properties are true by construction. Indeed,
F( f ⊕ f ′) = F( f ) ⊕ F( f ′), andits extension to infinite sums is true by commu-
tativity of the sup operation. FinallyF( f ⊗ f ′) = F( f )⊗F( f ′) is true by definition
of the⊗ operation inS. Surjectivity arises from the fact thatF (S) is the set of the
upper hulls of families of affine functions which coincides with the set of closed convex
functions.

Remark 6.18

1. ClearlyF is not injective, for example

c ⊕ c2 = [F (γ ⊕ γ 2
)]
(c) =

[
F
(
�
∫ 2

s
1
γ s

)]
(c) .

2In this chapter we will call it simply a transfer function because the notion of formal transfer is not used.
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Table 6.2: Impulse responses and transfer functions of the elementary systems

System Impulse response Transfer function

ε ε(k) = ε , ∀k [F(ε)](c) = ε , ∀c

e e(k) =
{

e if k = e

ε otherwise
[F(e)](c) = e , ∀c

�g γ g(k) =
{

e if k = g

ε otherwise
[F (γ s)](c) = gc , ∀c

"d δd(k) =
{

d if k = 0

ε otherwise

[
F
(
δd
)]
(c) = d , ∀c

�a φa(k) =
{

ak if k ≥ 0

ε otherwise
[F (φa)](c) =

{
e if c ≤ −a

� otherwise

é é(k) =
{

e

ε otherwise

[
F
(
é
)]
(c) =
{

e if c ≤ 0

� otherwise

#w ςw(k) =
{

e if w ≥ k ≥ 0

ε otherwise
[F (#w)](c) =

{
e if c ≤ 0

wc otherwise

2. The convex function

g(c) =
{
ε if c = 0 ,

� otherwise,

is not closed. Neither is it the upper hull of a set of affine functions. Indeed,each
affine function would be belowg and therefore would be equal toε everywhere.
Neverthelessthis function is l.s.c. because the subsets{c | g(c) ≤ a}, whichare
equal to{0} for all a ∈ R, are closed.

3. By returning to conventional notation,F can be interpreted in terms of the
Fenchel transform. More precisely we have

[F( f )](c) = sup
k

[kc + f (k)] = [Fe(− f )](c) , (6.14)

where [Fe( f )](c)
def= supk(kc − f (k)) denotes the classical Fenchel transform

of convex analysis [58]. Recalling that the Fenchel transform converts inf-
convolutions into pointwise (conventional) additions, we see that the choice of
multiplication in Ccx is consistent with this property of the Fenchel transform.

6.4.2 Closed Concave Impulse Responses and Inputs

It is well known that the Fenchel transform only characterizes closed convex functions;
or otherwise stated, all functions having the same convex hull have the same Fenchel
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transform. Rephrasing this result in terms of the evaluation homomorphism, we ob-
tain that only the closed concave impulse responses are completely characterized by
their transfer functions. For this subclass, the evaluation homomorphism is a tool as
powerful as the Laplace transform in conventional system theory.

Theorem 6.19 For g ∈ Ccx, the subset F−1(g) admits a maximum element F �(g)
defined by

[
F �(g)
]
(k)

def=
∧

c

g(x)◦/ck = inf
c

[g(c)− ck] (6.15)

(where the latter expression in conventional notation requires the convention about
∞−∞ discussed in Example 4.65). Moreover, F �(g) is the concave upper hull of any
other element of F−1(g).

Proof From the preceding considerations, we see that all the assumptions required in
Theorem 4.50 are fulfilled. Then (6.15) is a straightforward extension of (3.11) to the
continuous domain case.

Definition 6.20 The subset Scv of S consists of closed concave functions, that is, the
functions which are concave, upper-semicontinuous (u.s.c. in the conventional sense)
and either nowhere equal to� or always equal to�.

Remark 6.21 The setScv is closed for multiplication (sup-convolutions of concave
u.s.c. functions yield concave u.s.c. functions), but not for addition (the upper hull of
concave functions is not in general a concave function). It is closed for pointwise
infimum. Therefore, this subset is not a subdioid ofS.

The next theorem tells us that the computation of the sup-convolution of two concave
functions is equivalent to a pointwise addition and three Fenchel transforms. Knowing
that there exists a fast Fenchel transform which is the analogue of the fast Fourier
transform [31], this formula gives an efficient algorithm to compute sup-convolutions.

Theorem 6.22 We have the formula

∀ f, g ∈ Scv , h = f ⊗ g = F � (F( f )⊗F(g)) ,

which, in conventional notation, means

h(k) = sup
x+y=k

[ f (x)+ g(y)] = F � (F( f )+F(g)) .

Proof Equation (6.15) shows thatScv equalsF � (Ccx), since lower hulls of families of
affine functions are closed concave functions. Therefore,

∀ f ∈ Scv , F �◦F( f ) = f .

Then, using the closedness ofScv and thehomomorphism property ofF , we have

f ⊗ g = F �◦F( f ⊗ g) = F � (F( f )⊗F(g)) .
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6.4.3 Closed Convex Inputs

In conventional system theory anyL2 function can be decomposed with respect to the
basis of sine functions. In the present situation, any closed convex function can be
decomposed with respect to conventional linear functions:

y = lc(x)
def= c × x = xc ,

which may be considered as the max-plus exponentials (the last expression is in max-
plus notation). This decomposition can be used to compute the outputs of a shift-
invariant max-plus system driven by convex inputs. Indeed, the max-plus exponentials
are eigenvectors for any shift-invariant max-plus linear system in the same way as the
sine functions are eigenvectors for any shift-invariantlinear system inconventional
linear system theory.

Definition 6.23 The subset Scx of S consists of closed convex functions. The canonical
injection of Scx into Ccx is denoted I .

Remark 6.24

1. The difference betweenScx andCcx is the⊗ operation (see Table 6.1).

2. Unlike Scv which is closed for multiplication but not for addition,Scx is closed
for addition and multiplication. But in general the multiplication of two convex
functions is equal to�. The only exception is the product of two affine functions
with the same slope.

3. The identity elemente(·) is not convex. Therefore,Scx is not a subdioid ofS
either.

4. The intersection ofScv andScx is the subset of weighted exponentials in the
max-plus sense (b ⊗ lc(·)) or affine functions in the conventional sense.

In the max-plus framework, the decomposition of closed convex functions tells us
that these functions are integrals of weighted exponentials. Moreover, the correspond-
ing weights are explicitly given by the Fenchel transform.

Theorem 6.25 For all f ∈ Scx, we have

f = I−1◦F◦F �◦I( f ) ,

which can be written

∀k , f (k) = �
∫

c
R

ck
[
F �◦I( f )

]
(c) = �
∫

c
R

kc
[
F �◦I( f )

]
(c) , (6.16)

to emphasize the exponential decomposition.
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Proof A function f ∈ Scx may be viewed as a transfer function inCcx because it is
a closed convex function. Therefore,I( f ) equals f but considered as an element of
Ccx. BecauseI( f ) ∈ Ccx, we can solveF(g) = I( f ) for g. But wehave an explicit
formula forg, namely g = F � (I( f )). Then using the fact thatF◦F � = ICcx, we have
proved the result.

Let us show now that the max-plus exponentials (conventional linear functions)lc are
eigenvectors for the operator defined as the sup-convolution with a given impulse re-
sponse.

Theorem 6.26 For all impulse responses h ∈ S and all scalars c, we have

h ⊗ lc = [F(h)](−c) lc . (6.17)

Therefore [F(h)](−c) is the eigenvalue (called the gain of h for the exponential lc )
associated with the eigenvector lc of the operator g �→ h ⊗ g.

Proof The proof is the same as in conventional algebra:

[h ⊗ lc ](k) = �
∫

s
R

ck−sh(s) = ck�
∫

s
R

c−sh(s) = ck [F(h)](−c) .

Wemay usethis property of the exponentials to compute the output of a shift-invariant
systemdriven by a convex input.

Theorem 6.27 We have

∀ f ∈ Scx , ∀h ∈ S , h ⊗ f = �
∫

c
R

[
F �◦I( f )

]
(c) [F(h)](−c) lc ,

where
[
F �◦I( f )

]
(c) is the weight of the exponential lc in the spectral decomposition

of f and [F(h)](−c) is the gain of h for the same exponential.

Proof Using thedistributivity of⊗ (sup-convolution inS) with respect to�
∫

, we have

h ⊗ f = h ⊗�
∫

c
R

[
F �◦I( f )

]
(c) lc by (6.16),

= �
∫

c
R

[
F �◦I( f )

]
(c) (h ⊗ lc) by linearity,

= �
∫

c
R

[
F �◦I( f )

]
(c) [F(h)](−c) lc by (6.17),

and the functionh ⊗ f alsobelongs toScx.

In conclusion, we have encountered two situations of special interest to compute the
response of a system to an input
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• if the input and the impulse response are concave, we can use the evaluation
homomorphism to transform this inf-convolution into a pointwise conventional
sum;

• if the input is convex, we can first decompose it as a sum of exponential functions
(in the dioid sense), and then, using the linearity of the system, we can sum up
the responses to these exponentials inputs.

6.5 Rational Systems

The setS is a nice algebraic structure but its elements are functions and therefore can-
not be coded by finite sets of numbers in general. It is useful to consider subsets of these
functions which can be coded in a finite way. The algebraic functions would constitute
such a set. Those functions are described as the solutions of a polynomial systems of
equations inS. But even inclassical system theory the study of these systems is in
its infancy. Therefore we restrict ourselves to a simpler situation. We only consider
systems which can be described by a finite set ofspecial linear equationsy = hy ⊕ u.
These equations describe the input-output relation of systems obtained by series, paral-
lel and feedback compositions of elementary systems for which the impulse responses
are explicitly known. Such systems are called rational. Clearly this notion of rational-
ity depends on the elementary systems considered. Rational systems can be described
in terms of the star operation(y = h∗u). This storyis not specific to max-plus alge-
bra, but the rationals of these max-plus algebras have simple characterizations in terms
of their periodic asymptotic behavior which is similar to the periodicity property of
the decimal expansion of rational numbers. The aim of this section is to characterize
max-plus rational systems by their asymptotic behavior.

6.5.1 Polynomial, Rational and Algebraic Systems

Let us consider

1. a subsetK of S which also has a structure of idempotent algebra but not nec-
essarily the same identity element asS (for example, nondecreasing functions
define an algebrawith é asthe identity element—see§6.3.3);

2. a finite setα = {α1, . . . , α�} of elements ofS.

Let us define five subsets ofS which may beconsidered asextensions ofK and which
have a structure of idempotent algebra:

polynomial or dioid closure K [α] of K ∪ α: its elements are obtained by combining
the elements ofK ∪ α using a finite number of⊕ and⊗ operations;

rational closure K (α) of K ∪ α: its elements are obtained by combining the elements
of K ∪ α using a finite number of⊕,⊗ and∗ operations;
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algebraic closureK {α} of K ∪ α: its elements are obtained by combining the ele-
ments ofK ∪ α using a finite number of⊕ and⊗ operations and by solving
polynomial equations with coefficients inK ∪ α;

series closureK [[α]] of K ∪ α: its elements are obtained by combining the elements
of K ∪α using a countable number of⊕ and⊗ operations: this is the completion
of the polynomial closure;

topological closureK {{α}} of K ∪ α: its elements are obtained by combining the ele-
ments ofK ∪ α using an infinite number of⊕ and⊗ operations and by solving
polynomial equations: this is the completion of the algebraic closure.

NotethatS is a subset ofRmax{{γ }}. In general we have

K ⊂ K [α] ⊂ K (α) ⊂
{

K [[α]]

K {α}
}
⊂ K {{α}} .

For example, considerK = B = {ε, e} andα = {δ}, whereδ is the impulse response
mentioned in Table 6.2. Recall that inS, δd1 ⊕ δd2 = δmax(d1,d2). In this particularcase
we have

B[δ]  Nmax⊂ B(δ) = B[[δ]]  Nmax⊂ B{δ}  Qmax⊂ B{{δ}}  Rmax ,

whereAmax for a setA meansA∪{ε} endowed withthe maxand the+ operations,A is
Amax ∪ {+∞}, and the isomorphisms above identify scalarsd with impulse responses
δd .

Remark 6.28 Observe that inB[δ] it is difficult to speak of thenotion of valuation.
For example, the valuation of δd1 ⊕ δd2 would formally be equal to min(d1, d2); but at
the same timeδd1 ⊕ δd2 is equal toδmax(d1,d2); the latter is a monomial the valuation of
which is thus the same as the degree, namely max(d1, d2).

Similarly, considerB́[γ́ ] which is equal to é ⊗ B[γ ], and observe that the notion
of degree is equally difficult to define. Indeed, owing to (6.5) which holds true for
nondecreasing signals,γ́ g1⊕ γ́ g2 is equal toγ́ min(g1,g2), whereas it would formally have
a degree equal to max(g1, g2).

The same difficulties arise in other polynomial (or dioid) closures such asB́[γ́ , δ́] =
éB[γ, δ]. This dioid is isomorphic to the polynomial subdioid ofM

ax
in[[γ, δ]] (‘polyno-

mial’ i n thesense of Definition 5.19). Any element ińB[γ́ , δ́] can be represented, in a
nonunique way, as the product ofé by anelement ofB[γ, δ]: the latter may be called a
‘representative’ of the former. It is thus possible to speak of the valuations and degrees
in γ andδ of such a representative inB[γ, δ] of an elementof B́[γ́ , δ́]. However, these
notions can be given an intrinsic meaning only if we restrict ourselves to the ‘minimum
representative’ which exists for polynomials (see Theorem 5.20).

6.5.2 Examples of Polynomial Systems

Table 6.3 gives the main examples of polynomial closures ofRmax or of B used inthis
book. They are obtained from the set of scalars (identified with impulse responsesδd
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asexplained earlier) augmented with the impulse responses of some of the elementary
systems encountered previously. We setφ = {φc1, . . . , φc�}, whereφci is defined in
Table 6.2. In the following, the ci are assumed to be positive and thereforeφci is
nondecreasing.

Table 6.3: Polynomial extensions.

K α h ∈ K [α] ⊂ R
R

max

Rmax

 
B{{δ}}

{γ } h(k) 
= ε only for k ∈ N.

Ŕmax
def=

éRmax

{γ́ }
h(k) = ε for k ∈ R

−; overR+, h is
nondecreasing and piecewise
constant with a finite number of
discontinuities at integer abscissæ.

Ŕmax

φ

=
{φc1, . . . , φc�}

h(k) = ε for k ∈ R
−; overR+, h is

convex, nondecreasing and
piecewise linear with slopes in
{c1, . . . , c�}.

B́

def=
é{ε, e}

{γ́ , δ́}
h(k) = ε for k ∈ R

−; overR+, h is
nondecreasing, piecewise constant
and integer-valued with a finite
number of discontinuities at integer
abscissæ.

B́ {γ́ , δ́} ∪ φ

h(k) = ε for k ∈ R
−; overR+, h is

convex, nondecreasing, piecewise
linear with slopes in{c1, . . . , c�}
and with a finite number of
discontinuities at integer abscissæ.

6.5.3 Characterization of Rational Systems

A characterization of elements ofK (α) is given under the assumption thatK is ratio-
nally closed (see Definition 4.99); this is the representation problem. In the present
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context, we defined a rational element as an elementh obtained by a finite number of
⊕, ⊗ and∗ operations applied to elements ofK ∪ α. The following result shows that
only one∗ operation is needed with respect tothe elements inα. Consequently, it is
easy to obtain a linear system which admitsh asits impulse response.

Theorem 6.29 (Representation of rational impulse responses)We assume that K is
rationally closed (for example, K is a complete dioid). Then, for all h ∈ K (α), there
exist n ∈ N, B,C ∈ K n and Ai ∈ K n×n , i = 1, . . . , �, such that

h = C′
(

�⊕

i=1

αi Ai

)∗
B . (6.18)

Proof Let us refer to Theorem 4.105 and setB = K , C = K , U = K andV = α. Since
K is supposed to be rationally closed, thenU� = K , U� ⊗B = K andU�⊗ V consists
of linear combinations of elements ofα with coefficients inK . Theseobservations lead
to (6.18).

Example 6.30 Let us considerthe elementh of Rmax(γ ) defined byh = ((1γ 3)∗ ⊕
(γ 2)∗)∗. Observe thatRmax is a complete dioid. Using (4.109) and the fact that(a∗)∗ =
a∗, we haveh = ((1γ 3)∗)∗((γ 2)∗)∗ = (1γ 3)∗(γ 2)∗ = (1γ 3⊕γ 2)∗ for which we obtain
the realization

x2 = γ x1 , x3 = γ x2 , x1 = 1γ x3⊕ γ x2⊕ u , y = x1 .

In the case of nondecreasing impulse responses, the form of the rational functions may
be explicited by specializing Theorem 6.29.

Corollary 6.31 Every h ∈ Ŕmax(φ) can be written

h =
�⊕

i=1

hiφci , hi ∈ Rmax , i = 1, . . . , � .

Proof Using Theorem 6.29 withK = Ŕmax (this is a complete, hence rationally closed,
dioid) andα = φ, wecan write

h = c′
(

�⊕

i=1

aiφci

)∗
b ,

where the entries ofb, c andai belong toŔmax. By expanding the∗ expression and by
using the simplification rules given in (6.7), we obtain the form claimed in the statement

of the corollary, butwith coefficientsh́i of theφci belonging toŔmax. As such, theycan
bewritten h́i = éhi for somehi ∈ Rmax. On theother hand, recall that we assumed
ci > 0 for all i, which implies that theφci are nondecreasing. Hencéeφci = φci . This
observation allows us to adopt thehi as the coefficients of theφci .
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Theorem 6.32 Every h ∈ B́(γ́ , δ́) can be written h = é (p ⊕ γ νδτ(γ r δs)∗q), where

• p ∈ B[γ, δ] is a polynomial of degree at most ν − 1 in γ and τ − 1 in δ;

• q ∈ B[γ, δ] is a polynomial of degree at most r − 1 in γ and s − 1 in δ.

For a given h, the ratio s/r is independent of the particular representation of this type.

The above form expresses a periodic behavior of the impulse responseh. Thepoly-
nomial p represents the transient part having a ‘width’ ofν and a ‘height’ ofτ . The
polynomialq represents a pattern having a ‘width’ ofr and a ‘height’ ofs. This pattern
is reproduced indefinitely after the transient part (see Figure 6.2). The ratios/r repre-
sents the‘asymptotic slope’ (see Definition 6.46 below). For the extreme casesr = 0
or s = 0, the reader may return to the discussion in§5.7.4.

Proof Because we are in the commutative case, we can refer to Theorem 4.110 with
T = {ε, é, γ́ , δ́} andD = B́[[ γ́ , δ́]]. In f act, in the following, we will also need to
use elements of́B{γ́ , δ́}, hence we may embed all these structures into a larger one,

namelyB́{{γ́ , δ́}}. From Theorem 4.110 we have thath = ⊕l
i=1 ái

(
b́i

)∗
, for some

ái and b́i which are elements ofT % = B́[γ́ , δ́] = éB[γ, δ] (see§6.3.3). Sinceái

and b́i are polynomials, we may consider their minimum representatives inB [γ, δ]
(see Remark 6.28), denotedai andbi , respectively, and thus obtain thenew formh =
é
⊗l

i=1 ai(bi )
∗. It remains to showthat this form can be reduced to the form given in

the theorem statement, which essentially uses the star of a single monomial in(γ, δ).
This proof is outlined below.

Considering monomialsm = γ rδs, we first introduce the rational number sl(m)
def=

s/r, called the ‘slope’ (with the convention that sl(e)
def= 0). This notion is extended to

polynomials (or power series) as follows. Ifm1 andm2 are two monomials, then

sl(m1⊕ m2) = sl(m1)⊕ sl(m2) .

The expression of sl(m1⊗m2) is a direct consequence of the definition since the product
of two monomials is also a monomial. Using these rules, we notice that, ifp is a
polynomial, then sl(p∗) = sl(p) and this is the maximum slope among the monomials
which form the polynomial.

Wenow propose the following inequalities:

x
def= éδs(γ δs/r)∗ ≥ y

def= é(γ rδs)∗ ≥ z
def= éγ r (γ δs/r)∗

(note thatδs/r is anelement of the algebraic closure ofT ). Only the inequalityy ≥ z
will be proved. The other inequality can be proved using similar calculations. With
n = αr + β, α, β ∈ N andβ < r, all the monomials ofz namelyéγ r (γ δs/r )n, n ∈ N,

canbewritten é(γ r δs)α+1γ βδ(β/r−1)s . The monomiaĺe(γ rδs)α+1 appear iny, whereas
the multiplicative monomiaĺeγ βδ(β/r−1)s is less thańe (it has a nonnegative exponent
in γ and a negative exponent inδ), owing to the simplification rules for ‘shifts’ and
‘gains’ given in §6.2.2. Thus each monomial ofz is dominated by a monomial ofy.

From these inequalities and from Lemma 3.107, we can derive the following four
rules.
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Rule 1: sl(m2) < sl(m1) ⇒ p1(m1)
∗ ⊕ p2(m2)

∗ = p ⊕ p1(m1)
∗, wherep is apoly-

nomial depending on the given polynomialspi and monomialsmi .

Rule 2: sl(m2) = sl(m1) ⇒ (m1)
∗ ⊕ (m2)

∗ = p ⊗ (lcm(m1,m2))
∗, wheremi =

éγ ri δsi , lcm(m1,m2)
def= éγ lcm(r1,r2)δ lcm(s1,s2), and p is a polynomial depending

on themi .

Rule 3: sl(m2) < sl(m1) ⇒ (m1)
∗ ⊗ (m2)

∗ = (m1 ⊕ m2)
∗ = p ⊕ q(m1)

∗, wherep
andq are polynomials depending on the given monomialsmi . This rule can be
derived from(m1)

∗ ⊗ (m2)
∗ =⊕r mr

1m∗
2.

Rule 4: sl(m2) = sl(m1) ⇒ (m1)
∗ ⊗ (m2)

∗ = (m1 ⊕ m2)
∗ = p ⊕ m gcd(m1,m2)

∗,
where the gcd of two monomials is defined in a similar way as the lcm previously,
m is a monomial andp a polynomial, both depending on themi .

The possibility of reducingh to the claimed form comes from the recursive utilization
of these four rules.

Finally, it should be clear thath cannot have two representations with different
values ofthe ratios/r.

Figure 6.2: An element of́B(γ́ , δ́) Figure 6.3: An element of́B(γ́ , δ́, φ)

Remark 6.33 The representation of rationals in Ŕmax(γ́ ) is a simple extension of

Theorem 6.32. IndeedB́(γ́ , δ́)  
[
B

(
δ́
)]

(γ́ )  Nmax
(
γ́
)
. Therefore we have to

generalize the situation to the case when the coefficients of power series inγ are real
instead of integer. This extension is straightforward. The result becomes: for each

h ∈ Ŕmax(γ́ ), there existp, q ∈ Rmax[γ ] of degreesν − 1 andr − 1, respectively, and
a ∈ R suchthath = é (p ⊕ qγ ν(aγ r )∗). For a givenh (recall this is anondecreasing
impulse response),a can be restrained to be nonnegative, and then the nonnegative
slopea/r is independent of the particular representation chosen forh.

Finally, the following corollary is just the synthesis of the previous results.

Corollary 6.34 Every h ∈ B́(γ́ , δ́, φ) can be written as h = é(p ⊕ γ νδτ (γ r δs)∗q) ,
where
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• p ∈ B[γ, δ, φ] is a polynomial of degree at most ν − 1 in γ and τ − 1 in δ, and
it is linear in φci ;

• q ∈ B[γ, δ, φ] is a polynomial of degree at most r − 1 in γ and s − 1 in δ, and
it is linear in φci .

This theorem describes the asymptotically periodic behavior of the impulse response,
the periodic pattern being a piecewise nondecreasing convex function (see Figure 6.3).

6.5.4 Minimal Representation and Realization

The minimal representation problem can be stated in different terms depending on the

elementary subsystems that we consider. Let us discuss the two exampleśRmax[φ] and

Ŕmax(γ́ ).

Definition 6.35 (Minimal representation in Ŕmax[φ]) Given h ∈ Ŕmax[φ], where φ =
{φc1, . . . , φc�} (the ci are nonnegative), the minimal representation problem consists in
finding a subset of φ with minimal cardinality �min such that h = ⊕�min

i=1 hiφci , with
hi ∈ Rmax, i = 1, . . . , �min.

In conventional system theory, this problem corresponds to finding the minimal number
of exponentials of which the impulse response is a linear combination.

Observe that this representation directly corresponds to a realization(A, B,C) with
a diagonal matrixA (see the theorem below). Indeed, in conventional system theory,
the impulse response of a continuous-timeshift-invariant system may contain functions
of the formt n exp(kt). Themax-plus case is simpler becauseat = t a and therefore the
impulse response is only composed of max-plus exponentials.

Theorem 6.36 Given h =⊕�
i=1 hiφci , the realization

x1 = φc1u , . . . , x� = φc�u , y = Cx ,

with C = ( h1 . . . h�

)
, is minimal if and only if the points (ci , hi ) ∈ R

+ ×R are
the corners of the graph of a decreasing and concave piecewise linear function.

Proof Let cimin = mini ci andcimax = maxi ci . OverR+, h is the upper hull of� affine
functionsx �→ ci x + hi , whereash(x) = −∞ for x < 0. Since we are interested
in determining whether the� affine functions are all needed to representh, it does not
matter if we replaceh by a new functionH suchthat H (x) = h(x) for x ≥ 0 and
H (x) = +∞ for x > 0. This H is convexand is fully characterized by its Fenchel
transform (see Remark 3.36). This latter function also is convex and piecewise linear,
and it admits some of thepoints(ci ,−hi ) as the corners of its graph. Moreover, owing
to our assumption thatH (x) = +∞ for x < 0, this function is constant at the value
−himin on the left ofcimin and is equal to+∞ beyondcimax. Because of the horizontal
branch of the graph at the left-hand side, the first slope is zero and the next slopes are all
positive since the slope of a convex function is nondecreasing in general, and moreover
it strictly increases when a corner is traversed. Any pair(ci ,−hi ) which isnot a corner
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of the graph of the Fenchel transform can be discarded without changing this function.
The corresponding affine function ofx canalsobe discarded without changingh. The
statement of the theorem expresses these conditions, which are obviously necessary
and sufficient, up to the change of−hi into hi .

Definition 6.37 (Minimal realization in Ŕmax(γ́ )) Given h ∈ Ŕmax(γ́ ), the minimal
realization problem consists in finding a triple (A, B,C) ∈ R

n×n
max × R

n
max× R

n
max with

minimal n such that h = C(γ́ A)∗B. Equivalently, if y = hu, then there exists x ∈(
Ŕmax(γ́ )

)n
such that (u, x, y) satisfy:

(
x
y

)
= S

(
x
u

)
= é

(
A B
C ε

)(
x
u

)
.

Matrix S is called the system matrix.

The problemof findinga minimal realization is still open. The previous minimal rep-
resentation theorem in the case of continuous impulse responses cannot be extended
to the present discrete situation in a straightforward manner, essentially because it is
difficult to precisely identify the underlying ‘exponentials’ (that is, the expressions of
the form(aγ ri )∗ which may contribute to the transient part of the impulse response).
Many attempts to solve this problem have not been successful yet. In Chapter 9 partial
results are given. Nevertheless the following theorem gives a realization which is not
necessarily minimal but which contains only one star operation.

Theorem 6.38 (Realization inŔmax(γ́ )) Every element of Ŕmax(γ́ ) can be realized
with a system matrix S given by

S = é





ε γ ε · · · · ε

ε ε γ · · · · ε

· · · · · · · ·
aγ ε · · γ ε · ·
ε · · · · γ · ε

· · · · · · γ ε

· · · · · · · e
q(r − 1) · · q(0) p(ν − 1) · p(0) ε





corresponding to the event graph given in Figure 6.4.

Proof Remark 6.33 showed that ifh ∈ Ŕmax(γ́ ), it can be represented ash =
é (p ⊕ qγ ν(aγ r )∗), with p = ⊕ν−1

i=0 p(i)γ i andq = ⊕r−1
j=0 q( j )γ j. By direct cal-

culation, which consists in eliminatingx in
(

x
y

)
= S

(
x
u

)
,

with the above expression ofS, one cancheck thaty = hu with the given expression
of h.



294 Synchronization and Linearity

u ye e e e e

a
x r+ν x r+ν−1 x 1x r x r−1

p(0) p(1) p(2) q(0) q(1)
q(r − 1)

Figure 6.4: One-star realization of rational systems ińRmax(γ́ )

6.6 Correlations and Feedback Stabilization

In this section we develop a second-order max-plus system theory. This theory offers
algebraic similarities with conventional second-order system theory. In the context of
event graphs, its main application is the evaluation of sojourn times of tokens in places
or in broader portions of the graph. A notion of internal stability is introduced by
saying that a system is stable if all its sojourn times are bounded. Finally it is shown
that a structurally observable and controllable system can be stabilized by a dynamic
feedback while preserving the asymptotic open-loop performance.

6.6.1 Sojourn Time and Correlations

We consider the problem of computing the sojourn times in timed event graphs. Letv

andu be two daters associated with a pair of transitions (also namedv andu) surround-
ing a place p containingµ tokens initially (v corresponds to the upstream transition,
u to the downstream). The token involved in the firing of transitionu numberedk
(this firing occurs at timeu(k)) corresponds to the token which was produced by the
firing of transitionv numberedk − µ (occurring atv(k −µ)). This is because we deal
with deterministic event graphs with constant holding times and the FIFO rule may be
assumed for places. Therefore, we define the sojourn timeTuv (k, µ) of this token in
placep (along arc(v, u), marked with µ tokens initially) by

Tuv (k, µ) = u(k) − v(k − µ) .

More generally, for two transitionsv andu connected by a pathρ containingµρ tokens
initially (i.e. µρ = |ρ|t), Tuv (k, µρ ) = u(k) − v(k − µρ) representsthe time spent
along the pathρ by the token numberedk at u. Thesenotions can be generalized to
continuous systems, like the one presented in§1.2.7, by considering that tokens are
‘molecules’ of fluid in pipes. More formally, we introduce the following notions.

Definition 6.39 Let u, respectively v, be an n-dimensional, respectively p-dimension-
al, vector with entries in S.

Sojourn-time matrix The sojourn time (Tuv )i j (k, µ) of the token participating in the
k-th firing of transition ui , and using a path from v j to ui which containsµ tokens
initially, is defined as

(Tuv )i j (k, µ) = ui (k)◦/v j (k − µ) = (u(k)◦/v(k − µ))i j .
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Here ◦/ denotes the residuation of the instantaneous matrix product. The n × p
matrix function Tuv (·, ·), which gives the sojourn times between paths going from
the set v of p transitions to the set u of n transitions, is called the sojourn-time
matrix.

Correlation matrix Let Ruv be the matrix with entries in S defined by Ruv = u◦/v.
Here ◦/ is considered as the residuation of the (matrix) ‘convolution’ product in
force in S (which is similar to power series product). Therefore (see (4.97)),

∀m ∈ R, Ruv (µ) = [u◦/v](µ) =
∧

k

(u(k)◦/v(k − µ)) =
∧

k

Tuv (k, µ), (6.19)

This Ruv is called the correlation matrix of u with v. If u = v, it is called the
autocorrelation matrix of u.

There might be parallel paths with different initial markings.

Lemma 6.40 If v ∈ Ś, the mappings µ �→ Tuv (k, µ) and µ �→ Ruv (µ) are nonde-
creasing.

Proof Sincev is nondecreasing,

∀k , µ′ ≤ µ⇒ v(k − µ′) ≥ v(k − µ)⇒ u(k)◦/v(k − µ′) ≤ u(k)◦/v(k − µ) .

The results follow immediately.

Remark 6.41 We refer the reader to Example 4.65 forthe manipulation of◦/ in Rmax

and to§4.6.2 for the matrix formulæinvolving ◦/. It may be useful to recall the point
of view adopted in [49]. With the choice of primitives used therein, the residuation
operator can be evaluated as follows in the case of vectors overRmax. Let us first
introduce the following notation: an overlined (square or nonsquare) matrix or vector
will denote the transposed matrix or vector in which, moreover, the (conventional) sign
of all entries has been changed to the opposite. For example, ifa = ( 2 3

)
, then

a = ( −2 −3
)′

; if h ∈ S, thenh(t) = −h(−t).3 Then we haveu◦/v = v ⊗ u and
v ◦\u = u ⊗ v, where⊗ still denotes the matrix product inRmax. Theseformulæ hold
also true inRmax: we have

� = ε◦/ε = ε ⊗ ε = ε ⊗� , � = �◦/� = �⊗ � = �⊗ ε .

It is also useful to recall the De Morgan formulæ for the sup and the inf (see (4.9)–
(4.11)) and in particular the following formula:

a ⊗ b = b , a ,

3Indeed, if we view the convolution as an extension of the matrix product with infinite-dimensional
elements (for special matrices in which entry(i, j ) depends only on the differencet = i − j ), thenh(t) =
−h(−t) is the composition of transposition and of change of sign.
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where, denotes the matrix product based on min and+ (the absorbing element for
scalar multiplication being now� = +∞: we haveε ⊗� = ε but ε ,� = �). For
example,

a◦/b = b ⊗ a = a , b .

Remark 6.42

1. Another interesting quantity isT +uv (k, µ) = u(k) − v((k − µ)−) wherev(k−) =
lims↑k v(s). ThisT+ is differentfrom T whenv is not left-continuous.

2. Let us consider the case whenu andv are scalar functions. The analogy between
the conventional correlation and the max-plus correlation should be clear:

Suv(µ) = lim
T→∞

1

2T

∫ T

−T
u(s)v(s − µ)ds , Ruv (µ) =

∧

s∈R

(u(s)◦/v(s − µ)) .

3. For finite functionsui and v j , the classical distance supk |ui (k) − v j (k)| can
be expressed as− inf

(
(Ruv )i j (0), (Rvu ) j i (0)

)
, which shows some connection

between the notions of distance and correlation.

4. From (6.19), it is clear that(Tuv )i j (k, µ) = ui (k)◦/v j (k − µ) is bounded from
below by(Ruv )i j (µ) for all i, j, k,m. On theother hand,

(Rvu ) j i (−µ) =
∧

l

v j (l)◦/ui (l + µ) =
∧

k

v j (k − µ)◦/ui (k) ,

hencee◦/
(
v j (k − µ)◦/ui (k)

)
is bounded from above bye◦/

(
(Rvu ) j i (−µ)

)
. This

would provide an upper bound for(Tuv )i j (k, µ) if it were true thate◦/(x◦/y) =
y◦/x . In Rmax this equality obviously holds true wheneverx and y are scalars
assuming finite values. Otherwise it may not hold, as shown by the following
example: letx = y = ε, thenx◦/y = �, e◦/� = ε but y◦/x = �.

Let us now give the evolution equation of the sojourn time for a shift-invariant
autonomous linear system.

Theorem 6.43 For the system x(k + 1) = Ax(k), where A ∈ R
n×n
max, the sojourn time

matrix Txx (·, µ) follows the dynamics

Txx (k + 1, µ) = (ATxx (k, µ))◦/A = A(Txx (k, µ)◦/A) ,

provided that Txx (·, µ) never assumes infinite values. More generally, the following
inequalities always hold true

Txx (k + 1, µ) ≥ (ATxx (k, µ))◦/A ≥ A(Txx (k, µ)◦/A) .
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Proof We have

Txx (k + 1, µ) = x(k + 1)◦/x(k + 1− µ) = (Ax(k))◦/(Ax(k − µ))

= ((Ax(k))◦/x(k − µ))◦/A by (f.9),

≥ (A(x(k)◦/x(k − µ))◦/A by (f.12),

≥ A((x(k)◦/x(k − µ))◦/A) by (f.12).

The two inequalities become equalities in the case whenTuv (k, µ) has finiteentries
only. Indeed, inRmax, the only counterexamples to equality in (f.12) are the cases
whenε and/or� are involved: for example,ε = ε ⊗ (ε◦/ε) < (ε ⊗ ε)◦/ε = �.

The following result provides insight into how correlations are transformed by linear
systems.

Theorem 6.44 (Nondecreasing correlation principle) Consider a (MIMO) shift-
invariant system with (matrix) impulse response H ∈ S and two inputs signals u and
v with their corresponding outputs y and z, respectively. Then

y◦/z ≥ (v ◦\u)(H ◦/H ) , (6.20)

z ◦\y ≥ (v ◦\u)
∧

i, j

Hi j ◦/Hi j . (6.21)

Proof Observe first that, for alli, j,

(u◦/v)i j (k) =
∧

l

(
ui(l)◦/v j (l − k)

) =
∧

l

(
v j (l − k) ◦\ui(l)

)

because⊗ is commutative for scalars. Using this equality fori = j and theobvious
fact that(u◦/v)i j ≥ ε for i 
= j , we have thatu◦/v ≥ (v ◦\u)e, wheree is the identity
matrix. Then, we have

y◦/z = (Hu)◦/(Hv)

= ((Hu)◦/v)◦/H by (f.9),

≥ (H (u◦/v))◦/H by (f.12),

≥ ((v ◦\u)H )◦/H as explained above,

≥ (v ◦\u)(H ◦/H ) by (f.12).

This proves (6.20). Inequality (6.21) is obtained easily from (6.20) and (4.82).

Remark 6.45

1. SinceH ◦/H ≥ e, by (f.6), Inequality (6.21) implies thatz ◦\y ≥ v ◦\u, which
means that,in the SISO case, the correlation of output signals is not less than the
correlation of inputs.

2. For autocorrelations, (6.20) becomesy◦/y ≥ (u ◦\u)(H ◦/H ) ≥ H ◦/H since(u ◦\u) ≥
e. This is a second correlation principle, which states that the autocorrelation of
outputs is not less than the intrinsic correlationH ◦/H of the system.

Theorem 6.44 suggests the importance of quotients of the formA◦/A. Theorem 4.59
and Corollary 4.69 gave an algebraic characterization of these quotients.
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6.6.2 Stability and Stabilization

In this subsection we are concerned with what we call the internal stability of systems.
The discussion will be limited to systems modeling timed event graphs. This notion
of internal stability means that there is noaccumulation of tokens in places or, dually,
that the sojourn times of tokens remain finite. Let us start our discussion on stability by
studying the relation between the asymptotic slopes of functions and their correlations.

Definition 6.46 (Asymptotic slope) Let h ∈ Ŕmax(γ́ ) be represented by

é(p ⊕ qγ ν(aγ r )
∗
)

(see Remark 6.33; without loss of generality, we assume that a is nonnegative). Then,

the asymptotic slope of h ∈ Ŕmax(γ́ ), denoted sl∞(h), is defined by the ratio a/r.

As observed in Remark 6.33, the ratioa/r is independent of the particular represen-
tation of this type which waschosen forh. Note the difference between the slope
introduced in the proof of Theorem 6.32 andthis asymptotic slope: in the context

of Ŕmax(γ́ ), the former would be the maximum ratioa(n)/n among the monomials
a(n)γ́ n appearing inh; the latter is the limit of such ratios whenn goes to infinity.

Theorem 6.47 Given a realization of some h ∈ Ŕmax(γ́ ) by an event graph with ‘in-
ternal state’ x, for any rational input (dater) u such that u(k) = ε, ∀k < 0, the cor-
responding dater x is also rational and such that x(k) = ε, ∀k < 0. The following
equivalence holds true:
{
(A) : ∀i, j, (Rxx )i j 
= ε

} ⇔ {
(B) : ∀i, j, sl∞(xi ) = sl∞(x j )

}
.

Proof Thecase of zero slopes must be handled separately. Suppose that for somei and
j , sl∞(xi ) ≥ sl∞(x j ) and that, moreover, sl∞(xi ) > 0. Then itis easy to see that there
exists a shiftγ µ suchthatxi ≥ γ µx j . Therefore, for allk ∈ Z, xi (k) ≥ x j (k − µ) and
(Rxx )i j (µ) ≥ e. Consequently, if sl∞(xi ) = sl∞(x j ) > 0, (Rxx )i j > ε and(A) holds
true. If sl∞(xi ) = sl∞(x j ) = 0, xi andx j are then polynomials, that is, they can be
(minimally) represented by a finite number of coefficients not equal toε. In this case,
it is easy to conclude this partof the proof by remembering thatε◦/ε = �.

Conversely, if (B) does not hold, that is, there exists a pair(i, j ) such that sl∞(x j ) >

sl∞(x j ), then whateverµ ∈ Z, xi (k) increases to infinity strictly faster thanx j(k − µ)

whenk → +∞. Hence, for allµ ∈ Z,
∧

k xi (k)◦/x j(k − µ) = ε (the∧ is obtained as
a limit when k →+∞) and (A) is contradicted.

Defini tion 6.48 (Internal stability) When the equivalent conditions (A) and (B) hold
true for all inputsof the type described in Theorem 6.47, we say that the realization is
internally stable.

Remark 6.49 Owing to Remark 6.42 (point 4), in the situation of Definition 6.47,
and if all datersxi remain finite, one can obtain an upper bound for the sojourn times
of tokens in any internal path of the event graph (using appropriate shiftsµ). The
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condition that thexi remain finite is satisfied if the inputs remain finite (no indefinite
‘starving’ of tokens at the input transitions) and if the system has no deadlocks. A
deadlock would be revealed by infinite asymptotic slopes for the daters associated with
transitions belonging to the deadlocked circuits.

However, even for internally stable event graphs with finite inputs and no dead-
locks, it might happen that tokens incur unbounded sojourn times: this typically occurs
in places which are located immediately downstream ofu-transitions (sources), when
one uses inputs which are too fast with respect to the potential throughput of the event
graph (that is, when the asymptotic slopes of these inputs areless than the common
value of theasymptotic slopes of thexi ).

Corollary 6.50 Given a rational impulse response h and a realization described by a
triple of matrices4 (A, B,C), this realization is internally stable if and only

∀i, j , (H ◦/H )i j 
= ε ,

where H
def= é(γ A)∗B.

Proof The condition is sufficient becausex = Hu andx◦/x ≥ H ◦/H by Remark 6.45
(point 2). Conversely, since(H ◦/H )i j =

∧
l Hil ◦/H jl and if (H ◦/H )i j = ε, then there

exists lo suchthat Hilo◦/H jlo = ε. The systemdoes not satisfy the requirement of
Definition 6.48 for the inputulo = é, ul = ε, l 
= k.

Theorem 6.51 If the internal subgraph of an event graph (that is, the subgraph ob-
tained by deleting input and output transitions together with the arcs connecting them
to other transitions) is strongly connected, then this system is internally stable.

Proof Indeed if the internal subgraph is strongly connected, for any pair of internal
nodes(i, j ), there exists a pathρ from j to i containingµρ tokens (µρ may be equal
to 0). Then we havexi (k) ≥ αρ ⊗ x j (k − µρ), whereαρ is the sum ofthe holding
times of the places in the pathρ (i.e. αρ = |ρ|w; αρ > ε, indeedαρ ≥ e). Therefore
(Txx )i j (k, µρ ) ≥ tρ for all k. This holds for any input and Definition 6.48 is satisfied.

When a given (open-loop) event graph is not internally stable, we consider the
problem of obtaining this property by ‘closing the loop’ between inputs and outputs.
By this we mean thatu will be obtained fromy by u = Fy ⊕ v, whereF is a ‘feed-

back’ matrix of appropriate dimensions with entries inŔmax(γ́ ), andv is the new input
(of the same dimension asu). The situation is depicted in Figure 6.5 from which it
appears that (at least some components of)u, respectively y, do no longer correspond
to sources, respectively sinks. The feedback should in general be dynamic in the sense
that F should indeed contain termsa(n)γ́ n with n ≥ 1 anda(n) ≥ e, in order to avoid
deadlocks in the closed-loop system. A term of this type inFi j means that there exists
a pathfrom y j to ui (in grey in the figure) with a total number ofn tokens in the initial
marking anda totalholding time ofa(n) time units.

4See Definition 6.37, except that minimality is not required here.
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feedback in grey

x1 x2

u1 u2

y

v1 v2

Figure 6.5: An unstable timed event graph with a stabilizing feedback

The stabilization of event graphs by output feedback requires the introduction of
the following notions.

Definition 6.52

Structural Controllability An event graph is structurally controllable if every inter-
nal transition can be reached by a path from at least one input transition.

Structural Observability An event graph is structurally observable if, from every in-
ternal transition, there exists a path to at least one output transition.

Theorem 6.53 (Feedback stabilization)Any structurally controllable and observable
event graph can be made internally stable by output feedback.

Proof The idea of the proof is to fulfill the sufficient condition of strong connectedness
(mentioned in Theorem 6.51) for the internal subgraph of the closed-loop graph. Under
the assumptions of structural controllability and observability of the open-loop system,
it should not be difficult to see that this sufficient condition can indeed be satisfied if
aneffective feedback connection is established from any output to any input.

Of course, one can imagine more refined strategies in orderto attempt to minimize
the number of feedback links so introduced. Obviously, input transitions which are
upstream ofseveral m.s.c.s.’s of the internal subgraph must be preferably used and a
similar remark applies to output transitions.

Example 6.54 The timed event graph represented in Figure 6.5 is not internally stable
in the open-loop configuration. For instance, if tokens are input throughu1 at the rate
of 2 tokensper time unit, then tokens accumulate indefinitely in the place betweenx1

andx2 since the throughput ofx2 is limited to one token per time unit, whereasx1 can
process tokens at the given input rate. On the other hand, the system can be stabilized
by the feedback shown in Figure 6.5 (grey lines).
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6.6.3 Loop Shaping

In the previous subsection we saw how to obtain an internally stable system by closing
the loop between input and output, provided the system is structurally controllable
and observable. However, this operation creates new circuits whereas it preserves the
circuits already existing in theopen-loop system. Therefore, the maximum cycle mean
mayonly increase when passing from the open-loop to the closed-loop system, which
means that the throughput (inverse of the maximum cycle mean) may only be worse,
resulting in a loss of performance.

The newly created circuits traverse the feedback arcs. If any such circuit, sayζ ,
happens to be critical, it suffices to increase the number of tokens in the corresponding
feedback path in such a way that the cycle mean|ζ |w/|ζ |t ceases to be critical. This
reasoning justifies the following theorem which improves the previous one.

Theorem 6.55 Any structurally controllable and observable event graph can be made
internally stable by output feedback without altering its original open-loop throughput.

Another more algebraic view on this problem can be explained in the simple case of
a SISO system. Leth be its (rational) impulse response. The open-loop throughput
is 1/sl∞(h). If one uses the feedback lawu = f y ⊕ v, the closed-loop system is
y = (h f )∗hv. Then itcan beproved that if f = γ µ, thereexistsµ large enough such
that sl∞ ((hγ µ)∗h) = sl∞(h).

An interesting question is to determine theminimum number of tokens (which may
represent costly resources practically) such that a desired throughput is achieved. This
problem is discussed in [62].

6.7 Notes

This chapter is based on the two articles [111] and [112]. The idea of extending the application of
the max-plus algebra to continuous systems was proposed by R. Nikoukhah during a Max-Plus’
working group meeting. It is quite natural once one realizes that time-invariant max-plus linear
systems indeed perform sup-convolutions of the inputs with their impulse responses. Continuous
Petri nets have also been studied in [14] and [99].

Formaland numerical transfer functions are isomorphic in conventional algebra, and there-
fore theyare not always clearly distinguished in theliterature on system theory. The situation is
quite different in the max-plus context. The terminology ‘transfer function’ was reserved for the
Fenchel transform of the impulse response in this chapter.

In the literature on optimization, the idea of consideringdynamic systems based on vector
sums of convex objects appeared from time to time but with no connection to the modeling of
synchronization mechanisms.

The characterization of rational impulse responses in terms of periodicity was given for the
first time in [41]. A program for symbolic computation based on this periodic characterization of
rational systems has been developed by S. Gaubert. It is called MAX [62]. An analogous notion
of periodicity exists in the Petri net literature [36].

The second-order theory developed in the second part has two origins: the first stems from
[112], the second from [4]. The first is concerned with finding a max-plus equivalent of the
autocorrelation of a process, the second with describing the recurrent equation of differences.
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The application to stability provides another view on the stabilization by feedback described for
the first time in [41]. The nondecreasing correlation principle was found by S. Gaubert.

The interesting problem of the optimization of the number of tokens involved in the loop
shaping issue has been solved in [62] but was not discussed here.
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Chapter 7

Ergodic Theory of Event Graphs

7.1 Introduction

The main practical concerns of this chapter are the construction of the stationary regime
of stochastic event graphs and the conditions on the statistics of the holding times under
which such a stationary regime exists. The basis for the analysis is the set of equations
which govern the evolution of daters, established in Chapter 2. In§7.6 we will see
that this construction also allows us to determine the stationary regime of the marking
process.

The main tool for addressing these problems is ergodic theory: the existence prob-
lem is stated in termsof a ‘random eigenpair problem’ which generalizes the eigenpair
problem formulation of Chapter 3 in the deterministic case, and whichcan be seen as
theRmax-analogue of that of a multiplicative ergodic theorem in conventional algebra.

Section 7.2 focuses on a simple one-dimensional nonautonomous example. This
example is the Petri net analogue of the classicalG/G/1 queue. Most of the basic
probabilistic tools to be used in this chapter are introduced through this simple exam-
ple. These tools are based on theprobabilistic formalism of [6]. More advanced prob-
abilistic material, and in particular the ergodic theorems which are used or referred to
in the chapter, are gathered in§7.7.

Section 7.3 gives the basic first-order theorems which indicate how the daters grow
in such a stochastic framework. The growth rates given in these first-order theorems
are shownto be theRmax-analogues of Lyapunov exponents in conventional algebra,
and generalizations of cycle times in the deterministic case.

Second-order theorems are concerned with the construction of the eigenpairs. This
construction is based on the analysis of ratios of daters (in theRmax sense). This
second-order theory is first presented for multidimensional nonautonomous systems
in §7.4. It is shown that under appropriate statistical assumptions, this type of systems
admits a unique stationary regime which is reached in finite time, regardless of the
initial condition, provided the ‘Lyapunov exponents’ of the m.s.c.s.’s are less than the
asymptotic rate of the input. Section 7.5 focuses on the autonomous case. We provide
a simple and natural condition for the uniqueness and thereachability of the stationary
regime.

Throughout the chapter, we will consider two levels of abstraction.

• The first level isthat of stochastic Petri nets, for which wewill use the notation of

305
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Chapter 2, and for which the reference dioid will beRmax. This level will provide
examples and will require a particular attention because of the difficulties related
to the initial conditions.

• The second one is that of linear algebra in a stochastic context. The discussions
will rely upon the notion of residuation introduced in Chapter 4. We will try to
consider general dioids, although most of the practical results which we have at
this stage are limited toRmax.

For each section of the chapter, we will try to indicate which level is considered.

7.2 A Simple Example inRmax

7.2.1 The Event Graph

We first consider a simple example of an event graph with a single input: the event
graph has two transitionsq1 andq2, two placesp1 and p2, and the following topology:
p2 is a recycling ofq2, π(p1) = q1, σ(p1) = q2, andq1 is an input transition with
input sequence{u(k)}k≥1. The initial marking has one token inpi , with lag timewi ,
i = 1, 2, so thatthe setQ′ of transitions followed by at least one place with nonzero
initial marking is{q2} (see Figure 7.1). The holding times inp1 are all zero, whereas

q1 q2p1

p2
α

Figure 7.1: A simple example

those inp2 are given by the sequence{α(k)}. Observe thatM = 1 and that both|Q′|
and|I| are equal to 1. Accordingly, the matricesA(k, k − 1) andB(k, k − 1) in (2.38)
areone-dimensional:

A(k, k − 1) = (α(k)) , B(k, k − 1) = (e) .

Let A(k) = α(k + 1). Equation (2.38) reads

x(k + 1) = A(k)x(k) ⊕ u(k) ⊕ v(k + 1) , k ≥ 0 , (7.1)

wherev(1) = w1⊕ w2 andv(k) = ε for k 
= 1. In this equation the continuation for
(u(0), x(0)) is (u(0), x(0)) = (ε, ε). The input is weakly compatible ifu(1) ≥ e. The
initial lag times are weakly compatible if

w2 ≤ α(1) , w1 ≤ e and w1⊕w2 ≥ e . (7.2)

Since each transition is followed by at most one place with a nonzero initial mark-
ing, any weakly compatible initial condition is compatible, so that we can rewrite the
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preceding equation as

x(k + 1) = A(k)x(k) ⊕ u(k) , k ≥ 0 , (7.3)

provided we now takex(0) = w2◦/α(1) andu(0) = w1.

Remark 7.1 With the statistical assumptions described in the next subsection, this
system is very close to the FIFOG/G/1/∞ queue. TheG/G part states that both
the ratios of the input sequence (see (7.4) below) and the holding times form gen-
eral stationarysequences. The 1/∞ part states that there is a single server and that
there is an infinite buffer in front of the server. This system is also known as the
producer-consumer system in theoretical computer science. The inputu1 into transi-
tion q1 features the external input stream of customers,p1 is the infinite buffer which
storescustomers to be served,q2 features the single server, and the holding times inp2

represent the service times.

7.2.2 Statistical Assumptions

The statistical assumptions are as follows: the firing times are 0, as well as the holding
times in p1. The holding timesα(k), k ≥ 1, (or equivalently A(k)) and the ratios
{U (k)}k≥1 of the input sequence, where

U (k)
def= u(k + 1)◦/u(k) , (7.4)

form two jointly stationary and ergodic sequences on some probability space(�,F,P).
This assumption can be seen as the stochastic generalization of the case of periodic in-
put considered in Chapter 3: the constant ratios of the input and the constant holding
times in Chapter 3 are now replaced by stationary ratios. Whenever needed, we will

stress the fact thatA(k), U (k) andw def= (w1, w2) are random variables, namely mea-
surable functions from� into R, by writing A(k;ω), U (k;ω) andw(ω) instead of
A(k), U (k), andw, respectively. Observe that this is tantamount to using the same no-
tation for a function and for the value which ittakes at aparticular point. The context
should always allow the reader to decide what is meant.

Before going further in the analysis of the system, we comment on the statistical
framework, and on what will be meant by joint stationarity and ergodicity of the two
sequences{A(k)} and{U (k)} throughout this chapter and the next one.

Definition 7.2 (θ-shift) The mapping θ : � → � is a shift operator on (�,F,P) if
it is bijective and measurable from � onto itself, and if it is such that the probability
law P is left invariant by θ , namely E[ f ] = E[ f ◦θ ], for all measurable and integrable
functions f : � → R, where E denotes the mathematical expectation with respect
to P.

By convention, the composition operator ‘◦’ has the highest priority in all for-
mulæ. For instance,f ◦gh means( f ◦g)h.
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Definition 7.3 (θ-stationarity) We say that a sequence of R-valued random variables
{a(k;ω)}k∈Z defined on (�,F,P) is θ-stationary if the relation

a(k;ω) = a(0; θk(ω)) (7.5)

holds for all k ≥ 0, where θk is the composition of θ by itself k times: θk+1 = θk◦θ ,
and θ0 = I�, the identity.

Remark 7.4 Another way of stating the preceding definition consists in requiring that
a(0)◦θk = γ −ka(0), for all k ∈ Z, whereγ is the backward shift operator on the
numbering of sequences which was defined in§5.3.2.

In the present example, wewill assume that the data of the problem, namely both
sequences{A(k)} and{U (k)}, areθ-stationary. We immediately obtain from this and
from (7.5) that for all integersm, the relation

E[h(A(0),U (0), . . . , A(k),U (k))]

= E[h(A(m),U (m), . . . , A(m + k),U (m + k))]

holds for all measurable functionsh : R
2(k+1) → R such that the expectation exists.

This is a natural property to expect from joint stationarity indeed. Starting from this
assumption, we will then be interested in proving that other quantities associated with
the event graph also satisfy theθ-stationarity property.

Similarly, the joint ergodicity of the sequences{A(k)} and{U (k)} is obtained when
assuming thatθ is P-ergodic:

Definition 7.5 (Ergodic shift) The shift θ is said to be ergodic if the almost sure (a.s.)
limit

lim
k→∞

1

k

k∑

l=1

f ◦θ l = E[ f ] a.s. (7.6)

holds for all measurable and integrable functions f : �→ R.

Owing to (7.5),the last property implies in particular that

lim
k→∞

1

k

k∑

l=1

A(l) = E[ A(0)] a.s. and lim
k→∞

1

k

k∑

l=1

U (l) = E[U (0)] a.s.,

providedA(0) andU (0) are integrable, which corresponds to the conventional meaning
of the ergodicity of both sequences. The joint ergodicity becomes more apparent from
the formula

lim
k→∞

(
k⊗

l=1

h (A(l),U (l))

)1/k

= E[h(A(0),U (0))] a.s.

for all measurable functionsh : R
2 → R such that the expectation exists, which is also

a direct consequence of our definition.
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A measurable setA of F (an ‘event’) is said to beθ-invariant if the indicator func-
tion of A, which will be denoted 1{A}, satisfies the relation 1{A}◦θ = 1{A}. We will
often make use of Birkhoff’s pointwise ergodic theorem (see [20]).

Theorem 7.6 (Birkhoff) The shift operator θ is ergodic if and only if the only sets of
the σ -algebra F which are θ-invariant are of measure 0 or 1.

Example 7.7 (Canonical probability space)In the particular example which we con-
sider, the data consist of the two sequences{A(k)} and{U (k)}. A concrete example of
such a shiftoperator is provided by the translation operatorγ −1 on thecanonical space
of the two sequences, which is defined as follows:

• � is the spaceof bi-infinite sequences of the form. . . , z(−2), z(−1), z(0), z(1),
z(2), . . . , wherez(k) = (s(k), t (k)) ∈ R

2 for all k ∈ Z;

• F is theσ -algebra generated by the coordinate mappingsek(ω), k ∈ Z, where
ek(ω) = z(k);

• P is a probability measure on the measurable space(�,F).

On this probability space, we can then take

θ(. . . , z(−1), z(0), z(1), . . . ) = γ −1(. . . , z(−1), z(0), z(1), . . . ) ,

that isek(θ(ω)) = ek+1(ω) for all k ∈ Z. Within this framework, theθ-stationarity as-
sumption boils down to the assumption that the probability lawP of the two sequences
is left invariant byγ .

If A(k;ω) denotes the first component ofek(ω), andU (k;ω) the second one, we
obtain that (7.5) is indeed satisfied by both sequences.

Remark 7.8 If we consider a sequence of random variables, say{b(k;ω)}, defined
on this canonical probability space, which is different from the coordinate process, it
is not true ingeneral thatb(0)◦θk = b(k). It is clear thatb(0; θ(ω)) = b(0; γ −1(ω)),
but in general, it is not true thatb(0; γ −1(ω)) = γ −1b(0;ω) because the translation
operator which is used at the right-hand side of the last relation has nothing to do with
the specific one used at the left-hand side, which operates on the sequences of�. For
instance, takeb(k;ω) = k A(k;ω). We haveb(0)◦θk = 0, which clearly differs from
k A(k) unlessA(·) = 0.

7.2.3 Statement of the Eigenvalue Problem

We can rewritethe equations governing this system as
{

u(k + 1) = U (k)u(k) ,

x(k + 1) = A(k)x(k) ⊕ u(k) ,

or equivalently as

X (k + 1) = D(k)X (k) , k ≥ 0 , (7.7)
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where

X (k) =
(

u(k)
x(k)

)
and D(k) =

(
U (k) ε

e A(k)

)
.

The variablesA(k) andU (k) are assumed to be integrable random variables, defined
ona probability space(�,F,P, θ), and such that

A(k) = A◦θk , U (k) = U ◦θk , k ∈ Z ,

whereA
def= A(0) andU

def= U (0). Under this assumption,D(k) = D◦θk , with D =
D(0).

In the deterministic setting, we looked for periodic regimes in terms of eigenpairs
associated with theRmax matrix describing the dynamics of the event graph (see§3.7).
In the stochastic setting defined above, we state the problem as the following ‘random
eigenpair’ problem.

Can we find aneigenvectorX = (X1, X2), normalizedin such a way that
X1 = e, and aneigenvalueλ, which are both random variables defined on
(�,F,P, θ), and such that

DX = λX ◦θ ? (7.8)

In view of the specific form ofD, this eigenpair property reads

λ = U ,

e⊕ AX2 = U X2◦θ .

}
(7.9)

So the true unknown isX2, and the equation it satisfies is a stochastic fixed point
equation. Assume that the above eigenpair is finite; whenever we takex(0) = X2 and
u(0) = X1 = e in Equation (7.7), weobtain

u(1) = U ,

x(1) = e ⊕ AX2 .

}
(7.10)

From (7.9) and (7.10), we seethat

x(1)− u(1) = X2◦θ +U −U = (x(0) − u(0))◦θ .

More generally, we prove inthe same way that for allk ≥ 0,

x(k) − u(k) = (x(0) − u(0))◦θk .

Therefore, if the above eigenpair problem has a finite solution, we can find an initial
condition such that the random variablesx(k) − u(k) are stationary.

Let us show that for this initial condition the marking process is also stationary: let
N+(k) denote the number of tokens inp1 at the epoch when transitionq2 fires for the
k-th time, namely atx(k). Within our setting,N+(k) isa random variable. For instance
N+(1) is given by the following expression (see§2.5.6):

N+(1) =
∞∑

h=1

1{x(1)≥u(h)} =
∞∑

h=1

1{X2◦θ≥
∑h−1

l=1 U◦θ l} ,
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where
∑0

1 = 0 by convention. Similarly, when using the convention
∑1

2 = 0, we
obtain

N+(2) =
∞∑

h=2

1{x(2)≥u(h)} =
∞∑

h=2

1{X2◦θ2≥∑h−1
l=2 U◦θ l }

=
∞∑

h=2

1{"◦θ≥∑h−1
l=1 U◦θ l}◦θ = N+(1)◦θ ,

and more generallyN+(k + 1) = N+(1)◦θk .

7.2.3.1 Solution of the Eigenpair Problem

For this classical example, it is customary to take

"
def= X2◦θU

asunknown, rather thanX2, mainly because this newunknown is nonnegative; indeed
it is immediately seen from (7.9) that

"◦θ = e ⊕ (A◦θ◦/U") = e ⊕ F" , (7.11)

where

F
def= A◦θ◦/U .

The construction of a solution to (7.11) is based on a backward construction which is
common in ergodic theory, and which will be used on several occasions in this chapter.
The backward process"(k), k ≥ 0, associated with (7.11) is the random process on
the probability space(�,F,P) defined by"(0) = e and

"(k + 1) = (e ⊕ F"(k)) ◦θ−1

= e⊕ F◦θ−1"(k)◦θ−1 , k ≥ 0 . (7.12)

We will return to the physical interpretation of this process in the next subsection.
A nice property of the backward process is that"(k) = "(k;ω) is nondecreasing

in k for all ω. This is obtained by induction: it is true that"(1) ≥ "(0) = e; assuming
that"(k) ≥ "(k − 1), weobtain from (7.12) that

"(k + 1)◦θ = e⊕ F"(k)

≥ e⊕ F"(k − 1) = "(k)◦θ .

Let " be the a.s. limit of "(k) ask goes to∞ (thea.s. limit exists because"(k) is
nondecreasing for allω). The random variable" may be finite or infinite. In both
cases we obtain that" satisfies (7.11) by lettingk go to∞ in (7.12).
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7.2.3.2 Finiteness of the Eigenvector

The main result of this subsection is the following theorem.

Theorem 7.9 (Stability condition) If E[ A] < E[U ], then the eigenvector

X = (e, ("◦/U )◦θ−1)

is P-a.s. finite.

SinceU is a.s. finite (U is assumed to have a finite mean), it follows from the very
definition of " that X is a.s. finite if and only if" is a.s. finite. The event{" = ∞}
is θ-invariant. Indeed, if"(ω) = ∞, then"(θ(ω)) = ∞, in view of (7.11) and of
the assumption thatU (ω) < ∞ a.s. Similarly, "(θ(ω)) = ∞ implies"(ω) = ∞,
since A(ω) < ∞ a.s. Therefore, in view of the ergodic assumption,P[" = ∞] is
either 0 or 1: either" is finite with probability 1, or it is infinite with probability 1 (see
Theorem 7.6).

Lemma 7.10 (Backward star) The following relation holds:

"(k) =
k⊕

l=0

l⊗

h=1

F◦θ−h , (7.13)

where the⊗-product over an empty set (when l = 0) is e by convention.

Proof The proof is by induction onk. The relation holds true fork = 0 sinceboth
sides areequal toe. Assume the relation holds up to somek ≥ 0. Then using (7.12),
we obtain

"(k + 1) = F◦θ−1⊗
(

k⊕

l=0

l⊗

h=1

F◦θ−h

)
◦θ−1⊕ e

=
(

k+1⊕

l=1

l⊗

h=1

F◦θ−h

)
⊕ e =

k+1⊕

l=0

l⊗

h=1

F◦θ−h ,

where we used thedistributivity of ⊗ with respect to⊕ and the associativity and com-
mutativity of ⊕ to passfrom the first expression to the second in the last equation.

Remark 7.11 The property that"(k) is nondecreasing, which was already shown in
the preceding subsection, is obvious from (7.13), since this relation shows that"(k)
consists of the maximum of an increasing set of random variables.

Proofof Theorem 7.9If E[F ] < 0 (or equivalently E[ A] < E[U ]), from the pointwise
ergodic theorem we obtain that the a.s. limit

lim
k→∞

(
k⊗

h=1

F◦θ−h

)1/k

= 1

k

k∑

h=1

(A◦θ−h+1 −U ◦θ−h) = E[ A−U ] < 0
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holds (we used the obvious property thatθ is P-ergodic if and only ifθ−1 isP-ergodic).
Therefore,

S(k)
def=

k∑

h=1

(A◦θ−h −U ◦θ−h)

tends to−∞ a.s. ask goes to∞, which inturn implies thatS(k) < 0 for all k greater
thana finite random integerL . Hence"(k) is a.s. finite in view of (7.13), since it is
the maximum of ana.s. finite numberL of finite random variables.

Remark 7.12 A partial converse of the preceding result is the following: ifE[ A] >

E[U ], then noP-a.s. finite solution of (7.11) exists. To prove this, it is enough to show
that" = ∞, P-a.s., and that" is the least nonnegative solution of (7.11). The latter
is proved by induction. If we start with a nonnegative solution% of (7.11) for which
% ≥ "(0) = e, it is easily checked that% ≥ "(k) implies% ≥ "(k + 1) (this is true
because"(k + 1)◦θ = e ⊕ F"(k) ≤ e ⊕ F% = %◦θ). As for the proof of" = ∞,
P-a.s., it follows from the fact thatS(l) then tends to∞ a.s. asl goes to∞. This in
turn implies that"(k) tends to infinity as well, in view of (7.13).

Remark 7.13 The random variable" may be finite and nonintegrable. A simple
example of this situation is provided by theM/G/1 case (namelyu(k) is thek-th
epoch of a Poisson process and{α(k)} is an independent i.i.d. sequence), whenever the
service timesα(k) have infinite second moments (see [46]).

7.2.4 Relation with the Event Graph

This section focuses on the relationship between the eigenpair which was constructed
in the previous section and the stochastic event graph which motivated our preliminary

example. Considerthe ‘ratios’δ(k) def= x(k + 1)◦/u(k) = x(k + 1)− u(k), k ≥ 0. By
using (7.3), we obtain

x(k + 2)− u(k + 1) = max(A(k + 1)+ x(k + 1), u(k + 1))− u(k + 1)

= max(A(k + 1)+ x(k + 1)− u(k + 1), 0)

= max(A(k + 1)+ δ(k) −U (k), 0) ,

which corresponds to theRmax relation

δ(k + 1) = e ⊕ F(k)δ(k) , k ≥ 0 , (7.14)

where the initial conditionδ(0) is given by the relation

δ(0)
def= (A(0)x(0) ⊕ u(0))◦/u(0) = (w2⊕w1)◦/w1 , (7.15)

and F(k) = A(k + 1)◦/U (k) = F◦θk , k ≥ 0. When making use of Assumption (7.2),
we obtain

δ(0) = w2◦/w1 ≥ e , (7.16)
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for all weakly compatible initial lag timesw. This lower bound is achievable whenever
w1 = w2 = e.

In what follows we will emphasize the dependence on the initial condition by
adding a second optional argument to theδ function: for instance,δ(k; z) will de-
note the value ofδ(k) wheneverδ(0) = z. Of special interestto us will be the sequence
{δ(k; e)} defined by (7.14), and by the initial conditionδ(0; e) = e.

It is immediately checked by induction that

"(k) = δ(k; e)◦θ−k , (7.17)

which shows thatδ(k; e) and"(k) have the same probability law. Indeed, this is true
for k = 0, and assuming it is true for somek ≥ 0, we obtain from (7.12) that

"(k + 1) = (
e ⊕ F(δ(k; e)◦θ−k)

)
◦θ−1

= (e ⊕ F(k)δ(k; e)) ◦θ−k−1

= δ(k + 1; e)◦θ−k−1 ,

where we used theproperty thatF = F(k)◦θ−k . Therefore, the random variable
"(k) stands for the value ofδ(k; e), when replacing the sequenceU (0), U (1), . . .
by U (−k), U (1 − k), . . . , and the sequence of holding timesA(0), A(1), . . . by
A(−k), A(1− k), . . . , respectively.

Remark 7.14 Another interpretation is as follows: we go backward in time and we
define the continuation ofu(k) by

u(k) = u(1)−
0∑

l=k

U (l) , k ≤ 0 .

If we assume that the holding time of thek-th token inp2 isα(k), and thatthe entrance
of the k-th token in p1 takes place at timeu(k), for all k ∈ Z, we can then interpret
"(k) as the value ofx(1)◦/u(0) given that the value ofx(−k + 1)◦/u(−k) is e.

Remark 7.15 Assume" is a.s. finite. If we take the initial lag times such that

w2 = "w1 , (7.18)

thenδ(0) = ", so thatδ(1) is equal to"◦θ , in view of (7.16); more generally we have
δ(k) = "◦θk for all k ≥ 0. In words, we found initial lag times which make the ratio
processδ(k) θ-stationary. Observe, however, that these initial lag times are not weakly
compatible in general. For instance, if we takew1 = u(0) = e (w1 andw2 areonly
defined through (7.18) up to an additive constant), and if" > α(1) with a positive
probability, then (7.18) shows that the compatibility relationw2 ≤ α(1) cannot hold
almostsurely.

Remark 7.16 If the ratios δ(k) are finite andθ-stationary, theθ-stationarity of the
ratios x(k + 1)◦/x(k) is easily obtained from the following relation

x(k + 1)

x(k)
= x(k + 1)

u(k)

u(k)

u(k − 1)

u(k − 1)

x(k)
.
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If x(k + 1)◦/u(k) = "◦θk , sinceu(k + 1)◦/u(k) = U ◦θk , we then have

x(k + 1)◦/x(k) = ("◦θk◦/U ◦θk−1) ◦/"◦θk−1 .

Therefore
x(k + 1)◦/x(k) = {("◦/U ◦θ−1) ◦/"◦θ−1} ◦θk .

Remark 7.17 By computing the star operation forward (or more directly by using
(7.17) and (7.13)), we obtain the expression

δ(k; e) =
k⊕

l=0

k−1⊗

h=k−l

F(h) . (7.19)

The sequence{δ(k; e)} is not monotone in general.

7.2.5 Uniqueness and Coupling

The main result of this section is the following theorem.

Theorem 7.18 If the stability condition E[ A] < E[U ] is satisfied, there exists a unique
finite random eigenvalue λ and a unique finite random eigenvector X = (X1, X2), with
X1 = e, such that (7.8) holds. In addition, for all finite random initial conditions
X (0) = (X1(0), X2(0)) with X1(0) = e, there exists a finite integer-valued random
variable K such that, for k ≥ K ,

X (k + 1) = D(k)D(k − 1) . . . D(1)DX (0) = λ(k)λ(k − 1) . . . λ(1)λ(0)X ◦θk+1 ,

(7.20)

where X and λ are defined as above.

The main tool for proving this theorem is the notion of coupling.

Definition 7.19 (Coupling) The random sequence {W (k)}k≥0 defined on the proba-
bility space (�,F,P) couples in finite time(or simply couples) with the stationary
sequence generated by the random variable V if there exists a finite integer-valued
random variable K such that

W (k) = V ◦θk, ∀k ≥ K .

We alsosay that the sequence{V ◦θk} is reached by coupling by the sequence{W (k)}.
Coupling implies convergence in total variation; in particular, if{W (k)} couples with
the sequence generated byV , thenW (k) converges weakly toV ask goes to∞. (see
[6, Chapter 2]). We start with the following lemma which deals with the considered
stochastic event graph.

Lemma 7.20 Assume that E[ A] < E[U ]. Then for all finite and compatible initial
lag times w = (w1, w2), there exists a positive integer H (w;ω) such that for all k ≥
H (w), δ(k; z) = δ(k; e), where z = z(w;ω) is the initial condition defined in (7.15).
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Proof We first prove thatH (w) = H ′(w), where

H ′(w)
def= inf {k ≥ 0 | δ(k; z) = δ(k; e)} .

In words, after the first time whenδ(k; z) andδ(k; e) meet, theirpaths areidentical
forever. The proof is by induction: if for someω, δ(k; z;ω) = δ(k; e;ω), thenfrom
(7.14) we obtain thatδ(k + 1; z;ω) = δ(k + 1; e;ω).

It is easily checked by induction onk that for all weakly compatible initial lag times
δ(k; z) ≥ δ(k; e) ≥ e, for all k ≥ 0.

Assume thatthe statement of the theoremdoes not hold. Then the pathsδ(k; z) and
δ(k; e) never meetwith a positive probability, so that the event

A = {δ(k; z) > δ(k; e) ≥ e, ∀k ≥ 0}
has apositive probability. For allω in A, weobtain

δ(k; z) = e ⊕ F(k − 1)δ(k − 1; z)

= F(k − 1)δ(k − 1; z) ,

for all k ≥ 0. Therefore, ifA has apositive probability, the relation

δ(k; z) = z ⊗
k−1⊗

l=0

F◦θ l

holds with a positive probability. Owing to the ergodic assumption,
∑k−1

l=0 F◦θ l tends
to −∞ a.s. ifE[ A] < E[U ]. Therefore, under the assumptionE[ A] < E[U ], the last
relation readily implies thatδ(k; z)→ −∞ whenk →∞, with a positive probability,
which is impossible sinceδ(k; z) ≥ 0.

The general coupling property for the ratio process of the event graph is summarized
in the following lemma.

Lemma 7.21 Let w be an arbitrary finite and compatible initial lag time vector. The
sequence {δ(k; z)} couples with the sequence generated by the random variable ", so
that δ(k; δ(0;w)) converges weakly to " when k tends to ∞. If E[ A] > E[U ], then
δ(k; z) converges a.s. to∞ when k tends to∞. More precisely,

lim
k

(δ(k, z))1/k = E[ A◦/U ] > e a.s.

Proof From Lemma 7.20, there existsa finite integerH = H (z) > 0 such that for
all k ≥ H , δ(k; z) = δ(k; e) a.s. Using again Lemma 7.20, we obtain another finite
integerH ′ = H (") such that for all k ≥ H ′, "◦θk = δ(k;") = δ(k; e) a.s. Hence,
for all k ≥ max{H, H ′}, "◦θk = δ(k; z) a.s. As for the caseE[ A] > E[U ], we should
use the boundδ(k; z) ≥ δ(k; e) and the fact that

lim
k

(δ(k; e))1/k = E[ A]◦/E[U ] > e ,

which follows from (7.13), to prove that limδ(k; z) = ∞ a.s.
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Corollary 7.22 If E[ A] < E[U ], then " is the unique finite solution of (7.11).

Proof The uniqueness of the possible stationary regimes follows from the coupling
property: if% is another stationary regime, namely a finite solution of (7.11), then we
first obtain%◦θ ≥ e a.s. from the fact that% satisfies (7.11), so that% is necessarily
nonnegative. In addition, from the coupling property we obtain that%◦θk = δ(k;%) =
δ(k; e) = δ(k;%) = "◦θk , for all k ≥ max{H ("), H (%)} < ∞. Therefore" = %.

Proof of Theorem 7.18The existence partis established in§7.2.3.1–7.2.3.2. Forλ
andX as inthe theorem, we must haveλ = U andX2◦θU necessarilysatisfies (7.11).
Therefore,X2◦θU = " in view of Corollary7.22. The last property of the theorem
is a mere rephrasing of Lemma 7.21, once we notice that the coupling of{δ(k)} with
{"◦θk} implies that of{x(k)◦/u(k)} with {X2◦θk}. In fact, the lastassertion is only
proved for initial conditions such thatδ(0) ≥ e (see the proof of the Lemma 7.21); the
extension to more general finite initial conditions is obtained in the same way.

Remark 7.23 The only difficulty in the preceding eigenpair problem lies in finding
X2, or equivalently ". In thecase when the sequences{A(k)} and {U (k)} areboth
i.i.d. (independent and identically distributed) and mutually independent, the problem
of finding the distribution function ofX2 is solved using Wiener-Hopf factorization
[46].

7.2.6 First-Order and Second-Order Theorems

The aim of what follows is primarily to extend Theorem 7.18 to more general classes
of matricesD. Of particular interest to us will be matrices which correspond to cer-
tain types of autonomous and nonautonomous event graphs, like those introduced in
Chapter 2.

The results generalizing the eigenpair property of Theorem 7.18 will be referred to
assecond-order theorems, because they are concerned with ratios of the state variables.
These theorems can be seen asRmax-instances ofmultiplicative ergodic theorems (see
Theorem 7.108).

In what follows, the constants whichcharacterize the growth rates of the state vari-
ablesx j (k), and which generalize those in Theorem 7.24 below, will be referred to as
Lyapunov exponents; these theorems will be called first-order or rate theorems. We
conclude the section with the first-order theorem associated with our simple example.

Let (e1, e2) denote the following vectors ofR2: e1 = (e, ε) ande2 = (ε, e).

Theorem 7.24 The growth rate of X (k) is characterized by the relations

lim
k→∞

X1(k)
1/k = lim

k→∞
(e1D(k)D(k − 1) . . . D(1)D(0)X (0))1/k

= E[U ] a.s.,

and

lim
k→∞

X2(k)
1/k = lim

k→∞
(e2D(k)D(k − 1) . . . D(1)D(0)X (0))1/k

= E[ A] ⊕ E[U ] a.s.,
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regardless of the (finite) initial condition X (0).

Proof The first assertion of the theorem is trivial. As for the second, we have

lim
k

(x(k))1/k = lim
k

(u(k − 1))1/k lim
k

(x(k)◦/u(k − 1))1/k

= E[U ] lim
k

(x(k)◦/u(k − 1))1/k .

If E[ A] > E[U ], then Lemma 7.21implies that

lim
k

(x(k)◦/u(k − 1))1/k = E[ A]◦/E[U ] .

If E[ A] < E[U ], we obtain from the coupling property of Lemma 7.21 that

lim
k

(x(k)◦/u(k − 1))1/k = lim
k

(
"◦θk
)1/k

= lim
k

(
k⊕

i=1

("◦/"◦θ−1)◦θ i

)1/k

. (7.21)

If " is integrable in addition to being finite, so is"◦/"◦θ−1, and we therefore have
E
[
"◦/"◦θ−1

] = 0; thus Birkhoff’s Theorem and (7.21) immediately imply that

lim
k

(x(k)◦/u(k − 1))1/k = E
[
"◦/"◦θ−1] = 0 .

Even if " is not integrable (whichmay happen even in this simple case, see Re-
mark 7.13), the random variable"◦/"◦θ−1 is integrable as canbe seen when using
the following bounds obtained from (7.11):

F◦θ−1 ≤ "◦/"◦θ−1 ≤ A◦θ−1 .

Therefore, in this case too, when using (7.21), we also obtain that

lim
k

(x(k)◦/u(k − 1))1/k = E
[
"◦/"◦θ−1

]
,

from Birkhoff’s Theorem. We now prove that

E
[
"−"◦θ−1] = 0 , (7.22)

which implies that in thiscase too limk (x(k))
1/k = E[U ]. In order to prove (7.22),

observethat ∣∣min(", t)−min("◦θ−1, t)
∣∣ ≤ ∣∣"−"◦θ−1

∣∣ ,

for all t ∈ R
+. Thus, from the Lebesgue dominated convergence theorem, we obtain

that

0 = lim
t→∞E

[
min(", t)−min("◦θ−1, t)

]

= E

[
lim

t→∞(min(", t)−min("◦θ−1, t))
]
= E
[
"−"◦θ−1] .
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If E[ A] = E[U ], either" is a.s. finite, in which case the preceding method applies, or
it is a.s. infinite. We will consider the case" = ∞ a.s. later on (see Theorem 7.36);
the result is that

lim
k

(x(k))1/k = E[U ]

in this case too.

The proof of the following lemma is contained in the proof of the preceding theorem,
and will be important in what follows.

Lemma 7.25 If " is a finite (not necessarily integrable) random variable such that
" − "◦θ−1 is integrable, namely E

[∣∣"−"◦θ−1
∣∣] < ∞, where |x | denotes conven-

tional absolute value in R, then E
[
"−"◦θ−1

] = 0.

7.3 First-Order Theorems

7.3.1 Notation and Statistical Assumptions

Let D be a general dioid. ForA ∈ Dp×q , let

|A|⊕ def=
p⊕

i=1

q⊕

j=1

Ai j (7.23)

and

|A|∧ def=
p∧

i=1

q∧

j=1

Ai j . (7.24)

We will often use the following properties.

Lemma 7.26 For all pairs of matrices (A, B) such that the product AB is well defined,
we have

|AB|⊕ ≤ |A|⊕ |B|⊕ ,

|AB|⊕ ≥ |A|∧ |B|⊕ ,

|AB|⊕ ≥ |A|⊕ |B|∧ ,




 (7.25)

and

|AB|∧ ≥ |A|∧ |B|∧ ,

|AB|∧ ≤ |A|∧ |B|⊕ ,

|AB|∧ ≤ |A|⊕ |B|∧ ,




 (7.26)

where ≤ is the order associated with⊕ in D.

Proof SinceAik ≤ |A|⊕ for all i, k,

⊕

i, j

⊕

k

Aik Bkj ≤ |A|⊕




⊕

j,k

Bkj



 = |A|⊕ |B|⊕ .
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The proof of the other formulæ is similar.

The equation of interest in this section is

x(k + 1) = A(k)x(k) , (7.27)

whereA(k), respectively x(k), is arandom square matrix, respectively a random col-
umn vector, with entries taking their values inD. We will stress the dependence of
x(k) on the initial condition by writingx(k; x0).

The random variablesA(k), k ∈ Z, and the initial conditionx0 are assumed to be
definedona common probability space(�,F,P, θ), whereθ is a shift which leavesP
invariant, and is ergodic, with

A(k) = A◦θk , k ∈ Z . (7.28)

Most of the section will be devoted to the case whenD is Rmax. Within this setting,
x(k) will be ann-dimensional column vector andA(k) ann × n matrix. In this case,
each entry ofA is either a.s. equal toε or nonnegative, andeach diagonal entry ofA is
nonnegative. We start with a few examples in this dioid.

7.3.2 Examples inRmax

7.3.2.1 Example 1: Autonomous Event Graphs

Consider the evolution equation of a FIFO and autonomous stochastic event graph in
its standard form, as given in Equation (2.31). If the initial condition of this event
graph is compatible, (2.31) is of the type (7.27). In addition assume that the holding
timesαi(k), pi ∈ P, and the initial lag times of this event graph are random variables
defined on a common probability space(�,F,P, θ), and thatthe sequence{αi(k)} is
θ-stationary, i.e.

αi(k) = αi ◦θk , k ∈ Z , pi ∈ P ,

whereαi is finite, nonnegative and integrable. Then it easily checked that the matri-
ces Ã(k) in (2.31) satisfy theθ-stationarity property and that each entry of̃A is either
a.s. equal toε or nonnegative and integrable. In view of the FIFO assumption, it is
always true thatx j (k + 1) ≥ x j(k), so that the diagonal entrỹA j j (k) can be assumed
to satisfy the boundÃ j j (k) ≥ e without loss of generality. Therefore, under the fore-
going statistical assumptions, any FIFO and autonomous stochastic event graph with
compatible initial condition satisfies an evolution equation which falls into the frame-
work considered above. Conversely, as was pointed out in§2.5.4, we can also view any
equation of the type (7.27) as the standard evolution equation of an event graph with
compatible initial condition and where the initial marking is(0, 1)-valued.

7.3.2.2 Example 2: Nonautonomous Event Graphs

Similarly, consider the evolution equation of a FIFO nonautonomous stochastic event
graph in its standard form (2.39). If the initial condition is compatible, this equation
then reads

x̃(k + 1) = Ã(k)̃x (k) ⊕ B̃(k)̃u(k) . (7.29)
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If we defineX (k) to be the followingM(|Q| + |I|)-dimensional vector andA(k) to be
the following matrix:

X (k) =
(

ũ(k)
x̃(k)

)
, A(k) =

(
Ũ (k) ε

B̃(k) Ã(k)

)
, (7.30)

whereŨ (k) is the diagonal matrix with entries

Ũ j j (k) = ũ j(k + 1)◦/̃u j (k) , q j ∈ I , (7.31)

then it is immediate that (2.39) can also be rewritten as

X (k + 1) = A(k)X(k) , k ≥ 1 . (7.32)

This transformation is tantamount to viewingeach input transition j as a recycled
transition where the holding times of the recycling place are given by the sequence{
Ũ j j (k)

}
. If the holding timesαi(k) and theinter-input times U j j (k) satisfy the θ-

stationarity conditions

αi (k) = αi ◦θk , pi ∈ P , U j j (k) = U j j ◦θk , q j ∈ I , k ∈ Z ,

where the random variablesαi andU j j are positive and integrable, then the matrices
A(k) satisfy theθ-stationarity condition (7.28) and the additional conditions mentioned
above. Hence, the framework described at thebeginning of this section also covers the
nonautonomous case, provided we make additionalθ-stationarity assumptions on the
inter-input times.

7.3.3 Maximal Lyapunov Exponent inRmax

Weassumethat thenonnegative entries ofA are all integrable. Under this condition the
sequence{x(k; x0)} defined by (7.27) converges to∞ a.s. in a way which isquantified
by the following theorem.

Theorem 7.27 There exists a constant e ≤ a < � = ∞ such that, for all finite initial
conditions x0, the a.s. limit

lim
k→∞

|x(k; x0)|1/k
⊕ = lim

k→∞
|A(k − 1)A(k − 2) . . . A(k)A(0)x0|1/k

⊕ = a a.s. (7.33)

holds. If the initial condition is integrable, in addition we have

lim
k→∞

E
[|x(k; x0)|1/k

⊕
] = lim

k→∞
E
[|x(k; x0)|⊕

]1/k = a . (7.34)

Proof By induction, we obtain that|x(k; e)|⊕ is integrable for allk ≥ 0 (using the
integrability assumptions together with the fact that max(a, b) ≤ |a| + |b|, for a andb
in R). Therefore we have

e ≤ E
[|x(k; e)|⊕

]
< � , ∀k ≥ 0 .
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Let

ξm,m+k = |x(k; e)|⊕ ◦θm , m ∈ Z , k ≥ 0 . (7.35)

Since
|x(k, e)|⊕ =

∣∣A◦θk−1 . . . Ae
∣∣
⊕ =
∣∣A◦θk−1 . . . A

∣∣
⊕ ,

we obtain from Lemma 7.26 that for allk ≥ 1, and all 0≤ p ≤ k,
∣∣A◦θk−1 . . . A◦θ p A◦θ p−1 . . . A

∣∣
⊕ ◦θ

m ≤ ∣∣A◦θk−1 . . . A◦θ p
∣∣
⊕ ◦θ

m
∣∣A◦θ p−1 . . . A

∣∣
⊕ ◦θ

m ,

that is,ξm,m+k ≤ ξm,m+p + ξm+p,m+k, so thatξm,m+k is a nonnegative and integrable
subadditive process. From Kingman’s Theorem on subadditive ergodic processes (see
Theorem 7.106), we obtain

lim
k→∞

(ξ0k)
1/k = lim

k→∞
E
[
(ξ0k)

1/k
] = a a.s.,

for some constanta <∞, whichconcludes the proof for|x(k; e)|⊕. From therelation
x(k) = A(k − 1) . . . A(0)x0 and from (7.25), we obtain the immediate bounds

|x(k; e)|⊕ |x0|∧ ≤ |x(k; x0)|⊕ ≤ |x(k; e)|⊕ |x0|⊕ , k ≥ 0 , ∀x0 finite .

Therefore

|x(k; e)|1/k
⊕ |x0|1/k

∧ ≤ |x(k; x0)|1/k
⊕ ≤ |x(k; e)|1/k

⊕ |x0|1/k
⊕ , (7.36)

for all k ≥ 0. Property (7.33) follows immediately when lettingk go to∞. If, in addi-
tion,x0 is integrable, we first prove by induction thatx(k; x0) is integrable for allk ≥ 0.
Wecan hence take expectations in (7.36) and use the fact that limk→∞ E

[
(ξ0k)

1/k
] = a

to obtain (7.34).

Remark 7.28 Certain representations of stochastic event graphs considered in Chap-
ter 2, such as the representation of Corollary 2.62 for instance, involve initial conditions
with ε entries, for which Theorem 7.27 cannot be applied directly. However, it is easy
to checkthatone can replace these entries by appropriate finite entries without altering
the value ofx(·).

Remark 7.29 It will also be useful to know when the constanta is strictly positive. A
sufficient condition for this is that there exists at least a circuit of the precedence graph
of A and two nodesi0 and j0 in this circuit such thatE

[
A j0i0(k)

]
> e. Under this

condition the positiveness ofa is obtained from the bound

x j0(kn) ≥ A j0i0(kn − 1)xi0((k − 1)n) .

This in turn implies

E
[
x j0(kn; e)

] ≥ kE
[

A j0i0(k)
] = kC ,

with C > 0, which implies thata > e. Note that in the stochastic event graph setting,
this condition is tantamount to having a circuit of the event graph with at least one
place with a positive mean holding time.
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7.3.4 The Strongly Connected Case

Theframework is that of the previous section. LetG(A) denote theprecedence graph of
the square matrixA (see§2.3). Although matrixA depends onω, the assumption that
its entries are either a.s. equal toε or a.s. finite implies thatG(A) is eithera.s.strongly
connected or a.s. nonstrongly connected (or equivalently, eitherA is a.s. irreducible or
it is a.s. nonirreducible). In this subsection we assume that we are in the former case.

Remark 7.30 The assumption thatA is irreducible and the assumption that thediago-
nal entries ofA are different fromε imply that A is aperiodic (see Definition 2.15 and
the theorem which follows this definition). More precisely, the matrix

G(k)
def= A(k + n− 1)A(k + n− 2) . . . A(k) , k ∈ Z , (7.37)

is such thatGi j (k) ≥ e for all pairs(i, j ) ∈ {1, . . . , n}2.

We know from thepreceding subsection that|x(k)|⊕ growslike ak. In fact, in the
case considered here, each individual state variablex j(k) has the same growth rate, as
shown in the following lemma.

Corollary 7.31 If matrix A is irreducible, then for all finite initial conditions x0, and
for all j = 1, . . . , n, we have

lim
k→∞
(
x j (k; x0)

)1/k = a a.s., (7.38)

where a is the maximal Lyapunov exponent of Theorem 7.27. If the initial condition is
integrable, we also have

lim
k→∞

E

[(
x j(k; x0)

)1/k
]
= a . (7.39)

Proof From Remark7.30, we obtain thatx j (k; x0) ≥ xi (k − n; x0) for all i, j =
1, . . . , n, andk > n. The property (7.38) follows then from the bounds

|x(k − n)|⊕ ≤ x j (k) ≤ |x(k)|⊕ , ∀ j = 1, . . . , n , (7.40)

andfrom Theorem 7.27.

Corollary 7.32 Under the foregoing assumptions, if A is irreducible, the a.s. limits

lim
k→∞

|x(k)|1/k
∧ = a a.s. (7.41)

and

lim
k→∞

|A(k − 1) . . . A(1)A(0)|1/k
∧ = a a.s. (7.42)

hold.



324 Synchronization and Linearity

Proof Equation (7.41) follows from (7.40). As for the second relation, it is immediate
that

lim sup
k

|A(k − 1) . . . A(1)A(0)|1/k
∧ ≤ a a.s.

In addition, we have

(A(k − 1+ n)A(k − 2+ n) . . . A(1)A(0)) j i

=
n⊕

l=1

[
(A(k − 1+ n)A(k − 2+ n) . . . A(n + 1)A(n)) jl

⊗ (A(n − 1)A(n − 2) . . . A(1)A(0)) li

]
.

In view of Remark 7.30, this implies

(A(k − 1+ n)A(k − 2+ n) . . . A(1)A(0)) j i

≥
n⊕

l=1

(A(k − 1+ n)A(k − 2+ n) . . . A(n + 1)A(n)) jl

= ∣∣x(k, e)◦θn
∣∣
⊕ .

Thus the a.s. limit

lim inf
k

(A(k − 1) . . . A(1)A(0))1/k
j i ≥ a a.s.

holds as a direct consequence of Theorem 7.27.

Remark 7.33 Thus, in the case of a strongly connected stochastic event graph, all tran-
sitions have the same asymptotic firing rate; the constanta is also called thecycle time
of the strongly connected event graph. Its inversea−1 is often called itsthroughput.

7.3.5 General Graph

Consider the decomposition ofG(A) into its m.s.c.s.’s (§2.2). For the same reasons as
above, thenumberNA of its m.s.c.s.’s and their topologies are nonrandom. We will
use the notations of§2.2 for the m.s.c.s.’s and the reduced graph(V, E) of G(A). The
reduced graph is acyclic and connected (provided the precedence graph is connected,
which will be assumed in the what follows). Remember that a m.s.c.s.(Vn , En) is said
to be a source subgraph if noden of the reduced graph has no predecessors, and that it
is said to be a nonsource subgraph otherwise.

Remark 7.34 In the particular case when the equation of interest is that of a nonau-
tonomous event graph of the form (7.32),each recycled transition associated with an
input transition will be seen as a source subgraph.

When there is no ambiguity, the notationπ , π∗ andπ+ will be used torepresent
the usual sets of predecessor nodes in thereduced graph. Without loss of generality,
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the numbering of the nodes is assumed to be compatible with the graph in the sense
that (m, n) ∈ E implies m < n. In particular, the source subgraphs are numbered
{1, . . . , N0}. For all 1≤ n ≤ NA, we will make use of the restrictionsA(n)(m), x(n),
A(≤n)(≤m), x(≤n), etc. defined in Notation 2.5.

The maximal Lyapunov exponent associated with the matrixA(n) (k)
def= A(n)(n) (k)

(respectively A(≤n)
def= A(≤n)(≤n) or A(<n)

def= A(<n)(<n) ) will be denoteda(n) (respec-
tively a(≤n) or a(<n)).

Observe that in general,x(n)(k) does not coincide with the solution of the evolution
equation

y(k + 1) = A(n) (k)y(k) , k ≥ 0 ,

with initial condition y(0) = x(n)(0). However, the sequence
{

x(≤n)(k)
}

(respectively{
x(<n)(k)

}
) is the solution of the evolution equation

x(≤n)(k + 1) = A(≤n) (k)x(≤n) (k) ,

(respectively x(<n)(k + 1) = A(<n) (k)x(<n) (k)) , k ≥ 0 ,

with initial conditionx(≤n)(0) (respectively x(<n)(0)).

Lemma 7.35 For all finite initial conditions, the following a.s. limits hold:

lim
k→∞
∣∣x(n)(k)

∣∣1/k

⊕ = a(≤n) a.s., (7.43)

and

lim
k→∞
(
x j (k)
)1/k = a(≤n) a.s., ∀ j ∈ Vn . (7.44)

If the initial condition is integrable, we also have

lim
k→∞

E

[∣∣x(n)(k)
∣∣1/k

⊕

]
= a(≤n) (7.45)

and

lim
k→∞

E

[(
x j(k)
)1/k
]
= a(≤n) , ∀ j ∈ Vn . (7.46)

Proof It is obvious from the definition that
∣∣x(n)(k)

∣∣
⊕ ≤
∣∣x(≤n)(k)

∣∣
⊕, so that

lim inf
k

∣∣x(n)(k)
∣∣1/k

⊕ ≤ a(≤n) .

When using the fact that there exists a path of length less thann from h to j in G(A),
for all j ∈ Vn and h ∈ ⋃m∈π∗(n) Vm , together with the assumption on the diagonal
entries of A, we obtain the following bound from (7.27):

x j(k + 1) ≥
⊕

{h∈Vm ,m∈π∗(n)}
xh(k − n) , ∀ j ∈ Vn ,
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providedk ≥ n. Therefore
∣∣x(n)(k + 1)

∣∣
⊕ ≥
∣∣x(≤n)(k − n)

∣∣
⊕, for k ≥ n, so that

lim sup
k

∣∣x(n)(k)
∣∣1/k

⊕ ≥ a(≤n) a.s.

The proof of the individual a.s. limits in (7.44) follows the same lines as in Corol-
lary 7.31. In the integrable case, the proof of the convergence of the expectations is
immediate.

Owing tothe acyclic nature of the reduced graph, the vectorx(n)(k) satisfies theequa-
tion

x(n)(k + 1) = A(n) (k)x(n) (k) ⊕ s(n, k + 1) , (7.47)

where

s(n, k + 1)
def= A(n)(<n) (k)x(<n) (k) . (7.48)

Equation (7.47) is the basis for proving the following property.

Theorem 7.36 The constant a(≤n) , which characterizes the growth rate of the variables
x j (k), j ∈ Vn , is obtained from the constants a(m), 1 ≤ m ≤ n, by the relation

a(≤n) =
⊕

m∈π∗(n)
a(m) . (7.49)

Proof We first prove that

lim
k→∞

|s(n, k)|1/k
⊕ = a(<n) a.s., (7.50)

for all N0 < n ≤ N . From (7.48), we obtain that

|s(n, k + 1)|⊕ ≤ |A(k)|⊕




⊕

m∈π+(n)

∣∣x(m)(k)
∣∣
⊕



 ,

so that

|s(n, k + 1)|1/k
⊕ ≤ |A(k)|1/k

⊕

∣∣x(<n)(k)
∣∣1/k

⊕ . (7.51)

The integrability assumption onA implies that

lim
k
|A(k)|1/k

⊕ = e a.s.

(usingthe same technique as in the proof of Theorem 7.24). Lettingk go to∞ in (7.51)
then implies

lim inf
k→∞

|s(n, k)|1/k
⊕ ≤ a(<m) a.s.

By using the same type of arguments as in Lemma 7.35, from (7.48) we obtain that

|s(n, k + 1)|⊕ ≥
∣∣x(<n)(k − n)

∣∣
⊕ a.s.,
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which in turn implies
lim sup

k→∞
|s(n, k)|1/k

⊕ ≥ a(<m) a.s.

This concludes the proof of (7.50).
It is clear from (7.48) that

∣∣x(n)(k + 1)
∣∣
⊕ ≥ |s(n, k + 1)|⊕, so that necessarily

∣∣x(n)(k + 1)
∣∣1/k

⊕ ≥ |s(n, k + 1)|1/k
⊕ , andhencea(≤n) ≥ a(<n). Owing tothe individual

limits of Equation 7.44, for allj ∈ Vn , (x(n)) j (k) ∼ ak
(≤n), whereas|s(n, k)|⊕ ∼ ak

(<n),
so that if a(≤n) > a(<n), then there exists a finite integer-valued random variableK such
that

A(n)(k)x(n) (k) ≥ s(n, k) , ∀k ≥ K .

Accordingly,Equation (7.48) reads

x(n)(k + 1) = A(n) (k)x(n) (k) ,

for k ≥ K . Let y(k; x0) denote the solution of the equation

y(k + 1) = A(n) (k)y(k) , k ≥ 0 ,

with initial conditiony(0) = (x0)(n). On{K = h}, we have

x(n)(k) = A(n) (k) . . . A(n) (h)x(n)(h)

= (A(n) (k − h) . . . A(n) (0)x(n)(h)◦θ−h)◦θh

= y(k − h; x(n)(h)◦θ−h)◦θh ,

for all k ≥ h. Thus, on the event{K = h}

lim
k

∣∣x(n)(k)
∣∣1/k

⊕ = lim
k

∣∣y(k − h; x(n)(h)◦θ−h)
∣∣1/k

⊕ ◦θh = a(n) a.s., (7.52)

where we used the a.s. convergence result of Theorem 7.27 applied to matrixA(n) (k).
SinceK is finite,

⋃
h{K = h} = �, so that

lim
k

(
x j (k)
)1/k = a(n) a.s., ∀ j ∈ Vn .

Therefore,a(≤n) ≥ a(<n), anda(≤n) > a(<n) implies a(≤n) = a(n), that is,a(≤n) =
a(<n) ⊕ a(n). The proof of (7.49) is obtained from the last relation by an immediate
induction onn.

Example 7.37 (Acyclic fork-join networks of queues)Consider the stochastic event
graph of Figure 7.2. This example features an acyclic fork-join queuing network
which is characterized by an acyclic grapĥG = (V̂ , Ê), with nodes{0, 1, . . . , n}. In
this graph, π̂( j ) will denote the set of predecessors of nodej and σ̂ ( j ) the set of its
successors. This graph has a single source node denoted 0.

With this graph, we associate a FIFO stochastic event graph, for which we use
the conventional notation. The set of transitions is{q0, q1, . . . , qn}; each transition
q j is recycled, withassociated placep j j , 0 ≤ j ≤ n; in addition, a placep ji is
associated with each pair ofnodes 0≤ i, j ≤ n suchthat i ∈ π̂( j ). Transition q0,
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Figure 7.2: An acyclic fork-join network of queues

which generates the input to the queuing network, is a recycled transition such that
σ(q0) = {p00, pi0}i∈σ̂ (0), andπ(q0) = {p0}. Transition q j , which represents queuej
of the queuing network, admits the set{p j j, p ji}i∈π̂ ( j) as a predecessor set and the set
{p j j , pi j }i∈σ̂ ( j) as a successor set.

If σ̂ ( j ) has two or more elements, one says that there is a ‘fork’ from queuej to
thequeues of̂σ ( j ). As a result ofthis fork, when adeparture takes place from queuej ,
this creates simultaneous arrivals into successor queues. Similarly, whenπ̂( j ) has two
or more elements, one says that there is a ‘join’. Clearly, the effect of a join in queuej
is to synchronize the outputs of the queues ofπ̂( j ).

Letα j(k) denote the holding times inp j j andU (k) denote those inp00, and assume
thatall theother holding times are zero. For instance, the matrixA(k) associated with
the autonomous event graph of Figure 7.2 is characterized by the formula

A(k − 1) =





α0(k) e e ε ε ε ε

ε α1(k) ε e e ε ε

ε ε α2(k) ε ε ε e
ε ε ε α3(k) ε e ε

ε ε ε ε α4(k) e ε

ε ε ε ε ε α5(k) e
ε ε ε ε ε ε α6(k)





.

It is easily checked thatNA = n + 1, and that each m.s.c.s. consists of exactly one
transition, so that the firing rate of transitionj is simply

a(≤ j) =
⊕

i∈π̂∗( j)

E[α j ] .

7.3.6 First-Order Theorems in Other Dioids

The rate theorem (Theorem 7.27) which was established in the preceding sections for
⊕ = max and⊗ = + is essentially based on the following two ingredients:
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• the relation

|AB|⊕ ≤ |A|⊕ |B|⊕ ; (7.53)

• Kingman’s subadditive ergodic theorem which relies on the fact that⊗ = +.

The first result holds in a general dioid (see Lemma 7.26).

Example 7.38 For instance, ifD = Rmin, the first relation of (7.25) translates into the
property|AB|⊕ ≥ |A|⊕ |B|⊕ (where≥ denotes here the conventional ordering inR),
since≤ corresponds to the ‘reverse’ of≤min.

In order to extend the second result to a general dioid, we need a ‘sub-⊗ ergodic
theorem’ stating that anyD-valued random sequence{amn}m<n∈N which satisfies the
conditions

amn ≤ amp ⊗ apn , ∀m < p < n ,

and
am,m+k = a0k◦θm , ∀m, k ∈ N ,

is such that
∃ lim

k→∞
(a0k)

1/k = a a.s.,

wherea is some constant (the meaning of the limit will not be discussed precisely
here). For instance, such a theorem will follow from Kingman’s subadditive ergodic
theorem if⊗ is + or ×. Thus, under the same type of statistical assumptions as in
Theorem 7.27, we can prove the existence of maximal Lyapunov exponents for linear
systems of thetype (7.27) inRmin.

7.4 Second-Order Theorems; Nonautonomous Case

7.4.1 Notation and Assumptions

In this section the dioidD under consideration is general. The basic equation of interest
is the evolution equation

x(k + 1) = A(k)x(k) ⊕ B(k)u(k) , k ≥ 0 , (7.54)

wherex(k), u(k) and A(k) all belong toD.
The sequences{A(k), B(k)}k∈Z and{u(k)}k≥0 are assumed to be given, as well as

the initial conditionx0. The sequence{u(k)} is assumed to be finite and nondecreasing
in k. Let U (k) be defined by

U (k) = u(k + 1)

u(k)
, k ≥ 0 . (7.55)
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7.4.2 Ratio Equation in a General Dioid

As in the preliminary example, we define theratio process, which consists ofthe se-
quence

δ(k) = x(k + 1)

u(k)
, k ≥ 0 . (7.56)

The first aim ofthis subsection is to derive an evolution equation for this ratio process.

Theorem 7.39 (Ratio Equation) The variables δ(k) satisfy the inequalities

δ(k + 1) ≥ A(k + 1)δ(k)U− (k) ⊕ B(k + 1)U+(k)U−(k) , k ≥ 0 , (7.57)

where the initial condition is δ(0) = δ0 is equal to x(1)◦/u(0), and where

U−(k)
def= u(k)

u(k + 1)
, U+(k)

def= U (k) = u(k + 1)

u(k)
. (7.58)

Proof By successively using formulæ (f.2) and (f.12) of Table 4.1, we obtain

x(k + 1)

u(k − 1)
= A(k)x(k) ⊕ B(k)u(k)

u(k − 1)

≥ A(k)x(k)

u(k − 1)
⊕ B(k)u(k)

u(k − 1)

≥ A(k)
x(k)

u(k − 1)
⊕ B(k)

u(k)

u(k − 1)
.

From(f.5), we obtain

u(k − 1) ≥ u(k − 1)

u(k)
u(k) ,

so that

x(k + 1)

u(k − 1)
≤ x(k + 1)

(u(k − 1)◦/u(k)) u(k)

= x(k + 1)◦/u(k)

u(k − 1)◦/u(k)
,

where we used (f.9)in order to obtain the last relation. By using the notationU−(k)
andU+(k) defined in the statement of the theorem, we finally obtain

δ(k)

U−(k − 1)
≥ A(k)δ(k − 1)⊕ B(k)U+(k − 1) , k ≥ 1 .

Therefore,

δ(k)

U−(k − 1)
U−(k − 1) ≥ A(k)δ(k − 1)U−(k − 1)

⊕ B(k)U+(k − 1)U−(k − 1) , k ≥ 1 ,
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and theproof is completed since the left-hand side of the last expression is less than
δ(k) (owing to (f.5)).

In what follows, we will concentrate on the least solution of Inequalities (7.57).

Lemma 7.40 The least solution of (7.57) is also the solution of the set of equations

δ(k + 1) = A(k + 1)δ(k)U− (k) ⊕ B(k + 1)U+(k)U−(k) , k ≥ 0 , (7.59)

with initial condition δ(0) = x(1)◦/u(0).

Proof The minimum element of the set{x ≥ a} being a, the resultof the lemma
follows from an immediate induction.

Example 7.41 Let the dioid of scalars beRmax and letx and u be vectors in this
dioid, of dimensionn andm respectively. Taking Remark 4.80 into account, the above
calculations are still valid. A more direct derivation of the same result is obtained by
subtractingui (k) from the j -th line of (7.54); we directly obtain

δ j i(k + 1) =
n⊕

l=1

(
A jl (k + 1) (xl(k + 1)◦/ui(k + 1))

)

⊕
m⊕

l=1

(
B jl(k + 1) (ul (k + 1)◦/ui (k + 1))

)
.

By using the property thata◦/a = e for all a ∈ R, a 
= ε, it is immediately verified that
under the finiteness assumptions which were made onu(k), thiscanberewritten as

δ j i(k + 1) =
n⊕

l=1

m⊕

p=1

(
A jl (k + 1)

(
xl (k + 1)◦/u p(k)

) (
u p(k)◦/ui (k + 1)

))

⊕
m⊕

l=1

m⊕

p=1

(
B jl (k + 1)

(
ul (k + 1)◦/u p(k)

) (
u p(k)◦/ui (k + 1)

))
,

which is a mere rephrasing of the matrix relation (7.59).

7.4.3 Stationary Solution of the Ratio Equation

Al l thedata are now assumed to be defined on a common probabilityspace(�,F,P, θ),
with the usual assumptions onθ . The variablesA(k) and B(k) are assumed to be
θ-stationary, with A(k) = A◦θk and B(k) = B◦θk . The dioid D is assumed to be
complete. In addition to this, it is assumed that the sequence of ratios{U+(k)} and
{U−(k)} defined in (7.58) are such that

U+(k) = U+◦θk , U−(k) = U−◦θk , k ∈ Z .

As in the preliminary example, we are interested in the possibility of making the ratios
δ(k) stationary. For this, we will use a backward construction which generalizes the
construction of the preliminary example.
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Definition 7.42 (Backward process)The backward process associated with the least
solution of (7.57) is the sequence of variables {"(k)}k≥0 defined as the solution of the
set of relations

"(0)◦θ = C ,

"(k + 1)◦θ = A◦θ"(k)U− ⊕ C , k ≥ 0 , (7.60)

where U+
def= U+(0), U−

def= U−(0) and C
def= B◦θU+U−.

Lemma 7.43 The sequence {"(k)} is coordinatewise nondecreasing in k with respect
to the order in D.

Proof It is clear that"(1) ≥ C◦θ−1 = "(0). Assume now that for somek ≥ 1,
"(k) ≥ "(k − 1). Then

"(k + 1)◦θ = A◦θ"(k)U− ⊕ C

≥ A◦θ"(k − 1)U− ⊕ C = "(k)◦θ ,

where we used the fact that the mappingx �→ Ax B ⊕ C is isotone.

Lemma 7.44 The random variable " =⊕k≥0 "(k) satisfies the relation

"◦θ = A◦θ"U− ⊕ C . (7.61)

Proof The sum" belongs toD because this dioid is complete. Since the mapping
x �→ Ax B ⊕ C is l.s.c., we also have

"◦θ =
⊕

k≥0

(A◦θ"(k)U− ⊕ C)

= A◦θ

(
⊕

k≥0

"(k)

)
U− ⊕ C

= A◦θ"U− ⊕ C .

Lemma 7.45 In the case when A ∈ Dn×n, U+ and U− ∈ Dm×m, and C and " ∈
Dn×m , if the diagonal elements of A are greater than or equal to e and U− has finite
entries, then the event B = {|"|⊕ = �} is of probability either 0 or 1.

Proof Owing to the assumption that the diagonal elements ofA are a.s. finite, |"|⊕ =
� implies|A◦θ"|⊕ = �, which inturn implies that|A◦θ"U−|⊕ = � (sinceU− has all
its entries a.s. finite). Therefore,|"|⊕ = � implies that

|"◦θ |⊕ ≥ |A◦θ"U−|⊕ = � .
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Thus, the measurable setB is such that the indicator functions 1B◦θk arenondecreasing
in k. This is enough to ensure thatB is of probability 0 or 1; indeed, when using the
ergodicity assumption on the shiftθ , and the nondecreasingness property, we obtain

P[B] = lim
k→∞

1

k

k∑

l=1

1B◦θ l ≥ 1B a.s.,

so that if P[B] > 0, then the indicator function 1B is equal to 1 a.s. (an indicator
function which ispositiveis necessarily equal to 1).

The following expansion of the backward process generalizes the star operation of
Lemma7.10.

Lemma 7.46 The relation

"(k) =
k⊕

l=0

(
l⊗

h=1

A(−h + 1)

)
C(−l − 1)

(
l⊗

h=1

U−(h − l − 1)

)
(7.62)

holds, where the⊗-product over an empty set (when l = 0) is equal to e by convention,
and C(k) = B(k + 1)U+(k)U−(k). This formula holds true for k = ∞ when taking
"(∞) = ".

As in our previous example, the nondecreasingness of the sequence{"(k)} becomes
transparent from this formula.

The mainquestion we are now interested in consists in determining the conditions
under which the limiting value" is a.s. finite. The answer to this question is based
on ergodic theory arguments, and is therefore dependent on the specific dioid which is
considered. We will concentrate on theRmax case for the rest of this section.

7.4.4 Specialization toRmax

7.4.4.1 Statistical Assumptions

In this subsection the underlying scalar dioid isRmax. In view of the results of the pre-
ceding subsection and of those of the preliminary example, the most natural statistical
assumptions would consist in taking

• U+(k) = U+◦θk (which implies thatU−(k) = U−◦θk);

• U+ integrable (which impliesU− integrable).

We will rather take the weaker assumptions

• {U+(k)} couples with{U+◦θk }, where all the entries ofU+ are a.s. finite (which
implies that{U−(k)} couples with{U−◦θk}, whereU− has finite entries);

• (U+)ii integrable for alli = 1, . . . ,m.
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The motivations for taking these weaker assumptions will be commented upon in the
next subsection.

Remark 7.47 Let ui
def= E[(U+)ii ]. Sinceui (k) = ui(0)

⊗k−1
l=0 (U+)ii (l), k ≥ 1, from

the coupling assumption and the assumptionE
[
(U+)ii

] = ui , weobtain that

lim
k→∞

(ui (k))
1/k = ui a.s., ∀i = 1, . . . ,m . (7.63)

This can only be compatible with the assumption thatU+(k) couples with a stationary
and finite sequence if ui = u j for all i, j = 1, . . . ,m (sinceui (k) − u j(k) cannot
couple with a finite stationary sequence ifui 
= u j ). Therefore, a directconclusion of
our assumptions is that

lim
k→∞

|u(k)|⊕1/k = lim
k→∞

|u(k)|1/k
∧ = u a.s. (7.64)

More general cases withE[(U+)ii ]= ui andui 
= u j for some pair(i, j ), are oflimited
practical interest, as shown by the following example.

Example 7.48Matrix A has a single m.s.c.s., and its Lyapunov exponenta is such that
a < ui < u j . In view of Theorem 7.36, we then have

xl (k) ∼ (a ⊕ ui ⊕ u j )
k = u

k
j ,

for all l = 1, . . . , n. Therefore, xl(k) − ui(k) tends a.s. to∞ for all l ask goes to∞.
Thus, in such a situation, some of the ratios necessarily become infinite.

We conclude this section with an algebraic interpretation of the assumptions onU+,
and a statement of theRmax-eigenvalue problem.

Lemma 7.49 Let V (k), k ≥ 0 be a sequence of m×m matrices. The two conditions

• V (k) = v(k + 1)◦/v(k), k ≥ 0, where v(k), k ≥ 0 is a sequence of finite m-
dimensional vectors,

• V (k) = V ◦θk , k ≥ 0,

are equivalent to the existence of a unique finite R
m eigenvector y, with y1 = e, and a

unique eigenvalue β ∈ R such that V y = βy◦θ and V = (βy◦θ)◦/y.

Proof We first show that under the first two conditions, there exists a unique pair of
finite vectors(y, z) suchthat y1 = e andV = z◦/y. We haveV = v(1)◦/v(0) = z◦/y,

whereyi
def= vi (0)◦/v1(0) andzi

def= vi (1)◦/v1(0). We havey1 = e; let us show thaty and
z areuniquely defined fromV : from thevery definition of ◦/, we have

Vi j = zi◦/y j .

By taking j = 1 in the last relation, we see thatz is uniquely defined fromV , since
zi = Vi1; therefore y j = zi◦/Vi j does not depend oni and isuniquely determined
from V .
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Let β be the random variableβ = z1. We havez = βw, wherewi = zi ◦/β =
vi (1)◦/v1(1). We now conclude the proof of the eigenpair property by showing that

w = y◦θ . We haveV ◦θ = v(2)◦/v(1) = v◦/w, wherevi
def= vi (2)◦/v1(1). Sincew1 = e,

the above uniqueness property shows thatw = y◦θ indeed.
Conversely, if we assume thatV = (βy◦θ)◦/y, for some finite (β, y), we obtain

V (0) = v(1)◦/v(0) with v(0) = y andv(1) = βy◦θ . More generally, we haveV (k) =
v(k + 1)◦/v(k), for all k ≥ 1, when takingv(k) = βk . . . βy◦θk .

Under theassumptions listed above, the system of interest can be rewritten as

u(k + 1) = U+(k)u(k) ,

x(k + 1) = A(k)x(k) ⊕ B(k)u(k) ,

}
(7.65)

or equivalently as

X (k + 1) = D(k)X (k) , k ≥ 0 , (7.66)

where

X (k) =
(

u(k)
x(k)

)

and

D(k) =
(

U+(k) ε

B(k) A(k)

)
.

In view of the preceding lemma, the assumptions onD(k) can be summarized as fol-
lows: the matricesD(k) couple in finite time with a stationary sequence{D◦θk}, where

D =
(

U+ ε

B A

)
;

the matrixU+ is such that

U+ = λu◦θ
u

, (7.67)

where(λ, u) areuniquely defined (u is a finite random vectoru ∈ R
m with u1 = e and

λ is a nonnegative and finite random variable).
The problem of interest is then similar to the random eigenpair problem of§7.2.3:

can we continue the random eigenpair propertyU+u = λu◦θ , which follows from
(7.67), to the following eigenpair property ofD:

DX = λX ◦θ ? (7.68)

Remark 7.50 The assumption that(U+)i j (k) couples with a stationary sequence for
all i, j = 1, . . . ,m, which is equivalent to the eigenpair property of (7.67), is neces-
sary for the second-order theorems of the following subsections; in particular, if this
property is only satisfied by the diagonal terms(U+)ii (k) (like for instance in the for-
mulation (7.30) of the evolution equation), then these stability theorems do not hold,
as shown by Example7.98.
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7.4.4.2 Example: Nonautonomous Event Graphs

We know from Corollary 2.82 that a nonautonomous FIFO stochastic event graph with
recycled transitions and with a compatible initial condition in its standard form satisfies
an equation of the form (7.54) inRmax. We make thefollowing stationarity assump-
tions:

• theholding timesαi(k), pi ∈ P, k ∈ Z, areθ-stationary and integrable;

• the ratiosUi j (k)
def= ui(k + 1)◦/u j (k), qi , q j ∈ I, k ∈ N, are finite and couple in

finite time with aθ-stationary sequence
{
Ui j ◦θk

}
, whichsatisfies the integrability

and rate conditions mentioned above.

As a direct consequence of the first assumption, the sequences{A(k)} and{B(k)} are
both θ-stationary and theentries of these matrices which arenot a.s. equal toε are
integrable. In particular, the diagonal entries ofA(k) are a.s. nonnegative and integrable
owing to the assumptionsthat the transitions are all recycled.

Remark 7.51 We nowlist a few motivationsfor the assumptions onU+(k), whichwill
become more apparent in§7.4.4.5. In (7.54), we would like to be able to take the input
vectoru(k) ∈ R

m equal to the output of some other stochastic event graph (incidentally,
this is the most practical way of building input vectors which satisfy the conditions of
§7.4.4.1). For instance, consider the vector(u(k), x(k + 1)) ∈ R

2, associated with
Equation (7.3), as an output signal of the system analyzed in the preliminary example.
The first assumption (coupling of U+(k) with U+◦θk) is motivated by the following
observations:

• Even inthe stable case, the output process of a stochastic event graph is usually
not suchthat U+(k) is θ-stationary fromk = 0 on. For instance, if we take
the specific vector mentioned above as an input vector of Equation (7.54), with
m = 2, we know from the preliminary example that the corresponding sequences
{U+(k)} and {U−(k)} couple with stationary sequences, provided appropriate
rate conditionsare satisfied.

• More generally, for stochastic event graphs, the assumption that{U+(k)} is θ-
stationary may not be consistent with the assumption that the initial condition is
compatible.

As for the second assumption (integrability of the diagonal terms only), we also know
from the preliminary example that the nondiagonal entries ofU+ or U− arenot inte-
grable in general (see Remark 7.13).

7.4.4.3 Finiteness of the Stationary Solution of the Ratio Equation; Strongly
Connected Case

Matrix A associated with (7.54) is assumed to have a strongly connected precedence
graph. Leta denote the maximal Lyapunov exponent associated withA (see Corol-
lary 7.31). Let

ξ(k; x0)
def= |A(k) . . . A(2)A(1)δ(0; x0)U−(0)U−(1) . . .U−(k − 1)|⊕ , (7.69)
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wherex0 is a finite random initial condition inRn×m.

Lemma 7.52 For all finite initial conditions x0 ∈ R
n×m,

lim
k→∞

(ξ(k, x0))
1/k = a◦/u a.s. (7.70)

Proof The property stated in (7.70) is similar to the one proved in Theorem 7.27.
Indeed, from (7.25) we obtain that

|ξ(k, x0)|⊕ ≤ |A(k) . . . A(2)A(1)|⊕ |δ(0; x0)|⊕ |U−(0)U−(1) . . .U−(k − 1)|⊕ .

We know from Theorem 7.27 that

lim
k
|A(k)A(k − 1) . . . A(2)A(1)|1/k

⊕ = a a.s.

As for the productU−(0)U−(1) . . .U−(k − 1), we cannot apply the same theorem
because the entries ofU−(k) are not assumed to be integrable anymore, and because the
θ-stationarity is replaced by the coupling assumption. However, owing to the specific
form of U−(k), and tothe fact that the scalar dioid isRmax, the relation

U−(0) . . .U−(k − 1) = u(0)

u(k)

holds, so that
lim

k
|U−(0) . . .U−(k − 1)|1/k

⊕ = e◦/u a.s. ,

in view of (7.63). This immediately implies that

lim sup
k

(ξ(k; x0))
1/k ≤ a◦/u a.s.

On the other hand, (7.25) and (7.26) imply that

ξ(k; x0) ≥ |(A(k − 1) . . . A(0))|⊕ |δ(0; x0)|∧
(|u(0)|∧ ◦/ |u(k)|⊕

)
.

By using this inequality together with the above a.s. limits, we finally obtain

lim inf
k

(ξ(k; x0))
1/k ≥ a◦/u a.s.

Let

ζ(k)
def= ∣∣A . . . A◦θ−k+1C◦θ−k−1U−◦θ−k . . .U−◦θ−1

∣∣
⊕ , (7.71)

whereC was defined in Definition 7.42. The following lemma is very similar to the
preceding one, although it is somewhat more difficult to prove.

Lemma 7.53 Under the foregoing assumptions

lim
k→∞

(ζ(k))1/k = a◦/u a.s. (7.72)
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Proof When using the same arguments as in Theorem 7.27 and Corollary 7.32 (applied
to the shiftθ−1, which is also ergodic), we obtain that for alli, j ,

lim
k

((
A . . . A◦θ−k+1)

i j

)1/k
= lim

k

∣∣A . . . A◦θ−k+1
∣∣1/k

⊕

= lim
k

E

[∣∣A . . . A◦θ−k+1
∣∣1/k

⊕

]
= a

′ ,

for some positive and finite constanta′ (the first two limits are understood in the a.s.
sense). Since

E

[∣∣A . . . A◦θ−k+1
∣∣1/k

⊕

]
= E

[∣∣A◦θk−1 . . . A
∣∣1/k

⊕

]
,

we necessarily havea = a′. Therefore, for all i, j,

lim
k

((
A . . . A◦θ−k+1

)
i j

)1/k
= a a.s. (7.73)

We now show that we also have

lim
k

((
U−◦θ−k . . .U−◦θ−1)

i j

)1/k = e◦/u a.s., (7.74)

for all i, j = 1, . . . ,m. For this, we will use the specific forms ofU+ andU−, which
imply that there exists a unique pair of vectors(b(0), b(1)) in (Rm)2 suchthatb1(0) =
e and

U+ = b(1)

b(0)
, U− = b(0)

b(1)

(see Lemma 7.49). Let{b(k)}k≥1 be the sequence ofR
m-valued vectors defined by the

relations

b(k) = U+◦θk−1b(k − 1) = U+◦θk−1 . . .U+◦θ1b(1) , k ≥ 2 .

We have

U+◦θk = b(k + 1)

b(k)
, U−◦θk = b(k)

b(k + 1)
, k ≥ 0 . (7.75)

This implies

(
U−◦θ−k . . .U−◦θ−1)

i j
= (

U− . . .U−◦θk−1)
i j
◦θ−k (7.76)

= bi(0)◦θ−k◦/b j(k)◦θ−k . (7.77)

Therefore fori = j

(
U−◦θ−k . . .U−◦θ−1)

ii
=

−k⊗

l=−1

(e◦/Uii )◦θ l ,
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so that the ergodicity of θ−1 and the assumptionE[Uii ] = u show that (7.74) holds at
least fori = j . In view of (7.76), we have

(
U−◦θ−k . . .U−◦θ−1)

i j
= (U−◦θ−k . . .U−◦θ−1)

j j
bi (0)◦θ−k◦/b j(0)◦θ−k .

We conclude the proof of (7.74) by showing that

lim
k

(
bi (0)◦θ−k

)1/k = e a.s. , (7.78)

for all i = 1, . . . ,m (this is immediate if the entries ofU− or U+ are integrable, but
we havenot assumed this). We know from Lemma 7.49 that

b(0)◦θ = b(1)◦/(b1(1)) . (7.79)

Therefore, for alli = 1, . . . ,m, the relation

bi(0)◦θ
bi (0)

= (bi (1)◦/bi (0))

(b1(1)◦/b1(0))
= (U+)ii

(U+)11

holds, which shows thatbi (0)◦θ◦/bi (0) and hencebi (0)◦θ−1◦/bi(0) are integrable. This
implies thatE[bi(0)◦θ−1◦/bi(0)] = e (see Lemma 7.25). Since

bi(0)◦θ−k = bi(0)
−k+1⊗

h=0

(
bi(0)◦θ−1◦/bi(0)

)
◦θh ,

this and Birkhoff’s Theorem imply that

lim
k

[
bi(0)◦θ−k

]1/k = lim
k

[
bi (0)

−k+1⊗

h=0

(
bi(0)◦θ−1◦/bi (0)

)
◦θh

]1/k

= lim
k

(−k+1⊗

h=0

(
bi(0)◦θ−1◦/bi (0)

)
◦θh

)1/k

= E
[
bi (0)◦θ−1◦/bi(0)

] = e . (7.80)

Finally, sinceC = B◦θU+U− = B◦θb(1)◦/b(1), weobtain from (7.79) that

C = B◦θ
b(1)

b(1)
= B◦θ

b(1)◦/b1(1)

b(1)◦/b1(1)
=
(

B
b(0)

b(0)

)
◦θ . (7.81)

Then either thej -th line of B is ε, andC ji (k) = ε for all i andk, or it is different from
ε and (7.81), theintegrability assumption on the nonε elements ofB, and (7.78) imply
that

lim
k→∞
(
C ji ◦θ−k

)1/k = e a.s. , (7.82)

for all i. Theproof of the lemma is concluded from (7.73), (7.74) and (7.82).
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Remark 7.54 When using the notation of the preceding theorem, the initial condition
for the backward recurrence should be

"(0) = Bb(0)

b(0)
.

If U+(k) is stationary, then for all x0, the initial conditionδ0 of the ratio process satisfies
the bound

δ0 = A(0)x0 ⊕ B(0)u(0)

u(0)
≥ B(0)u(0)

b(0)
= Bb(0)

b(0)
= C◦θ−1 .

Remark 7.55 If A is not strongly connected, the proof of Lemma 7.53 allows one to
conclude that

lim sup
k→∞

(ζ(k))1/k ≤ a◦/u a.s. , (7.83)

wherea is the maximal Lyapunov exponent ofA.

In the following theorem, which holds regardless of the strong connectedness ofA, a

is the maximal Lyapunov exponent ofA.

Theorem 7.56 If a < u, then |"|⊕ <∞ a.s., and there exists an initial condition δ(0)
such that the solution δ(k) of the ratio equation (7.59) forms a stationary and ergodic
process.

Proof From Lemma 7.45, either|"(k)|⊕ tends to∞ a.s., or"(k) tends to" with
|"|⊕ < �. Assume we are in thefirst case. Then in view of (7.62),

lim sup
k→∞

ζ(k) = ∞ a.s.,

which contradicts (7.83) ifa < u. Therefore a < u implies that|"|⊕ < ∞ a.s., and
hence" <∞ a.s. Taking δ(0) = " makesδ(k) stationary in view of (7.61).

Remark 7.57 If wereturn to the initial system (7.54), we may ask whether this system
has an initial condition(x(0), u(0)) which renders the ratio processδ(k) stationary.
The answer to this question is equivalent to the existence of a solution to the equation

Ax(0) ⊕ Bu(0)

u(0)
= " ,

where the unknowns arex(0), andu(0), and where" is the random variable defined
in Lemma 7.44. We will not pursue this line of thought since we will see that the
stationary regime{"◦θk} is actually reached by coupling regardless of the initial con-
dition δ(0).
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Lemma 7.58 In the strongly connected case, if a > u, the variables "(k) all converge
to∞ a.s.

Proof In view of (7.62),a > u implies |"(k)|⊕ tends to∞ and hence|"|⊕ = ∞.
From (7.61), weobtain

"◦θn ≥ G◦θ"H ,

where

G
def=

n⊗

l=1

A◦θ l , H
def=

n−1⊗

l=0

U−◦θ l .

In view of our assumptions onA, the matrix G(k) defined in (see (7.37)) is such that
Gi j ≥ e for all i, j = 1, . . . , n. This togetherwith |"|⊕ = � a.s. implies" j ◦θn = �
a.s. for all j = 1, . . . , n (sinceU− is a.s. finite).Thereforea > u implies" j = � a.s.
for all j = 1, . . . , n.

Corollary 7.59 The random variable " is the least stationary solution of (7.61).

Proof Starting with a solution% of (7.61), we necessarily have% ≥ C◦θ−1 = "(0).
It is easily checked that% ≥ "(k) implies% ≥ "(k + 1) (the proof is essentially the
same as for thepreliminary example). Therefore% ≥ ".

Hence ifa > u, there isno finite stationary regime for ratios of the typex j (k)◦/ui (k).

Remark 7.60 A few remarks are in order concerning stochastic event graphs. If there
exist initial lag timesx(0) andu(0) which make the ratio process stationary, these lag
times are not compatible in general (see Remark 7.15).

• Nothing general can be said about the critical caseu = a. As in queuing theory,
it may happen that" is finite or infinite, depending on higher order statistics.
For instance, if the holding times are deterministic, the variable" is finite (see
Chapter 3). In the case of i.i.d. exponentially distributed holding times, it will be
infinite.

• It is not always truethat the variables" are integrable. Simple counterexamples
canbe found in queuing theory. For instance, the stationary waiting times in the
GI/GI/1 queue (see§7.2) fall in this category of ratios and are only integrable
under certain specific conditions on the second moments of the holding (service
and interarrival) times.

• Assume thatthe constanta is fixed; what is the minimal value ofu for which the
system can be stabilized? The preceding remarks show that the threshold is for
u = a, the cycle time of the strongly connected component. In other words, the
minimal asymptotic rate of the input for which the system can be stabilized, is
equal to the cycle time of the system with an infinite supply of tokens ineach
of the inputs. This result can then be seen as a generalization to Petri nets of a
result known as Lavenberg’s Theorem [83] in queuing theory.
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7.4.4.4 Coupling; Strongly Connected Case

Theorem 7.61 Under the statistical assumptions of §7.4.4.1, if a < u, there exists
a unique random matrix " such that for all finite initial conditions δ(0), the random
variables {δ(k; δ(0))} couple in finite time with the sequence {"◦θk}, regardless of the
initial conditions provided they are finite. If a > u, then for all j = 1, . . . , n, and
i = 1, . . . ,m, δ j i(k; δ(0)) converges a.s. to∞ when k tends to∞.

The proof is based on the following lemma.

Lemma 7.62 Assume that a < u. Then for any finite initial condition δ(0), there exists
a positive integer K (δ(0)) such that for all k ≥ K (δ(0)), δ(k; δ(0)) = δ(k;C◦θ−1).

Proof The proof is by contradiction. Assume thatδ(k; δ(0)) 
= δ(k;C◦θ−1) for all
k ≥ 0. This means that for any fixedk ≥ 1, there exists a pair of integers( jk, ik),
with 1 ≤ jk ≤ n and 1 ≤ ik ≤ m, such that δ jk ik (k; z1) > δ jk ik (k; z2), wherez1

is eitherz or C◦θ−1 and z2 is the other one. In view of (7.59), we necessarily have
δ jk ik (k; z1) = (A(k)δ(k − 1; z1)U−(k − 1)) jk ik , for if it were not thecase, we would
have

δ jk ik (k; z1) = δ jk ik (k; z2) = (B(k)U+(k − 1)U−(k − 1)) jk ik

(in Rmax, a ⊕ b 
= a impliesa ⊕ b = b). This in turn implies the existence of a pair of
integers( jk−1, ik−1), with 1≤ jk−1 ≤ n and 1≤ ik−1 ≤ m, such that

δ jk ik (k; z1) = A jk jk−1(k)δ jk−1 ik−1(k − 1; z1)U−(k − 1)ik−1 ik .

It is easy to see that necessarilyδ jk−1ik−1(k − 1; z1) > δ jk−1ik−1(k − 1; z2). If this were
not true, we would then have

δ jk ik (k; z1) = A jk jk−1(k)δ jk−1 ik−1(k − 1; z1)U−(k − 1)ik−1 ik

≤ A jk jk−1(k)δ jk−1 ik−1(k − 1; z2)U−(k − 1)ik−1 ik

≤
n⊕

p=1

m⊕

q=1

A jk p(k)δpq (k − 1; z2)U−(k − 1)qik

⊕ (B(k)U+(k − 1)U−(k − 1)) jk ik

= δ jk ik (k; z2) ,

which would contradict the definition ofjk andik .
More generally, by using the same argument iteratively, we can find a sequence of

pairs{( jk−l, ik−l )}l=1,2,... ,k such that for all l in this range,

δ jk−l+1ik−l+1 (k − l + 1; z1) = A(k − l + 1) jk−l+1 jk−lδ(k − l; z1) jk−l ik−l U−(k − l)ik−l ik−l+1 .

Therefore, there exists a sequence of pairs such that

δ jk ik (k; z1) =
k⊗

l=1

A jk−l+1 jk−l (k − l + 1)δ j0i0(0; z1)

k−1⊗

l=0

U−(l)il il+1 ,
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which implies thatδ jk ik (k; z1) ≤ ξ(k; z1), whereξ(k; z1) is definedby (7.69). On the
other hand, we know from (7.59) thatδ(k; z1) ≥ B(k)U+(k − 1)U−(k − 1); thus for
some pair( jk, ik) such that theline B jk . has some nonvanishing entries,

(ξ(k; z1))
1/k ≥ [(B(k)U+ (k − 1)U−(k − 1)) jk ik

]1/k
. (7.84)

Owing to (7.70),ξ(k; z1)
1/k → a◦/u whenk → ∞. Similarly, our assumptions on the

rates (7.63) and on the integrability of the entries ofB imply that

lim
k→∞

(B(k)U+(k − 1)U−(k − 1))1/k
jk ik

= lim
k→∞

⊕

l

(
B jkl(k)

)1/k
(
(ul(k))

1/k ◦/
(
uik (k)
)1/k
)

=
⊕

l

(
lim

k→∞
(
B jkl(k)

)1/k
)(

lim
k→∞

(ul (k))
1/k ◦/ lim

k→∞
(
uik (k)
)1/k
)

= e a.s.

By letting k go to∞ in (7.84), we finally obtaina◦/u ≥ e, where the contradiction is
obtained, since we have assumed thata◦/u < e.

The proof of Theorem 7.61 is obtained from the last lemma using the same arguments
as inthe preliminary example (see Lemma 7.21).

Corollary 7.63 Under the stability condition a < u, Equation (7.61) admits a unique
finite solution.

Proof Given the coupling property of Theorem 7.61, the proof is the same as the one
of Corollary 7.22.

Remark 7.64 The coupling of the ratios x(k + 1)◦/u(k) with a finiteθ-stationary se-
quence implies the coupling of other ratios like x(k + 1)◦/x(k) with a θ-stationary and
finite sequence. In order to see this, write

x(k + 1)

x(k)
= δ(k)U−(k)δ−(k) ,

whereδ−(k) is the matrix with entries(δ−(k))i j = e◦/δ j i (k). The coupling of {δ(k)}
with a stationary sequence implies that of{δ−(k)}, which inturn implies that of{x(k +
1)◦/x(k)}, provided{U−(k)} couples with a stationary sequence too.

Example 7.65 (Blocking after service) Consider a network ofn machines in series.
The first machine has an infinite input buffer and is fed by an external arrival stream
of items. There are no intermediate buffers between machinej and machinej + 1,
1 ≤ j ≤ n− 1, and an item having completed its service in machinej is blocked there
as long as machinej + 1 isnot empty.

It is easily checked that this mechanism is adequately described by the timed event
graph of Figure 7.3. The input transitionq0 is associatedwith the input functionu(k),
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Figure 7.3: Blocking after service

with inter-input timesU (k); transitionsq j1 andq j2 are associated with the behavior of
machine j, with j = 1, . . . , n. Place p j0, which precedesq j1, represents thedevice
for transportingitems from machinej − 1 to machine j . Theholding timesassociated
with these places (namely the transportation times) will be assumed to be identically
equal toe. Transition q j1 represents the admittance to machinej , andq j2 the exit
out of machinej . Theholding times inp j1 will be denotedα j (k) and represent the
processing time of thek-th item to entermachinej . Finally, the feedback arc which
containsp j+1,3 forbids one to sendan item from machinej to machinej+1 if thelatter
still has an item (this is the blocking mechanism). Similarly, the feedback arc which
contains p j2 preventsan item from entering machinej if this one contains another
item. The two placesp j2 and p j3 are assumed to have zero holding times.

Al l thesevariables are defined on the probability space(�,F,P, θ), as well as the
compatible initial lag timesv j ∈ R, wherev j is both the initial lag time of the token in
p j2, and theone of the token inp j3.

It is easily checked that the state space can be reduced to the set of transitionsQ′ =
{q12, . . . , qn2}, and that the corresponding canonical form of the evolution equation of
Corollary 2.82 reads

x̃(k + 1) = Ã(k)̃x (k) ⊕ B̃(k)̃u(k) ,

where then× n matrix Ã(k) is given by the relation

Ã j i (k) =






⊗ j
l=i αl (k + 1) for i = 1, . . . , j ;

e for i = j + 1 ;

ε for i = j + 2, . . . , n ,

whereas then×1 matrix B̃(k) is defined byB̃ j1(k) =
⊗ j

l=1 αl(k+1), and̃u(k) = u(k+
1). Theprecedence graph is strongly connected, and ratios of the form̃x j(k + 1)◦/ũ(k)
with j = 1, . . . , n, admit aunique stationary regime ifu = E[U ] > a, wherea is the
cycletime associated with matricesA(k). Theratio x̃ j (k + 1)◦/ũ(k) here represents the
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delay between the arrival of anitem in the network and the time at which it starts being
processed by machine j . If this rate condition is fulfilled, the unique stationary regime
is reached with coupling regardless of the initial lag times.

7.4.4.5 More on Coupling; General Case

Thenotations and the statistical assumptions of the present section are those of§7.4.4.3.
The only difference concerns the precedence graph associated withA, which is not
supposed to be strongly connected here. We assume thatA hasNA m.s.c.s.’s. As in the
preceding subsections, the basic process of interest is the ratio process

η(k)
def= X (k + 1)

X (k)
, (7.85)

where{X (k)} is the sequence defined in (7.66).
For theproof of the next theorem, it will be convenient to use Equation (7.66). By

construction, the number of m.s.c.s.’s ofD is ND = NA + 1.

Remark 7.66 The δ(k) process defined in (7.56) is the ratio of the state variables
x(k + 1) and the inputu(k), whereas the ratio η(k) definedabove is

(
u′(k + 1) x ′(k + 1)

)′ ◦/
(

u′(k) x ′(k)
)′

.

The restriction of the latter matrix to the set of coordinates(> 1), (1) coincides with
δ(k).

Theorem 7.67 If the Lyapunov exponents a(n) of Theorem 7.36 satisfy the condition

NA⊕

n=1

a(n) < u , (7.86)

then there exists a unique finite random (n + m) × (n + m) matrix E such that the
sequence {η(k)}, defined in (7.85), couples in finite time with a uniquely defined sta-
tionary and ergodic process {E◦θk}, regardless of the initial condition. If

NA⊕

n=1

a(n) > u , (7.87)

let n0 be the first n = 1, . . . , NA, such that a(n) > u. Then all ratios of the form
η j i(k), j ∈ Vn0 , i ∈ Vm ,m < n0, tend to∞ a.s., for all finite initial conditions.

Proof Weprove by induction onn = 1, . . . , ND, that under the rate condition (7.86),
the matrices

X (≤n)(k + 1)

X (≤n)(k)
,

couple in finite time with a uniquely defined and finiteθ-stationary process, and that
the stationary regime is such that

E[
(
X (≤n)(k + 1)

)
i
◦/
(
X (≤n)(k)

)
i
] = u , ∀i .
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This induction assumption is satisfied for the source m.s.c.s. ofD, namely for n = 1,
which corresponds to the set of input variables, because of the assumptions which were
made on the input functions. It is also satisfied for all source m.s.c.s.’s ofA, namely
for all n = 2, . . . , N0+1 (thenumbering we adopt here for m.s.c.s.’s is that relative to
D), in view of Theorem 7.61 and Remark 7.64.

Assumethatthe induction assumption is true up to rankn−1, wheren−1≥ N0+1
and thata(n) < u. From (7.66) we obtain

X (n)(k + 1) = D(n),(n)(k)X (n) (k) ⊕ D(n),(≤n−1)(k)X (≤n−1)(k) ,

where the notation should be clear in view of our conventions. From the assumption
that the ratios ofX (≤n−1)(k + 1)◦/X (≤n−1)(k) couple in finite time withθ-stationary se-
quences, and that the rates of the coordinates ofX (≤n−1)(k) are allu, we obtain from
Theorem 7.61 that the ratiosX (n)(k + 1)◦/X (≤n−1)(k) alsocouple with a finite and sta-
tionary sequence. This immediately implies that the sequence

{
X (≤n)(k + 1)◦/X (≤n)(k)

}

alsocouples with aθ-stationary sequence.
For all i ∈ Vn and in the stationary regime,E[Xi(k + 1)◦/Xi(k)] = u. This follows

from the rate property of Theorem 7.36, which implies that

lim
k→∞

(Xi (k))
1/k = u a.s., (7.88)

for all i ∈ Vn , andfrom the following simpleargument: the variablesXi (k + 1)◦/Xi (k)
are nonnegative (the diagonal elements ofD are all assumed to be greater thane), and
couple with aθ-stationary sequence{"ii ◦θk}; therefore, either the random variable"ii

is integrable, orE["ii ] = ∞. Since

Xi (k) = Xi(0)
k⊗

l=1

(Xi (l)◦/Xi (l − 1)) ,

if E["ii ] = ∞, Birkhoff’s Theorem implies that

lim
k

(Xi(k))
1/k = lim

k

(
k⊗

l=1

Xi(l)◦/X (l − 1)i

)1/k

= lim
k

(
k⊗

l=K

"ii ◦θ l

)1/k

= ∞ a.s.,

whereK is the coupling time ofXi (k + 1)◦/Xi(k) with its stationary regime. This is in
contradiction with (7.88). Therefore"ii is integrable and necessarily of mean valueu.

Theuniqueness property follows from Corollary 7.63.

Remark 7.68 The only general statement whichcanbemadeconcerning integrability
is as follows: ratios of the formxi (k + 1)◦/xi (k) are always integrable, whereas ratios
of the formx j (k + 1)◦/xi(k), wherei and j belong to different m.s.c.s.’s, sayi ∈ Vm

and j ∈ Vn with m 
= n, maybe finite and nonintegrable.
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7.4.5 Multiplicative Ergodic Theorems inRmax

We are now in a position to answer the eigenpair problem associated with Equa-
tion (7.54) and stated in (7.68). The notations concerning the m.s.c.s.’s ofA and D
are those of Theorem 7.67.

Theorem 7.69 Under the statistical assumptions of §7.4.4.1, if the stability condition⊕NA
n=1 a(n) < u is satisfied, there exist a unique finite random eigenvalue λ and a unique

finite random eigenvector X ∈ R
m+n, with X1 = e, and such that (7.68) holds.

Proof Owing to (7.67), we know that the restrictionD(1),(1) = U+ of D to the firstm
coordinates, satisfies the eigenpair property

D(1),(1)u = λu◦θ ,

for a uniquely defined finite eigenpair(λ, u), with u1 = e. Therefore, the firstm
coordinates ofX andλ areuniquely defined, and in particularX (1) = u.

Let " be then×m random matrix of Lemma 7.44 (the finiteness of" is obtained
from Theorem 7.56). Lety be theR

n vectordefined by

y◦θ def= ("u)◦/λ , (7.89)

so that"u = λy◦θ . When multiplying (7.61) byu, weobtain

λy◦θ = A"◦θ−1U−◦θ−1u ⊕ B(U+U−)◦θ−1u . (7.90)

In viewof the definition ofU+, we have

U+U− = λu◦θ
u

u

λu◦θ
= u◦θ

u◦θ
.

Therefore(U+U−)◦θ−1u = u. Similarly,

"◦θ−1U−◦θ−1u = "◦θ−1 u◦θ−1

λ◦θ−1u
u = y .

Thus, the right-hand side of (7.90) readsAy ⊕ Bu, and we conclude the proof of the
existence part by takingX (>1) = y.

Theuniqueness property follows from the following observations: ifX andX ′ are
two different eigenvectors, they can only differ through their last coordinates (i.e. the
coordinates corresponding to(> 1)), sinceu andλ areuniquely defined. Then there
exist two different vectorsy andy′ in R

n suchthat

λy◦θ = Ay ⊕ Bu , λy′◦θ = Ay′ ⊕ Bu .

By defining

"
def= λ

y◦θ
u

, "′ def= λ
y′◦θ

u
,

we obtain twodifferent finite matrices which are easily shown to satisfy Equation (7.61).
Since this equation has a unique finite solution, we reach a contradiction.



348 Synchronization and Linearity

We conclude this subsection by the following rewriting of the coupling property of
Theorem 7.67, which holds wheneverU+(k) is stationary, and which generalizes The-
orem 7.18.

Theorem 7.70 If the stability condition
⊕NA

n=1 a(n) < u is satisfied, and if the matrices
U+(k) are θ-stationary, then for all finite random initial conditions X (0) with X1(0) =
e, a finite integer-valued random variable K exists, such that for all k ≥ K ,

X (k + 1) = D(k) . . . D(1)D(0)X (0) = λ◦θk . . . λ◦θλX ◦θk+1 , (7.91)

where (X, λ) is the eigenpair of Theorem 7.69.

Proof Owing to the coupling property of Theorem 7.67, we have thatX (k)◦/X1(k)
couples in finite time withX ◦θk . Weobtain (7.91) by⊗-multiplying the equality

X (k)◦/X1(k) = X ◦θk ,

whichholds fork greater than the couplingtime K , by

λ◦θk−1 . . . λ = X1(k)

X1(k − 1)
. . .

X1(1)

X1(0)
,

and by using the assumption thatX1(0) = e.

7.5 Second-Order Theorems; Autonomous Case

The equation of interest in this section is

x(k + 1) = A(k)x(k) , k ≥ 0 , (7.92)

with initial conditionx0, wherex(k) andA(k) have their entries ina dioid D.

7.5.1 Ratio Equation

As in the preceding sections, the basic process of interest is the ratio process1

δ(k; x0) = x(k + 1; x0)

x(k; x0)
. (7.93)

The aim of this subsection is to determine the condition under which this process admits
a stationary regime where

δ(k) = δ◦θk , k ≥ 0 , (7.94)

and toquantify the nature of the convergence ofδ(k; x0) to this regime.
1We will use the same symbolδ(·) to represent this ratio process and the one defined in Equation (7.56)

in the nonautonomous case; the context should help determining which one is meant; in this section, the
optional argument ofδ(k) will be x0.
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Lemma 7.71 The state variables δ(k; x0) satisfy the inequalities

δ(k + 1; x0) ≥ A(k + 1)δ(k)

A(k)
, k ≥ 0 , (7.95)

with the initial condition

δ(0; x0) = A(0)x(0)

x(0)
. (7.96)

Proof We have

δ(k + 1) = x(k + 2)

x(k + 1)
= A(k + 1)x(k + 1)

A(k)x(k)

= (A(k + 1)x(k + 1)) ◦/x(k)

A(k)

≥ A(k + 1) (x(k + 1)◦/x(k))

A(k)
,

where we successively used (f.9) and (f.12) in the second and the third relations.

Example 7.72 Consider thecase of matrices with entries inRmax; matrix A(k) is such
that

Ai j (k) 
= ε , ∀i, j = 1, . . . , n , k ≥ 0 .

In Rmax, if A and B are finite n × n matrices, then × n matrix X = A◦/B is given by
the relation

Xi j =
n∧

k=1

Aik ◦/B jk , ∀i, j = 1, . . . , n (7.97)

(see Equation (4.82)). Using this relation and the finiteness assumption onA(k), we
directly obtain that for allk ≥ 1, i, j = 1, . . . , n,

δ j i (k + 1; x0) = x j(k + 2; x0)◦/




n⊕

g=1

Aig(k)xg(k; x0)





=
n∧

g=1

(
x j(k + 2; x0)◦/

(
Aig(k)xg(k; x0)

))

=
n∧

g=1

n⊕

h=1

(
A jh(k + 1)δhg(k; x0)

)
◦/Aig (k)

=
n∧

g=1

(A(k + 1)δ(k; x0)) jg ◦/Aig (k)

=
(

A(k + 1)δ(k; x0)

A(k)

)

j i

.

The following lemma is proved exactly in the same way as Lemma 7.40.
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Lemma 7.73 The least solution of (7.95) is also the solution of the set of equations

δ(k + 1; x0) = A(k + 1)δ(k; x0)

A(k)
, (7.98)

with the initial condition δ(0; x0) = (A(0)x(0))◦/x(0).

7.5.2 Backward Process

The statistical assumptions onA(k) are those of§7.3.1. The dioidD is assumed to be
complete.

Theorem 7.74 Under the above assumption, Equation (7.98) has a θ-stationary sub-
solution in the sense that there exists a random variable " satisfying the relation

"◦θ ≤ A◦θ"
A

. (7.99)

This subsolution is a solution if the right division x �→ x◦/b is l.s.c.

The proof is based on the backward process defined by

"(0) = A , "(k + 1)◦θ = A◦θ"(k)

A
, k ≥ 0 . (7.100)

Lemma 7.75 The sequence {"(k)} is nondecreasing.

Proof By using (f.6), we obtain

"(1)◦θ = A◦θ A

A
≥ A◦θ ,

so that"(1) ≥ "(0). Assume"(k) ≥ "(k − 1), for k ≥ 1. Then

"(k + 1)◦θ = A◦θ"(k)

A

≥ A◦θ"(k − 1)

A
= "(k)◦θ ,

where we used the isotony of the mappingx �→ (ax)◦/b.

Proofof Theorem 7.74Fromthe preceding lemma, we obtain that the sum

"
def=
⊕

k≥0

"(k) (7.101)
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exists sinceD is assumed to be complete. By summing up the equations in (7.100) and
by using the nondecreasingness of"(k) and the fact that the mappingx �→ (ax)◦/b is
isotone, we directly obtain

" =
⊕

k≥1

"(k)◦θ =
⊕

k≥0

A◦θ"(k)

A
≤ A◦θ"

A
.

If the mappingx �→ (ax)◦/b is l.s.c., there is equality in the last relation. A sufficient
condition for this is that the right division operatorx �→ x◦/b be l.s.c.

The subsolution" satisfies the followingextremal property.

Lemma 7.76 The random variable " is less than or equal to any solution of (7.99)
greater than or equal to A.

Proof Let % be an arbitrary solution of (7.99) such that% ≥ A = "(0). If % ≥ "(k),
we obtain

%◦θ = A◦θ%
A

≥ A◦θ"(k)

A
≥ "(k + 1)◦θ .

Thus,% ≥ ".

As in the nonautonomous case, the question of finiteness of the minimal (sub)solution
" will only be addressed in specific dioids. However, we have the following general
bound.

Lemma 7.77 For all k ≥ 1,

"(k)◦θ ≤ A◦θ A . . . A◦θ−k+1

A . . . A◦θ−k+1
.

Proof The bound clearly holds fork = 1, in view of the definition. Assume it is true
for k ≥ 1. Then

"(k + 1)◦θ = A◦θ"(k)

A

≤ A◦θ
((

AA◦θ−1 . . . A◦θ−k
)
◦/
(

A◦θ−1 . . . A◦θ−k
))

A

≤
(

A◦θ A◦θ−1 . . . A◦θ−k
)
◦/
(

A◦θ−1 . . . A◦θ−k
)

A

= A◦θ A◦θ−1 . . . A◦θ−k

AA◦θ−1 . . . A◦θ−k
,

where we used (f.12) and (f.9) toobtain the last two relations.
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7.5.3 From Stationary Ratios to Random Eigenpairs

In this subsection we make use of the following inequalities which hold in any dioidD.

Lemma 7.78 For all x ∈ D,

x ≤ e

x ◦\e and x ≤ e

e◦/x
. (7.102)

Proof When taking x = e and a = x in Formula(f.5) of Table 4.1, we obtain
x(x ◦\e) ≤ e, which immediately implies the first relation in view of the definition
of the residuation of right multiplication. The second relation is obtained in the same
way.

The results of this subsection are concerned with Equation (7.92) in a general dioidD,
whereA(k) = A◦θk .

Theorem 7.79 Assume that the ratio equation associated with (7.92) admits a station-
ary subsolution " in D such that

"◦θ ≤ A◦θ"
A

, (7.103)

and such that

" = Ax

x
, (7.104)

for some x in D. Then there exists a right super-eigenpair (λ, X) such that

AX ≥ X ◦θλ . (7.105)

Proof Let y = Ax . From (7.103), (f.12) and (f.9), we obtain

"◦θ ≤ A◦θ(y◦/x)

A
≤ (A◦θy)◦/x

A
= A◦θy

Ax
= A◦θy

y
.

Therefore"◦θy ≤ A◦θy, that is,(y◦θ)◦/(x◦θ)y ≤ A◦θy. By using (7.102), we obtain
x◦θ ≤ (e◦/x◦θ) ◦\e, so that

A◦θy ≥ y◦θ
(e◦/x◦θ) ◦\e y ≥ y◦θ

e

e

x◦θ
y ,

where we used (f.11) inorder to obtain the last relation. Sincex◦/e = x , we finally
obtain

A◦θy ≥ y◦θ
( e

x◦θ

)
y .

When taking

X = (Ax)◦θ−1 (7.106)
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and

λ = e

x
X , (7.107)

we directly obtain (7.105).

Remark 7.80 The terminology which is used in the preceding theorem comes from
thecase when the dioid of interest is a matrix dioid associated with some scalar dioid
D. In thiscase, it is easily checked from (4.82) that ifA is n × n andx(k) n× 1, then
λ, defined in (7.107), is a scalar andX , defined in (7.106), is ann × 1 matrix.

7.5.4 Finiteness and Coupling inRmax; Positive Case

In this subsection,D = Rmax. By using (7.97), it is easilychecked that the right-
division operator of matrices with finite entries inRmax is l.s.c., so that the subsolu-
tion" of Theorem 7.74 is a solution. The statistical assumptions are those of the pre-
vious section. In addition, we assume thatA is positive in the sense thatAi j (k) ≥ e for
all i, j = 1 . . . , n. More general conditions will be considered in the next subsection.

7.5.4.1 Finiteness of the Minimal Stationary Solution

We start with a few preliminary lemmas.

Lemma 7.81 For all initial conditions x0, and all k ≥ 0, δ(k; x0) satisfies the bounds

A(k) ≤ δ(k; x0) , (7.108)

and for all k ≥ 1,

|δ(k; x0)|⊕ ≤ |A(k)|⊕ |A(k − 1)|⊕ . (7.109)

Proof Assume that for somek ≥ 0, δ(k; x0) ≥ A(k); this is true fork = 0 in view of
(7.96) and (f.6)which imply that

δ(0) = A(0)x0

x0
≥ A(0) .

Then

δ(k + 1; x0) = A(k + 1)δ(k; x0)

A(k)
≥ A(k + 1)A(k)

A(k)
≥ A(k + 1) ,

where we successively used the isotony of the mapping x �→ (ax)◦/b and(f.6). This
completes the proof of the lower bound.

As for the upper bound, letδ−(k; x0) be the matrix

δ−(k; x0) = x(k)

x(k + 1)
, k ≥ 0 .
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For all k ≥ 1, we have

δ−(k; x0) = x(k)

A(k)A(k − 1)x(k − 1)
= x(k)◦/x(k − 1)

A(k)A(k − 1)

= δ(k − 1; x0)

A(k)A(k − 1)
≥ A(k − 1)

A(k)A(k − 1)
,

where we successively used (f.9) and the lower bound onδ(k). Since weare inRmax,

this reads (see Equation (4.82))

xi (k)◦/x j(k + 1) ≥
n∧

l=1

Ail (k − 1)◦/ (A(k)A(k − 1)) jl ,

which can be rewritten as

x j (k + 1)◦/xi (k) ≤
n⊕

l=1

(A(k)A(k − 1)) jl ◦/Ail (k − 1) .

SinceAil (k − 1) ≥ e for all i, l, we finally obtain

|δ(k)|⊕ ≤
n⊕

j,l=1

(A(k)A(k − 1)) jl

= |A(k)A(k − 1)|⊕ ≤ |A(k)|⊕ |A(k − 1)|⊕ ,

which concludes the proof of the upper bound.

Lemma 7.82 For all k ≥ 0, the random variable "(k) satisfies the bounds

A ≤ "(k) , (7.110)

and

|"(k)|⊕ ≤ |A|⊕
∣∣A◦θ−1

∣∣
⊕ . (7.111)

Proof The fact that"(k) ≥ A is clear since"(k) is nondecreasing and"(0) = A. In
order to prove the upper bound in (7.111), we first establish the property that for allx0,

"(k) ≤ δ(k; x0)◦θ−k , k ≥ 0 . (7.112)

The proof is by induction; the property holds fork = 0, in view of (7.108) considered
for k = 0. By assuming it holds for somek ≥ 0, we then obtain

"(k + 1)◦θ = A◦θ"(k)

A
≤ A◦θδ(k; x0)◦θ−k

A

= A◦θk+1δ(k; x0)

A◦θk
◦θ−k = δ(k + 1; x0)◦θ−k ,
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which concludes the proof of (7.112). From (7.112) and (7.109), we immediately ob-
tain that

|"(k)|⊕ ≤ |δ(k; x0)|⊕ ◦θ−k ≤ |A|⊕
∣∣A◦θ−1

∣∣
⊕ , ∀k ≥ 0 .

By putting together the results obtained in this section, we see that the nondecreasing
and bounded sequence{"(k)} necessarily converges to a finite and integrable limit.

Theorem 7.83 In Rmax, if A is integrable and such that Ai j ≥ e for all i, j, the equa-
tion

"◦θ = A◦θ"
A

(7.113)

always admit the limiting value " of the sequence {"(k)} as a finite and integrable
solution. Any other solution of (7.113) is bounded from below by ".

However, the situation is slightly different from the one encountered in the nonau-
tonomous case: in particular, the equality in law"(k) = δ(k)◦θ−k has no reason to
hold here (because it is not true in general that we can takeδ(0) = "(0)). Therefore,
nothing ensures a priori thatδ(k) converges weakly to" ask goes to∞; theonly thing
which weknow from Lemma 7.76 is that any stationary regime of the ratio process is
bounded from below by". The conditions under which this minimal solution can be a
weak limit for the ratio process are the main focus of the following subsections.

7.5.4.2 Reachability

Defini tion 7.84 (Direct reachability) A stationary solution " of (7.113) is directly
reachableif there exists an initial condition x0 for which the ratio process defined in
(7.93) coincides with the stationary process {"◦θk }, in the sense that

δ(k; x0) = "◦θk , k ≥ 0 .

Lemma 7.85 The stationary solution" of (7.113) is reachable if and only if the system
of equations

" = Ax

x
(7.114)

has a finite solution x ∈ R
n with x1 = e. If such a solution exists, it is unique.

Proof If such a solution exists, the ratio process (7.98) can then be made stationary by
adoptingx0 = x asthe initial condition (see (7.96)). It is clear that there is no loss of
generality in assuming thatx1 = e. We now prove that (7.114) has at most one finite
solution with x1 = e. Indeed, for alln-dimensional column vectorsa andb with finite
entries inRmax, the relation

a◦/b

a◦/b
= b

b
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holds (use (4.82) repeatedly). Therefore,

x =
( x

x

)

·1
=
(

Ax◦/x

Ax◦/x

)

·1
=
(

"

"

)

·1
,

so thatx is uniquely defined from".

Remark 7.86 Using theconstruction in the preceding proof, it is easy to check that
the set {

ω

∣∣∣∣ ∃x(ω) ∈ R
n : x1(ω) = 0, "(ω) = A(ω)x(ω)

x(ω)

}

canberewritten as
{
ω

∣∣∣∣ "(ω) = A(ω) ("(ω) ◦\"(ω))·1
("(ω) ◦\"(ω))·1

}
, (7.115)

where its measurability becomes more apparent.

Similarly, a stationary solution" of (7.113) is said to bereachable by coupling if there
exists an initial conditionx0 and afinite random variableK suchthatδ(k; x0) = "◦θk ,
k ≥ K . The aim of the following subsections is to give sufficient conditions under
which theminimal stationary solution of Theorem 7.74 satisfies the above reachability
properties.

7.5.4.3 Conditions for Reachability

For k ≥ 0, letA(k) denote the event

A(k)
def=
{
ω

∣∣∣∣ ∃x ∈ R
n : "(k) = Ax

x

}
, (7.116)

where"(k) is thenondecreasing backward process defined in (7.100), and letA be the
event

A def=
{
ω

∣∣∣∣ ∃x ∈ R
n : " = Ax

x

}
, (7.117)

where" is the a.s. limit of"(k). The following notation will be used in what follows:
for all eventsB, B◦θ will denote the setB◦θ = {ω ∈ � | 1B◦θ(ω) = 1}.
Lemma 7.87 For all k ≥ 0, A(k) is included in A(k+1)◦θ and A is included in A◦θ.

Proof For ω ∈ A(k), there exists a finite random vectorx suchthat"(k) = Ax◦/x .
Hence,

"(k + 1)◦θ = A◦θ"(k)

A
= A◦θ (Ax◦/x)

A

= (A◦θ Ax) ◦/x

A
= A◦θ Ax

Ax
(from (f.12) and (f.9))

= A◦θ ("(k)) ·1
("(k)) ·1

,
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so thatθ(ω) belongs toA(k + 1) (takex = ("(k)) ·1 ◦θ−1). The proof of the second
inclusion is similar.

Lemma 7.88 If P[A(k)] > 0 for some k, then lim supk→∞A(k) = � a.s.

Proof If P[A(k)] > 0 for somek ≥ 0, the ergodic assumption implies that

lim
h→∞

(
h∑

m=1

1{A(k)}◦θ−m

)
/h = P[A(k)] > 0 a.s.,

so that necessarilylim supm→∞A(k)◦θ−m = � a.s. From Lemma 7.87, we obtain by
an immediate induction that for allm ≥ 0, A(k + m) ⊇ A(k)◦θ−m . Thus, the last
relation implies that lim supk→∞A(k) = � a.s.

Lemma 7.89 If P[A(k)] > 0 for some k, then P[A] = 1.

Proof Let H be the subset ofRn×n defined by

H =
{
" ∈ R

n×n

∣∣∣∣ ∃x ∈ R
n : " = Ax

x

}
.

When using (7.115), we obtain the equivalent representation

H =
{
" ∈ R

n×n

∣∣∣∣ " =
A (" ◦\")·1
(" ◦\")·1

}
,

from which it is immediate thatH is a closed subset ofRn×n. Owing to Lemma 7.88, if
P[A(k)] > 0 for somek, then for almost allω ∈ � there exists a sequence of integers
kn ↑ ∞ suchthatω ∈ A(kn ) or equivalently such that"(kn ) ∈ H for all n ≥ 1. Since
H is closed, the a.s. limit" of "(kn ) whenn goes to∞ is also inH, so thatω ∈ A.

Let h� be a fixed integersuch that 1≤ h� ≤ n, and letB be the event

B = {A◦θ·h� Ah� · = A◦θ A} , (7.118)

or equivalently,

B =
{

A jh� ◦θ Ah� i =
n⊗

h=1

A jh ◦θ Ahi , ∀i, j = 1, . . . , n

}
. (7.119)

Theorem 7.90 If there exists h� such that P[B] > 0, the stationary regime defined by
" is directly reachable.

Proof If a is ann-dimensional row (respectively column) vector withfinite entries in
Rmax, then wecan use the group structure of⊗ to write

a = e

a ◦\e
(

respectively a = e

e◦/a

)
,
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wheree is 1× 1. If c is a scalar, we havec = e◦/(e◦/c). OnB, we therefore have

"(1)◦θ = A◦θ A

A
= A◦θ·h� Ah� ·

A
= A◦θ·h� (e◦/ (Ah� · ◦\e))

A

= A◦θ·h� ◦/ (Ah� · ◦\e)
A

= A◦θ·h�

A (Ah� · ◦\e) .

In these equalities, we used (f.12) in order to obtain the fourth equality, and (f.9) in
order to obtain the last one. Both are equalities becauseD = Rmax and the entries of
the matrices which are dealt with are finite.

Let Z = A (Ah� · ◦\e). OnB, we have

A◦θZ = A◦θ A
e

Ah� ·
= A◦θ·h� Ah� ·

e

Ah� ·
= A◦θ·h� .

Therefore, onB,

"(1)◦θ = A◦θ·h�

Z
= A◦θZ

Z
,

so thatB ⊂ A(1)◦θ . Theproof is immediately concluded from Lemma 7.89.

Remark 7.91 Consider the particular case of an autonomous event graph for which
the random variablesα j (k) are mutually independent. It is easily checked that a suf-
ficient condition forP[B] > 0 is that there exists one transition inQ′ such that all the
places which follow it have holding times with an infinite support. As we will see in
Example 7.92, weaker conditions, like for instance having one transition followed by
at least one place with infinite holding times, may be enough to ensure this property.

As in the nonautonomous case, there is no reason for the initial condition, the
existence of which is proved in Theorem 7.90, to be compatible.

Example 7.92 (Manufacturing blocking) Consider a closed cyclic network ofn ma-
chines. There are no intermediate buffers between machines. The migration of items
is controlled by manufacturing blocking, as defined in Example 7.65: when an item is
finished in machine j , 0≤ j ≤ n− 1, it enters machines( j ) = ( j + 1) modn if s( j )
is empty. Otherwise it is blocked inj until s( j ) is empty. In this example, all machine
indices are understood to be modulon.

A network of this type, withn = 3, is described by the timed event graph of
Figure 7.4. The interpretation of the various types of places and transitions is the
same as in Example 7.65. The only nonzero holding times are those inp j1, j =
0, . . . , n, which will be denotedα j(k), representing the service time of thek-th item
in machine j . Let µ j denote the initial number of items inp j1. It is assumed that
µ j = 0 or 1, that

0 <

n−1∑

j=0

µ j < n ,

and that ifµ j = 0, then there is an initial token in placep j2 and in placep j3.
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Figure 7.4: Closed manufacturing blocking

The state variables are the firing times of the transitions followed by at least one
placewith a nonzero initial marking, namely

x j (k) =
{

x j1 if µ j = 1 ;

x j2 if µ j = 0 .

The initial lag times are assumed to be compatible, and are given under the form of the
vectorz ∈ (R+)n, wherez j represents the lag time of the initial item in machinej if
µ j = 1, and the lag times of the two tokens inp j2 and p j3 otherwise. Inthe first case,
z j can be seen as the epoch when machinej starts working. In the second one,z j is
the time when some past workload of machinej has been completed.

Let r( j ) be the number of machines to the right ofj suchthatµ j = 1, plus 1 and
let l( j ) be the number of machines to the left ofj suchthatµ j = 0, plus 1. It is easily
checked that then× n matrix A(k) is given by the relation

A ji (k) =






⊗ j−µ j

h=i αh(k + 1) if i ∈ { j − l( j ), . . . , j − 1} ;

αi (k + 1) if i ∈ { j, . . . , j + r( j )− 1} and

i /∈ { j − l( j ), . . . , j − 1} ;

e if i = j + r( j ) and

i /∈ { j − l( j ), . . . , j − 1} ;

ε otherwise,

that the precedence graph is strongly connected, and that under the condition of Theo-
rem 7.90, the ratios of the formx j (k+1)◦/xi (k), i, j = 0, . . . , n−1, admit a stationary
regime which is reached with coupling regardless of the initial condition.

For the example of Figure 7.4,A(k) reads

A(k) =



α0(k + 1) α1(k + 1)α2(k + 1) α2(k + 1)
α0(k + 1) α1(k + 1) e
α0(k + 1) α1(k + 1)α2(k + 1) α2(k + 1)



 . (7.120)
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Matrix A being positive, we can directly apply Theorems 7.90 and 7.93. The condition
P[B] > 0 is satisfied if the random variablesα j(k) are mutually independent and if one
of the distribution functionsS0 andS1 has an infinite support, whereS j(t) = P[α j ≤ t ],
t ∈ R

+.

7.5.4.4 Coupling

The main result of this subsection is the following theorem.

Theorem 7.93 If there exists h� such that P[B] > 0, the stationary sequence {"◦θk}
is the unique stationary solution of (7.98). For any initial condition x0, the sequence
{δ(k; x0)} couples with this stationary sequence.

Proof Let C(k), k ≥ 1, be the event

C(k) = {A(k + 1)x(k + 1) = A·h� (k + 1)xh� (k + 1)} .

We first prove that on the eventC(k), the relation

δ(k + 1) = A·h� (k + 1)

A(k) (δh�·(k) ◦\e)
(7.121)

holds. OnC(k), we have indeed

δ(k + 1) = A(k + 1)x(k + 1)

A(k)x(k)
= A·h� (k + 1)xh� (k + 1)

A(k)x(k)

= A·h� (k + 1) (e◦/ (e◦/xh� (k + 1)))

A(k)x(k)
= A·h� (k + 1)

A(k)x(k) (e◦/xh� (k + 1))

= A·h� (k + 1)

A(k) (x(k)◦/xh� (k + 1))
= A·h� (k + 1)

A(k) (δh� ·(k) ◦\e)
.

Therefore, onC(k),

δ(k + 2) = A(k + 2)x(k + 2)

x(k + 2)
= A(k + 2)

x(k + 2)

x(k + 2)

= A(k + 2)
δ·1(k + 1)

δ·1(k + 1)
= A(k + 2)

A·h� (k + 1)

A·h� (k + 1)
,

where the last relation follows from (7.121). This last formula shows that on the
eventC(k), regardless ofx0,

δ(k + 2; x0) = φ(A(k + 1), A(k + 2)) , (7.122)

whereφ is a measurable function which we will not need in explicit form.
If we can show that for allk, D◦θk ⊂ C(k), whereD is an event ofpositive prob-

ability, then Equation (7.122) implies thatδ(k)◦θ−k couples with a uniquely defined
finite stationary sequence. This result is a direct consequence of Borovkov’s renovat-
ing events theorem (Theorem 7.107 shows thatC(k) is a renovating event of length 2).
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The second stepof the proof consists in showing thatB◦θk ⊂ C(k). In order to do so,
we first prove that

B ⊂
{

A
e

Ah� ·
≤ A◦θ·h�

A◦θ

}
. (7.123)

The propertyA◦θ A = A◦θ·h� Ah� · implies thatA◦θ A (Ah� · ◦\e) = A◦θ·h� , which in turn
implies that A (Ah� · ◦\e) ≤ (A◦θ ◦\A◦θ·h� ), where we used the very definition of left
division in order to obtain the last implication. This immediately implies (7.123).

Weare now in a position to conclude the proof by showing that

B◦θk ⊂ C(k) . (7.124)

Inequality (7.109) implies

x(k + 1)

x(k + 1)
= x(k + 1)

A(k)x(k)
= δ(k)

A(k)
≥ A(k)

A(k)
.

Therefore, for allh,
xh(k + 1)

x(k + 1)
≥ Ah· (k)

A(k)
,

or, equivalently,

x(k + 1)

xh(k + 1)
≤ A(k)

e

Ah· (k)
. (7.125)

On the eventB◦θk

A(k + 1)A(k) = A·h� (k + 1)Ah� ·(k) .

By using (7.123) and (7.125), we therefore obtain that on this event,

x(k + 1)

xh� (k + 1)
≤ A(k)

e

Ah� ·(k)
≤ A·h� (k + 1)

A(k + 1)
.

From the very definition of left division, the last relation implies that

A(k + 1)
x(k + 1)

xh� (k + 1)
≤ A·h� (k + 1) ,

so that

A(k + 1)x(k + 1) ≤ A·h� (k + 1)xh� (k + 1) .

which concludes the proof of (7.124). Therefore, there exists a stationary sequence of
renovating events of length 2. The coupling property is then a direct application of
Borovkov’s Theorem.
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7.5.5 Finiteness and Coupling inRmax; Strongly Connected Case

The assumptionsof this subsection are the same as in§7.5.4, except for the positiveness
assumption which is replaced by the assumption that the precedence graph ofA has a
deterministic topology (namely the entries which are equal toε with a positive proba-
bility are a.s. equal toε) and is strongly connected. We also make the usual assumption
that the diagonal entries are nonvanishing. Under these assumptions, the matrices

E(k)
def= A(nk + n− 1)A(nk + n− 2) . . . A(nk + 1)A(nk) , k ∈ Z ,

are such that Ei j (k) ≥ e for all pairs(i, j ) (this follows from Remark 7.30 and from
the fact thatE(k) = G(nk). In this subsection, it will also be assumed that the shift

�
def= θn

is ergodic (the ergodicity ofθ does not grant the ergodicity ofθk, k > 1, in general).

Observe thatE(k) = E◦�k , whereE
def= E(0).

Let X (k) ∈ R
n be defined by the relation

X (k) = x(nk) , k ≥ 0 . (7.126)

It is easily checked from (7.92) that the state variablesX (k) satisfy the relation

X (0) = x(0) , X (k + 1) = E(k)X (k) , k ≥ 0 . (7.127)

Following our usual notation, we will stress the dependence on the initial condition

x0
def= x(0) by writing X (k; x0) when needed.

Theorem 7.94 Under the assumption that there exists h� such that

P [E◦�·h� Eh� · = E◦θE ] > 0 , (7.128)

the ratios δ(k) = x(k + 1)◦/x(k) also admit a stationary regime {δ◦θk}. This stationary
regime is unique, integrable and directly reachable. Whatever the initial condition x0,
δ(k; x0) couples with it in finite time.

Proof Under Assumption (7.128), the ratio processX (k + 1)◦/X (k) couples with a
stationary regime"◦�k , which is directly reachable (Theorems 7.90 and 7.93). There-
fore, the equation

" = Ex

x
(7.129)

has auniquesolution satisfying the conditionx1 = e. From the very definition, taking
x asthe initial condition makes the ratios

"(k; x)
def= x((k + 1)n; x)

x(kn; x)



7.5. Second-Order T heorems; Autonomous Case 363

stationary ink, and moreprecisely such that"(k; x) = "◦�k , k ≥ 0. Therefore, the
ratios x((k + 1)n+ 1; x)◦/x(kn+ 1; x) are stationary ink, ascanbeseenwhenwriting
themas

x((k + 1)n+ 1; x)

x(kn + 1; x)
= A((k + 1)n)x((k + 1)n)

A(kn)x(kn)

= A((k + 1)n)x((k + 1)n)◦/x(kn)

A(kn)x(kn)

= A((k + 1)n)"(k, x)

A(kn)x(kn)
,

and when using the stationarity of"(k; x). But this ratio process is the one generated
by the event graph when taking{A(k)◦θ}k≥0 as the timing sequence, andy asthe initial
condition, wherey = x(1; x)◦/x1(1; x). In view of theuniqueness property mentioned
in Theorem 7.93 we immediatelyobtain thatx(n+1; x)◦/x(1; x) = "◦θ . Sincey1 = e,
this in turn implies thaty = x◦θ , owing to the uniqueness property mentioned in
Lemma7.85.

We show thatthe ratio processδ(k; x) satisfies (7.94). We have

δ(1; x) = A(1)x(1)

x(1)
= A(1)

x(1)

x(1)

= A(1)
x(1)◦/x1(1)

x(1)◦/x1(1)
= A◦θ

x

x
◦θ = Ax

x
◦θ

= δ(0; x)◦θ , (7.130)

so thatδ(k; x) satisfies (7.94) fork = 1. In addition,δ(k) satisfies the equation

δ(k + 1) = A(k + 1)x(k + 1)

A(k)
= A(k + 1)δ(k)

A(k)
.

From this relation and (7.130), we prove by an immediate induction thatδ(k) satisfies
(7.94) for allk ≥ 0.

One proves in the same way that the coupling of the ratios"(k) with a uniquely de-
fined stationary process implies the same property forδ(k). Theintegrability property
follows from the integrability ofx and of thefinite entries ofA andfrom the relation
δ(0; x) = Ax◦/x .

Remark 7.95 If we replacen in (7.126) by another integern′, such that

• (G(n′k)i j ≥ e for all i, j = 1, . . . , n (this condition is satisfied for alln′ ≥ n);

• θn′ is ergodic,

then the whole construction is unchanged. As a consequence, whenever the variables
A associated withn do not satisfy the reachability and coupling conditions of Theo-
rems 7.90 and 7.93, we still have the option to test this condition on the variablesA′

associated withn′.
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7.5.6 Finiteness and Coupling inRmax; General Case

The framework is the same as in§7.5.5, butA is not supposed to have a strongly
connected precedence graph anymore. The notations concerning the decomposition of
the precedence graph into m.s.c.s.’s are those of the end of§7.3.5. In particular, we will
number the source subgraphs 1, . . . , N0 and the nonsource onesN0 + 1, . . . , N .

We know from§7.5.5 that the stationary regime of the ratio process of the source
subgraphs can be constructed using the techniques developed there. The only remain-
ing problem consists in the construction of the stationary regime of nonsource sub-
graphs.

Consider first the case when the reduced graph has a single source, namelyN0 = 1,
and assume that itsatisfies the assumption of Theorem 7.94. Then we obtain from this
theorem that the ratiosx(1)(k+1)◦/x(1)(k) couple in finite time with a stationary, ergodic
and integrable processδ(1)◦θk , which satisfies thepropertyE

[(
δ(1)
)

ii

] = a(1), where
a(1) is the maximal Lyapunov exponent associated withA(1). The same technique as
in the general nonautonomous case (see§7.4.4.5) allows us to prove the following
theorem.

Theorem 7.96 If A(1) satisfies the assumptions of Theorem 7.94, and if the condition⊕N
n=2 a(n) < a(1) holds true, then a unique finite random matrix δ exists such that

the ratio process δ(k) = x(k + 1)◦/x(k) couples in finite time with the stationary and
ergodic process δ◦θk , regardless of the initial condition. If

⊕N
n=2 a(n) > a(1), let n0

be the first n ∈ {2, . . . , N} such that a(n) > a(1). Then all ratios of the form δ j i(k),
j ∈ Vn0 , i ∈ Vm, m ∈ π+(n0) tend to∞ a.s. for all initial conditions.

Remark 7.97 Nothing general can be said with respect to the critical case, namely
when
⊕

n≥2 a(n) = a(1) (e.g. queuing theory).

Consider now the case when the reducedgraph has several sources, namelyN0 >

1. If the sources have different cycle times, it is clear that some of the ratios of the
processesx j(k), j ∈ Vn , n = 1, . . . , N0, canneither be made stationary nor couple
with a stationary sequence. Even if all these m.s.c.s.’s have the Lyapunov exponents,
nothing general can be said about the stationarity of the variablesδi j (k) for j ∈ Vn ,

i ∈ Vm, m, n = 1, . . . , N0, m 
= n, as exemplified inthe following simple situation.

Example 7.98 Consider a timed event graph with three recycled transitionsq1, q2 and
t and five placesp1, p2, p′1, p′2 andr. Placepi (respectively r) is theplace associated
with the recycling ofqi , i = 1, 2 (respectively t ) and p′i is the place connectingqi to t
(see Figure 7.5). Within the terminology of Example 7.37, this system is ajoin queue
with one server (transitiont ) and with two sources (transitionsq1 andq2). This example
can be seen as the simplest assembly problem in manufacturing: engines are produced
by q1 and carbodies byq2, whereast is the assembly machine. With our terminology,
we have two source m.s.c.s.’sGi , with Vi = {qi } andEi = (qi , qi), i = 1, 2, andone
nonsource subgraphG3, with V3 = {t} andE3 = (t, t). Assume the holding times inr,
p′1 and p′2 are zero and that the holding times inp1 and p2 are mutually independent
i.i.d. sequences{α1(k)} and{α2(k)} with common meanλ. If the variablesα1(k) and
α2(k) are deterministic, the ratiosx1(k+1)◦/x2(k) (with obvious notation) are stationary
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Figure 7.5: Counterexample

and finite whatever the initial condition. However, if the two sequences are made of
exponentially distributed random variables with parameterλ, these ratios form anull
recurrent Markov chain onR which admits no invariant measure with finite mass, so
that theycannot be made stationary.

This example can also be formulated as a nonautonomous system with a two-
dimensional input vector(u1(k), u2(k)) whenever we remove the recycling placepi

associated with transitionsqi , and replace it by an input functionui (k), i = 1, 2. In
this formulation we see that in the exponential case (i.e.u1(k) andu2(k) are theepochs
of two independent Poisson processes with the same intensity), the matricesU+(k) and
U−(k) do not satisfy the assumptions of§7.4.4.1 (although the diagonal terms of these
matricesare stationary and integrable, the nondiagonal terms do not couple with finite
stationary processes). We see that in this case, our second-order theorems do not apply.

7.5.7 Multiplicative Ergodic Theorems inRmax

We will limit ourselves to the case whenA is positive (see§7.5.4).

Theorem 7.99 If the event B = {ω | ∃h� : A◦θ A = A◦θ·h� Ah� ·} has a positive prob-
ability, then there exists a unique finite eigenpair {λ, X }, with X1 = e and such that
AX = λX ◦θ . This eigenpair is integrable, and

E[λ] = a , (7.131)

where a is the maximal Lyapunov exponent of A. In addition, the following coupling
property takes place: for all finite initial conditions x(0) = x0, with (x0)1 = e, there
exists a finite integer-valued random variable K such that, for all k ≥ K ,

x(k + 1; x0)

x(k; x0)
=
(
λ

X ◦θ
X

)
◦θk .

Proof Weknow from Theorem 7.90 that under the above assumptions, Equation (7.105)
has a unique finite solution" for which (7.105) is satisfied with equality, and such that
(7.104) has a solution. When specializing the formulæ of Theorem 7.79 to vectors and
matrices with entries inRmax as considered here, it is easily checked that whenever the
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subsolution" of (7.103) is finite and is a solution, then the super-eigenvalue inequality
of (7.105) becomes an eigenvalue equality, so that there exists a pair(λ, X) satisfying
the eigenpair property (7.68).

First it iseasily checked that if(X, λ) is a finite eigenpair, then(AX)◦/X = (λX ◦θ)◦/X
is a solution of the ratio equation (7.113). Under the foregoing assumptions, this equa-
tion has a unique solution". Sincethe equation" = (Ax)◦/x has a unique solutionx
suchthat x1 = e (Lemma 7.85), the eigenvectorX is uniquely defined if we decide
that X1 = e. The sameproperty holds forλ sinceλ(X ◦θ)◦/X = ". Property (7.131)
follows from the relation

x(k + 1; X) = λ◦θk . . . λX ◦θk+1 ,

which implies that

(x1(k + 1; X))1/k =
(

k⊗

h=0

λ◦θh

)1/k

.

The result follows immediately from the pointwise ergodic theorem and from Corol-
lary 7.31.

7.6 Stationary Marking of Stochastic Event Graphs

In this section we consider a stochastic event graph, with all its transitions recycled,
and where the places in the recycling all have positive holding times. We return to the
notation of conventional algebra.

Definition 7.100 (Stable place)A place of the event graph is said to be stable if the
number of tokens in this place at time t (the marking at time t ), converges weakly to a
finite random variable when time goes to∞. The event graph is said to be stable if all
the places are stable.

The aim of this section is to determine the conditions under which the event graph is
stable and to construct the stationary regime of the marking process, under the usual
stationarity and ergodicity on the holding times.

Remark 7.101 Let P0 be the subset of places connecting two transitions belonging
to the same strongly connected subgraph, andP1 be the subset of places connecting
transitions which belong to no circuit. The marking of a place inP0 is bounded, and
the only places which can possibly have an infinite marking when time goes to∞ are
those ofP1 (see Chapter 2).

Pick some placepi in P and letq j = π(pi), andql = σ(pi ). Assume thatthere
exists an initial conditionx0 suchthat x j(0; x0) = 0, and such that the ratiosx(k +
1; x0)◦/x(k; x0) are stationary and ergodic (the conditions for such an initial condition
to exist are given in Theorems 7.67 and 7.96, respectively, for the nonautonomous and
the autonomous case). Since the sequence

b(k)
def= x(k; x0)◦/x j (k; x0) , k ≥ 0 ,
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is stationary and ergodic, it can be continued to a bi-infinite stationary and ergodic

sequence by the relationb(k) def= b◦θk , k ∈ Z, whereb = b(0). A similar continuation
alsoholds for the sequence

d(k)
def= δ j j (k; x0)

def= d◦θk , k ≥ 0 .

Because of the assumption thatq j is recycled and with positive holding times in the
recycling,d > 0. Therefore, we can consider the sequence{d(k)} as the stationary
inter-event times of apoint process defined on(�,F,P, θ).

Definition 7.102 We define N as the marked point process on (�,F,P, θ) with inter-
event times sequence {d(k)}k∈Z and with the R

|Q|-valued mark sequence
{
(bh(k))qh∈Q

}
k∈Z

.

Namely, the k-th point of N is

t (k)
def=
{

x j(k; x0) for k ≥ 0 ;∑−1
h=k −d(k) for k < 0 ,

and its mark is {bh(k), qh ∈ Q}.
The interarrival times and the marks beingθ-stationary, this point process is stationary
(in its so-called Palm version). Owing to our assumptions,N has a finite intensity and
no double points.

Let T (k) = (T1(k), . . . , Tn(k)), wheren = |Q|, be the sequence

Th(k)
def= t (k)+ bh(k) , qh ∈ Q , k ∈ Z ,

and letN−
i be the random variable

N−
i =
∑

k≤0

1{Tl(k+µi )>0} , (7.132)

whereql = σ(pi ). This variable is a.s. finite. Indeed,Tl (k) satisfies the relations

lim
k→∞

Tl (k)

k
= c > 0 ,

wherec is a positiveconstant. Therefore{Tl (k)} is an increasing sequence such that
limk→−∞ Tl (k) = −∞ a.s. Hence there exists a finite integer-valued random vari-
ableH suchthatTl (k) ≤ 0 for all k ≤ −H .

Theorem 7.103Under the assumptions of Theorem 7.67 (respectively 7.96), if a(n) <

u, for all n = 1, . . . , N , (respectively a(n) < a(1), for all n = 2, . . . , N), where
N denotes the number of m.s.c.s.’s of the event graph, then the event graph is stable
whatever the initial condition, and the marking in place pi at arrival epochs converges
weakly to the random variable N−

i . Conversely, if n0 is the first n = 1, . . . , N , such
that a{n} > u (respectively the first n = 2, . . . , N, such that a(n) > a(n)), then the
places connecting the transitions of Q m ∪I (respectively Q m), m < n0, to transitions
of Q n0 are all unstable whatever the initial condition.
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Proof Let N−
i (k) be the number of tokens inpi just after timex j (k), k ≥ 1, where

q j = π(pi ). From (2.42) we obtain that

N−
i (k) =

k+µi∑

h=1

1{xl(h)>x j (k)} =
k+µi∑

h=0

1{xl(k+µi−h)>x j (k)} . (7.133)

We first prove the last assertion of the theorem. Assume thatpi is the place connecting
a transition of Q m ∪I (respectively Q m) to atransition ofQ n0 . Owing tothe property
that

lim
k

xl (k) − x j (k)

k
= a(n0) − u > 0 ,

(
respectively lim

k

xl (k) − x j (k)

k
= a(n0) − a(1) > 0

)
,

and to the increasingness of the sequences{xl (k)} and{x j (k)}, we obtain that, for all
H , thereexits K such that, for all k ≥ K andh = 1, . . . , H, xl(k − h)− x j(k) ≥ 0.
It follows immediately from this thatN−

i (k) ≥ H for k ≥ K . Therefore, N−
i (k) tends

to∞ a.s.
We now prove the first part. Weknow that the ratios ofxh(k), qh ∈ Q, couple with

their stationary regime in a finite random timeK . This implies that for all fixed h, the
sequence{xl (k + µi − h)− x j (k)} couples with a stationary process. More precisely,
for all k ≥ K + h, andh > µi , xl(k + µi − h)− x j (k) = −ρl(µi − h)◦θk , where

ρl(k)
def=

k∑

n=−1

d◦θn − bl◦θ−k = Tj (0)− Tl (k) , k < 0 ,

in view of the uniqueness of the stationary regimes of the ratios. Define

H = inf
{
k | k ≥ K , xl(h)− x j (k) < 0 , ∀h = 1, . . . , K

}
.

This H is a.s. finite sinceK is finite andx j (k) tends to∞ a.s. Therefore,

N−
i (k) =

∑

1≤h≤k−K

1{x(k+µi−h)l−x j (k)>0} =
∑

1≤h≤k−K

1{−ρl(µi−h)◦θ k>0} ,

for all k ≥ H . On theother hand,

N−
i ◦θ

k =
∑

0≤h

1{Tl(k+µi−h)−Tj(k)>0} =
∑

0≤h

1{−ρl(µi−h)◦θ k>0} .

SinceTj (k) tends to∞ ask goes to∞, weobtain that there exists anL suchthat

∑

k−h≤K

1{Tl(k+µi−h)−Tj(k)>0} = 0 ,

for all k ≥ L . Therefore, N−
i (k) = N−

i ◦θ
k for k ≥ max(H, L), and the stationary

regime of the marking process is reached with coupling, regardless of the initial condi-
tion.
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Remark 7.104 This stationary regime is unique, owing to the uniqueness of the sta-
tionary regime of the ratio process.

Remark 7.105 The preceding construction gives the Palm probability of the number
of tokens inpi at arrival epochs. The stationary distribution of the number of tokens in
pi in ‘continuous time’ is then obtained via the Palm inversion formula (see [5, p. 17]).

7.7 Appendix on Ergodic Theorems

The aim of this section is to state in a concise form a few basic ergodic theorems
(in conventional algebra) which are either used or referred to in this chapter. The
basic data are a probability space(�,F,P) on which ashift operatorθ is defined (see
Definition 7.2). This shift is assumed to be stationary and ergodic.

Theorem 7.106 (Kingman’s subadditive ergodic theorem)Let ξm,n, m > n ∈ Z be
an integrable random process on (�,F,P) such that

ξm,m+p = ξ0,p◦θm , ∀m ∈ Z , ∀p > 0 (stationarity) ,

and
ξm,n ≤ ξm,p + ξp,n , ∀m < p < n (subadditivity) .

Assume in addition that there exists a positive constant A such that E[ξ0,p] ≥ −Ap,
for all p > 0. Then there exists a constant γ such that the following two equations
hold:

lim
p→∞

ξ0,p

p
= γ a.s., lim

p→∞
E[ξ0,p]

p
= γ .

For theproof, see [75], [76].

Theorem 7.107 (Borovkov’s renovating events theorem)Let {u(k)} be a θ-station-
ary R

n-valued sequence of random variables defined on (�,F,P). Let {x(k)} be the
R

K -valued sequence of random variables defined by the recurrence relation

x(k + 1) = a(x(k), u(k)) , k ≥ 0 , (7.134)

where a is a continuous mapping R
K × R

n → R
K , and by the random initial condi-

tion x(0). The event A(k) ∈ F is said to be a renovating event of length m ≥ 1 and of
associated function φ : R

mn → R
K if, on A(k), the relation

x(k + m) = φ (u(k), . . . , u(k +m − 1))

holds. If the random process x(k) admits a sequence {A(k)} of renovating events,
all of length m and associated function φ, such that A(k) = A(0)◦θk , ∀k ≥ 0, and
P[A(0)] > 0, then, the sequence {x(k)◦θ−k} converges a.s. to a finite random variable
z, which does not depend upon the initial condition x(0). The sequence {z◦θk} is a
finite solution of (7.134), and the sequence {x(k)} couples with it in finite time for all
finite initial conditions.
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For theproof, see [26], [6].
For anymatrix A, let |A| denote its operator norm, namely

|A| = sup
‖x‖=1

‖Ax‖ ,

where‖x‖ denotes the Euclidean norm of vectorx .

Theorem 7.108 (Oseledec¸ ’s multi plicative ergodic theorem) Let {A(k)} be a sequence
of n × n random matrices with nonnegative entries, defined on the probability space
(�,F,P). Assume that A(k) = A(0)◦θk , for all k ∈ Z, and that

E
[
max(log(|A(0)|), 0)

]
<∞ .

Then there exists a constant γ (the maximal Lyapunov exponent of the sequence) such
that

lim
k→∞

1

k
log(|A(k) . . . A(1)|) = γ , a.s.

In addition, there exists a random eigenspace V (ω) of dimension d constant, d ≤ n,
such that A(1)V = V ◦θ and such that for all random vectors x in V ,

lim
k→∞

1

k
log(‖A(k) . . . A(1)x‖) = γ , a.s.

Whenever d = 1, there exists an eigenpair {λ, X } such that A(0)X = λX ◦θ and
E[λ] = γ .

In fact, Oseledec¸’s Theorem gives the existence of othereigenvalues as well. Our state-
mentof this theorem is limited to the maximal eigenvalue and its associated eigenspace
(see [106], [45]).

7.8 Notes

The preliminary example of§7.2 was first analyzed by R.M. Loynes in 1962 [87]. The prob-
abilistic formalism introduced in§7.2 is that developed for queues by P. Br´emaud and one of
the coauthors in [6]. The existence of Lyapunov exponents for products of random matrices of
Rmax was first proved by J.E. Cohen, in the case of matrices with nonε entries, inSubadditivity,
generalized product of random matrices and operations research, SIAM Review, volume 30,
number 1, pages 69–86, 1988. The extension of this result to reducible matrices, and the sec-
tions on the relationship between stochastic event graphs andRmax-multiplicative ergodic theory
(§7.3–7.6) are mainly basedon [11], [13]. As to the writing of thisbook, this approach provides
a more or less systematic way for analyzing nonautonomous systems. The situation is somewhat
less satisfactory in the autonomous case: in particular, only the case when the eigenspace associ-
ated with the maximal exponent has dimension 1 was considered. This practically covers cases
with ‘sufficiently random’ entries ofA, as shownby the results of §7.5; however, we know from
the analysis of Chapter 3 that an eigenspace of dimension 1 is rarely sufficient to handle the case
of deterministic systems. Autonomous deterministic systems can fortunately be addressed via
the spectral methods of Chapter 3. However, some systems are neither deterministic nor random
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enough to satisfy the conditions of §7.4. Filling up this ‘theoretical gap’ between purely de-
terministic and sufficiently random systems is clearly tantamount to understanding the structure
of the eigenspace associated with the maximal exponent when this eigenspace is of dimension
greater than 1.
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Chapter 8

Computational Issues in Stochastic
Event Graphs

8.1 Introduction

This chapter gathers miscellaneous resultspertaining to the computation of the cycle
timesand the stationary regimes of stochastic event graphs. The existence and unique-
nessof these two quantities are discussed in Chapter 7: the cycle time of a stochastic
event graph is the maximal Lyapunov exponent associated with the matricesÃ(k) of
its standard equation, and stationary regimes correspond to stochastic eigenpairs ofÃ.

Section 8.2 focuses on monotonicity properties of daters and counters considered
asfunctions of the data (e.g. firing and holding times, initial marking, topology of the
graph, etc.). These results lead to the derivation of a lower bound for the cycle time,
which is based on the results of Chapter 3 concerning the deterministic case. It is also
shown that the throughput is a concave function of the initial marking, provided that
the firing andholding times satisfy appropriate statistical properties.

Section 8.3 is concerned with the relationship between stochastic event graphs and
a class of age-dependent branching processes. Large deviation techniques are used to
provide an estimate for the cycle time, which is also shown to be an upper bound.

The last section contains miscellaneous computational results which can be ob-
tained in the Markovian case. Whenever the firing and the holding times have discrete
distribution functions with finite support, simple sufficient conditions for the ratio pro-
cess to have a finite state space Markov chain structure are given. In the continuous
and infinite support case, partial results on functional equations satisfied by the station-
ary distribution functions are provided. These results are then used for computing the
distribution of the stationary regime.

The sections of this chapter can be read (almost) independently. Each section has
its own prerequisites: basic properties of stochastic orders for§8.2 (see [123]); notions
of branching processes and of large deviations ([3]) in§8.3; elementary Markov chain
theory in§8.4. Throughout the whole chapter, the scalar dioid of reference isRmax,
unless otherwise specified.

373
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8.2 Monotonicity Properties

8.2.1 Notation for Stochastic Ordering

Let x andx† beR
n-valued random variables. Three classical stochastic ordering rela-

tions betweenx andx† will be considered in this section.

Notation 8.1

Stochastic ordering≤st: x ≤st x† if E[ f (x)] ≤ E[ f (x†)], for all nondecreasing
functions f : R

n → R.

Convex ordering ≤cx: x ≤cx x† if E[ f (x)] ≤ E[ f (x†)], for all convex functions
f : R

n → R.

Increasing convex ordering≤icx: x ≤icx x† if E[ f (x)] ≤ E[ f (x†)], for all convex
and nondecreasing functionsf : R

n → R.

Let x = {x(1), . . . , x(k), . . . } (respectively x(·) = x(t), t ∈ R
+) and

x† = {x†(1), . . . , x†(k), . . . }

(respectively x†(·) = {x†(t)}t∈R+ ) be twoR
n-valued stochastic sequences (respectively

processes) definedon the probability space(�,F,P). The sequencex† is said to dom-
inatex (respectively theprocessx†(·) dominatesx(·)) for one of the above ordering
relations, say≤st, which isdenotedx ≤st x† (respectively x(·) ≤st x†(·)), if all corre-
sponding finite dimensional distributions compare for this ordering.

For basic properties of these orderings, see§8.5.

8.2.2 Monotonicity Table for Stochastic Event Graphs

The basic model of this section is a live autonomous event graph, where all transitions
are assumed to be recycled. The nonautonomous case leads to similar results and
will not be considered in this chapter. Thenotation and basic definitions concerning
stochastic event graphs are those of Chapter 2 and Chapter 7. The following concise
notation will be used:

Data

Firing times: β(k) denotes the vectorβ j (k), j = 1, . . . , |Q|, andβ the se-
quence{β(k)}.

Holding times: α(k) denotes the vectorαi (k), i = 1, . . . , |P|, andα the se-
quence{α(k)}.

Timing sequence: η(k) denotes the vector(β(k), α(k)) andη the sequence{η(k)}.
Init ial marking: µ denotes the vectorµi , i = 1 . . . , |P|.
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State Variables With each dater sequence{x j (k)}k∈N we associate theN-valued counter
functionx j(t), t ∈ R

+, defined by the relation

x j(t) = sup{k | x j (k) ≤ t} .

Daters: x(k) denotes the vectorx j(k), j = 1, . . . |Q|, andx the sequence{x(k)}.
Counters: x(t) denotes the vectorx j (t), j = 1, . . . |Q|, t ∈ R, andx(·) the

functionx(t).

The aim of the following sections is to prove various monotonicity properties of the
state variables and of their asymptotic characteristics considered as functions of the
data. By asymptotic characteristics, we mean the cycle timea of the event graph and
its (conventional) inverseτ , the throughput. A typical question is as follows: if one
replaces one of the data, sayµ or β, by µ† or β† respectively, where the new data
are greater than the initial ones for some partial ordering, what result do we obtain on
the various state variables? The main properties along these lines are summarized in
Table 8.1. The reader should refer to the following subsections in order to obtain the
specific assumptions under which the reported monotonicity properties hold. These as-
sumptions are not always the most general ones under which these properties hold. For
instance, we have tried to avoid the intricate issues associated with the initial condi-
tions by choosing assumptions leading to short proofs, although most of the properties
of the table extend to more general initial conditions.

Table 8.1: Monotonicity of the state variables

Data Variation Daters Cycle Counters Throughput

of data time

µ µ ≤ µ† x ≥ x† a ≥ a† x(·) ≤ x†(·) τ ≤ τ †

P ⊂ P†

G Q ⊂ Q† x ≤ x† a ≤ a† x(·) ≥ x†(·) τ ≥ τ †

E ⊂ E†

η ≤st η
† x ≤st x† a ≤ a† x(·) ≥st x†(·) τ ≥ τ †

η η ≤cx η
† x ≤icx x† a ≤ a† τ ≥ τ †

η ≤icx η† x ≤icx x† a ≤ a† τ ≥ τ †

8.2.3 Properties of Daters

8.2.3.1 Stochastic Monotonicity

Monotonicity wi th respect to the Timing Sequence In this paragraph, we assume
that the entrance times are all equal toe (see Remark 2.75). Letη† be another tim-
ing sequence associated with the same event graph (i.e. the topology and the initial
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marking of the event graph are unchanged and each timing variable is replaced by the
corresponding dagger variable) and letx† bethe resulting daters. We first compare the
sequencesx† andx , whenever the timing sequences can be compared for some integral
ordering.

Theorem 8.2 If η ≤st η
†, then x ≤st x†.

Proof The initial conditionx̃(0) is untouched by the transformation of the variables,
in view of the definition given in Remark 2.75. The matricesÃ(k) in (2.31) are nonde-
creasing functions of the variablesα, β (seeEquations (2.15), (2.28) and the definition
of Ã(k)). Therefore, from (8.40), we obtain that

{̃x(0), Ã(0), Ã(1), . . . } ≤st {̃x†(0), Ã†(0), Ã†(1), . . . } .

We now use the canonical representation (2.31) to represent the evolution equations of
interest as recursions of the type (8.43), where the mappinga is coordinatewise non-
decreasing and such that the sequences defined in (8.44) satisfy the relation{ξ(k)} ≤st

{ξ †(k)}. Theproof is then concluded from Theorem 8.60.

In the next theorem, the timing variables are assumed to be integrable.

Theorem 8.3 If η ≤icx η†, then x ≤icx x†.

Proof The entries of matrices̃A(k), k ≥ 1, arenondecreasing and convex functions of
the variablesα, β. So, the assumptionη ≤icx η† and (8.41) imply that

{̃x(0), Ã(0), Ã(1), . . . } ≤icx {̃x†(0), Ã†(0), Ã†(1), . . . } .

Since the mappinga of the preceding proof isnondecreasing and convex, the result
immediately followsfrom Theorem 8.62.

Remark 8.4 Assume thatthe holding and firing times are all integrable. Then, it
follows from (8.42) that the ‘deterministic version’ of the event graph�, with firing
timesβ j (k) = E

[
β j (k)
]

andholding timesαi (k) = E [αi (k)], leads to a sequence of
daters{x(k)} which is alower bound of{x(k)} in the≤icx sense. Inparticular, since
the daters are integrable under these assumptions, it follows from Lemma 8.59 that for
all k ≥ 1 andq j ∈ Q, E

[
x j (k)
] ≥ x j (k).

Example 8.5 For example, by applying Theorem 8.3 to the cyclic queuing network
with finite buffers of Example 7.92, one obtains that the departure times from the
queues are≤icx-nondecreasing functions of the service times.

Monotonicity wi th respect to the Initial Marking Here, thediscussion will be lim-
ited to the case when all initial lag times are equal toe (which is a compatible initial
condition). It will be convenient to use (2.19) as the basic evolution equation. Under
ourassumption on the initial lag times, this equation reads

x j(k) =
⊕

{i∈πq ( j)|k>µi }
βπ p (i)(k − µi )αi (k)xπ p (i)(k − µi )⊕ e , (8.1)
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for k ≥ 1, wherex j (k) = ε if k ≤ 0. Consider the same event graph as above, but with
the initial markingµ†

i , pi ∈ P, in place ofµi , and let{x†(k)} denote the corresponding
dater sequence.

Theorem 8.6 Under the assumption that all the initial lag times are equal to e, if
µi ≤ µ

†
i , ∀pi ∈ P, then the coordinatewise inequality x ≥ x† holds.

Proof Owing to the assumption that all transitions are recycled and to the preceding
convention concerningthe continuation ofx(k) for k ≤ 0, it is easy to check that

x j(k) ≥ β j (k − 1)x j (k − 1) , ∀ j = 1, . . . , n, k ∈ Z .

Therefore
x j(k) ≥ x j(k − 1) , ∀ j = 1, . . . , n, k ∈ Z ,

and

β j (k)x j (k) ≥ β j (k − 1)x j (k − 1) , ∀ j = 1, . . . , n, k ∈ Z . (8.2)

We prove thatx j(k) ≤ x†
j (k) for all j = 1, . . . , n, andk ≥ 1. The proof is by induction

on ( j, k). Sincethe eventgraph is assumed to be live, the numbering of the transitions
can be chosen in such a way that for all( j, k), j = 1, . . . , n, k ≥ 1, the variablesxi (l)
which are found at the right-hand side of (8.1) are always such that eitherl < k or
l = k, but i < j . Therefore, there exists a way of numbering the transitions such that
the datersx j(k) can be computed recursively in the order

x1(1), x2(1), . . . , xn(1), x1(2), . . . , xn(2), . . . , x1(k), . . . , xn(k), . . . .

Assume thatthe property holds up to( j, k) excluding this point (it holds for(1, 1)
since with our assumptions, we necessarily havex1(1) = x†

1(1) = e). Then, we have

x†
j (k) =

⊕

{i∈πq ( j)|k>µ
†
i }
βπ p (i)(k − µ

†
i )αi (k)x

†
π p (i)(k − µ

†
i )⊕ e

≤
⊕

{i∈πq ( j)|k>µ
†
i }
βπ p (i)(k − µi )αi (k)x

†
π p (i)(k − µi )⊕ e

≤
⊕

{i∈πq ( j)|k>µ
†
i }
βπ p (i)(k − µi )αi (k)xπ p (i)(k − µi )⊕ e

≤
⊕

{i∈πq ( j)|k>µi }
βπ p (i)(k − µi )αi (k)xπ p (i)(k − µi )⊕ e

= x j(k) ,

where we successively used the monotonicity property (8.2), the induction assumption,
and finally the fact that we sum up with respect to a larger set.

Example 8.7Asanapplication of this result, one obtains the monotonicityof departure
timesin closed cyclic networks with blocking, as a function of the population and the
buffersizes.
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Stochastic Monotonicitywith respect to the Topology Consider two event graphs
with associated graphs� = ((P ∪Q), E) and�† = ((P† ∪Q†), E†), where

P ⊆ P† , Q ⊆ Q† , E ⊆ E† . (8.3)

The eventgraph�† is such that the initial marking, the initial lag times, the firing and
holding times of those places and transitions which belong both to� and�† are the
same. Letx† denote the sequence of daters of�†, and [x†] the restriction of x† to the
set of transitions which belong toQ andQ†.

Theorem 8.8 Under the foregoing assumptions, x ≤ x† coordinatewise.

Proof The proof is based on Equation (2.19) and is again by induction on( j, k).
Assume that the propertyxi(l) ≤ x†

i (l) holds up to( j, k) excluding this point. The
point (1, 1) is not necessarily the first one to compute in the total order associated with
�†, but we are sure that all the places present in� precedingq1 are present in�†

too, and with the same number of initial tokens and the same lag times, so that the
property necessarily holds for (1,1). Then, denotingπ† the predecessor function in�†,
we obtain the following relation for allq j ∈ Q:

x†
j (k) =

⊕

{i∈π†,q ( j)|k>µ
†
i }
β
†
π†,p (i)(k − µ

†
i )α

†
i (k)x

†
π†,p (i)(k − µ

†
i )

⊕
⊕

{i∈π†,q ( j)|k≤µ†
i }
w

†
i (k)

≥
⊕

{i∈πq ( j)|k>µ
†
i }
β
†
π p (i)(k − µ

†
i )α

†
i (k)x

†
π p (i)(k − µ

†
i )

⊕
⊕

{i∈πq ( j)|k≤µ†
i }
w

†
i (k)

=
⊕

{i∈πq ( j)|k>µi }
βπ p (i)(k − µi )αi (k)x

†
π p (i)(k − µi )

⊕
⊕

{i∈πq ( j)|k≤µi }
wi(k)

≥
⊕

{i∈πq ( j)|k>µi }
βπ p (i)(k − µi )αi (k)xπ p (i)(k − µi )

⊕
⊕

{i∈πq ( j)|k≤µi }
wi(k)

= x j (k) ,

where we successively used the assumptions (8.3), the assumption that the initial con-
dition and the firing and holding times of the nodes of� ∩ �† are the same, and finally
the induction assumption.
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8.2.4 Properties of Counters

In this subsection we assume that tokens incur no holding times in places (so that the
only timing variables come from the firing times of the transitions) and that there is at
mostone place between two subsequent transitionsqi andq j , which will be denoted
( j, i), with initial markingµ( j, i) ∈ N. It will also be assumed that the initial lag
times are all equal toe (which leads to a compatible initial condition). Under these
assumptions, the evolution equation (2.19) in Chapter 2 reads

x j(k) =
⊕

i∈p( j)

βi (k − µ( j, i)) xi(k − µ( j, i)) ⊕ e , k ≥ 1 ,

with initial conditionx j(k) = ε for all k ≤ 0. In this relation,p( j )
def= π p(πq( j )).

8.2.4.1 Evolution Equations

Let x j(t) (respectively y j(t)) denote thenumber of firingswhich transitionj initiated
(respectively completed) by timet, t ∈ R

+. Without loss of generality, we assume that
bothx j (t) andy j(t) are right continuous.

Remark 8.9 The mappingsx j (k) : N → R andx j(t) : R → N are related by the
formulae

x j (t) = sup{k | x j (k) ≤ t} , (8.4)

x j(k) = inf
{
t | x j (t) ≥ k

}
. (8.5)

When using thedefinitions of§4.4, we see that the isotone and l.s.c. mappingx j(k) :
N → R admits the u.s.c. mappingx j (t) : R → N asits residual; similarly, the isotone
and u.s.c. mappingx j(t) : R → N admits the l.s.c. mappingx j(k) : N→ R asits dual
residual.

In this subsection it is assumed that the firing times are all strictly positive.

Theorem 8.10 The random variables x j (t) and y j(t), 1 ≤ j ≤ n, t ≥ 0, satisfy the
following evolution equations:

x j (t) = min
i∈p( j)

(yi (t)+ µ( j, i)) , (8.6)

y j (t) =
∫ t

0
1{β j (x j (u))≤t−u} x j(du) , (8.7)

where, for all j = 1, . . . , n, y j (0) = 0 and x j (t) = 0, ∀t < 0.

Proof By time t , transition j initiated exactly as many firings as the minimum over
i ∈ p( j ) of the number of tokens which entered place( j, i) by time t (including
the initial tokens). Since a place is preceded by exactly one transition, thenumber of
tokens which entered place( j, i) by t equalsµ( j, i) plus the number of firings which
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transitioni completed by timet . The Stieljes integral in (8.7) is a compact way of
writing the sum

∞∑

k=0

1{x j (k)+β j (k)≤t} .

In the deterministic case, (8.7) takes the simpler formy j(t) = x j (t − β j ), whichleads
backto the following familiar result.

Corollary 8.11 If the firing times are deterministic (i.e. β j (k) = β j ), then (8.6) and
(8.7) reduce to the Rmax equation

x j (t) =
∧

i∈p( j)

µ( j, i)xi (t − βi ) , (8.8)

where xi(t) = e for t < 0.

8.2.4.2 Stochastic Monotonicity

From (8.4), one obtains that for any fixedn-tuple t1 < . . . < tn in R
+, the vector

(x(t1), . . . , x(tn)) is a nonincreasing function ofx . Therefore, each≤st-monotonicity
property of the sequencex with respect to≤st yields a dual stochastic monotonicity
property ofx(·) (see Table 8.1).

8.2.4.3 Concavity with respect to the Initial Marking

Throughout this subsection it is assumed that the sequences{β j (k)}k are mutually in-
dependent inj .

Theorem 8.12 If the random variables β j (k) are i.i.d., with exponential distribution
of parameter λ j , then, for any t ≥ 0, and any 1 ≤ j ≤ n, x j (t) and y j (t) are
stochastically increasing and concave (see Definition 8.63) in the initial marking µ ∈
N
|E|.

Proof Let {b j(n)}∞n=1, 1 ≤ j ≤ n, be mutually independent sequences of i.i.d.
random variables whereb j(n) is exponentially distributed with parameterλ j . Let
t0, t1, t2, . . . , tn, . . . be the times defined byt0 = 0 and

tn = tn−1 + min
1≤ j≤n

b j(n) , n ≥ 1 ,

and letχ j (n) be the indicator function

χ j (n) = 1{tn=tn−1+b j (n)} .

Let �† be an event graph with the same topology and initial marking as�, and with the
following dynamics (which differs from the dynamics defined in Chapter 2): in�†, for
all transitions j enabled at time t+n , the residual firing time of j at time t+n (namely the
time whichelapses betweentn and the completion of the ongoing firing of transitionj )
is resampled andtaken equal tob j(n + 1).
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• If χ j (n+1) = 1 for a transition j which belongs to the set of transitions enabled
at time t+n in �†, then transition j is fired at timet−n+1, whichdefines a new set of
enabled transitions at timet+n+1 by the usual token production and consumption
rule.

• If χ j ′(n+1) = 1 for a transition j ′ which isnot enabled at time t+n in �†, nothing
happens as far as the marking process is concerned.

For each transition j which is enabled att+n+1 (either still ongoing or newly enabled),
one resamples anew residual firing time equal tob j(n + 2), etc.

For �† definedabove, it is easily checked that the variablesx†
j (t) (respectively

y†j (t)) representing the number of firings of transitionj initiated (respectively com-
pleted) bytime t , satisfy the following equations:

y†j (0) = 0 ,

y†j (t) = y†j (tn)
def= Y j (n) , tn ≤ t < tn+1 ,

x†
j (t) = x†

j (tn)
def= X j(n) , tn ≤ t < tn+1 , (8.9)

and

X j(n) =
∧

i∈p( j)

(Yi (n)µ(i, j )) , (8.10)

Yi (n + 1) = (Yi (n)χi (n + 1)) ∧ Xi(n) , (8.11)

for all n = 0, 1, 2, . . . . Equation (8.10) is obtained in the same way as (8.6). In order
to obtain Equation (8.11) observe that

Yi (n + 1) ≤ Yi (n)+ χi (n + 1)

(equality holds if i is enabled at timet+n ), and

i enabled att+n ⇔ Yi(n) = Xi (n)− 1 ;
i not enabled att+n ⇔ Yi(n) = Xi (n)

(because of the recycling of transition i, there is at most one uncompleted firing ini-
tiated on this transition). Equation (8.11) is obtained from the following observation:
either i is not enabled att+n , and the smaller term in theright-hand side of (8.11) is
Xi (n), or i is enabled andYi (n + 1) = Yi (n)+ χi (n + 1).

It is now immediate to prove by induction that, for all realizations of the random
variablesb j(k), the state variablesX j (n) andY j (n), 1 ≤ j ≤ n, n ≥ 0, are nonde-

creasing and concave functions ofµ. The variablesx†
j (t) and y†j (t) satisfy the same

property in view of (8.9) and of the fact that the variablesb(n) do not depend uponµ.
Thus, ifµ andµ′ are initial markings such thatν = ρµ+ (1−ρ)µ′ is in N

|P| for some
real parameterρ ∈ (0, 1), we have, with obvious notations,

x†
j (t ; ν) ≥ ρx†

j (t ;µ)+ (1− ρ)x†
j (t ;µ′) ,
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for all ω, t and j , with a similar result fory.
Owing to the memoryless property of the exponential distribution, the countersx†

j (t)

andy†j (t), 1 ≤ j ≤ n, are equal in distribution tox j (t) andy j(t), respectively. There-
fore, under appropriate integrability assumptions,

E
[
x j(t ; ν)

] ≥ ρE
[
x j(t ;µ)

] + (1− ρ)E
[
x j(t ;µ′)

]
,

so thatx j (t) (andy j(t)) are stochastically increasing and concave inµ indeed.

We now define the class of PERT-exponential distribution functions, which will
allow us to generalize Theorem 8.12.

Definition 8.13 (Stochastic PERT graph)A stochastic PERT graph is a connected,
directed, acyclic and weighted graph with a single source node and a single sink node,
where the weights are random variables associated with nodes.

There is no loss of generality in the assumption that only nodes are weighted; one
canequivalently weight arcs or both arcs and nodes. In any weighted directed acyclic
graph, the path with maximal weight is called thecritical path.

Definition 8.14 (PERT-exponential distribution function) The distribution function
of a random variable X is of PERT-exponential type if X can be expressed as the weight
of the critical path of a stochastic PERT graph G where the weights of the nodes are
mutually independent random variables with exponential distribution functions.

Notation 8.15 Such a distribution function will be denotedF(G, λ), whereG is the
underlying graph andλ = (λ1, . . . , λ|G|), whereλi is the parameter of the exponential
distribution associated with nodei in G (we will assume that the source and sink nodes
arenumbered 1 and|G| respectively).

Definition 8.16 (Log-concave functions)A function f : R
n → R

+ is log-concaveif
for all x, y ∈ R

n and 0 < ρ < 1, the inequality f (ρx + (1− ρ)y) ≥ f ρ(x) f (1−ρ)(y)
holds.

Theorem 8.17 PERT-exponential distribution functions are log-concave.

For a proof, see [10].

Theorem 8.18 If the firing times of a stochastic event graph � are all mutually in-
dependent, and if for all transitions j , 1 ≤ j ≤ n, the firing times β j (k) are i.i.d.
random variables with PERT-exponential distribution function, then, for all t ≥ 0, and
all 1 ≤ j ≤ n, x j(t) and y j(t) are stochastically increasing and concave in the initial
marking µ.

Proof Let F(G j , λ j) be the distribution function associated with transitionq j of �.

Let n j def= |G j |.
For all j , considerthe stochastic event graph� j defined from the PERT graphG j

as follows: with eachnodei of G j , we associate a transitionq j
i in � j ; similarly, to
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each arc inG j corresponds an arc in� j and aplaceonthis arc. The initial marking and
theholdingtimes of each of these places are zero. The firing times of transition q j

i are
i.i.d. random variables with exponential distribution function of parameterλ

j
i .

We now construct a stochastic event graph�† which is defined from� and� j, j =
1, . . . , n, as follows: for all j , 1≤ j ≤ n, we ‘replace’ transition q j in � by the event
graph� j ; all the places of� are kept in�† together with their initial marking; we
takeπ†(q j

1 ) equal to the setπ(q j) andσ †(q j
n j ) equal toσ(q j ), for all j = 1, . . . , n;

finally, we add a new feedback arc from transitionq j
n j to transitionq j

1, for all j ; the
placeon this arc is assigned one token in its initial marking and zero holding and
lag times. This transformation is depicted in Figure 8.1. If the number of firings

qj
nj

� �j

qj qj
n j

qj
1qj

1

�†

Figure 8.1: Transformation of an event graph with PERT-exponential firing times

of transitionq j
1 initiated (respectively completed) by timet in �† is denotedx†

j,1(t)

(respectively y†j,1(t)), then an immediate coupling argument shows that

x j(t) =st x†
j,1(t) , y j (t) =st y†j,1(t) , ∀t ≥ 0 , ∀1≤ j ≤ n ,

where thesymbol=st denotes equivalence in law.
Let µ† denote the initial marking of �†. Applying Theorem 8.12 to�† implies

that for all t ≥ 0, and all 1≤ j ≤ n, x†
j,1(t) and y†j,1(t) are stochastically increasing

and concave in the initial marking µ† ∈ N
|Q† |. Consequently,x j (t) and y j (t) are

stochastically increasing and concave in the initial markingµ ∈ N
|Q|, t ≥ 0, 1≤ j ≤

n.

Remark 8.19 It is easy to see that PERT-exponential distribution functions include
Erlangdistribution functions asa special case. Therefore one can approximate step
functions with PERT-exponential distributions. Theorem 8.18 can be shown to hold
whensomeof the firing times are deterministic, by using some adequate limiting argu-
ment. In the particular case when all firing times are deterministic and integer-valued,
one can also prove the concavity of the counters by an immediate induction argument
based on Formula (8.8).

8.2.5 Properties of Cycle Times

Throughout this subsection we suppose that the sequences of holding and firing times
satisfy the joint stationary and ergodic assumptions of§7.3 and are integrable. We also
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assume that the event graph under consideration is strongly connected and its cycle
time (see§7.3.4) is denoteda, so that the following a.s. limits hold:

lim
k→∞
∣∣(x(k))1/k

∣∣
⊕ = lim

k→∞
E
[|x(k)|⊕

]1/k = a a.s., (8.12)

provided that the initial lag times are integrable. The throughput of the event graph will

be denotedτ
def= a−1.

8.2.5.1 First-Order Theorems for Counters

Theorem 8.20 For a strongly connected stochastic event graph satisfying the forego-
ing assumptions, the following a.s. limits hold:

lim
t→∞|x(t)|

1/t
∧ = lim

t→∞ |x(t)|
1/t
⊕ = lim

t→∞(x j (t))
1/t = τ a.s. (8.13)

for all 1≤ j ≤ n.

Proof For all k ≥ 1 and 1≤ j ≤ n, we have

x j(t) = k , for t in the interval x j (k) ≤ t < x j(k + 1) ,

which implies that

x j(k)

k
≤ t

x j (t)
<

x j(k + 1)

k
, for t in x j(k) ≤ t < x j (k + 1) .

Whenletting t or k go to∞ in the last relation and when using (8.12), we obtain

lim
t→∞(x j (t))

1/t = τ a.s.

The proofs for|x(t)|∧ and|x(k)|⊕ follow immediately.

Remark 8.21 In the particular case of a deterministic event graph,a is given by the
formula

a = max
ζ

|ζ |w
|ζ |t ,

whereζ ranges over the set of circuits of�, |ζ |w is the sum of the firing and holding
times in circuitζ and|ζ |t is the number of tokens in the initial marking ofζ (see (3.7)).

The remainder of this section focuses on the derivation of monotonicity, convexity
properties of cycle time and throughput.
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8.2.5.2 Bounds on Cycle Times

The stochastic comparisonproperties obtained in§8.2.3 admit the following corollar-
ies.

Corollary 8.22 If both sequences {α(k), β(k)} and
{
α†(k), β†(k)

}
satisfy the above

stationarity, ergodicity and integrability assumptions, and the assumptions of Theo-
rem 8.2 (respectively Theorem 8.3), then the associated cycle times a and a† are such
that a ≤ a†.

Proof If the initial condition is integrable, the relation

E
[|x(k)|⊕

] ≤ E

[∣∣x†(k)
∣∣
⊕

]
,

holds for allk ≥ 1, as a direct consequence of Theorem 8.2 (respectively Theorem 8.3)
because the functionx �→ f (x) = x is nondecreasing (and convex). Dividing this
inequality byk and letting k go to∞ yield the result in view of (8.12).

Remark 8.23 The preceding result extends immediately to the non strongly connected
case.

The observation which was made in Remark 8.4 allows one to provide a general lower
bound for the cycle timea as shown by the following corollary.

Corollary 8.24 Under the assumptions of Corollary 7.31, the cycle time a of the stochas-
tic event graph satisfies the bound

a ≥ max
ζ

E [|ζ |w]

|ζ |t .

where E [|ζ |w] denotes the mathematical expectation of the sum of holding and firing
times in the circuit ζ .

The right-hand side of the last expression is also the cycle time of a deterministic event
graph with the same topology as the initial one, but with the firing and holding times
replaced by their mean values. Under the above statistical assumptions, one obtains the
following corollary in the same way.

Corollary 8.25 Under the assumptions of Theorem 8.6 (respectively Theorem 8.8) a ≥
a† (respectively a ≤ a†), where a† is the cycle time of the event graph �† which is
considered in this theorem.

Example 8.26 For instance, the throughput in queuing networks with blocking, open
or closed, is stochastically decreasing in the service times (as a consequence of the
property of line 4 in the last column of Table 8.1), and increasing in the buffer sizes
and in the customer population (line 1), regardless of the statistical assumptions.
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8.2.5.3 Concavity with respect to the Initial Marking

The concavity properties established in§8.2.4 for counters together with relation (8.13)
readily imply a related concavity property of the throughput with respect to the initial
marking.

Corollary 8.27 Under the assumptions of §8.2.4.3, if the firing times are mutually in-
dependent and if in addition the firing times {β j (k)} are i.i.d. with PERT-exponential
distribution functions, then the throughput τ is increasing and concave in the initial
marking µ ∈ N

|E|.

Example 8.28 For instance, the throughput in queuing networks with blocking and
with PERT-exponential service times is stochastically decreasing in the service times,
and increasing and concave in the buffer sizes or the customer population.

8.2.6 Comparison of Ratios

Certain ratios of the state processx(k), and hence the marking in the corresponding
places, also exhibit interesting stochastic ordering properties. Roughly speaking, the
places in question are those which do not belong to a strongly connected component
of the event graph, which corresponds to the set of places with a marking which is
not structurally bounded. The properties of interest are established through simple
examples.

8.2.6.1 Assumptions

Weconsider an event graph with several strongly connected subgraphs. We assume that
thisevent graph is in its canonical form, namely all places have exactly one token in the
initial marking (see Remark 2.77). LetQ(n) be the set of transitions corresponding to
one of the subgraphs, wheren is not a source node in the reduced graph. The evolution
equation (7.47) of Chapter 7 reads

x(n)(k + 1) = A(n)(n) (k)x(n) (k) ⊕ A(n)(<n) (k)x(<n) (k) , k ≥ 1 .

Let

δ(k)
def= x(n)(k + 1)

x(<n)(k)
,

U+(k)
def= x(<n)(k + 1)

x(<n)(k)
, U−(k)

def= x(<n)(k)

x(<n)(k + 1)
.

Then, the ratio processδ(k) satisfies the equation

δ(k + 1) = A(k + 1)δ(k)U−(k) ⊕ B(k + 1)U+(k)U−(k) , k ≥ 0 , (8.14)

whereA(k) = A(n)(n) (k) andB(k) = A(n)(<n) (k) (see§7.4.2).
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8.2.6.2 Stochastic Ordering Results

Let v(k) = (A(k + 1), B(k + 1),U−(k)) and y(k) = δ(k). Equation (8.14) can be
rewritten asy(k + 1) = a(y(k), v(k)).

Lemma 8.29 The mapping a(·) satisfies the assumptions of Theorem 8.61.

Proof The nondecreasingness ofy �→ a(y, v) is obvious. As for the convexity of the
mapping(y, v) �→ a(y, v), observethata(y(k), v(k)) is given as the maximum of two
functions,A(k+1)δ(k)U− (k) andB(k+1)U+ (k)U−(k), so that it is sufficient to prove
that each of these functions has the desired convexity property, which is clear for the
first one. In order to prove the convexity property for the second function, we rewrite
the entries ofU−(k)U+(k) as

(U+(k)U−(k))i j = U−(k)1 j ◦/U−(k)1i ,

sothat the entries of the second function can be rewritten as

(B(k + 1)U+(k)U−(k))i j =
⊕

l

Bil (k + 1)U−(k)1 j ◦/U−(k)1l

= U−(k)1 j

(
⊕

l

Bil (k + 1)◦/U−(k)1l

)
.

Since the mapping(B(k + 1),U−(k)) �→ Bil (k + 1)◦/U−(k)1l is convex (it is linear in
the conventional sense), each of these entries is the sum of two convex functions in the
variablesU−(k), B(k + 1), which concludes the proof.

As a direct consequence of Theorem 8.61, we obtain the following result.

Corollary 8.30 If one replaces the sequence {δ(0), A(k), B(k),U− (k)} by a sequence{
δ†(0), A†(k), B†(k),U †

−(k)
}

such that

{δ(0), A(k), B(k),U− (k)} ≥cx

{
δ†(0), A†(k), B†(k),U †

−(k)
}

,

then the resulting ratio sequence δ† is such that δ ≥icx δ†.

Interesting applications of this property arise when the firing and holding times of the
event graph are all mutually independent, so that the two sequences of random variables
{A(k)} and{B(k),U−(k)} of the preceding theorem are also mutually independent. For
example, when applying the result of Corollary 8.30 to the sequences

B†(k) = E [B(k)] , U †
−(k) = E

[
U−(k)

]
, A†(k) = A(k) ,

we obtain

{δ(k)} ≥icx
{
δ†(k)
}

, (8.15)
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provided the initial conditions which are chosen for both systems satisfy the assumption
of the corollary. In particular, we obtain the relation

x j (k + 1)◦/xi(k) ≥icx δ
†
j i(k) ,

for all q j ∈ Q(n) andqi ∈ π2(q j ) ∩ {Q \ Q(n)}. The random variableδ†j i(k) can be

interpreted as the ratiox†
j (k + 1)◦/u†

i (k) of a nonautonomous event graph�† with the
same topology asQ(n), with a |Q(<n)|-dimensional inputu†(k) and with the evolution
equation

x†(k + 1) = A†(k)x†(k) ⊕ B†(k)u†(k) .

The input processu†(k) is determined by the relations

U †
−(k) =

u†(k)

u†(k + 1)

and by the initial conditionu†(0). This second event graph is ‘simpler’ than the previ-
ous one in that the influence of the predecessors ofQ(n) is captured by the first moments
of the variablesU−(k) andB(k) only.

Another example of application of Corollary 8.30 consists in choosing

B†(k) = E [B(k)] , U †
−(k) = E

[
U−(k)
]

, A†(k) = E[ A(k)] .

With such a definition, we always havev ≥cx v†, which leads to a comparison result
between the ratio process of a stochastic event graph and that of a deterministic one
(for which one can use the results of Chapter 3).

The conditions under which a stationary solution of (8.14) and its†-counterpart
exist, are given in Theorem 7.96. Let us assume that these conditions are satisfied
for both systems, so that one can construct the stationary marking in the initial event
graph and in�†. Onecanthen apply Little’s formula ([77]) and (8.15) to derive the
following bound on the stationary markingNi in a placepi = π(q j ), whereq j ∈ Q(n)

andπ(pi) /∈ Q(n).

E [Ni ] =
E
[
δ j,π p(i)

]

a1
≥

E

[
δ
†
j,π p(i)

]

a1
.

In this relation,a1 is the cycle time of transitionsq j and qπ p(i) (these cycle times
must coincide since theplace is assumed to be stable). The real numberE

[
δ j,π p(i)

]

represents the average time spent by a token inpi in the stationary regime (the time
spent by thek-th token ofpi in this place isx j(k) − xπ p (i)(k − 1) indeed).

Similarly, under the preceding independence assumptions, it is easily seen that the
variablesδ(k) are stochastically increasing and convex in{A(n)(n) (k)}.

8.3 Event Graphs and Branching Processes

This section focuses on the derivation of bounds and estimates for cycle times of
strongly connected stochastic event graphs with i.i.d. firing times. We use associa-
tion properties satisfied by partial sums of the firing times in order to prove that the
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daterscan be compared for≤st with the last birth in a multitype branching process, the
structure of which is determined from the characteristics of the event graph. Classi-
cal large deviation estimates are then used to compute the growth rate of this last birth
epoch, following the method developed in [19]. This allows one to derive a computable
upper bound for the cycle time, which is exemplified on tandem queuing networks with
communication blocking.

8.3.1 Statistical Assumptions

The assumptions are those of§8.2.4. In addition to this, we assume that the sequences
{β j (k)}+∞k=1, j = 1, . . . , n, are mutually independent sequences of i.i.d. nonnegative
and integrable random variables defined on a common probability space(�,F,P),
and that the initial number of tokens in any place is at most 1 (this last assumption
introduces no loss of generality, see Remark 2.77).

Weknow from Chapter 2 that whenever the event graph under consideration is live,
it is possible to rewrite its equation as

x(k) = A(k)x(k − 1) , k ≥ 1 , (8.16)

where matrix A(k) is defined as follows:

A j j ′(k) =
⊕

{( j ′=i0,i1,i2... ,ih−1,ih= j)∈S( j ′, j,1)}
β j ′(k − 1)⊗

(
h−1⊗

m=1

βim (k)

)
, (8.17)

with the usual convention if the setS( j ′, j, 1) is empty (see Remark 2.69). It is as-
sumed that the event graph under consideration is strongly connected, and that the
initial conditionx(0) is equal toe (since weare only interested in determining the cy-
cle time, this last assumption introduces no loss of generality). The following theorem
is based on the notion of association (see Definition 8.64).

8.3.2 Statistical Properties

Lemma 8.31 Under the foregoing statistical assumptions,

{Ai j (k), x j (k), i, j = 1, . . . , n, k ≥ 0}

forms a set of associated random variables (see Definition 8.64).

Proof The independence assumption on the firing times implies that the random vari-
ables{A(k)} are associated since they are obtained as increasing functions of asso-
ciated random variables (see (8.17)). The result forx j (k) follows immediately from
(8.16) and Theorem 8.67.

Lemma 8.32 For all j0, j1, . . . , jh ∈ {1, . . . , n}, the random variables A jk+1 jk (k),
k = 0, . . . , h, are mutually independent.
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Proof In view of (8.17), the random variablesA jk+1 jk (k) canall be written in the form

A jk+1 jk (k) = φk(βl1 (k), . . . , βlpk
(k), βl′1 (k − 1)) ,

for some indicesl1, . . . , l ′1. Sincethe random variables{β j (k)} j,k are mutually inde-
pendent, it is enough to show that the arguments of the functionsφk , k = 0, . . . , h, are
disjoint to prove the property.

Theonly situation where these sets of arguments could fail being disjoint is for two
adjacent termsA jk+1 jk (k) and A jk+2 jk+1(k + 1) having one argument of the typeβ j (k)
in common. The only such argument inA jk+2 jk+1(k + 1) is β jk+1(k). Assume that this
is alsoan argument ofA jk+1 jk (k). Then, there exists a circuit crossingjk+1 and jk+1

with zero initial marking in all the places of the circuit, which contradicts the liveness
assumption.

8.3.3 Simple Bounds on Cycle Times

Let a be the cycle time of A(k). Since weassumed strongconnectedness, we have

lim
k→∞

E
[
x j(k)
]1/k = lim

k→∞
(x j (k))

1/k = a a.s., ∀ j = 1, . . . , n . (8.18)

Let

• N be the maximal degree of the transitions which are followed by at least one
place with a nonzero initial marking (the degree of a node is the number of arcs
incident with this node).

• b be a random variable which is a≤st upper bound ofeach of the random vari-
ablesAi j (0), namely

Ai j (0) ≤st b , ∀i, j = 1, . . . , n .

• b(z) be the Laplace transform1 E
[
exp(zb)

]
, which isassumed to be finite in a

neighborhood ofz = 0.

• M(x) be the Cramer-Legendre transform of the distribution function of the ran-
dom variableb, namely

M(x) = inf
z∈R

(log(b(z))− zx) .

The presentsection is devoted to the proof of the following result.

Theorem 8.33 Let γ = inf{x | x > E[b], M(x)+ log(N) < 0}. Under the foregoing
assumptions, the cycle time of the event graph admits the upper bound a ≤ γ .

We start with two preliminary lemmas.

1This is not the usual Laplacetransform which would readE
[
exp(−zb)

]
.
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Lemma 8.34 For all ε > 0, and for all j = 1, . . . , n,

lim
k→∞

P

[
x j(k)

k
< a+ ε

]
= 1 ,

and

lim
k→∞

P

[
x j(k)

k
< a− ε

]
= 0 .

Proof The property follows immediately from the fact that a.s. convergence implies
convergence in probability and from (8.18).

Lemma 8.35 If c ∈ R is such that

lim
k→∞

P
[
x j (k) − kc ≤ 0

] = 1 , (8.19)

for some j = 1, . . . , n, then c ≥ a.

Proof Under the assumption (8.19),

lim
k→∞

P

[
x j(k)

k
≤ c

]
= 1 ,

sothat we cannot havec = a− ε for someε > 0, in view of Lemma 8.34. Therefore,
c ≥ a.

Proof of Theorem 8.33 Under our assumptions, Equation (8.16) readsx(k + 1) =
A(k) ⊗ x(k) with the initial conditionx(0) = e and it is easily checked by induction
that

x j (k) =
⊕

j0,... , jk−1∈{i,... ,n}

k−1⊗

h=0

A jh+1, jh(h) , (8.20)

where jk = j . Therefore,

P
[
x j(k) − ck ≤ 0

] = P

[
max

j0,... , jk−1∈{i,... ,n}

k−1∑

h=0

C jh+1, jh(h) ≤ 0

]
,

whereCi j (k)
def= Ai j (k) − c.

Fork fixed, Lemma 8.31 implies that the variables
∑k−1

h=0 C jh+1, jh(h), wherej0, . . . , jk−1

vary over the set{1, . . . , n}k, are associated. Therefore, from Lemma 8.66,

P

[
max

j0,... , jk−1∈{i,... ,n}

k−1∑

h=0

C jh+1 jh(h) ≤ 0

]
≥

∏

j0,... , jk−1∈{1,... ,n}
P

[
k−1∑

h=0

C jh+1, jh(h) ≤ 0

]
.
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Since the random variablesA jh+1, jh(h) are independent (see Lemma 8.32), and≤st-bounded
from above byb, we have

P

[
k−1∑

h=0

C jh+1, jh(h) ≤ 0

]
≥ P

[
k−1∑

h=0

(b(h)− c) ≤ 0

]
,

where{b(h)} is a sequence of i.i.d. random variables with the same distribution func-
tion asb. Now, Chernoff’s Theorem ([3]) implies

P

[
k−1∑

h=0

b(h) > ck

]
= exp(M(c)k + o(k)) ,

for all c > E[b], so that

P
[
x j (k) − ck ≤ 0

] ≥ (1− exp(M(c)k + o(k)))Cj (k) ,

whereC j (k) denotes the number of pathsj0, . . . , jk−1 which satisfy the property

k−1∑

h=0

C jh+1, jh(h) 
= −∞ .

Therefore, it is enough to have the limit

C j (k)exp(kM(c)) → 0

whenk goes to∞, in orderto obtain

lim
k→∞

P
[
x j(k) − ck ≤ 0

] = 1 . (8.21)

Clearly, the boundC j (k) ≤ Nk holds, so that asufficient condition for (8.21) to hold is
M(c)+ log(N) < 0. In other words, forc > E[b] such that M(c)+ log N < 0, (8.21)
holds, so thatc ≥ a in view of Lemma 8.35.

In fact, we proved the following and more general result.

Corollary 8.36 If log(C j (k)) = Ck + o(k), then a ≤ inf{c | M(c)+ C < 0}.

Example 8.37 (Blocking queues in tandem)Consider the example of Figure 8.2,
which represents aline of processors withblocking before service, also called com-
munication blocking in the exponential case. Letn denote the number of processors,
each of which is represented by a transition. In Figure 8.2,n equals 4. The first pro-
cessor (on the left of the figure) has an infinite buffer of items to serve. Between two
successive processors, the buffer is of capacity one (which is captured by the fact that
there are two tokens in any of the upper circuits originating from a processor). The
processors are single servers with a FIFO discipline (which is captured by the lower
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Figure 8.2: Communication blocking: 4 nodes, 1 buffer

circuit associated with each transition). It is assumed that all transitions have expo-
nentially distributed firing times with parameter 1. In this example, we haveN = 3,
b(z) = (1− z)−1. The Cramer-Legendre transform ofb(z) is given by

M(x) = inf
z∈[0,1)

(−zx − log(1− z)) .

The derivative of the function−zx−log(1−z) with respect toz vanishes forz = 1−x−1

and thispoint is a minimum. Therefore

M(x) = 1− x + log(x) .

As a direct application of Theorem 8.33, we obtain

a ≤ inf{x | 1− x + log(x) + log(3) < 0} ,

which provides the following uniform bound inn: a ≤ 3.33 . In other words, the
throughput of the systems is always greater than 0.3, regardless of the number of pro-
cessors.

If we apply Theorem 8.36 using the following more precise estimate ofC j (k)

1

k
logC j (k) = 1+ 2 cos

(
π

n+ 1

)
+ o(k) ≤ 3 (8.22)

(see below for its proof), we obtain

a ≤ inf
{

x
∣∣∣ 1− x + log(x) < log

(
1+ 2 cos

(π
5

))}
 3.09 .

If the service times are Erlang-3 with mean 1, namely ifb(z) = (3/(3− z))3, in the
same way,from Theorem 8.33, we obtain that

a ≤ inf{x | 3(x − 1− log(x)) > log(3)}  2.11 ,

which corresponds to a throughput greater than 0.48.

Proof of Formula (8.22) Let K denote theadjacency matrix of the precedence graph
of A(0), namely then× n matrix such thatKi, j = 1 if i ∈ π( j ), and 0 otherwise. For
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n = 4, we obtain for instance

K =





1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1



 .

It is easily checked by induction thatK k
i, j counts the number of paths of lengthk from

i to j . Let P be the substochastic matrix defined byP = K/3, and let λn denote
the Perron-Frobenius eigenvalue associated withP. From theirreducibility of P, we
obtain

C j (k) =
n∑

i=1

K k
i, j = O(3λn)

k .

In order to evaluateλn, we introduce the Markov chainZk with substochastic transition
matrix P and uniform initial measure. We then have

P [Zk = 1] = O(λn)
k .

We can now evaluateP [Zk = j ] using the recurrence relations

P
[
Zk+1 = j

] = P [Zk = j − 1] /3+ P [Zk = j ] /3+ P [Zk = j + 1] /3 ,

1 < j < n ,

P
[
Zk+1 = 1

] = P [Zk = 1] /3+ P [Zk = 2] /3 ,

P
[
Zk+1 = n

] = P [Zk = n− 1] /3+ P [Zk = n] /3 . (8.23)

Let

P(x, y) =
∞∑

k=0

n∑

j=1

xk y j
P [ Zk = j ] .

From (8.23), weobtain

P(x, y) = G(y) − F(x)(1+ yn+1)

3− x(y + 1+ y−1)
, (8.24)

whereF(x) is the function

F(x) = x
∞∑

k=0

P [Zk = 1] xk ,

and
G(y) = 1+ y + y2 + . . .+ yn .

The denominator of (8.24) vanishes forx = x(y) = 3/(y + 1+ y−1) ≤ 1. Therefore,
we necessarily have

F(x) = G(y)

1+ yn+1
,
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for x = x(y). Thepoles ofF(x) are foryn+1 = −1, namely for

y(l) = exp

(
iπ + 2ilπ

n+ 1

)
, l = 0, . . . , n .

We have

x(y(l)) = 3

1+ 2 cos
(
π(1+2l)

n+1

) ,

the smallest of which is forl = 0. Therefore, from classical theorems on generating
functions,

P [Zk = 1] = O(x(y(0))−k ) ,

Or, equivalently,

λn =
1+ 2 cos

(
π

n+1

)

3
,

which in turn implies

C1(k) = 1+ 2 cos

(
π

n+ 1

)
.

8.3.4 General Case

8.3.4.1 Multitype Branching Processes

The class of age-dependent multitype branching processes considered in this section is
a special case of those considered in [19]. There aren types; the branching process is
characterizedby a family of integer-valued random processes

Z kl
j i(t) ; t ∈ R

+; i, j = 1, . . . , n ; k, l = 1, 2, . . . ,

where

• then× n matricesZ kl (·) are i.i.d. forl, k = 1, 2, . . . ;
• the variablesZ kl

j i(·) are mutually independent ini, j, and this for all l, k =
1, 2, . . . .

Index k refers to generation levels from an initial generation called 1, and indexl is
used to count individuals of a given type within a generation level. If the branching
process is initiated by a single generation-1 individual of typej , born at time 0, this
individual gives birth to a total ofZ 11

j i (∞) generation-2 individuals of typei, one at
each jump time ofZ 11

j i (·). Once a generation-k individualof typei is born, it isassigned
an integerl, different from all the integers assigned to already born individuals of the
same generation and type (for instance, the individuals of generation 2 and typei can
be numbered 1, . . . , Z 11

j i (∞)). Then, the random functionZ kl
ih(t) is used to determine

thenumber of generation-(k + 1) individuals of typeh born from the latter individual
in less thant ∈ R

+ afterits own birth.
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Let T (k)
j i (t) ∈ N denote the total number of generation-k individuals of typei born

by timet in a branching process initiated at time 0 from a single generation-1 individual
of type j . Let Fji(t) be the monotonic function defined by the relation

Fji (t) = E
[
Z 11

j i (t)
]

, t ∈ R
+ ,

and let�(z) be then× n matrix with entries

� j i(z) =
∫ ∞

0
exp(zt) Fji (dt) .

We assumethat there exists a real neighborhood of 0 where the matrix�(z) is finite.

Lemma 8.38 (Biggins)Under the above assumptions,

E

[∫ ∞

0
exp(zt) T (k)

j i (dt)

]
= �k

j i (z) , (8.25)

where �k denotes the k-th power of �.

Proof Let Fk denote theσ -field of the events upto thek-th generation. Owing tothe
independence assumptions, we obtain the vector relation

E

[∫ ∞

0
exp(zt) T (k+1)

j (dt)

∣∣∣∣ Fk

]
=
(∫ ∞

0
exp(zt) T (k)

j (dt)

)
�(z) ,

whereT (k)(·)
j denotes the vector(T (k)

j1 (·), . . . , T (k)
jn (·)). By taking expectationsin the

last expression, we obtain (8.25).

8.3.4.2 Comparison between Event Graphs and Branching Processes

Consider now the following specific age-dependent branching process associated with
the stochastic event graph under consideration:

• there areas many types as there are transitions followed by at least one place
with a nonzero initial marking, namelyn;

• the random vectorZ 11
j (t) is defined through its probability law by the relation

Z 11
j i (t) =st 1i∈p( j)1A ji (0)≤t , for all i, j ∈ {1, . . . , n}. This fully defines the prob-

ability law of the matricesZ kl (·) in view of the independence assumptions.

Observe that, for this specific branching process, an individual of typej gives birth to
at mostone individual of typei, for all i, j .

Let x̂ j (k) be the epoch of the latest birth of all generation-k individuals ever born
in the above branching process, when this one is initiated by an individual of typej at
time 0.

Lemma 8.39 Under the foregoing statistical assumptions, for all j ∈ {1, . . . , n} and
k ≥ 1,

x j(k) ≤st x̂ j (k) ,

provided x(0) = e.
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Proof From the definition ofx(k), for all t ∈ R
+,

P[x j (k) ≤ t ] = P




⊕

j0,... , jk−1∈{1,... ,n}

k−1⊗

h=0

A jh+1, jh(h) ≤ t



 ,

where jk = j . Therefore, the association property of Lemma 8.31 implies that

P
[
x j (k) ≤ t

] ≥
∏

j0,... , jk−1∈{i,... ,n}
P

[
k−1∑

h=0

A jh+1, jh(h) ≤ t

]

=
∏

j0,... , jk−1∈{i,... ,n}
jh∈p( jh+1)

P

[
k−1∑

h=0

A jh+1, jh(h) ≤ t

]
. (8.26)

Now, from its very definition, the event{x j (k) ≤ t} canbewritten as

⋂

j0,... , jk−1∈{i,... ,n}
jh∈p( jh+1)

{
k−1∑

h=0

A jh+1, jh(h) ≤ t

}
,

where the random variablesA jh+1, jh are all mutually independent, and whereA jh+1, jh

has thesameprobability law as A jh+1, jh . Sincethe random variables in the right-hand
sideof (8.26) are also mutually independent (see Lemma 8.32), the latter expression
coincides with P

[
x̂ j (k) ≤ t

]
.

8.3.4.3 Upper Bounds for Cycle times

Whenever the integrals defining the entries of�(z) converge, this matrix is positive;
its Perron-Frobenius eigenvalue ([61]) is denotedφ(z) . Let M(x) be the Cramer-
Legendre transform ofφ(z):

M(x) = inf
z>0

(log(φ(z))− zx) .

It is well known thatM(x) is decreasing forx ≥ 0 (see [3]). Let γ be defined by

γ = inf{x | M(x) < 0} .

Theorem 8.40 Under the foregoing statistical assumptions, the cycle time a of the
event graph is such that

a ≤ γ . (8.27)

Proof We first prove that

lim sup
k

x̂ j (k)

k
≤ γ a.s. (8.28)
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Let v(z) be the right eigenvector associated with the maximal eigenvalueφ(z). From
(8.25), we obtain that

〈
E

[∫ ∞

0
exp(zt) T (k)

j (dt)

]
, v(z)

〉
= φk(z)v j (z) ,

so that
〈

E

[∫ ∞

0
exp(zt) T (k)

j (dt)

]
, 1

〉
≤ φk(z)v j (z)u(z) , (8.29)

whereu(z) = (mini vi (z))−1 (v(z) is strictly positive due to the Perron-Frobenius the-
orem). Now, sincêx j (k) = sup{t | ∃i = 1, . . . , n, T (k)

j i (t) = 0}, we have

〈
E

[∫ ∞

0
exp(zt) T (k)

j (dt)

]
, 1

〉
=

n∑

i=1

E

[∫ ∞

0
exp(zt) T (k)

j i (dt)

]

≥ E
[
exp(zx̂ j (k))

]
. (8.30)

In addition, forz ≥ 0,

P

[
x̂ j (k)

k
≥ c

]
≤ E

[
exp

(
z

(
x̂ j (k)

k
− c

))]
.

This, plus (8.29) and (8.30), in turn imply

lim
k

1

k
logP
[
x̂ j(k) ≥ kc

] ≤ inf
z>0

(log(φ(z)) − zc) = M(c) .

Therefore, for allc suchthat M(c) < 0,
∑

k≥1 P
[
x̂ j (k) ≥ kc

]
<∞, so that the Borel-

Cantelli Lemma immediately implies (8.28).
From Lemma 8.39, for all bounded and nondecreasing functionsf ,

E

[
f

(
x j(k)

k

)]
≤ E

[
f

(
x̂ j (k)

k

)]
,

for all j = 1, . . . , n.
In view of (8.18), from the Lebesgue dominated convergence theorem we obtain

that, for f bounded and continuous,

lim
k

E

[
f

(
x j(k)

k

)]
= f (a) .

In addition, for f continuous, monotonic, nondecreasing and bounded, we also have

lim sup
k

E

[
f

(
x̂ j(k)

k

)]
≤ E

[
lim sup

k
f

(
x̂ j (k)

k

)]
= E

[
f

(
lim sup

k

x̂ j(k)

k

)]

≤ f (γ ) ,

where we successively used Fatou’s lemma, the monotonicity and continuity off , and
finally (8.28). Thereforef (a) ≤ f (γ ), for all nondecreasing, continuous and bounded
f , which immediately implies (8.27).
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Observe that in the particular case when all non−∞ entries of A(1) have the same
distribution characterized by the functionb(z), the eigenvalue of interest is precisely
φ(z) = b(z)C, whereC is the Perron-Frobenius eigenvalue of the adjacency matrix
associated with the matrixA, namely the maximal eigenvalue of matrix�(0).

Example 8.41 (Blocking queues with transportation times)The example is that
of the line of processors described previously, but with a deterministic transportation
time between processors. The associated event graph is obtained from that of Fig-
ure 8.2 by replacing each buffer by two buffers connectedby a transportation transition
with deterministic firing timesδ as shown in Figure 8.3. The statistical assumptions

buffer buffer 1 transportation buffer 2

Figure 8.3: Blocking with transportation times

concerning the firing times of transitions associated with processors are those of the
previous example. In this example, we have

�(z) =





1
1−z

1
1−z 0 0

exp(δz)
1−z

1
1−z

1
1−z 0

0 exp(δz)
1−z

1
1−z

1
1−z

0 0 exp(δz)
1−z

1
1−z




.

The Perron-Frobenius eigenvalue of this matrix is

φ(z) = 1

1− z

(
1+ 2 exp

(
δz

2

)
cos

(
π

n+ 1

))
(8.31)

(the proof is similar to that of the previous case). The technique is then the same as
above for deriving the upper boundγ . The lower boundsa+ given in the following
arrays are those obtained by convex ordering following the method indicated in Theo-
rem 8.24. Forn = 4, one obtains the following array at the left-hand side. Forn large,
the lower bound is unchanged, and we obtain the following upper bound indicated in
the array at the right-hand side.

δ 0 1 2 3
γ 3.1 3.3 3.7 4.2
a+ 1 1.5 2 2.5

δ 0 1 2 3
γ 3.3 3.6 4.0 4.4
a+ 1 1.5 2 2.5

Remark 8.42 Better upper bounds can be derived when considering the constantγl ,
l ≥ 0, associated with then-type, age-dependent branching process of probability law

Z 11
j i (t) =st 1{−∞<(A(0)A(1)...A(l)) j i≤t} .

The constantγ referred to in Theorem 8.40 corresponds toγ0. It can be shown that the
sequence{γl } decreases to a limit whenl tends to∞.
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Remark 8.43 Lower bounds on cycle times based on convex ordering were discussed
in the previous section. We have shown how to derive upper bounds based on large
deviations in the present section. Since the stability region of a non strongly connected
event graph is obtained by comparing the cycle times of its strongly connected compo-
nents (see Theorems 7.69 and 7.96), these two bounding methods also provide a way
to analyze the stability region of this class of systems.

8.4 Markovian Analysis

8.4.1 Markov Property

The evolution equation studied in this section is

x(k + 1) = A(k)x(k) , k = 0, 1, 2, . . . , (8.32)

with initial conditionx0 ∈ R
n.

Theorem 8.44 If the matrices A(k) are i.i.d. and independent of the initial condi-

tion x0, the sequence {z(k)} def= {x(k)◦/x1(k)} forms an R
n-valued Markov chain.

Proof The Markov property follows immediately from the relation

z(k + 1) = x(k + 1)

x1(k + 1)
= A(k)x(k)

(A(k)x(k))1
= A(k)z(k)

(A(k)z(k))1
,

andfrom the independence assumptions (see Theorem 8.68).

There is no general theory available for computing the invariant measure of this Markov
chain. The following sections will therefore focus on simple examples. These exam-
ples are obtained either from specific problems described in Chapter 1 or from simpli-
fying mathematical assumptions2 on the structure of matricesA(k). Thequantities of
interest are

lim
k→∞

E [xi (k + 1)◦/xi(k)] ,

for an arbitraryi, which coincides with the Lyapunov exponent of m.s.c.s. [i], and the
distribution of thestationary ratios.

8.4.2 Discrete Distributions

Example 8.45 Consider the case whenx ∈ R
2 and when matrix A(k) is one of the

following two matrices: (
3 7
2 4

)
,

(
3 5
2 4

)
,

each with probability 1/2. This example was also mentioned in§1.3. Starting from
an arbitraryx0-vector, sayx0 =

(
0 2
)′

, we will set up the reachability tree of
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Table 8.2: Transitions of the Markov chain

Initial state A12 = 7 A12 = 5

n1 =
(

0 2
)′

n2 9 n3 7

n2 =
(

0 −3
)′

n4 4 n3 3

n3 =
(

0 −1
)′

n2 6 n3 4

n4 =
(

0 −2
)′

n2 5 n3 3

all possible normalized states. This is indicated in Table 8.2 which gives the list of
state transitions ofz(k) (the normalization here means that the first component of the
normalized state is always 0), together with the corresponding value of(A(k)z(k))1

(the normalization factor).
In order to obtain a concise notation, the different normalized state vectors are

denotedni , i = 1, . . . . The table is obtained in the following way. The initial state

is n1
def=
(

0 2
)′

. From there, two states can be reached in one step, depending on

the value of A(0):
(

0 −3
)′

and
(

0 −1
)′

. Both normalizedstates are added

to the list and denotedn2 andn3, respectively. The normalization factors are 9 and 7,

respectively. When takingn2 asinitial state, two states can be reached:
(

0 −2
)′

and
(

0 −1
)′

. Only the first of these normalized states is new; it is added to the

list and calledn4, and soon. For the current example, it turns out that there exist four
different states (see Table 8.2).

From this table, one directly notices that the system never returns ton1. Hence this
state is transient. In fact, the Markov chain has a single recurrence class, which consists
of the three statesn2, n3 andn4: from thedefinition of A(k), weobtain

z2(k + 1) = x2(k + 1)− x1(k + 1)

= max(2+ x1(k), 4+ x2(k)) −max(3+ x1(k), A12(k) + x2(k)) ,

whereA12(k) is equal to either 7 or 5. Rewriting the right-hand side results in

z2(k + 1) = max(0, 2+ z2(k)) −max(1, A12(k) − 2+ z2(k)) .

Whatever integer value we assume forz2(k), z2(k + 1) can only assumeone of the
values−1,−2 or−3. The transition matrix of the restriction of this Markov chain to
this recurrence class is 


0 1/2 1/2

1/2 1/2 1/2

1/2 0 0



 .

2These examples are defined through (8.32) as stochasticRmax-linear systems; they do not necessarily
have an interpretation in terms of FIFO stochastic event graphs, as defined in Chapter 2.
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The stationary distribution of this chain is easily calculated to be

µ(n2) = 1/3 , µ(n3) = 1/2 , µ(n4) = 1/6 .

The average cycle time is then

µ(n2)(4µ(A1)+ 3µ(A2))+ µ(n3)(6µ(A1)+ 4µ(A2))

+µ(n4)(5µ(A1)+ 3µ(A2)) = 13/3 .

The crucial feature in this method is thatthenumber of different normalized state
vectors is finite. We now give a few theorems which provide simple sufficient condi-
tions for the finiteness of the state space within this context.

Theorem 8.46 Consider the n-dimensional equation (8.32). Assume that for all en-
tries Ai j (k) there exist finite real numbers Ai j and Ai j such that

P[ Ai j ≤ Ai j (k) ≤ Ai j ] = 1 , ∀k ≥ 0 .

Suppose that z(0) is finite. Then, for k = 1, 2, . . . , all elements z j(k) of the Markov
chain are bounded and we have

min
1≤i≤n

(A ji − A1i) ≤ z j(k) ≤ max
1≤i≤n

(A ji − A1i) , j = 2, . . . , n . (8.33)

Proof We havez j (0) = x j (0) − x1(0), which is finite. From the definition ofz it
follows that

z j (1) = (
A j1(0)⊕ A j2(0)z2(0)⊕ · · · ⊕ A jn(0)zn(0)

)

◦/ (A11(0)⊕ A12(0)z2(0)⊕ · · · ⊕ A1n(0)zn(0)) .

Let q ∈ {1, . . . , n} be suchthat

A jq (0)zq(0) = A j1(0)⊕ A j2(0)z2(0)⊕ · · · ⊕ A jn(0)zn(0) ,

and letr ∈ {1, . . . , n} be suchthat

A1r (0)zr (0) = A11(0)⊕ A12(0)z2(0)⊕ · · · ⊕ A1n(0)zn(0) .

Then,

z j (1) = A jq(0)zq(0)− A1r (0)zr (0) ≥ A jr (0)zr (0)− A1r (0)zr (0)
= A jr (0)− A1r (0) ≥ A jr − A1r ,

whereas on the otherhand,

z j (1) = A jq(0)zq(0)− A1r (0)zr (0) ≤ A jq (0)zq(0)− A1q(0)zq(0)
= A jq(0)− A1q(0) ≤ A jq − A1q .
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The property extends immediately toz(k), k ≥ 1.

Remark 8.47 Theorem 8.46 can straightforwardly be generalized to matricesA(k)
which are suchthat, for somel,

⊗l
k=0 A(k) has all its entries bounded from below and

from above.

The preceding theorem admits the following obvious corollary.

Corollary 8.48 If the matrices A(k) are i.i.d. with integer-valued entries which satisfy
the conditions of Theorem 8.46, and if all entries of z(0) are finite, integer-valued, and
independent of matrices A(k), then the Markov chain z(k) has a finite state space.

Remark 8.49 It is possible that under certain conditions, bounds exist which are better
than those given in Theorem 8.46, as shown by the following two-dimensional example
with

P[ Ai j (k) = 0] = P[ Ai j (k) = 1] = 1/2 , except fori = j = 1 ;
P[ A11(k) = 1] = P[ A11(k) = 2] = 1/2 .

Thenthe greatest lower bound and least upper bound of the random variables are

A11 = 1 ; A11= 2 ; Ai j = 0 ; Ai j = 1 .

According to Theorem 8.46, we have

−2= min(0− 1, 0− 2) ≤ z(k) ≤ max(1− 0, 1− 1) = 1 .

In the integer-valuedcase, it follows from this that the state space ofz(k) is given
by the set{−2,−1, 0}. Hence, in this case,z(k) will not achieve the upper bound of
Theorem 8.46 with positive probability.

This theorem can easilybe extended to include rational values.

Corollary 8.50 If all entries of A(k) are rational-valued and satisfy the conditions of
Theorem 8.46 for all k a.s. and if all entries of z(0) are rational, then the state space
of the Markov chain remains finite.

We now give an example in which the number of elements in the state space does
depend on the actual values of the random variables, but in which on the other hand the
rationality does not play a role.

Example 8.51 Consider (8.32), withn = 2, and where the random variablesAi j (k)
have the following support

A11 = 0 or 1 , A12 = 0 orα , A21 = 1 , A22 = 0 orα .

Let α > 1 and let all possible outcomes have positive probabilities. For this two-
dimensional system, the Markov chain reduces toz(k) = x2(k) − x1(k) ∈ R. Using
Theorem 8.46, one obtains that−α ≤ z(k) ≤ α. From Corollaries 8.48 and 8.50, we
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know that ifα is rational, then the Markov chain has a finite state space (at least for a
proper choice ofz(0)).

Depending on the value ofα, the recurrent state space ofz(k) can be determined.
For allα > 1, z(k) canassumethe following six states with positive probability:

0 , 1 , 1− α , α , α − 1 , −α .

For α ≥ 2, these are the only valuesz(k) can assume. For 1< α < 2, the following
states are also in the state space:

2− α , 2− 2α , 2α − 2 , −1 .

For 3/2≤ α < 2 the state space consists ofjust these ten states. But for 1< α < 3/2
the following valuescan also be assumed:

3− 2α , 3− 3α , α − 3 , α − 2 .

Again, for 4/3≤ α < 3/2, the state space consists of the given fourteen states. But, for
1 < α < 4/3, four other states are also possible, resulting in eighteen states, whereas
for 1 < α < 5/4 again four new states are possible, etc. We see that ifα comes
closer toone, the number of states increases (stepwise). But for any value ofα the total
number of states remains finite. Also forα = 1 thenumber of states is finite (in fact,
the state space is then equal to{-1,0,1}). Also, for all values ofα (both rational and
irrational) within a certain interval, the number of elements of the state space of the
Markovchainz(k) is the same.

Example 8.52 Consider the following six-dimensional case:

A(k) =





ε e ε ε ε ε

ε ε e ε e ε

ε ε ε e ε ε

e ε ε ε e ε

ε ε ε ε ε e
a(k) ε e ε ε ε




,

with
P[a(k) = e] = P[a(k) = 1] = 1/2 .

The matrix is irreducible since the graph corresponding to the matrix is strongly con-
nected. But it turns out that, in this case, the state space of the Markov chain becomes
infinite. This canbe seen as follows. From a state

(
l e l e l e

)′
the follow-

ing states are possible:

(
e l e l e l

)′
and

(
e l e l e l + 1

)′
.

After thelast state, the state

(
l + 1 e l + 1 e l + 1 e

)′
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Table 8.3: Markov chains of the first three routing schemes

Initial state s31 = 1 s31 = 2

First routing scheme

n1 =
(

0 0 0 0 0 0 0 0 0
)′

n1 1 n2 1

n2 =
(

1 0 0 0 0 0 1 0 0
)′

n3 1 n3 1

n3 =
(

1 1 0 1 0 0 1 1 0
)′

n1 2 n1 2

Second routing scheme

n1 =
(

0 0 0 0 0 0 0 0 0
)′

n1 1 n2 1

n2 =
(

1 0 0 1 0 0 1 0 0
)′

n1 2 n1 2

Third routing scheme

n1 =
(

0 0 0 0 0 0 0 0 0
)′

n1 1 n2 1

n2 =
(

0 0 0 1 0 0 1 0 0
)′

n3 1 n4 1

n3 =
(

1 0 0 1 0 0 0 0 1
)′

n5 1 n6 1

n4 =
(

1 0 0 1 0 0 1 0 1
)′

n7 1 n8 1

n5 =
(

0 1 1 0 0 1 0 1 1
)′

n9 1 n2 2

n6 =
(

0 1 1 1 0 1 1 1 1
)′

n1 2 n2 2

n7 =
(

1 1 1 1 0 1 0 1 1
)′

n9 1 n2 2

n8 =
(

1 1 1 1 0 1 1 1 1
)′

n1 2 n2 2

n9 =
(

1 1 1 0 1 1 1 1 1
)′

n1 2 n2 2
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can be reached with positive probability, and from this state the state
(

e l + 1 e l + 1 e l + 2
)′

is possible,etc.

Example 8.53 (Railway Traffic Example Revisited)In §1.2.6 a railwaysystem in a
metropolitan area was studied. This example will be studied in greater detail now. The
three railway stationsS1, S2 andS3 are connected by a railway system as indicated in
Figure 1.10. The railway system consists of two inner circles, along which the trains
run in opposite direction, and of three outer circles. The model which describes the
departure times ofthe nine trains isx(k + 1) = A1x(k). Two other models were
described in§1.2.6 as well, depending on other routing schemes of the trains. These
models were characterized by the transition matricesA2 and A3 respectively. The
elements of these matrices weree, ε or si j , the latter referring to the traveling time
from station Si to stationS j . Thequantity sii refers to the traveling time of the outer
circle connected to stationSi . It is assumed that allsi j -quantities are equal to 1, except
for s31. The latter quantity is random and is either 1 or 2. Each time a train runs
from S3 to S1 there is a probabilityp, 0 ≤ p ≤ 1, thatthe train will be delayed,
i.e. s31 = 2 rather thans31 = 1. Thus matricesAi becomek-dependent and will be
denotedAi (k). The system is now stochastic. It is assumed that no correlation with
respect to the ‘counter’k exists. In this situation, one may also have a preference for
one of these three routings or another one. In this context four routings will be studied:
the ones characterized by the matricesAi , i = 1, 2, 3, and the routing in which the
trains move in opposite directions compared with the routing characterized byA3. The
matrix corresponding to the latter routing, though not explicitly given, will be indicated
by A4. In fact, the results corresponding to this fourth routing will be obtained by using
A3 in which s13 is now the uncertain factor rather thans31.

In Tables 8.3 and 8.4 the normalized states corresponding to the stationary situa-
tionsof the four routingsare given (one must check again in each of these four cases
whether the set of normalizedstates inthe stationary situation is unique, which turns
out to be true). These states have been normalized in such a way that the least compo-
nent equals zero. The transition matrices of these Markov chains follow directly from
these tables. As an example, ifp = 0.2, the transition matrix for the Markov chain of
the first routing scheme becomes




−0.2 0 1

0.2 −1 0
0 1 −1



 ,

from which the stationary distribution can be calculated: it is
(

5/7 1/7 1/7
)′

.
The cycletime then becomes

(0.8× 1+ 0.2× 1)× 5/7+ (0.8× 1+ 0.2× 1)/7+ (0.8× 2+ 0.2× 2)/7= 8/7 .

The results for varying p are given in Figure 8.4 for all four routing schemes. Note
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Table 8.4: Markov chain of the fourth routing scheme

Initial state s31 = 1 s31= 2

n1 =
(

0 0 0 0 0 0 0 0 0
)′

n1 1 n2 1

n2 =
(

0 0 0 0 0 0 0 0 1
)′

n3 1 n4 1

n3 =
(

0 0 1 0 0 1 0 0 0
)′

n5 1 n6 1

n4 =
(

0 0 1 0 0 1 0 0 1
)′

n7 1 n8 1

n5 =
(

1 0 0 0 0 0 1 1 0
)′

n9 1 n10 1

n6 =
(

1 0 0 0 0 0 1 1 1
)′

n11 1 n12 1

n7 =
(

1 0 1 0 0 1 1 1 0
)′

n13 1 n14 1

n8 =
(

1 0 1 0 0 1 1 1 1
)′

n15 1 n1 2

n9 =
(

1 1 0 1 1 0 0 1 0
)′

n16 1 n17 1

n10=
(

1 1 0 1 1 0 0 1 1
)′

n18 1 n19 1

n11=
(

1 1 1 1 1 1 0 1 0
)′

n20 1 n21 1

n12=
(

1 1 1 1 1 1 0 1 1
)′

n22 1 n23 1

n13=
(

1 1 0 1 1 0 1 1 0
)′

n24 1 n25 1

n14=
(

1 1 0 1 1 0 1 1 1
)′

n1 2 n2 2

n15=
(

1 1 1 1 1 1 1 1 0
)′

n24 1 n25 1

n16=
(

0 1 1 0 1 0 1 1 1
)′

n26 1 n26 1

n17=
(

0 1 1 0 1 0 1 1 2
)′

n27 1 n27 1

n18=
(

0 1 1 0 1 1 1 1 1
)′

n1 2 n1 2

n19=
(

0 1 1 0 1 1 1 1 2
)′

n3 2 n3 2

n20=
(

1 1 1 0 1 0 1 1 1
)′

n1 2 n1 2

n21=
(

1 1 1 0 1 0 1 1 2
)′

n3 2 n3 2

n22=
(

1 1 1 0 1 1 1 1 1
)′

n1 2 n1 2

n23=
(

1 1 1 0 1 1 1 1 2
)′

n3 2 n3 2

n24=
(

1 1 1 1 1 0 1 1 1
)′

n1 2 n2 2

n25=
(

1 1 1 1 1 0 1 1 2
)′

n3 2 n4 2

n26=
(

1 1 1 1 1 1 1 0 1
)′

n28 1 n29 1

n27=
(

1 1 2 1 1 2 1 0 1
)′

n30 1 n31 1

n28=
(

1 1 1 1 0 1 1 1 1
)′

n1 2 n2 2

n29=
(

1 1 1 1 0 1 1 1 2
)′

n3 2 n4 2

n30=
(

2 1 1 1 0 1 2 2 1
)′

n9 2 n10 2

n31=
(

2 1 1 1 0 1 2 2 2
)′

n11 2 n12 2
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p

Figure 8.4: Cycle times of the four routings

that the cycle times of routings one and three completely coincide. If one could choose
among the routings, then routing 4 would be preferred since it has the least cycle time
for any p-value.

Example 8.54 (Example of Parallel Computation Revisited)The starting point for
this subsection is Equation (1.33). This isa nonlinear equation which describes the
evolution of the speed of a simple matrix multiplication on a wavefront array processor.
Suppose thatαi , i = 1, 2, are either 1 (ordinary multiplication) or 0 (multiplication by
a 0 or a 1). Letz(k) be defined as in Theorem 8.44. Using the same type of arguments
as inthe proof of this theorem, one shows thatz(k) is a Markov chain, provided that
the random variablesαi(k) are independent.

It is possible to aggregate the state space of this Markov chain into twelve macro-
states, as defined in Table 8.5, while preserving the Markov property (the transition
probabilities satisfy the conditions of the ‘lumping theorem’ 6.3.2 in [74]).

The other steps of the analysis (computation of the transition matrix of the ag-
gregated Markov chain and of the invariant measure) can then be carried out in the
standard way.

Table 8.5: States of Markov chain; example of parallel computation;l = 0, 1, 2, . . .

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

l l l l l l l l l l l l
l l l l l + 1 l l l l + 1 l + 1 l l
l l + 1 l l l + 1 l + 1 l l l + 1 l l l
l l + 1 l + 1 l l + 1 l + 1 l + 1 l l + 1 l + 1 l l − 1
0 0 0 1 0 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1 0 0 1 0
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8.4.3 Continuous Distribution Functions

The starting point is Equation (8.32). It is assumed that the sequence of matrices
{A(k)}k≥0 is i.i.d., that for eachk the entriesAi j (k), i, j = 1, . . . , n, are mutually
independent, and that the random variablesAi j (0) all have thesame distribution func-
tion onR

+, whichwill be denotedF . We will assume thatF admits a density. Under
these assumptions, there is one m.s.c.s. Whenever the support ofF is infinite, the in-
crement process{δ(k)} of Chapter 7, and hence the process{z(k)} couple in finite time
with stationary processes which do not depend on the initial condition.

From Theorem 8.44, the variablesz(k) form a Markov chain onRn−1 (the first
coordinate is zero), the transition matrix of which is characterized by the relation

zi(k + 1) = Ai1(k) ⊕
⊕

n

j=2(Ai j (k) ⊗ z j(k))

A11(k) ⊕
⊕n

j=2(A1 j (k) ⊗ z j(k))
, i = 2, . . . , n . (8.34)

The transition kernel of the Markov chain, or equivalently the distribution of
(

z2(k + 1) . . . zn(k + 1)
)

given
(

z2(k) . . . zn(k)
)

is obtained from (8.34):

K (x2, . . . , xn; y2, . . . , yn)

def= P [z2(k + 1) ≤ y2, . . . , zn(k + 1) ≤ yn | z2(k) = x2, . . . , zn(k) = xn]

= P [X2◦/X1 ≤ y2, . . . , Xn◦/X1 ≤ yn] ,

where the random variablesXi, i = 2, . . . , n, defined by

Xi =st Ai1(k) ⊕
n⊕

j=2

Ai j (k)x j ,

are independent. The notation=st refers here to equality in distribution. From the last
two equations and the fact that allAi j (k) possess the same distribution F , it follows
that

K (x2, . . . , xn; y2, . . . , yn) =
∫ ∞

−∞




n∏

j=2

P[X j ≤ y j + t ]



dP [X1 ≤ t ] =

∫ ∞

−∞




n∏

j=2

H (t + y j, t + y j − x2, . . . , t + y j − xn)




[

d

dt
H (t, t − x2, . . . , t − xn)

]
dt

where

H (u1, u2, . . . , un)
def=

n∏

i=1

F(ui ) .

The distribution function

ζk(x2, . . . , xn)
def= P [z2(k) ≤ x2, . . . , zn(k) ≤ xn]
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satisfies thefunctional equation

ζk+1(y2, . . . , yn) =
∫ ∞

−∞
. . .

∫ ∞

−∞
K (x2, . . . , xn; y2, . . . , yn)ζk(dx2, . . . , dxn) .

Whenever the infinitesupport condition is satisfied, we know that the limit limk→∞ ζk =
ζ exists in the (weak convergence) distributional sense. This limit is a solution of the
functional equation

ζ(y2, . . . , yn) =
∫ ∞

−∞
. . .

∫ ∞

−∞
K (x2, . . . , xn; y2, . . . , yn) ζ(dx2, . . . , dxn) . (8.35)

Let ζ be the unique solution of this equation. Itis immediate to see that the distri-
bution functionD(t) of the stationary ratioδ11 is given by the relation

D(t) = lim
k→∞

P [x1(k + 1)− x1(k) ≤ t ]

= lim
k→∞

P [ A11(k) ≤ t, A12(k) + z2(k) ≤ t, . . . , A1n(k) + zn(k) ≤ t ]

= lim
k→∞

P [ A11(k) ≤ t, A12(k) ≤ t − z2(k), . . . , A1n(k) ≤ t − zn(k)]

= F(t) lim
k→∞

∫ ∞

−∞
. . .

∫ ∞

−∞

n∏

i=2

F(t − yi )ζk(dy2, . . . , dyn)

= F(t)
∫ ∞

−∞
. . .

∫ ∞

−∞

n∏

i=2

F(t − yi)ζ(dy2, . . . , dyn) . (8.36)

The limit and the integral in (8.36) can be interchanged by the definition of weak con-
vergence, sinceF is continuous, see [21].

Example 8.55 Consider (8.32) withn = 2 and with the assumptions made in the
previous subsection. The transition kernelK (x; y) of the Markov chain{z2(k)} is
given by

K (x; y)
def= P [z2(k + 1) ≤ y | z2(k) = x ]

=
∫ ∞

−∞
H (t + y, t + y − x)

(
d

dt
H (t, t − x)

)
dt

=
∫ ∞

−∞
F(t + y)F(t + y − x)

(
F(t − x)

d

dt
F(t)+ F(t)

d

dt
F(t − x)

)
dt .

Explicit calculations will be made for

F(x) = (1− exp(−x))1[0,∞)(x) . (8.37)

It follows from (8.35) that the densityd of the stationary distributionζ satisfies the
equation

d(y) =
∫ ∞

−∞

(
d

dy
K (x; y)

)
d(x)dx ,
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or, equivalently, after some calculations,

d(y) = 1

2

∫ ∞

−∞

[
−1

3
exp(−|y| − 2|x |)+ 2

3
exp(−2|y| − 2|x |) (8.38)

+ 2

3
exp(−|y| − |x |)− 4

3
exp(−2|y| − |x |)+ exp(−|y|)

]
d(x)dx .

This is an integral equation, the kernel of which is degenerate, see [90]. The solution
d(y) must beof the form

d(y) = c1 exp(−|y|) + c2 exp(−2|y|)
(see [90, Chapter 1,§4]), where thecoefficientsci still must be determined. Substitu-
tion of this form into the integral equation leads to 8c1+ 23c2 = 0. This, together with
the normalization condition

∫∞
−∞ d(y)dy = 1 results in 2c1 + c2 = 1, which uniquely

determines these coefficients. The stationary density is hence given by

d(y) = 23

38
exp(−|y|)− 4

19
exp(−2|y|) , y ∈ (−∞,∞) . (8.39)

It is easy to show thatd(y) ≥ 0, ∀y ∈ (−∞,∞), and henced is indeed a probability
density function. With the aid of (8.39), one now obtains, after some straightforward
analysis,

lim
k→∞

E [x1(k + 1)◦/x1(k)] = 407

228
= 1.79 .

This expression also equals limk→∞ E
[
(xi (k))1/k

]
, provided that the random vari-

ablesx1(0) andx2(0) are integrable.

Remark 8.56 The fact thatdk, defined as the density ofζk , indeed approaches the
limit d ask goes to infinity, can easily be illustrated for this example. If one starts with
an arbitrary densityd0, thend1 is already the sum of the two exponentials exp(−y) and
exp(−2y), as follows from

dk+1(y) =
∫ ∞

−∞
K (x; y)dk (x)dx ,

where thekernelK is the same as in (8.38). In general,

dk(y) = c1(k)exp(−|y|)+ c2(k)exp(−2|y|) , k ≥ 1 ,

and the coefficients satisfy
(

c1(k + 1)
c2(k + 1)

)
=
(

11/9 23/36
−4/9 −5/18

)(
c1(k)
c2(k)

)
.

If onestarts with with a probability density functionζ0, then 2c1(k) + c2(k) = 1, k =
1, 2, . . . , and

lim
k→∞

c1(k) = 23/38 , lim
k→∞

c2(k) = −4/19 .
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Hence the transient behavior converges to thelimit (stationary) behavior.

Remark 8.57 Theoutcome of the above example will be compared with the outcomes
of two other examples. The models of all three examples will be the same, i.e. (8.32)
with n = 2. The difference is the stochastic behavior ofAi j . In the above example, it
was characterized by (8.37). In thenext two examples we have

Example 2: µ(Ai j = 0) = µ(Ai j = 2) = 1/2;

Example 3: Ai j is uniformly distributed on the interval [0, 2).

In all these three examples,E[ Ai j ] = 1. In spite ofthis, it will turn out that the
throughput for all three examples is different. In the second example, the elementsAi j

have a discrete distribution. The method of§8.4.2 can be applied, which results in

lim
k→∞

E [x1(k + 1)◦/x1(k)] = 12

7
= 1.71 .

For the third example, the method described at the beginning of this subsection can be
used. The same type of analysis leads to

lim
k→∞

E [x1(k + 1)◦/x1(k)] = 1.44 .

The third example leads to the best throughput. This is not surprising: for instance,
the comparison between the exponential case and the case of Example 3 follows from
Theorem 8.3; indeed, the Karlin-Novikoff cut criterion [123, Proposition 1.5.1, p. 12]
immediately implies that an exponential random variable of mean 1 is≤cx-bounded
from below by a uniform random variable on [0, 2).

8.5 Appendix

8.5.1 Stochastic Comparison

This subsection gathers a few basic properties of the three stochastic orders introduced
in §8.2.1, and related definitions. For proofs and details, see [123] or [6].

From the very definitions, it should be clear that

x ≤st x† ⇒ f (x) ≤st f (x†) , (8.40)

for all coordinatewise nondecreasing functionsf : R
n → R

m . In the same vein,

x ≤icx x† ⇒ f (x) ≤icx f (x†) , (8.41)

for all nondecreasing and convex functionsf : R
n → R

m .

Remark 8.58 From Jensen’s inequality, it is immediately checked that for all inte-
grable random variablesx ∈ R

n , the following relation holds:

E [x ] ≤cx x . (8.42)
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Lemma 8.59 If x and x† are nonnegative, real-valued random variables, each of the
properties x ≤st x†, x ≤cx and x ≤icx x† implies the moment relation E [xn ] ≤
E
[
(x†)n
]
, for all n ≥ 0.

Consider anR
n-valued sequencex generated by the recursion

x(k + 1) = a(x(k), u(k)) , k ≥ 0 , (8.43)

for some Borel mappinga : R
n × R

p → R
n, for somegiven sequence ofRp-valued

random variablesu = {u(0), . . . , u(k), . . . } and some initial conditionx(0), all de-
finedon the probability space(�,F,P). Let x† be the sequence defined as above, but
for the initial condition and the sequence, which are respectively replaced byx†(0) and
u†.

In what follows,ξ denotes the sequence

ξ = {x(0), u(0), u(1), . . . } , (8.44)

with a similar definition forξ †. The proofs of the following results can be found in [6,
Chapter 4].

Theorem 8.60 Assume that the mapping (X,U ) �→ a(X,U ) is nondecreasing; then
ξ ≤st ξ

† implies that x ≤st x.

Theorem 8.61 Assume that the random variables x(0) and u(0), u(1), . . . are inte-
grable, that the mapping (X,U ) �→ a(X,U ) is convex, and that the mapping X �→
a(X,U ) is nondecreasing for all U; then ξ ≤cx ξ

† implies that x ≤icx x.

Theorem 8.62 Assume that the random variables x(0) and u(0), u(1), . . . are inte-
grable, and that the mapping (X,U ) �→ a(X,U ) is convex and nondecreasing; then
ξ ≤icx ξ †, implies that x ≤icx x.

Definition 8.63 (Stochastic convexity)A collection of R
n-valued random variables

{Z (ρ)}ρ∈R with a convex parameter set R ⊂ R
m is said to be stochastically (increasing

and) convex in ρ if E [φ(Z (ρ))] is (nondecreasing and) convex in ρ ∈ R, for all
nondecreasing functions φ : R

n → R.

The stochastic concavity with respect to a parameter is defined in a similar way.

Definition 8.64 (Association)The (set of) R-valued random variables x1, . . . , xn, all
defined on the same probability space, are (is) said to be associated if

E [ f (x1, . . . , xn)g(x1, . . . , xn)] ≥ E [ f (x1, . . . , xn)] E [g(x1, . . . , xn)] ,

for all pairs of increasing functions f, g : R
n → R such that the integrals are well

defined.

This definition is extended to sets ofR
n-valued random variables by requiring that the

set of all coordinates be associated. It is also extended to sequences and to random pro-
cesses in theusual way: the sequence is said to be associated if all finite subsequences
are associated.
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Remark 8.65 The association property can often be established without computing the
joint distribution of the variables explicitly: for instance, the union of independent sets
of associated random variables forms a set of associated random variables; as can easily
be checked, for any nondecreasing functionφ : R

n → R, and any set of associated
random variables{x1, . . . , xn}, the variables{φ(x), x1, . . . , xn} are associated, where

φ(x)
def= φ(x1, . . . , xn).

Lemma 8.66 If the random variables {x1, . . . , xn} are associated, then

n⊕

i=1

xi ≤st

n⊕

i=1

xi ,

and
n∧

i=1

xi ≥st

n∧

i=1

xi ,

where x is the product form version of x, namely the random vector such that

• xi =st xi for all i = 1, . . . , n;
• the marginals of x are mutually independent.

Note that the product form versionx of x is only characterized through its probability
law. Concerning recursions of the type (8.43), we also have the following theorem.

Theorem 8.67 Assume that the function (X,U ) → a(X,U ) is nondecreasing. If the
set {ξ(0), ξ(1), . . . } and the initial condition x(0) form a set of associated random
variables, then the random sequence x, ξ is also associated.

8.5.2 Markov Chains

Sequences generated like in (8.43) satisfy the following property:

Theorem 8.68 If the sequence u(k) is i.i.d., then {x(k)} forms a homogeneous Markov
chain.

For this and related results on Markov chain theory, see [121].

8.6 Notes

A good survey on the methods for deriving stochastic monotonicity results for classical queuing
systems can be found in the book by D. Stoyan [123]. The interest of these techniques to an-
alyze synchronization constraints was first stressed by A.M. Makowski, Z. Liu and one of the
coauthors, in [12] for queuing systems, and in [10] for stochastic event graphs. The uniformiza-
tion method for proving the concavity of throughput generalizes an idea of L.E. Meester and
J.G. Shanthikumar (see [89] and [10]).

The use of large deviation techniques for deriving growth rates for age-dependent branching
processes wasinitiated by J.F. Kingman and D. Biggins [76] and [19]. The relation between
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event graphs and branching processes which is presented in§8.3, isthat considered in [8]. This
approach has interesting connections with the work of B. Derrida on directed polymers in a
random medium (see [56], [48]), from which the idea of Remark 8.42 originates.

Most of the results mentioned in§8.4 come from [97], [101], [104] and [117]. In the latter
reference, one can also find further results on the asymptotic normality of daters. The analysis of
the finiteness of the state space in§8.4.2 is mainly drawn from [54]. The type of functional equa-
tion which is established in§8.4.3 is also considered in certain nonautonomous cases (see [9]).
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Chapter 9

Related Topics and Open Ends

9.1 Introduction

In this chapter various items will be discussed whicheither didnot find a natural place
in oneof the preceding chapters, which are only related to discrete events, or which are
not yet fully grown in a scientific way. The personal bias of the authors will be clearly
reflected in this chapter. There are no direct relations between the sections. Section 9.2
is concerned with various continuations of the linear theory developed throughout the
book. Section 9.3 is devoted to the control of discrete event systems, whereas§9.4
gives a picture of the analogies between the theory of optimization and that of Markov
chains. The last three sections are devotedto some (limited) incursions into the realm
of general Petri nets and nonlinear systems.

9.2 About Realization Theory

9.2.1 The Exponential as a Tool; Another View on Cayley-Hamilton

If a andb are reals (or−∞) then thefollowing identities are easily verified:

a ⊕ b = max(a, b) = lim
s→∞ s−1(ln(exp(as)+ exp(bs))) ,

a ⊗ b = a + b = s−1 ln(exp(as)exp(bs)) .

Rather than working in the max-plus algebra setting with variablesa, b, . . . , one can
now envisage working with the variables exp(as), exp(bs), . . . , wheres is a positive
real, in conventional algebra. After having obtained results in conventional algebra, we
must translate these results back into corresponding results in the max-plus algebra by
usingcareful limit arguments whens → ∞. This procedure will be elucidated in this
subsection and in§9.2.3. Instead of working with exp(as), exp(bs), . . . , we will work
with za, zb, . . . , z real, and study the behavior forz →∞.

In conventional calculus, the Cayley-Hamilton theorem states that every square
matrix satisfies its own characteristic equation. To be more explicit, letA be ann × n
matrix with entries inR. If

det(λI − A) = λn + c1λ
n−1 + · · · + cn−1λ+ cn , (9.1)

419
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then
An + c1 An−1 + · · · + cn−1 A + cn I = 0 .

In these equationsI is the conventional identity matrix and 0 is the zero matrix. The
coefficientsci , i = 1, . . . , n, in (9.1) satisfy

ck = (−1)k
∑

i1<i2<···<ik

det




Ai1 i1 · · · Ai1 ik
...

...

Aik i1 . . . Aik ik



 . (9.2)

Now considerthe matrixz A def= (z Aij
)
, i.e. thei j -th entry ofz A equalsz Aij . The Cayley-

Hamilton theorem applied to matrixz A yields

(z A)n + ζ1(z
A)n−1 + · · · + ζn−1z A + ζn I = 0 . (9.3)

If the principalk × k submatrix occurring on the right-hand side of (9.2) is denoted
A(i1, i2, . . . , ik), then the coefficientsζk are given by

ζk = (−1)k
∑

i1<i2<···<ik

detz A(i1,i2,... ,ik ) .

If we takethe limit whenz →∞, then weobtain

ζk ≈ (−1)kζ kzmaxi1<i2<···<ik domA(i1,i2,... ,ik ) , (9.4)

wheredom (fordominant) is a concept similar to per (forpermanent); for the latter
see [91]. For an arbitrary square matrix B, dom(B) is defined as

dom(B) =
{

greatest exponent in det(zB) if det(zB) 
= 0 ,

ε otherwise.
(9.5)

The coefficientζk in (9.4) equals the number of even permutations minus the number
of odd permutations contributing to the highest-degree term in the exponents ofz:

max
i1<i2<···<ik

dom (A(i1, i2, . . . , ik)) .

Now let usconsider the asymptotic behavior of(z A)k as z → ∞. One may easily
understand that

(z A)k ≈ z Ak
, (9.6)

where Ak on the right-hand side denotes thek-th power of A for the matrix product
in Rmax. Define

ζ ∗k = (−1)kζ k ,

I = {k | 1 ≤ k ≤ n, ζ ∗k > 0} ,

c∗k =
⊕

i1<i2<···<ik

dom(A(i1, i2, . . . , ik)) .
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Substitution of (9.4) and (9.6) into (9.3) yields the following:

z An +
∑

k∈I
ζ ∗k zc∗k z An−k ≈

∑

k 
∈I
ζ ∗k zc∗k z An−k

.

Since allterms now have positive coefficients,the comparison of the highest degree
terms in both members of this approximation leads to the following identity inRmax:

An ⊕
⊕

k∈I
c∗k An−k =

⊕

k /∈I
c∗k An−k . (9.7)

It is this identity that we consider as a version of the Cayley-Hamilton theorem in the
max-plus algebra sense.

Remark 9.1 Thedominant, as it appears implicitly in (9.7) through the coefficientsc∗k ,
can be directlyobtained fromA

dom(A(i1 i2, . . . , ik)) =
⊕

Ai1 j1 · · · Aik jk ,

where j1, . . . , jk is a permutation ofi1, . . . , ik , and where the
⊕

-symbol is with re-
spect to all such permutations.

Remark 9.2 It is important to realize that this version of the Cayley-Hamilton theorem
differs slightly from the one given in§2.3.3. The reason is thatin the derivation of the
current version terms have been canceled in the calculation ofζ k as it appears in (9.4).
If terms of equal magnitude but of opposite signature (of the permutations) had been
kept, then one would have obtained the ‘original’ Cayley-Hamilton theorem in the
max-plus algebra.

Example 9.3 Consider

A =



1 2 3
4 1 ε

e 5 3



 ,

which wasalso considered in§2.3.3. First the coefficientsc∗k will be calculated:

c∗1 =
⊕

i1
domA(i1) =

⊕
i1

dom(Ai1 i1) = 1⊕ 1⊕ 3 = 3 ,

c∗2 =
⊕

i1<i2
domA(i1, i2) = domA(1, 2)⊕ domA(1, 3)⊕ domA(2, 3)

= 6⊕ 4⊕ 4 = 6 ,

c∗3 = domA(1, 2, 3) = 12 .

The quantity ζ 1 equals the number of even permutations minus the number of odd
permutations needed to obtainc∗1. The permutations of the diagonal elements are even
end henceζ 1 = +1. The permutation which realizedc∗2 = 6, where the number 6
wasobtained byA12A21, is odd and thereforeζ 2 = −1. Similarly, the permutation
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which realizedc∗3 = 12, where the number 12 was obtained byA13A21A32, is even and
thereforeζ 3 = +1. Thus one obtainsζ ∗k = −1, k = 1, 2, 3, and (9.7) becomes

A3 = 3A2 ⊕ 6A⊕ 12e .

Notethat this equation was also given in§2.3.3, with the actualA substituted. However,
in that section the characteristic equation was first simplified beforeA was substituted
into this characteristic equation.

From the above example it is clear that for any square matrixA, ζ 1 = +1 and
henceAn and An−1 always appear on different sides of the equality symbol in the
Cayley-Hamilton theorem. The lower order exponentials ofA can appear at either side
(but not on both sides simultaneously) of the equality symbol in the current version of
the Cayley-Hamilton theorem.

9.2.2 Rational Transfer Functions and ARMA Models

In conventional discrete time system theory a rational transfer function can be ex-
pressed as the ratio of two polynomialsp(z) = ∑m

i=0 pi zi and q(z) = ∑n
j=0 q j z j

(z is the delay operator). LetU (z) andY (z) denote thez-transforms of the input and
of the output trajectoriesu(·) andy(·) respectively. We have

Y (z) = p(z)

q(z)
U (z)⇔ q(z)Y (z) = p(z)U (z)⇔

n∑

j=0

q j y(t + j )=
m∑

i=0

pi u(t + i) .

In Statistics the last equation is known as an ‘ARMA’ model: the ‘autoregressive’ (AR)
part of the model corresponds to the left-hand side of the equation, whereas the ‘moving
average’ (MA) part is the right-hand side.

In §5.7 rational transfer functionsH (γ, δ) ∈ M
ax
in[[γ, δ]] were identified with func-

tions which can be written asC A∗B, whereC (respectively B) is a row(respectively
a column) vector andA is a square matrix. The entries ofC andB may be restrained
to be Boolean and those ofA are elements ofMax

in[[γ, δ]] which can be represented by
polynomials of degree 1 inγ andδ (see Theorem 5.39). Our main objective here is to
show that rational transfer functions are amenable to ARMA models as previously.

However, since there is no possibility of having ‘negative’ coefficients of polyno-
mials, the AR and the MA part should both appear in both sides of the equation, which
yields an implicit equation.This implicit equation inY (U is given) may have several
solutions in general, and among them, there is the ‘true’ solution ofY = C A∗ BU .
No results are available yet to select this true solution among the possibly many other
solutions. Our purpose is just to show a utilization of the Cayley-Hamilton theorem to
pass from the(C, A, B)-form to the ARMA form.

Lemma 9.4 If Y is the output of a rational transfer function when U is the input, then
there exist four polynomials p1, p2, q1, q2 ∈ M

ax
in[[γ, δ]] , with deg(p1) < deg(q2) and

deg(p2) < deg(q1), such that, for all U ∈M
ax
in[[γ, δ]] , Y satisfies

q1Y ⊕ p1U = q2Y ⊕ p2U . (9.8)
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Proof NotethatY canbewritten asC X with X = AX⊕BU (conditions on(C, A, B)
have been recalled earlier). In Theorem 2.22 it was shown that, in a commutative
dioid such asMax

in[[γ, δ]] , there exist two polynomialsp+(z) and p−(z) of anabstract
variablez with coefficients belonging to the dioid (hereMax

in[[γ, δ]]), such that

p+(A) = p−(A) .

The explicit form of these polynomials, given in Definition 2.21, shows that their coef-
ficients are themselves polynomials in(γ, δ) sinceA is a polynomial matrix. Now, for
anyk ∈ N, we have

X = Ak X ⊕ (e ⊕ A ⊕ · · · ⊕ Ak−1) BU . (9.9)

Let p+ =⊕n1
k=0 p+k zk and considera similar expression forp− (with degreen2). One

can multiply both sides of Equation (9.9) byp+k and sumup all these equations for
k = 0, . . . , n1. This yields

(
n1⊕

k=0

p+k

)
X

︸ ︷︷ ︸
a1

= (p+(A)
)

X
︸ ︷︷ ︸

a2

⊕ r+(A)BU︸ ︷︷ ︸
a3

for some polynomialr+(z) of degree less thann1, the form of which is not given in
detail here. In a similar way, one can obtain

(
n2⊕

l=0

p−l

)
X

︸ ︷︷ ︸
a4

= (p−(A)
)

X
︸ ︷︷ ︸

a5

⊕ r−(A)BU︸ ︷︷ ︸
a6

for some polynomialr−(z) of degree less thann2. Note that a2 = a5 by the Cayley-
Hamilton theorem. Then, we have

a1⊕ a6 = a2⊕ a3⊕ a6 = a3⊕ a5⊕ a6 = a3⊕ a4 .

To complete the proof, it suffices to multiply both sides of this equation byC (which
commutes with ‘scalars’) to letY appear (Y = C X ).

9.2.3 Realization Theory

For this subsection the reader is assumed to be familiar with conventional realization
theory, see e.g. [72]. In §1.3 the following question was posed: How do we obtain a
time-domain representation, or equivalently, how do we findA, B andC, if the p × m
transfer matrix

H (γ ) = γC B ⊕ γ 2C AB ⊕ γ 3C A2 B ⊕ · · ·
is given? For the sake of simplicity we willconfine ourselves to SISO systems, i.e.
matricesB andC are vectors (m = p = 1). One may be temptedto study the related



424 Synchronization and Linearity

semi-infinite Hankel matrixG defined by

G =





g1 g2 g3 · · ·
g2 g3 g4 · · ·
g3 g4 g5 · · ·
g4 : :
...

...




,

wheregi = C Ai−1 B; thesequantities are sometimes calledMarkov parameters. Only
partial results, some of which will be shown now, have been obtained along this line.
The matrixG(≤i)(≤ j) is, as in Chapter 2, defined as the submatrix ofG, consisting of
the intersection of the firsti columns andthe first j rows ofG. As an example, consider
the Markov parameters

g1 = 1, g2 = 3, g3 = 0, g4 = 1, g5 = −2, g6 = −1, g7 = −4, . . . . (9.10)

It is easily verified that for this series,

domG(≤1)(≤1) = 1 , domG(≤2)(≤2) = 6 , domG(≤3)(≤3) = 0 ,

and domG(≤i)(≤i) = ε for i ≥ 4 ,

where dom was defined in (9.5). This, with the conventional theory in mind, might
lead to the conclusion that the minimal realization would have order 3. This is false
since the Markov parameters above were derived from the system with

A =
(

ε e
−2 −3

)
, B =

(
ε

e

)
, C = ( 3 1

)
, (9.11)

and hencethe minimal realization will maximally have order 2. Studying domG(≤i)(≤i)

turnsout not to be very fruitful. A better approach is to consider linear dependences
among the rows ofG. For the current example, for instance, we have

G·i = (−3)G·i−1 ⊕ (−2)G·i−2 , i = 3, 4, . . . .

Now wecan use the followingtheorem.

Theorem 9.5 Given the series {gi }∞i=1 such that for the corresponding Hankel matrix,

G·i = c1G·i−1 ⊕ · · · ⊕ cn G·i−n , i = n + 1, n + 2, . . . ,

holds true for certain coefficients c1, . . . , cn, and where n is the smallest integer for
which this, or another linear dependence (see below), is possible, then the discrete-
event system characterized by

A =





ε e ε . . . ε

ε ε e . . . ε
...

ε . . . . . . ε e
cn . . . . . . c2 c1




, B =





g1

g2
...

gn−1

gn




, C′ =





e
ε
...
...

ε




,

is a minimal realization.
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The proof can be found in [105]. The essence of the proof consists in converting
the statement of the theorem into the conventional algebra setting by means of the
exponential transformation as introduced in§9.2.1, giving the proof there and then
returning to the max-plus algebra setting. In the statement of the theorem above, the
notion of linear dependence of columns is used.

Definition 9.6 Column vectors v1, . . . , vn are said to be linearly dependent if scalars
c1, . . . , cn, not all ε, and a subset I ∈ {1, . . . , n} exist such that

⊕

k∈I
ckvk =

⊕

k 
∈I
ckvk .

If this theorem is applied to the series in (9.10), then the result is

A =
(

ε e
−2 −3

)
, B =

(
1
3

)
, C = ( e ε

)
,

which is dif ferent from (9.11), although both 3-tuples(A, B,C) characterize the same
series of Markov parameters.

Unfortunately, Theorem 9.5 is of limited use. The reason is that it cannot deal with
general linear dependences of column vectors. Take as an example

g1 = 5 , g2 = 8 , g3 = 11.5 , g4 = 15.5 , g5 = 19.5 , . . . . (9.12)

For the corresponding Hankel matrix the following dependence is true:

G·i ⊕ 7G·i−2 = 4G·i−1 , i = 3, 4, . . . ,

but Theorem 9.5 does not cover this kind of linear dependence. The system character-
ized by

A =
(

3 7
−2 4

)
, B =

(
5
e

)
, C = ( e 3.5

)
,

however, is a minimal realization of the Markov parameters given in (9.12).
The conclusion of this subsection is that, given an arbitrary series of Markov pa-

rameters, it is not known how to obtain a minimal state space realization (if it exists).
In the next subsection, however, the reader will find a recent development.

9.2.4 More on Minimal Realizations

R.A. Cuninghame-Green [50] has recently come up with a promising method to obtain
a state space realization from a series of Markovparameters. The following two theo-
rems are used, the proofs of which can be found in [49]. In these theorems, ifK is a
matrix, thenK is the matrixobtained fromK by transposition and a change of sign.

Theorem 9.7 For a general matrix K , (K , K )⊗ K = K .

The symbol, refers to the multiplication of two matrices (or of a matrix and a vector)
in which the min-operation rather than the max-operation is used; it will be discussed
more extensively in§9.6. The theorem just formulated states that all columns ofK are
eigenvectors ofK , K .
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Theorem 9.8 For a given matrix K , consider D, where D = K ⊗ Kd and Kd is
derived from K , K by replacing all diagonal elements by ε. Then a column of K
is linearly dependent on the other columns, i.e. one column can be written as a linear
combination of the other columns in the max-plus algebra sense, if and only if it is
identical to the corresponding column of D. The corresponding column of Kd then
yields the coefficients expressing the linear dependence.

This theorem gives a routine method of finding linear dependences among the columns
of a given matrix. This linear dependence is to be understood as one column being writ-
ten as a linear combination of the others. Note that this definition of linear dependence
is more restrictive than the definition used in§9.2.3, Definition 9.6.

For the realization one forms a Hankel matrixG(≤n+1)(≤n+1) for somen sufficiently
large. From Theorem 9.7 weknow that the columns ofG(≤n+1)(≤n+1) are preserved
by the action of G(≤n+1)(≤n+1) , (Gc)(≤n+1)(≤n+1). It follows that, if A is the matrix
obtained by dropping the first row and last column ofG(≤n+1)(≤n+1),(Gc)(≤n+1)(≤n+1),
then

A⊗





g1

g2
...

gn



 =





g2

g3
...

gn+1



 ,

i.e. A moves theMarkov parameters ‘one position up’. A state space realization is now
obtained byA, by B as the first column ofG(≤m)(≤m) and byC = ( e ε . . . ε

)
.

In general, the realization found will not have minimal dimension. In order to re-
duce the dimension, Theorem 9.8 is used. One searches for column linear dependences,
as well as for row linear dependences ofA. By simultaneously deleting dependent rows
and columns of the same index fromA, the state space dimension is reduced.

As an example, consider the Markov parametersg1 = 0, g2 = 3, g3 = 6, g4 =
10, g5 = 14, g6 = 18, . . . , and taken = 3. It is easily verified, by following the
procedure describedabove, that

A =



3 e −4
6 3 e

10 7 4



 , B =



e
3
6



 , C = ( e ε ε
)
.

Since the second column ofA depends linearly on the first one, and the second row
depends linearly on the other rows (it is linearly dependent on the last row), the second
row and second column can be deleted so as toobtain a state space realization of lower
dimension:

A =
(

3 −4
10 4

)
, B =

(
e
6

)
, C = ( e ε

)
.

This latter realization turns out to have minimal dimension. It is left as an exercise to
show thatif started withn = 2 rather than with n = 3, one would have obtained the
wrong result. This in spite of the fact that the Hankel matrixG has ‘rank’ 2; fori ≥ 1
we have that(−4)G·i+2 ⊕ 3G·i = G·i+1.
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9.3 Control of Discrete Event Systems

In this section special instances of nonlinear systems will be described, for which the
max-plussetting is still appropriate. The system equations to be considered have the
form

x(k + 1) = A(u(k), u(k − 1))x(k) . (9.13)

Matrix A can be controlled by the decision variableu to bedefined. In Chapter 1 a
decision variableu was encountered also. There it had the function of an input to the
system; nodes of the underlying network had to wait for external inputs. In the current
setting as expressed by (9.13),u influences the entries of the system matrixA. For
a motivation of the system described by (9.13), think of a production planning where
the holding times at the nodes are zero and where the standard traveling time from
node j to nodei is indicated byAi j . This traveling time can be reduced maximally by
an amountc if an extra pieceof equipment is used. Rather thanAi j , it then becomes

Ai j
def= max(Ai j − c, 0). It is assumed thatonly one such a piece of equipment is

available and that it can be used only once (i.e. at one arc, connecting two nodes)
during eachk-step. One can envisage situations in which this piece of equipment could
be used a number of times during the samek-step, at different arcs of the network.
Although such a generalization can in principle be handled within the context of this
section, the analysis becomes rather laborious and such a generalization will therefore
not be considered.

Suppose we are given a network with two nodes. If no extra piece of equipment
were available, the evolution of the state vectorx(k) ∈ R is according tox(k + 1) =
Ax(k) in Rmax, where

A =
(

3 1
4 2

)
.

Boolean variablesui j (k), i, j = 1, 2, are now introduced todescribe the control
actions; they are defined subject to

∑
ui j (k) = 0 or= 1. Hence maximally one of the

ui j (k) can be 1, which indicates that the piece of extra equipment has been set in for
arc ai j , from node j to nodei during thek-th cycle. Thus there are five possibilities;
the pieceof equipment is not applied or it is applied to one of the arcs corresponding
to Ai j , i, j = 1, 2. If c = 2, these possibilities result in the following matricesA:

(
3 1
4 2

)
,

(
1 1
4 2

)
,

(
3 0
4 2

)
,

(
3 1
2 2

)
,

(
3 1
4 0

)
.

Formally, we can write

x(k + 1) =
(

A11◦/u2
11 A12◦/u12

A21◦/u2
21 A22◦/u2

22

)
x(k) .

This equation does not take into account the fact that the piece of equipment might not
be available at the appropriate node at the right time. For this reason, an extra state
variablex3 will be introduced;x3(k) denotes the epoch of release of the equipment
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during the(k − 1)-st cycle. The correct evolution equations then become
(

x1(k + 1)
x2(k + 1)

)
=
(

A11◦/u2
11 A12◦/u12

A21◦/u2
21 A22◦/u2

22

)(
x1(k)
x2(k)

)

⊕
(

ln(u11(k)) ⊕ ln(u21(k))
ln(u12(k)) ⊕ ln(u22(k))

)
x3(k) , (9.14)

x3(k) =
2⊕

i=1

2⊕

j=1

A ji ln(u ji (k − 1))xi (k) , (9.15)

where we made the convention that ln(1) = e and ln(0) = ε. If (9.15)were substituted
into (9.14), then an equation of the form (9.13) would result.

If we start at state
(

0 0 0
)′

for k = 0, thenthe five possible next states are
respectively1




3
4
3



 ,




1
4
1



 ,




3
4
3



 ,




3
2
2



 ,




3
4
3



 .

From these states, new states can be reached again. Thus a tree of states can be found.
We will not count states as such if they are linearly dependent on an already existing
state. The states will be normalized by adding a same scalar to all components of a state
vector, such that the last component becomes zero. (other normalizations are possible,
suchasfor instance setting the least component equal to zero). It turns out that five dif-
ferent normalized states exist. Some trial and error will show that whatever the initial
condition is, the evolution will always end up in these five states in a finite number of
steps. These states are indicated byni, i = 1, . . . , 5, and are given, togetherwith the
possible follow-ups, in Table 9.1. In the same table the normalization factors are given.
If according to this table,ni is mapped ton j with a normalization factora, then theac-
tual mapping isni �→ a⊗ n j . This table defines a Markov chain the ‘transition matrix’
of which is given below. Thej i-th entry equals the normalization factor corresponding
to the mapping fromni to n j by means of an appropriate control, if this control exists.
If it does not exist, then the entry is indicated byε:

V =





ε 3 4 ε ε

3 3 4 4 3
1 ε ε 2 ε

2 ε ε 3 ε

ε 2 3 ε ε




.

Suppose that in Table 9.1 an initial stateni would have been mapped to another staten j

twice, with normalization factorsa andb respectively, witha < b (which does not
occur in this example though). MatrixV should then have contained the smaller of the
two factorsa andb. Sincethe controls should be chosen in such a way that the network

1The first one is the result of applyingui j = 0 for all i, j ; for the second one, we usedu11 = 1 and the
otherui j = 0; for the third, fourth and fifth ones,u12 = 1, u12 = 1 andu22 = 1, respectively, where the
nonmentionedu-entries remain zero.
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Table 9.1: Possible transitions

Initial New states according to

state the five different controls

n1 =
(

0 0 0
)′

n2 3 n3 1 n2 3 n4 2 n2 3

n2 =
(

0 1 0
)′

n2 3 n5 2 n2 3 n1 3 n2 3

n3 =
(

0 3 0
)′

n2 4 n2 4 n5 3 n2 4 n1 4

n4 =
(

1 0 0
)′

n2 4 n3 2 n2 4 n4 3 n2 4

n5 =
(

0 2 0
)′

n2 3 n2 3 n2 3 n2 3 n2 3

operates as fast as possible, this matrixV will be considered in the min-plus algebra;
henceε = +∞. The eigenvalue of this matrix is found by applying Karp’s algorithm;
it turns out tobe equal to 2.5. There are two critical circuits, namely

n1 → n3 → n1 , n2 → n5 → n2 .

There are two different periodic solutions to our problem; they are characterized by the
two critical circuits. From Table 9.1, it will be clear how to control the network, i.e.
where to use this extra piece of equipment, such that the evolution of the state equals
one of these periodic solutions.

9.4 Brownian and Diffusion Decision Processes

We show the analogy between probability calculus and dynamic programming. In the
former area,iterated convolutions of probability laws play a central role; in the latter
area, this role is played by the inf-convolution of cost functions. The main analysis
tool is the Fourier transform for the former situation, and it is the Fenchel transform
for the latter. Quadratic forms, which form a stable set by inf-convolution, correspond
to Gaussian laws, which are stable by convolution. Asymptotic theorems for the value
function of dynamic programming correspond to the law of large numbers and the
central limit theorem. Straight line optimal trajectories correspond to Brownian motion
trajectories. The operatorv �→ ∂v/∂t − (∂v/∂x)2, which will be appear as a min-plus
linear operator, corresponds to the operatorv �→ ∂v/∂t + ∂2v/∂x2. The min-plus
functionx2/2t corresponds to the Green function(1/

√
2π t)exp(−x2/2t). A diff usion

decision process with generatorv �→ ∂v/∂t−b(x)∂v/∂x−a(x)(∂v/∂x)2 corresponds
to the diffusion process with generator∂/∂t + b(x)∂/∂x + a(x)∂2v/∂x2.
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9.4.1 Inf-Convolutions of Quadratic Forms

For m ∈ R andσ ∈ R
+, let Qm,σ (x) denote the quadratic form inx defined by

Qm,σ (x) = 1

2

(
x −m

σ

)2

for σ 
= 0 ,

Qm,0(x) = δm(x) =
{

0 for x = m ;

+∞ otherwise.

These quadratic forms take a zero value atm.
Given twomappings f andg from R into R, we define the inf-convolution of f

andg [119] as the mapping fromR intoR (with the convention∞−∞ =∞ ) defined
by

z �→ inf
x+y=z

( f (x) + g(y)) .

It is denotedf ⊗ g.

Theorem 9.9 We have

Qm1,σ1 ⊗ Qm2,σ2 = Q
m1+m2,

√
σ 2

1+σ 2
2
.

This result is the analogue of the (conventional) convolution of Gaussian laws (denoted
∗):

N (m1, σ1) ∗N (m2, σ2) = N (m1 + m2,

√
σ2

1 + σ2
2 ) ,

whereN (m, σ) denotes the Gaussian law with meanm and standard deviationσ .
Therefore, there exists amorphism between the set of quadratic forms endowed with
the inf-convolution operator and the set of exponentials of quadratic forms endowed
with the convolution operator.

Clearly this result can be generalized to the vector case.

9.4.2 Dynamic Programming

Given the simplest decision process:

x(n + 1) = x(n)− u(n) , x0 given,

for x(n) ∈ R, u(n) ∈ R, n ∈ N, and theparticular additive cost function

min
u(0),u(1),... ,u(N−1)

(
N−1∑

i=0

c(u(i)) + φ(x(N))

)
,

wherec andφ are mappings fromR into R which are supposed to be convex, lower-
semicontinuous in the conventional sense, equal to zero at their minimum and thus
nonnegative. Letm denote the abscissa wherec achievesits minimum, then

minc(·) = c(m) = 0 .
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The assumptions retained here arenot minimal but they will simplify our discussion.
The valuefunction defined by

v(n, x) = min
u(n),... ,u(N−1)

(
N−1∑

p=n

c(u(p)) + φ(x(N))

∣∣∣∣∣ x(n) = x

)

satisfies the dynamic programming equation

v(n, x) = min
u

(c(u)+ v(n + 1, x − u)) , v(N , x) = φ(x) .

It canbewritten using the inf-convolution:

v(n, ·) = c ⊗ v(n + 1, ·) , v(N , ·) = φ ,

that is (with the change of time indexp = N − n, and the choiceφ = δ0),

v(p, ·) = cp(·)⊗ δ0 = cp(·) .

This, in words, means that the solution of the dynamic programming equation in this
particular case of an ‘independent increment decision process’ is obtained by iterated
inf-convolutions of the instantaneous cost function.

In a more general case, the instantaneous costc depends on the initial and the
final states of a decisionperiod, namelyx(n) andx(n + 1) (and not only on the state
variation u(n) = x(n + 1) − x(n)). Moreover the dynamics is a general Markovian
process, namely,x(n + 1) ∈ �(x(n)) (where� denotes a set-valued function fromR
into 2R). Then the dynamic programming equation becomes

v(n, x) = min
y∈�(x)

(c(x, y)+ v(n + 1, y)) , v(N , x) = δ0(x) ,

the solution of which can be written, with the same change of time, as

v(n, ·) = [cn ⊗ δ0
]
(·) ,

where the product of two kernels is now defined as

[c1 ⊗ c2] (x, z) = min
y∈�(x)

(c1(x, y)+ c2(y, z)) .

This more general case is the analogue of the general Markov chain case.
In addition to the analogues of the law of large numbers and of the central limit

theorem, we will show the analogue of the Brownian motion and of diffusion processes.
Before addressing this issue, let us recall, once more, that the role of the Fourier

transform in probability theory is playedby the Fenchel transform in dynamic pro-
gramming as it was noticed for the first time in [17].



432 Synchronization and Linearity

9.4.3 Fenchel and Cramer Transforms

Let f be a mapping fromR → R, supposed to be convex, l.s.c. and proper (i.e. never
equal to−∞) and let f̂ : R → R be its Fenchel transform (see Remark 3.36). Then it
can be shown that f̂ is convex, l.s.c. andproper.

Example 9.10 The function defined by
[
Fe
(
Qm,σ

)]
(p) = (1/2)p2σ2 + pm is the

analogue of the characteristic function of a Gaussian law.

The transformFe behaves as an involution, that is,Fe(Fe( f )) = f for all convex,
proper, l.s.c. functionsf .

As already noticed, the main interest of the Fenchel transform is its ability to con-
vert inf-convolutions into sums, that is,

Fe( f ⊗ g) = Fe( f )+ Fe(g) .

Applying the Fenchel transform to the dynamic programming equation in the case
whenc depends only onx , we obtainv(N , ·) = Fe

(
φ̂ + Nĉ

)
. Using the fast Fenchel

algorithm [31], this formula gives a fast algorithm to solve this particular instance of
the dynamic programming equation.

Moreover, let us recall that the Fenchel transform is continuous for the epigraph
topology, that is, the epigraphs of the transformed functions converge if the epigraphs
of the source functions converge for a well chosen topology. We can use, for example,
the Hausdorff topology for the epigraphs which are closed convex sets ofR

2, but this
may be too strong (see [71] and [2] for discussions of these topological aspects). Here
we will be more concerned with the analogies between probability and deterministic
control.

Example 9.11 Let �ν : x �→ νx . Onehas [Fe(�ν )](p) = δν(p). Whenν → 0, then
δν → δ0 in the epigraph sense, but it does not converge pointwise even if�ν → 0
pointwise.

Moreover, the pointwise convergence of numerical convex, l.s.c. functions towards a
function in the same class implies the convergence of their epigraphs.

The Cramer transform is defined byFe◦ log◦L, whereL denotes the Laplace trans-
form. Therefore, it transforms the convolutions into inf-convolutions. Thus it is exactly
the morphism which we are interested in. Unfortunately, it is only a morphism for a set
of functions endowed with one operation, the convolution. It is not a morphism for the
sum (the pointwise sum of twofunctions is not transformed by the Cramer transform
into the pointwise min of the transformed functions). Moreover, the Cramer transform
convexifies the functions but the inf-convolution is defined on a more general set of
functions. Nevertheless the mapping limν→0 logν defines a morphism of algebra be-
tweenthe asymptotics (around zero) of positive real functions of a real variable and the
real numbers endowed with the two operations min and plus. Indeed,

lim
ν→0

logν(ν
a + νb) = min(a, b) , logν(ν

aνb) = a + b .

This transformation has been already utilized in§9.2 under a slightly different form.
Wecannow study the analogues of the limit theorems of probability calculus.
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9.4.4 Law of Large Numbers in Dynamic Programming

Suppose we are given two numerical mappingsc andφ which are nonnegative, convex,
l.s.c.and which are equal to zero at theirunique minimum. The first and second order
derivatives of a functionc are denoteḋc andc̈ respectively.

To simplif y the discussion, let us suppose thatc ∈ C2 and |1/c̈(u)|∞ < ∞ in a
neighborhood of the minimum. Letm denote the abscissa wherec achievesits mini-
mum (zero) value. LetwN(x) be the mappingx �→ v(N , N x). For the value function,
this scaling operation corresponds to the conventional averaging of the sample.

Theorem 9.12 (Weak law of large numbers for dynamic programming)Under the
foregoing assumptions, we have

lim
N→∞

v(N , N x) = δm(x) ,

the limit being in the sense of the epigraph convergence.

Proof We have

v̂(N , p) = φ̂(p/N)+ Nĉ(p/N) , lim
N→∞

φ̂(p/N) = φ̂(0) = 0 ,

sinceφ admits a zero minimum by assumption. Moreover,̂c(0) = 0 for the same
reason. Then̂c(p) admits a Taylor expansion around 0 of the formpm + O(p2).
Indeed,

˙̂c(p) = xo(p)+ xo(p)(p − ċ(xo(p)) = xo(p) = m +O(p) ,

wherexo(p) denotesthe point at which the maximum is achieved in the definition of
the Fenchel transform ofc. Therefore, v̂(N , p) = pm + O(1/N). Then, using the
continuity of the Fenchel transform, we obtain

lim
N→∞

Fe (̂v(N , ·)) = Fe(pm) = δm .

9.4.5 Central Limit Theorem in Dynamic Programming

We have the analogue of the central limit theorem of probability calculus. The value
function, centered and normalized with the scaling

√
N , is asymptotically quadratic.

Theorem 9.13 (Central Lim it Theorem) Under the foregoing assumptions, we have

lim
N→∞

v
(

N ,
√

N (y + Nm)
)
= 1

2
c̈(m)y2 .

The limit is in the sense of epigraph convergence.
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Proof We make the expansion up to the second order ofp �→ r̂N (p) whererN is the

mapping y �→ v
(

N ,
√

N(y + Nm)
)

.

But

r̂N (p) = φ̂

(
p√
N

)
+ Nĉm

(
p√
N

)
,

wherecm(y) = c(y + m). Then we havêφ(0) = 0 and̂cm (0) = 0 because the minima
of φ andcm are zero.

Let us expandĉm up to the second order. We have seen that˙̂cm(p) = xo(p), and
therefore¨̂cm(p) = ẋo(p). Moreover, we know thatxo(p) is defined byp−ċm (xo(p)) =
0, and therefore 1− c̈m(xo(p))ẋo(p) = 0, thatis, ẋo(p) = 1/c̈m(xo(p)). Finally,

r̂N (p) = 1

2

p2

c̈m(0)
+ o(1) .

We obtain the result by passing to the limit using the continuity of the epigraph of the
Fenchel transform.

These results can be extended to the vector case, to the case whenc depends on time,
etc.

9.4.6 The Brownian Decision Process

Let us consider the discrete time decision process

min
u

(
(T/h)−1∑

i=0

(u(ih))2

2h
+�(x(T ))

)
, x(t + h) = x(t)− u(t) .

It satisfies the dynamic programming equation

v(t, x) = min
u

(
u2

2h
+ v(t + h, x − u)

)
, v(T, ·) = � .

The cost functionQ0,
√

h is therefore the analogue of the increment of Brownian mo-
tion on a time step ofh. The analogue of the independence of the increments of the
Brownian motion is the independence of the instantaneous cost functionu2/h from the
state variablex .

Let us make the change of controlu = wh in thedynamic programming equation.
We obtain

v(t, x) = min
w

(
hw2

2
+ v(t + h, x −wh)

)
.

Passing tothe limit whenh → 0, we obtain the Hamilton-Jacobi-Bellman (HJB) equa-
tion

∂v

∂t
+min

w

(
−w ∂v

∂x
+ w2

2

)
= 0, v(T, ·) = � ,

that is,
∂v

∂t
− 1

2
(
∂v

∂x
)2 = 0 , v(T, ·) = � ,
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which is the analogue of the heat equation

∂v

∂t
+ 1

2

∂2v

∂x2
= 0 , v(T, ·) = � .

Therefore, we can see the Brownian decision process as the Sobolev spaceH 1(0, T )

endowed with the cost functionW (ω) = ∫ T
0 (ω̇)2 dt for any functionω ∈ H 1(0, T ).

Thenthe decision problem can be written

MW�(x(T ))
def= min

ω∈H 1(0,T)
(W (ω)+�(x(T ;ω))) (9.16)

by analogy with probability theory. The functionW is the analogue of the Brownian
measure, and it can be interpreted as the cost of choosingω. Then�(x(T ;ω)) is the
cost of a decision function�(x(T ; ·)) once we have chosenω. But the solution of the
Hamilton-Jacobi equation

∂v

∂t
− 1

2

(
∂v

∂x

)2

= 0 , v(T, ·) = δy ,

is unique [86], and is explicitly given by

v(t, x) = (y − x)2

2(T − t)
, t ≤ T .

It can be considered as the min-plus Green kernel of the dynamic programming equa-
tion and as the analogue of the Green kernel of the Kolmogorov equation for the Brow-
nian equation, namely

1√
2π(T − t)

exp

(
− (y − x)2

2(T − t)

)
.

Therefore, by min-plus linearity, we can derive the solution of

min

(
∂v

∂t
− 1

2

(
∂v

∂x

)2

, c− v

)
= 0 , v(T, ·) = � ,

which is the solution of the control problem

v(t, y) = MW

[
min

(
min

t≤s≤T
c(xs(ω)), �(x(T ;ω))

) ∣∣∣∣ x(t) = y

]
,

wheres denotes a stopping time that we also want to optimize. This cost is clearly the
min-plus analogue of

v(t, y) = EW

[∫ T

t
c(x(s;ω))ds +�(x(T ;ω))

∣∣∣∣ x(t) = y

]
.

The solution of the decision problem is

v(t, x) = min

(
min

y

(
�(y)+ (y − x)2

2(T − t)

)
, min

t≤s≤T
min

y

(
c(y)+ (y − x)2

2(s − t)

))
.
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This formula is the analogue of

v(t, x) =
∫

�(y)exp

(
− (y − x)2

2(T − t)

)
dy +
∫ T

t
ds
∫

c(y)exp

(
−(y − x)2

2(s − t)

)
dy .

Using the change of times = T − t , we can summarize this part by the following
theorem.

Theorem 9.14 We have
lim
h→0

(Q0,
√

h)
[s/h] = Q0,

√
s ,

where [x ] denotes the integer part of x. Moreover, Q0,
√

s is the unique solution of

∂Q

∂s
+ 1

2
(
∂Q

∂x
)2 = 0 , s ≥ 0 , Q0,0 = δ0 .

9.4.7 Diffusion Decision Process

In the previous subsection, the system dynamics was trivial and the instantaneous cost
depended on the control only. Let us generalize this situation with a more general
instantaneous cost, which will induce more complex optimal trajectories and which is
the complete analogue of the diffusion process.

We considerthe discrete decision process

min
u

(
(T/h)−1∑

i=0

(u(ih) − b(ih)h)2

2h(σ(ih))2
+�(x(T ))

)
, x(t + h) = x(t)− u(t) .

It satisfies the dynamic programming equation

v(t, x) = min
u

(
(u − b(x)h)2

2hσ2
+ v(t + h, x − u)

)
, v(T, ·) = � .

By the change of controlu = wh in thedynamic programming equation and by passing
to the limit whenh → 0, we obtain the HJB equation defined, fort ≤ T , by

∂v

∂t
− b(x)

∂v

∂x
− σ(x)2

2

(
∂v

∂x

)2

= 0 , v(T, ·) = � .

This is the HJBequation corresponding to the variational problem

v(t, x) = min
x∈H 1

(∫ T

t

1

2

(
ẋ − b

σ

)2

dt +�(x(T ))

)
. (9.17)

This HJB equation is the analogue of the Kolmogorov equation

∂v

∂t
+ b(x)

∂v

∂x
+ σ(x)2

2

∂2v

∂x2
= 0 , v(T, ·) = � .

It is not necessary that the instantaneous cost be quadratic for the discrete decision
process to converge to the diffusion decision process.
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Theorem 9.15 The discrete decision process

min
u

(
(T/h)−1∑

i=0

ch(u(ih), x(ih)) +�(x(T ))

)
, x(t + h) = x(t)− u(t) ,

admits the discrete dynamic programming equation

v(t, x) = min
u

(ch(u, x)+ v(t + h, x − u)) , v(T, ·) = � ,

which converges to the continuous dynamic programming equation

∂v

∂t
− b(x)

∂v

∂x
− σ(x)2

2

(
∂v

∂x

)2

= 0 , v(T, ·) = � ,

as long as

ĉh(x, p) =
(

b(x)p + σ(x)2

2
p2

)
h + o(h) ,

where ĉh denotes the Fenchel transform of the mapping u �→ ch(u, x).

The variational problem (9.17) was encountered by researchers in large deviation
when they studied differential equations perturbed by a small Brownian noise. For
example, we have the following estimate:

lim
"→0
ν→0

ν log(Pν [x(T ) ∈ (z −", z +") | x(0) = y])

= min
x∈H 1(0,T),x(0)=y,x(T)=z

∫ T

t

1

2

(
ẋ − b

σ

)2

dt ,

wherePν denotesthe probability law of a diffusion process with drift termb and diffu-
sion termνσ .

Weconclude this section by summarizing the analogy between probability and dy-
namic programming in Table 9.2.

9.5 Evolution Equations of General Timed Petri Nets

The aim ofthis section is to provide the basic equations that govern the evolution of
general Petri nets, when structural consumption conflicts are resolved by a predefined
‘switching’ mechanism. These equations can be viewed as a nonlinear extension of
the evolution equationsfor event graphs (see§2.5). The system of notation concerning
timed Petri nets is that introduced in Chapter 2.

9.5.1 FIFO Timed Petri Nets

We will adopt the following definition concerning the numbering of tokens traversing
a place and the numbering of firings of a transition, that generalizes that of§2.5.
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Table 9.2: Analogy between probability and dynamic programming

Probability Dynamic programming

+ min

× +
N (m, σ) Qm,σ

∫
dF(x) = 1 minx c(x) = 0

EF f = ∫ f (x)dF(x) Mc f = infx { f (x) + c(x)}
Convolution Inf-convolution

Fourier: F̂(s) = EF (exp( j sX)) Fenchel: ĉ(p) = −Mc (−pX)

d
ds log(F̂)(0) = j

∫
x dF(x) = j m ˙̂c(0) = m : c(m) = minx c(x)

− d2

ds2 log(F̂)(0) = ∫ (x − m)2 dF(x) ¨̂c(0) = 1/c̈(m)

Brownian motion Brownian decision process

v �→ ∂2v
∂x2 v �→ ( ∂v

∂x

)2

v �→ ∂v
∂t + 1

2
∂2v
∂x2 v �→ ∂v

∂t − 1
2

(
∂v
∂x

)2
(
1/
√

2π t
)

exp(−x2/(2t)) x2/(2t)

Diffusion process Diffusion decision process

v �→ ∂v
∂t + b(x) ∂v

∂x + a(x) ∂
2v

∂x2 v �→ ∂v
∂t − b(x) ∂v

∂x − a(x)
(
∂v
∂x

)2

Invarianceprinciple Min-plus invariance principle
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• The initial tokens of placep arenumbered 1, . . . , Mp, whereas then-th token,
n > Mp, of place p is the(n − Mp)-th to enter p after thebeginning of the
network evolution. Tokens enteringp at the sametime are numbered arbitrarily.

• Then-th firing,n ≥ 1,of transitionq is then-th firing of q to be enabledfrom the
beginning of the network evolution. Firings ofq enabled at thesametime are
numbered arbitrarily (nothing prevents the same transition from being enabled
twice at the same epoch).

Timing is involved in the evolution of the system through the following two rules.

• Then-th initial token of placep, n ≤ Mp, is not considered immediately avail-
able for downstream transitions. It is put in placep at time z p(n) (where the
function z p is given), and it has then to stay inp for a minimal holding time
αp(n) before enabling the transitions that follow p. Similarly, then-th token of
placep, n > Mp (or equivalently the (n − Mp)-th to enterp) can only be taken
into account by the transitions that followp, αp(n) units oftime after its arrival.

• Eachtransition starts firing as soon as it is enabled (we will discuss the problem
that arises with conflicts later on). Once transitionq is enabled for then-th
time, the tokens that it intends to consume become reserved tokens (they cannot
contribute to enabling another transition before being consumed by the firing
of transitionq). Once it is enabled, the time for transitionq to complete its
n-th firing takesβq(n) units. Once the firing time is completed, the transition
completes its firing. This firing completion consists in withdrawing one token
from each of the places that precedeq (the reserved tokens), and adding one
new token into theplaces that followq. These two actions are supposed to be
simultaneous.

FIFO places and transitionshave beendefined at§2.5.2.2.

Example 9.16 To make the following results more tangible, we deal throughout the
section with the FIFO Petri net of Figure 9.1. This Petri net can be considered as
a closedqueuing network with two servers and two infinite buffers. The customers
served by server 1(respectively 2) are routed to buffers 1 or 2 (respectively 2 or 1). In
order to obtain simple results, we have chosen constant holding times on places and
zero firing times (i.e.βq(n) = 0, ∀q ∈ Q, n ∈ N andαp(n) = αp ∈ R

+, ∀p ∈ P, n ∈
N).

9.5.2 Evolution Equations

Let U = (U1, . . . ,Un) be a vector ofRn . The symbol R(U ) denotes the vector

R(U ) = (Ui(1), . . . ,Ui(n)
) ∈ R

n ,

wherei : {1, . . . , n} �→ {1, . . . , n} is a bijection such that

Ui(1) ≤ Ui(2) . . . ≤ Ui(n) .

Thisnotation is extended to vectors ofR
N whenever meaningful.
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Figure 9.1: A FIFO Petri net

9.5.2.1 State Variables

Let

• xq(n), q ∈ Q, n ≥ 1, denote thetime when transitionq startsfiring for then-th
time, with the convention that for allq ∈ Q, xq(n) = ∞ if transitionq never
fires for then-th time andxq(0) = −∞;

• yq(n), q ∈ Q, n ≥ 1, denote thetime when transitionq completes itsn-th firing,
with the same convention as above;

• vp(n), p ∈ P, n ≥ 1, denote the time when placep receives itsn-th token, with
the convention that for all p ∈ P, vp(n) = ∞ if the place never receives itsn-th
token andvp(0) = −∞;

• wp(n), p ∈ P, n ≥ 1, denote the time when placep releases itsn-th token, with
the usualconvention if then-th token is never released andwp(0) = −∞.

Owing to our conventions,βq(n) denotes the firing time ofq that starts at
xq(n), n ≥ 1, whereasαp(n) denotes the holding time of the token that enters
p at vp(n), n ≥ 1.

If transitionq is FIFO, we have the obvious relation

yq(n) = xq(n)+ βq(n) . (9.18)

More generally,
(yq(n))n≥1 = R

(
(xq(n)+ αq(n))n≥1

)
.

If placep is FIFO, we can write

wp(n) ≥ vp(n)+ αp(n) ,



9.5. Evolution Equations of General Timed Petri Nets 441

since the token that entersp at time vp(n) stays therefor at leastαp(n) time units.
More generally,

(wp(n))n≥1 ≥ R
(
(vp(n)+ αp(n))n≥1

)
.

9.5.2.2 Initial Conditions

It is assumed that the origin of time and the initial marking have been fixed in such a
way that the variablesvp(n) andwp(n) satisfy the bounds

vp(n)

{
= z p(n) ≤ 0 for n = 1, . . . , Mp, if Mp ≥ 1 ;

≥ 0, for n > Mp ,

andwp(n) ≥ 0 for n ≥ 1. These conventions are natural: they mean that tokens that
arrived in placep prior to the initial time and which leftp before that initial time are
not considered to belong to the initial marking. Similarly, tokens that arrived inp ‘at
or after’ the initial time do not belong to the initial marking.

9.5.2.3 Upstream Equations Associated with Transitions

We first look at the relationships induced by a transitionq dueto the places preceding
q. We first consider the case withoutstructural consumption conflicts, namely for every
placep precedingq, the set of transitions that follow p is reduced toq.

No Structural Consumption Conflicts For all p ∈ π(q), one token leavesp at time
wp(n). Sinceq is the only transition that can consume the tokens ofp, this corresponds
to the starting of then-th firing of q. Hence,

xq(n) = max
∀p∈π(q)

wp(n) .

In the FIFOcase, then-th token of placep to become available for enablingq must be
then-th to enterp, so that

xq(n) = max
p∈π(q)

(vp(n)+ αp(n)) .

More generally,
xq(n) = max

p∈π(q)
Up(n) ,

where
(Up(n))n≥1 = R

(
(vp(n)+ αp(n))n≥1

)
.

General Case Without further specifications on how the conflict is resolved, we can
only state the following inequalities: in the FIFO case,

xq(n) ≥ max
p∈π(q)

(vp(n)+ αp(n)) , (9.19)

and more generally
xq(n) ≥ max

p∈π(q)
Up(n) .

These inequalities are not very satisfactory, and we will return to this point later on.
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9.5.2.4 Downstream Equations Associated with Transitions

We now lookat the relationships induced by a transitionq dueto the places following
q. We first consider the case without structural supply conflicts, namely, for every place
p following q, theset of transitionsthat precedep is reduced toq (that is, p is only
fed by thisq).

No Structural Supply Conflicts If no other transition than q can feed the places
following q, the token entering placep ∈ σ(q) with rank(Mp + n) has been produced
by then-th firingof transitionq; therefore,

yq(n) = vp(Mp + n) , ∀p ∈ σ(q) .

In the FIFO case, this leads to the relation

xq(n)+ βq(n) = vp(Mp + n) , ∀p ∈ σ(q) ,

whereas in the general case

R
(
(xq(k) + βq(k))k≥1

)
n
= vp(Mp + n) , ∀p ∈ σ(q) .

General Case Without further specifications, we can only state the following in-
equalities: in the FIFO case,

xq(n)+ βq(n) ≥ vp(Mp + n) , ∀p ∈ σ(q) ,

whereas, in the general case,

R
(
(xq(k) + βq(k))k≥1

)
n
≥ vp(Mp + n) , ∀p ∈ σ(q) .

9.5.2.5 Upstream Equations Associated with Places

We now focus on the upstream relationships induced by placep. Considerthe se-
quences{yq(n)}n≥1, for all q ∈ π(p). With each of them, associate a point process on
the real line, where the points are located atyq(n). Wecan look at the arrival process
into p asthe superimposition of these|π(p)| point processes.

With all q ∈ π(p), we associate an integeriq ∈ N representing a number of
complete firings ofq. If transition q has completed exactlyiq firings for allq ∈ π(p),
thenplacep has received exactly

∑
q∈π(p) iq tokens. The set of vectors(i) = (iq )q∈π(p)

such that then-th token hasentered placep is hence

Ap
n =



i ∈ N
|π(p)|

∣∣∣∣∣∣

∑

q∈π(p)

iq = n




 .

The last token producedby the transition firings specified by somei ∈ Ap
n entersp

at time maxq∈π(p) yq(iq ), whereyq(0) = −∞ by convention. Sincen tokens have
reachedp once all the firings specified byi have been completed, one obtains

vp(n + Mp) ≤ inf
i∈Ap

n

max
q∈π(p)

yq(iq ) . (9.20)
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But vp(n + Mp) should be equal to someyt0(n0) since at least one collection of events
putsn tokens in placep (unlessAp

n is empty andvp(n + Mp) = ∞). Hence equality
musthold true in (9.20). We then obtain the following final relation:

vp(n + Mp) = inf{i∈N|π(p)| |∑q∈π(p) iq=n} max
q∈π(p)

yq(iq ) , (9.21)

whereyq(0) = −∞ by convention.

9.5.2.6 Downstream Equations Associated with Places

We now concentrate on the downstream relationships induced by a placep. It is in
this type of equations that the structural consumption conflicts associated with general
Petri nets become apparent.

Consider the sequences{xq(n)}n≥1, for all q ∈ σ(p). With all q ∈ σ(p), we
associate an integeriq ∈ N representing some number of firing initiations ofq. If q
has started exactlyiq firings for allq ∈ σ(p), then exactly

∑
q∈σ (p) iq tokens have been

withdrawn fromp. The set of vectorsi = (iq )q∈σ (p) such that then-th token has left
placep is hence

Bp
n =



i ∈ N
|σ (p)|

∣∣∣∣∣∣

∑

q∈σ (p)

iq = n




 .

For anyi in this set, the last token to leavep leavesat time maxq∈σ (p) xq(iq ). Hence

wp(n) ≤ inf
i∈B p

n

max
q∈σ (p)

xq(iq ) .

Using a similar reasoning as previously, we obtain the final relation

wp(n) = inf{i∈N|σ (p)||∑q∈σ (p) iq=n} max
q∈σ (p)

xq(iq ) . (9.22)

Relations (9.21) and (9.22) exhibit nothing but a superficial symmetry. Indeed,
while (9.21) allows one to construct the sequence{vp(n)} from the knowledge of what
happens upstream ofp and earlier, this is not true at all for (9.22) which only provides
some sort ofbackward property stating that the knowledge of what will happen follow-
ing p in the future allows one to reconstruct what happens inp now. The reason for
this is that the way the conflict is solved is not yet sufficiently precise. We show now
one natural way of solving conflicts, whichwe will call switching. Several other ways
are conceivable likecompetition, whichwe will also outline.

9.5.2.7 Switching

Within thissetting,each place that has several transitionsdownstream receives a switch-
ing sequence{ρp(n)} with values inσ(p)N. In the sameway as then-th token to enter
place p receives a holding timeαp(n), it also receives a route to which it must be
switched. This information is given byρp(n), whichspecifies which transition it must
be routed to. In other words, only those tokens such thatρp(n) = q should be taken
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into account byq ∈ σ(p). By doing so, one completely specifies the behavior of the
system. For instance, in the FIFO case, one obtains the inequality

xq(n) ≥ wp(ηp,q(n)) , ∀p ∈ π(q) ,

where theswitching function ηp,q is defined by

ηp,q(0) = 0, ηp,q(n) = inf

{
m ≥ 1

∣∣∣∣∣

m∑

k=1

1{ρp(k) = q} ≥ n

}
, n ≥ 1 . (9.23)

Whenever the behavior of the places upstream ofq is specified,one can go further and
obtain the desiredforward equation, as we will see in the next section.

Example 9.17 In our example (see Figure 9.1), the switchings are deterministic. They
are chosen as follows:

ρ3(2n) = 1 , ρ3(2n + 1) = 5 , ρ7(2n) = 5 , ρ7(2n + 1) = 1 , ∀n ∈ N .

9.5.2.8 Competition

The places followingp compete forthe tokens of p on a First Come First Served
(FCFS) basis: within this interpretation, the tokens that have been served in placep
can be seen as building up somequeue of tokens. Once a transition q following p is
enabled except for the condition depending onp, it puts in a request for one token in
someFCFSqueue of requests. This request is served (and the corresponding transition
enabled) as soon as it is at the head of the request line and there is one token in the
token queue.

9.5.3 Evolution Equations for Switching

In this subsection it is assumed that all places receive some switching. For places with
a single downstream transition, this sequence is trivial in the sense that it always routes
tokens to this transition.

Theorem 9.18 Under the foregoing assumptions, the state variables vp(n), p ∈ P, n ≥
1, of a FIFO Petri net satisfy the (nonlinear) recurrence equations

vp(n + Mp) =
∧

{
i∈N|π(p)|

∣∣∣∣∣
∑

q∈π(p)
iq=n

}

⊕

{q∈π(p),t∈π(q)}
vt (ηt,q(iq ))αt (ηt,q(iq))βq (iq ) ,

(9.24)

for n ≥ 1, with the initial condition vp(n) = z p(n) for 1≤ n ≤ Mp, if Mp ≥ 1.
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Proof In addition to the variablesvp(n), we will make use of the auxiliary variables
xq(n), q ∈ Q, n ≥ 1. Owing to the switching assumptions, Inequality (9.19) can be
replaced by the relation

xq(n) =
⊕

p∈π(q)

∧
{

jp≥1

∣∣∣∣∣

jp∑
k=1

1{ρp(k)=q}=n

}
vp( jp)αp( jp) , n ≥ 1 ,

or, equivalently,

xq(n) =
⊕

p∈π(q)
vp(ηp,q(n))αp(ηp,q(n)) , n ≥ 1 , (9.25)

where we used theswitching functionηp,q defined in (9.23), and the FIFO assumption,
which implies that the mappingi �→ vp(i)αp (i) is nondecreasing.

Similarly, using (9.18) in (9.21) yields

vp(n + Mp) =
∧

{i∈N|π(p)| |∑q∈π(p) iq=n }

⊕

q∈π(p)

xq(iq )βq (iq ) , n ≥ 1 . (9.26)

Equation (9.24) follows immediately from (9.25) and (9.26).

Remark 9.19 In the case when the Petri net is not FIFO, Equations (9.25) and (9.26)
have to bereplaced by

xq(n) =
⊕

p∈π(q)

(
R(vp(m)αp(m))m≥1

)
(ηp,q (n))

, n ≥ 1 ,

and

vp(n + Mp) =
∧

{i∈N|π(p)| |∑q∈π(p) iq=n }

⊕

q∈π(p)

(
R(xq(m)βq (m))m≥1

)
(iq )

, n ≥ 1 ,

respectively.

Remark 9.20 In (9.24), wecan get ridof the firing timesβq(n) by changing the
holding timesαp(ηp,q(n)), ∀p ∈ π(q), into αp(ηp,q(n))βq (n). Thus we obtain an
equivalent net withβq(n) = 0 andαp(n) > 0, q ∈ Q, p ∈ P, n ≥ 1, where the
equivalence means that the entrancetimesare the same inboth systems.
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Example 9.21 In our example, we obtain

v1(n + 1) =
∧

n3+n7=n

(1v3(2n3)⊕ 1v7(2n7 + 1)) , v1(1) = 0 ,

v2(n) = v1(n)⊕ v4(n) ,

v3(n) = 2v2(n) ,

v4(n + 1) = 2v2(n) , v4(1) = 0 ,

v5(n + 1) =
∧

n3+n7=n

(1v3(2n3 + 1)⊕ 1v7(2n7)) , v5(1) = 0 ,

v6(n) = v5(n)⊕ v8(n) ,

v7(n) = 3v6(n) ,

v8(n + 1) = 3v6(n) , v8(1) = 0 .

9.5.4 Integration of the Recursive Equations

We assumethat the Petri net is FIFO. We use Remark 9.20 to assume (without loss of
generality) that βq(n) = 0, q ∈ Q, n ≥ 1. Finally, we assume thatthe switching is
given as well as the holding times in the places and that in every circuit of the Petri net
there is a placep with 0 < αp(n) <∞, n ≥ 1.

In what follows we will use weighted trees where the weights are associated with
the nodes. We call theweight of a directed path the sum of the weights of all its nodes
but its source. A nodeN1 is said to bedeeper thana nodeN2 if we can find a directed
path fromN2 to N1. Finally, thedepth of a tree is the length of its longest directed path.

Definition 9.22 (Evolution tree) Let (p, n) ∈ P × N. An evolution tree A associated
with (p, n) is a tree with root (p, n) defined recursively as follows.

• If n ≤ Mp, then A is reduced to a single node (p, n) with weight αp(n)+ z p(n).

• If n > Mp, choose one i ∈ N
|π(p)| satisfying

∑
t∈π(p) iq = n − Mp. Then A

is the tree with root (p, n) and with |π(π(p))| subtrees being evolution trees
associated with the nodes (q, ηq,t(iq )), t ∈ π(p), q ∈ π(q). The root (p, n) is
given a weight αp(n).

The set of all theevolution trees of the pair(p, n) will be denotedE(p, n).
In Equation (9.24), we can replace the variablesvt (ηt,q(n)) by using Equation (9.24)

once more. We obtain

vp(n + Mp) =
∧

{
i∈N|π(p)|

∣∣∣∣∣
∑

q∈π(p)
iq=n

}

⊕

{q∈π(p),t∈π(q)}

∧
{

j∈N|π(t)|
∣∣∣∣∣
∑

s∈π(t)
js=ηt ,q(it )−Mt

}

⊕

{s∈π(t),r∈π(s)}
vr (ηr,s ( js))αr (ηr,s ( js))αt (ηt,q(it )) .
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If we use the distributivity of⊕ with respect to∧ (see(4.95)), this equality becomes:

vp(n + Mp) =
∧

i∈I
j∈Jtq

⊕

q∈π(p)
t∈π(q)
s∈π(q)
r∈π(s)

vr (ηrs ( j tq
s ))αr (ηrs ( j tq

s ))αt (ηtq(iq )) ,

where

I
def=



i ∈ N
|π(p)|

∣∣∣∣∣∣

∑

q∈π(p)

iq = n




 , J tq def=



 j tq ∈ N
|π(t)|

∣∣∣∣∣∣

∑

s∈π(t)
j tq
s = ηtq(iq )− Mt




 .

This equation represents the first step in the ‘integration’ of the recurrence equations.
Indeed, we obtain a tree of depth 2 from the root(p, n + Mp). If we continue to
develop this equation,weobtain trees with increasing depths. We stop when each path
ends with a leaf, namely, when it terminates with a node(q,m) with m ≤ Mq . We
eventually obtain the integration of Equation (9.24):

vp(n) = inf
A∈E(p,n)

C(A) , n ≥ Mp , with C(A) = sup
T∈T (A)

(w(T )) .

Thequantity C(A) is the weight of treeA, T (A) is the set of all thedirected paths from
the root to any leaf of the treeA, andw(T ) is the weight of the directed pathT (i.e. the
sum of the weights of all its nodes except its root).

Remark 9.23 The setE(p, n) might contain infinite trees, thusE(p, n) is not con-
structible and this transformation of the recursive equations does not obviously give
the ‘constructiveness’ character of these equations. However, it is useful for prelimi-
nary results. The reader is referred to [7]where this issue is furtheranalyzed.

9.6 Min-Max Systems

In this section we will be concerned with systems of which the evolution is determined
by three rather than two different operations, namely addition, maximization and min-
imization. Because these operations occur simultaneously, a different notation for max
and min is necessary:⊕ is reserved for max, and∧ will denote min. The most general
system to be considered is of the form

x(k + 1) = A1 ⊗ x(k) ⊕ B1⊗ y(k) ⊕ C1 ⊗ v(k) ⊕ D1⊗w(k) , (9.27)

y(k + 1) = A2 , x(k) ∧ B2, y(k) ∧ C2, v(k) ∧ D2, w(k) , (9.28)

v(k) = A3 ⊗ x(k) ⊕ B3⊗ y(k) ⊕ C3 ⊗ v(k) ⊕ D3⊗w(k) , (9.29)

w(k) = A4 , x(k) ∧ B4, y(k) ∧ C4, v(k) ∧ D4, w(k) . (9.30)

The notation, here refers to the multiplication of two matrices (or a matrix and a
vector) in which the∧-operation is used instead of⊗ (see§6.6.1 and§9.2.4). The
expressionsa ⊗ b and a , b are identical if at least eithera or b is a scalar. The
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operation⊕ has the neutral elementε whereas∧ has the neutral element�. The
followingconvention, in accordance with (5.7) and (5.8), is made:

�⊗ ε = ε , �, ε = � .

In analogy with conventional system theory, system (9.27)–(9.30) is called adescriptor
system. It is assumed that the vectorsx(k), y(k), v(k) andw(k) are respectivelyn-,m-,
p-, andq-dimensional. The matricesAl , Bl , Cl andDl , l = 1, . . . , 4, have appropriate
dimensions. The elements of the matrices with an odd index are either finite orε and
the elements of the matrices with an even index are either finite or�.

Equations (9.29) and (9.30) are implicit equations inv(k) andw(k), respectively.
It is assumed that the precedence graphG(E), whereE is the matrix

E =
(

C3 D3

C4 D4

)
,

contains neither circuits nor loops. For later reference this condition is called Condition
C1:

Condition C1 The graphG(E) contains neither circuits nor loops.

Because of this condition, a finite number of repeated substitutions of the whole right-
hand side of (9.29) and (9.30) into these same equations leads to, respectively,

v(k) = C∗3 ⊗ (A3 ⊗ x(k) ⊕ B3⊗ y(k) ⊕ D3⊗ w(k)) ,

w(k) = D∗′
4 , (A4 , x(k) ∧ B4, y(k) ∧ C4, v(k)) ,

where
C∗3 = e⊕ C3⊕ C2

3 ⊕ · · · , D∗′
4 = e ∧ D4 ∧ D2

4 ∧ · · · .

In these equations, the matrix product (which is used in the power computation of
matrices) must be understood as being⊗, respectively,, when used in conjunction
with ⊕, respectively∧. Similarly, the symbole denotesthe identity matrix inRmax,
respectivelyRmin. Condition C1 is sufficient, but not necessary, forC∗3 andD∗′

4 to exist
in the expressions above.

Now the equations inv(k) andw(k) can be solved ina suitable order, and the
solutions can be expressed in terms ofx(k) and y(k). These solutions are written
symbolically as

v(k) = f1(x(k), y(k)) , w(k) = f2(x(k), y(k)) .

If these equations are substituted into (9.27) and (9.28), then the new expressions for
x(k + 1) andy(k + 1) will show a finite nesting of max- and min-operations.

For later reference, Equations (9.27)–(9.30), defining a mapping fromR
n+m+p+q

to itself, will symbolically be denotedM. Similarly, the mapping of the corresponding
nested equations is denotedM (M mapsRn+m to itself). Hence,

(
x(k + 1) y(k + 1) v(k) w(k)

)′ = M
((

x(k) y(k) v(k) w(k)
)′)

,
(

x(k + 1) y(k + 1)
)′ = M

((
x(k) y(k)

)′)
.

(9.31)
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9.6.1 General Timed Petri Nets and Descriptor Systems

Consider the network depicted in Figure 9.2. Each of the three nodes performs activi-

τ1

q1q3 q2

τ2τ3

Figure 9.2: A network

ties. The loops around these nodes, with time durationsτ1, τ2 andτ3, refer to processing
or recycling times of one activity at the respective nodes. All other time durations are
assumed to bezero. Nodeq1 delivers products to nodesq2 and q3 simultaneously.
Nodeq3 startsprocessing on the first incoming product. To start an activity,eachnode
must have delivered its product(s) of the previous activity to its destination node(s). If
the destination node isq2, its buffer, indicated by a rectangle in the figure, can store
one incomingitem (whileq2 works at thepresent activity). Hence,if this buffer is full,
nodeq1 cannot yet deliver a product and must wait until this buffer becomes empty.
Similarly, there is a buffer just before nodeq3 which can contain two incoming items
maximally. If each buffer contains one token initially, one may be tempted to model
the succession of firing times as follows:

x1(k + 1)= max(x1(k) + τ1, x2(k), x3(k)) ,

x2(k + 1)= max(x1(k) + τ1, x2(k) + τ2, x3(k)) ,

x3(k + 1)= max(min(x1(k) + τ1, x2(k) + τ2), x3(k) + τ3) ,




 (9.32)

where the quantities xi (k), k = 1, 2, . . . , are the successive firing times of nodeqi .
This model can be rewritten in the form (9.27)–(9.30) by addingw(k) = min(x1(k), x2(k))
to (9.32) and by replacing the appropriate part in the last of the equations of (9.32) by
w(k). Indeed, nodeq3 will process the firstarriving k-th product, of eitherq1 or q2,
first. The last arriving product atq3, however, is not processed at all according to
(9.32). It apparently leaves the system in some mysterious way. There is a discrepancy
between the problem statement and its model (9.32). In order to model the processing
of the last arriving product also, one can introduce a fictive nodeq4, which isactually
nodeq3, and which takes care of the last arriving of the two products coming fromq1

andq2. If this fictive node has firing timesx4(k), then the new model becomes

x1(k + 1)= max(x1(k) + τ1, x2(k), x4(k)) ,

x2(k + 1)= max(x1(k) + τ1, x2(k) + τ2, x4(k)) ,

x3(k + 1)= max(min(x1(k) + τ1, x2(k) + τ2), x4(k) + τ3) ,

x4(k + 1)= max(max(x1(k) + τ1, x2(k) + τ2), x3(k + 1)+ τ3)

= max(x1(k) + τ1, x2(k) + τ2, x4(k) + 2τ3,

min(x1(k) + τ1 + τ3, x2(k) + τ2+ τ3)) .






(9.33)

Model (9.33) assumes that the buffer just beforeq3 must be emptied before a new
cycle(k → k + 1) can be started. Note thatx3 does not appear on the right-hand side
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anymore and therefore the equation forx3(k + 1) can bedisregarded. It is obvious that
this model can be rewritten in the form (9.27)–(9.30) also. Though model (9.33) does
not throw away half-finished products, nodeq3 still might not always take the product
which arrives first. Nodeq3 and its imagenodeq4 process the batch of the two arriving
k-th products (fromq1 andq2) according to first arrival. If the(k + 1)-st product ofq1,
say, arrive before thek-th product ofq2, it has towait until this last k-th product has
arrived.

Yet another remark with respect to (9.33) must be made. According to (9.33),
nodesq1 andq2 can start another cycle only afterq4 has startedits current activity.
However, the performance ofthe network can be increased ifx4(k) in either the first or
the second equation of (9.33) is replaced byx3(k), depending on whetherx1(k)+ τ1 <

x2(k) + τ2 or not. Such a conditional dependence can neither be expressed in terms of
theoperations min, max and+, nor can it be shown graphically by means of a Petri
net as introduced in this book. This dependence can be expressed in Petri nets in which
so-called inhibitor arcs are allowed. The reader is referred to [1] about such arcs.

One canenlarge the batch size from which nodeq3 takes its productsaccording to
the FIFO priority rule. If, for instance, one introduces two fictive nodes, one forq1

andone forq2, and another pair of two fictive nodes, one node forq3 andone forq4,
thenone can construct a model which has a batch size of four. The original products
numberedk andk+1 coming from q1 and the original products numberedk andk+ 1
coming from q2 are processed byq3, or oneof its images, according to FIFO. The
next batch will then consist of the four original products numberedk + 2 andk + 3
comingfrom bothq1 or its image andq2 or its image. The corresponding model will
not be written down explicitly; its (eight) scalar equations become rather unwieldy
expressions with nested forms of the operations max and min.

9.6.2 Existence of Periodic Behavior

In the following definition, the symbolM andM are those of (9.31).

Definition 9.24 A scalar λ, ε ≤ λ ≤ �, is called an eigenvalue of the mapping M, re-
spectively M, if a vector

(
x ′ y′ v′ w′

)′
, respectively

(
x ′ y′

)′
, exists, where

either x or y has at least one finite element, such that

(
λ⊗ x ′ λ, y′ v′ w′

)′ =M
((

x ′ y′ v′ w′
)′)

,

respectively, (
λ⊗ x ′ λ, y′

)′ =M
((

x ′ y′
)′)

.

Such a vector is called an eigenvector of M, respectively M.

It will be clear that, provided Condition C1 holds, see§9.6, an eigenvalue ofM is
also an eigenvalue ofM and vice versa. A motivation to studyeigenvectors is that the
systemhas a very regular behavior if the initial condition coincides with an eigenvector.
In fact, the firing times of the(k + 1)-st activities take place exactlyλ time units later
than the firing times of thek-th activities. Conditions will be given under which the
eigenvalue and a corresponding eigenvector exist.
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System(9.27)–(9.30) canbewritten as
(

x(k + 1)
v(k)

)
=
(

A1 C1

A3 C3

)
⊗
(

x(k)
v(k)

)
⊕
(

B1 D1

B3 D3

)
⊗
(

y(k)
w(k)

)
,

(
y(k + 1)
w(k)

)
=
(

B2 D2

B4 D4

)
,
(

x(k)
v(k)

)
∧
(

A2 C2

A4 C4

)
,
(

x(k)
v(k)

)
,

the two ‘autonomous’ equations of which are
(

x(k + 1)
v(k)

)
=
(

A1 C1

A3 C3

)
⊗
(

x(k)
v(k)

)
, (9.34)

(
y(k + 1)
w(k)

)
=
(

B2 D2

B4 D4

)
,
(

x(k)
w(k)

)
. (9.35)

These two sets of autonomous equations can be considered as two subsystems of
(9.27)–(9.30), connected by means of the matrices

(
B1 D1

B3 D3

)
,

(
A2 C2

A4 C4

)
. (9.36)

Condition C2 The first matrix in (9.36) is not identically� and the second one is not
identicallyε.

This amounts to saying that the two connections are actual.
If Condition C1 is satisfied, thenv(k) can be solved from (9.34) and subsequently

besubstituted into the right-hand side of (9.34):

x(k + 1) = (A1 ⊕ C1 ⊗ C∗3 ⊗ A3)⊗ x(k) . (9.37)

Similarly, we obtain

y(k + 1) = (B2 ∧ D2, D∗′
4 , B4), y(k) . (9.38)

Condition C3 The transition matrices of (9.37) and (9.38) are irreducible.

If Conditions C1 and C3 hold, then the matrices which governthe evolution of the sys-
tems in (9.37) and (9.38) have unique eigenvalues, denotedλmax andλmin, respectively.
The existence and uniqueness of these eigenvalues is a direct consequence of the theory
of Chapter 3. Now the following theorem, proved in [102], holds.

Theorem 9.25 Assume Conditions C1, C2 and C3 are fulfilled. The operator M has
an eigenvalue λ and a corresponding eigenvector

(
x ′ y′

)′
all of which components

are finite, i.e.

λ⊗
(

x
y

)
=M
((

x
y

))
, (9.39)

if and only if λmax ≤ λmin. Under these conditions, λ is unique and satisfies λmax ≤
λ ≤ λmin.
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The condition that the components of the eigenvector must all be finite is essential for
the statement of this theorem to hold. As a counterexample, consider

x(k + 1) = 2x(k) ⊕ 3y(k) , y(k + 1) = 4x(k) ∧ 5y(k) .

The unique eigenvalue which falls within the scope of the above theorem isλ = 3.5
with corresponding eigenvector

(
0.5 1

)′
. However,λ = λmax= 2 is also an eigen-

value with eigenvector
(

e ε
)′

. Similarly, λ = λmin = 5 is an eigenvalue with

eigenvector
( � e

)′
.

In Chapter 3 we saw that, within the max-plus algebra setting, the evolution of
a linear system, such as (9.37), converges in a finite number of steps to a periodic
behavior, the period being related to the length(s) of the critical circuit(s). Such a
property has not (yet) been shown for systems within the min-max algebra setting,
though simulations do point in this direction. Procedure 1, to be presented in the next
subsection, is based on this observation.

9.6.3 Numerical Procedures for the Eigenvalue

Three numerical procedures for the calculation of the eigenvalue and corresponding
eigenvector of M will be discussed briefly by means of examples. Of course, these
procedures can also be applied to systems inRmax only.

Procedure 1 Consider (9.27) and (9.28) with

A1 =



ε 1 ε

ε e 1
2 1 ε



 , B1 =



3 3 ε

3 ε ε

ε ε 1



 , A2 =



� � 3
� 3 �
� 3 �



 , B2 =



� 4 3
6 � �
� 9 6



 ,

andC3 = C4 = (ε), B3 = B4 = (�). The evolution of this system will be studied by
starting with an arbitrary initial vector. If

(
x(0)′ y(0)′

)′ = ( 1 2 3 4 5 6
)′

,
then (

x ′(0) y′(0)
) = (

1 2 3 4 5 6
)

,(
x ′(1) y′(1)

) = (
8 7 7 6 5 5

)
,

...(
x ′(12) y′(12)

) = (
38 37 37 37 37 37

)
,(

x ′(13) y′(13)
) = (

40 40 40 40 40 40
)

,(
x ′(14) y′(14)

) = (
43 43 42 43 43 43

)
,(

x ′(15) y′(15)
) = (

46 46 45 45 46 45
)

,(
x ′(16) y′(16)

) = (
49 48 48 48 49 49

)
,(

x ′(17) y′(17)
) = (

52 51 51 51 51 51
)

. . . .

This evolution is continued untilx(k) becomes linearly dependent on one of the pre-
vious states

(
x ′(l) y′(l)

)′
, l = 1, . . . , k − 1. For this example, this occurs for

k = 17:
(

x ′(17) y′(17)
)′ = 14⊗ ( x ′(12) y′(12)

)′
. It is now claimed that

λ = 14/(17− 12) = 14/5 and that
(∑16

j=12

(
x ′( j ) y′( j )

)′)
/5 is theeigenvector.

Note that in this expression for the eigenvector, the conventional operations addition
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and division occur. These are nonlinear operations within the min-max algebra! For
the example, the eigenvector thus becomes

1

5

(
216 214 212 213 215 213

)′
.

It canbeverified by means of substitution that the quantities thus obtained are indeed
the eigenvalue and eigenvector. No general proof exists of the fact that this method
indeed yields the correct answers, however. If the same method is used for systems in
the max-plus algebra only, it is known that it does not always give the correct results. In
situations where it does not, a slightly more complicated algorithm exists which does
give the correct results (see [28]).

Procedure 2 Consider (9.27)–(9.30) with sizesn = 2,m = 0, p = 0, q = 1. The
matrices concerned are given by

A1 =
(

2 ε

2 3

)
, D1 =

(
e
e

)
, A4 =

(
5 3
)
, D4 = (�) .

If the exponential approach of§9.2 is applied to the definition of the eigenvalue given
in Definition 9.24, we obtain

zλ+x1 = z2+x1 + zw1 , (9.40)

zλ+x2 = z2+x1 + z3+x2 + zw1 , (9.41)

z−w1 = z−5−x1 + z−3−x2 . (9.42)

The quantities zx1 andzx2 can be solved from (9.40) and (9.41), and expressed inzw1.
These solutions can be substituted into (9.42), which yields

z−w1 = z−w1z−5(zλ − z2)+ z−w1 z3 zλ − z3

z2(zλ − z2)−1 + 1
.

Dividing this expression byz−w1 and after some rearranging, we obtain

z2λ+3+ z2λ−5+ z−1+ z8 = z0 + z2 + 2zλ−3+ zλ+6 + zλ+5 . (9.43)

The essence of this arrangement is that all the exponential terms have been moved to
that side of the equality symbol in such a way that only positive coefficients remain.
Equation (9.43) must be valid asz →∞. Henceλ must satisfy

max(2λ+ 3, 2λ− 5,−1, 8) = max(0, 2, λ− 3, λ+ 6, λ+ 5) .

This equation is mosteasily solved graphically. The result isλ = 3 and thus the
eigenvalue has been found.

This method is only suitable whenn,m, p and q are small. Essential is that an
explicit equation inzλ must beobtained.

Procedure 3 This procedure, which always works for systems which satisfy the con-
ditions of Theorem 9.25, will be described by means of an algorithm. For an efficient
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way of explanation, (9.39) is rewritten asλ ⊗ a = M(a), wherea ∈ R
n+m . The

vector functionM has componentsMi , i = 1, . . . , n + m. If the eigenvector is
a, thenMi (a) − ai must be equal toλ for all i. We will say that the accuracyη,
whereη is a given arbitrary positive number, is achieved if we find ana suchthat
maxi
(
Mi (a)− ai

)−mini
(
Mi (a)− ai

)
< η. We then usethe following algorithm.

1. Choose an arbitrarya ∈ R
n+m with all components finite.

2. Calculateci =Mi (a)−ai , i = 1, . . . , n+m. Definec = mini ci , c = maxi ci .

3. If c − c < η, then stop.

4. Construct disjoint subsetsϒi , i = 1, 2, 3, of ϒ def= {1, . . . , n + m} suchthat

• ϒ = ϒ1 ∪ ϒ2 ∪ ϒ3 ,

• j ∈ ϒ1 ⇔ c j < c + η/2 ,

• j ∈ ϒ2 ⇔ η/2≤ c j − c < η ,

• j ∈ ϒ3 ⇔ c j ≥ c + η .

5. Changea j into a j − η/2 for all j ∈ ϒ1. Do not change the othera-components.

6. Go to step 2.

This algorithm always ends in a finite number of steps. Ifk denotes the iteration index
of the algorithm, then thisk will, as an argument, specify the quantities related to the
k-th iteration of the algorithm, and

{
ci (k + 1) ≥ ci (k) for i ∈ ϒ1(k) ,

ci (k + 1) ≤ ci (k) for i ∈ ϒ2(k) ∪ ϒ3(k) .

Thereforec(k) is a nonincreasing function ofk and similarly c(k) is nondecreasing.
At each iteration of the algorithm some elements ofϒ1 may have moved toϒ2 or vice
versa. Someelements ofϒ3 may have moved toϒ2, butnot vice versa. Ask increases,
ϒ1 andϒ2 will ultimately catch allci .

By means of the following example, it will be shown how the algorithm works:

a1(k + 1) = max(a1(k) + 1, a2(k) + 2, a3(k)) ,

a2(k + 1) = max(a1(k) + 2, a2(k), a3(k) + 1) ,

a3(k + 1) = min(a1(k) + 2, a2(k) + 4, a3(k) + 3) .

We takeη = 0.2 and start with a(0) = ( 1 2 3
)′

. Application of the algorithm
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yields the following results:

a(0) =



1
2
3



 , c(0) =



3
2
0



 , a(1) =



1
2

2.9



 , c(1) =



3

1.9
0.1



 , . . . ,

a(9) =



1
2

2.1



 , c(9) =



3

1.1
0.9



 , a(10) =



1
2
2



 , c(10) =



3
1
1



 ,

a(11) =



1

1.9
1.9



 , c(11) =



2.9
1.1
1.1



 , . . . , a(20) =



1
1
1



 , c(20) =



2
2
2



 .

For this example, even the exact results are obtained: the eigenvector isa(20) =(
1 1 1

)′
and the eigenvalueis 2.

9.6.4 Stochastic Min-Max Systems

We are given the system described by (9.27)–(9.30). In contrast to the previous subsec-
tions, it is now assumed that the matrices in these formulæ are event-dependent;Al (k),
Bl (k), etc. The reasonof this dependence is that (some of) the entries of these ma-
trices will be assumed stochastic. For eachk, the stochastic entries are assumed to be
mutually independent and moreover, it is assumed that there is no correlation for differ-
entk-values. The underlying probability distributions are assumed to be finite, i.e. the
entries can only assume a finite number of values. For the calculation of the average
throughput, the same technique as used in Chapter 8 for max-plus algebra systems will
be used. As an example, consider

x1(k + 1) = max(x1(k) + τ1(k), x2(k), x3(k)) ,

x2(k + 1) = max(x1(k) + τ1(k), x2(k) + τ2(k), x3(k)) ,

x3(k + 1) = max(min(x1(k) + τ1(k), x2(k) + τ2(k)), x3(k) + 1) ,




 (9.44)

which resembles (9.32). The stochastic quantitiesτi (k) are supposed to be indepen-
dent of each other (i.e. for alli and allk). Assume thatτi (k) = 0 or τi (k) = 2, both
with probability 0.5. Starting from an ‘arbitrary’x0-vector, sayx0 =

(
0 0 0

)′
,

we will set up thereachability tree of all possible states of (9.44). Fromx0, four new
states can be reached in one step in principle, since there are four possibilities for the
combination (τ1(0), τ2(0)). Actually, one of these states,

(
2 2 2

)′
, is a transla-

tion of x0 and hence is not considered to be a new state. For this example, it turns
out that the reachability tree consists of ten states which will be denotedn1, . . . , n10.
Here n1 =

(
0 0 0

)′
. If for instance τ1(0) = τ2(0) = 0, then we get to state

n2 =
(

0 0 1
)′

. The ten states, together with their immediate successors, are
given in Table 9.3. It is not difficult to show that, from any initial condition, the
statexk will converge in a finite number of steps to the Markov chain consisting of
the given 10 nodes. Since the probabilities with which the different(τ1(k), τ2(k)) oc-
cur are known, thetransition probabilities of a Markov chain in which the ten statesni
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Table 9.3: Reachable states

Initial τ1 = 0 τ1 = 0 τ1 = 2 τ1 = 2
state τ2 = 0 τ2 = 2 τ2 = 0 τ2 = 2

n1 =
(

0 0 0
)′

n2 e n3 e n4 1 n1 2
n2 =
(

0 0 1
)′

n2 1 n5 1 n1 2 n1 2
n3 =
(

0 2 1
)′

n1 2 n6 2 n1 2 n6 2
n4 =
(

1 1 0
)′

n1 1 n6 1 n7 1 n1 3
n5 =
(

0 1 1
)′

n2 1 n3 1 n1 2 n8 2
n6 =
(

0 2 0
)′

n4 1 n9 1 n1 2 n6 2
n7 =
(

2 2 0
)′

n1 2 n6 2 n7 2 n1 4
n8 =
(

0 1 0
)′

n1 1 n6 1 n4 1 n8 2
n9 =
(

1 3 0
)′

n7 1 n10 1 n1 3 n6 3
n10=

(
2 4 0

)′
n7 2 n10 2 n1 4 n6 4

are the nodes can be calculated. Subsequently, the stationary behavior of this Markov
chain can be calculated. Once this stationarydistribution is known, it is not difficult to
calculate

lim
k→∞

E(xi (k + 1)− xi (k)) , (9.45)

which turns out to be independent of the subscripti. This method, together with its
properties, has been described more extensively in Chapter 8 for only max-plus sys-
tems. As long as the reachability-tree consists of a finite number of states, the method
works equally well for min-max systems. For the example treated, it turns out that the
expression in (9.45) equals 1.376 time units. This quantity can be considered as the
average cycletime of system (9.44).

9.7 About Cycle Times in General Petri Nets

In this section we are interested in finding how fast each transition can initiate firing
in a periodically operated Petri net (not necessarily an event graph). Connections with
Chapter 2 will be made. It will not be assumed here that each transition fires as soon
asit is enabled. The order and timing of the initiation of firings of enabled transitions
must be chosen in such a way (if at all possible) that a periodic behavior is possible.
Duringeach period, each transition must fire at least once. The thus smallest possible
period τ is called the cycle time and it is defined as the time to complete a firing
sequence leading back to the initial marking. Therefore we will confine ourselves to
consistentPetri nets, i.e.

∃x > 0 , G′x = 0 ,

whereG was defined in§ 2.4.1. Later on in this section, we will narrow down the
consistent Petri nets to event graphs.
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It is assumed that the holding and firing times are constant in time. Suppose there
is a firing time of at leastβi time units associated with transitionqi , i = 1, . . . , n.
This means that whenqi is enabled and it initiates a firing, it takesβi time units before
the firing is completed. Hence one token is reserved in each placep j ∈ π(qi) for
at leastβi time units before the transition completes its firing. The ‘resource-time
multiplication’ + j is definedas (thenumber of tokens in placep j) × (the length of
time that these tokens remain in that place). Apopular interpretation is: if a token
represents a potential buyer who has to wait, then+ j is proportional to the amount of
coffee you will offer to all these buyers. In matrix form,+ = (G in)′Dx , where the
m-dimensional vector+ has an entry per place and whereD is the diagonal matrix
with the elementsβi on the diagonal and 0’s elsewhere (in conventional algebra). Here
we only considered the reserved tokens (reserved for the duration of the firing time).
Now suppose that there are on average(µa) j tokens in placep j during one period
(this average is with respect to clock time). Then the corresponding+ is given by the
vectorµaτ (popular again: the amount of coffee which you will need during one cycle
for all waiting clients). Since this latter+ wascalculated for both the reserved and not
reserved tokens, the following inequality holds:

µaτ ≥ (G in)′Dx . (9.46)

Sinceµa is the averageof a finite number of markingsµ, and sinceµ′y, with y satis-
fying Gy = 0, does not depend on the particularµ (see§2.4.1), we obtain

y′µ0τ = y′µaτ ≥ y′(G in)′Dx

(whereµ0 is the initial marking or any other one), providedy ≥ 0. Hence

τ ≥ max
y

y′(G in)′Dx

y′µ0
, subject to Gy = 0 , y ≥ 0 , y 
= 0 . (9.47)

It is tacitly assumed that the denominator of (9.47) is strictly greater than zero. In fact,
it is not difficult to derive an upper bound forτ and hence the right-hand side of (9.47)
must befinite.

An upper bound forτ is given by 2βmax
∑

i xi , whereβmax is an upper bound for
the holding and firing times. If a transition starts firing, then any other transition, if it is
enabled at all, will be enabled within 2βmax units oftime, the factor 2 coming from the
firing time of the first transition and from the holding time between the two transitions.
Hence such a transition can initiate firing within 2βmax time units of the initiation of
firing of the first transition. The total number of firings in a circuit is

∑
xi . Thus the

upper bound has been obtained.
For event graphs the analysis related to the lower bound onτ can be made more

explicit. Take those indices of they-vector which correspond to the indices of the
transitions of an arbitrary elementary circuit of the event graph equal to 1 and the
other indices equal to 0. It can be shown that they-vector thus constructed satisfies
Gy = 0, y ≥ 0, y 
= 0. If this y is used in (9.47) one obtains

τ ≥ max
k








∑

i∈ζk

βi



 /µ0(ζk )



 , (9.48)
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whereζk, k = 1, . . . , are the elementary circuits (thenumber of such circuits is finite),
and whereµ0(ζk) denotesthe (initial) number of tokens in circuitζk. According to
Theorem 2.37, this number of tokens in a circuit of an event graph does not change
after a firing. Equation (9.48) will be elucidated by means of the following example.

Consider Figure 9.3 in which an event graph is shown with five transitions and

p1

p2

p3

p4

p5

p6

p7

q1

q2

q3
q4

q5

Figure 9.3: Event graph with four elementary circuits

seven places. The incidence matrixG of this event graph is

G =




−1 −1 1 1 ε ε ε

ε ε −1 ε 1 ε ε

ε ε ε −1 ε 1 ε

ε 1 ε ε −1 −1 1
1 ε ε ε ε ε −1



.

The columns and the rows of this matrix are numbered as the places and transitions in
Figure 9.3 respectively. It follows thatG′x = 0 for x = ( k k k k k

)′
, where

k is a positive integer. A vectory, y ≥ 0, y 
= 0, which satisfiesGy = 0 is found as
follows. Take an arbitrary elementary circuit in the event graph, for instance the circuit
formed by the placesp1, p3, p5 and p7. Considery = ( 1 0 1 0 1 0 1

)′
,

where the 1-elements correspond to the indicesi of the places in the circuit. Indeed
Gy = 0. A lower bound for the cycle time is(β1 + β2 + β4 + β5)/2.

If we were to deal exclusively with event graphs, it can be shown by continuing
along the lines set out above, see [115], that the≥-symbol in (9.48) becomes the=-
symbol and that then all transitions will initiate firing as soon as they are enabled. This
result has already been established in Chapter 3 of this book.

9.8 Notes

Section 9.2 is based on [100, 103, 105, 50] (except for§9.2.2 with was unpublished yet). Sec-
tion 9.3 on control of discrete event systems is believed to be original. One can imagine various
ways to ‘control’ discrete event systems. One such a way has been given in§9.3. Another
possibility is discussed in [68]. A relation between controlled event graphs and automata-based
models is given in [78].

Section 9.4 is based on [113]. The Cramer transform is an important tool for people inter-
ested in large deviations and researchers in this field know the morphism between conventional
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algebra andmin-plusalgebra. But in general they are more interested in the probability side than
in the optimization one. Moreover, they are notmuch concerned with the algebraic point of view
[3], [60], [125]. Bellman and Karush [17] were aware of the interest of the Fenchel transform
(which they call max transform). Maslov has also clearly understood the analogy between prob-
ability and dynamic programming and has developed a theory of idempotent integration [88].
The analogue of some jump processes can be found in [55].

The law of large numbers, thecentral limit theorem, the Brownian decision process, the
diffusion decision process and the min-plus invariance principle do not seem to have been written
down explicitly before. Some work on the min-plus analogue of stochastic integrals, and more
generally on the analogy between probability anddynamic programming, has been done by
Bellalouna under the supervision of M. Viot [16]. Some comments by P.L. Lions and R. Azencott
on this morphism have been included in this section.

The first attempt to derive equations for general timed Petri nets can be traced back to [39].
However, the approach proposed in that paper did not lead to explicit equations, owing to the
problem of consumption conflicts. The setting that is summarized in§9.5 is that of [7]. The
evolution equations established in this section can be shown to be ‘constructive’ whenever the
Petri net is live, and a computational scheme can be obtained that allows one to determine the
firing times of the transitions iteratively (see [7]). Section 9.6 is based on [98] and [102].

Section 9.7 is based on [96]. As explained, the results of this section can be narrowed down
to event graphs (see [115]), so asto get back the results which have been derived in a different
way in Chapter 3.



460 Synchronization and Linearity



Bibliography

[1] M. Ajmone Marsan, G. Balbo, and G. Conte.Performance Models of Multipro-
cessor Systems. The MIT Press, Cambridge, Mass., USA, 1986.

[2] H. Attouch and R.J.B. Wets. Isometries of the Legendre-Fenchel transform.
Transactions of the American Mathematical Society, 296:33–60, 1986.

[3] R. Azencott, Y. Guivarc’h, and R.F. Gundy. InEcole d’été de Saint Flour 8.
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Rendus à l’Académie des Sciences, 311:745–748, 1990.

[114] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete
event processes. SIAM Journal of Control and Optimization, 25(1):206–230,
Jan 1987.

[115] C.V. Ramamoorthy and Gary S. Ho. Performance evaluation of asynchronous
concurrent systems using Petri nets.IEEE Transactions on Software Engineer-
ing, 6:440–449, 1980.

[116] Kurt J. Reinschke. Multivariable Control, a Graph-Theoretic Approach.
Akademie-Verlag, Berlin, 1988.

[117] J.A.C. Resing, R.E. de Vries, M.S. Keane, G. Hooghiemstra, and G.J. Olsder.
Asymptotic behaviour of random discrete event systems.Stochastic Processes
and Their Applications, 36:195–216, 1990.

[118] C. Reutenauer and H. Straubing. Inversion of matrices over commutative semir-
ing. Journal of Algebra, 88:350–360, 1984.

[119] R.T. Rockafellar.Convex Analysis. Princeton University Press, Princeton, N.J.,
1970.



Bibliography 469

[120] D.E. Rutherford. Inverses of Boolean matrices.Proceedings of the Glasgow
Mathematical Association, 6:49–53, 1963.

[121] A.N. Shiryayev.Probability. Springer-Verlag, Berlin, 1984.

[122] E.D. Sontag.Mathematical Control Theory. Springer-Verlag, Berlin, 1990.

[123] D. Stoyan.Comparison Methods for Queues and Other Stochastic Models. John
Wiley and Sons, New York, 1984. English translation (D.J. Daley editor).

[124] H. Straubing. A combinatorial proof of the Cayley-Hamilton theorem.Discrete
Mathematics, 43:273–279, 1983.

[125] S.R.S. Varadhan. InLarge Deviations and Applications, number 46 in CBMS-
NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia,
Penn., USA, 1984.

[126] Edouard Wagneur. Moduloids and pseudomodules: 1. dimension theory.Dis-
crete Mathematics, 98:57–73, 1991.

[127] L. Wang, C. Liu, and X. Xu. Some results on eigensystems of deterministic
discrete event systems. Technical report, North-East University of Technology,
Shenyang, China, 1990.

[128] J.H. Wedderburn. Boolean linear associative algebra.Annals of Mathematics,
35:185–194, 1934.

[129] Doron Zeilberger. A combinatorial approach to matrix algebra.Discrete Math-
ematics, 56:61–72, 1985.

[130] U. Zimmermann. Linear Combinatorial Optimization in Ordered Algebraic
Structures. North-Holland, Amsterdam, 1981.



470 Synchronization and Linearity



Notation

deg degree

dom dominant

epi epigraph

gcd greatest common divisor

hypo hypograph

lcm least common multiple

supp support

val valuation

2S collection of subsets ofS (including∅ andS itself)

N natural numbers

Z relative integer numbers

R real numbers

B the Boolean dioid

R R ∪ {−∞} ∪ {+∞} (similar definitions forN, Z, etc.)

Rmax dioid {R,max,+} (similar definitions forRmin, Zmax, etc.)

S symmetrizeddioid of Rmax

S
⊕ see Equation (3.15)

S
� see Equation (3.15)

S
• see Equation (3.15)

S
∨

S
∨ = S

⊕ ∪ S
�

S
∨
� S

∨
� = S

∨ \ {ε}
〈· , ·〉 scalar or duality product

⊕ addition in a dioid (pronounced ‘oplus’)

⊗ multiplication in a dioid (pronounced ‘otimes’)

, in the context ofRmax, (A , B)i j = infk
(

Aik + Bkj
)

∧ (greatest) lower bound in a lattice or dioid (pronounced ‘wedge’)

∨ (least) upper bound in a lattice or dioid (pronounced ‘vee’)

� minus sign in a symmetrized dioid (pronounced ‘ominus’)

◦− x �→ x ◦− a is the dual residual of y �→ y ⊕ a
◦/ x �→ x◦/a (pronounced ‘x (right) divided bya’) is the residual ofy �→

y ⊗ a (in Rmax, this isx − a)
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·
·

x
a is a two-dimensional displaynotation forx◦/a

◦\ x �→ a ◦\x (pronounced ‘a (left) dividingx ’) is the residual ofy �→ a⊗ y
·
·

x
a is a two-dimensional displaynotation fora ◦\x

∇ balance (see Definition 3.63)

∅ empty set

ε zero elementin a dioid

έ zero elementin the dater dioid (see (5.9))

� top (largest) element in a lattice or a (complete) dioid

e identity element in a dioid

é identity element in the dater dioid (see (5.9)) (also, integrator)

ú best approximation from above of a signalu (ú = éu)

x• x• = x � x (pronounced ‘x bullet’)

ċ first order derivative of functionc

c̈ second order derivative of functionc

γ shift operator in the event domain (formallyγ x(k) = x(k − 1))

δ shift operator in the time domain (formallyδx(t) = x(t − 1))

θ shift operator on(�,F,P)

Ta translation bya

La left multiplication bya

Ra rightmultiplication by a

�g shift (by g)

"d gain (byd)

�a flow limiter (by a)

#w local integrator (over a window of widthw)

�
∫

if f is a mapping fromR into Rmax, �
∫ b

s
a

f (s) = supa≤s≤b f (s)

| · | if P is a set,|P| is the cardinality ofP; if x ∈ S, |x | is the absolute value
(see§3.4.1.1); if A is a matrix,|A| is its determinant

| · |l |ρ|l is the length of pathρ (total number of arcs)

| · |w |ρ|w is the weight of pathρ (total holding time)

| · |t |ρ|t is the totalnumber of tokens along pathρ

| · |⊕ see Equation (7.23)

| · |∧ see Equation (7.24)

≤st stochastic ordering

≤cx convex ordering

≤icx increasing convex ordering

[←, x ] closed lower set generated byx

[x,→] closed upper set generated byx
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D
�

� D
�

� = {x | �(x) = x}
D

�
� D

�
� = {x | �(x) ≤ x}

D
�
� D

�
� = {x | �(x) ≥ x}

�∗ if � is a mapping,�∗ = e ⊕ � ⊕ �2 ⊕ · · · wheree is the identity
mapping and, e.g.�2 = �◦�

�∗ if � is a mapping,�∗ = e ∧� ∧�2 ∧ · · ·
�� (pronounced ‘pi sharp’) residual of mapping�

�� (pronounced ‘pi flat’) dual residual of mapping�

F evaluation homomorphism

Fe Fenchel transform

G (directed) graph

E set of arcs of a directed graph

V set of nodes of a directed graph

G(A) precedence graph associated with matrixA

NA number of m.s.c.s.’s ofG(A)

Gc(A) critical graph associated with matrixA

Vc set of nodes ofGc(A)

Nc
A number of m.s.c.s.’s ofGc(A)

S(A, y) saturation graph associated with matrixA and vectory

c(G) cyclicity of graphG
π π(i) is the set of immediate predecessors of nodei

σ σ(i) is the set of immediate successors of nodei

π+ π+(i) is the set of all predecessors of nodei (not includingi itself)

π∗ π∗(i) is the set of all predecessors of nodei (includingi itself)

σ+ σ+(i) is the set of all successors of nodei (not includingi itself)

σ ∗ σ ∗(i) is the set of all successors of nodei (includingi itself)

[i] m.s.c.s. containing nodei; more generally, equivalence class ofi for a
given equivalence relation

[< i] see Notation 2.3

[≤ i] see Notation 2.3

Ai j entry in rowi and column j of matrix A

x(i) see Notation 2.5

A(i)( j) see Notation 2.5

A· j column j of matrix A

A′ transpose of matrixA

A∗ if A is a square matrix,A∗ = e⊕ A⊕ A2 ⊕ · · ·
A+ if A is a square matrix,A+ = AA∗ = A ⊕ A2 ⊕ · · ·
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cofi j (A) cofactor of matrixA associated with entry(i, j )

A� transpose of the matrix of cofactors ofA

P in a Petri net, set of places

Q in a Petri net, set of transitions

I in a Petri net, set of input transitions

µ vector such thatµi equals the number of tokens in placei in the initial
marking of aPetri net

α vector such thatαi is the holding time of placei of a (timed) Petri net

β vector such thatβi is the firing time of transitioni of a (timed) Petri net

wi( j ) lag times of thej -th initial token in placepi

v j (k) see Equation (2.16)

z j (k) see Definition 2.61

H algebra of impulse responses

S algebra of shift-invariant impulse responses

Ś algebra of nondecreasing shift-invariant impulse responses

Scx subset of convexelements ofS
Scv subset of concave elements ofS
Ccx dioid of closed convex functions fromRmax into Rmax

Dn×n dioid of n × n matrices with entries inD
D% dioid closure ofD
D� rational closure ofD

D[α] dioid of formal polynomials inα with coefficients inD
P(D) dioid of polynomial functions overD
D[[α]] dioid of formal power series inα with coefficients inD
D(α) rational closure ofD ∪ α

D{α} algebraic closure ofD ∪ α

D{{α}} topological closure ofD ∪ α

M
ax
in[[γ, δ]] (pronounced ‘min max gamma delta’) the quotient ofB[[γ, δ]] by the

equivalence relationx ≡ y ⇔ γ ∗(δ−1)∗x = γ ∗(δ−1)∗ y

(�,F,P) probability space

F σ -algebra in a probability space

P probability

E mathematical expectation

MW see Equation (9.16)

1A indicator function of subset (or event)A
Qm,σ (x) quadratic form such thaṫQm,σ (m) = 0 andQ̈m,σ (x) = σ−1

N (m, σ) Gaussian law with meanm and standard deviationσ
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⊕-morphism, 157
⊕-supermorphism, 168
⊗-morphism, 157
∧-morphism, 227
∧-submorphism, 168

absolute value, 130
absorption law, 164
activity, 4
activity time, 4
acyclicity, 36
addition, 3, 7, 41

cancellative, 155
idempotency of, 102
symmetry of, 102

adjoint state, 249
affine equation, 105

canonical form, 106, 108
affine function, 105
aggregation, 91
algebra of convex functions, 280
algebra of pairs, 130
algebra of systems, 273
algebraic equation, 127
algebraic structure, 46, 102, 153

isomorphic, 9
amplification, 273
and-convergence, 56
and-divergence, 56
antisymmetry, 134
antitone, 246
aperiodicity, 45, 323
approximation, 191, 225

best, 184
arc, 35

dummy, 40
ARMA equation, 219
ARMA model, 422
array processor

systolic, 20
wavefront, 20

ascendant, 36
assembly, 95
associatedrandom variables, 389
association, 388, 389

of random variables, 413
associativity

of addition, 41, 154
of multiplication, 41, 154

asymptotic behavior, 143
automata theory, xiii
automaton, 60
autonomous, 56
autonomous equation, 81
axiomatics, 154

backward equation, 249
backward process, 311, 332, 350
balance, 129

linear,131, 135
balance operator, 130
balance relation, 130
balanced element, 130
bar, 54
best approximation, 184

from above, 225
from below, 225

bijection, 50
binary system, 98
binomial formula, 102
Birkhoff’s ergodic theorem, 309
Black plot, 268
block diagram, 242
blocking

after service, 343
manufacturing, 358

Boole algebra, 156, 164
Boolean matrix, 197

475



476 Synchronization and Linearity

Boolean variable, 45
Borel-Cantelli lemma, 398
Borovkov’s theorem, 360, 369
bottom element, 159
branching process, 395
Brownian measure, 435
Brownian motion, 429
Brownian process, 434
buffer, 18, 21
buffersize, 19

calculus
rational, 203

cancellative, 102, 155
canonical basis, 276
canonical form

maximum, 121
minimum, 121

capacity, 89
of network, 44

causality, 254
Cayley-Hamilton theorem, 48, 52, 135,

419
central limit theorem, 433
chain,36, 158
characteristic equation, 48, 51
characteristic polynomial, 48
Chernoff’s theorem, 392
choice, 57
circle, 54
circuit, 10, 36

critical, 143
elementary, 36
empty, 37
grey, 93

circuit of maximum weight, 195
circuit representation, 49
clock

absolute,221
global, 20

closed convexfunction, 280
closure

algebraic, 287
dioid, 203, 286
linear, 133
polynomial, 286

rational, 203, 286
series, 287
topological, 287
transitive, 36

communication time,4, 62
commutative variables,197
commutativity

of addition, 41, 154
of multiplication, 49

competition, 60, 444
composition

of graphs, 41
of matrices, 41

composition operator, 307
concave mapping, 120
concavity

with respect to initial marking, 380,
386

concavivied polynomial, 121
concurrency, xi
conflict, 57
congruence, 154, 157
continuity, 168
continuous fluid system, 25
control, 427
controllability

structural, 300
controller representation, 207, 260
convex mapping, 120
convexset,119
convexity

stochastic, 413
convolution, 198
coordinate transformation, 220
corner, 122

multiplicity, 122
nonzero, 122
pole, 124
root, 124
zero, 122, 124

correlation, 295
correlation principle, 297
cost function, 429
counter, 5, 216, 244, 375

dynamic equation, 248
counter description, 25, 67, 217
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counter realization, 260
coupling, 315, 342, 360
Cramer formula, 134
Cramer system, 135
Cramer transform, 432
Cramer-Legendre transform, 390, 393
customer, 18
cycle mean, 46

maximum, 47, 111
cycle time,29, 324, 384

bounds, 389, 390
computation of, 373
lower bound, 373
upper bound, 373

cyclicity, 150
asymptotic, 150

dater, 72, 215, 223, 271, 375
backward equation, 251
coding of, 230
γ -transform, 224
greatest, 226
least, 226

dater description, 25, 217
dater realization, 259
De Morgan laws, 166
deadlock, 60, 257, 260, 299
decision, 57
decomposition, 125, 131
DEDS,see discrete event dynamic sys-

tem
degree, 117, 198, 235
delay operator, 207
δ-transform, 216
descendant, 36
description

two-dimensional, 207
descriptor system, 448
destination, 36
determinant, 134

negative, 135
positive, 135

difference equation, 3
first order, 8
higher order, 8

diffusion process, 429, 436

digraph, 36
acyclic, 36
weighted, 46

dioid, 154
Archimedian, 163
commutative, 155
complete,162
distributive, 165, 166
entire, 155
matrix, 194
quotient of, 221

dioid of systems, 273
dioid structure, 222
diophantine equation, 148
disassembly, 95
discrete event dynamic system, xi
distance

shortest, 9
distributivity, 41, 154
division, 103, 179
domain, 49
dominant, 420
dynamic programming, 11, 15, 32, 429
dynamics, 71

earliest epoch, 4
edge, 35
eigenfunction, 261
eigenpair, 370

random, 310, 335, 352
eigenspace, 145

random, 370
eigenvalue, 28

maximum, 112
numerical procedure, 452
Perron-Frobenius, 394
random, 315

eigenvector, 28
generalized, 28
random, 315

enabled transition, 55
enabling of transition, 63
entrance time, 69, 76
epigraph, 119, 245
ε-input, 239
equation
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affine, 203
bilinear, 22
canonical form, 127
degenerated, 128
homogeneous, 190
implicit, 12

equivalence class
minimum representative, 228

equivalence relation, 37
ergodic process

Kingman’s theorem, 322
ergodic sequence, 88

stationary, 307
ergodic shift, 308
ergodic theorem, 369

multiplicative, 317
Erlangdistribution function, 383
Euclidean division, 125
evaluation homomorphism, 118, 262,

264, 281
event, 215

renovating, 361, 369
type of, 215

eventdomain, 207
description, 215

event graph, 59
equivalent, 79
FIFO, 70
live, 61
safe, 62
stable, 366
stochastic, 87, 305
timed, 62
two-dimensional description, 215

eventnumbering, 70
evolution tree, 446
executiontime, 20
expectation

mathematical, 307
exponential, 419
extremal algebra, 211
extremal point, 120

facet
balanced, 138

factorization, 122, 139

feedback, 17, 273
feedback connection, 30
feedback stabilization, 294, 300
Fenchel algorithm

fast, 432
Fenchel transform, 119, 280
FIFO, 69
filter, 167
finite capacity, 18, 89
firing, 55

completion of, 72
index, 63
sequence, 58
serialized, 63
time, 62, 374

first in first out, 69
first-order theorem, 305, 317, 319
fixed-point, 184
fixed-point equation, 184
flow

cumulated,26
flow limitation, 26
flow limiter, 275
flow-shop, 15
fork, 328
fork-join network, 327
formal polynomial, 116
formal polynomials

set of, 117
formal power series, 197
Fourier transform, 280
frequency response, 261
fundamental theorem, 123
furnace, 96

gain, 273, 274
amplification, 261, 268

γ -transform, 30, 218
Gaussian elimination, 204
general Petri net, 437

cycletime, 456
generalized semi-Markov process, xiii
graph, 35

bipartite, 37
concatenated, 42
connected, 36
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critical, 143
cyclicity of, 143
directed, 35
PERT, 382
precedence, 39
reduced, 37, 38
saturation, 143
strongly connected, 37
transition, 39
weighted, 38

graph theory, 4
Green function, 429
Green kernel, 435
group, 101
group structure, 156
growth rate, 317

Hamilton-Jacobi-Bellman, 434
Hamiltonian system, 253
Hankel matrix, 424
Hasse diagram, 158
Hausdorff topology, 432
head monomial, 117
heat equation, 435
higher order statistics, 341
Hilbert space, 119
HJB, see Hamilton-Jacobi-Bellman
holding time, 62, 63, 217, 374
homomorphism, 157
hypograph, 119

i.i.d., see independent and identically
distributed

ideal, 167
idempotency, 44, 155
idempotent algebra, 107
idempotent integration, 459
identity, 274
identity element, 12, 41, 155, 194
identity matrix, 107

transition graph, 43
idle, 91
impulse, 218
impulse response, 240, 276–286

nondecreasing, 279
periodic behavior, 290

shift-invariant, 278
incline algebra, 211
independent and identically distributed,

317
indicator function, 309
inf-convolution, 27
inf-semilattice

complete,160
infinite series, 31
infinite sum, 162
information, 230, 238

cone of, 264
inhibitor arc, 98
initial condition, 69, 75

canonical, 95
compatible, 76
weakly compatible, 69, 84

initialization, 95
canonical, 93

injection
canonical, 191

inner dimension, 206
input, 6, 30, 272
input channel, 4
input sequence

weakly compatible, 84
input-output behavior, 90
integral equation, 411
integration, 27
integrator, 275
inter-input time, 321
interarrival time, 341
internal representation

reduction, 243
inverseoperator

left, 196
inversion, 249
invertible element, 131
involution, 432
irreducibility, 44

calculation of, 45
isomorphism, 157
isotone, 160

Jensen’s inequality, 412
join, 328
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join queue, 364

kanban, 98
Karp’s theorem, 47
Kingman’s theorem, 322, 329, 369
Kolmogorov equation, 435

l.s.c.,see lower-semicontinuity
lag time,69, 241, 341

initial, 314
language

computer science, xiii
Laplace transform, 269, 280
lattice, 160

complete,160
distributive, 160
inf-semilattice, 160
sup-semilattice, 160

lattice theory, 158
lattice-ordered group, 166
Laurent series,197
Lavenberg’s theorem, 341
law of largenumbers, 433
left division, 179
left multiplication, 178
length, 36

of transition graph, 43
linear dependency, 425
linear function, 105
linear system theory, 271
Little’s formula, 388
local integrator, 275
log-concave function, 382
loop, 36, 58
loop shaping, 301
low-pass effect, 268
lower bound, 159, 164
lower set,167

closed, 167
lower-semicontinuity, 162, 168, 272
Lyapunov exponent

maximal,321, 370
Lyapunov exponents, 317

m.s.c.s.,see subgraph, maximal strongly
connected

majorant, 159
manufacturing system, 15
mapping

closure, 177
continuous, 167
dual closure, 177
greatest dual closure, 185
isotone, 160, 167
least closure, 185
residuated, 172

marked graph, 59
marking, 54

concavity, 380
destination, 58
initial, 54, 374
reachable, 57

Markov chain, 14, 400
Markov parameter, 424
matrix, 38

adjacency, 40
correlation, 295
diagonizable, 28
identity, 10, 12, 30
incidence, 40, 58
inverse, 13
invertibility, 212
positive, 353
sojourn-time, 294
transfer, 30
transition, 18

matrix dioid, 194
max transform, 459
max-plus algebra, 19, 28, 32, 102

symmetrization, 129
maximal element, 159
maximal strongly connected, 37
maximization, 3, 7
maximum element, 159
maximum representative, 140, 171, 194,

225, 234
mean weight, 46
memory, 21
MIMO system, 254
min operation, 103
minimal polynomial equation, 53
minimal realization, 292, 424, 425
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minimal representation, 292
minimax algebra, 211
minimization, 9
minimum element, 159
minimum representative,171, 225, 227,

235
minmaxγ δ, 232
minmax system, 447
minorant, 159
minus sign, 130
mixing, 68
modeling power, 55, 88
moduloid, 106
monomial, 117, 198
monotonicity

properties, 375
stochastic, 375, 380
with respect to initialmarking, 376
with respect to timing sequence,

375
with respect to topology, 378

multi-arc, 55
multigraph, 35, 88
multiplication, 3, 7, 41

cancellative, 155

negative element, 130
net,see Petri net
network, 4

autonomous, 56
data driven, 20

neutral element, 7
node, 4, 35

blocked, 21
downstream, 36
final, 36
initial, 36
input-, 36
internal, 6
output-, 36
upstream, 36

noise, 14
nonautonomous equation, 83
nondeterminism, 57
number of tokens, 115
numerical function, 198, 261

observability
structural, 300

observable, 67
observation, 14
observer representation, 207, 260
optimal control, 249
or-convergence, 56
or-divergence, 56
order

lexicographic, 171
partial, 158
total, 158, 162

order relation, 158, 160
ordered set, 158
ordering

convex, 374
increasing and convex, 374
stochastic, 374

origin, 36
Oseledec

¸
’s theorem, 370

outer dimension, 206
output, 6, 30, 272
output channel, 4

pallet, 15
Palminversion formula, 369
Palm probability, 369
parallel composition, 41, 273
parallel computation, 20
parallel connection, 30
partial permutation, 49

weight of, 50
partially ordered set, 38
path, 36

critical, 11, 382
elementary, 36
shortest, 9

path algebra, 211
performance, 20
performance evaluation, 28, 62
periodic behavior, 93, 450
periodicity, 29, 254, 255
permanent, 420
permutation, 49
Perron-Frobenius, 101
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PERT graph
stochastic, 382

PERT-exponential distribution function,
382, 383

perturbation analysis, xiii
Petri net, 53, 54

bounded, 60
conservative, 60
consistent, 60, 456
continuous, 98
deadlocked, 60
decision free, 59
equivalence of, 66, 89
general timed, 437
live, 60
safe, 60
strictly conservative, 60
synchronous, 60
timing of, 63
weakly consistent, 60

phase shift, 261, 268
pixel, 238
place, 53

downstream, 54
FIFO, 70
grey, 93
input, 54
output, 54
stable, 366
upstream, 54

planning, 9
pointwise ergodic theorem, 309
polynomial, 198

formal, 116
polynomial equation, 127

degree of, 127
polynomial function, 116, 117

canonical form, 121
closed, 140

polynomial matrix, 201
polynomial system, 287
Pontryagin’s minimum principle, 253
positive element, 130
positivily homogeneous, 262
post-condition, 54
power series, 224

division, 201
formal, 216
subtraction, 201

pre-condition, 54
predecessor, 36
principal filter, 167
principal ideal, 167
probability calculus, 429
probability law, 307
probability space, 307

canonical, 309
producer-consumer system, 307
product, 41
product carrier, 15
production, 15
production time, 5
projector

spectral, 146
proper function, 280

quadratic form, 430
quantization, 67
queue

fork-join network of, 327
G/G/1/∞, 307

queuing system, 18
quotient, 157

railway system, 22
random variable, 88
ratio equation, 330, 348

stationary solution, 331
ratio of daters, 305
ratio process, 330
rational closure, 203
rational element, 208
rational function, 124

decomposition, 126
proper, 126

rational system, 286
rationality, 255
reachability, 305, 356

by coupling, 356
direct, 355

reachability graph, 57
reachability tree, 57
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reachable condition, 95
realizability, 255
realization

finite dimensional, 253
minimal, 254

realization theory, 423
recycling, 63, 92
reduction of balance, 132
representation

internal, 250
minimal, 206
rational, 205

reservoir, 26
residual, 172

dual, 174, 245
residuation, 171, 249

dual, 173
residuation theory, 216
resource, 54, 90
response

finite, 257
Riccati equation, 253
right division, 179
rightmultiplication, 178
ring, 155
rival, 57
root, 127, 140
routing, 23

scalar function, 116
scheduling, 11
second-order theorem, 305, 317, 329,

335, 348
second-order theory, 294
semifield, 41, 101

commutative, 101
idempotent, 101

semigroup
lattice-ordered, 211

semiring, 210
absorbing, 210
idempotent, 210

sequence
dominating, 374

seriescomposition, 41, 42, 273
seriesconnection, 30

seriesexpansion, 13
server, 18
servicetime, 341
set

partially ordered, 38
shift, 274

ergodic, 308
shift operator, 207, 307

backward, 224, 231, 308
forward, 224

shortest pathmatrix, 10
signal, 261, 271
signature, 49, 134
signature∗, 49
signed element, 131
signed vector, 133
simple elements

decomposition in, 126
simultaneity, 93
sink, 36
SISO system, 240
skeleton, 121
slope, 290

asymptotic, 298
Sobolev space, 435
sojourn time, 294
solution, 110

extremal, 191
greatest, 189
least, 189
particular, 190

source, 36
source subgraph, 324
spectral projector, 146
spectral theory, 111
stability, 268

internal, 298
stability condition, 312, 315, 343
stabilization

feedback, 300
standard form

of evolution equation, 82
of system, 67

state, 3
state space

extended, 82
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reduced, 80
state space realization, 90
state variable,72, 375
stationary regime

computation of, 373
finitenessof, 312
reachability, 305

stochastic concavity, 380
stochastic event graph

stationary regime, 305
storage, 92
subdifferential, 267
subdioid, 156

least, 203
subdistributivity, 164
subgradient, 267
subgraph, 36

maximal strongly connected, 37
subsolution, 110, 172

greatest, 110, 172
substitution

repeated, 12
subsystem, 30
subtraction, 179
successor, 36
sum, 41
sup-convolution, 27, 222
sup-semilattice

complete,160
super-eigenpair

right, 352
superdistributivity, 165
supersolution, 172

least, 173
support, 40, 78, 117, 198

full, 118
switching, 443
switching function, 444
symmetrizedalgebra, 130
synchronization, xi, 59, 93
system

causal, 277
continuous-time, 25
discreteevent, 25
linear, 133
max-plus linear, 272

representation of, 32
shift-invariant, 278
stochastic, 24
unstable, 19

system oflinearequations, 108
systolic system, 98

tail monomial, 117
target time, 13
Tarski’s fixed-point theorem, 186
text recognition, 14
θ-invariant, 309
θ-shift, 307
θ-stationarity, 308
threshold effect, 268
throughput, 29, 301, 324, 384
time domain,207
time domain representation, 32
time-domain description, 215
timed event graph, 62
timing

constant, 63
variable, 63

timing sequence, 374
token, 54

distribution, 57
overtaking, 64
reserved, 62

top element, 158, 163
absorbing, 163

trace, 46
track, 22
traffic, 22
trajectory

nondecreasing, 154
nonmonotonic, 154

transfer function, 238
eigenfunction, 264
numerical, 281
rational, 205

transfer matrix, 30
transient,255, 261
transition, 53

competing, 57
enabled, 55
FIFO, 70
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firing of, 55
fork-type, 56
inlet, 95
input, 83
join-type, 56
outlet, 95
recycled, 72
sink, 56
source, 56

transitiveclosure, 36
translation, 178
transportation time, 4, 62
transposition, 134
traveling time, 4
tree, 45
Turing machine, 98
two-dimensional

description, 221
domain, 221
domain description, 215, 230

u.s.c.,see upper-semicontinuity
unit matrix,see matrix, identity
upper bound, 159
upper set, 167

closed, 167
upper triangular block, 44
upper-semicontinuity, 168
utilization factor, 19

valuation, 117, 198, 235
value function, 429
variational problem, 436
vertex, 35
Viterbi algorithm, 14,15, 32

weak convergence, 410
weaksubstitution, 132
weak transitivity, 132
weight, 38, 55
weight of a path, 42

z-domain, 30
z-transform, 30
zero divisor, 102, 155
zero element,12, 41, 42, 155

absorbing, 41, 102, 155
zero matrix, 107, 194

transition graph, 43
zero system,274
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