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A book, as a journey, begins with concern
and it ends with melancholy

José Vasconcelos



To my wife and my daughters, thanks
for being capable of putting up with me.



Foreword

Cooperative game theory can be seen as an axiomatic approach to analyze situa-
tions in which the players can make coalitions with worth. In a cooperative game
with transferable utility, the worth of a coalition is the maximal profit or the
minimal cost for the players in their own coalition. A solution concept is a distri-
bution of the profit (cost) of the great coalition among the players. Stable sets, core,
kernel, and several types of values are solution concepts, but I believe that the
Shapley value is adapted to very different situations and it enables a great variety of
extensions through their combinatorial properties.

This book analyzes values for cooperative games with fuzzy information among
the players. Each model uses a different relation: a particular coalition, a coalition
structure, a communication structure, a priori union system, a permission structure,
or a coercive structure, among other combinatorial structures. It is very remarkable
that the work of the author on the value of Shapley has extended the classic models
of Aumann and Dreze, Myerson, Owen, Gilles, and van den Brink to the situations
of fuzzy information between the players.

Mathematics is learned by doing, exploring new models with new tools, and
applying the knowledge obtained. Still remains much work to make, especially in
the field of applications of the models to propose new methods of conflict resolution
in economic, social, cultural, and political situations that can be analyzed from the
new perspective of fuzzy approximation.

When I started my research on the Shapley value in games constrained or
defined on combinatorial structures, I could not imagine the level of development
achieved by this field in which the Prof. Jiménez-Losada has obtained new and
interesting characterizations of the Shapley value in the context of fuzzy
information.

I hope that this book will be found useful as a text to start working in a new and
exciting field of research defined in its title “Models for Cooperative Games with
Fuzzy Relations among the Agents.”

Seville, Spain
January 2017

J. Mario Bilbao
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Preface

Game theory is a mathematical discipline which studies situations of competition
and cooperation among several agents or players. This is a consistent definition
with its large number of applications. These applications come from economy,
sociology, engineering, policy, computation, psychology, or biology. I focus this
book in the cooperative branch. This branch analyzes only the outcomes that result
in situations of cooperation, those cases where players are grouped in coalitions. In
the classical model, there are several basic suppositions. Players are symmetric, and
in each coalition, any player is as important as the rest and they cooperate at the
same level. Coalitions are all feasible, in the sense that the worth of each coalition
does not depend on any particular relation among the players. The use of techniques
from determined mathematical structures and fuzzy sets has allowed us to describe
better real problems by new models in cooperative games. Numerous studies have
been introduced describing certain additional information about the players or the
feasibility of the coalitions which modify the cooperation behavior. Fuzzy coali-
tions defined different levels of participation in a continuous model of cooperation.
My work for several years closely with my colleagues in the research group have
been focussed in the analysis of games with restricted cooperation, first by certain
classical mathematical structures and currently fuzzy cooperation structures.

This book has a double vocation, one to be a treatise and one to be a practical
manual. It is treatise on games with a bilateral fuzzy relation among the players.
The idea is presenting the difference in the models, and then, I focus on one
particular classical solution for games, the Shapley value. It is self-contained, in the
sense that all the mean contents about the topic are included. I present several fuzzy
models that we have studied particularly in their respective papers but, in the same
context, given certain degree of generality. Each model is analyzed first in crisp
case and later in the fuzzy option. All the models contain certain nuances which
allow the reader to see the results as newness about the subject. But this book is also
a good manual for students and researchers, in the sense that all the proofs are
included showing different ways of analysis in these situations. So, I opt in each
model for an axiomatization in different way. Usually, I present axioms and
properties in the most feasible general way. But also I study the last one in

xi



particular cases because the refinement of the model permits to use specific prop-
erties. Any person, only with a common knowledge base about maths, can follow
the book. There are also a lot of examples which show the application of the
different proposed formulas and concepts, in numbers: 104 definitions, 39 theo-
rems, and 96 propositions with their proofs, 110 examples, 37 tables, and 53
figures. I hope that the reader will find useful this work.

Seville, Spain Andrés Jiménez-Losada
January 2017
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Chapter 1
Cooperative Games

1.1 Introduction

This chapter corresponds to an introduction about cooperative gameswith transferable
utility, namely the framework within which the book is developed. It does not seek
to be fully exhaustive because this book is not a handbook about cooperative games
but it sets out to be consistent and comprehensive in order to be useful throughout
the rest of the chapters.

The study of the theory of games started in von Neumann and Morgenstern [29]
in 1944 with the publication of Theory of Games and Economic Behavior, although
there is some earlier research in von Neumann [28] in 1928. Game theory is a math-
ematical discipline which studies situations of competition and cooperation among
several agents (players). This is a consistent definition with the large number of
applications. These applications come from economy, sociology, engineering, pol-
icy, computation, psychology or biology. Game theory is divided into two branches,
called the non-cooperative and cooperative branches. They differ in how they for-
malize interdependence among players. In the non-cooperative theory, a game is a
detailed model of all the moves available to the players. By contrast, the cooperative
theory abstracts away from this level of detail, and describes only the outcomes that
result when players are grouped together (coalitions). This research is focused on
cooperative models. In von Neumann and Morgenstern [29] the authors described
coalitional games in characteristic function form, also known as transferable util-
ity games (games for short). The characteristic function of a game is a real-valued
function on the family of coalitions. The real number assigned to each coalition is
interpreted as the utility of the cooperation among this group of players. In these
cases the worth of a coalition can be allocated among its players in any way. The
adjective transferable refers to the assumption that a player can transfer any part of
his utility to another player.

Solving a game means determining which coalition or coalitions are formed and
obtaining a vector at the end of the gamewith the corresponding individual payoffs for

© Springer International Publishing AG 2017
A. Jiménez-Losada, Models for Cooperative Games with Fuzzy Relations
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2 1 Cooperative Games

the cooperation of the players (payoff vector). The classic model of game considers
that the grand coalition (the coalition of all the players) will be formed and assumes
that there are no restrictions in cooperation, therefore every subset of players can
form a different coalition. A value for games is a function assigning a payoff vector
for each game. The most known value was introduced by Shapley [24] in 1953. The
Shapley value determines the payoff vector for a game by an explicit formula using
the worths of all the coalitions in the game, and it is sustained in a set of reasonable
properties called axiomswhich identify uniquely the value. A large list of values have
been defined since then: nucleolus [23], Banzhaf value [2, 18, 21], compromise value
[27], etc. This book is focused on the Shapley value.

This chapter introduces cooperative games, the Shapley value and those results
about them that we will use in the next chapters. For further learning the reader can
use books about games in general as Driessen [6], Owen [19], Bilbao [3], Peters
[20] or González-Díaz [11]. More particularly, the book “The Shapley value”, ed.
Roth [22] is a broad vision about this value.

1.2 Games

Cooperative games analyze situations among a finite set of agents where they coop-
erate to get a determined benefit (profits, debts, costs,...). In this book we consider
games in coalitional form with transferable utility. In this kind of games the benefit
obtained by the cooperation can be allocated among the agents in any way, so the
individual utilities of them have a transfer system permitting that an agent can lose
utility to other one in order to keep the cooperation. Hence the benefit is a payoff
number for the set of agents. The coalitional form implies that it is known a mapping
determining the benefit for any subset of agents. Given a finite set N we denote as
2N its set of power, namely the family of subsets of N , and with the tiny letter n the
cardinality of N .

Definition 1.1 Let N be a finite set of elements named players. A cooperative
game with transferable utility over N is a mapping v : 2N → R which assigns
a worth to each subset of players (coalition), satisfying that v(∅) = 0. The
family of cooperative games with transferable utility over N is denoted as G N .

From now on we use game instead cooperative game with transferable utility. To
define a game we need then two elements: the set of players N and the mapping v
(named usually characteristic function). In the next examples we see how the games
can modeled different situations.



1.2 Games 3

Example 1.1 We consider a production economy in which there are several peasants
and one landowner. This model has been studied in Shapley and Shubik [26] and
Chetty et al. [4]. We present it here from [6]. The peasants contribute only with their
work and they are of the same type. The landowner hires the peasants to cultivate his
land. If t peasants are hired by the landowner, then the monetary value of the harvest
obtained is denoted by h(t) ∈ R. The mapping h : {0, 1, . . . ,m} → R is named
production function where m is the total number of peasants. In what follows, it is
required that h satisfies these two conditions:

1. the landowner by himself does not produce anything, i.e., h(0) = 0.
2. mapping h is nondecreasing, i.e., h(t+1) ≥ h(t) for each h ∈ {0, 1, . . . ,m−1}.
Both conditions imply that h is a nonnegative mapping. We consider the landowner
as player 1 and the peasants as players 2, . . . ,m + 1. Then this situation can be
modeled as a game with m + 1 players with characteristic function v given by

v(S) =
{
0, if 1 /∈ S
h(|S| − 1), if 1 ∈ S.

The value of any coalition that contains only peasants is 0 because they do not have
any land. Even more, the worth of each coalition that contains the landowner is equal
to the monetary value of the harvest that is obtained by the peasants that are in that
coalition. Obviously v(∅) = 0.

Example 1.2 Control games were proposed by Feltkamp [9]. A control situation is
defined by a set of agents N who decide about a good. They, as group, have the
control of the good but they want to determine the power of each one. The control
game is v ∈ G N with v(N ) = 1 and v(S) ∈ {0, 1}. If v(S) = 1 then S is able to
control the good.

Example 1.3 Littlechild and Owen [14] considered a game to solve a cost allocation
problem of setting landing strips for different kinds of aircraft in an airport. Suppose
N the set of planes at this airport and consider m different sizes of planes ordered
from smallest to largest. For each j = 1, . . . ,m we denote as N j the set of aircrafts
with size j and c j ≥ 0 the cost of a appropriate strip for this size. Of course c j < c j+1

for every j = 1, . . . ,m − 1, and the strip constructed for a size j = 2, . . . ,m is also
appropriated for j − 1. The authors used the game over N defined for all non-empty
coalition S as

v(S) =
∨

{c j : j ∈ {1, . . . ,m}, N j ∩ S �= ∅},

to determine what part of cost of the biggest strip is attributable to each plane.

Example 1.4 A bankruptcy problem arises in how to share the capital of a firm
among its creditors when quantity of the debts is greater than the capital. O’Neill [16]
proposed a game to solve this situation. The players are the set of creditors N . If we
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denote Q the available capital and qi > 0 the debt of the firm with creditor i ∈ N
then the game is

v(S) =
⎡
⎣Q −

∑
i∈N\S

qi

⎤
⎦ ∨ 0,∀S ⊆ N .

Of course we suppose that
∑

i∈N qi > Q.

Example 1.5 Games have been used in decision problems since [29]. Particularly
they proposed to introduce a game in order to analyze the power of the members
in a decision committee. The players in N are the members of the committee. A
decision system is defined to determined when a proposal is approved, for instance
a fixed quota q > n/2 of the members supporting it. Observe in this situation that
the most important goal is to get a coalition which be able to approve the proposal,
regardless of other considerations about it. So, the game is defined for each coalition
S as v(S) = 1 if |S| ≥ q and v(S) = 0 otherwise.

Example 1.6 Owen [18] defined linear production games. Suppose a set of agents
N in m production processes with l resources. It is known: for each agent i an initial
endowment bi ∈ R

l+, the profits for each unit of each product is the vector c ∈ R
m+

and the quantity of resource j to get a unit of product k as a positive matrix A. The
linear production game is given by v ∈ G N with

v(S) =
∨ {

c · x : x ∈ R
m
+, Ax ≤

∑
i∈S

bi
}

for each non-empty S ⊆ N .

Example 1.7 Baeyens et al. [1] used games to propose a solution to allocate the
benefits of the cooperation among a group of wind power producers. By an stochastic
process and using statistical tools the authors determine how to calculate themaximal
expected profit for the aggregation of the power output of the producers as single
entity into a forward energy market. In this case N is the set of producers, and for
each coalition S they determine the worth v(S) as the expected benefit of the coalition
in the aggregation of their systems. This game is used to allocate the benefit among
the producers.

From now on we usually consider fixed the set of players N , and we study the
family of games G N .

Following Example 1.5, the decision system is not always based in the size of the
group supporting the proposal but also in the nature of the group. Unanimity games
are examples of these ones. In a unanimity game over N there exists a particular group
of members T whose support is necessary and sufficient to approve the proposal. We
will see later that these games play a very important role into the family of gamesG N .
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Definition 1.2 Let T be a non-empty coalition in N . The unanimity game
uT ∈ G N is defined for all S ⊆ N as

uT (S) =
{
1, if T ⊆ S
0, otherwise.

There are two internal operations defined over G N , product by an scalar and sum.

• If c ∈ R and v ∈ G N then cv ∈ G N with cv(S) = c(v(S)) for all S ⊆ N .
• If v,w ∈ G N then v + w ∈ G N with (v + w)(S) = v(S) + w(S) for all S ⊆ N .

The family of games over N with these operations has structure of vectorial space,
and the set of unanimity games {uT : T ⊆ N , T �= ∅} is a basis of the space.
Furthermore the dimension of this vectorial space is 2n−1.

Proposition 1.1 If v ∈ G N then there exist a unique set of numbers {Δv
T :

T ⊆ N , T �= ∅} satisfying

v =
∑

{T⊆N ,T �=∅}
Δv

T uT with Δv
T =

∑
S⊆T

(−1)|T |−|S|v(S).

These numbers are called the (Harsanyi) dividends of the game.

Proof Consider S ⊆ N ,

∑
{T⊆N ,T �=∅}

Δv
T uT (S) =

∑
{T⊆S,T �=∅}

∑
R⊆T

(−1)|T |−|R|v(R)

=
∑
R⊆S

⎡
⎣ ∑

{R⊆T⊆S}
(−1)|T |−|R|

⎤
⎦ v(R) = v(S),

because

∑
{R⊆T⊆S,T �=∅}

(−1)|T |−|R| =
s−r∑
t=0

(
s − r

t

)
(−1)t = (1 − 1)s−r =

{
1, if s = r
0, otherwise.

We prove now that the unanimity games are linearly independent. Let 0 be the null
game 0(S) = 0 for all coalition S and the linear combination
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∑
{T⊆N ,T �=∅}

aT uT = 0.

Suppose there exists T ′ ⊆ N , T ′ �= ∅ with aT ′ �= 0. We can take T ′ minimal by
inclusion satisfying the above condition. Using Definition 1.2 we have

∑
{T⊆N ,T �=∅}

aT uT (T ′) = aT ′ = 0.

�

The Harsanyi dividends [12] of a game v ∈ G N can be also obtained by a recur-
rence formula, using that for each coalition S,

v(S) =
∑

{T⊆S,T �=∅}
Δv

T . (1.1)

So, we have for each player i ∈ N that the dividend of his individual coalition is
Δv

{i} = v({i}) and for any other coalition S

Δv
S = v(S) −

∑
{T�S,T �=∅}

Δv
T . (1.2)

This formula allows us to interpret the dividend of a coalition S as the marginal profit
obtained by it, the increase of benefit due to the formation of this coalition.

Example 1.8 Suppose N = {1, 2, 3} and v ∈ G N with v(S) = |S| − 1 for every
non-emptyset coalition. Next table includes the dividends of the coalitions calculated
using (1.2). So, v = u{1,2} + u{1,3} + u{2,3} − uN (Table1.1).

Dividends are the coefficients of the games with regard to the unanimity games
and then they work well with the operations of the vectorial space.

Table 1.1 Dividends of the game v

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Δv
S 0 0 0 1 1 1 −1
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Proposition 1.2 Let v,w ∈ G N and a, b ∈ R. For each non-empty coalition
S ⊆ N the dividend satisfies

Δav+bw
S = aΔv

S + bΔw
S .

Proof Proposition 1.1 implies that dividends are unique. Hence, as

av + bw = a
∑

{S⊆N :S �=∅}
Δv

SuS + b
∑

{S⊆N :S �=∅}
Δw

S uS

=
∑

{S⊆N :S �=∅}
[aΔv

SuS + bΔw
S ]uS.

�

Now we present several properties which are interesting for a game. After the
definition we will explain each of them.

Definition 1.3 Let v ∈ G N .

1. Game v is additive if v(S) + v(T ) = v(S ∪ T ) for all S, T ⊆ N with
S ∩ T = ∅.

2. Game v is superadditive (subadditive) if v(S) + v(T ) ≤ (≥)v(S ∪ T ) for
all S, T ⊆ N with S ∩ T = ∅.

3. Game v is convex (concave) if v(S) + v(T ) ≤ (≥)v(S ∪ T ) + v(S ∩ T ) for
all coalitions S, T .

4. Game v is 0-normalized if v({i}) = 0 for each player i ∈ N .
5. Game v is a {0, 1}-game if v(S) = 0 or 1 for all coalition S.
6. Game v is anonymous if v(S) = v(T ) when |S| = |T |.
7. Game v is monotone if v(S) ≤ v(T ) when S ⊆ T .
8. Game v is simple if v is a monotone {0, 1}-game.

An additive game v is identified with a vector denoted with the same letter v ∈ R
N

verifying for any non-empty coalition S,

v(S) =
∑
i∈S

vi .

Therefore, additive games represent situations of ineffectual cooperation.
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Suppose that the worths in a game v are considered as profits. Superadditivity
means that players have the incentive to cooperate getting bigger coalitions. From
the individual point of view we get, using several times superadditivity, that players
are interested in forming coalitions,

v(S) ≥
∑
i∈S

v({i}).

But also for each coalition S ⊂ N , there is a possibility to bargain with the rest of
the players being benefited,

v(N ) − v(N \ S) ≥ v(S).

A profit allocation problem is a game v ∈ G N which is superadditive and the worth
of each coalition is interpreted as the profit that this coalition can guarantee whatever
strategy of the other players. There are games which are not exactly profit games (see
Example 1.4) where this property has the same interpretation. But superadditivity
condition is not a stimulus to cooperate for the players in other situations, rather
the opposite. A cost allocation problem is a subadditive game v ∈ G N studying
situations where the agents cooperate in order to allocate the costs of a common
project, so the worth of a coalition is interpreted as the cost of a similar project for
the coalition. The subadditivity implies, in a similar way than the superadditivity, an
interest of the agents in cooperating. If v ∈ G N is superadditive (subadditive) then
−v is subadditive (superadditive).

Example 1.9 Game v in Example 1.1 is a profit allocation problem. We test the
superadditivity. If S, T are disjoint coalitions in N , S ∩ T = ∅, then the landowner
is at most in one of them. Suppose 1 ∈ S (the same with T , otherwise is trivial).
Hence v(S) = h(|S| − 1) and v(T ) = 0. As h is nondecreasing and nonnegative we
get h(|S| − 1) ≤ h(|S| + |T | − 1).

The superadditivity (subadditivity) condition can be extended to all pair of coali-
tions by convexity (concavity). Convex games are perhaps the games with the best
properties. Obviously convex games are superadditive too, but the opposite is not
always true. Baeyens et al. [1] showed that the game of the wind energy producers
commented in Example 1.7 is not convex but it is superadditive. Example 1.1 is
convex if and only if h is a convex function: h(t + 1) − f (t) ≥ h(r + 1) − h(r)
when t > r , but it is always superadditive.

Example 1.10 The airport game, Example 1.4, is concave. Let S, T coalitions. We
take players jS ∈ S, jT ∈ T satisfying c jS = v(S) and c jT = v(T ). Given j ∈ S ∩ T
and j ′ ∈ S ∪ T we get

c jS + c jT = c jS ∧ c jT + c jS ∨ c jT ≥ c j + c j ′ .

Hence this game is also a cost allocation problem.
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There exist several equivalent conditions for a game to be convex. We show one
of them that we will use in the book.1

Proposition 1.3 Game v is convex if and only if for all player i ∈ N and
coalitions S ⊂ T ⊆ N \ {i} it holds

v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ).

Proof Suppose a convex game v. Let S ⊂ T ⊆ N \ {i}. By definition of convexity

v(S ∪ {i}) + v(T ) ≤ v(T ∪ {i}) + v(S).

On the other hand we consider any S, T coalitions. If S ⊆ T then the proof is trivial.
Now set S \ T = {i1, . . . , im}. The equivalent condition for player i1 and coalitions
S ∩ T and T implies v((S ∩ T ) ∪ {i1}) − v(S ∩ T ) ≤ v(T ∪ {i1}) − v(T ). Hence

v(T ) − v(S ∩ T ) ≤ v(T ∪ {i1}) − v((S ∩ T ) ∪ {i1}).

Sequentially,

v(T ) − v(S ∩ T ) ≤ v(T ∪ {i1}) − v((S ∩ T ) ∪ {i1})
≤ v(T ∪ {i1, i2}) − v((S ∩ T ) ∪ {i1i2})
≤ · · · ≤ v(T ∪ S) − v(S).

�

Next example uses the above proposition as in Driessen [6] to show that the
bankruptcy game is convex.2

Example 1.11 We consider the bankruptcy game (Example 1.4). Let i ∈ N and
S ⊂ T ⊆ N \{i}. Foremost observe that Q−∑

j∈N\S q j +qi ≤ Q−∑
j∈N\T q j +qi .

We have

v(S ∪ {i}) + v(T ) =
⎛
⎝

⎡
⎣Q −

∑
j∈N\S

q j + qi

⎤
⎦ ∨ 0

⎞
⎠ +

⎛
⎝

⎡
⎣Q −

∑
j∈N\T

q j

⎤
⎦ ∨ 0

⎞
⎠

=
⎡
⎣Q −

∑
j∈N\S

q j + qi

⎤
⎦ ∨

⎡
⎣Q −

∑
j∈N\T

q j

⎤
⎦ ∨

⎡
⎣2Q −

∑
j∈(N\T )∪(N\S)

q j + qi

⎤
⎦ ∨ 0

1similar condition can be stated for concave games using the other inequality.
2it is possible to prove it directly from the definition.
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≤
⎡
⎣Q −

∑
j∈N\T

q j + qi

⎤
⎦ ∨

⎡
⎣2Q −

∑
j∈(N\T )∪(N\S)

q j + qi

⎤
⎦ ∨ 0

=
⎛
⎝

⎡
⎣Q −

∑
j∈N\T

q j + qi

⎤
⎦ ∨ 0

⎞
⎠ +

⎛
⎝

⎡
⎣Q −

∑
j∈N\S

q j

⎤
⎦ ∨ 0

⎞
⎠ = v(T ∪ {i}) + v(S).

A 0-normalized game (Definition 1.3) supposes that it is only possible to get
profits by cooperation. The 0-normalization of a game v ∈ G N is a new game v0
defined for each coalition S as

v0(S) = v(S) −
∑
i∈S

v({i}). (1.3)

Each cost allocation problem is usually identified with a profit allocation problem
vsvg ∈ G N over N , called the saving game, defined for any coalition S as

vsvg(S) =
∑
i∈S

v({i}) − v(S), (1.4)

the opposite of a 0-normalization. It is an easy exercise to test the superadditivity of
the saving game for cost allocation problems, let S, T coalitions with S ∩ T = ∅

vsvg(S) + vsvg(T ) =
∑
i∈S∪T

v({i}) − (v(S) + v(T )) ≤ vsvg(S ∪ T ).

Moreover, in a similar way, the reader can test that if a cost allocation problem v is
concave then the corresponding saving game vsvg is convex.

There is another classification from interpretation of the games. A optimistic game
is a game where the worth of a coalition represents the best benefit that this coalition
can obtain for the cooperation (what we could get). On the other hand, an pessimistic
game considers that the worth of a coalition is the insured benefit that this coalition
can obtain in the best situation for the players outside. There is also away to transform
one case in the other. If v ∈ G N is an optimistic game then the dual game vdual ∈ G N ,
defined for each coalition S as

vdual(S) = v(N ) − v(N \ S), (1.5)

is a pessimistic game and vice versa.

Example 1.12 Bankruptcy games (Example 1.4) can be defined just another form,
if S is a coalition

w(S) = Q ∧
∑
i∈S

qi .

Game w is optimistic while v in Example 1.4 is pessimistic. Moreover w = vdual .
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If v ∈ G N is interpreted as profits then vdual can be seen as costs but the dual of
a profit allocation problem is not always a cost allocation problem.

Example 1.13 Take the game over N = {1, 2, 3} given by v(N ) = 1, v(S) = 5/6
if |S| = 2 and v(S) = 0 if |S| = 1. It is easy to test that this game is superadditive.
Now the dual game is vdual(N ) = 1, vdual(S) = 1 if |S| = 2 and vdual(S) = 1/6 if
|S| = 1. We obtain

vdual({1, 2}) = 1 ≥ 1/3 = vdual({1}) + vdual({2}).

If v ∈ G N is convex then vdual is concave and vice versa. Suppose v convex, and
S, T coalitions. We have

vdual(S ∪ T ) + vdual(S ∩ T ) = 2v(N ) − [v(S ∪ T ) + v(S ∩ T )]
≤ 2v(N ) − [v(S) + v(T )] = vdual(S) + vdual(T )

It is possible to define also equivalence classes in G N .

Definition 1.4 Let v,w ∈ G N . Game w is strategically equivalent to v if there
is a positive number a > 0 and an additive game b ∈ R

N satisfying

v = aw + b.

Suppose w = av + b strategically equivalent to v. Game av is interpreted as an
scale of theworths, andb is seen as an individual premiumor tax. The 0-normalization
of a game v is strategically equivalent to v.

Proposition 1.4 Being strategically equivalent is an equivalence relation in
G N .

Proof Reflexivity. Each game v is strategically equivalent to itself taking a = 1
and b = 0 ∈ R

N .
Symmetry. If w is strategically equivalent to v, w = av+b with a > 0 and b ∈ R

N ,
then v is strategically equivalent to w with

v = 1

a
w + −1

a
b.
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Transitivity. Let v2 be a game strategically equivalent to v1 and v3 strategically
equivalent to v2. Since v2 = a1v1 + b1 and v3 = a2v2 + b2, with a1, a2 > 0 and
b1, b2 ∈ R

N , then
v3 = a1a2v1 + (a2b1 + b2).

�

Simple games (Definition 1.3) represent decision situations in committees. Coali-
tions S satisfying v(S) = 1 are named winning coalitions and those verifying
v(S) = 0 are losing coalitions. If v is a simple game then W (v) represents the
set of winning coalitions. Unanimity games (Definition 1.2) and Example 1.5 are
simple games, but Example 1.2 is a {0, 1}-game which is not simple. Interesting
examples of simple games are the voting games.

Example 1.14 A voting situation in a committee or parlament formed by a set N
of individual agents or groups is represented by a pair [q;w] where w ∈ R

N and
q ∈ R++, defining a simple situation of decision about a motion. Each weight wi

is the worth of the vote of a man or group (for instance the number of seats of the
group or the number of persons represented by her). Number q is named quota and
it means the worth using the above weights which must be reached to adoption the
motion by the committee. A voting situation [q;w] can be represented by a simple
game v ∈ G N

s where

v(S) =
{
1, if w(S) ≥ q
0, otherwise.

The analysis of this particular family of games differs from usual study of games
because the worths of the coalitions are not profits or costs, they only present a
qualitative discrimination. Two internal operations for simple games are meet and
join, if v,w are simple games then v ∨ w, v ∧ w are new simple games defined for
each coalition S as

(v ∨ w)(S) = v(S) ∨ w(S)

(v ∧ w)(S) = v(S) ∧ w(S).

Although these operations are usually used for simple games, they can apply to any
pair of games.

Proposition 1.5 The family of simple games is a distributive lattice with oper-
ations meet and join.

Proof Obviously v∨w and v∧w are {0, 1}-games and N is a winning coalition for
both of them. Hence we test that they are also monotone. Let S ⊆ T . As v(S) ≤ v(T )

and w(S) ≤ w(T ) then
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Table 1.2 Distributive property of the lattice of simple games

v w u w ∨ u v ∧ w v ∧ u v ∧ (w ∨ u) (v∧w)∨(v∧u)

0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 1 0 1 1 0 1 1

1 1 1 1 1 1 1 1

(v ∨ w)(S) ≤ (v ∨ w)(T ), (v ∧ w)(S) ≤ (v ∧ w)(T ).

The top of the lattice is game 1̂ with 1̂(S) = 1 for all non-empty coalition S, and the
bottom is game 0̂ which verifies 0̂(S) = 0 for all coalition S. Next table shows that
the lattice is distributive, namely v ∧ (w ∨ u) = (v ∧ w) ∨ (v ∧ u). Supposed S any
coalition, we have seen in the table the different cases depending on the worths of
coalition S (Table1.2). �

Unanimity games also allow describe the simple games using the lattice opera-
tions. Let v be a simple game. A coalition S ⊆ N isminimal winning in v if v(S) = 1
and v(T ) = 0 for all T � S. Each simple game has at least one minimal winning
coalition because it always has winning coalitions. The set of minimal coalitions v
is denoted as Wm(v). Minimal coalitions are mutually exclusive in the sense that if
S ∈ Wm(v) then there is not T ⊂ S with T ∈ Wm(v).

Proposition 1.6 Let v be a simple game. Wm(v) is the only non-empty family
U of mutually exclusive coalitions satisfying

v =
∨
S∈U

uS.

Proof Consider T ⊆ N a winning coalition, v(T ) = 1. There exists S ⊆ T with
S ∈ Wm(v) and then uS(T ) = 1. Therefore

∨
S∈Wm (v)

uS(T ) = 1.

Now suppose T ⊆ N a losing coalition, v(T ) = 0. From the monotonicity of v we
have uS(T ) = 0 for all S ∈ Wm(v). Thus
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∨
S∈Wm (v)

uS(T ) = 0.

Hence

v =
∨

S∈Wm (v)

uS.

Suppose U,U ′ two non-empty sets of mutually exclusive coalitions verifying

v =
∨
T∈U

uT =
∨
S∈U ′

uS.

If T ∈ U then v(T ) = 1. There is S ∈ U ′ with uS(T ) = 1 and then S ⊆ T . For this
S there exists T ′ ∈ U with uT ′(S) = 1 and then T ′ ⊆ S. AsU is mutually exclusive
we obtain S = T . �

Remark 1.1 Each property of games described in this section defines a particular
subfamily of games which will be used throughout the book. So,

G N
sa ≡ superadditive games,

G N
c ≡ convex games,

G N
0 ≡ 0-normalized games,

G N
a ≡ anonymous games,

G N
m ≡ monotone games.

G N
s ≡ simple games,

Remember also that additive games are identified with N -dimensional vectors, RN .

Games can be defined in any finite set of players, therefore it is possible to restrict
the activity in the game v ∈ G N to a particular set of its players T ⊂ N by a new
game over T reducing the function v to 2T .

Definition 1.5 Let v ∈ G N . For each coalition T , the subgame over T is
v|T ∈ G T with v|T (S) = v(S) for all S ⊆ T .

Given a game v, when it is not confuse we will use the same notation v for its
subgames. So, if v ∈ G N then v ∈ G T , with T ∈ 2N , is the subgame of v over T .
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1.3 Values for Games

The classical coalitional game theory assumes a determined behavior for the players.
They always are interested in cooperation, then they look for the great coalition.
Hence, we suppose in a game v ∈ G N that players are interested in forming N . In
the above section we explained that there may have been conditions in the game to
motivate this behavior of the players (superadditivity or subadditivity). Taking into
account the several ways to transform a subadditive game in a superadditive one,
many authors consider games as superadditive games (Shapley [24] or Owen [19]).
But there exist situations where this condition is not true (Example 1.2). A game
v ∈ G N is flexible if players can change the mapping looking for the best option
independently of the above behavior. A partition of a coalition S ⊆ N is a set of
different non-empty subcoalitions {Tk}mk=1 with Tp ∩ Tq = ∅ for all p, q = 1, . . . ,m
and

⋃m
k=1 Tk = S. So, they can construct a partition in coalitions of the set of players

instead of N and consider the subgames for these coalitions, if the great coalition
is not attractive. Other option is using a new mapping getting the superadditivity
instead of v. The superadditive extension of v is another game vsa given by

vsa(S) =
∨ {

m∑
k=1

v(Tk) : {Tk}mk=1 partition of S

}
. (1.6)

Obviously, vsa ∈ G N
sa . We consider in this book non flexible games, following the

classical theory, then players in a coalition S form S and their worth is v(S). They
cannot change this fact.

Given a game v ∈ G N , a payoff vector for v is a vector x ∈ R
N whose component

xi for each i ∈ N is interpreted as the individual utility obtained for player i from
her cooperation in N to get v(N ). To solve a game consists in finding a “reasonable”
payoff vector. Following Remark 1.1, this vector can be also seen as an additive
game, namely we turn the game into an additive one. So, if we have a payoff vector
x ∈ R

N then we can use for each coalition S,

x(S) =
∑
i∈S

xi .

Demanding conditions to the payoff vectors the set of reasonable solutions was
restricted in several ways (stable set [29], core [10], kernel [5],...) named set solution
concepts. Shapley [24] introduced the concept of value as a mapping obtaining a
unique payoff vector for each game.
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Definition 1.6 A value for games over N is a mapping f : G N → R
N . For

each v ∈ G N the image f (v) is interpreted as a payoff vector of the game.

Nowadays there are a lot of values for games (the Shapley value [24], the nucleolus
[23], the Banzhaf value [18], the compromise value [27],...). Some of them have an
explicit formula and others are defined by an algorithm. Shapley also provided his
value with certain conditions (axioms) such that it is the unique value satisfying
them (an axiomatization). This fact gains importance now in order to choose the
adequate value for each situation. Hence defining a new value implies to find out
an axiomatization of it in order to distinguish between the others. Next we describe
several of these properties for a value. From now on let f be a value for games
over N .

Supposed that the great coalition N is formed in a game v ∈ G N obtaining v(N ).
Assuming that they use the same currency as measure of the payoff, the problem
to solve in the game is how to allocate v(N ) among the players in N . If the payoff
vector is an answer of the above question then it is named efficient. Thus an interesting
axiom for f is the following one.

Efficiency. For each game v ∈ G N it holds

f (v)(N ) = v(N ).

If we consider a change of scale in the worths of the game then the payoffs should
be proportional to this change. Individual premiums or taxes should be assumed only
for the player involved. This condition expresses a determine relationship between
the value f and the equivalence of games.

Covariance. Given two strategically equivalent games, w = av + b with a > 0 and
b ∈ R

N , it holds
f (w) = a f (v) + b.

One the most controversial axioms is the additivity. Considering that it is not
possible to transfer utility between two different games with the same set of players,
then the payoffs of the sum of games should be the sum of the payoffs in each game.
Although this fact is not always feasible in certain situations this condition is also a
good tool for calculating.

Additivity. If v,w ∈ G N then

f (v + w) = f (v) + f (w).

A broader condition than additivity is linearity.
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Linearity. For all v,w ∈ G N and a, b ∈ R,

f (av + bw) = a f (v) + b f (w).

While the only known information about the players are the worths of the coali-
tions, the payoff vectors should not distinguish among equivalent players for the
characteristic function. Let v ∈ G N . Two players i, j ∈ N are symmetric in v if for
all S ⊆ N \ {i, j} it holds

v(S ∪ {i}) = v(S ∪ { j}).

Symmetry.3 For every game v and two different symmetric players i, j ∈ N in v, it
happens

fi (v) = f j (v).

When we take N as the set of players we identify each player to a specific label,
one player to 1, another one to 2 and go on. But these labels must be harmless to the
game. Let v ∈ G N be a game and θ ∈ ΘN be a permutation over N . In this case we
interpret θ as an interchange of labels. If S is a coalition then the same coalition with
the new labels is θ(S) = {θ(i) : i ∈ S} and the permutation game is θv ∈ G N with
θv(θ S) = v(S).

Anonymity.4 Given a game v ∈ G N and θ ∈ ΘN it holds for every player i ∈ N

fθ(i)(θv) = fi (v).

If a value verifies anonymity then it also satisfies symmetry. Suppose i, j ∈ N
symmetric players, and the order θi j ∈ ΘN consisting in changing player i with
player j in the natural order, namely θi j (i) = j , θi j ( j) = i and θi j (k) = k if
k �= i, j . We can test that θi j v = v since i, j are symmetric. So, using anonymity we
get f j (v) = fθi j (i)(θv) = fi (v). But the opposite is not always true.

A player i ∈ N is necessary for a game v if v(S) = 0 when S ⊆ N \ {i}. This
condition is really important in the game if v is monotone. In that case the necessary
players must receive the highest payoffs.

Necessary player. If i ∈ N is a necessary player for v ∈ G N
m then for all j ∈ N \ {i}

f j (v) ≤ fi (v).

Necessary player axiom seems independent of the symmetry and anonymity, and
so are. But the utility of the axiom in the proofs is similar in many cases, in the sense
that it implies equal treatment for all the necessary players, i.e. in a monotone game
v two necessary players i, j satisfy fi (v) = f j (v).

3Also named equal treatment.
4Also named symmetry.
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The marginal contribution of a player i ∈ N to a coalition S ⊆ N \ {i} is
measured as v(S ∪ {i}) − v(S). This marginal contribution can be described in other
way, consider in this case S ⊆ N with i ∈ S, and then the contribution into S is taken
as v(S) − v(S \ {i}). Marginal contributions are used in the description of several
axioms.

A player i ∈ N is a dummy player in a game v ∈ G N if v(S∪{i})−v(S) = v({i})
for all S ⊆ N \ {i}, namely the marginal contributions are constant. It is reasonable
to assume that if a player always contributes to any coalition with the same quantity
then her payoff is this number.

Dummy player. If i ∈ N is a dummy player in v ∈ G N then

fi (v) = v({i}).

Next one is a particular case. A player i ∈ N is a null player in a game v ∈ G N

if v(S ∪ {i}) = v(S) for all S ⊆ N \ {i}. It is reasonable to assume that if a player
does not contribute to any coalition then her payoff is zero.

Null player. If i ∈ N is a null player in v ∈ G N then

fi (v) = 0.

Nowwe comment several axioms related with ordering in games. Supposing fixed
a non-empty coalition T , we say that two games verify v <T w if v(T ) < w(T ) and
v(S) = w(S) for all S �= T . Players in T should be beneficiaries of the extra payoff
in w in front of v. This circumstance can be described in two ways.

Coalitional monotonicity. If two games verify v <T w for a non-empty coalition T
then for all i ∈ T ,

fi (v) ≤ fi (w).

Weakly coalitional monotonicity. If two games verify v <T w for a non-empty
coalition T then

f (v)(T ) ≤ f (w)(T ).

Marginal contributions determine a partial order among the games for each player.
Let i ∈ N . Given two games v,w ∈ G N we note v <i w if for all S ⊆ N \ {i}

v(S ∪ {i}) − v(S) ≤ w(S ∪ {i}) − w(S).

If a player contributes in a game w more than in other v then this player should have
more payoff in w than v. Observe that v <{i} w is not the same that v <i w.

Marginality. If two games verify v <i w for a player i then

fi (v) ≤ fi (w).
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Suppose that a game represents a situation where players proceed in an inde-
pendent and rationality way. Each of them hopes to get better her payoff from the
cooperation with regard to her individual action. Otherwise she can decide not to
cooperate.

Individual stability. For each game v ∈ G N and each player i ∈ N it holds

fi (v) ≥ v({i}).

If we think of this condition extended for any coalition, we suppose that the sum
of the payoff obtained for the players in the coalition should be greater than the worth
of the coalition.

Coalitional stability. For each game v ∈ G N and each non-empty coalition S ⊂ N
it holds

f (v)(S) ≥ v(S).

Both conditions are reasonable in a profit context. That is why this property is
usually required only for superadditive games.

Using only three of these properties we can determine in a unique way the value
of the unanimity games.

Proposition 1.7 If f is a value over G N satisfying efficiency, null player and
symmetry then for all T ⊆ N, T �= ∅,

fi (uT ) =
⎧⎨
⎩

1

|T | , if i ∈ T

0, otherwise.

Proof Observe that if i /∈ T then i is a null player for game uT . Null player property
implies that fi (uT ) = 0. Suppose now i, j ∈ T two different players. They are
symmetric in uT because

uT (S ∪ {i}) − uT (S) = 0 = uT (S ∪ { j}) − uT (S)

for all S ⊆ N \ {i, j}. Thus fi (uT ) = f j (uT ). So, using efficiency we have, fixed
any player i ∈ T , ∑

i∈N
fi (uT ) = |T | fi (uT ) = uT (N ) = 1.

�

Until now we have considered the set of players fixed but actually it can be any
finite set. More generally the concept of value is given for all the games.
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Definition 1.7 A value for games f assigns to each non-empty finite set N of
players a value f N for games over N .

From this point of view it is possible to consider properties modifying the set of
players. Next one is an example of them. Let f be a value for games. The losses
of profits produced for a player by the desertion of another one in the game are the
same that if we exchange their roles.

Balanced contributions. Let N be a set of players with |N | > 1 and v ∈ G N . It
holds for all i, j ∈ N , i �= j ,

f Ni (v) − f N\{ j}
i (v) = f Nj (v) − f N\{i}

j (v).

Observe thatwehave used subgames (Definition 1.5) of v in the above formulation.
Usually, we will only use the notation f N when there is likelihood of confusion with
the set of players N , otherwise f will represent the value for games over N .

We are not interested in payoffs of benefits for the players in a simple game over
N . For these situations a payoff vector is interpreted as a power vector, namely a
vector x ∈ R

N such that xi is interpreted as the power or influence of player i in the
decision situation defined by the simple game.

Definition 1.8 A power index for simple games over N is f : G N
s → R

N

such that f (v) is interpreted as a power vector for each v ∈ G N
s .

Additivity and linearity are not internal conditions for power indices.We introduce
another axiom using the lattice operations in this context. Let f be a power index.
If the players decide to transfer the best options for two games in another game, the
combinationwith the game using theworst options implies the same power allocation
than the initial games.

Transference. If v,w ∈ G N
s then

f (v ∨ w) + f (v ∧ w) = f (v) + f (w).

This axiom is possible to apply also to all the games.
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1.4 The Shapley Value

We focus this book on the analysis of the Shapley value in different ways for fuzzy
relations among the players. Perhaps because this value is the most known and used
of all but also because it is the most powerful in properties and versatile for different
contexts. The existence of an explicit formula also permit to work with it in a not
difficult way. But this value has also inconveniences, that is why in some situations
others are used.

We denote again as ΘN the set of permutations of N . Each θ ∈ ΘN defines a
total order <θ over N . Shapley [24] supposed that if players become members of
the coalition following the order defined by a particular permutation θ , then each of
them obtains her marginal contribution when she is incorporated to the coalition. So
we get a payoff vector for each permutation θ .

Definition 1.9 Let v ∈ G N . For every θ ∈ ΘN the marginal vector mθ (v) ∈
R

N is defined as

mθ
i (v) = v(Siθ ∪ {i}) − v(Siθ )∀i ∈ N ,

where Siθ = { j ∈ N : j <θ i}.

If we consider the chosen permutation of N in a random way then we can take
the expected value. This fact is the thrust of the definition of the Shapley value.

Definition 1.10 The Shapley value φ is the mapping φN : G N → R
N for

games over every finite set N satisfying for each v ∈ G N

φN (v) = 1

n!
∑

θ∈ΘN

mθ (v).

Example 1.15 Suppose the bankruptcy problem (see Example 1.4) with three
creditors, N = {1, 2, 3}. The capital of the unfortunate firm is Q = 50000 e.
The demands of the creditors are q1 = 25000 e, q2 = 20000 e, q3 = 40000
e respectibely. So, the (pessimistic) game from Example 1.4 is calculated in the next
table (Table1.3). For each permutation we determine the marginal vector of the game
(see Table1.4). For instance if we take θ = (1, 2, 3) then

mθ (v) = (v({1}), v({1, 2}) − v({1}), v({1, 2, 3}) − v({1, 2})) = (0, 10000, 40000).
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Table 1.3 Game v

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

v(S) 0 0 5000 10000 30000 25000 50000

Table 1.4 Marginal vectors of game v

θ mθ (v) θ mθ (v)

(1, 2, 3) (0, 10000, 40000) (1, 3, 2) (0, 30000, 20000)

(2, 1, 3) (10000, 0, 40000) (2, 3, 1) (25000, 0, 25000)

(3, 1, 2) (25000, 20000, 5000) (3, 2, 1) (25000, 20000, 5000)

Finally we calculate the average of the marginal vectors,

φ(v) = (14166.6, 13333.3, 22500).

Example 1.16 Let v ∈ R
N be an additive game. In this case all the marginal contri-

butions of a player i ∈ N are the same, if S ⊆ N \ {i} then

v(S ∪ {i}) − v(S) =
∑

j∈S∪{ j}
v j −

∑
j∈S

v j = vi .

Hence mθ
i (v) = vi for each θ ∈ ΘN and i ∈ N , then φ(v) = v.

Nowwe see several interesting properties of the Shapley value. The Shapley value
is a linear function.

Proposition 1.8 The Shapley value satisfies linearity, additivity and
covariance.

Proof Let i ∈ N . For each T ⊆ N we have that (av + bw)(T ) = av(T ) + bw(T ).
So

φi (av + bw) = 1

n!
∑

θ∈ΘN

[
(av + bw)(Siθ ∪ {i}) − (av + bw)(Siθ )

]

= a
∑

θ∈ΘN

[
v(Siθ ∪ {i}) − v(Siθ )

] + b
∑

θ∈ΘN

[
w(Siθ ∪ {i}) − w(Siθ )

]

= aφi (v) + bφi (w).
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Linearity implies directly additivity. Moreover, linearity and Example 1.16 obtain
covariance. �

The Shapley value is an allocation of the worth of the great coalition N .

Proposition 1.9 The Shapley value satisfies efficiency.

Proof Suppose at least two players, n ≥ 2, because the proof is trivial if there is only
one player. We do the sum of all the payoffs φi (v) of the players in N for a game v,

φ(v)(N ) =
∑
i∈N

φi (v) = 1

n!
∑

θ∈ΘN

∑
i∈N

mθ
i (v).

Let θ ∈ N . Observe that if θ(i) = θ( j) + 1 then Siθ = S j
θ ∪ { j} thus

v(Siθ ∪ {i}) − v(Siθ ) + v(S j
θ ∪ { j}) − v(S j

θ ) = v(Siθ ∪ {i}) − v(S j
θ ).

Hence, as Si1θ = ∅ and SiNθ ∪ {iN } = N for the first player i1 and the last player iN in
order θ ,

∑
i∈N

mθ
i (v) = v(N ).

We get then φ(v)(N ) = v(N ). �

Remark 1.2 In the proof of the abovepropositionwehaveproved that all themarginal
vectors are also efficient, namely if v is a game and θ ∈ ΘN thenmθ (v)(N ) = v(N ).

Proposition 1.10 The Shapley value satisfies anonymity and symmetry.

Proof Let θ ∈ ΘN . For each θ ′ ∈ Θθ(N ) there exists only one order θ ′′ ∈ ΘN such
that for all i ∈ N we have θ ′(θ(i)) = θ(θ ′′(i)). Thus, for each player i we have
Sθ(i)

θ ′ = θ(Siθ ′′). Moreover, ΘN = Θθ(N ). We obtain

φθ(i)(θv) = 1

n!
∑

θ ′∈Θθ(N )

mθ ′
θ(i)(θv) = 1

n!
∑

θ ′∈Θθ(N )

[
θv

(
Sθ(i)

θ ′ ∪ θ(i)
)

− θv
(
Sθ(i)

θ ′

)]

= 1

n!
∑

θ ′′∈ΘN

[
θv

(
θ(Siθ ′′ ∪ {i})) − θv

(
θ(Siθ ′′)

)] = φi (v).

We said in the above section that anonymity implies symmetry. �
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Also it verifies those properties for special players.

Proposition 1.11 The Shapley value satisfies necessary player, dummy player
and null player.

Proof Let i ∈ N be a dummy player in a game v ∈ G N . For every coalition S with
i /∈ S we have v(S ∪ {i}) − v(S) = v({i}). Thus, Definition 1.10 implies

φi (v) = v({i}) 1
n!

∑
θ∈ΘN

1 = v({i}).

Remember that null player is a particular case of dummy player.
Suppose v ∈ G N

m , therefore all the marginal vectors are non negative. Let i, j ∈ N
with i a necessary player. For each θ ∈ ΘN with j <θ i we have mθ

j (v) = 0.

Otherwise i ∈ S j
θ and taking θ ′ the order swapping i, j in θ we have S j

θ ∪ { j} =
Siθ ′ ∪ {i}. Using that v is monotone,

mθ
j (v) = v(S j

θ ∪ { j}) − v(S j
θ ) ≤ v(Siθ ′ ∪ {i}) = mθ ′

i (v).

So, φ j (v) ≤ φi (v). �

We test now the ordering properties and show that the Shapley value verifies all
of them.

Proposition 1.12 TheShapley value satisfies coalitionalmonotonicity,weakly
coalitional monotonocity and marginality.

Proof Suppose v <T w. For eachplayer i ∈ T and θ ∈ ΘN weobtain v(Siθ ) = w(Siθ ).
Thus for all permutation θ ,

v(Siθ ∪ {i}) − v(Siθ ) ≤ w(Siθ ∪ {i}) − w(Siθ ).

We get φi (v) ≤ φi (w) from the definition of the value, and then the coalitional
monotonicity. Colitional monotonicity implies weakly coalitional monotonicity. The
Shapley value is an average ofmarginal contributions, somarginality follows directly
from definition. �

Now we study the stability conditions for the Shapley value. We consider only
superadditive games.
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Proposition 1.13 The Shapley value satisfies individual stability over G N
sa .

Proof Let v ∈ G N
sa . For each player i ∈ N and θ ∈ ΘN we have

v(Siθ ∪ {i}) ≥ v(Siθ ) + v({i}),

thus v(Siθ ∪ {i}) − v(Siθ ) ≥ v({i}). So,

φi (v) = 1

n!
∑

θ∈ΘN

v(Siθ ∪ {i}) − v(Siθ ) ≥ v({i}) 1
n!

∑
θ∈ΘN

1 = v({i}).

�

But this value failes to extend the stability for superadditive games to all coalition.

Example 1.17 Suppose the following superadditive, anonymous and 0-normalized
game v over N = {1, 2, 3} given by

v(S) =
⎧⎨
⎩
0, if |S| ≤ 1
25, if |S| = 2
30, if S = N .

The Shapley value of an anonymous game attaches the same payoff for all the players
because they are symmetric and this value verifies symmetry. Since the Shapley value
is also efficient then

φ(v) = (10, 10, 10).

But this payoff vector is not stable for any coalition S = {i, j},

φ(v)(S) = 20 ≤ v(S) = 25.

If we restrict the domain of the value to the convex games then we reach the
stability for all the coalitions.

Proposition 1.14 The Shapley value satisfies coalitional stability over G N
c .

Proof Let v ∈ G N
c . We will prove that all the marginal vectors are stable for all

the coalitions. Consider θ ∈ ΘN and T ⊆ N non-empty coalition. For each player
i ∈ T , besides Siθ (Definition 1.9), we also take T i

θ = { j ∈ T : θ( j) < θ(i)},
verifying T i

θ ⊆ Siθ . We apply Proposition 1.3 to Siθ , T
i
θ obtaining, by convexity,

mθ
i (v) = v(Siθ ∪ {i}) − v(Siθ ) ≥ v(T i

θ ∪ {i}) − v(T i
θ ).
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Observe again that if T = {i1, . . . , it } with i1 <θ · · · <θ it then T ik
θ = T ik−1

θ ∪ {ik},
T it

θ = T and T i1
θ = ∅. So,

mθ (v)(T ) ≥
∑
i∈T

v(T i
θ ∪ {i}) − v(T i

θ ) = v(T ).

Finally,

φi (v)(T ) = 1

n!
∑

θ∈ΘN

mθ (v)(T ) ≥ v(T ).

�

If the game v is subadditive or concave we obtain stability (individual and coali-
tional) with the other inequality. In the second section we introduced two ways to
study a subadditive game by a superadditive one, and also away to change from a pes-
simistic game to an optimistic one. Shapley value satisfies the following relationships
with regard to these transformations.

Proposition 1.15 The Shapley value satisfies the following equalities for a
game v ∈ G N ,

1) φ(v) = −φ(−v).
2) φi (v) = v({i}) − φi (vsvg) for all i ∈ N.
3) φ(v) = φ(vdual).

Proof The first two equalities follow from the linearity of the Shapley value
(Proposition 1.8) and Example 1.16.Wewill prove the last one. For each permutation
θ ∈ ΘN we take the dual permutation θd ∈ ΘN given by θd(i) = n − θ(i) + 1.
Observe that this relation of duality is a bijective mapping over ΘN . Let i ∈ N . By
definition of dual permutation we have Si

θd = (N \ Siθ ) \ {i}. Calculating the payoff
of the dual game (1.5),

φi (v
dual) = 1

n!
∑

θ∈ΘN

vdual(Siθ ∪ {i}) − vdual(Siθ )

= 1

n!
∑

θ∈ΘN

v(N \ Siθ ) − v((N \ Siθ ) \ {i})

= 1

n!
∑

θd∈ΘN

v
(
Si

θd ∪ {i}) − v
(
Si

θd

) = φi (v).

�



1.4 The Shapley Value 27

There are several formulations of the Shapley value, we present here three. The
first one, in Definition 1.10, describes the value by the marginal vectors. The second
one uses once each marginal contribution of a player.

Theorem 1.1 The Shapley value of a game v ∈ G N for each player i ∈ N
can be calculated as

φi (v) =
∑

S⊆N\{i}
cns [v(S ∪ {i}) − v(S)] =

∑
{S⊆N :i∈S}

cns−1 [v(S) − v(S \ {i})] ,

where |S| = s and

cns = s!(n − s − 1)!
n! .

Proof Let v ∈ G N and i ∈ N . From Definitions 1.9 and 1.10 we get

φi (v) = 1

n!
∑

θ∈ΘN

v(Siθ ∪ {i}) − v(Siθ ).

Of course for each coalition S ⊆ N \ {i} there exists at least one permutation θ

verifying Siθ = S. Moreover, θ ∈ ΘN verifies Siθ = S when j ∈ S if and only if
j <θ i . The number of this kind of permutations is s!(n − s − 1)! with |S| = s. We
obtain grouping the family of all the permutations related to a each S ⊆ N \ {i},

φi (v) = 1

n!
∑

S⊆N\{i}
s!(n − s − 1)! [v(S ∪ {i}) − v(S)] .

The other equality follows from doing T = S ∪ {i}. �

Example 1.18 We turn to Example 1.15. Now, we use the optimistic version of the
bankruptcy game in Example 1.12. Following Proposition 1.15 the results are the
same in both cases. Table1.5 represents the worths of the coalitions in the dual game.
The calculation of the Shapley value is done by the formula in Theorem 1.1. The
marginal contributions are determined in Table1.6. The coefficients only depend on
the cardinality of the coalitions and they are: c30 = 1/3, c31 = 1/6 and c32 = 1/3. So,
φ(vdual) = (14166.6, 13333.3, 22500).

Table 1.5 Game vdual

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vdual(S) 25000 20000 40000 45000 50000 50000 50000
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Table 1.6 Marginal contributions vdual for each player

vdual({1}) vdual ({1, 2}) −
vdual ({2})

vdual({1, 3}) −
vdual({3})

vdual (N ) −
vdual ({2, 3})

25000 25000 10000 0

vdual({2}) vdual ({1, 2}) −
vdual ({1})

vdual({2, 3}) −
vdual({3})

vdual (N ) −
vdual ({1, 3})

20000 20000 10000 0

vdual({3}) vdual ({1, 3}) −
vdual ({1})

vdual({2, 3}) −
vdual({2})

vdual (N ) −
vdual ({1, 2})

40000 25000 30000 5000

We can obtain a third formulation of the Shapley value using the dividends
(Proposition 1.1) of the game. If the dividend of a coalition is the benefit margin
attributed only to the formation of this coalition, then the Shapley value allocates
these margins among the players concerned in an egalitarian way.

Theorem 1.2 Let v ∈ G N . The Shapley value satisfies for each player i ∈ N
that

φi (v) =
∑

{T⊆N :i∈T,T �=∅}

Δv
T

|T | .

Proof Given a game v and a player i , from Propositions 1.1 and 1.8 we have

φi (v) =
∑

{T⊆N ,T �=∅}
Δv

Tφi (uT ).

AsShapley value verifies null player (Proposition 1.11), symmetry (Proposition 1.10)
and efficiency (Proposition 1.9) then Proposition 1.7 implies the result. �

Example 1.19 We get the Shapley value of the bankruptcy game in Example 1.15
(the pessimistic version) again but using dividends. The worths of the coalitions are
in Table1.3. Next table obtains the dividends of the coalitions, using formula (1.2)
(Table1.7). So, we have

Table 1.7 Dividends of the game v

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Δv
S 0 0 5000 10000 25000 20000 −10000
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φ1(v) = 1

2
10000 + 1

2
25000 − 1

3
10000 = 14166.6.

Finally φ(v) = (14166.6, 13333.3, 22500).

We present now two different axiomatizations of the Shapley value using the
above properties. The first one is the most classical axiomatization of this value,
similar to the original one given by Shapley [24].

Theorem 1.3 The Shapley value is the only value for games over N satisfying
linearity, efficiency, null player and symmetry.

Proof Shapley value verifies the four axioms from Propositions 1.8, 1.9, 1.10 and
1.11.

Proposition 1.7 and linearity imply only one option for a value f satisfying the
four axioms. �

Remark 1.3 It is enough additivity instead linearity because it is an easy exercise to
repeat the proof of Proposition 1.7 for game cuT with T �= ∅ and c ∈ R, obtaining
a unique payoff vector for this game. So, from additivity,

f (v) =
∑

{T⊆N :T �=∅}
f
(
Δv

T uT
)
.

When an axiomatization is introduced for a value it is advisable to show the logical
independence of the axioms, namely we test the necessity of all of them.

Remark 1.4 We find values different to the Shapley value verifying all the axioms
except one of them.

• Consider value f 1 defined for each v ∈ G N as f 1(v) = aφ(v) with a ∈ R \ {1}.
As φ satisfies null player, symmetry and linearity then f 1 does too.

• Let θ ∈ ΘN . The marginal vector for each game using this permutation can be
considered as a payoff vector. Hence we can define f 2(v) = mθ (v) for all v ∈ G N .
Suppose n ≥ 2, f 2 �= φ from Definition 1.10. Remark 1.2 showed that f 2 verifies
efficiency. If i is a null player then all her marginal contributions are zero, also the
marginal contribution in the order θ . So, f 2 satisfies null player. Let v,w ∈ G N ,
and a, b ∈ R we get

f 2i (av + bw) = mθ
i (av + bw) = (av + bw)(Siθ ∪ {i}) − (av + bw)(Siθ )

= a f 2i (v) + b f 2i (w).

We get also linearity. f 2 satisfies efficiency, null player and linearity.
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• The egalitarian value is defined as

f 3i (v) = v(N )

n
∀v ∈ G N ,∀i ∈ N .

Obviously f 3 �= φ verifies efficiency, symmetry and linearity.
• The following value tries to modify the egalitarian value to get the null player
property. For each v ∈ G N we denote as Null(v) = {i ∈ N : i null player in v}
and null(v) = |Null(v)|. Consider the value defined for v as

f 4i (v) =
⎧⎨
⎩

v(N )

n − null(v)
, if i /∈ Null(v)

0, if i ∈ Null(v).

Obviously the value satisfies null player and also efficiency and symmetry (if two
players are symmetric then or both are null players or neither is null). f 4 �= φ if
null(v) ≥ 1. If null(v) = n then v = 0 and we take f 4(0) = 0.

Other axiomatizations can be obtained in a similar way of the above one swapping
symmetry axiom by anonymity one or necessary player one.

Young [30] used marginality to axiomatize the Shapley value jointly anonymity
and another axiom.5 Here we propose to use marginality with efficiency and sym-
metry.

Theorem 1.4 The Shapley value is the only value for games over N satisfying
efficiency, symmetry and marginality.

Proof Shapley value satisfies the three axioms from Propositions 1.9, 1.10 and 1.12.
Suppose now f 1 �= f 2 verifying the three axioms. Each game v ∈ G N is written

as
v =

∑
{T⊆N :T �=∅}

Δv
T uT ,

using Theorem 1.1. Let p(v) = |{T ⊆ N : T �= ∅,Δv
T �= 0}|. If p(v) = 0 then v = 0

and every player is a null player, therefore they are symmetric. Using efficiency and
symmetry we have f 1(v) = 0 = f 2(v). Hence we can look for any game with the
smallest number p(v) ≥ 1 such that f 1(v) �= f 2(v). We denote as

P(v) =
⋂

{T⊆N :T �=∅,Δv
T �=0}

T .

5Strongly monotonicity.
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All the players in P(v) are symmetric in v, namely if i, j ∈ P(v) and S ⊆ N \ {i, j}
then using (1.1) we have v(S ∪ {i}) = 0 = v(S ∪ { j}). So, f 1i (v) = f 1j (v) and
f 2i (v) = f 2j (v). If i /∈ P(v) then we can define

w =
∑

{T⊆N :i∈T }
Δv

T uT ,

with p(w) < p(v). The marginal contributions of player i in this new game are the
same as in v. Let S ⊆ N \ {i}. We obtain from (1.1),

w(S ∪ {i}) − w(S) =
∑

{T \{i}⊆S:i∈T,Δv
T �=0}

Δv
T = v(S ∪ {i}) − v(S).

Marginality (in both sides) implies that

f 1i (v) = f 1i (w) = f 2i (w) = f 2i (v).

Finally, we take any i ∈ P(v) and then by efficiency

0 =
∑
j∈N

f 1(v) − f 2(v) = p(v)[ f 1i (v) − f 2i (v)].

We get f 1(v) = f 2(v), and this is not possible. �

Remark 1.5 We test the logical independence of the axioms.

• f 1 in Remark 1.4 satisfies symmetry and marginality.
• f 2 in Remark 1.4 satisfies efficiency and marginality.
• f 3 in Remark 1.4 satisfies efficiency and symmetry.

We will see another axiomatization given by Myerson [15] using properties as
value in the general sense.

Proposition 1.16 The Shapley value satisfies balanced contributions.

Proof Let N , n > 1, and v ∈ G N . Theorem 1.1 implies for all i, j ∈ S, i �= j ,

φN
i (v) − φN

j (v) =
∑

{S⊆N :i∈S}
cns−1[v(S) − v(S \ {i})]

−
∑

{R⊆N : j∈R}
cnr−1[v(R) − v(R \ { j})]

=
∑

{T⊆N :i, j∈T }
cnt−1[v(T \ { j}) − v(T \ {i})]
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+
∑

{S⊆N\{ j}:i∈S}
cns−1[v(S) − v(S \ {i})]

−
∑

{R⊆N\{i}: j∈R}
cnr−1[v(R) − v(R \ { j})]

φN
i (v) − φN

j (v) =
∑

{T⊆N :i, j∈T }
cnt−1[v(T \ { j}) − v(T \ {i})]

+
∑

{T⊆N :i, j∈T }
cnt−2[v(T \ { j}) − v(T \ {i, j})]

−
∑

{T⊆N :i, j∈T }
cnt−2[v(T \ {i}) − v(T \ {i, j})]

=
∑

{T⊆N :i, j∈T }
(cnt−1 + cnt−2)[v(T \ { j}) − v(T \ {i})]

= φ
N\{ j}
i (v) − φ

N\{i}
j (v).

The last equality is true because cnt−1 + cnt−2 = cn−1
t−1 + cn−1

t−2 . �

Myerson [15] presented his axiomatization in the context of games with confer-
ence structure, we explain it on the classical family of games.

Theorem 1.5 The Shapley value is the only value for games satisfying effi-
ciency and balanced contributions.

Proof We know that the Shapley value satisfies efficiency (Proposition 1.9) and
balanced contributions (Proposition 1.16).

Let f, g be two values for games verifying both axioms and v ∈ G N . We work
by induction in n. Efficiency implies f N (v) = gN (v) for any game with n = 1. We
suppose true the uniqueness when n < k, k ≥ 2. Consider any i0 ∈ N . For each
j ∈ N \ {i0} balanced contributions says that

f Nj (v) − f Ni0 (v) = f N\{i0}
j (v) − f N\{ j}

i0
(v)

= gN\{i0}
j (v) − gN\{ j}

i0
(v) = gN

j (v) − gN
i0 (v).

Therefore we obtain f Nj (v) − gN
j (v) = f Ni0 (v) − gN

i0
(v). Using efficiency

0 = v(N ) − v(N ) =
∑
i∈N

f Nj (v) − gN
j (v) = |N |[ f Ni0 (v) − gN

i0 (v)].

Thus f Ni0 (v) = gN
i0

(v). �
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Shapley and Shubik [25] studied the Shapley value as a power index when it is
applied to simple games. In a simple game themarginal contributions of a player i are
1 or 0, then only those coalitions where i changes the situation with her incorporation
are important.

Definition 1.11 Let v ∈ G N
s . A coalition S ⊆ N \ {i} is a swing for player i

if v(S ∪ {i}) = 1 and v(S) = 0. The set of swings for player i in v is denoted
as SWi (v).

A swing for a player is a coalition where the incorporation of this player is critical.
Observe that if S ∈ Wm(v) then S \ {i} is a swing for all player i ∈ S. We get from
Theorem 1.1 a special formula of the Shapley–Shubik index using the swings of the
players besides the definition.

Definition 1.12 The Shapley–Shubik index is a power index over G N
s defined

for each simple game v as φ(v). For all i ∈ N and v ∈ G N
s it holds

φi (v) = |{θ ∈ ΘN : Siθ ∈ SWi (v)}|
n! =

∑
S∈SWi (v)

cns .

Example 1.20 We consider a voting situation [26; 20, 15, 6, 5], see Example 1.14,
for a parliament with four parties {1, 2, 3, 4}. The simple game is defined by the
minimal winning coalitions,

Wm(v) = {{1, 2}, {1, 3}, {2, 3, 4}}.

Table1.8 contains the swings for each party. Observe that all the swings have cardi-
nality 2 or 3 and the Shapley coefficients for these cardinalities with four players are
the same c41 = c42 = 1/12. So, the Shapley–Shubik index is

φ(v) = (5/12, 3/12, 3/12, 1/12).

Table 1.8 Swings of v i SWi (v)

{1} {{2}, {3}, {2, 3}, {2, 4}, {3, 4}}
{2} {{1}, {1, 4}, {3, 4}}
{3} {{1}, {1, 4}, {2, 4}}
{4} {{2, 3}}
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Despite the difference of seats between parties 2 and 3 their power is the same. The
weights of parties 3 and 4 are very closed but the power does not.

The Shapley–Shubik index for a player determines the probability of finding an
order of the players where the incorporation of the player is critical for the decision.
But certain properties of the Shapley value are not feasible in simple games, as
additivity, linearity or covariance because they use non-internal operations.

Dubey [7] showed an axiomatization of the Shapley–Shubik index using trans-
ference instead linearity or additivity.

Theorem 1.6 The Shapley–Shubik index is the only power index over G N
s

satisfying efficiency, null player, symmetry and transference.

Proof Since Propositions 1.9, 1.10 and 1.11 we know that Shapley value satisfies
efficiency, symmetry and null player for all the games and then also for simple games.
We will see that the Shapley–Subik index verifies transference. Let v,w ∈ G N

s be
two simple games. We can consider v,w as elements in G N . Working in G N , we
prove the claim (v∨w)+ (v∧w) = v+w by Table1.9. As the Shapley value verifies
additivity (Proposition 1.8) we get transference.

Suppose nowan index f satisfying the axioms.Weget the uniqueness by induction
on the number of minimal coalitions. Let v ∈ G N

s with |Wm(v)| = 1 (at least
there is one). So, v = uS with Wm(v) = {S}, and we know the uniqueness from
Proposition 1.7. Taking to be true the uniqueness if |Wm(v)| = k − 1 we will prove
it for |Wm(v)| = k. Let T ∈ Wm(v). We define another simple game,

w =
∨

S∈Wm (v)\{T }
uS.

This another game satisfies thatWm(w) = Wm(v)\ {T } from Proposition 1.6 and the
fact that Wm(v) \ {T } is mutually exclusive. Proposition 1.6 again implies

v =
∨

S∈Wm (v)

uS = w ∨ uT .

Table 1.9 Transfer property of the Shapley–Shubik index

v w v + w v ∨ w v ∧ w (v ∨ w) + (v ∧ w)

0 0 0 0 0 0

1 0 1 1 0 1

1 1 2 1 1 2
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We compute now w ∧ uT using that G N
s is a distributive lattice (Proposition 1.5)

w ∧ uT =
⎛
⎝ ∨

S∈Wm (v)\{T }
uS

⎞
⎠ ∧ uT =

∨
S∈Wm (v)\{T }

(uS ∧ uT ) =
∨

S∈Wm (v)\{T }
uS∪T .

Observe that (uS ∧ uT )(R) = 1 if and only if both S, T ⊆ R. Family {S ∪ T :
S ∈ Wm(v) \ {T }} is also mutually exclusive because Wm(v) is too, and then by
Proposition 1.6

Wm(w ∧ uT ) = {S ∪ T : S ∈ Wm(v) \ {T }}.

As |Wm(w)| = |Wm(w∧ uT )| = k − 1 and |Wm(uT )| = 1 we get using transference

φ(v) = φ(w) + φ(uT ) − φ(w ∧ uT ).

�

Until now we have seen that the Shapley value satisfies a lot of interesting con-
ditions. Furthermore we have several easy formulas to calculate it and it is a linear
function. But this value is not a panacea, that is why there are other interesting values
although this one is the most used. The main criticisms to the Shapley value are the
following.

• Additivity is a nice mathematical property but the interpretation is in doubt.
Depending on the situation players could bargain utility from one of the game
to use in the other.

• The combinatorial nature of the Shapley formula implies a random determined
formation of the coalitions.

• The value does not always stable.

Also transference, null player, efficiency and symmetry are called into question for
simple games, see Laruelle and Valenciano [13] and Einy and Haimanko [8] for other
axiomatizations without these axioms.
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Chapter 2
Fuzzy Coalitions and Fuzziness of Games

2.1 Introduction

In a cooperative game the mean tool to analyze the situation is the knowledge of the
worths of the coalitions. In an coalition it is supposed that all the players cooperate
at the same level or certainty. Zadeh [20] introduced fuzzy sets to represent different
degrees of membership for the elements of a set. Later Aubin [1] proposed to use
fuzzy sets to define fuzzy coalitions allowing an asymmetry of the participation of
the players. This fact supposes to replace the discrete scope by the continuous one.
Several interesting surveys about fuzzy games (games with fuzzy coalitions) are
given in Butnariu and Klement [7], Branzei et al. [5] and Borkotokey andMesiar [3].
There is another different way in the analysis of fuzzy games, using vague payoffs.
The reader can use Mares [12] to study this model. Classical games are an specific
family of fuzzy games, that we name crisp games. This book works with crisp games
but some information about fuzzy games helps to comprehend better the developing
of our study. The mean difficulty to define a solution for a fuzzy game is how to
incorporate the whole information of the game. The diagonal value, (Aumann and
Shapley [2] and Aubin [1]) and the crisp Shapley value (Branzei et al. [4]) are two
different approach to solve a fuzzy game in the Shapley way. But neither of them
uses all the information of the fuzzy game.

A fuzziness of a crisp game is a fuzzy game determined from the crisp one.
Remember that we deal with non-flexible games, therefore we look for fuzziness
following the classical behavior of the players: to form the maximal feasible coali-
tion. Fuzzy cooperation can be used as probabilistic data or real membership of the
players. In the second point of view the rule of the maximal cooperation is reached
by two different ways: maximal level of cooperation of maximal group of players
involved. Three fuzziness following all these comments have been studied in the liter-
ature, the multilinear extension [15], the proportional extension [6] and the Choquet
extension [18].
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2.2 Brief Overview About Fuzzy Sets

Fuzzy sets were introduced by Zadeh [20]. In this book we only deal with fuzzy
sets in a finite set of points. Let K be a finite set. A fuzzy set A in K is given by
a membership function over K , namely τA : K → [0, 1]. We denote the family of
fuzzy sets in K as [0, 1]K . Here the fuzzy set A is identified to its membership
function τA, and then we will use τ ∈ [0, 1]K to refer a fuzzy set. Each non-empty
subset Q ⊆ K is identified with the fuzzy set eQ ∈ [0, 1]K given by eQ(i) = 1 if
i ∈ Q and eQ(i) = 0 otherwise. Particularly for the complete set K we will use eK .
The empty-set is also a fuzzy set that we denote as 0 with 0(i) = 0 for all i ∈ K .
The classical subsets are named crisp sets in order to distinguish them into the fuzzy
sets.

A fuzzy set τ ′ is contained in another one τ ∈ [0, 1]K if τ ′(i) ≤ τ(i) for all i ∈ K ,
we say that τ ′ is a fuzzy subset of τ and type τ ′ ≤ τ . If τ ′ ≤ τ then the difference is
a new fuzzy set τ − τ ′ with (τ − τ ′)(i) = τ(i) − τ ′(i). The complement of a fuzzy
set τ is eK − τ ∈ [0, 1]K .

A T-norm is a binary relation T : [0, 1] × [0, 1] → [0, 1] verifying the following
properties: (1) Commutativity T (a, b) = T (b, a), (2) Associativity T (a, T (b, c)) =
T (T (a, b), c), (3) Monotonicity T (a, b) ≤ T (c, d) if a ≤ b, c ≤ d and (4) Identity
element T (1, a) = a. The correspondingT-conorm to the T-norm T is the dual binary
relation

(1 − T )(a, b) = 1 − T (1 − a, 1 − b).

Using different T-norms we introduced different operations for fuzzy sets. If T
is a T-norm then T (τ, τ ′)(i) = T (τ (i), τ ′(i)) for all τ, τ ′ ∈ [0, 1]N and i ∈ N . We
consider three of them.

• Intersection and union. T (a, b) = a ∧ b, (1 − T )(a, b) = a ∨ b. If τ, τ ′ ∈ [0, 1]K
then, the intersection and the union are respectively τ ∧ τ ′ and τ ∨ τ ′. These
operations satisfy the Morgan laws in a fuzzy sense:

eK − (τ ∨ τ ′) = (eK − τ) ∧ (eK − τ ′),
eK − (τ ∧ τ ′) = (eK − τ) ∨ (eK − τ ′).

• Cosum and sum.1 T (a, b) = 0 ∨ (a + b − 1), (1 − T )(a, b) = 1 ∧ (a + b). If
τ, τ ′ ∈ [0, 1]K then, the cosum and the sum are respectively τ ⊕ τ ′ and τ + τ ′.

• Product and coproduct.2 T (a, b) = ab and (1 − T )(a, b) = a + b − ab. The
product and the coproduct of τ, τ ′ are the fuzzy sets respectively τ × τ ′, τ ⊗ τ ′.

1This T-norm is usually named Lukasiewicz norm.
2Product is understood as the usual probabilistic intersection.
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The support of a fuzzy set τ ∈ [0, 1]K is the set

supp(τ ) = {i ∈ K : τ(i) > 0}.

The image of τ is the set of numbers

im(τ ) = {t ∈ (0, 1] : ∃i ∈ K with τ(i) = t}.

Themaximumand theminimumnon-zero numbers in the image of τ �= 0 are denoted
as ∨τ and ∧τ respectively. Usually the image of a fuzzy set is given as an ordered
set including zero or also one although these numbers are not in the image, we take

im0(τ ) = {0 = λ0 < λ1 < · · · < λm} = im(τ ) ∪ {0}, (2.1)

im1
0(τ ) = {0 = λ0 < λ1 < · · · < λm = 1} = im(τ ) ∪ {0, 1}. (2.2)

The total membership of a fuzzy set τ is something as the cardinality in a set, namely

|τ | =
∑

i∈K
τ(i).

Two fuzzy sets τ1, τ2 are comonotone if for all i, j ∈ K

[τ1(i) − τ1( j)][τ2(i) − τ2( j)] ≥ 0. (2.3)

Let τ ∈ [0, 1]K be a fuzzy set over the finite set K . For each t ∈ (0, 1], the t-cut
is the crisp set of all the elements in K with level greater or equal than t in τ , namely

[τ ]t = {i ∈ K : τ(i) ≥ t}. (2.4)

As K is finite there is a finite quantity of different cuts. If im0(τ ) = {λ0 < · · · < λk}
then we use [τ ]k = [τ ]λk for k = 1, . . . ,m. So, [τ ]t = [τ ]k if t ∈ (λk−1, λk] and k =
1, . . . ,m. The cuts of τ generate a decreasing sequence of sets, [τ ]m ⊂ · · · ⊂ [τ ]1.

Choquet [9] defined a capacity over K as a monotone set function v : 2K → R

verifying v(∅) = 0, actually a monotone game (see Definition 1.3) over K . If we
drop monotonicity, v is a game, then is named signed capacity. The Choquet integral
[9] was first defined for capacities and later Schmeidler [16] and Waegenaere and
Wakker [10] extended the concept to signed capacities. If τ ∈ [0, 1]K and v is a
signed capacity over K then the (signed) Choquet integral of τ regard to v is

∫

c
τ dv =

m∑

k=1

(λk − λk−1)v([τ ]k), (2.5)

with im0(τ ) = {λ0 < λ1 < · · · < λm}. Next properties of the integral will be used
in the book.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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(C1)
∫

c
τ d(v1 + v2) =

∫

c
τ dv1 +

∫

c
τ dv2

(C2)
∫

c
τ dv1 ≤

∫

c
τ dv2 if v1 ≤ v2

(C3)
∫

c
τ d(av) = a

∫

c
τ dv

(C4)
∫

c
tτ dv = t

∫

c
τ dv if t ∈ [0, 1]

(C5)
∫

c
(τ1 + τ2) dv =

∫

c
τ1 dv +

∫

c
τ2 dv if τ1, τ2 are comonotone

(C6)
∫

c
τ dv = a

∨

i∈K
τ(i) if v([τ ]t ) = a for all t ∈ (0, 1]

(C7)
∫

c
eQ dv = v(Q)

(C8)
∫

c
τ1 dv ≤

∫

c
τ2 dv when τ1 ≤ τ2 and v monotone

(C9)
∫

c
τ dv is a continuous function regard to τ .

(C10)
∫

c
τ dv =

p∑

q=1

(tq − tq−1)v([τ ]tq ), for any finite set of numbers in [0, 1] con-
taining the image of τ (and zero), namely {0 = t0 < t1 · · · < tp} ⊇ im0(τ ).

2.3 Fuzzy Coalitions

Fuzzy coalitions were defined by Aubin [1]. Given the finite set of players N , a fuzzy
coalition is a collective decisional entity where members may have gradual degrees
of membership, as Butnariu and Klement says in [7]. So, a fuzzy coalition introduces
an asymmetric relation among the players beyond the mapping of the game. A fuzzy
set in the set of players is used to define a fuzzy coalition.

Definition 2.1 A fuzzy coalition of the set of players N is any fuzzy set in N .
Therefore [0, 1]N denotes the family of fuzzy coalitions.

The support of a fuzzy coalition represents the set of active players and the image
the different levels of participation.

Fuzzy coalitions can be interpreted in other ways. In a probabilistic sense, if
τ ∈ [0, 1]N then τ(i) is the probability of being in the coalition. Thus each fuzzy
coalition represents a particular situation of possibility.
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Aubin [1] also introduced the concept of game with fuzzy coalitions or fuzzy
game.3

Definition 2.2 A fuzzy game (game with fuzzy coalitions) over N is a real
mapping over the fuzzy coalitions v : [0, 1]N → R with v(0) = 0.

Branzei et al. [5] proposed the next example of fuzzy game about a public good.

Example 2.1 Suppose N a set of agents who cooperate in order to get a new facility
for joint use. The cost of the facility depends on the total participation of the agents by
monotone increasing function c. The profit obtained from the facility is determined
for each player using an individual monotone increasing function pi depending on
her participation. This situation can be described by the fuzzy game over N

v(τ ) =
∑

i∈N
pi (τ (i)) − c(|τ |).

Example 2.2 In a university committee there two groups of delegates, professors
and students. Next system to adopt a rule incorporates more options for the teachers,
independently on the number of elements in each group. We have N = {1, 2} with
1 the team of professors and 2 the student’s one. In a fuzzy coalition τ ∈ [0, 1]N we
interpret

τ(i) = |delegates in team i in favor of the rule|
|delegates in team i | .

So, the proposition is

v(τ ) =
{
1, if τ(1) ≥ 2/3 and τ(2) ≥ 1/2
0, otherwise.

Example 2.3 Linear production games (Example 1.6) can be better explained as
fuzzy games. In the crisp case players use their whole endowments when they coop-
erate. The fuzzy version permits to use the initial endowments partially. So, consid-
ering c, b, A as in Example 1.6, the fuzzy linear production game is defined for each
τ ∈ [0, 1]N as

v(τ ) =
∨

{c · x : Ax ≤ τ · b}

Example 2.4 Butnariu and Klement [7] proposed to represent rate problems for
services (electricity or water) in bulk. The individual services are the players and the
bulks of services are the coalitions. Each customer (or kind of customers) is identified

3The notion of fuzzy game is also used for cooperative games with fuzzy payoffs, see Mares
[12]. The concept of game on [0, 1]N can be studied in a different way as game with overlapping
coalitions, see Chalkiadakis et al. [8].

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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with the particular bulk she consumes. Fuzzy coalitions represent bulks for services
where the degree membership of an individual one is exactly the share of this service
consumed by a particular customer. The worth of each fuzzy coalition is the cost of
the particular bulk of consume.

The idea of value was extended also for fuzzy coalitions.

Definition 2.3 A value for fuzzy games over N is a mapping assigning a
payoff vector inRN to each fuzzy game over N . Generally a value f for fuzzy
games determines a value f N for each finite set N .

There are several intents to extend the Shapley value to fuzzy games. However it
is not an easy problem in the sense that it is not possible to consider all the feasible
variations (marginal contributions) of a player in the game, namely we cannot take
all the information in a fuzzy game. We show two examples of these mappings. The
first option is defined taking the crisp version of a fuzzy game.

Definition 2.4 If v is a fuzzy game over N then the crisp version is given by
vcr ∈ G N with

vcr (S) = v(eS),

for all S ⊆ N .

Branzei et al. [4] introduced a Shapley value for fuzzy games.

Definition 2.5 The crisp Shapley value is defined for each v fuzzy game over
N as

φcr (v) = φ(vcr ).

This concept is very limited because it only uses the crisp information of the
game, thus if two fuzzy games v, v′ verify vcr = v′cr then φcr (v) = φcr (v′).

To describe axioms for the crisp Shapley value is not complicated from the usual
axioms of the classical Shapley value. But the uniqueness cannot be obtained from
the unanimity games (the set of fuzzy games over N is not a finite vectorial space).
We use the axiomatization in Theorem 1.5. If v is a fuzzy game over N and S ⊂ N
then the fuzzy subgame v|S is a new fuzzy game over S that we denote usually again
as v where v(τ ) = v(τ 0) for each τ ∈ [0, 1]S and

τ 0(i) =
{

τ(i) if i ∈ S
0 if i ∈ N \ S.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Theorem 2.1 The crisp Shapley value is the only value for fuzzy games satis-
fying efficiency (over eN ) and balanced contributions

Proof As the Shapley value is efficient (Proposition 1.9) for games over N then

φcr (v)(N ) = φ(vcr )(N ) = vcr (N ) = v(eN ).

Observe that if v is a fuzzy game over N then the crisp version of v as fuzzy sub-
game over S is the same that the subgame over S of the crisp version of v, namely
(vcr )|S = (v|S)cr . Balanced contributions follows since the Shapley value satisfies it
(Proposition 1.16) and the above fact,

(φcr )Ni (v) − (φcr )Nj (v) = φN
i (vcr ) − φN

j (vcr ) = φ
N\{ j}
i (vcr ) − φ

N\{i}
j (vcr )

= (φcr )
N\{ j}
i (v) − (φcr )

N\{i}
j (v).

The proof of the uniqueness is exactly the same that in Theorem 1.5. �

The Shapley valuewas extended also to the class of fuzzy games by the ownAubin
[1]. This extension is named the diagonal value. The first problem is that the diagonal
value was only defined for a particular class of fuzzy games, those continuously
differentiable. Later this value has been extended to another more general family of
fuzzy games, see Butnariu and Klement [7] or Mertens [14].

Definition 2.6 Let v be a continuously differentiable fuzzy game. The diago-
nal value is defined for v and i ∈ N as

φd
i (v) =

∫ 1

0
Div(te

N ) dt.

The diagonal value supposes that coalitions are formed by aggregation of small
differences for one player but taking a symmetric membership of all the players.
As we will see in Sect. 2.4 the expression of the diagonal value is based in another
formulation previously known of the usual Shapley value. Aubin [1] provided the
value with an axiomatization. Let f be a value for games with fuzzy coalitions.
Besides efficiency4, anonymity and linearity he introduced next axioms.

4Aubin named it pareto optimality.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Continuously. f is a continuous operator.

Consider P = {S1, . . . , Sm} a partition of N in groups andM = {1, . . . ,m}. For each
fuzzy coalition τ ∈ [0, 1]M of groups we induce a fuzzy coalition τ P ∈ [0, 1]N for
players as τ P(i) = τ(k) if i ∈ Sk . For each fuzzy game v over N a new fuzzy game
over M is defined as

vP(τ ) = v(τ P).

Atomicity. Let v be a fuzzy game over N and P a partition of N . It holds for all
k ∈ M ,

f Mk (vP) =
∑

i∈Sk
f Ni (v).

Theorem 2.2 The diagonal value is the only value for continuously differen-
tiate fuzzy games satisfying efficiency, linearity, anonymity, continuously and
atomicity.

Proof Thediagonal value verifies continuously and linearity by construction.Adding
all the payoffs of the players we get by the Barrow law for the linear integral

∑

i∈N

∫ 1

0
Div(te

N ) dt =
∫ 1

0
Dv(teN ) · eN dt = v(eN ).

Anonymity follows from θ(teN ) = teN and Dθ(i)θv(teN ) = Div(teN ).We test atom-
icity. Let P = {S1, . . . , Sm} be a partition of N in groups and M = {1, . . . ,m}.
The fuzzy coalition τ = teM ∈ [0, 1]M induces τ P = teN ∈ [0, 1]N . Thus, for each
k ∈ M the chain rule applied to yk = eSk · x with x = (xi )i∈N for each k implies

Dk(v
P)(teM) = Dv(teN ) · eSk =

∑

i∈Sk
Div(te

N ).

To prove the uniqueness we consider a value f satisfying all the axioms. Poly-
nomial functions are dense in the set of continuous differentiate fuzzy games,
therefore by continuously and linearity we only have to study fuzzy games as
v(τ ) = τ

p1
1 · · · τ pn

n . First consider the game v(τ ) = τ1 · · · τn . Anonymity and effi-

ciency imply fi (v) = 1

n
following the proof in Proposition 1.7. Now, for the gen-

eral case, suppose pk copies of τk for each k ∈ N . If Sk is set of copies of k and
N ′ = ⋃

k∈N Sk then {S1, . . . , Sn} is a partition of N ′. So, atomicity says that if i ∈ Sk
then

fi (v) = pk
p1 + · · · + pn

.

�

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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These solutions, the crisp Shapley value and the diagonal one, are different as is
showed in [5].

Example 2.5 Suppose v a fuzzy game over N = {1, 2} given by

v(τ ) = τ(1)τ 2(2) ∀τ ∈ [0, 1].

The crisp version is cr(v)({1}) = cr(v)({2}) = 0, cr(v)({1, 2}) = 1. Hence

φcr (v) = (1/2, 1/2).

Now Dv(τ ) = (τ 2(2), 2τ(1)τ (2)) and Dv(teN ) = (t2, 2t2). Thus,

φd
1 (v) =

∫ 1

0
t2 dt = 1

3
, φd

2 (v) =
∫ 1

0
2t2 dt = 2

3
,

and φd(v) = (1/3, 2/3).

2.4 Fuzziness of Games

Let v ∈ G N be a game. We look for a process to evaluate a fuzzy coalition by v.
In a crisp coalition eS all the players participate in the coalition at the same level
1. Considering that the worth of a coalition is proportional to the membership of
the players we know how to evaluate coalitions as teS , v(teS) = tv(S). With this
premise, Aubin [1] proposed a way to estimate the worth of a fuzzy coalition.

Definition 2.7 Let τ ∈ [0, 1]N be a fuzzy coalition. A partition by levels of τ

is a finite sequence {(Sk, sk)}mk=1 satisfying:

(1) Sk ⊆ N and sk > 0 for each k = 1, . . . ,m,
(2)

∑m
k=1 ske

Sk = τ .

A partition function is a mapping pl over [0, 1]N taking a partition by levels
pl(τ ) for each fuzzy coalition τ .

Observe that if {(Sk, sk)}mk=1 is a partition by levels of τ ∈ [0, 1]N then

∑

{k:i∈Sk }
sk = τ(i), (2.6)
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for every player i ∈ N . Moreover each Sk ⊆ supp(τ ). If τ = 0 then no partition is
necessary but if we technically need to take one we will consider {(∅, t)} with any
t ∈ [0, 1]. Fixed a game, we can give a partition function determining a fuzzy game.

Definition 2.8 Let v ∈ G N and let pl be a partition function. The fuzziness
of v obtained from pl is the fuzzy game vpl verifying for all τ ∈ [0, 1]N and
pl(τ ) = {(Sk, sk)}mk=1,

vpl(τ ) =
m∑

k=1

skv(Sk).

Generally, these fuzziness of a game are different as we will see later but they
coincide for additive games.

Example 2.6 If v ∈ R
N is an additive game over N then for all partition function and

τ ∈ [0, 1]N it holds vpl(τ ) = τ · v. We get using (2.6) with pl(τ ) = {(Sk, sk)}mk=1,

vpl(τ ) =
m∑

k=1

sk
∑

i∈Sk
vi =

∑

i∈N

⎡

⎣
∑

{k:i∈Sk }
sk

⎤

⎦ vi =
∑

i∈N
τ(i)vi = τ · v.

The own Aubin [1] considered a fuzziness of games. If v ∈ G N then for any
coalition τ ∈ [0, 1]N ,

v(τ ) =
∨

{
m∑

k=1

skv(Sk) : {(Sk, sk)}mk=1 partition by levels of τ

}
. (2.7)

In this case we take a partition function pl choosing an optimal partition by levels in
the above supremum. But this definition is really a total flexible option, furthermore
if S is a coalition then v(eS) = vsa(S), see (1.6). We are interested in non-flexible
fuzziness (as far as we can control) thus it seems natural to require vpl(eS) = v(S)

for all coalition S. But, as we will see later in the next chapters it is better to specify
more this idea.

Definition 2.9 Apartition function pl in N is an extension if pl(S) = {(S, 1)}
for all non-empty coalition S. The fuzziness of a game obtained by an extension
is named also an extension of the game.

http://dx.doi.org/10.1007/978-3-319-56472-2_1


2.4 Fuzziness of Games 47

The fuzziness (2.7) proposed by Aubin is not an extension. Partition functions can
depend on the game, as the Aubin’s one. When the partition function is independent
on the game we guarantee that the fuzziness working well with the vectorial space
G N . So, the sum and scalar product satisfy

(av1 + bv2)
pl = avpl1 + bvpl2 .

Suppose a partition function independent of the game pl from now on. Obviously
the crisp Shapley value of an extension of a game is the Shapley value of the original
game, because (vpl)cr = v for all v ∈ G N .

Theorem 2.3 If pl is an extension then for all game v ∈ G N

φcr (vpl) = φ(v).

But about the diagonal value we cannot say anything in general because fuzziness
are not always continuously differentiate functions.

Three interesting extensions which do not depend on the game have been studied
in the literature. One of them from the probabilistic point of view and the others
following themembership interpretation in games. Suppose that we interpret number
τ(i) in a fuzzy coalition τ as the membership of player i . Following the classical
model players should look for the maximal cooperation. But in a fuzzy situation this
fact can raise in two different ways:

• They look for the biggest level of cooperation, or
• they look for the biggest crisp coalition.

We will analyze these three options in the next subsections.

The Multilinear Extension

The first one was introduced by Owen [15] outside the context of fuzzy coalitions,
and later by Meng and Zhang [13]. In this case component τ(i) in a fuzzy coalition
is interpreted as the probability for player i to cooperate, and then 1 − τ(i) the
probability of non cooperating. Following the philosophy of the classical game if S
was formed then the profit of this coalition is v(S) and this fact is not variable.

Definition 2.10 Let v ∈ G N be a game. The multilinear extension of v is a
fuzziness of v defined for each τ ∈ [0, 1]N as

vml(τ ) =
∑

S⊆N

[
∏

i∈S
τ(i)

∏

i /∈S
(1 − τ(i))

]
v(S).
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We consider the mapping ml given for every τ ∈ [0, 1]N by

ml(τ ) =
(
S,

∏

i∈S
τ(i)

∏

i /∈S
(1 − τ(i))

)

{S⊆N :[τ ]1⊆S⊆supp(τ )}
. (2.8)

Namelyweuse any coalition containing player for sure, those in [τ ]1, and not contain-
ing players out of the support, those impossible for cooperating. The worth vml(τ )

is the expecting one of cooperation, particularly each level for a coalition is the
probability of forming this coalition.

Lemma 2.1 Let S be a coalition in N. If τ ∈ [0, 1]N is a fuzzy coalition then

∑

T⊆S

∏

i∈T
τ(i)

∏

i∈S\T
(1 − τ(i)) = 1.

Proof We prove the equality by induction in the cardinality of S. If S = {i} then
there are two options, T = ∅ or T = S, hence 1 − τ(i) + τ(i) = 1. Suppose true
when |S| < k and take S with |S| = k. Let any j ∈ S,

∑

T⊆S

∏

i∈T
τ(i)

∏

i∈S\T
(1 − τ(i)) =

∑

{T⊆S: j∈T }
τ( j)

∏

i∈T \{ j}
τ(i)

∏

i∈S\T
(1 − τ(i))

+
∑

{T⊆S: j /∈T }
(1 − τ( j))

∏

i∈T
τ(i)

∏

i∈S\(T∪{ j})
(1 − τ(i))

=
∑

T⊆S\{ j}

⎡

⎣τ( j)
∏

i∈T
τ(i)

∏

i∈(S\{ j})\T )

(1 − τ(i))

+ (1 − τ( j))
∏

i∈T
τ(i)

∏

i∈(S\{ j})\T )

(1 − τ(i))

⎤

⎦

=
∏

i∈T
τ(i)

∏

i∈(S\{ j})\T )

(1 − τ(i)) = 1,

because |S \ { j}| < k. �

Remark 2.1 The reader can think τ as a set of probability distributions, one for each
player, thus the probability to obtain a set of them is 1. If we take the distributions of
a particular coalition then the probability to obtain a subset of this coalition is also 1.

We test now that ml gets a partition by levels for each fuzzy coalition and it is an
extension.
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Proposition 2.1 Mapping ml is an extension.

Proof First we see that ml is a partition function, namely it obtains a partition by
levels for each fuzzy coalition τ ∈ [0, 1]N . Every level in ml(τ ) is non-zero by the
election of S. Moreover, if coalition S does not verify [τ ]1 ⊆ S ⊆ supp(τ ) then

∏

i∈S
τ(i)

∏

i /∈S
(1 − τ(i)) = 0.

Now, for each player j ∈ N we have

∑

{[τ ]1⊆S⊆supp(τ ), j∈S}

∏

i∈S
τ(i)

∏

i /∈S
(1 − τ(i)) =

∑

{S⊆N : j∈S}

∏

i∈S
τ(i)

∏

i /∈S
(1 − τ(i))

= τ( j)
∑

{S⊆N : j∈S}

∏

i∈S\{ j}
τ(i)

∏

i /∈S
(1 − τ(i))

= τ( j)
∑

{S⊆N\{ j}}

∏

i∈S
τ(i)

∏

i∈(N\{ j})\S
(1 − τ(i))

= τ( j),

applying the above lemma to N \ { j}. Finally we test that for any coalition S we get
ml(eS) = {(S, 1)}, the only coalition in ml(eS) is S because [eS]1 = S = supp(eS)
and

∏
i∈S eS(i)

∏
i /∈S(1 − eS(i)) = 1. �

Example 2.7 Suppose v ∈ G N anygameover N = {1, 2, 3, 4, 5}. Consider the fuzzy
coalition τ = (0.2, 0, 0.7, 1, 0.2). The information contained in τ says that for
instance the probability of cooperating player 3 is 0.7 and so her probability of
non cooperating is 0.3. What is certain in τ is that player 2 will never cooperate and
player 4 is always willing to cooperate. The expecting worth of τ is

vml(τ ) = 0.192v({4}) + 0, 048v({1, 4}) + 0.448v({3, 4}) + 0.048v({4, 5})
+ 0.112v({1, 3, 4}) + 0.012v({1, 4, 5}) + 0.112v({3, 4, 5})
+ 0.028v({1, 3, 4, 5})

Example 2.8 Suppose the game v over N = {1, 2} defined as v({1}) = 1, v({2}) = 3
and v({1, 2}) = 8. Let τ = (x, y) ∈ [0, 1] × [0, 1] be any fuzzy coalition. The mul-
tilinear function is the quadratic polynomial (the hyperbolic paraboloid in Fig. 2.1),

vml(x, y) = 4xy + x + 3y,

with the unit square as domain.

Example 2.9 Let T ⊆ N be a non-empty set. We calculate the multilinear extension
of the unanimity game uT . For each τ ∈ [0, 1]N ,
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Fig. 2.1 The multilinear
extension vml
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(uT )ml (τ ) =
∑

T⊆S

⎡

⎣
∏

j∈S
τ( j)

∏

j /∈S
(1 − τ( j))

⎤

⎦ =
∏

i∈T
τ(i)

∑

T⊆S

⎡

⎣
∏

j∈S\T
τ( j)

∏

j /∈S
(1 − τ( j))

⎤

⎦

=
∏

i∈T
τ(i)

∑

S⊆N\T

⎡

⎣
∏

j∈S
τ( j)

∏

j∈(N\T )\S
(1 − τ( j))

⎤

⎦ =
∏

i∈T
τ(i),

using Lemma 2.1 with N\T . Thus (uT )ml(τ ) is the probability of containing T .

Using the above example we get another formula of the multilinear extension
using the dividends (Proposition 1.1) of the games.

Proposition 2.2 For all game v ∈ G N it holds

vml(τ ) =
∑

{S⊆supp(τ ):S �=∅}
Δv

S

∏

i∈S
τ(i).

Proof Given two games v1, v2 we know that

(av1 + bv2)
ml = avml

1 + bvml
2 ,

because the extension is independent on the game. Proposition 1.1 and Example 2.9
imply the result. Observe that if a coalition S contains a player i with τ(i) = 0 then
uml
S (τ ) = 0. �

The properties of games in Definition 1.3 can be extended to fuzzy games. In
Branzei et al. [5] there is an extended analysis of these properties in the fuzzy context.
We focus the idea only about what happens with the fuzziness if we take a monotone,

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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superadditive or convex game. Example 2.6 proved that the fuzziness of any additive
game v is the linear function with v as coefficients.

Proposition 2.3 Let τ, τ ′ ∈ [0, 1]N be two fuzzy coalitions.

(1) If v ∈ G N
m and τ ≤ τ ′ then vml(τ ) ≤ vml(τ ′).

(2) If v ∈ G N
sa and τ ∧ τ ′ = 0 then vml(τ ∨ τ ′) ≥ vml(τ ) + vml(τ ′).

(3) If v ∈ G N
c then vml(τ ∨ τ ′) + vml(τ ∧ τ ′) ≥ vml(τ ) + vml(τ ′).

Proof (1) Let v be a monotone game. Suppose τ ∈ [0, 1]N and t ∈ [0, 1 − τ(i)] for
any player i . We get

vml(τ + te{i}) =
∑

{S⊆N :i∈S}
(τ (i) + t)

∏

j∈S\{i}
τ( j)

∏

j /∈S
(1 − τ( j))v(S)

+
∑

{S⊆N :i /∈S}
(1 − τ(i) − t)

∏

j∈S
τ( j)

∏

j /∈S∪{i}
(1 − τ( j))v(S)

= vml(τ ) + t
∑

{S⊆N :i∈S}

∏

j∈S\{i}
τ( j)

∏

j /∈S∪{i}
(1 − τ( j))[v(S) − v(S \ {i})]

≥ vml(τ ),

because, as v is monotone then v(S) ≥ v(S \ {i}) for all coalition S. Now if τ ≤ τ ′
then

τ ′ = τ +
∑

i∈N
[τ ′(i) − τ(i)]e{i}.

Applying sequentially the above reasoning we have vml(τ ) ≤ vml(τ ′).
(2) Let v be a superadditive game. If τ, τ ′ ∈ [0, 1]N with τ ∧ τ ′ = 0 then for each
player i one of them τ(i) or τ ′(i) is null. So, we have supp(τ ) ∩ supp(τ ′) = ∅.
We denote supp(τ ) = N1 and supp(τ ′) = N2. Moreover (τ ∨ τ ′)(i) = τ(i) if i ∈
N1, (τ ∨ τ ′)(i) = τ ′(i) if i ∈ N2 and (τ ∨ τ ′)(i) = 0 otherwise. Each coalition into
supp(τ ∨ τ ′) can be written as S ∪ T with S ⊆ N1 and T ⊆ N2. We obtain using
the superadditivity of v and Lemma 2.1,

vml(τ ∨ τ ′) =

=
∑

S⊆N1

∑

T⊆N2

⎡

⎣
∏

i∈S
τ(i)

∏

i∈T
τ ′(i)

∏

i∈N1\S
(1 − τ(i))

∏

i∈N2\T
(1 − τ ′(i))

⎤

⎦ v(S ∪ T )

≥
∑

S⊆N1

∑

T⊆N2

⎡

⎣
∏

i∈S
τ(i)

∏

i∈T
τ(i)

∏

i∈N1\S
(1 − τ(i))

∏

i∈N2\T
(1 − τ ′(i))

⎤

⎦ (v(S) + v(T ))
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=
∑

S⊆N1

∏

i∈S
τ(i)

∏

i∈N1\S
(1 − τ(i))

⎡

⎣
∑

T⊆N2

∏

i∈T
τ(i)

∏

i∈N2\T
(1 − τ ′(i))

⎤

⎦ v(S)

+
∑

T⊆N2

∏

i∈T
τ(i)

∏

i∈N2\T
(1 − τ(i))

⎡

⎣
∑

S⊆N1

∏

i∈S
τ(i)

∏

i∈N1\S
(1 − τ ′(i))

⎤

⎦ v(T )

=
∑

S⊆N1

∏

i∈S
τ(i)

∏

i∈N1\S
(1 − τ(i))v(S) +

∑

T⊆N2

∏

i∈T
τ(i)

∏

i∈N2\T
(1 − τ(i))v(T )

= vml(τ ) + vml(τ ′).

(3) Now suppose v a convex game. As multilinear function vml is twice continuously
differentiate for each player i it holds

Di (v
ml)(τ ) =

∑

{S⊆N :i∈S}

∏

j∈S\{i}
τ( j)

∏

j /∈S
(1 − τ( j))v(S)

−
∑

{S⊆N :i /∈S}

∏

j∈S
τ( j)

∏

j /∈S∪{i}
(1 − τ( j))v(S \ {i})

=
∑

{S⊆N :i∈S}

∏

j∈S\{i}
τ( j)

∏

j /∈S∪{i}
(1 − τ( j)) [v(S ∪ {i}) − v(S)]

Therefore Dii (vml)(τ ) = 0. If k �= i then using the same reasoning in the first derivate
we have

Dik(v
ml)(τ ) =

∑

{S⊆N :i,k∈S}

∏

j∈S\{i,k}
τ( j)

∏

j /∈S∪{i,k}
(1 − τ( j)) ·

· [v(S ∪ {i, k}) − v(S ∪ {i}) − v(S ∪ {k}) + v(S)] .

Since v is convex then v(S ∪ {i, k}) + v(S) ≥ v(S ∪ {i}) + v(S ∪ {k}), thus

Dik(v
ml)(τ ) ≥ 0.

Hence Di (vml) is an increasing function and so are the increments regard to i , if
τ ≤ τ ′ and t ∈ [0, 1 − τ ′(i)] then

vml(τ + te{i}) − v(τ ) ≤ vml(τ ′ + te{i}) − v(τ ′).

Now we take any τ, τ ′ ∈ [0, 1]N and R = {i ∈ N : τ ′(i) < τ(i)} = {i1, . . . , i p}. We
set h p = τ(i p) − τ ′(i p) and then

τ = τ ∧ τ ′ +
p∑

q=1

h pe
{i p}, τ ∨ τ ′ = τ ′ +

p∑

q=1

h pe
{i p}.
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Applying sequentially the above condition to τ ′, τ ∧ τ ′ we get

vml(τ ) − vml(τ ∧ τ ′) ≤ vml(τ ∨ τ ′) − vml(τ ′).

�

Remark 2.2 (1) Conditions (2) and (3) in the above proposition are true also with
product and coproduct, namely a probabilistic convexity.

vml(τ ⊗ τ ′) + vml(τ × τ ′) ≥ vml(τ ) + vml(τ ′).

(2) A fuzzy game satisfying condition (2) in the proposition is known as a fuzzy
superadditive game.
(3) A fuzzy game satisfying condition (3) is named supermodular fuzzy game.
Branzei et al. [4] introduced the concept of fuzzy convex game as a fuzzy game
which is supermodular and also a convex function for each component.

Obviously themultilinear extension of a game is a continuously differentiate fuzzy
game as we said before. Owen [15] had showed that the Shapley value is the diagonal
value of the multilinear extension before the diagonal value was defined.

Theorem 2.4 Let v ∈ G N be a game. It holds:

φd(vml) = φ(v).

Proof We calculate the diagonal value of vml . If i ∈ N then using Proposition 2.2,

Di (v
ml)(τ ) =

∑

{S⊆N :i∈S}
Δv

S

∏

j∈S\{i}
τ( j). (2.9)

Hence for each t ∈ [0, 1] we have

Di (v
ml)(teN ) =

∑

{S⊆N :i∈S}
Δv

St
|S|−1.

Finally we do the integral and from Theorem 1.2,

∫ 1

0
Di (v

ml)(teN ) dt =
∑

{S⊆N :i∈S}
Δv

S

∫ 1

0
t |S|−1 dt

=
∑

{S⊆N :i∈S}

Δv
S

|S| = φi (v).

�

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Straffin [17] used the multilinear extension of a simple game (Definition 1.3) to
explain the Shapley-Shubik index since a probabilistic point of view. If v ∈ G N

s then

vml(τ ) =
∑

S∈W (v)

∏

j∈S
τ( j)

∏

j /∈S
τ( j),

whereW (v) is the set of winning coalitions. The fuzzy set τ is interpreted as a set of
probability distributions, one for each player, determining the possibility to support
a motion. So, vml(τ ) is the probability to join a winning coalition. The Shapley-
Shubik index, following the above theorem, corresponds to the diagonal value of the
multilinear extension of our simple game. For each player i number

Di (v
ml)(τ ) =

∑

S∈SWi (v)

∏

j∈S\{i}
τ( j)

∏

j /∈S∪{i}
(1 − τ( j))

(obtained in the proof of Proposition 2.3) represents the probability to get a swing
(Definition 1.11) for this player. The equality

φi (v) =
∫ 1

0
Di (v

ml)(teN ) dt

means to calculate the expectation to be the critical person in the voting under the
homogeneity assumption (all the probability distributions are the same).

The Proportional Extension

We focus now on the fuzziness proposed by Butnariu [6]. Players consider the max-
imal level of cooperation, and the biggest coalition with this level. Then the second
level and go on. This condition guarantees that each player only play once as in the
classical model. If τ ∈ [0, 1]N is a fuzzy coalition over N we set for each t ∈ [0, 1]

Sτ
t = {i ∈ N : τ(i) = t}. (2.10)

Definition 2.11 Let v ∈ G N be a game. The proportional extension of v is a
fuzziness of v defined for each τ ∈ [0, 1]N as

vpr (τ ) =
∑

t∈im(τ )

tv
(
Sτ
t

)
.

Obviously family
pr(τ ) = (Sτ

t , t)t∈im(τ ) (2.11)

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Fig. 2.2 The proportional
extension vpr

1
0.8

0.6
0.4

0.2
00

0.2
0.4

0.6
0.8

0

1

2

3

4

5

6

7

8

1

is a partition by levels of τ . If τ = eS then im(τ ) = {1} and Sτ
1 = S, therefore we

can enunciate the following result.

Proposition 2.4 Mapping pr is an extension.

Example 2.10 Consider Example 2.7. The meaning now of the levels in the fuzzy
coalition τ = (0.2, 0, 0.7, 1, 0.2) is complete different. In this case, for player 3,
number 0.7 is the real membership and not a probability. Players look first for the
maximal level of cooperation in τ , thus player 1 is interested to cooperate only with
other players who are able to play at level 0.2. The same with player 3 and hence
player 3 is not interested in cooperating with player 1. So, in this case,

vpr (τ ) = v({4}) + 0.7v({3}) + 0.2v({1, 5}).

Example 2.11 Suppose again the game v in Example 2.8 over N = {1, 2} defined as
v({1}) = 1, v({2}) = 3 and v({1, 2}) = 8. Let τ = (x, y) ∈ [0, 1] × [0, 1] be any
fuzzy coalition. The proportional extension is a piecewise linear function (see
Fig. 2.2) which is discontinuous on the diagonal of the square,

vpr (x, y) =
{
8x, if x = y
x + 3y, if x �= y.

Example 2.12 Let T ⊆ N be a non-empty set. The proportional extension of the
unanimity game uT is given for each τ ∈ [0, 1]N as

(uT )pr (τ ) =
{
t, if T ⊆ Sτ

t
0, otherwise.
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Using the worths of the fuzzy coalitions for unanimity games obtained in the
above example we give another formula for the proportional extension.

Proposition 2.5 For all game v ∈ G N it holds

vpr (τ ) =
∑

{S⊆N :S �=∅,∃tS with τ(i)=tS ∀i∈S}
tSΔ

v
S.

Proof We get for two games v1, v2,

(av1 + bv2)
pr = avpr1 + bvpr2 .

Proposition 1.1 and Example 2.12 imply the result. �

Not always the properties of a game are transmitted to the fuzziness. Next example
shows that monotonicity and convexity are not transmitted from the game to its
fuzziness.

Example 2.13 Consider the game v ∈ G N
m in Example 2.11. We have vpr (τ ) = 2.4

with τ = (0.3, 0.3) and vpr (τ ′) = 1.8 with τ ′ = (0.3, 0.5), but τ ≤ τ ′.
Our game v is also convex (in this case, being convex coincides with being super-
additive). Now take τ = (0.5, 0.5) and τ ′ = (0.4, 0.6). We have τ ∨ τ ′ = (0.5, 0.6)
and τ ∧ τ ′ = (0.4, 0.5). But

v(τ ∨ τ ′) + v(τ ∧ τ ′) = 4.2 ≤ 6.2 = v(τ ) + v(τ ′).

At least superadditivity is transmitted by the proportional extension.

Proposition 2.6 Let v ∈ G N
sa be a superadditive game. For each two fuzzy

coalitions τ, τ ′ with τ ∧ τ ′ = 0 it holds

vpr (τ ∨ τ ′) ≥ vpr (τ ) + vpr (τ ′)

Proof Let τ, τ ′ ∈ [0, 1]N with τ ∧ τ ′ = 0. In that case supp(τ ) ∩ supp(τ ′) = ∅,
moreover im(τ ∨ τ ′) = im(τ ) ∪ im(τ ′). This fact implies that for each t ∈ im(τ ∨
τ ′) we have

Sτ∨τ ′
t = Sτ

t ∪ Sτ ′
t , Sτ

t ∩ Sτ ′
t = ∅.

So, using that v is superadditive

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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vpr (τ ∨ τ ′) =
∑

t∈im(τ∨τ ′)

t v(Sτ∨τ ′
t ) =

∑

t∈im(τ∨τ ′)

t v(Sτ
t ∪ Sτ ′

t )

≥
∑

t∈im(τ )∪im(τ ′)

t v(Sτ
t ) +

∑

t∈im(τ )∪im(τ ′)

t v(Sτ ′
t ) = vpr (τ ) + vpr (τ ′).

Observe that if t ∈ im(τ ′) \ im(τ ) (or t ∈ im(τ ) \ im(τ ′)) then Sτ
t = ∅

(Sτ ′
t = ∅). �

The Choquet Extension

The third option uses the Choquet integral. Tsurumi et al. [18] proposed the following
fuzziness. Players look for setting the largest coalition and for that they play with
the smallest level.

Definition 2.12 Let v ∈ G N be a game. The Choquet extension of v is a fuzzi-
ness of v defined for each τ ∈ [0, 1]N as

vch(τ ) =
∫

c
τ dv.

The definition of the Choquet integral in a finite set shows that the above definition
is indeed a fuzziness of v,

vch(τ ) =
m∑

k=1

(λk − λk−1)v([τ ]k),

if im0(τ ) = {λ0 < λ1 < · · · < λm}. So, the partition by levels is

ch(τ ) = (λk − λk−1, [τ ]k)mk=1. (2.12)

If i ∈ N and τ(i) = λk0 then

∑

{k:i∈[τ ]k }
(λk − λk−1) =

k0∑

k=1

(λk − λk−1) = τ(i).

Example 2.14 Following to Examples 2.7 and 2.10 we determine now the Choquet
extension of v in τ . In this case, players look for the biggest coalition, so they have to
use the smallest level in the image of τ , namely 0.2. Coalition {1, 3, 4, 5} is formed.
Now players still can cooperate choosing level 0.7 − 0.2 = 0.5 and coalition {3, 4}
(using actually (0, 0, 0.5, 0.8, 0)) and go on.
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vch(τ ) = (0.2 − 0)v({1, 3, 4, 5}) + (0.7 − 0.2)v({3, 4}) + (1 − 0.7)v({4})
= 0.2v({1, 3, 4, 5}) + 0.5v({3, 4}) + 0.3v({4}).

Next example shows graphically the proposed fuzziness with two players.

Example 2.15 Suppose again the game v in Examples 2.8 and 2.11 over N = {1, 2}
defined as v({1}) = 1, v({2}) = 3 and v({1, 2}) = 8. Let τ = (x, y) ∈ [0, 1] × [0, 1]
be any fuzzy coalition. The Choquet extension is also a piece linear function (see
Fig. 2.3) but it is continuously although it is not differentiate,

vch(x, y) =
{
x + 7y, if x ≥ y
5x + 3y, if x ≤ y.

Example 2.16 Let T ⊆ N be a non-empty set and λk0 = ∧
i∈T τ(i). The Choquet

extension of the unanimity game uT is given for each τ ∈ [0, 1]N with im0 = {λ0 <

λ1 < · · · λm} as

(uT )ch(τ ) =
∑

{k:T⊆[τ ]k }
(λk − λk−1) =

k0∑

k=1

(λk − λk−1) =
∧

i∈T
τ(i).

The above example allows again to describe the extension by the dividends of the
game.

Fig. 2.3 The Choquet
extension vch
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Proposition 2.7 For all game v ∈ G N it holds

vch(τ ) =
∑

S⊆ supp(τ )

Δv
S

∧

i∈S
τ(i) =

m∑

k=1

λk

∑

{S⊆[τ ]k :S∩Sτ
λk

�=∅}
Δv

S,

if im(τ ) = {λ1 < · · · < λm}.

Proof We get for two games v1, v2,

(av1 + bv2)
ch = avch1 + bvch2 .

Proposition 1.1, Example 2.16 imply both formulas. Observe that
∧

i∈S τ(i) = t if
there exists i ∈ S with τ(i) = t . �

The Choquet extension works well with the properties of the original crisp game
as the multilinear extension.

Proposition 2.8 Let τ, τ ′ ∈ [0, 1]N be two fuzzy coalitions.

(1) If v ∈ G N
m and τ ≤ τ ′ then vch(τ ) ≤ vch(τ ′).

(2) If v ∈ G N
sa and τ ∧ τ ′ = 0 then vch(τ ∨ τ ′) ≥ vch(τ ) + vch(τ ′).

(3) If v ∈ G N
c then vch(τ ∨ τ ′) + vch(τ ∧ τ ′) ≥ vch(τ ) + vch(τ ′).

Proof (1) The result follows since property (C8) of the Choquet integral (Sect. 2.2).
(2) Let v ∈ G N

sa If τ ∧ τ ′ = 0 then im(τ ∨ τ ′) = im(τ ) ∪ im(τ ′). Moreover [τ ∨
τ ′]t = [τ ]t ∪ [τ ′]t and [τ ]t ∩ [τ ′]t = ∅ for all t ∈ (0, 1]. So, if im0(τ ∨ τ ′) = {0 =
λ0 < λ1 < · · · < λm}

vch(τ ∨ τ ′) =
∫

c
τ ∨ τ ′ dv =

m∑

k=1

(λk − λk−1)v([τ ]k ∪ [τ ′]k)

≥
m∑

k=1

(λk − λk−1)[v([τ ]k) + v([τ ′]k)]

=
m∑

k=1

(λk − λk−1)v([τ ]k) +
m∑

k=1

(λk − λk−1)v([τ ′]k)

=
∫

c
τ dv +

∫

c
τ ′ dv,

using (C10) in the last equality. Observe that im(τ ), im(τ ′) and both them contains

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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(3) Suppose v ∈ G N
c . Obviously im(τ ∨ τ ′) ∪ im(τ ∧ τ ′) = im(τ ) ∪ im(τ ′). We

denote
im0(τ ) ∪ im0(τ

′) = {0 = λ0 < λ1 < · · · < λm}.

For each t ∈ (0, 1] we obtain [τ ∨ τ ′]t = [τ ]t ∪ [τ ′]t and [τ ∧ τ ′]t = [τ ]t ∩ [τ ′]t .
Now, by (C10) and convexity,

vch(τ ∨ τ ′) + vch(τ ∧ τ ′) =
∫

c
τ ∨ τ ′ dv +

∫

c
τ ∧ τ ′ dv

=
m∑

k=1

(λk − λk−1)[v([τ ∨ τ ′]k) + v([τ ∧ τ ′]k)]

≥
m∑

k=1

(λk − λk−1)[v([τ ]k) + v([τ ′]k)]

=
∫

c
τ dv +

∫

c
ττ ′ dv

= vch(τ ) + vch(τ ′).

�

There are several ways to apply the diagonal formula to the Choquet extension
by smoothing processes in Weiss [19].
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Chapter 3
Games with a Fuzzy Bilateral Relation
Among the Players

3.1 Introduction

Values solve games for a particular set of players considering the cooperation among
all of them. So, the solution of the cooperative game depends on the both of the
elements defining it, the set of players cooperating and the mapping of the game.
The classical solutions suppose as peers all the players. In real life, political, social or
economic circumstances may impose certain restraints on coalition formation from
the relations among the players. This idea has led several authors to develop models
of cooperative games with partial cooperation. So, the classical model is modified
including the information among the players. Shapley functions are values for games
with this information which coincide with the Shapley value if the circumstances
are harmless. In this book we analyze situations where there exists certain kind of
information about the players and their relations. Now the payoff vector should be
changed considering the information. There are two mean ways in the literature to
do that. The first one consists in restricting the feasible coalitions by the information
and then defining new values using only these coalitions. In Aumann and Dreze [3],
Faigle and Kern [10], Bilbao [5], Jiménez [15] or Jiménez-Losada [16] the authors
used this first way. The second one modifies the characteristic function of the game
by the information defining a new classical game and later solving this new game.
In Myerson [22], Derks and Peters [9], Gilles et al. [14], Algaba et al. [2], Gallardo
et al. [12] the second way is followed. Fuzzy versions of some of these models were
studied in Jiménez-Losada et al. [17], Meng et al. [19], Gallardo et al. [11, 12] or
Gallego et al. [13].

We focus our analysis on the secondway. So,we try tomodify the gameusing some
information about the players. This way means certain flexibility in the modification
but, as we said in the before chapters, we work with non flexibility situations and
then should respect the search of the greatest cooperations. Given a game and certain
information we have to answer two different mean questions. How to assimilate the
additional information in the game? depending on the situation and the interpretation

© Springer International Publishing AG 2017
A. Jiménez-Losada, Models for Cooperative Games with Fuzzy Relations
among the Agents, Studies in Fuzziness and Soft Computing 355,
DOI 10.1007/978-3-319-56472-2_3
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64 3 Games with a Fuzzy Bilateral Relation Among the Players

of the information we can have several ways to modify the game. Once we have
defined the new game we can apply the usual solutions, but formulas and axioms
should bewritten from the original game and the information. Therefore themodified
game will be only a tool and we should be able to decide which solution to apply.

In this chapter we present the general model focused on information from bilateral
relations among the players. We will study several of these situations in the next
chapters but now, in this one, we describe an easy particular case to illustrate how
the model works.

3.2 Games with Information About the Players

Let N be our finite set of players and v ∈ G N . Suppose I (N ) a family of some kind
of mathematical object representing different relations among the players such that
there exists KI (N ) ∈ I (N ) harmless for them, and then KI (N ) is identified to the
classical case. For each element in I (N ) we have a different solution of the game.
The inclusion of the new information into the game forces certain flexibility, but we
try to follow the usual behavior ofmaximal cooperation restricted by the information.
So fixed N , we have now two data points: a game v ∈ G N and some information
K ∈ I (N ). We name game over N with information I (N ) to the pair (v, K ).

Definition 3.1 A value for games over N with information I (N ) is a mapping
f : G N × I (N ) → R

N such that f (v, K ) is interpreted as the payoff vector
obtained if the relations among the players are regulated by K .

This kind of values can be also seen as uncertain solutions. So, a value f for games
over N introduces for each game not just a payoff vector but a solution depending
on the known information, namely for every v ∈ G N we have a function f v over
I (N ) obtaining a vector f v(K ) for all information set K ∈ I (N ). This other vision
is named as value function, see Tsurumi et al. [26] for instance. We will use the first
option, as in Definition 3.1, but any of both names.

The focus of our analysis is the Shapley value, therefore we look for extensions
of this value to different kinds of information over the players.

Definition 3.2 A value f for games over N with information I (N ) is named
a Shapley value if f (v, KI (N )) = φ(v), where KI (N ) represents the usual situ-
ation into I (N ).

During several years a lot of Shapley values have been studied using differ-
ent mathematical structures explaining certain situations among the players: coali-
tion structures [3], communication structures [22], a priori unions [24], permission
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structures [14], incompatibility structures [4], convex geometries [5], matroids [6],
antimatroids [2], coalition configurations [1], cooperation structures [8], authoriza-
tion structures [12], etc.

Following the same way it is possible to define also games with fuzzy information
about the players.Now the information is certain kindof fuzzymathematical structure
Y (N ), containing KY (N ) as the classical situation.

Definition 3.3 A value for games over N with fuzzy information Y (N ) is a
mapping f : G N × Y (N ) → R

N .

Observe that we always consider an usual game but we need to incorporate fuzzy
information. So really we do not need to work with fuzzy games. The fuzzy informa-
tion will be included into the characteristic function using fuzziness tools but always
using classical games. In the literature another different approach has been also ana-
lyzed, fuzzy games with crisp information. The reader can see the studied of this
other model in Tsurumi et al. [26], Meng and Zhang [19] or Meng and Zhang [20].
Usually the chosen fuzzy information structure Y (N ) is a generalization of a known
crisp structure studied before. So we denote as Y cr (N ) the crisp situations contained
in Y (N ) and obviously KY (N ) = KYcr (N ). To determine a value f for games with
fuzzy information Y (N ) we will take into account the known crisp version of the
value, we denote it as f cr , for games with information Y cr (N ).

Definition 3.4 A value f for games over N with fuzzy information Y (N ) is
named a Shapley value if f cr is a Shapley value and f (v, K ) = f cr (v, K ) for
all K ∈ Y cr (N ).

3.3 Crisp and Fuzzy Bilateral Relationships Among Players

One kind of information system about the players is a bilateral relation among them.
Equivalence relations or order relations are examples. We will treat with some of the
most known of these situations in the next chapters. Let N be our finite set of players.
A binary relationship1 on N is a mapping r : N × N → {0, 1} where r(i, j) = 1 if
and only if player i is related with player j and r(i, j) = 0 otherwise. The family of
bilateral relations is R(N ). We named domain of r ∈ R(N ) to the set

Nr = {i ∈ N : r(i, i) = 1}. (3.1)

The relation r ∈ R(N ) is called:

1This way to introduce a binary relationship is not the usual one, but it allows to understand the
extension to fuzzy relations.
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• Reflexive, if r(i, i) = 1 for all i ∈ N , namely Nr = N . It is quasi-reflexive if
r(i, j) = 1 implies j ∈ Nr .

• Symmetric, if r(i, j) = r( j, i) for all i, j ∈ N , namely if player i is related with
j then j is related with i . In that case we denote each pair (unordered) as i j .

• Antisymmetric, if r(i, j) = r( j, i) = 1 implies i = j , namely if i is related with
a different player j then j is not related with i .

• Transitive, if r(i, j) = r( j, k) = 1 implies that r(i, k) = 1 for all different i, j, k ∈
N , namely if i is related with j and j with k then i is related with k.

Our relation r on N is an equivalence relation if r is reflexive, symmetric and transi-
tive. Relation r is a partial ordering if r is reflexive, antisymmetric and transitive. Let
T ⊆ N be a coalition, the restriction of r to T is another binary relation rT ∈ R(N )

such that rT (i, j) = r(i, j) for all i, j ∈ T and r(i, j) = 0 otherwise. Observe that
the domain of this new relation is NrT = Nr ∩ T .

Each relation r ∈ R(N ) defines a mapping r : N → 2N where r(i) = { j ∈ N :
r(i, j) = 1} for all i ∈ N . Furthermore this is another way to introduce the concept
of binary relation, namely we can give r defining the players related with each one.
Relation r is reflexive if and only if i ∈ r(i) for every player i , r is symmetric if and
if j ∈ r(i) implies i ∈ r( j), r is antisymmetric if and if j ∈ r(i) implies i /∈ r( j)
and r is transitive if and only if i ∈ r( j) and j ∈ r(k) imply i ∈ r(k).

A binary relation r is numerically represented by a matrix using the same letter r
with size n × n where ri j = r(i, j), moreover any matrix n × n with elements 0 or
1 is a binary relation. Relation r is quasi-reflexive if and only if one element 0 in the
diagonal of the matrix means null corresponding column, r is symmetric if and only
if the associated matrix is symmetric, r is antisymmetric if and only if so the matrix
is and r is transitive if and only if matrix r2 satisfies that r2i j > 0 implies ri j = 1.

Graphically a relation r ∈ R(N ) is represented by a graph, and moreover any
graph (directed or undirected) represents a binary relation. Suppose L(N ) = {(i, j) :
i, j ∈ N , i �= j}. In this book we will use the following representation, If r ∈ R(N )

then we consider the directed graph r with vertices (points) labeled by N , the vertex
i is in black2 if i ∈ Nr and white otherwise. The links are the bilateral relationships
among them,

L(r) = {(i, j) ∈ L(N ) : r(i, j) = 1},

namely we draw a directed line, arrow, from the first vertex to the second one if
the first one is related with the second one. If the relation is symmetric we will use
an undirected graph, that is we draw only lines and no arrows for the links. The
usual language of graph theory is used to describe circumstances about the binary
relations. Relation r is complete if for all i, j ∈ Nr we have r(i, j) = 1. Given two
players i, j ∈ N , a path from i to j is a finite sequence {i0, . . . , im} of players with
i0 = i , im = j , {ik}m−1

k=1 ⊆ N \ {i, j} are two to two different and r(ik−1, ik) = 1 for
all k = 1, . . . ,m. If i = j and m ≥ 2 then the path is named cycle for player i . An

2In graph theory this idea corresponds to a loop.
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Fig. 3.1 Quasi-reflexive and
symmetric relation r
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4 

5 

acyclic relation is that without cycles. Two players i, j ∈ N are connected if there
is a path between them. Relation r is connected3 if all i, j ∈ Nr are connected. A
coalition S is connected if S ⊆ Nr and rS is connected. The connected coalitions for
r can be ordered by inclusion, the maximal elements are named components4 of r .
We denote

N/r = {S ⊆ N : S is a component in r}. (3.2)

Set N/r is a partition of the domain of r , namely
⋃

S∈N/r S = Nr and S ∩ T = ∅ if
S, T ∈ N/r are different.

Example 3.1 Suppose N = {1, 2, 3, 4, 5} and r aquasi-reflexive and symmetric rela-
tion on N given by the following matrix,

r =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 1 1 0
0 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

The domain of r is Nr = {1, 2, 3, 4}. It is not a reflexive because r(5, 5) = 0 and
it is not transitive because r(3, 1) = r(1, 4) = 1 but r(3, 4) = 0. Relation r is not
connected and its components are N/r = {{1, 3, 4}, {2}}. The undirected graph rep-
resenting relation r is in Fig. 3.1.

Example 3.2 Consider again N = {1, 2, 3, 4, 5} and r an acyclic transitive binary
relation on N given by the following matrix,

r =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 1 1 0
0 1 0 1 0
0 0 1 0 0
1 1 0 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

It is not quasi-reflexive and it is not symmetric. The directed graph representing the
relation is in Fig. 3.2.

3This concept corresponds to 1-connected for directed graphs because there are three different kinds
of connection. We will only use one of them.
4Connected component is the usually name, but we can use component without danger of confusion.
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Fig. 3.2 Transitive relation r 1 
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But the relations among players are not always black or white, so fuzzy bilat-
eral relations will allow us to introduce leveled relations among them. We follow
Mordeson and Nair [21] and Ovchinnikov [23] to describe the basic concepts of
fuzzy binary relations and fuzzy graphs. A fuzzy binary relation5 on N is a mapping
ρ : N × N → [0, 1]where ρ(i, j) is the relationship level of i with j . The family of
fuzzy binary relations is [0, 1]N×N . Any relation in R(N ) is particularly a fuzzy bilat-
eral relationship. In a fuzzy context we said crisp to them and we denote ρ ∈ R(N ).
Let ρ ∈ [0, 1]N×N . The crisp version of the fuzzy relation ρ is rρ ∈ R(N ) defined
as rρ(i, j) = 1 if and only if ρ(i, j) > 0. The domain of ρ is the set

N ρ = {i ∈ N : ρ(i, i) > 0} = Nrρ

. (3.3)

The fuzzy domain is a fuzzy coalition τρ ∈ [0, 1]N with the levels of the elements in
the domain, for each i ∈ N

τρ(i) = ρ(i, i). (3.4)

Hence, we have N ρ = supp(τ ρ). The extensions of reflexivity, symmetry, antisym-
metry and transitivity have in the fuzzy case a linkage with the election of a particular
T-norm (see Sect. 2.2). In this book we consider several of them. A fuzzy relation ρ

is called:

• Reflexive, if ρ(i, i) = 1 for all i ∈ N . The relation is weakly reflexive if

ρ(i, j) ≤ ρ( j, j)∀i, j ∈ N ,

and the relation is semi-reflexive if

ρ(i, j) ≤ ρ(i, i)ρ( j, j)∀i, j ∈ N .

• Symmetric, if ρ(i, j) = ρ( j, i) for all i, j ∈ N . We will use in that case ρ(i j).
Observe that, if ρ is symmetric then ρ is weakly reflexive if and only if ρ(i j) ≤
ρ(i i) ∧ ρ( j j).

• Antisymmetric, if ρ(i, j) ∧ ρ( j, i) = 0 for all i, j ∈ N , i �= j . The relation ρ is
weakly antisymmetric if ρ(i, j) + ρ( j, i) ≤ 1.

5There exists a more general concept of fuzzy binary relation on a fuzzy set τ . In our case τ = eN .

http://dx.doi.org/10.1007/978-3-319-56472-2_2
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• Transitive, if for all different i, j, k ∈ N it holds ρ(i, j) ∧ ρ( j, k) ≤ ρ(i, k). We
say ρ is semi-transitive if ρ(i, j)ρ( j, k) ≤ ρ(i, k).

The fuzzy relation ρ on N is a proximity relation if it satisfies reflexivity and symme-
try. Similarity relations are reflexive, symmetric and transitive, they coincide in R(N )

with the crisp equivalence relations. As in the crisp case relation ρ is a fuzzy partial
order ifρ is reflexive, antisymmetric and transitive, particularly it is a fuzzy total order
if ρ(i, j) ∨ ρ( j, i) > 0 for every i �= j . Let T ⊆ N be a coalition, the restriction of
ρ to T is another fuzzy relation ρT ∈ [0, 1]N×N such that ρT (i, j) = ρ(i, j) for all
i, j ∈ T and ρT (i, j) = 0 otherwise. Also the domain of this new fuzzy relation is
N ρT = N ρ ∩ T .

A fuzzy relation ρ is a fuzzy set over N × N too. Hence we can use the usual
notations and concepts from this theory inSect. 2.2. Therefore, the support, the image,
the cuts and the Choquet integral for set functions on N × N can be calculate of a
fuzzy relation. Each fuzzy relation ρ defines also a mapping ρ : N → [0, 1]N where
ρ(i)( j) = ρ(i, j) for all i ∈ N . So we can see the fuzzy relation as a set of n fuzzy
sets.

We represent numerically a fuzzy binary relation ρ by a matrix using the same
letter ρ with size n × n where ρi j = ρ(i, j), moreover any matrix n × n with ele-
ments in [0, 1] is a fuzzy binary relation. Relation ρ is weakly reflexive if and only
if one element 0 in the diagonal of the matrix means null corresponding column, ρ
is symmetric if and only if the associated matrix is symmetric, ρ is antisymmetric if
and only if so the matrix is and ρ is transitive if and only if matrix ρ2 satisfies that
ρ2
i j > 0 implies ρi j > 0.
Graphically a relation ρ ∈ [0, 1]N×N can be represented by a fuzzy graph, and

moreover any fuzzy graph (directed or undirected) represents a binary relation. In
this bookwewill use the following representation, if ρ ∈ [0, 1]N×N then we consider
the directed fuzzy graph ρ with fuzzy vertices labeled by N and leveled by ρ(i, i)
for each vertex i , in black vertices with i ∈ N ρ and white otherwise. The fuzzy links
are the links in supp(ρ) between different elements where for each (i, j) the level
is ρ(i, j), namely we draw an arrow from the first vertex i to the second one j with
level a if ρ(i, j) = a. If the relation is symmetric we will use an undirected fuzzy
graph, that is we draw only lines and no arrows for the links. Moreover, in that case
we take i j as (i, j) or ( j, i). The crisp version rρ is the graph resulted to delete the
numbers in the fuzzy graph ρ. The fuzzy relation ρ is complete, acyclic or connected
if and only if the crisp version so is. The components of ρ are the components of rρ .
We denote

N/ρ = N/rρ. (3.5)

Set N/ρ is a partition of the domain of ρ. The set of fuzzy links is L(ρ) = L(rρ).
The maximum level and the minimum level of the fuzzy relation ρ over N is

∨ ρ =
∨

(i, j)∈N×N

ρ(i, j), ∧ρ =
∧

(i, j)∈supp(ρ)

ρ(i, j). (3.6)

http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Fig. 3.3 Weakly proximity
relation ρ 1 
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Example 3.3 Suppose N = {1, 2, 3, 4, 5} and ρ given by the following matrix,

ρ =

⎡

⎢
⎢
⎢
⎢
⎣

0.4 0 0.2 0.4 0
0 1 0 0 0
0.2 0 0.5 0 0
0.4 0 0 0.8 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

It is a weakly proximity relation in the sense that it is weakly reflexive and sym-
metric. The domain of ρ is N ρ = {1, 2, 3, 4}. It is not a weakly similarity relation
because ρ(3, 1) ∧ ρ(1, 4) = 0.2 but ρ(3, 4) = 0. Relation ρ is not connected with
components N/ρ = {{1, 3, 4}, {2}}. The maximum level is ∨ρ = 0.8 and the min-
imum level is ∧ρ = 0.2. The undirected fuzzy graph representing the relation is in
Fig. 3.3 and the crisp version is Fig. 3.1.

Example 3.4 Consider again N = {1, 2, 3, 4, 5} and ρ a weakly antisymmetric and
transitive relation. Its matrix is

ρ =

⎡

⎢
⎢
⎢
⎢
⎣

1 0.3 0.3 0.6 0
0 1 0 0.7 0
0 0 1 0 0
1 0.1 0 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

It is not weakly reflexive and symmetric. The directed graph representing the relation
is in Fig. 3.4.

Fig. 3.4 Weakly
antisymmetric and transitive
relation ρ
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Fig. 3.5 Relation r S 1 
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Fig. 3.6 Relation ρτ
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In this book several Shapley values for games with information given by a par-
ticular kind of crisp and fuzzy binary relations will be studied. Namely, we will
consider different models taking I (N ) ⊆ R(N ) and Y (N ) ⊆ [0, 1]N×N with partic-
ular interpretations. In the next two sections we explain an easy example of themodel
using the most simple case of crisp and fuzzy relation: the formation of an specific
coalition or fuzzy coalition. Any coalition S ⊆ N is identified to a quasi-equivalence
relation (quasi-reflexive, symmetric and transitive) r S where NrS = S. Relation r S

is defined as r S(i, j) = 1 if and only if i, j ∈ S. More generally, any fuzzy coali-
tion τ ∈ [0, 1]N is also identified to a weakly similarity relation (weakly reflexive,
symmetric and transitive) ρτ as ρτ (i, j) = τ(i) ∧ τ( j) for all i, j ∈ N . Observe that
ρeS = r S .

Example 3.5 Let N = {1, 2, 3, 4, 5}. In Fig. 3.5 we can see the relation r S with
coalition S = {1, 3, 4} and in Fig. 3.6 the relation ρτ with τ = (0.6, 0, 0.7, 0.3, 0).
The matrices associated to these relations are

r S =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 1 1 0
0 0 0 0 0
1 0 1 1 0
1 0 1 1 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

, ρτ =

⎡

⎢
⎢
⎢
⎢
⎣

0.6 0 0.6 0.3 0
0 0 0 0 0
0.6 0 0.7 0.3 0
0.3 0 0.3 0.3 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

In the next chapters several Shapley values for different situations using partitions
[3], communications [22], hierarchies [14] and closeness [24] among the players.
Following next sections as a sample, we will introduce an appropriate modification
of games for each kind of information, we will analyze the transmission of properties
for the game, we will define a Shapley value and properties for it, and finally we will
provide the new value with at least an axiomatization.
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3.4 The Coalitional Model

We describe in this section an easy example of games with information and a Shapley
value for the situation. The classical model suppose that coalition N is formed and
then v(N ) is allocated among all the players. We can study the situation of a game
where another coalition is formed. So, I (N ) = 2N and KI (N ) = N . A value function
for games with this kind of information is

f : G N × 2N → R
N .

Each pair (v, T ) ∈ G N × 2N is called a game over N with coalition. We see this
model as games with a bilateral relation among the players identifying each coalition
T with r T (see Example 3.5). At the end of Sect. 1.2 we told a way to reduce a game
using subgames. But our model, as we explained in the introduction, is based on
modifying the original game with the information and so obtaining a new game over
N . The subgame corresponds rather to the first way.

Next definition introduces another known way to reduce a game to a coalition in
our sense.

Definition 3.5 Let v ∈ G N be a game and T ⊂ N a coalition. The restricted
game to T is a new game vT ∈ G N satisfying for each coalition S ⊆ N ,

vT (S) = v(S ∩ T ).

Let (v, T ) ∈ G N × 2N . Both of the options, subgame and restricted game, get that
players out of coalition T are not active in the game but with finer shades. In the first
one (subgame) players out of T are not in the game, they are not really players. In
the second one (restricted game) they are players but their integration into a coalition
has never influence. The restricted game also allow us to extend a game defined in a
set T incorporating non-active players as null players, i.e. each i ∈ N \ T is a null
player of vT . In fact, if S ⊆ N \ {i} then

vT (S ∪ {i}) = v((S ∪ {i}) ∩ T ) = v(S ∩ T ) = vT (S).

Hence given (v, T ) we consider the restricted game vT ∈ G N . An interesting
question about the chosen modification is: does the new game preserve the properties
of the original one? Next two propositions summary several of them. But not all
property is preserved. For instance, the anonymous condition is not transferable by
the restriction of games. Suppose N = {1, 2, 3}, v(S) = |S| for all coalition S and
T = {1, 2}. Game v ∈ G N

a but vT ({1, 2}) = 2 �= 1 = vT ({1, 3}).

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Proposition 3.1 Let v ∈ G N and T ⊆ N.

(1) If v is additive then vT is additive.
(2) If v is superadditive (subadditive) then so is vT .
(3) If v is convex (concave) then so is vT .
(4) If v is monotone then vT is monotone
(5) If v is a {0, 1}-game then vT is also a {0, 1}-game.
(6) If v is simple then so is vT .

Proof If v ∈ R
N then vT (S) = ∑

i∈S∩T vi . Therefore vT is the additive game asso-
ciated to the vector vT ∈ R

N with vTi = vi if i ∈ T and vTi = 0 otherwise. Suppose
v ∈ G N

c and S, R ⊆ N . As (S ∪ R) ∩ T = (S ∩ T ) ∪ (R ∩ T ) and (S ∩ R) ∩ T =
(S ∩ T ) ∩ (R ∩ T ) we get

vT (S ∪ R) + vT (S ∩ R) ≥ v(S ∩ T ) + v(R ∩ T ) = vT (S) + vT (R).

The superadditive condition follows in the same way. If v ∈ G N
m then vT (S) ≤ vT (R)

when S ⊆ R because S ∩ T ⊆ R ∩ T . The two final statements are trivial. �

More properties in the next proposition.

Proposition 3.2 Let v,w ∈ G N and T ⊆ N.

(1) (av + bw)T = avT + bwT for all a, b ∈ R.
(2) If v,w are strategically equivalent then so are vT ,wT .
(3) (−v)T = −(vT ).
(4) (vsvg)T = (vT )svg.
(5) If v,w ∈ G N

s then (v ∧ w)T = vT ∧ wT and (v ∨ w)T = vT ∨ wT .

Proof Suppose a, b ∈ R. We get

(av + bw)T (S) = (av + bw)(S ∩ T ) = av(S ∩ T ) + bw(S ∩ T ) = avT (S) + bwT (S).

So, if v,w are strategically equivalent, namely there exist a > 0 and b ∈ R
N with

v = aw + b then
vT = awT + bT ,

where bT ∈ R
N (see the proof of the above proposition). Thus vT ,wT are strategically

equivalent. Obviously (−v)T = −(vT ). Now we determine the saving game,
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(vsvg)T (S) = vsvg(S ∩ T ) =
∑

i∈S∩T
v({i}) − v(S ∩ T )

=
∑

i∈S
v({i} ∩ T ) − v(S ∩ T ) =

∑

i∈S
vT ({i}) − vT (S) = (vT )svg(S).

Finally

(v ∧ w)T (S) = (v ∧ w)(S ∩ T ) = v(S ∩ T ) ∧ w(S ∩ T ) = (vT ∧ wT )(S).

The same with operator ∨. �

The dual operator (1.5) has problems with the restricted game in the sense that it is
not always true the equality (vdual)T = (vT )dual , as it is showed in the next example.

Example 3.6 Consider the bankruptcy game in Examples1.15 and 1.18. Let T =
{2, 3} and S = {1, 3}. Using Table1.5 we obtain

(vdual)T (S) = vdual({3}) = 40000.

On the other hand taking into account (1.5) and Table1.3,

(vT )dual(S) = vT (N ) − vT ({2}) = v(T ) − v({2}) = 25000.

Next we define a Shapley value for games with a coalition using the Shapley value
of the modification of the game with the coalition.

Definition 3.6 The extended Shapley value is a value for games over N with
coalition defined for each game v ∈ G N and coalition T ⊆ N as

φ(v, T ) = φ(vT ).

Obviously the above mapping coincides with the Shapley value in the classical
situation because vN = v. We can use very similar axioms to the Shapley value for
the extended on. Let f : G N × 2N → R

N a value function for games over N with
coalition.

Restricted efficiency. For all v ∈ G N and T ⊆ N , f (v, T )(N ) = v(T ).

Restricted null player. Let i ∈ N be a null player in the game v, it holds fi (v, T ) = 0
for all coalition T with i ∈ T

Restricted symmetry. If i, j ∈ N are symmetric for a game v then fi (v, T ) =
f j (v, T ) for all T with i, j ∈ T .

Linearity. For all v,w ∈ G N , a, b ∈ R and coalition T it holds f (av + bw, T ) =
a f (v, T ) + b f (w, T ).

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Also we add the following axiom introduced by Shapley [25] jointly with effi-
ciency. Players out the formed coalition have neither harm nor good in the payoff
vector.

Carrier. Let v ∈ G N and T ⊆ N . For all player i /∈ T it holds fi (v, T ) = 0.

Remark 3.1 Shapley [25] defined a carrier in a game v ∈ G N as a coalition T satis-
fying v(S) = v(S ∩ T ) for all coalition S. He explained the carrier axiom for a value
f as ∑

i∈T
fi (v) = v(T )

if T is a carrier in v. Given (v, T ), coalition T is carrier in vT . Moreover, coalition
T ∪ {i} is also a carrier in vT for each i ∈ N \ T . Thus, following the carrier axiom
of Shapley we have

∑

j∈T∪{i}
f j (vT ) = vT (T ∪ {i}) = v(T ) = vT (T ) =

∑

j∈T
f j (vT )

and then fi (vT ) = 0.

Theorem 3.1 The extended Shapley value is the only value for games over N
with coalition satisfying restricted efficiency, restricted null player, restricted
symmetry, linearity and carrier.

Proof Obviously the extended Shapley value satisfies the first four axioms from
definition because the Shapley value verifies them over T (see Sect. 1.4). We test
carrier. Let T be a non-empty coalition (if T = ∅ the result is trivial) and i /∈ T .
Observe that i is also a null player in vT for every game v. For all S ⊂ N \ {i}

vT (S ∪ {i}) = v(S ∩ T ) = vT (S).

Since Shapley value satisfies null player axiom we get φi (v, T ) = 0.
Let f be a value. Following the proof of Theorem 1.3, linearity implies that we

only need to find out the uniqueness for unanimity games. So, let uR with R a non-
empty coalition. We consider now T another coalition. Using restricted null player
and carrier we have that fi (v, T ) = 0 for any player i outside T ∩ R. All the players
in T ∩ R are symmetric and then from restricted symmetry all of them have the same
payoff. Finally, using restricted efficiency as in the Theorem 1.3 again we get the
uniqueness. �

Carrier is also a necessary axiom as we show in the following remark.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Remark 3.2 Suppose n > 2. Given a coalition T ′ ⊂ N with N \ T ′ = {i, j} we can
define f (v, T ) = φ(v, T ) for all T �= T ′ and

fk(v, T
′) =

⎧
⎨

⎩

φk(v, T ′), if k �= i, j
v({i}) − v({ j}), if k = i
v({ j}) − v({i}), if k = j.

Our value f �= φ when v({i}) �= v({ j}) but f satisfies all the axioms in the above
theorem except carrier.

Restricted symmetry tells about players in a determined coalition. Next proposi-
tion analyzes anonymity and symmetry in more general cases.

Proposition 3.3 Let T � N be a non-empty coalition and i ∈ T . If θ ∈ ΘN

is a permutation then the extended Shapley value satisfies

φθ(i)(θv, θT ) = φi (v, T ).

Moreover:

(1) If θT = T then φθ(i)(θv, T ) = φi (v, T ),
(2) If i, j are symmetric players with j /∈ T for v ∈ G N then

φi (v, T ) = φ j (v, T \ {i} ∪ { j}).

Proof If θ ∈ ΘN then

(θv)θT (θ S) = (θv)(θ(S ∩ T )) = v(S ∩ T ) = vT (S).

Hence (θv)θT = θ(vT ). As Shapley value verifies anonymity (Proposition 1.10) then

φθ(i)(θv, θT ) = φθ(i)(θ(vT )) = φi (vT ).

Obviously if θT = T the equality in (1) is true. Suppose now i, j symmetric players.
For the last equality we take θ i j defined as θ i j (i) = j , θ i j ( j) = i and θ i j (k) = k
for another k �= i, j . Hence θ i j T = T \ {i} ∪ { j}. As i, j are symmetric for v then
we can test that θ i j v = v. If i, j /∈ S or i, j ∈ S then θ i j S = S and (θ i j v)(S) =
(θ i j v)(θ i j S) = v(S). If i ∈ S but j /∈ S then θ i j S = S \ {i} ∪ { j} and applying the
symmetric condition to S \ {i} we get

(θ i j v)(S) = (θ i j v)(θ i jθ i j S) = v(θ i j S) = v(S \ {i} ∪ { j}) = v(S).

�

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Suppose now the other model described in the introduction. In that case given
(v, T ) we use directly the function v restricted to the chosen coalition T , i.e. the
subgame (Sect. 1.2) over the coalition T . Then we apply the specific Shapley value
for the coalition, namely the payoff vector would be φT (v). Both ways are very
closed in this case. If x ∈ R

T with T ⊂ N then x0 ∈ R
N denotes the extension of x

by zeros, namely x0i = xi if i ∈ T and x0i = 0 otherwise.

Proposition 3.4 Let v ∈ G N be a game and T ⊆ N a non-empty coalition. It
holds

φ(v, T ) = [φT (v)]0.

Proof Since Theorem 3.1 if we test that the value function f (v, T ) = [φT (v)]0
( f (v,∅) = 0) verifies all the five axioms then the equality requested is true. Obvi-
ously f satisfies carrier. As the Shapley value is efficient for games over T then
φT (v)(T ) = v(T ), jointly with carrier we get efficiency. If i is a null player for v
then i is a null player for each game v|T with i ∈ T (the other side is not true). Also
if i, j ∈ T are symmetric for v then i, j are symmetric for the subgame. So, as the
Shapley value satisfies null player, symmetry and linearity over G T then f too. �

The extended Shapley value φ(v, T ) and the original Shapley value φT (v) are
slightly different as the above proposition suggests. Players out of T do not have any
payoff for the Shapley value but these payoffs are zero for the extended one. Next
we show other properties of the Shapley value for this model.

Proposition 3.5 The extended Shapley value satisfies the following properties.

(1) For all v ∈ G N and i, j ∈ N different players it holds for any T with
i, j ∈ T

φi (v, T ) − φi (v, T \ { j}) = φ j (v, T ) − φ j (v, T \ {i}).

(2) If v,w ∈ G N with v <T w for any T ⊆ N non empty then φ(v, T ) ≤
φ(w, T ).

(3) If v,w ∈ G N with v <i w for any i ∈ N then φi (v, T ) ≤ φi (w, T ) for all
T ⊆ N.

(4) If i ∈ T is a necessary player for v ∈ G N
m then φ j (v, T ) ≤ φi (v, T ).

(5) If i ∈ T and v ∈ G N
sa then φi (v, T ) ≥ v({i}).

(6) If S ⊆ T and v ∈ G N
c then φ(v, T )(S) ≥ v(S).

(7) φ(−v, T ) = −φ(v, T ).
(8) For all i ∈ T and v ∈ G N it holds φi (v, T ) = v({i}) − φi (vsvg, T ).
(9) If v,w ∈ G N

s then for all coalition T it holds

φi (v ∧ w, T ) + φ(v ∨ w, T ) = φi (v, T ) + φi (w, T ).

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Proof (1) The Shapley value in general satisfies balanced contributions (see
Proposition 1.16). Let i, j ∈ N and T ⊆ N with i, j ∈ T . If v ∈ G N then φT verifies
balanced contributions for the subgame v ∈ G T , thus by Proposition 3.4

φi (v, T ) − φ j (v, T ) = φT
i (v) − φT

j (v) = φ
T \{ j}
i (v) − φ

T \{i}
j (v)

= φi (v, T \ { j}) − φ j (v, T \ {i}).

(2) If i /∈ T then φi (v, T ) = φi (w, T ) = 0. Also the subgames over T verifies
v <T w and hence Proposition 1.12 implies φT

i (v) ≤ φT
i (w) for all i ∈ T . Now

Proposition 3.4 says if i ∈ T

φi (v, T ) = φT (v) ≤ φT
i (w) = φi (w, T ).

(3) If v <i w then vT <i wT . In fact, for each S ⊆ N \ {i} we have two cases: if
i ∈ T

vT (S ∪ {i}) − vT (S) = v((S ∪ {i}) ∩ T ) − v(S ∩ T ) = v((S ∩ T ) ∪ {i}) − v(S ∩ T )

≤ w((S ∩ T ) ∪ {i}) − w(S ∩ T ) = wT (S ∪ {i}) − wT (S),

and if i /∈ T then vT (S ∪ {i}) − vT (S) = 0 = wT (S ∪ {i}) − wT (S). Therefore

φi (v, T ) = φi (vT ) ≤ φi (wT ) = φi (w, T ).

(4) Game vT is monotone if v ∈ G N
m since Proposition 3.1. If i ∈ T is a necessary

player for v then vT (S) = v(T ∩ S) = 0 for all S ⊆ N \ {i}, i.e. i is a necessary player
also for vT . As Shapley value satisfies the necessary player axiom (Proposition 1.11)
we have for any j ∈ N \ {i}

φ j (v, T ) = φ j (vT ) ≤ φi (vT ) = φi (v, T ).

(5) Proposition 3.1 implies that if v ∈ G N
sa then also vT ∈ G N

sa for each non-empty
coalition T . Let i ∈ T . Since the Shapley value is individually stable
(Proposition 1.13) we get φi (v, T ) = φi (vT ) ≥ vT ({i}) = v({i}).
(6) Proposition 3.1 again says that vT ∈ G N

c if v ∈ G N
c . So, if S ⊆ T then by

Proposition 1.14
φ(v, T )(S) = φi (vT )(S) ≥ vT (S) = v(S).

(7) Linearity of the Shapley value and Proposition 3.2 imply the condition.
(8) If i ∈ T then vT ({i}) = v({i}). From Propositions 1.15 and 3.2 it holds

φi (v, T ) = φi (vT ) = vT ({i}) − φi ((vT )svg) = v({i}) − φi ((v
svg)T )

= v({i}) − φi (v
svg, T ).

(9) The result is trivial from Proposition 3.2 (5). �

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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http://dx.doi.org/10.1007/978-3-319-56472-2_1
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In this context balanced contributions property (condition (1) in the above
proposition) does not modify the set of players. The modification of the game can
also modifies the stability properties of the solution. In this case the extended value
keeps the conditions internally into the chosen coalition (see steps (5), (6) in the
above proposition). Out of T actually payoffs are zero from Proposition 3.4. Payoffs
in T of a subadditive game can be calculated from the saving game in the same way
of the classical value. But, following Example 3.6 we will see that it is not true that
the dual game has the same payoff vector of the original game.

Example 3.7 The Shapley value of the bankruptcy game in Table1.3 was calculated
in Example 1.15 and we test that using the dual game in Table1.5 the payoff vector
was the same in Example 1.18. Following Example 3.6 we calculate for that game

φ3(v, T ) = φT
3 (v) = 1

2
[v({2, 3}) − v({2})] + 1

2
v({3}) = 15000,

with T = {2, 3}. Now the payoff of player 3 in the dual game is

φ3(v
dual , T ) = φT

3 (vdual) = 1

2
[vdual({2, 3}) − vdual({2})] + 1

2
vdual({3}) = 35000.

It is possible to solve this downside by thinking of ad hoc concept of dual. Given
a coalition T and a game v, the T -dual game is vTdual ∈ G N where

vTdual(S) = v(T ) − v(T \ S). (3.7)

This new definition is more consistent with the information and it gets the same result
for the Shapley value. But you need to analyze each coalition one by one.

Proposition 3.6 Let T ⊆ N be a coalition. For all game v it holds

φ(vTdual, T ) = φ(v, T ).

Proof Formula (3.7) is given looking for the equality which failed in Example 3.6,
(vTdual)T = (vT )dual . In fact, for all coalition S we have

(vTdual)T (S) = vTdual(S ∩ T ) = v(T ) − v(T \ (S ∩ T ))

= v(T ) − v((N \ S) ∩ T ) = vT (N ) − vT (N \ S) = (vT )dual(S).

Now, Proposition 1.15 (3) implies

φ(vTdual , T ) = φ((vTdual)T ) = φ((vT )dual) = φ(vT ) = φ(v, T ).

�

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Propositions 1.1 and 1.6 showed the interest of the unanimity games to ana-
lyze games and also particularly simple games. The next proposition evaluates the
restricted game of a unanimity game and its extended Shapley value.

Proposition 3.7 Let R ⊆ N be a non empty coalition. For another non empty
coalition T ⊆ N it holds (uR)T = uR if R ⊆ T and (uR)T = 0 otherwise.
Furthermore

φ(uR, T ) =
{

φ(uR), if R ⊆ T
0, otherwise.

Proof Suppose S ⊆ N , we have (uR)T (S) = uR(S ∩ T ). So, when R ⊆ T then R ⊆
S ∩ T if and only if R ⊆ S, and uR(S ∩ T ) = uR(S). But otherwise S ∩ T cannot
contain R and uR(S ∩ T ) = 0. Definition 3.6 implies the result about the index. �

Next we see that it is possible to get the extended Shapley value by the dividends
of the game without determining the restricted game.

Theorem 3.2 For each v ∈ G N and non-empty coalition T ⊆ N the extended
Shapley value is

φi (v, T ) =
∑

i∈S⊆T

Δv
S

|S| .

Proof Propositions 1.1 and 3.2 obtain

∑

{S⊆N :S �=∅}
Δ

vT
S uS = vT =

∑

{S⊆N :S �=∅}
Δv

S(uS)T .

The above proposition gets

∑

{S⊆N :S �=∅}
Δ

vT
S uS =

∑

{S⊆T :S �=∅}
Δv

SuS.

But Proposition 1.1 assures the uniqueness of the coefficients reward to the unanimity
games thus

Δ
vT
S =

{
Δv

S, if S ⊆ T
0, otherwise.

(3.8)

So, Theorem 1.2 implies the expected formula. �

Example 3.8 Consider the bankruptcy game in Example 1.15. We got the dividends
of this game in Example 1.19, see Table1.7. For instance, if T = {2, 3} and i = 3
the above theorem calculates the extended Shapley value as

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Table 3.1 Extended Shapley values of game v

T {1} {2} {3} {1, 2} {1, 3} {2, 3}
φ(v, T ) (0, 0, 0) (0, 0, 0) (0, 0, 5000) (5000, 5000, 0) (12500, 0, 17500) (0, 10000, 15000)

φ3(v, T ) = Δv
{3} + 1

2
Δv

{2,3} = 5000 + 1

2
20000 = 15000.

If T = N then φ(v, N ) = φ(v) = (14166.6, 13333.3, 22500). Table3.1 shows the
payoff vectors for all the rest of coalitions.

The extended Shapley value as index measures the power of each agent when a
determined coalition is formed. Restricted simple games can be described by una-
nimity games into the lattice.

Proposition 3.8 Let v ∈ G N
s . For each non empty coalition T it holds

vT =
∨

{S∈Wm (v):S⊆T }
uS.

Particularly, if T ∈ Wm(v) then vT = uT and if T /∈ W (v) then vT = 0. More-
over,

Wm(vT ) = {S ∈ Wm(v) : S ⊆ T }.

Proof We saw in Proposition 3.1 that if v ∈ G N
s then vT ∈ G N

s too. We know since
Propositions 3.2 and 3.7 that

vT =
∨

S∈Wm (v)

(uS)T =
∨

{S∈Wm (v):S⊆T }
uS.

Obviously if T /∈ W (v), namely it is a losing coalition, then {S ∈ Wm(v) : S ⊆ T } =
∅, and if T ∈ Wm(v) then {S ∈ Wm(v) : S ⊆ T } = {T }. Nowwewill prove the claim
about the minimal winning coalitions. Suppose S ∈ Wm(v) with S ⊆ T . We have
vT (S) = v(S) = 1, i.e. S ∈ W (vT ). Also, if R � S then vT (R) = v(R) = 0. Hence
S ∈ Wm(vT ). On the other hand, let S ∈ Wm(vT ). The above formula implies that
there exists S′ ⊆ T with S′ ∈ Wm(v) and uS′(S) = 1. As we have proved that S′ ∈
Wm(vT ) and S′ ⊆ S then S′ = S. �

Example 3.9 Wetake thevoting situation inExample1.20givenby [26; 20, 15, 6, 5].
We had calculated the swings of the players for v in Table1.8. Butwhenwe take awin-
ning coalition (if it is a losing coalition the game is zero as we saw before) the swings
can increase or decrease. Suppose i = 2. For instance, given T = {1, 2, 3} ∈ W (v),
{3, 4} ∈ SW2(v) but {3, 4} /∈ SW2(vT ) because vT ({2, 3, 4}) = v({2, 3}) = 0. Now

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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if we take T = {2, 3, 4} we have that {1, 3, 4} /∈ SW2(v) but {1, 3, 4} ∈ SW2(vT )

because vT (N ) = v(T ) = 1 and vT ({1, 3, 4}) = v({3, 4}) = 0. For the last T , as it
is a minimal winning coalition, then vT = uT by Proposition 3.8. So, if coalition
{2, 3, 4} is formed, for instance in a government convention, the power index is

φ(v, T ) = (0, 1/3, 1/3, 1/3).

3.5 The Fuzzy Coalitional Model

The example developed in the above section is extended in a fuzzyway. So, in this case
the objects of information are the different fuzzy coalitions, namely Y (N ) = [0, 1]N
and KY (N ) = eN . Each fuzzy coalition τ is identified to a fuzzy relation ρτ (see
Example 3.5). A value for games over N with a fuzzy coalition is

f : G N × [0, 1]N → R
N .

In order to incorporate the fuzzy information in the crisp cooperative game we will
use the fuzziness methods studied in the above chapter. In general, for each extension
independent of the game (Definition 2.9) it is possible to define a different Shapley
value by different restricted games. Now we specify more the kind of partition func-
tion that we need.

Definition 3.7 A partition function pl is inherited if for all τ ∈ [0, 1]N and
S ⊆ N with supp(τ ) ∩ S �= ∅ it holds

pl(τ × eS) =
⎧
⎨

⎩

⎛

⎝R,
∑

{(T,t)∈pl(τ ):T∩S=R}
t

⎞

⎠ : R �= ∅, ∃(T, t) ∈ pl(τ )with T ∩ S = R

⎫
⎬

⎭
.

In an inherited partition function the partition by levels of the crisp restriction of
a given fuzzy coalition, i.e. reducing the support but keeping the levels into the new
support, is calculated restricting the coalitions in the partition and adding all the levels
that obtains the same restriction. Observe that an inherited partition function pl is an
extension if and only if pl(eN ) = {(N , 1)}. We will consider from now on inherited
extensions. Furthermore the three extensions studied in Sect. 2.4 are inherited.

Proposition 3.9 The multilinear, proportional and Choquet extensions are
inherited.

Proof Let τ ∈ [0, 1]N , τ �= 0, and S ⊆ N with S ∩ supp(τ ) �= ∅.

http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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multilinear. The partition of τ is taken following (2.8),

ml(τ ) =
{(

T,
∏

i∈T
τ(i)

∏

i /∈T
(1 − τ(i))

)}

[τ ]1⊆T⊆supp(τ )

.

Since (2.8) again we have (R, r) ∈ ml(τ × eS) if and only if,

• [τ × eS]1 ⊆ R ⊆ supp(τ × eS), in other words [τ ]1 ∩ S ⊆ R ⊆ supp(τ ) ∩ S,
• and

r =
∏

i∈R

(τ × eS)(i)
∏

i /∈R

(1 − (τ × eS)(i)) =
∏

i∈R

τ(i)
∏

i∈S\R
(1 − τ(i))

because R ⊆ S and if i /∈ S then (τ × eS)(i) = 0.

We set

{T : [τ ]1 ⊆ T ⊆ supp(τ ), T ∩ S = R} = {R ∪ T : [τ ]1 \ S ⊆ T ⊆ supp(τ ) \ S} �= ∅.

Using Lemma 2.1 with coalition N \ S we obtain

∑

{R∪T :[τ ]1\S⊆T⊆ supp(τ )\S}

∏

i∈R∪T
τ(i)

∏

i /∈R∪T
(1 − τ(i))

=
∏

i∈R

τ(i)
∏

i∈S\R
(1 − τ(i))

∑

[τ ]1\S⊆T⊆ supp(τ )\S

∏

i∈T
τ(i)

∏

i∈(N\S)\T
(1 − τ(i))

=
∏

i∈R

τ(i)
∏

i∈S\R
(1 − τ(i))

∑

T⊆N\S

∏

i∈T
τ(i)

∏

i∈(N\S)\T
(1 − τ(i)) = r.

proportional Suppose for this case the partition by levels following (2.11) of τ ,

pr(τ ) = {(Sτ
t , t)}t∈ im(τ ).

For our coalition S we have pr(τ × eS) = {(Sτ×eS
r , r)}r∈ im(τ×eS). For each number

r ∈ im(τ × eS) ⊂ im(τ ),

Sτ×eS
r = {i ∈ N : (τ × eS)(i) = r} = Sτ

r ∩ S.

As Sτ
t ∩ Sτ

t ′ = ∅ then Sτ
r is the only coalition in the partition of τ with S

τ
t ∩ S = Sτ×eS

r .
Choquet. Following (2.12) we have

ch(τ ) = {(λk − λk−1, [τ ]k)}mk=1

with im0(τ ) = {λ0 < λ1 < · · · < λm}. For coalition S we denote as im0(τ × eS) =
{λ′

0 < λ′
1 < · · · < λ′

m ′ } ⊆ im0(τ ). Let p ∈ {1, . . . ,m ′} and (λ′
p − λ′

p−1, [τ × eS]p)

http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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∈ ch(τ × eS). There exist q, q ′ ∈ {1, . . . ,m} with q ′ < q, λ′
p = λq and λ′

p−1 = λq ′ .
Furthermore,

[τ ]q ′′ ∩ S = [τ × eS]p.

for all q ′ < q ′′ ≤ q. Consider {q ′ + 1 = q1 < · · · < qr = q}, we obtain
r∑

l=1

λql − λql−1 = λqr − λq1−1 = λ′
p − λ′

p−1.

�

We define a restricted game for each inherited extension with good properties as
we will see later.

Definition 3.8 Let v ∈ G N , τ ∈ [0, 1]N and pl an inherited extension. The
pl-restricted game is defined for all S ⊆ N as

vplτ (S) = vpl(τ × eS).

The inherited condition permits to describe these games from the crisp restricted
game as says the following lemma.

Lemma 3.1 Let pl be an inherited extension. If τ ∈ [0, 1]N with pl(τ ) =
{(Rk, rk)}k=1 then

vplτ =
m∑

k=1

rkvRk .

Proof Let pl be an inherited extension. Suppose τ ∈ [0, 1]N with pl(τ ) = {(Rk,

rk)}mk=1. If S ∩ supp(τ ) = ∅ then vplτ (S) = 0 = vRk (S) for all k, because always
Rk ⊆ supp(τ ). Let S ∩ supp(τ ) �= ∅. We get that if (R, r) ∈ pl(τ × eS) then

r =
∑

{k∈{1,...,m}:Rk∩S=R}
rk,

and we have
rv(R) =

∑

{k∈{1,...,m}:Rk∩S=R}
rkv(Rk ∩ S).

If Rk ∩ S = ∅ then v(Rk ∩ S) = 0 and we obtain
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vplτ (S) = vpl (τ × eS) =
∑

(R,r)∈pl(τ×eS)

rv(R) =
∑

(R,r)∈pl(τ×eS)

∑

{k∈{1,...,m}:Rk∩S=R}
rkv(Rk ∩ S)

=
m∑

k=1

rkv(Rk ∩ S) =
m∑

k=1

rkvRk (S).

�
Example 3.10 Consider N = {1, 2, 3} and v(S) = |S|2 for all S. Let τ = (0.4, 0.7,
0.4). Our game is anonymous but τ introduced asymmetry among the players
involved into the support. We determine in this example the pl-restricted games
for pl = ml, pr, ch. Take for instance S = {2, 3}. We have [τ × eS]1 = ∅ and
supp (τ × eS) = S, so

vml
τ ({2, 3}) = τ(2)(1 − τ(3))v({2}) + τ(3)(1 − τ(2))v({3})

+ τ(2)τ (3)v({2, 3}) = 1.54.

As im (τ × eS) = {0.4, 0.7} and S0.4
τ×eS = {3}, S0.7

τ×eS = {2},

vprτ ({2, 3}) = 0.4v({3}) + 0.7v({2}) = 1.1.

Finally,
vchτ ({2, 3}) = (0.4 − 0)v({2, 3}) + (0.7 − 0.4)v({2}) = 1.9.

Table3.2 represents the worths of the three games.

The inherited condition permits to obtain the same transference of properties of
the game than in the crisp case (see Proposition 3.1).

Proposition 3.10 Let v ∈ G N and τ ∈ [0, 1]N . Let pl be an inherited exten-
sion.

(1) If τ = eT then vplτ = vT .
(2) If v is additive then vplτ is additive.
(3) If v is superadditive (subadditive) then so is vplτ .
(4) If v is convex (concave) then so is vplτ .
(5) If v is monotone then vplτ is monotone

Table 3.2 pl-restricted games

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vml
τ (S) 0.4 0.7 0.4 1.54 1.12 1.54 3.698

vprτ (S) 0.4 0.7 0.4 1.1 1.6 1.1 2.3

vchτ (S) 0.4 0.7 0.4 1.9 1.6 1.9 3.9
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Proof (1) Suppose τ = eT . For each coalition S, as pl is an extension

vplτ (S) = vpl(eT × eS) = vpl(eS∩T ) = v(S ∩ T ) = vT (S).

(2) Suppose v ∈ R
N . We will prove that vplτ = v × τ = (viτ(i))i∈N ∈ R

N . If S ⊆ N
then from Example 2.6

vplτ (S) = vpl(τ × eS) = v · (τ × eS) =
∑

i∈S
viτ(i).

(3) Suppose v ∈ G N
sa and two coalitions S, T ⊆ N with S ∩ T = ∅. Consider that

pl(τ ) = {(Rk, rk)}mk=1. As pl is inherited we get since Lemma 3.1

vplτ (S) + vplτ (T ) =
m∑

k=1

rkvRk (S) +
m∑

k=1

rkvRk (T )

=
m∑

k=1

rk[vRk (S) + vRk (T )] ≤
m∑

k=1

rkvRk (S ∪ T ) = vplτ (S ∪ T ),

using also that vRk is superadditive for any k from Proposition 3.1.
(4) Suppose v ∈ G N

c and two coalitions S, T ⊆ N . Consider that pl(τ ) = {(Rk,

rk)}mk=1. Using again Lemma 3.1 in a similar way of the above point

vplτ (S) + vplτ (T ) =
m∑

k=1

rk[vRk (S) + vRk (T )]

≤
m∑

k=1

rk[v(Rk)(S ∪ T ) + vRk (S ∩ T ) = vplτ (S ∪ T ) + vplτ (S ∩ T ),

using the convexity of vRk from Proposition 3.1.
(5) Suppose v ∈ G N

m . Let S ⊆ T and pl(τ ) = {(Rk, rk)}mk=1. Following again
Lemma 3.1 and Proposition 3.1 we have

vplτ (S) =
m∑

k=1

rkvRk (S) ≤
m∑

k=1

rkvRk (T ) = vplτ (T ).

�

Obviously if v is a {0, 1}-game then vplτ is not in general a {0, 1}-game. Moreover
it is only true if τ = eS for any coalition S. We have the same problem with simple
games.

Remark 3.3 Observe that the inherited condition was used in the proof of all the
points in the above proposition except for the first two ones. We obtain an additive

http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Table 3.3 pl-restricted game in Example 3.11

R {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vplτ (R) 0 0 0 5 0 0 0

game actually for any partition function, even if it is not an extension. For the second
one it is only necessary to be an extension.

Example 3.11 We use the game v over N = {1, 2, 3} in Example 1.17 which is
superadditive and monotone. Consider the fuzzy coalition τ0 = (0.2, 0.5, 0.4). We
take S = {1, 2}. Now we define a mixed extension between the Choquet and the
proportional extensions,

pl(τ ) =
{
pr(τ ), if 3 ∈ supp(τ )

ch(τ ), otherwise.

The partition function pl is an extension but it is not inherited, for instance pl(τ0) =
{({1}, 0.2), ({2}, 0.5), ({3}, 0.4)} however pl(τ0 × eS) = {({1, 2}, 0.2), ({2}, 0.3)}.
Table3.3 determines game vplτ which is not supeadditive and it is not monotone.

Proposition 3.11 Let v,w ∈ G N and T ⊆ N. For any inherited extension pl
it holds

(1) (av + bw)
pl
τ = avplτ + bwpl

τ for all a, b ∈ R.
(2) If v,w are strategically equivalent then so are vplτ ,wpl

τ .
(3) (−v)plτ = −(vplτ ).
(4) (vsvg)plτ = (vplτ )svg.

Proof Suppose a, b ∈ R. We get for each coalition S if pl(τ × eS) = {(Sk, sk)}mk=1,

(av + bw)plτ (S) =
m∑

k=1

sk(av + bw)(Sk) = avplτ (S) + bwpl
τ (S).

So, if v,w are strategically equivalent, namely there exist a > 0 and b ∈ R
N with

v = aw + b then
vplτ = awpl

τ + bpl
τ ,

where bpl
τ ∈ R

N (see the above proposition). Thus vplτ ,wpl
τ are strategically equiva-

lent. Obviously (−v)plτ = −(vplτ ). Now we determine the saving game, let pl(τ ) =
{(Tk, tk)}mk=1. Hence, by Lemma 3.1 and Proposition 3.2

http://dx.doi.org/10.1007/978-3-319-56472-2_1


88 3 Games with a Fuzzy Bilateral Relation Among the Players

(vsvg)plτ (S) =
m∑

k=1

tk(v
svg)Tk (S) =

m∑

k=1

tk(vTk )
svg(S)

=
m∑

k=1

tk
∑

i∈S
vTk ({i}) −

m∑

k=1

tkvTk (S) = (vplτ )svg(S).

�

Since Proposition 3.10 (1) any property does not satisfies by the crisp restricted
game is not verified by the fuzzy versions either. So, generally (vdual)plτ �= (vplτ )dual

from Example 3.6.
Now, we introduce a game identified with a fuzzy coalition and each particular

extension which allows us to describe formulas. Let τ ∈ [0, 1]N and pl an inherited
extension. The pl-game is defined for every coalition S ⊆ N as

τ pl(S) =
∑

{(R,r)∈pl(τ ):S⊆R}
r. (3.9)

This game explains themembership of the coalitions in the fuzzy coalition depending
on the chosen extension. So, we get from Lemma 2.1

τml(S) =
∑

{R⊆N :S⊆R}

∏

i∈R

τ(i)
∏

i∈N\R
(1 − τ(i))

=
∏

i∈S
τ(i)

∑

R⊆N\S

∏

i∈R

τ(i)
∏

i∈(N\S)\R
(1 − τ(i)) =

∏

i∈S
τ(i).

Thus, we have that τml(S) represents the probability to obtain a coalition containing
S according to τ ,

τml(S) =
∏

i∈S
τ(i). (3.10)

In the proportional case, coalition S is formed when all the players has the same
level, and we get

τ pr (S) =
{
t, if τ(i) = t ∀i ∈ S
0, otherwise.

(3.11)

Finally, in the Choquet case the worth of S in the ch-game is the measure of the
interval where coalition is ensured,

τ ch(S) = ∨(τ × eS). (3.12)

In fact, if im0(τ ) = {0 = λ0 < λ1 < · · · < λm} with ∨(τ × eS) = λp we know that
S ⊆ [τ ]k when 1 ≤ k ≤ p. So,

http://dx.doi.org/10.1007/978-3-319-56472-2_2
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τ ch(S) =
p∑

k=1

(λk − λk−1) = λp − λ0 = ∨(τ × eS).

For instance, in the next proposition we give a formula using the pl-game for the pl-
restricted unanimity games. The pl-game determines the constant of proportionality
between an unanimity game and its pl-restriction.

Proposition 3.12 Let τ ∈ [0, 1]N be a fuzzy coalition and pl be an inherited
extension. For all T ⊆ N be a non-empty coalition the pl-restricted game of
the unanimity game uT is

(uT )plτ = τ pl(T )uT .

Proof Let T ⊆ N a non-empty coalition. Since Lemma 3.1 and Proposition 3.7 we
have

(uT )plτ =
∑

(R,r)∈pl(τ )

r(uT )R =
⎡

⎣
∑

{(R,r)∈pl(τ ):T⊆R}
r

⎤

⎦ uT .

So, from (3.9) we get the desired result. �

Following the crisp version (Sect. 3.4) we can define an extended value for each
inherited extension.

Definition 3.9 Let pl be an inherited extension. The pl-extended Shapley
value is a value for games over N with fuzzy coalition defined for each game
v ∈ G N and fuzzy coalition τ ∈ [0, 1]N as

φ pl(v, τ ) = φ(vplτ ).

The above value coincides with the extended Shapley value if we take τ = eT .
If τ = eN then φ pl(v, eN ) = φ(v) = φcr (vpl) from Theorem 2.3. Using Lemma 3.1
we write the pl-extended values according to the extended Shapley value.

Lemma 3.2 Let pl be an inherited extension. It holds for all game v ∈ G N

and τ ∈ [0, 1]N with pl(τ ) = {(Rk, rk)} that

φ pl(v, τ ) =
m∑

k=1

rkφ(v, Rk).

http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Proof We use Lemma 3.1 and the linearity of the Shapley value (Proposition 1.8),

φ pl(v, τ ) = φ(vplτ ) = φ

(
m∑

k=1

rkvRk

)

=
m∑

k=1

rkφ(vRk ).

�

Next theorem gives a formula to determine the pl-extended values by dividends
using also the pl-game (3.8).

Theorem 3.3 Let pl be an inherited extension. For each (v, τ ) ∈ G N ×
[0, 1]N it holds for all player i ∈ N that

φ
pl
i (v, τ ) =

∑

{S⊆N :i∈S}
τ pl(S)

Δv
S

|S| .

Proof Following (3.8), we obtain

vplτ =
∑

(R,r)∈pl(τ )

rvR =
∑

(R,r)∈pl(τ )

r
∑

{S⊆R:S �=∅}
Δv

SuS

=
∑

{S⊆N :S �=∅}

⎡

⎣
∑

{(R,r)∈pl(τ ):S⊆R}
r

⎤

⎦Δv
SuS.

So, by the uniqueness of the coefficients, the dividend for a non-empty coalition S
of the pl-restricted game is

Δ
vplτ

S = τ pl(S)Δv
S. (3.13)

Now, Theorem 1.2 implies

φ
pl
i (v, τ ) = φi (v

pl
τ ) =

∑

{S⊆N :i∈S}

Δ
vplτ

S

|S| =
∑

{S⊆N :i∈S}
τ pl(S)

Δv
S

|S| .

�

Taking into account the above lemma and expressions (2.8), (2.11) and (2.12), we
describe three interesting fuzzy extended Shapley values.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Definition 3.10 Let v ∈ G N be a game and τ ∈ [0, 1]N be a fuzzy coalition.

• The multilinear Shapley value is defined as

φml(v, τ ) =
∑

S⊆N

[
∏

i∈S
τ(i)

∏

i /∈S
(1 − τ(i))

]

φ(v, S).

• The proportional Shapley value is defined as

φ pr (v, τ ) =
∑

t∈ im(τ )

tφ(v, Sτ
t ).

• The Choquet-Shapley value is defined as

φch(v, τ ) =
m∑

k=1

(λk − λk−1)φ(v, [τ ]k),

with im0(τ ) = {λ0 < λ1 < · · · < λm}.

The multilinear and Choquet values can be expressed as integrals in a similar way
of the values of these extensions in the above chapter.

Theorem 3.4 Let (v, τ ) ∈ G N × [0, 1]N . For each i ∈ N it holds

(1) φml
i (v, τ ) = τ(i)

∫ 1
0 Divml(tτ) dt.

(2) φch
i (v, τ ) = ∫

c τ dφv
i where φv

i (T ) = φi (v, T ) for all T ⊆ N.

Proof (1) Suppose i ∈ supp(τ ), otherwise the result follows because from Lemma
3.1 if i /∈ supp(τ ) then φml

i (v, τ ) = 0. Expression (2.9) describes the partial derivate
of the multilinear extension and then

Div
ml(tτ) =

∑

{S⊆ supp(τ ):i∈S}
t |S|−1Δv

S

∏

j∈S\{i}
τ( j).

Integrating,

τ(i)
∫ 1

0
Div

ml (tτ) dt = τ(i)
∑

{S⊆ supp(τ ):i∈S}
Δv

S

∏

j∈S\{i}
τ( j)

∫ 1

0
t |S|−1 dt

= τ(i)
∑

{S⊆ supp(τ ):i∈S}

∏

j∈S\{i}
τ( j)

Δv
S

|S| =
∑

{S⊆ supp(τ ):i∈S}

∏

j∈S
τ( j)

Δv
S

|S|

http://dx.doi.org/10.1007/978-3-319-56472-2_2
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=
∑

{S⊆N :i∈S}
τml (S)

Δv
S

|S| = φml
i (v, τ ),

from the concept of ml-game (3.10) and Theorem 3.3.
(2) For each player i the mapping φv

i : 2N → Rwith φv
i (T ) = φi (v, T ) if T ⊆ N is a

signed capacity because φv
i (∅) = 0. Definition 3.10 (3) and the definition of Choquet

integral imply

φch
i (v, τ ) =

m∑

k=1

(λk − λk−1)φ
v
i ([τ ]k) =

∫

c
τ dφv

i ,

with im0(τ ) = {λ0 = 0 < λ1 < · · · < λm}. �

Butnariu [7] studied the proportional Shapley value in the context of fuzzy games,
namely as a value for a particular class of fuzzy games, those proportional extensions
of crisp games. In a similar way, Tsurumi et al. [26] analyzed the Choquet-Shapley
value, namely for the fuzzy games which are Choquet extensions of crisp games.
In both of these papers the authors obtained particular axiomatizations in the fuzzy
context. Later Li andZhang [18] got a commonaxiomatization for both of the families
of fuzzy games and useful for all the fuzzy games. Nowwe find out an axiomatization
in our context for all the inherited extensions. We can use very similar axioms to the
Shapley value for the pl-extended one. But we substitute symmetry by necessary
player axiom, themotivewill be explained later. Let f : G N × [0, 1]N → R

N a value
for games over N with fuzzy coalition.

pl-Efficiency. For all v ∈ G N and τ ∈ [0, 1]N , f (v, τ )(N ) = vpl(τ ).

Support null player. Let i ∈ N be a null player in the game v, it holds fi (v, τ ) = 0
for all fuzzy coalition τ with i ∈ supp(τ )

Support necessary player. Let τ ∈ [0, 1]N . If i ∈ supp(τ ) is a necessary player
for a monotone game v then fi (v, τ ) ≥ f j (v, τ ) for all j ∈ N \ {i}.
Linearity. For all v,w ∈ G N , a, b ∈ R and fuzzy coalition τ it holds that f (av +
bw, τ ) = a f (v, τ ) + b f (w, τ ).

Support carrier. Let v ∈ G N and τ ∈ [0, 1]N . For all player i /∈ supp(τ ) it holds
fi (v, τ ) = 0.

Theorem 3.5 The pl-extended Shapley value is the only value for games over
N with fuzzy coalition satisfying pl-efficiency, support null player, support
necessary player, linearity and support carrier.

Proof Since Theorem 3.1 the extended Shapley value verifies restricted efficiency,
restricted null player, linearity and carrier. Proposition 3.5 (4) implies that this value
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also satisfies restricted necessary player. Using Lemma 3.2 we test that the pl-
extended Shapley value satisfies the five axioms of the statement. Let τ ∈ [0, 1]N
with pl(τ ) = {(Rk, rk)}mk=1. We have

∑

i∈N
φ
pl
i (v, τ ) =

∑

i∈N

m∑

k=1

rkφi (v, Rk) =
m∑

k=1

rk
∑

i∈N
φi (v, Rk) =

m∑

k=1

rkv(Rk) = vpl (τ ).

If i ∈ N is a null player for v then φ
pl
i (v, τ ) = ∑m

k=1 rkφi (v, Rk) = 0 because if
i ∈ Rk we use restricted null player for the crisp version and if i /∈ Rk we use carrier.
The carrier axiom of the crisp version implies also the support carrier axiom for the
pl-version because if i /∈ supp(τ ) then i /∈ Rk for all k. Linealidad follows since

φ pl(av + bw, τ ) =
m∑

k=1

rkφ(av + bw, Rk) = aφ pl(v, τ ) + bφ pl(w, τ ).

Finally we take i a necessary player for a monotone game v. If for any k we get
i /∈ Rk then vRk = 0, thus φ(v, Rk) = φ(vRk ) = 0. Otherwise, if i ∈ Rk then i is a
necessary player for game vRk . Therefore

φ
pl
i (v, τ ) =

m∑

k=1

rkφi (v, Rk) ≥
m∑

k=1

rkφ j (v, Rk) = φ
pl
j (v, τ ).

Now let f be a value for games with fuzzy coalition. Linearity implies that we
only need to test the uniqueness for unanimity games. So, let uR with R a non-
empty coalition and τ ∈ [0, 1]N . If i /∈ supp(τ ) then support carrier axiom implies
fi (uR, τ ) = 0. Players out R ∪ supp(τ ) are null players and fi (uR, τ ) = 0. If R ∩
supp(τ ) = ∅we have finished the proof. Suppose R ∩ supp(τ ) �= ∅. All the players
in R ∩ supp(τ ) are necessary players and hence fi (uR, τ ) = f j (uR, τ ) if i, j ∈
R ∩ supp(τ ). We obtain

∑

i∈N
fi (uR, τ ) = |R ∩ supp(τ )| fi0(uR, τ ) = u pl

R (τ ),

for certain i0 ∈ R ∩ supp(τ ). Therefore

fi0(uR, τ ) = u pl
R (τ )

|R ∩ supp(τ )| .

�

Several of the properties analyzed in the crisp version, those related more directly
to only the game, are extended to the pl-extensions. So, as in Proposition 3.5 we get
the following properties.
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Proposition 3.13 Let pl be an inherited extension. The pl-extended Shapley
value satisfies the following properties.

(1) If v,w ∈ G N with v <supp(τ ) w for τ ∈ [0, 1]N then φ pl(v, τ ) ≤ φ pl(w, τ ).
(2) If v,w ∈ G N with v <i w for i ∈ N then φ

pl
i (v, τ ) ≤ φ

pl
i (w, τ ) for all

τ ∈ [0, 1]N .
(3) If i ∈ supp(τ ) and v ∈ G N

sa then φi (v, τ ) ≥ τ(i)v({i}).
(4) If S ⊆ supp(τ ) and v ∈ G N

c then φ(v, τ )(S) ≥ vplτ (S).
(5) φ(−v, τ ) = −φ(v, τ ).
(6) If i ∈ supp(τ ) and v ∈ G N then φi (v, τ ) = τ(i)v({i}) − φi (vsvg, τ ).

Proof All these properties follow from Proposition 3.5 and Lemma 3.2. Given τ ∈
[0, 1]N , τ �= 0, we denote as pl(τ ) = {(Rk, rk)}mk=1 its partition by levels by pl.
(1) If i /∈ supp(τ ) then φi (v, τ ) = φi (w, τ ) = 0. For all k we have Rk ⊆ supp(τ ).
If Rk � supp(τ ) then vRk = wRk , thus φ(v, Rk) = φ(w, Rk). If Rk = supp(τ ) then
Proposition 3.5 (2) implies φi (v, Rk) ≤ φi (w, Rk) for all i ∈ supp(τ ). Since Lemma
3.2 we get φ pl(v, τ ) ≤ φ pl(w, τ ).
(2) If v <i w then φi (v, Rk) ≤ φi (w, Rk) for all k from Proposition 3.5 (3). The result
is obtained using Lemma 3.2.
(3) Let i ∈ supp(τ ). Proposition 3.5 (5) implies that if v ∈ G N

sa then φi (v, Rk) ≥
v({i}) when i ∈ Rk . Hence (2.6) says

φi (v, τ ) ≥ v({i})
∑

{k:i∈Rk }
rk = τ(i)v({i}).

(4) Proposition 3.10 (4) again says that vplτ ∈ G N
c if v ∈ G N

c . So, if S ⊆ T then by
Proposition 1.14

φ pl(v, τ )(S) = φi (v
pl
τ )(S) ≥ vplτ (S).

(5) It is trivial.
(6) If i ∈ Rk then vRk ({i}) = v({i}). From Proposition 3.5 (8), (2.6) and Lemma 3.2
it holds

φi (v, τ ) =
∑

{k:i∈Rk }
rkφi (v, Rk) =

⎡

⎣
∑

{k:i∈Rk }
rk

⎤

⎦ v({i}) −
∑

{k:i∈Rk }
rkφi (v

svg, Rk)

= τ(i)v({i}) − φi (v
svg, τ ).

�

http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Those properties related with the structure depend on the extension the most.
The determination of a fuzzy coalition implies an asymmetry among the players,
therefore the symmetry for the game is not enough to get two players with the same
payoff. It is possible to find general conditions including certain symmetry in the
extension.

Definition 3.11 An extension pl is named anonymous if for all τ ∈ [0, 1]N
and all permutation θ ∈ ΘN it happens

pl(θτ ) = {(θR, r) : (R, r) ∈ pl(τ )},

where θτ(i) = τ(θ−1(i)).

All the interesting proposed extensions are anonymous.

Proposition 3.14 The multilinear, proportional and Choquet extensions are
anonymous.

Proof Let τ ∈ [0, 1]N be a non-zero fuzzy coalition, and θ ∈ ΘN a permutation over
N .
multilinear. The partition of τ is taken following (2.8),

ml(τ ) =
{(

T,
∏

i∈T
τ(i)

∏

i /∈T
(1 − τ(i))

)}

[τ ]1⊆T⊆supp(τ )

.

Since (2.8) again we have (R, r) ∈ ml(θτ ) if and only if,

• [θτ ]1 ⊆ R ⊆ supp(θτ ). But [θτ ]1 = θ [τ ]1 and supp(θτ ) = θ supp(τ ),
• and

r =
∏

i∈R

(θτ )(i)
∏

i /∈R

(1 − (θτ )(i)) =
∏

i∈R

τ(θ−1(i))
∏

i /∈R′
(1 − τ(θ−1(i))).

So, we take [τ ]1 ⊆ R′ = θ−1R ⊆ supp(τ ) with

r =
∏

i∈R′
τ(i)

∏

i /∈R′
(1 − τ(i)).

proportional Suppose for this case the partition by levels following (2.11) of τ ,

pr(τ ) = {(Sτ
t , t)}t∈ im(τ ).

http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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For our permutation θ we have pr(θτ ) = {(Sθτ
r , r)}r∈ im(θτ ). But im(θτ ) = im(τ )

and
Sθτ
r = {i ∈ N : (θτ )(i) = r} = {i ∈ N : τ(θ−1(i)) = r} = θ Sτ

r .

Choquet. Following (2.12) we have

ch(τ ) = {(λk − λk−1, [τ ]k)}mk=1

with im0(τ )={λ0 < λ1 < · · · < λm}. For permutation θ wehave im0(θτ ) = im0(τ ).
Let p ∈ {1, . . . ,m ′} and (λ′

p − λ′
p−1, [τ × eS]p) ∈ ch(τ × eS). We also get

[θτ ]k = {i ∈ N : τ(θ−1(i)) = λk} = θ [τ ]k .

�

Inherited property and anonymity are not related for extensions. Next examples
show this fact.

Example 3.12 (1) Let N = {1, 2}. Consider the extension

pl(τ ) =
{
pr(τ ), if τ(1) > τ(2)
ch(τ ), otherwise.

Extension pl is inherited because for each player i = 1, 2 we have pr(τ × e{i}) =
ch(τ × e{i}). But pl is not anonymous. If we take for instance τ = (0.5, 0.3) and
θ(1) = 2, θ(2) = 1 then pl(τ ) = {({1}, 0.5), ({2}, 0.3)} and

pl(θτ ) = {({1, 2}, 0.3), ({2}, 0.2)}.

(2) Now take N = {1, 2, 3}. Suppose the extension

pl(τ ) =
{
pr(τ ), if supp(τ ) = N
ch(τ ), otherwise.

Condition supp(θτ ) = N is equivalent to supp(τ ) = N . As pr and ch are anony-
mous (Proposition 3.14) we deduce that pl too. But pl is not inherited. Consider
τ = (0.1, 0.2, 0.3), we have pl(τ ) = {({1}, 0.1), ({2}, 0.2), ({3}, 0.3)}. If we take
S = {2, 3} then

pl(τ × eS) = {({2, 3}, 0.2), ({3}, 0.1)}.

Adding the anonymity for the extension we get some properties about symmetry
for our values.

http://dx.doi.org/10.1007/978-3-319-56472-2_2


3.5 The Fuzzy Coalitional Model 97

Proposition 3.15 Let pl be an anonymous and inherited extension. The pl-
extended Shapley value satisfies the following properties.

(1) For all permutation θ ∈ ΘN , player i ∈ N and (v, τ ) ∈ G N × [0, 1]N ,

φ
pl
θ(i)(θv, θτ ) = φ

pl
i (v, τ ).

(2) If i, j are symmetric players for a game v and τ ∈ [0, 1]N then

φ
pl
i (v, τ ) = φ

pl
j (v, τ i j ),

where τ i j = τ + (τ (i) − τ( j))e j + (τ ( j) − τ(i))ei .

Proof (1) As pl is anonymous, if pl(τ )={(Rk, rk)}mk=1 then pl(θτ ) = {(θRk, rk)}mk=1
for all permutation θ . Lemma 3.2 and Proposition 3.5 (9) implies that

φ
pl
θ(i)(θv, θτ ) =

m∑

k=1

rkφθ(i)(θv, θRk) =
m∑

k=1

rkφi (v, Rk) = φ
pl
i (v, τ ).

(2) Let θ i j ∈ ΘN with θ i j (i) = j , θ i j ( j) = i and θ i j (i ′) = i ′ for all i ′ ∈ N \ {i, j}.
As i, j are symmetric players then θ i j v = v because θ i j S = S if S ⊆ N \ {i, j} or
i, j ∈ S, and if i, j /∈ S then

θ i j v(S ∪ {i}) = v(S ∪ { j}) = v(S ∪ {i}).

Moreover θ i jτ = τ i j . Following the above step we obtain

φ
pl
j (v, τ i j ) = φ

pl
θ i j (i)(θ

i j v, θ i jτ) = φi (v, τ ).

�

As consequence of the second step in the above proposition we get that symmetric
players with the same level must have the same payoff. If τ(i) = τ( j) for two players
i, j symmetric for a game v then τ i j = τ and

φ
pl
i (v, τ ) = φ

pl
j (v, τ ).

Aswe said before the pl-restricted game of a simple game is not another simple in
general. This question introduces a differencewith regard to the crisp version. But the
pl-extended values applied to simple games can be used as power indices. The ml-
extended index φml

i (v, τ ) determines the expected power of the players following the
probability distribution τ . Extended indices with pr, ch are interesting to determine
the power of groups with different feels into them.
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Chapter 4
Fuzzy Communication

4.1 Introduction

In the first chapter we saw as the classical cooperative game theory and particularly
the construction of the Shapley value is thinking of the great coalition. The model
analyzed in the last chapter considered that a particular coalition, non necessary the
great coalition is formed. We took the decided coalition as an additional information
over the classical model and supposed players out the coalition as players out of
game (carrier axiom implies payoff zero for this kind of players).

But the first model in this sense was given by Aumann and Dreze [1] in 1974. In
this case they considered that a partition of the set of players is formed. Hence all the
players play but they are organized in several different final groups. Obviously the
classical model is a particular case of their model. This option can be seen as a model
in both of the lines explained in the introduction of the above chapter. Although there
exist different extensions of the Shapley value to the model, we are interesting in
describing as games with a bilateral relation among the agents: each player is related
with those in the same set of the partition.

Three years later, Myerson [9] introduced communication structures among the
agents as an additional information about the players. A communication structure
consideres a graph to represent the communication options of the players. Vertices
represent the agents and each link represents a feasible bilateral communication.
The final formed coalitions are the connected components of the graph. Hence the
Myerson model supposes also the construction of a partition of the set of players,
but in this case not any pair of agents into one of the elements in the partition are
related between them. This model establishes a clear bilateral relation among the
players in the sense of our general model (see Sects. 3.2 and 3.3). The Aumann
and Dreze [1] model is seen then as a particular case where the subgraph defined
into each element of the partition is a complete graph (all the bilateral relations are

© Springer International Publishing AG 2017
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feasible). Moreover the classical model is represented as a communication structure
by the trivial partition and therefore by the complete graph over all the players. The
reader can find a very extensive study of the Myerson model in Slikker and van
den Nouweland [13]. The own Myerson extended his model in [10] by conference
structures. In that case communication relations are not necessarily bilateral and then
this kind of information goes out of our general model.

Communication in the real life is clearly an information for leveling. Hence
Jiménez-Losada et al. [6] introduced fuzzy communication structures using fuzzy
graphs. Fuzzy graphs allow to describe leveled membership and leveled communi-
cation. In Jiménez-Losada et al. [7] several different models to extend the Myerson
value are shown based on the proportional and the Choquet fuzziness. Calvo et al.
[4] analyzed games with probabilistic graphs using the multilinear extension.

In this chapter we study all these extensions. First the coalition structures and
communication structures are explained. Later several fuzzy models are introduced
and studied.

4.2 Coalition Structures. The Aumann-Dreze Model

Aumann and Dreze [1] proposed a partition of the set of players as the final dis-
tribution in coalitions. We explain their model in a more general way, in order to
involve this idea in the fuzzy communication situations that we will study later. The
coalitional model in Sect. 3.3 took any coalition as the final argument of cooperation.
Now players can form several coalitions. Let N be a finite set.

Definition 4.1 A coalition structure for N is a non-empty family of coalitions
B ⊂ 2N such that B ∩ B ′ = ∅ for all B, B ′ ∈ B. The set of coalition structures
over N is denoted as PN

0 .

Each coalition structure1 B is associated to a quasi-equivalence relation (quasi-
reflexive, symmetric and transitive) rB where the domain is the active set of players,

NrB =
⋃

B∈B
B = NB,

and the equivalence classes or components are the coalitions inB, i.e.B = N/rB.
Coalition structures have been a crucial tool to analyze coalition formation (see for
instance [3]). Obviously if |B| = 1 then we are in the situation of Sect. 3.4.

Example 4.1 Suppose N = {1, 2, 3, 4, 5, 6, 7, 8} a finite set of eight sellers of deter-
mined product. They decide cooperate but only among those working in the same

1A coalition structure B for Aumann y Dreze [1] satisfies
⋃

B∈B B = N in addition.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Fig. 4.1 Coalition structure 1 

2 

3 

4 

5 
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city. They form the coalitional structureB = {{1, 2, 3, 4}, {5, 6, 7}, {8}}. Each coali-
tion B in the structure is associated to the relation r B as we say in Example 3.5. The
aggregation of these relations establishes a new relation rB in Fig. 4.1 given by

rB =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Taking into account the concept of restricted game (Definition 3.5) we introduce
the instrumental game for this model.

Definition 4.2 Let v ∈ G N be a game andB ∈ PN
0 a coalition structure. The

coalitional game associated toB is the new game vB ∈ G N with

vB =
∑

B∈B
vB .

Almost all the properties verified by the restricted game in Sect. 3.4 are also
satisfied by the coalitional game.

Proposition 4.1 Let v ∈ G N and B ∈ PN
0 .

(1) If v is additive then vB is additive, moreover vB = vNB .
(2) If v is superadditive (subadditive) or convex (concave) or monotone then

so is vB.
(3) (av + bw)B = avB + bwB for all a, b ∈ R. Hence (−v)B = −(vB).
(4) If v,w are strategically equivalent then so are vB,wB.
(5) (vsvg)B = (vB)svg.

Proof It is very easy to prove all these properties using Propositions 3.1 and 3.2. We
only show the first and the last one. If v ∈ R

N then

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
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vB(S) =
∑

B∈B

∑

i∈S∩B

vi =
∑

i∈S∩NB

vi = vNB(S).

The additive game vNB was defined on Proposition 3.1. Nowwe determine the saving
game, for each coalition S

(vsvg)B(S) =
∑

B∈B
(vsvg)B(S) =

∑

B∈B
(vB)svg(S) =

∑

B∈B

∑

i∈S
vB({i}) − vB(S)

=
∑

i∈S

∑

B∈B
vB({i}) − vB(S) =

∑

i∈S
vB({i}) − vB(S).

�

A value for games with coalition structure is

f : G N × PN
0 → R

N .

Each pair (v,B) ∈ G N × PN
0 is called a game over N with coalition structure. We

define aShapley value for gameswith a coalition structure using the extendedShapley
value (Definition 3.6) for each coalition in the structure.

Definition 4.3 The coalitional value is a value for games over N with coalition
structure defined for each game v ∈ G N and each coalition structureB ∈ PN

0
as

μ(v,B) = φ(vB).

The above mapping coincides with the Shapley value in the classical situation,
namely B = {N }. Additivity of the Shapley value implies the equality

μ(v,B) =
∑

B∈B
φ(v, B)

Since the extended Shapley values verifies carrier and the elements in the coalition
structure are disjoint we have that for each B ∈ B and i ∈ B

μi (v,B) = φi (v, B). (4.1)

Aumann and Dreze [1] defined the coalitional value using the subgame over each
coalition in the structure. Proposition 3.4 says that both are the same,

μi (v,B) = φB
i (v)

for all i ∈ B ∈ B. Hence μi (v,B) = 0 if i /∈ NB.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Similar axioms to the extended Shapley value can be used for the coalitional value.
Let f : G N × PN

0 → R
N a value for games over N with coalition structure.

Efficiency by components. For all v ∈ G N and B ∈ B, f (v,B)(B) = v(B).

Restrictednull player. Let i ∈ N be a null player in the game v, it holds fi (v,B) = 0
if i ∈ NB.

Symmetry by components. If i, j ∈ N are symmetric for a game v and B ∈ PN
0

with i, j ∈ B ∈ B then fi (v,B) = f j (v,B).

Linearity. For all v,w ∈ G N , a, b ∈ R and B ∈ PN
0 it holds f (av + bw,B) =

a f (v,B) + b f (w,B).

Carrier. Let v ∈ G N and B ∈ PN
0 . For any non-active player i , namely i /∈ NB, it

holds fi (v,B) = 0.

Restricted null player is the same axiom given in Sect. 3.4 for coalition NB.
Efficiency and symmetry by components are the usual axioms relative to each com-
ponent in the binary relation.2 If |B| = 1 then the axiomatization coincides with the
axiomatization of the extended Shapley value.

Theorem 4.1 The coalitional value is the only value for games over N with
coalition structure satisfying efficiency by components, restricted null player,
symmetry by components, linearity and carrier.

Proof Obviously, from (4.1) the coalitional value satisfies the first four axioms. As
the extended Shapley value verifies carrier, if i /∈ NB then φi (v, B) = 0 for every
B ∈ B.

Let f be a value. Following the proof of Theorem 1.3, linearity implies that
we only need to find out the uniqueness for unanimity games. So, let uR with R
a non-empty coalition. We consider now B a coalition structure. Using carrier we
have fi (uR,B) = 0 if i /∈ NB. Suppose B ∈ B, restricted null player says that
fi (uR,B) = 0 for all i ∈ B \ R. If B ∩ R �= ∅ then all the players in this intersection
are symmetric, thus there exists i0 ∈ B ∩ R with fi (uR,B) = fi0(uR,B) for all
i ∈ B ∩ R. Efficiency by components implies

∑

i∈B
fi (uR,B) = |B ∩ R| fi0(uR,B) = uR(B).

So we get the uniqueness for player i0. �

2Aumann and Dreze [1] named them relative efficiency and relative symmetry.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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We show more results about anonymity and symmetry in this context in the next
proposition. GivenB ∈ PN

0 a coalition structure and θ ∈ �N a permutation over N ,
we introduce the new coalition structure

θB = {θB : B ∈ B}.

Proposition 4.2 Let B ∈ PN
0 be a coalition structure and θ ∈ �N . It holds

for any game v and player i ,

μθ(i)(θv, θB) = μi (v,B).

Moreover,

(1) If θB = B then μθ i (θv,B) = μi (v,B),
(2) If B, B ′ ∈ B with B �= B ′, and i ∈ B, j ∈ B ′ are two symmetric players

for v then the coalitional value satisfies μi (v,B) = μ j (v,B′), where

B′ = B \ {B, B ′} ∪ {B \ {i} ∪ { j}, B ′ \ { j} ∪ {i}}.

(3) If B ∈ B and i ∈ B, j /∈ NB are symmetric for v then μi (v,B) =
μ j (v,B′), where

B′ = B \ {B} ∪ {B \ {i} ∪ { j}}.

Proof We use Theorem 3.1. Suppose i ∈ NB, there exists only one B ∈ B with
i ∈ B and

μθ(i)(θv, θB) = φθ(i)(v, θB) = φi (v, B) = μi (v,B).

Otherwise, namely i /∈ NB we get θ(i) /∈ N θB and by the carrier axiom of the
coalitional value both payoffs are zero.

Property (1) is a trivial consequence from the above equality. For the others
equalities we follow the proof in Theorem 3.1 taking permutation θ i j . As i, j are
symmetric then θv = v and θB = B′ in both cases. �

Property (1) in the above proposition is taken as an axiom by Aumann and Dreze
[1]. It is easy to prove that this property implies symmetry by components.

Next we summarize other properties of the coalitional value. The proofs are sim-
ples using (4.1) and following the proofs in Proposition 3.5.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Proposition 4.3 The coalitional value satisfies the following properties for a
coalition structureB.

(1) Let i, j ∈ B ∈ B be two different players. IfBi ,B j ∈ PN
0 with B \ {i} ∈

Bi and B \ { j} ∈ B j then for all v ∈ G N it holds

μi (v,B) − μi (v,B j ) = μ j (v,B) − μ j (v,Bi ).

(2) If v,w ∈ G N with v <B w for all B ∈ B then μ(v,B) ≤ μ(w,B).

(3) If v,w ∈ G N with v <i w for any i ∈ N then μi (v,B) ≤ μi (w,B).
(4) If i ∈ NB is a necessary player for v ∈ G N

m then μ j (v,B) ≤ μi (v,B).

(5) If i ∈ NB and v ∈ G N
sa then μi (v,B) ≥ v({i}).

(6) Let v ∈ G N
c . If S ⊆ N thenμ(v,B)(S) ≥ vB(S). Particularly if S ⊆ B ∈

B then μ(v,B)(S) ≥ v(S).
(7) μ(−v,B) = −μ(v,B).
(8) For all i ∈ NB and v ∈ G N it holds μi (v,B) = v({i}) − μi (vsvg,B).

Example 3.7 showed that it is not true that the dual game has the same payoff
vector of the original game for the extended Shapley value. Another concept of dual
was proposed in (3.7) and now we extend the idea to coalition structures. Given a
coalition structure B and a game v, theB-dual game is vBdual ∈ G N where

vBdual(S) =
∑

B∈B
v(B) − v(B\S). (4.2)

This new definition is also consistent with the information of the coalition structure
as the next proposition says.

Proposition 4.4 LetB ∈ PN
0 be a coalition structure. For all game v it holds

μ(vBdual ,B) = μ(v,B).

Proof Suppose i ∈ NB, otherwise the equality is true from the carrier axiom. Let
B ∈ B the only coalition with i ∈ B in the structure. For any coalition S if B ′ ∈
B \ {B} then B ′ \ (B ∩ S) = B ′ because they are disjoint. We use expressions (4.2)
and the definition of B-dual game (3.7) to get

(vBdual)B(S) = vBdual(S ∩ B) = v(B) − v(B \ (S ∩ B)) = (vBdual)B(S).

It implies

φi (v
Bdual , B) = φi ((v

Bdual)B) = φi ((v
Bdual)B) = φi (v

Bdual , B).

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Now, Proposition 3.6 and expression (4.1) obtain

μi (v
Bdual ,B) = φi (v

Bdual , B) = φi (v
Bdual , B) = φi (v, B) = μi (v,B).

�

Now we explain the coalitional value as an index. But, given a simple game, the
coalitional game is not always simple.

Proposition 4.5 Let v ∈ G N
s be a simple game. Game vB is simple for all

B ∈ PN
0 if and only if v is also superadditive.

Proof Let v ∈ G N
s be a simple game. As v is monotone then Proposition 4.1

guarantees that vB is also monotone. The problem is to be {0, 1}-game. Observe
that a simple game is superadditive if and only if there are not two disjoint winning
coalitions. If we have two disjoint winning coalitions S, T then we can define B
such that S, T ∈ B and then

vB(S ∪ T ) = v(S) + v(T ) = 2.

If there are not two disjoint winning coalitions then for any coalition structureB and
any coalition S we obtain at most one B ∈ B such that S ∩ B is a winning coalition
for v, therefore S ∈ W (vB). Suppose there is one B with this condition, then

vB(S) =
∑

B∈B
vB(S) = 1.

Otherwise vB(S) = 0. Thus vB is a {0, 1}-game. �

The next proposition evaluates the coalitional game of a unanimity game which
is a superadditive simple game, and its coalitional index.

Proposition 4.6 Let R ⊆ N beanon empty coalition. For a coalition structure
B it holds (uR)B = uR if there exists B ∈ B with R ⊆ B and (uR)B = 0
otherwise. Furthermore

μ(uR,B) =
{

φ(uR), if there is B ∈ B with R ⊆ B
0, otherwise.

Proof Wehave that there is at most one B ∈ Bwith R ⊆ B.We get (uR)B = (uR)B .
Proposition 3.7 implies the result. �

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
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We can describe the coalitional value from the dividends using the above propo-
sition.

Theorem 4.2 For each v ∈ G N and a coalition structure B the coalitional
value of a player i ∈ NB is

μi (v,B) =
∑

i∈S⊆B

Δv
S

|S| ,

where B ∈ B with i ∈ B.

Proof We get the goal using that μi (v,B) = φi (v, B) and by (3.8). �

Remark 4.1 It is possible tomodify the concept of coalitional game for simple games
in order to get always a new simple game. Let B ∈ PN

0 . If v ∈ G N
s then the simple

coalitional game is defined for each coalition S as

vBs (S) =
∨

B∈B
v(S ∩ B). (4.3)

Obviously vBs ∈ G N
s and if v ∈ G N

s ∩ G N
sa then vBs = vB. But this concept of simple

coalitional game is not perfect. The definition does not work correctly with the lattice
structure of simple games. It is true that (v ∨ w)Bs = vBs ∨ wB

s for all B ∈ PN
0 but

next example shows what happens with the minimum. Let N = {1, 2, 3} and the
coalition structure B = {{1, 2}, {3}}. Suppose the unanimity games v = u{1,2} and
w = u{3}. The minimum of these games is v ∧ w = uN and then (v ∧ w)Bs = 0. On
the other hand vBs = u{1,2} and wB

s = u{3}. Thus vBs ∧ wB
s = uN �= 0.

4.3 Communication Structures. The Myerson Model

Coalition structures over N can be seen as a partition of the set of players in several
final coalitions through the bilateral communication between players but without
communication among them. If B ∈ PN

0 then each B ∈ B represents a family of
players without communication with the players out of B and where all the com-
munications between players in B are feasible. Myerson [9] introduced a new step
in the analysis of the partial cooperation in this sense. Now players are organized
in a coalition structure but into each coalition of the structure not all the bilateral
communications are feasible. In a coalition of the structure enough communication
is supposed in order to connect the set. Myerson used a undirected graph to represent
this situation. In this graph the vertices are the players and the links are the feasible
bilateral coalitions. A undirected graph is really an special case of binary relation

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Fig. 4.2 Communication
structure r
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over N . The sense of the relation of a player with herself is being active, a black
vertex. As we are thinking of bilateral communication we consider that every player
with a link to another one is active in the game, namely is quasi-reflexive. Following
with the usual reasoning in the classical cooperative games, players form the maxi-
mal coalitions that they get connecting. So, the final coalition structure is the set of
components of the relation.

Definition 4.4 A communication structure over N is a bilateral relation r
satisfying two conditions:

(1) r is quasi-reflexive, r(i j) = 1 implies i ∈ Nr ,
(2) r is symmetric, r(i, j) = r( j, i) = r(i j) if i, j ∈ N with i �= j .

The family of communication structures is denoted as GN

Example 4.2 Suppose N = {1, 2, 3, 4, 5, 6, 7, 8}. We consider the next communi-
cation situation. Player 7 is not active. Player 1 is able to communicate with players
2, 3, player 2 with 3 and player 2 with 6. There exists also communication of 5 with
4, 8 (see Fig. 4.2). The relation is represented by the matrix

r =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0
1 1 1 0 0 1 0 0
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 1
0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Following Sect. 3.3 we have

L(r) = {12, 13, 23, 26, 58, 45}.

Connecting among them, players form the coalition structure of the components in
the relation,

N/r = {{1, 2, 3, 6}, {4, 5, 8}}.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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But although {4, 5, 8} is a final coalition, communication between 4 and 8 is not
feasible.

Coalition structures as in the Aumann-Dreze model are transitive communication
structures, i.e. into each final coalition every pair of players are related. Each pair
(v, r) ∈ G N × GN is called a game over N with communication structure.

A “measure” of the benefit obtained in a each gamewith communication structure
is defined by Myerson. He supposed that this benefit is the sum of the worth of the
components in the relation.

Definition 4.5 Let v ∈ G N . The graph-worth over N is the function g : G N ×
GN → R given by

g(v, r) =
∑

S∈N/r

v(S)

for all v ∈ G N and r ∈ GN .

Next we introduce an operation of graphs interesting in several moments of the
book.

Definition 4.6 If r is a communication structure and i j ∈ L(r) then r−i j ∈ GN

with r−i j (i ′ j ′) = r(i ′ j ′) for all i ′ j ′ �= i j and r−i j (i j) = 0.

Example 4.3 Consider r in Example 4.2. Suppose i j = 45 ∈ L(r). Relation r−45 is
represented by the matrix

r−45 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0
1 1 1 0 0 1 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence now L(r−45) = {12, 13, 23, 26, 58}. If we delete a link in a graph the set of
component can change, now N/r−45 = {{1, 2, 3, 6}, {4}, {5, 8}} (Fig. 4.3).

The graph-worth g satisfies the following conditions,

(1) Connection, if r is connected then g(v, r) = v(Nr ),
(2) Component additivity, g(v, r) =∑S∈N/r g(v, rS),
(3) Link monotonicity, if v ∈ G N

sa then g(v, r) ≥ g(v, r−i j ) for all i j ∈ L(r).
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Fig. 4.3 Communication
structure r−45
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The first property, following theMyerson idea says that in a communication structure
the most important thing is connecting people. The second one implies that if two
groups are not connected then they cannot improve their profits for cooperating and
theworth is the sum of the separated benefits. Remember that in a superadditive game
cooperation is a good chance for players, therefore the graph-worth must respect this
idea rewarding the communication. Last condition expresses this fact. Observe that
the first two properties implies the existence of only one function, the graph-worth.

Myerson [9] used the graph-worth to describe a model to study communication
structures. Following our general model a new game is defined introducing the infor-
mation about the communication.

Definition 4.7 Let v ∈ G N and r a communication structure. The vertex game
is v/r ∈ G N with

v/r(S) = g(v, rS)

for any coalition S.

Obviously, if the relation r is also transitive, r = rB with a coalition structureB,
then v/r = vB.

Example 4.4 Consider again the communication situation r in Fig. 4.2. Now let
v ∈ G N

a with v(S) = |S| − 1 for all non-empty coalition. We calculate the worth of
coalition S = {1, 3, 6, 5, 8} in the vertex game. We have v(S) = 4 but

v/r(S) = g(v, rS) =
∑

T∈N/rS

v(T ) = v({1, 3}) + v({6}) + v({5, 8}) = 2,

because N/rS = {{1, 3}, {6}, {5, 8}}. The graph representing rS is in Fig. 4.4.

Almost all the properties of those verified by the restricted game are also satisfied
by the coalitional game.

Fig. 4.4 Communication
structure rS
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3 4 5 

6 7 
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Proposition 4.7 Let v ∈ G N and r ∈ GN .

(1) If v is additive then v/r is additive, moreover v/r = vNr .
(2) If v is superadditive (subadditive) then so is v/r .
(3) (av + bw)/r = av/r + bw/r for all a, b ∈ R. Hence (−v)/r = −(v/r).
(4) If v,w are strategically equivalent then so are v/r,w/r .
(5) (vsvg)/r = (v/r)svg.

Proof (1) Remember that the components form a partition of the domain of a relation.
If v ∈ R

N then following Definition 4.7,

v/r(S) =
∑

T∈N/rS

v(T ) =
∑

T∈N/rS

∑

i∈T
vi =

∑

i∈Nr∩S

vi .

(2) Suppose v ∈ G N
sa . Let S, T be coalitions with S ∩ T = ∅. For each R ∈ N/rS∪T

there exists a partition of it using components in N/rS and N/rT . Thus, superaddi-
tivity of v implies

v/r(S ∪ T ) =
∑

R∈N/rS∪T

v(R) ≥
∑

R∈N/rS

v(R) +
∑

R∈N/rT

v(R) = v/r(S) + v/r(T ).

(3) A simple exercise for the reader.
(4) If v,w are strategically equivalent then there are a ∈ R and b ∈ R

N such that
v = aw + b.The first and the third steps imply

v/r(v) = aw/r(v) + bNr .

(5) We determine the saving game, for each coalition S. If i ∈ N then v/r({i}) =
v({i}) when i ∈ Nr and v/r({i}) = 0 otherwise. Let S ⊆ N ,

(vsvg)/r(S) =
∑

T∈N/rS

vsvg(T ) =
∑

T∈N/rS

[
∑

i∈T
v({i}) − v(T )

]

=
∑

i∈NrS

v({i}) −
∑

T∈N/rS

v(T ) =
∑

i∈S
v/r({i}) − v/r(S) = (v/r)svg(S).

�

But in this situation monotonicity and convexity are not inheritable. Next exam-
ple shows that superadditivity plays an important role to get the inherence of the
monotonicity.

Example 4.5 Suppose the monotone game v over N = {1, 2, 3} given by v({i}) = 4,
v({i, j}) = 5 and v(N ) = 6. This game is not superadditive because we obtain
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Fig. 4.5 Monotonicity is not
inheritable

1 2 

3 

v({1}) + v({3}) = 8 > v({1, 3}) = 5. Now we consider the graph in Fig. 4.5. As
the graph is connected we obtain v/r(N ) = 6. But then, v/r({1, 3})= v({1}) +
v({3})= 8. Observe that if v was superadditive then v({1}) + v({3}) ≤ v({1, 3}) ≤
v(N ).

We can remove from the above example the following fact. For any communi-
cation structure r containing the graph in Fig. 4.53 we can find a monotone game v
such that v/r is not monotone. Supperadditivity is an usual property that it ensures
the inherence of monotonicity. Remember from the first chapter that any monotone
game must be non-negative, moreover if v ∈ G N

sa and v ≥ 0 then v ∈ G N
m . This kind

of monotone games guarantees the monotonicity of the vertex game.

Proposition 4.8 If v ∈ G N
sa and v ≥ 0 then v/r is monotone for all communi-

cation structure r .

Proof Let v ∈ G N
sa . Proposition 4.7 (2) implies that v/r is also superadditive. Game

v/r is also non-negative, for all coalition S

v/r(S) = g(v, rS) =
∑

R∈N/rS

v(R) ≥ 0.

Hence, v/r is superadditive and non-negative, thus it is monotone. �

Convexity is not inheritable either. Next example was given by Slikker and van
den Nouweland [13] to demonstrate this fact.

Example 4.6 Let N = {1, 2, 3, 4}. Consider the reflexive communication structure
r and with the set of links

L(r) = {12, 24, 34, 13},

the graph is in Fig. 4.6. We take again v(S) = |S| − 1 for any non-empty coalition.
It holds v(S) + v(T ) = |S ∪ T | + |S ∩ T | − 2, thus

v(S) + v(T ) = v(S ∪ T ) + v(S ∩ T ).

3There is a coalition S with rS drawing the same graph for the vertices in black but with different
labels.
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Fig. 4.6 Convexity is not
inheritable

1 2 

3 4 

Our game is convex. Now we construct the vertex game, as the relation is reflexive

v/r(S) = g(v, rS) =
∑

T∈N/rS

(|T | − 1) = |S| − |N/rS|.

Coalitions S = {1, 2, 3} and T = {2, 3, 4} are connected, therefore they verifies
v/r(S) = v(S) = 2 = v(T ) = v/r(T ). As S ∪ T = N and the graph is connected
then v/r(N ) = v(N ) = 3. But the intersection, S ∩ T = {2, 3}, is not connected,
and its worth is v/r(S ∩ T ) = 0. So,

v/r(S) + v/r(T ) = 4 > 3 = v/r(S ∪ T ) + v/r(S ∩ T ).

Game v/r is not convex.

Convexity is a restrictive condition enough to think increase it. Perhaps non-
negativity can be a good idea, but the game in the above example is non-negative.
So, Slikker and van denNouweland [13] thought of conditions for the communication
structure in order to get the inheritance of convexity.

Definition 4.8 A communication structure r is cycle-complete if any cycle
{i0, . . . , im} in r satisfies r{i0,...,im } is complete.

In [13] the authors showed that this family is enough extensive. For instance all
the acyclic communication structures are cycle-complete, but there a lot more (see
Fig. 4.7).

van Nouweland and Borm [14] proved the following nice relation between this
kind of graphs and the convexity of the vertex game.

Fig. 4.7 Cycle-complete
communication structure
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3 4 5 
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Proposition 4.9 A communication structure r is cycle-complete if and only if
the vertex game v/r is convex for all v ∈ G N

c .

Proof Consider r communication structure cycle-complete and v ∈ G N
c . We use

Proposition 1.3 to get the convexity of the vertex game v/r . Suppose i ∈ Nr , other-
wise all the marginal contributions are zero. For all coalition S with i /∈ S, we denote
the set of components in rS containing some player with a link to i as

CS
i (r) = {C ∈ N/rS : ∃ j ∈ C, i j ∈ L(r)}. (4.4)

Next we prove the following claims:

• N/rS∪{i} = [(N/rS) \ CS
i (r)

] ∪
{
{i} ∪⋃C∈CS

i (r) C
}
. In fact, any component in

rS∪{i} without player i is also a component in rS , and, by definition, the component
in rS∪{i} containing player i connects all the components in CS

i (r).
• If S ⊆ T with i /∈ T then for all C ∈ CS

i (r) there exists only one DC ∈ CT
i (r)

with C ⊆ DC , moreover if C �= C ′ then DC �= D′
C . Obviously as S ⊆ T for each

C ∈ CS
i (r) must exist one D ∈ CT

i (r) with C ⊆ D, and as D is a component
then D is unique. Now suppose one D ∈ CT

i (r) with two different C,C ′ ∈ CS
i (r)

verifying C,C ′ ⊆ D. There are j ∈ C and j ′ ∈ C ′ such that: { j, i, j ′} is a path
between j and j ′ (by definition of C and C ′), j j ′ /∈ L(r) (they are in different
components in rS), and finally j and j ′ are connected in rT (they are in the same
component in rT ) by another pathwithout using player i (she is not in T ). Therefore
we have a cycle in r containing j, j ′ but j j ′ /∈ L(r). This is not possible because
r is cycle-complete.

Suppose coalitions S � T and i /∈ T . Using the first claim,

v/r(T ∪ {i}) − v/r(T ) = v

⎛

⎝{i} ∪
⋃

D∈CT
i (r)

D

⎞

⎠−
∑

D∈CT
i (r)

v(D), (4.5)

and obviously the same with S. Now we apply the another claim and convexity for
v,

v/r(T ∪ {i}) − v/r(T ) ≥ v

⎛

⎝{i} ∪
⋃

C∈CS
i (r)

DC

⎞

⎠−
∑

C∈CS
i (r)

v(DC)

≥ v

⎛

⎝{i} ∪
⋃

C∈CS
i (r)

C

⎞

⎠−
∑

C∈CS
i (r)

v(C)

= v/r(S ∪ {i}) − v/r(S).

http://dx.doi.org/10.1007/978-3-319-56472-2_1


4.3 Communication Structures. The Myerson Model 115

Fig. 4.8 Coalitions S, T
in C

The first inequality follows from superadditivity of v because

{i} ∪
⋃

D∈CT
i (r)

D =
⎛

⎝{i} ∪
⋃

C∈CS
i (r)

DC

⎞

⎠ ∪
⋃

{D∈CT
i (r):D �=DC∀C∈CS

i (r)}
D,

and then

v

⎛

⎝{i} ∪
⋃

D∈CT
i (r)

D

⎞

⎠ = v

⎛

⎝{i} ∪
⋃

C∈CS
i (r)

DC

⎞

⎠+
∑

{D∈CT
i (r):D �=DC∀C∈CS

i (r)}
v(D).

The second inequality uses convexity sequentially by Proposition 1.3, because if
C ′ ∈ CS

i (r) then ⋃

C∈CS
i (r)\C ′

DC ∪ C ′ ⊆
⋃

C∈CS
i (r)\C ′

DC ∪ DC ′ .

On the other hand, suppose that r is not cycle-complete. There exists a cycle in
r , we denote C the set of players in this cycle, containing i, j such that i j /∈ L(r).
Consider again the game v(S) = |S| − 1 for any non-empty coalition S. At least there
are two players in C \ {i, j} because C is a cycle and i j /∈ L(r). We take coalitions
S, T as in Fig. 4.7 satisfying: S, T are connected, S ∩ T = {i, j} (it is not connected)
and S ∪ T = C (connected). Thus, as |S| + |T | = |C | + 2 (Fig. 4.8)

v/r(S) + v/r(T ) = v(S) + v(T ) = |C | > |C | − 1 = v/r(S ∪ T ) + v(S ∩ T ).

�

A value for games with communication structure is

f : G N × GN → R
N .

Myerson [9] proposed to define a value applying the Shapley value to the vertex
game.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Definition 4.9 The Myerson value is a value for games over N with commu-
nication structure defined for each game v ∈ G N and communication structure
r as

μ(v, r) = φ(v/r).

Obviously, the Myerson value coincides with the coalitional value if the com-
munication structure is transitive, and then with the Shapley value in the classical
situation. In the above section we saw that the coalitional value of a player only
depends on the component where she is (4.1). The Myerson value also satisfies this
component decomposability, but the result is not trivial. Van den Nouweland [15]
proved this fact. In our context we get the next result.

Proposition 4.10 Let (v, r) ∈ G N × GN be a game with communication
structure. The Myerson value of a player i ∈ Nr satisfies

μi (v, r) = μi (v, rT ) = φi (v/r, T ) = φi (v/r, N/r) ,

where T ∈ N/r and i ∈ T .

Proof Given a player i ∈ Nr , we take again for each coalition S not containing the
player, the set CS

i (r) (4.4) of components in rS with a link to i . Expression (4.5)
showed that the marginal contribution of player i to a coalition S only depends on
CS
i (r). As there exists only one component T ∈ N/r with i ∈ T we have CS

i (r) =
CS
i (rT ) because all the elements in CS

i (r) are contained in T . Hence,

v/r(S ∪ {i}) − v/r(S) = v/rT (S ∪ {i}) − v/rT (S).

Now, by Theorem 1.1

μi (v, r) = φi (v/r) =
∑

S⊆N\{i}
cnS[v/r(S ∪ {i}) − v/r(S)] = φi (v/rT ) = μi (v, rT ).

Finally, followingDefinition 3.6, we see that v/rT = (v/r)T . In fact, for any coalition
S we have N/(rT )S = N/rS∩T , and then since Definition 3.5

v/rT (S) =
∑

R∈N/(rT )S

v(R) =
∑

R∈N/rT∩S

v(R) = v/r(T ∩ S) = (v/r)T (S).

The last equality in the proposition is given by (4.1). �

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
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In order to find an axiomatization of the Myerson value we take into account that
players are asymmetric in the structure because in each component the situation of
the players contained in it is different, for instance the position of player 1 in Fig. 4.5
is not the same of players 2, 3. Therefore equal treatment of players in the same
component (symmetry) is not possible. Myerson [9] used then an axiomatization
based in a fairness axiom, thinking about the deletion of a link by Definition 4.6. Let
f : G N × GN → R

N a value for games over N with coalition structure.

Efficiency by components. If v ∈ G N and r ∈ GN then f (v, r)(T ) = v(T ) for all
T ∈ N/r .

Fairness. Let v ∈ G N and r ∈ GN , it holds for all i j ∈ L(r) that

fi (v, r) − fi (v, r−i j ) = f j (v, r) − f j (v, r−i j ).

Carrier. Let v ∈ G N and r ∈ GN . For all player i /∈ Nr it holds fi (v, r) = 0.

But fairness is an axiom which only is possible to use in the context of graphs,
thus next axiomatization is not valid for the family of usual games. Similar to the
following axiomatization was given in [9].

Theorem 4.3 TheMyerson value is the only value for games over N with com-
munication structure satisfying efficiency by components, fairness and carrier.

Proof First we test that the Myerson value verifies the three axioms.
Carrier. Suppose i /∈ Nr . For all coalition S ⊆ N \ {i}, player i does not change
the components in the coalition, namely N/rS∪{i} = N/rS . Thus i is a null player for
v/r because v/r(S ∪ {i}) = v/r(S). As Shapley value verifies null player property
(Proposition 1.11) then μi (v, r) = 0.
Efficiency by components. Let T ∈ N/r be a component in a communication
structure r . The above proposition says

∑

i∈T
μi (v, r) =

∑

i∈T
μi (v, rT ).

Carrier axiom of the Myerson value (we have just proved it) and the efficiency of the
Shapley value (Proposition 1.9) imply

∑

i∈T
μi (v, r) =

∑

i∈N
μi (v, rT ) =

∑

i∈N
φi (v/rT ) = v/rT (N ).

But N/rT = {T } because T is connected and then v/rT (N ) = g(v, rT ) = v(T ).
Fairness. Let i j ∈ L(r). We consider wi j ∈ G N defined as

wi j = v/r − v/r−i j . (4.6)

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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If one of the players, i or j (or both of them) are not in a coalition S then wi j (S) = 0
because the components in r and r−i j are the same. Hence wi j (S ∪ {i}) = wi j (S ∪
{ j}) = 0 for all S ⊆ N \ {i, j}. Players i, j are symmetric for wi j . As the Shapley
value satisfies symmetry (Proposition 1.10) then

φi (w
i j ) = φ j (w

i j ).

From the linearity of the Shapley value (Proposition 1.8) we get

μi (v, r) − μi (v, r−i j ) = φi (v/r) − φi (v/r−i j ) = φi (w
i j ) = μ j (v, r) − μ j (v, r−i j ).

Take now two values f 1, f 2 for games with communication structure satisfy-
ing the three axioms. We will prove that f 1 = f 2. If i /∈ Nr then carrier implies
f 1i (v, r) = f 2i (v, r) = 0. For the rest of players we work by induction in |L(r)|. If
|L(r)| = 0 then each player i ∈ Nr verifies {i} ∈ N/r and by efficiency by compo-
nents f 1i (v, r) = f 2(v, r) = v({i}). Suppose that the equality of both values is true
if |L(r)| = k − 1 and consider r with |L(r)| = k. Let T ∈ N/r and i ∈ T . If j ∈ T
is such i j ∈ L(r) then fairness and induction say

f 1i (v, r) − f 1j (v, r) = f 1i (v, r−i j ) − f 1j (v, r−i j )

= f 2i (v, r−i j ) − f 2j (v, r−i j ) = f 2i (v, r) − f 2j (v, r).

Otherwise, j ∈ T but i j /∈ L(r), there is a path between i and j , and applying the
above reasoning in each link in the path we get also the same equality. Hence,
for all j ∈ T , f 1j (v, r) − f 2(v, r) = A, being A = f 1i (v, r) − f 2i (v, r). So, using
efficiency in component T ,

0 =
∑

j∈T
f 1j (v, r) − f 2j (v, r) = |T |A.

We get A = 0 �

Example 4.7 Let N = {1, 2, 3, 4, 5}. Suppose the anonymity game v(S) = |S|2 − 1
and the graph r in Fig. 4.9. Using Proposition 4.10 we can obtain the Myerson value
by components, N/r = {{1, 2, 3}, {4, 5}}. From Proposition 3.4 we can also use the
subgame in each component,

Fig. 4.9 Communication
structure Example 4.7 1 2 

3 4 5 

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_3
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μ (v, rT ) = φ((v/r)T ) = [φT ((v/r)|T )
]0

.

Game (v/r)|{1,2,3} is 0-normalized and (v/r)|{1,2,3}({1, 2} = (v/r)|{1,2,3}({1, 3}) = 3,
(v/r)|{1,2,3}({2, 3}) = 0, (v/r)|{1,2,3}({1, 2, 3} = 8. So,μ1(v, r) = 22/6 andμ2(v, r)
= μ3(v, r) = 13/6. In the another component the graph is complete and players are
symmetric. As v({4, 5}) = 3 then μ4(v, r) = μ5(v, r) = 3/2. We get

μ(v, r) =
(
11

3
,
13

6
,
13

6
,
3

2
,
3

2

)
.

Next we see some classical properties of the Shapley value extended to the Myer-
son value.

Proposition 4.11 The Myerson value satisfies the following properties for a
communication structure r .

(1) If v,w ∈ G N then μ(av + bw, r) = aμ(v, r) + bμ(w, r).
(2) If i ∈ Nr is a necessary player for v ∈ G N

sa and v ≥ 0 then μ j (v, r) ≤
μi (v, r) for any another player j .

(3) If i ∈ Nr and v ∈ G N
sa then μi (v, r) ≥ v({i}).

(4) If S ⊆ N, r is cycle-complete, and v ∈ G N
c then μ(v, r)(S) ≥ v/r(S).

(5) μ(−v, r) = −μ(v, r).
(6) For all i ∈ Nr and v ∈ G N it holds μi (v, r) = v({i}) − μi (vsvg, r).

Proof (1) The linearity is obtained because (av + bw)/r = a(v/r) + b(w/r).
(2) Proposition 4.8 implies that v/r is monotone. As Proposition 1.11 says that the
Shapley value satisfies necessary player then for all j �= i

μ j (v, r) = φ j (v/r) ≤ φi (v/r) = μi (v, r).

(3) From Proposition 4.7 the vertex game is superadditive and as the Shapley value
satisfies individual stability (Proposition 1.13) then

μi (v, r) = φi (v/r) ≥ v/r({i}) = v({i}).

Observe that if i ∈ Nr then N/r{i} = {{i}}.
(4) Proposition 4.9 obtains a convex vertex game, so

μ(v, r)(S) = φ(v/r)(S) ≥ v/r(S)

since the Shapley value verifies coalitional stability (Proposition 1.14).
(5) Follows from (2).
(6) Let i ∈ Nr , using Propositions 1.15 and 4.7

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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μi (v, r) = φi (v/r) = v/r({i}) − φi
(
(v/r)svg

) = v({i}) − φi
(
vsvg/r

)

= v({i}) − μi (v
svg, r).

�

It is not possible to improve the result of the coalitional convexity as next example
shows. Furthermore Slikker and van den Nouweland [13] proved that the reasoning
in this example can be extended to all graph non cycle-complete.

Example 4.8 Consider the communication structure in Fig. 4.6 which is not cycle-
complete. Now take the unanimity game u{1,4} which is convex. We have that the
vertex game is

u{1,4}/r = u{1,2,4} ∨ u{1,3,4}.

which is not convex. The Myerson value is

μ(u{1,4}, r) =
(

5

12
,
1

12
,
1

12
,
5

12

)
,

satisfying

μ(u{1,4}, r)({1, 2, 4}) = 11

12
< v/r({1, 2, 4} = 1.

There exist also properties of the value specific to communication situations.
The following proposition summarizes several of them (the reader can find more in
Slikker and van den Nouweland [13]). We need to introduce a new operation for
communication structures

Definition 4.10 Let r ∈ GN and k ∈ Nr . The isolation of a vertex r−k is
defined as r−k(i j) = r(i j) if i, j �= k, r−k(kk) = 1 and otherwise r−k(i j) = 0.

Proposition 4.12 The Myerson value satisfies the following properties for a
communication structure r .

(1) (Stability by links) If i j ∈ L(r) and v ∈ G N
sa then μi (v, r) ≥ μi (v, r−i j ).

(2) (Balanced contributions) If v ∈ G N and i, j ∈ Nr then

μi (v, r) − μi (v, r− j ) = μ j (v, r) − μ j (v, r−i ).

(3) (Superfluous link) If i j ∈ L(r) and v ∈ G N satisfies v/r = v/r−i j then
μ(v, r) = μ(v, r−i j ).
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Proof (1) We use game wi j in (4.6). Remember that wi j (S) = 0 if i /∈ S or j /∈ S,
hence

φi (w
i j ) =

∑

{S⊆N\{i}: j∈S}
cnSw

i j (S ∪ {i}).

Observe that as the graph-worth ismonotone by linkswhen the game is superadditive,

wi j (S) = v/r(S) − v/r−i j (S) = g(v, r) − g(v, r−i j ) ≥ 0.

Now, from the above formula we get φi (wi j ) ≥ 0. As Shapley value is linear
φi (v/r) ≥ φi (v/r−i j ).
(2) Using Theorem 1.1 we get

μi (v, r) − μi (v, r− j ) = φi (v/r) − φi (v/r− j )

=
∑

S⊆N\{i}
cns [v/r(S ∪ {i}) − v/r(S) − v/r− j (S ∪ {i}) + v/r− j (S)]

If j /∈ S then the summand is zero. If T is a coalition with j ∈ T then v/r− j (T ) =
v/r(T \ { j}) + v({ j}). Hence

μi (v, r) − μi (v, r− j ) =
∑

S⊆N\{i, j}
cns [v/r(S ∪ {i, j}) − v/r(S ∪ { j}) − v/r(S ∪ {i}) + v/r(S)].

Observe that this number is the same if we consider μ j (v, r) − μ j (v, r−i ).

(3) It is trivial from Definition 4.9. �

We need to define an appropriate dual game for communication structures. Given
a graph r and a game v, the r -dual game is vrdual ∈ G N where

vrdual(S) =
∑

{T∈N/r :T∩S �=∅}

1

|N/rT∩S|

⎡

⎣v(T ) −
∑

R∈N/rT \S

v(R)

⎤

⎦ . (4.7)

Proposition 4.13 Let r ∈ GN . For all v ∈ G N it holds (vrdual)r = (vr )dual and

μ(vrdual , r) = μ(v, r).

Proof Suppose i ∈ Nr , otherwise the equality is true from the carrier axiom. We
will prove that vrdual/r = v/r . Observe that if R is connected there exists only one
component TR ∈ N/r with R ⊆ TR . For any coalition S we get

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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vrdual/r(S) =
∑

R∈N/rS

vrdual(R) =
∑

R∈N/rS

1∣∣N/rTR∩S

∣∣

⎡

⎣v(TR) −
∑

T∈N/rTR \S

v(T )

⎤

⎦

=
∑

H∈N/r

⎡

⎣v(H) −
∑

T∈N/rH\S

v(T )

⎤

⎦ =
∑

H∈N/r

v(H) −
∑

T∈N/rN\S

v(T )

= (v/r)(N ) − (v/r)(N \ S) = (v/r)dual(S),

because
N/rN\S =

⋃

H∈N/r

N/rH\S.

Thus, from Proposition 1.15

μ
(
vrdual , r

) = φ
(
vrdual/r

) = φ
(
(v/r)dual

) = φ(v/r) = μ(v, r).

�

Given a simple game, the vertex game is not always a simple game as the coali-
tional game. Moreover, it is also true the following relation with the same proof.

Proposition 4.14 Let v ∈ G N
s . Game v/r is simple for all r ∈ GN if and only

if v ∈ G N
sa .

The next proposition evaluates the vertex game of a unanimity game. For each S ⊆
N and r communication structure we denote as S|r is the set of minimal connected
coalitions containing S, in the sense that T ∈ S|r is connected and any coalition
S ⊂ R ⊂ T is not connected. Observe that if S is connected then S|r = {S} and if
there is not any component containing S then S|r = ∅.

Proposition 4.15 Let R ⊆ N be a non-empty coalition. For a communication
structure r it holds

uR/r =
∨

T∈R|r
uT .

Proof We see that Wm(uR/r) = R|r and the result follows from Proposition 1.6.
Let T ∈ R|r . If S � T then

uR/r(S) =
∑

C∈N/rS

uR(C).

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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But as C � T is connected then C does not contain R by definition of R|r , hence
uR(C) = 0. Furthermore, uR/r(T ) = uR(T ) = 1.

On the other hand, let T ∈ Wm(uR/r). If there is R ⊆ S � T with S connected in
r then uR/r(S) = uR(S) = 1, but this fact implies that T is not a winning coalition.
We prove now that T is connected. Suppose it is not true,

uR/r(T ) =
∑

S∈N/rT

v(S) = 1,

and then, as |N/r | > 1, we find S winning coalition with S � T . �

We can describe theMyerson value, determining the dividends of the vertex game
from the original game following Fernández [5]. Owen [12] also proposed another
formula, but it is more complex.

Theorem 4.4 For each v ∈ G N and communication structure r the Myerson
value of a player i ∈ Nr is

μi (v, r) =
∑

{i∈S⊆N :S connected}

Δ
v/r
S

|S| ,

where the dividends are calculated by

Δ
v/r
S = v(S) −

∑

{T�S:T connected}
Δ

v/r
T ,

and Δ
v/r
{i} = v({i}).

Proof We only need to prove that the dividends of non-connected coalitions are
zero taking into account Theorem 1.2 and (1.2). Let S ⊆ N non-connected in the
communication structure r . By induction in |S|, if {i} is not connected then i /∈ Nr

and Δ
v/r
{i} = v/r({i}) = 0. Suppose the claim true if |S| < k and take |S| = k. Using

(1.2) and Proposition 1.1 we obtain

Δ
v/r
S = v/r(S) −

∑

T�S

Δ
v/r
T =

∑

R∈N/rS

v(R) −
∑

R∈N/rS

∑

T⊆R

Δ
v/r
T

=
∑

R∈N/rS

[
v(R) −

∑

T⊆R

Δ
v/r
T

]
=

∑

R∈N/rS

[
v/r(R) −

∑

T⊆R

Δ
v/r
T

]
= 0.

�

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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4.4 Fuzzy Communication Structures and Games

Communication is an information about the players which is susceptible to level.
Furthermore, communicationmay be uncertain in the sense that it depends on several
variables. The Myerson model allowed to get an allocation of benefits adjustable to
the real communications in each moment from a priori characteristic function, but
in each one of these moments the communication between two players is feasible or
not. Jiménez-Losada et al. [6, 7] proposed to introduce fuzziness in communication
structures following the concept non-probabilistic of fuzzy graph (seeModerson and
Nair [8]).

Definition 4.11 A fuzzy communication structure over N is a (undirected)
fuzzy graph ρ, namely a fuzzy bilateral relation over N which satisfies:

(1) ρ is weakly reflexive, ρ(i, j) ≤ ρ(i i) ∧ ρ( j j) for all players i, j ∈ N ,
(2) ρ is symmetric, ρ(i, j) = ρ( j, i) = ρ(i j) for all i �= j .

The family of fuzzy communication structures over N is denoted as FGN .

The interpretation of ρ(i j) for each pair i j is communication level between i and
j or the capacity of cooperation of these players. So, if i = j we understand ρ(i i)
as the level of participation of i in the game.

Example 4.9 Let N = {1, 2, 3, 4, 5, 6, 7, 8}. We consider the next fuzzy communi-
cation situation. Player 7 is active at level 0.6 but she has no communication with the
other agents. Player 1 is able to communicate with players 2, 3 at maximum level 1,
player 2 with 3 only at level 0.1 and player 2 with 6 at 0.5, taking into account that 6
plays at level 0.8. There exists also communication of 5 with 4, 8 at level 0.2 while
they play at level 0.4 (see Fig. 4.10). The relation is represented by the matrix

ρ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0

1 1 0.1 0 0 0.5 0 0

1 0.1 1 0 0 0 0 0

0 0 0 0.4 0.2 0 0 0

0 0 0 0.2 0.4 0 0 1

0 0.5 0 0 0 0.8 0 0
0 0 0 0 0 0 0.6 0
0 0 0 0 0.2 0 0 0.4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Following Sect. 3.3 we have

L(ρ) = {12, 13, 23, 26, 58, 45}, im (ρ) = {0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1}.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Fig. 4.10 Fuzzy
communication structure ρ 1 2 
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Fig. 4.11 Fuzzy
communication structure
ρ0.7−12

1 2 

3 4 5 

6 7 

8 

0.6 

0.1 

1 1

1

0.5 

0.8 

0.4 0.4 0.4 

0.2 0.2 

0.3 

1

Connecting among them, players form the fuzzy coalition structure of the components
in the relation,

N/ρ = {{1, 2, 3, 6}, {4, 5, 8}, {7}}.

We extend the concept of graph-worth g in Definition 4.5. But in the fuzzy case
we have a lot of feasible functions satisfying similar conditions. First we need to
define the following operation for fuzzy graphs.

Definition 4.12 If ρ is a fuzzy communication structure, i j ∈ L(ρ) and
t ∈ [0, ρ(i j)] then ρ t

−i j ∈ FGN with ρ t
−i j (i

′ j ′) = ρ(i ′ j ′) for all i ′ j ′ �= i j and
ρ t

−i j (i j) = ρ(i j) − t .

Example 4.10 Suppose the fuzzy communication structure in Example 4.9. We
reduce the level of communication between players 1 and 2 in t = 0.7. The new fuzzy
relation is represented by the fuzzy graph in Fig. 4.11 Now we get L(ρ0.7

−12) = L(ρ)

and im (ρ0.7
−12) = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1}. Furthermore, N/ρ0.7

−12 = N/ρ.
The matrix represented the fuzzy graph is now

ρ0.7
−12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.3 1 0 0 0 0 0
0.3 1 0.1 0 0 0.5 0 0
1 0.1 1 0 0 0 0 0
0 0 0 0.4 0.2 0 0 0
0 0 0 0.2 0.4 0 0 1
0 0.5 0 0 0 0.8 0 0
0 0 0 0 0 0 0.6 0
0 0 0 0 0.2 0 0 0.4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Definition 4.13 A fuzzy graph-worth over N is a function γ : G N × FGN →
R satisfying

(1) Extension, if r ∈ GN then γ (v, r) = g(v, r),
(2) Component additivity, γ (v, ρ) =∑S∈N/ρ γ (v, ρS),
(3) Link monotonicity, if v ∈ G N

sa then γ (v, ρ) ≥ γ (v, ρ t
−i j ) for all i j ∈ L(ρ)

and t ∈ [0, ρ(i j)].

A trivial example of fuzzy graph-worth is γ (v, ρ) = g(v, rρ) for all ρ ∈ FGN ,
using the crisp version (see Sect. 3.3) of the fuzzy communication structure ρ and the
Myerson graph-worth (Definition 4.5). But, obviously, this option is not reasonable.
Aswewill see later, there are a lot of fuzzy graph-worths.Hencewe think of fuzziness
of the Myerson measure in the sense of Sect. 2.4. Jiménez-Losada et al. [7] gave a
method to get fuzzy graph-worth as fuzziness (extensions) of the Myerson graph-
worth. They needed to introduce the following operations between fuzzy graphs:
sum, subtraction and product with a scalar.

Definition 4.14 Let ρ, ρ ′ ∈ FGN be two fuzzy communication structures.

(1) The sum ρ + ρ ′ is defined as fuzzy sets over N × N , namely for all i, j ∈
N

(ρ + ρ ′)(i j) = 1 ∧ [ρ(i j) + ρ ′(i j)].

(2) If ρ ′ ≤ ρ then the subtraction for each i, j ∈ N is

(ρ − ρ ′)(i j) = [ρ(i j) − ρ ′(i j)] ∧ [ρ(i i) − ρ ′(i i)] ∧ [ρ( j j) − ρ ′( j j)].

(3) If t ∈ [0, 1] then (tρ)(i j) = tρ(i j) for every i, j ∈ N .

The special definition of the subtraction of fuzzy graphs is based on maintaining
the weakly reflexivity, the level of a link must never be greater than the level of its
vertices. The subtraction is explained in the next example.

Example 4.11 In Fig. 4.12 we see the subtraction between a fuzzy communica-
tion structure and one of its subgraphs. Observe that the usual subtraction in
link 12 is ρ(12) − ρ ′(12) = 0.5 but ρ(22) − ρ ′(22) = 0.4. That is why we take
(ρ − ρ ′)(12) = 0.4.

The reader can see that sum and subtraction of fuzzy graphs are not opposite
operations, but they satisfies the next result.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Fig. 4.12 Fuzzy graph subtraction

Proposition 4.16 If ρ, ρ ′, ρ ′′ ∈ FGN with ρ ′ ≤ ρ and ρ ′′ ≤ ρ − ρ ′ then:

(1) (ρ − ρ ′) − ρ ′′ = ρ − (ρ ′ + ρ ′′), and
(2) (ρ − ρ ′) − ρ ′′ = (ρ − ρ ′′) − ρ ′.

Proof (1) As ρ ′ ≤ ρ and ρ ′′ ≤ ρ − ρ ′ it holds for each i, j ∈ N that

ρ ′′(i j) ≤ (ρ − ρ ′)(i j) ≤ ρ(i j) − ρ ′(i j),

thus ρ ′(i j) + ρ ′′(i j) ≤ ρ(i j). Therefore both members of the equality are feasible.
Now we have

[(ρ − ρ′) − ρ′′](i j) = [(ρ − ρ′) − ρ′′](i j) ∧ [(ρ − ρ′) − ρ′′](i i) ∧ [(ρ − ρ′) − ρ′′]( j j)
= [ρ(i j) − ρ′(i j) − ρ′′(i j)] ∧ [ρ(i i) − ρ′(i i) − ρ′′(i j)]

∧[ρ( j j) − ρ′( j j) − ρ′′(i j)] ∧ [ρ(i j) − ρ′(i j) − ρ′′(i j)]
∧[ρ(i i) − ρ′(i i) − ρ′′(i i)] ∧ [ρ( j j) − ρ′( j j) − ρ′′( j j)]

= [ρ(i j) − ρ′(i j) − ρ′′(i j)] ∧ [ρ(i i) − ρ′(i i) − ρ′′(i i)]
∧[ρ( j j) − ρ′( j j) − ρ′′( j j)]

= [ρ(i j) − (ρ′(i j) + ρ′′(i j))] ∧ [ρ(i i) − (ρ′(i i) + ρ′′(i i))]
∧[ρ( j j) − (ρ′( j j) + ρ′′( j j)] = [ρ − (ρ′ + ρ′′)](i j),

using that ρ ′′(i j) ≤ ρ ′′(i i).
(2) Obviously ρ ′ + ρ ′′ = ρ ′′ + ρ ′. Hence, if we will prove the claim ρ ′ ≤ ρ − ρ ′′
then by (1) we obtain

(ρ − ρ ′) − ρ ′′ = ρ − (ρ ′ + ρ ′′) = ρ − (ρ ′′ + ρ ′) = (ρ − ρ ′′) − ρ ′.

Let i, j ∈ N . As ρ ′′(i j) ≤ ρ(i j) − ρ ′(i j) we get ρ ′(i j) ≤ ρ(i j) − ρ ′′(i j). But also
ρ ′(i j) ≤ ρ(i i) − ρ ′′(i i) because otherwise as −ρ ′′(i i) ≥ −ρ(i i) + ρ ′(i i) we will
obtain ρ ′(i j) > ρ ′(i i). �
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Now, following the Aubin [2] model we define partitions by levels for fuzzy
graphs over N . A partition function chooses a partition for each fuzzy communication
structure.

Definition 4.15 Let ρ ∈ FGN be a fuzzy communication structure. A parti-
tion by levels of ρ is a finite sequence {(rk, sk)}mk=1 satisfying:

(1) rk ∈ GN and sk > 0, for all k = 1, . . . ,m,
(2) s1r1 ≤ ρ and for each k = 2, . . . ,m

skrk ≤ ρ −
k−1∑

p=1

sprp.

(3) ρ −∑m
k=1 skrk = 0.

A partition function for fuzzy communication structures is a mapping pl deter-
mining a partition by levels pl(ρ) of each fuzzy graph ρ ∈ FGN .

If the reader compares partition by levels for fuzzy graphs and partition by levels
for fuzzy coalitions (Definition 2.7) they are slightly different because from the
special definition of the subtraction we do not have guaranteed to upset the whole
fuzzy communication structure. Let ρ ∈ FGN . If {(rk, sk)}mk=1 is a partition by levels
of ρ, then for each player i ∈ N , as in (2.6), we have

∑

{k:i∈dom (rk )}
sk = ρ(i i). (4.8)

The above equality is true because the special definition of subtraction does not influ-
ence over the vertices, namely (ρ − ρ ′)(i i) = ρ(i i) − ρ ′(i i) if ρ ′ ≤ ρ and i ∈ N .

Now we comment several interesting partition functions for fuzzy communica-
tions. These functions are inspired in the proportional (Definition 2.11) and Choquet
(Definition 2.12) extensions for fuzzy coalitions. They were introduced in [7].

The proportional by graphs function pg is defined following the proportional
behavior in the sense: Players and communications are connected at the same level.
Let ρ ∈ FGN . For each t ∈ (0, 1] we consider the crisp graph

rρ[t](i j) =
{
1, if ρ(i j) = ρ(i i) = ρ( j j) = t
0, otherwise.

(4.9)

For each t this graph selects all the vertices with level t and it establishes a link
between two vertices if that link has level t .

http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Table 4.1 pg-algorithm of Example 4.11
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Definition 4.16 The proportional by graphs function pg chooses for each
ρ ∈ FGN the partition by levels of ρ obtained by the following algorithm
(pg-algorithm),

Take k = 0, pg = ∅ and ρ = ρ

While ρ �= 0 do
..... k = k + 1
..... sk = ∨ρ

..... rk = rρ[sk]

..... pg = pg ∪ {(rk, sk)}

..... ρ = ρ − skrk
pg(ρ) = pg

Example 4.12 We can see in Table4.1 the pg-algorithm applied to the fuzzy graph
in Example 4.11. Player 3 is the only element in the graph with level 1, then she plays
alone. But if we delete vertex 3 then the links from 3 are deleting too. The same now
with player 2. Coalition {1, 4} is feasible at level 0.5.

The Choquet by graph function cg is defined following the Choquet behavior in
the sense: Players look for connecting using the largest graph.
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Table 4.2 cg-algorithm of Example 4.11
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Definition 4.17 The Choquet by graphs function chooses for each ρ ∈ FGN

the partition by levels of ρ obtained by the following algorithm (cg-algorithm),

Take k = 0, cg = ∅ and ρ = ρ

While ρ �= 0 do
..... k = k + 1
..... sk = ∧ρ

..... rk = rρ

..... cg = cg ∪ {(rk, sk)}

..... ρ = ρ − skrk
cg(ρ) = cg

Suppose ρ as a fuzzy set in [0, 1]N×N and im(ρ) = {λ1 < · · · < λm}. Observe
that we choose s1 = λ1 and r1 = rρ = [ρ]1. In the next step ρ(i j) = ρ(i j) − s1, the
subtraction coincides with the usual difference. Thus s2 = λ2 − λ1. Repeating the
process, we prove

cg(ρ) = {(λk − λk−1, [ρ]k)}mk=1 (4.10)

Example 4.13 We can see in Table4.2 the algorithm applied to the fuzzy graph in
Example 4.11.

Given a game and a partition function we can define from the crisp graph-worth
(Definition 4.5) a “measure” of the profit for fuzzy communication structures.
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Definition 4.18 Let pl be a partition function for fuzzy communication struc-
tures. If v ∈ G N and ρ ∈ FGN then the pl-worth is

γ pl(v, ρ) =
m∑

k=1

skg(v, rk),

where pl(ρ) = {(rk, sk)}mk=1.

Example 4.14 Let N = {1, 2, 3, 4}. Suppose the game v(N ) = 10, v(S) = 4 if |S| =
3, v({2, 3}) = v({1, 4}) = 1 and v(S) = 0 otherwise. Using Tables4.1 and 4.2 we
calculate the worth of the fuzzy communication structure in Example 4.11. So, the
pg-worth

γ pg(v, ρ) = g(v, r1) + 0.7g(v, r2) + 0.5g(v, r3) = 0.5.

The cg-worth

γ cg(v, ρ) = 0.4g(v, r1) + 0.1g(v, r2) + 0.3g(v, r3) + 0.3g(v, r4) = 5.3.

But not all the pl-worth are fuzzy graph-worths. Next example shows this fact.

Example 4.15 Theproportional by communications function pc is defined following
the proportional behavior in the sense: Players look for connecting to maximal level
although they do not upset their levels. Let ρ ∈ FGN . For each t ∈ (0, 1]we consider
the crisp graph rρ∗ [t] with rρ∗ [t](i i) = 1 if and only if there is j �= i with ρ(i j) = t ,
and rρ∗ [t](i j) = 1 with i �= j if and only if ρ(i j) = t . Particularly rρ∗ [0] = rρ . The
partition by levels of ρ is obtained by the following pc-algorithm,

Take k = 0, pc = ∅ and ρ = ρ

While ρ �= 0 do
..... k = k + 1
..... t = ∨{ρ(i j) : i �= j}
..... if t = 0 then
.......... sk = ∧{ρ(i i) : i ∈ N }
.......... rk = rρ

..... else

.......... sk = t

.......... rk = rρ∗ [sk]

..... pc = pc ∪ {(rk, sk)}

..... ρ = ρ − skrk
pc(ρ) = pc

We can see in Table4.3 the algorithm applied to the fuzzy graph in Example 4.11.
Now we consider the game v ∈ G N

sa with v(N ) = 5 and v(S) = 0 otherwise. First
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Table 4.3 pc-algorithm of ρ in Example 4.11
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Table 4.4 pc-algorithm of ρ0.2−23
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γ pc(v, ρ) = 0 because N is not connected in the partition. Second we take ρ0.2
−23. We

need to apply the algorithm again to this fuzzy graph, its pc-partition is in Table4.4.
Finally we determine the pc-worth of ρ0.2

−23, γ
pc(v, ρ0.2

−23) = 3.5. Thus

γ pc(v, ρ0.2
−23) > γ pc(v, ρ).

The pc-worth does not satisfies monotonicity by links.
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Althoughwe consider all the pl-worths interesting (their importance should come
from their applications) we introduce the following concept over the set of partition
functions.

Definition 4.19 A partition function pl for fuzzy communication structures
is admissible if the pl-worth is also a fuzzy graph-worth.

Extension inheritable condition (Definition 3.7) was introduced in Chap.3 for par-
titions by levels of fuzzy coalitions, now we extend the idea to fuzzy communication
structures.

Definition 4.20 A partition function pl for fuzzy communication structures
is an inherited extension if

(1) pl(r) = {(r, 1)} for every r ∈ GN and,
(2) for all ρ ∈ FGN and S ⊆ N with ρS �= 0 it holds

pl(ρS)=
⎧
⎨

⎩

⎛

⎝r ′,
∑

{(r,s)∈pl(ρ):rS=r ′}
s

⎞

⎠ : r ′ �= 0 , ∃(r, s) ∈ pl(ρ) with rS = r ′

⎫
⎬

⎭ .

We will prove that the partition functions in Definitions 4.2 and 4.3 are inherited.

Proposition 4.17 Thepartition functions proportional by graphs andChoquet
by graphs are inherited extensions.

Proof It is trivial to get pg(r) = cg(r) = {(r, 1)} for all r ∈ GN .
Let ρ ∈ FGN and S ⊆ N . Suppose the proportional case. Each player plays once
in the pg-algorithm. Also each link i j is used only once if ρ(i j) = ρ(i i) = ρ( j j),
otherwise it is no used. Moreover if τ ∈ [0, 1]N with τ(i) = ρ(i i) then the levels in
pl(ρ) go round im(τ ) but in decreasing order, and then the levels in pl(ρS) go round
im(τ × eS). So we obtain

pg(ρS) = {(rS, s) : (r, s) ∈ pg(ρ)}.

Nowconsider theChoquet case. Let cg(ρ) = {(rk, sk)}mk=1 and im (ρ) = {λ1 < · · · <

λm}. We take the first k1 ∈ 1, . . . ,m such that ∧ρS = λk1 . For all k = 1, . . . , k1 we
have (rk)S = ([ρ]1)S . Thus the first chosen graph in the algorithm for ρS is ([ρ]1)S .
We also get by construction (4.10) that

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
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k1∑

k=1

sk = λk1 = ∧ρS.

We can repeat the reasoning with the next level in ρS . �

Inherited extensions are not in general admissible because they do not satisfy
monotonicity by links in general, although they verify the other conditions.

Lemma 4.1 If pl is an inherited extension then the pl-worth satisfies exten-
sion and additivity by components.

Proof Let v ∈ G N . If r ∈ GN then pl(r) = {(r, 1)}, thus γ pl(v, r) = g(v, r). We
have

γ pl(v, ρ) =
m∑

k=1

skg(v, rk) =
m∑

k=1

sk
∑

S∈N/rk

g(v, (rk)S)

=
∑

T∈N/ρ

m∑

k=1

sk
∑

S∈N/(rk )T

g(v, (rk)S) =
∑

T∈N/ρ

m∑

k=1

skg(v, (rk)T )

=
∑

T∈N/ρ

γ pl(v, ρT ).

�

Next we prove that the proportional and Choquet by graph functions are admis-
sible.

Proposition 4.18 The inherited extensions proportional by graphs and Cho-
quet by graphs are admissible.

Proof Since the above proposition we only need to prove that the extensions are
monotone by links. Let i j ∈ L(ρ) and t ∈ (0, ρ(i j)].

First consider the pg-algorithm applied to ρ and ρ t
−i j . If player i (or j) satis-

fies ρ(i j) < ρ(i i) then the algorithm obtains the same result for both fuzzy graphs
because the link is not used. If ρ(i j) = ρ(i i) = ρ( j j) then the link is used for ρ but
not for ρ t

−i j . As the level of the vertices do not change, then there is only on element
in the partition which is different, we denote these elements (r ′, s ′) and (r ′′, s ′′) for
ρ and ρ t

−i j . We have s ′ = s ′′ and r ′′ = r ′
−i j . So, as the crisp graph-worth is monotone

by links g(v, r ′) ≥ g(v, r ′′).
Finally we study the cg-algorithm applied to ρ and ρ t

−i j . Let cg(ρ) = {(rp, sp)}p
and cg(ρ t

−i j ) = {(r ′
q , s

′
q)}q . We consider two different situations.
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(a) Suppose t = ρ(i j). While ∧ρ < ρ(i j) we get (r ′
p, s

′
p) = ((rp)−i j , sp). Let k the

step where ∧ρ = ρ(i j). We have two options. If ∧ρ t
−i j = ρ(i j) too then (r ′

k, s
′
k) =

((rk)−i j , sk) and later ρ = ρ t
−i j in the next steps. As g(v, rk) ≥ g(v, r ′

k) we get the
required inequality. If ∧ρ t

−i j ≥ ρ(i j) then sk < s ′
k and r

′
k = (rk)−i j . Level s ′

k is just
the next minimal level to sk in ρ. Unfortunately ρ �= ρ t

−i j in the next step k + 1, but
sk+1 = s ′

k − sk and rk+1 = r ′
k . Hence we compare two steps of the algorithm for ρ

with only one for ρ t
−i j . The fuzzy graphs are the same from that step. We obtain

s ′
kg(v, r

′
k) ≤ skg(v, rk) + sk+1g(v, rk+1),

and g(v, r ′
p) ≤ g(v, rp) for the before steps. Therefore γ cg(v, ρ t

−i j ) ≤ γ cg(v, ρ).
(b) Suppose t < ρ(i j). Let k be the first step such that the algorithm is different.
We denote α = ρ(i j) in the step k. Following in this step, ∧ρ t

−i j = α − t . We get
α − t ≤ sk ≤ α and s ′

k = α − t . Moreover r ′
k = rk . We begin the next step with

ρ t
−i j = ρ t

−i j − (α − t)rk .

Now the algorithm chooses s ′
k+1 = sk − α + t and

r ′
k+1 =

{
(rk)−i j , if sk < α

rk, otherwise.

Since r ′
k+1 ≤ rk (if we use the same vertices) we get

s ′
kg(v, r

′
k) + s ′

k+1g(v, r
′
k+1) ≤ skg

v(rk).

Consider the fuzzy graphs ρ in the step k + 1 and ρ t
−i j in the step k + 2. They are in

situation (a) because t = ρ(i j). Thus γ cg(v, ρ t
−i j ) ≤ γ cg(v, ρ). �

Jiménez-Losada et al. [6] showed an example of interesting fuzzy graph-worth
bases also in a partition function depending on the game but it not inherited. A
connected acyclic graph is named a tree. Given a set of vertices S ⊂ N , a spanning
tree for S is a tree connecting all the players in S, namely r ∈ GN connected acyclic
and with Nr = S. Next figure shows, with N = {1, 2, 3, 4}, a spanning tree for
coalition {1, 2, 3} (Fig. 4.13)

Fig. 4.13 Spanning tree for
coalition {1, 2, 3}

1 2 

3 

4 
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Definition 4.21 Let ρ a fuzzy communication structure. The connection level
of ρ is the number

c(ρ) = ∨{t ∈ (0.1] : [ρ]t connected}.

For instance, the connection level of ρ in Example 4.11 is c(ρ) = 0.5 because
[ρ]0.5 is connected and for any t > 0.5 players 1 and 4 are not connected to the others.

Definition 4.22 Let ρ ∈ FGN . A Choquet by vertices (cv) partition of ρ is a
partition by levels cv obtained by the following algorithm

Take k = 0, cv = ∅ and ρ = ρ

While ρ �= 0 do
..... k = k + 1
..... choose S ∈ N/ρ

..... sk = c(ρS)

..... choose rk a spanning tree for S with rk ≤ [ρ]sk

..... cv = cv ∪ {(rk, sk)}

..... ρ = ρ − skrk
cv(ρ) = cv

Obviously there exist in general several cv-partitions but also the number of fea-
sible cv-partitions is finite. We set CV (ρ) the family of cv-partitions of the fuzzy
graph ρ.

Example 4.16 Suppose the fuzzy graph ρ in Fig. 4.14. The connection level of ρ is
c(ρ) = 0.4, but there are three feasible spanning trees to choose (they are inFig. 4.14).
Depending on the chosen tree the algorithm continues with a different fuzzy graph
but the second step in this example obtain only one option for each tree. In Fig. 4.15
we can see the new fuzzy graph at the beginning of the second step and the new tree
for the three options in the order given in the above figure. In the second step the
connection level of all the components in the new graph is 0.3. So, CV (ρ) has three
feasible partitions.

Given a fuzzy graph ρ and taken a Choquet by vertices partition cv(ρ) ∈ CV (ρ)

we can determine a worth by a game v following Definition 4.18, γ cv(v, ρ). Each
one of these partitions gets a cv-worth. We look for the best option, i.e. we take a
Choquet by vertices partition obtaining the maximal cv-worth.
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Fig. 4.14 First step in cv-algorithm
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Fig. 4.15 Second step in cv-algorithm

Definition 4.23 Let v ∈ G N . The CV -worth is defined for each fuzzy
communication structureρ as themaximal cv-worthwith cv ∈ CV (ρ), namely

γ CV (v, ρ) =
∨

cv∈CV (ρ)

γ cv(v, ρ).
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Fig. 4.16 Fuzzy graph in
Example 4.18
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Choquet by vertices functions are those partition functions that choose any
Choquet by vertices partition obtaining the CV -worth for each fuzzy graph.

Example 4.17 Consider the anonymous game v(S) = |S| − 1 for all non-empty
coalition S ⊆ N = {1, 2, 3, 4}. We calculate the CV -worth of the fuzzy commu-
nication structure ρ given in Example 4.16. The first two partitions in CV (ρ) obtain
the same worth, that is 0.4v(N ) + 0.3v({1, 2, 3} = 1.8. But the third one has a dif-
ferent worth, 0.4v(N ) + 0.3v({2, 3}) + 0.3v({1}) = 1.5. Thus γ CV (v, ρ) = 1.8.

Next example shows that a Choquet by vertices function is neither an extension
nor inherited in general.

Example 4.18 Suppose the communication structure with matrix

r =
⎡

⎣
111
111
111

⎤

⎦ .

Any Choquet by vertices function must choose between this three options

⎡

⎣
111
110
101

⎤

⎦ ,

⎡

⎣
110
111
011

⎤

⎦ ,

⎡

⎣
101
011
111

⎤

⎦ .

Hence, it is not an extension. Now take the fuzzy graph in Fig. 4.16. The algorithm
has only one option for this example, the reader can see it in Table4.5. But if we take
S = {1, 3} the partition uses link 13. The function is not inherited.

Table 4.5 cv-algorithm applied to Fig. 4.16
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But, the method CV obtains also a fuzzy graph-worth.

Proposition 4.19 The CV -worth is a fuzzy graph-worth.

Proof Given a communication structure, although the chosen partition by levels is
not {(r, 1)} the worth is the same because r is a spanning tree, namely γ CV (v, r) =
g(v, r).

Suppose v ∈ G N
sa . Let ρ

t
−i j with ρ ∈ FGN and t ∈ (0, ρ(i j)]. Suppose cv(ρ t

−i j ) ∈
CV (ρ ′) with γ CV (v, ρ t

−i j ) = γ cv(v, ρ t
−i j ). For each step and component in N ρt

−i j

there is always a path between any pair of players in ρ with greater level, thus
by superadditivity and the fact that the Myerson graph-worth we get a Choquet by
vertices partition cv(ρ) with

γ CV (v, ρ t
−i j ) ≤ γ cv(v, ρ) ≤ γ CV (v, ρ).

Hence we get link monotonicity.
As the algorithm is working by components, the fuzzy graph-worth satisfies addi-

tivity by components. �

4.5 Fuzzy Myerson Values

Wewill followMyerson [9] using any fuzzy graph-worth to describe models to study
fuzzy communication structures. A new game is defined for each partition by levels
introducing the information about the fuzzy communication.

Definition 4.24 Let v ∈ G N be a game and pl be a partition function for
fuzzy communication structures. For each ρ ∈ FGN the pl-vertex game is
(v/ρ)pl ∈ G N where for any coalition S it holds

(v/ρ)pl(S) = γ pl(v, ρS)

Example 4.19 Suppose the fuzzy communication structure ρ in Fig. 4.17. We cal-
culate the cg-vertex game taking the anonymous game v ∈ G N

a with v(S) = |S| − 1
for all non-empty coalition. The cg-partition by level of this graph was obtained in
Table4.2. Remember that, as cg is inherited, to get the partitions by levels of the
coalitions we only have to intersect the partition in Table4.2 with each coalition. The
worth of the great coalition N was actually calculated in Example 4.14,



140 4 Fuzzy Communication

1 2 

3 

4 

1

0.7 0.5 0.5 

0.5 

0.4 

0.5 

0.4 

0.7 

Fig. 4.17 Fuzzy communication structure ρ in Example 4.19

Table 4.6 Game (v/ρ)cg

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
(v/ρ)cg(S) 0 0 0 0 0.5 0.4 0.5 0.7

S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

(v/ρ)cg(S) 0.4 0 1.2 1 0.9 1.1 5.3

(v/ρ)cg(N ) = γ cg(v, ρ) = 5.3.

Consider S = {1, 2, 4}. The worth of this coalition for the new game is

(v/ρ)cg(S) = 0.5v({1, 2, 4} + 0.2v({2}) = 1.

Table4.6 shows the worths of all the coalitions for the new characteristic function.

Proposition 4.20 Let v ∈ G N , ρ ∈ FGN and let pl be a partition function.

(1) If v is additive then (v/ρ)pl is additive, moreover (v/ρ)pl = (ρ(i i)vi )i∈N .
(2) ((av + bw)/ρ)pl = a(v/ρ)pl + b(w/ρ)pl for all a, b ∈ R. Hence

(−v/ρ)pl = −(v/ρ)pl .
(3) If v,w are strategically equivalent then so are (v/ρ)pl , (w/ρ)pl .
(4) (vsvg/ρ)pl = ((v/ρ)pl)svg.

Proof (1) Remember that the components form a partition of the domain of a rela-
tion. Let v ∈ R

N . We take for each coalition S its partition pl(ρS) = {(rk, sk)}mk=1.
Following Definition 4.24, Proposition 4.7 and (4.8) we get

(v/ρ)pl(S) =
m∑

k=1

skg
v(rk) =

m∑

k=1

sk(v/rk)(S) =
m∑

k=1

sk
∑

i∈dom (rk )

vi

=
∑

i∈S

∑

{k:i∈dom (rk )}
skvi =

∑

i∈S
ρ(i i)vi .
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(2), (3) They are trivial from Proposition 4.7.
(4) We determine the saving game, for each coalition. If i ∈ N then (v/ρ)pl({i}) =
ρ(i i)v({i}). Let S ⊆ N with pl(ρS) = {(rk, sk)}mk=1, using Proposition 4.7 and (4.8)

(vsvg/ρ)pl(S) = γ pl(vsvg, ρS) =
m∑

k=1

skg(v
svg, rk) =

m∑

k=1

sk(v
svg/rk)(S)

=
m∑

k=1

sk(v/rk)
svg(S) =

m∑

k=1

sk

[
∑

i∈S
v/rk({i}) − v/rk(S)

]

=
∑

i∈S

⎡

⎣
∑

{k:i∈Nrk }
sk

⎤

⎦ v({i}) −
m∑

k=1

skv/rk(S)

=
∑

i∈S
ρ(i i)v({i}) −

m∑

k=1

skg(v, rk) =
∑

i∈S
(v/ρ)pl({i}) − (v/ρ)pl(S)

= ((v/ρ)pl)svg(S).

�

The above result revised which properties are satisfies by the new game for all the
partition functions. Now we consider inherited extensions to get more properties of
the pl-vertex game. In this case it is possible to describe the pl-vertex game by the
vertex games of the graphs in the partition.

Proposition 4.21 Let pl be a inherited extension for fuzzy communication
struture. If v ∈ G N and ρ ∈ FGN with pl(ρ) = {(rk, sk)}mk=1 then

(v/ρ)pl =
m∑

k=1

skv/rk .

Proof Suppose S ⊆ N non-empty. As the chosen partition function is inherited,

pl(ρS) =
⎧
⎨

⎩

⎛

⎝r ′,
∑

{k:(rk )S=r ′}
sk

⎞

⎠ : r ′ �= 0 , ∃ k with (rk)S = r ′

⎫
⎬

⎭ .

By Definitions 4.24 and 4.5, we have taking into account that g(v, 0) = 0
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(v/ρ)pl(S) = γ pl(v, ρS) =
∑

(r ′,s ′)∈pl(ρS)

s ′g(v, r ′)

=
∑

(r ′,s ′)∈pl(ρS)

∑

{k:(rk )S=r ′}
skg(v, r

′)

=
m∑

k=1

skg(v, (rk)S) =
m∑

k=1

skv/rk(S).

�

Examples 4.5 and 4.6 showed in the crisp case thatmonotonicity and convexity are
not inheritable in general and, obviously, nor does the fuzzy options. Superadditivity
needs the inherited condition for the partition. In order to get the convexity we
introduce the following concept.

Definition 4.25 Let pl be a partition function for fuzzy communication struc-
tures. A fuzzy graph ρ ∈ FGN is pl-cycle-complete if r is cycle-complete for
all (r, s) ∈ pl(ρ).

Proposition 4.22 Let pl be an inherited extension.

(1) If v ∈ G N
sa then (v/ρ)pl ∈ G N

sa for all ρ ∈ FGN .
(2) If v ∈ G N

sa and v ≥ 0 then (v/ρ)pl ∈ G N
m for all ρ ∈ FGN .

(3) If v ∈ G N
c then (v/ρ)pl ∈ G N

c for allρ ∈ FGN which is pl-cycle-complete.

Proof Superadditive (monotone, convex) games form positive cones in the sense that
a linear combination with positive coefficients of superadditive (monotone, convex)
games is also a superadditive (monotone, convex) game. All the steps are true from
Propositions 4.21, 4.7 and 4.9. �

Definition 4.26 Let γ be a fuzzy graph-worth. The γ -vertex game for a game
v and a fuzzy communication structure ρ is defined as

(v/ρ)γ (S) = γ (v, ρS)

for all coalition S.

Observe that all the pl-vertex games are γ pl -vertex games when pl is admissible.
It is difficult for studying property transmission of the general concept of fuzzy
graph-worth, therefore it must be studied each worth in particular. Superadditivity
and monotonicity are obtained for all the fuzzy graph-worths.
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Proposition 4.23 Let v ∈ G N and ρ ∈ FGN . For each fuzzy graph-worth γ

it holds:

(1) If v ∈ G N
sa then (v/ρ)γ ∈ G N

sa for all ρ ∈ FGN .
(2) If v ∈ G N

sa and v ≥ 0 then (v/ρ)γ ∈ G N
m for all ρ ∈ FGN .

Proof (1) If S ∩ T = ∅ then ρS + ρT ≤ ρS∪T . Moreover ρS and ρT form different
components in ρS + ρT . Applying link monotonicity several times we have

γ (v, ρS∪T ) ≥ γ (v, ρS + ρT ).

As γ is additive by components then

(v/ρ)γ (S ∪ T ) ≥ γ (v, ρS + ρT ) = γ (v, ρS) + γ (v, ρT ).

(2) Using (1) we get (v/ρ)γ ∈ G N
sa and obviously (v/ρ)γ ≥ 0. �

We analyze the case of the CV -worth, namely the CV -vertex game (v/ρ)CV

for all ρ ∈ FGN . But the concept of cycle-complete is not easy to extend it to the
CV -worth.

Proposition 4.24 Let v ∈ G N and ρ ∈ FGN .

(1) If v is additive then (v/ρ)CV is additive, moreover (v/ρ)CV =
(ρ(i i)vi )i∈N .

(2) ((av + bw)/ρ)CV = a(v/ρ)CV + b(w/r)CV for all a, b ∈ R. Hence
(−v/ρ)CV = −(v/ρ)CV .

(3) If v,w are strategically equivalent then so are (v/ρ)CV , (w/ρ)CV .
(4) ((vsvg)/ρ)CV = ((v/ρ)CV )svg.

Proof (1)–(4) For each coalition S ⊆ N we consider a partition by levels cv ∈
CV (ρS) with γ CV (v, ρS) = γ cv(v, ρS). We have following Proposition 4.20 that
(v/ρ)cv(S) = γ cv(v, ρS) satisfies the four properties. Thus (v/ρ)CV verifies them
too. �

A value for games with fuzzy communication structure is

f : G N × FGN → R
N .

We can define several of values in the way of Myerson using fuzzy graph-worths
an the fuzzy versions of the vertex game. Now we define Myerson values for fuzzy
graphs.



144 4 Fuzzy Communication

Definition 4.27 Let γ a fuzzy graph-worth. The γ -Myerson value is a value
for games over N with fuzzy communication structure defined for each game
v ∈ G N and ρ ∈ FGN as

μγ (v, ρ) = φ((v/ρ)γ ).

In order to find an axiomatization of the Myerson values we take into account that
players are asymmetric in the structure. Let f : G N × FGN → R

N a value function
for games over N with fuzzy communication structure.

γ -Efficiency by components. Let γ be a fuzzy graph-worth. If v ∈ G N and ρ ∈
FGN then f (v, ρ)(T ) = γ (v, ρT ) for all T ∈ N/ρ.

Fuzzy fairness. Let v ∈ G N and ρ ∈ FGN , it holds for all i j ∈ L(ρ) and t ∈
[0, ρ(i j)] that

fi (v, ρ) − fi (v, ρ
t
−i j ) = f j (v, ρ) − f j (v, ρ

t
−i j ).

Carrier. Let v ∈ G N and ρ ∈ FGN . For all player i /∈ N ρ it holds fi (v, ρ) = 0.

The following axiomatization was given in [7].

Theorem 4.5 Let γ be a fuzzy graph-worth. The γ -Myerson value is the
only value for games over N with fuzzy communication structure satisfying
γ -efficiency by components, fuzzy fairness and carrier.

Proof First we test that the γ -Myerson value verifies the three axioms.
Carrier. Suppose i /∈ dom (ρ). For all coalition S ⊆ N \ {i}, player i does not
change the components in the coalition, namely N/ρS∪{i} = N/ρS . Thus (v/ρ)γ (S ∪
{i}) = (v/ρ)γ (S) and player i is null for (v/ρ)γ . As Shapley value verifies null player
property (Proposition 1.11) then μ

γ

i (v, ρ) = 0.
γ -Efficiency by components. Let T ∈ N/ρ be a component in a fuzzy com-
munication structure ρ. As γ is additive by components we obtain for any coalition
S ⊆ N

(v/ρ)γ (S) = γ (v, ρS) =
∑

R∈N/ρ

γ (v, (ρR)S) =
∑

R∈N/ρ

(v/ρR)γ (S).

Shapley vale is a linear function, therefore for all i ∈ N

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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μ
γ

i (v, ρ) = φi ((v/ρ)γ ) =
∑

R∈N/ρ

φi ((v/ρR)γ ) =
∑

R∈N/ρ

μi (v, ρR).

But if i ∈ T then carrier axiom says that μi (v, ρR) = 0 for R ∈ (N/ρ) \ {T }. So,
we have by efficiency of Shapley value

∑

i∈T
μi (v, ρ) =

∑

i∈T
μi (v, ρT ) =

∑

i∈T
φi ((v/ρT )γ ) = (v/ρT )γ (N ) = γ (v, ρT ).

Fairness. Let i j ∈ L(ρ) and t ∈ (0, ρ(i j)]. We repeat the proof in Theorem 4.3
using again the game wi j in (4.6) defined now as

wi j = (v/ρ)γ − (v/ρ t
−i j )

γ .

Take now two values f 1, f 2 for games with fuzzy communication structure sat-
isfying the three axioms. We will prove that f 1 = f 2. If i /∈ dom (ρ) then car-
rier implies f 1i (v, ρ) = f 2i (v, ρ) = 0. For the rest of players we work by induction
in |L(ρ)|. If |L(ρ)| = 0 then each player i ∈ dom (ρ) verifies {i} ∈ N/ρ and by
γ -efficiency by components f 1i (v, ρ) = f 2(v, ρ) = ρ(i i)v({i}). Suppose that the
equality of both values is true if |L(ρ)| = k − 1 and consider r with |L(ρ)| = k. Let
T ∈ N/ρ and i ∈ T . If j ∈ T is such i j ∈ L(ρ) then fuzzy fairness and induction
say

f 1i (v, ρ) − f 1j (v, ρ) = f 1i
(
v, ρρ(i j)

−i j

)
− f 1j

(
v, ρρ(i j)

−i j

)

= f 2i
(
v, ρρ(i j)

−i j

)
− f 2j

(
v, ρρ(i j)

−i j

)
= f 2i (v, ρ) − f 2j (v, ρ).

Otherwise, j ∈ T but i j /∈ L(ρ), there is a path between i and j and applying the
above reasoning in each link in the path we get also the same equality. Hence, for
all j ∈ T , f 1j (v, ρ) − f 2(v, ρ) = A, being A = f 1i (v, ρ) − f 2i (v, ρ). So, using γ -
efficiency in component T ,

0 =
∑

j∈T
f 1j (v, ρ) − f 2j (v, ρ) = |T |A.

We get A = 0 �

Example 4.20 We determine the CV -Myerson value of the game v(S) = |S| − 1
with the fuzzy communication structure in Fig. 4.14. First we need to calculate the
CV -vertex game. In Example 4.16 the worth of the great coalition was calculated,
(v/ρ)CV (N ) = γ CV (v, ρ) = 1.8. As the graph has only one component the CV -
Myerson value is efficient on this worth, namely it is an allocation of 1.8 among the
players. Game v is 0-normalized and so the vertex game is. The worth of a coalition
{i, j} is easy to determine, (v/ρ)CV ({i, j}) = ρ(i j). The calculus of (v/ρ)CV = 1.4
is similar to the calculus of the worth of the great coalition. Finally, the rest of
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coalitions with three players has only one option in the algorithm. Next table shows
the worths of all the coalitions for the new characteristic function.
So, the CV -Myerson value is

μCV (v, ρ) = φ((v/ρ)CV ) = (0.5666, 0.5166, 0.5166, 0.2).

If γ = γ pl with pl an admissible partition function for fuzzy communication
structures then we denote the γ pl -Myerson value asμpl instead ofμγ pl

and we name
it the pl-Myerson value. The pl-Myerson values with pl fuzzy graph-worths derived
from inherited extensions have a nice formula of calculus.

Theorem 4.6 If pl is an admissible inherited extension for fuzzy communica-
tion structures then for all game v and fuzzy graph ρ it holds

μpl(v, ρ) =
m∑

k=1

skμ(v, rk),

where pl(ρ) = {(rk, sk)}mk=1.

Proof The proof follows from Proposition 4.21 and the linearity of the Shapley
value. �

Particularly,weobserve the case of the cg-Myerson value. In this case,we consider
the signed capacity μi (v) : GN → R given by μi (v)(r) = μi (v, r) (taking each r as
a subset of elements, its support).

Theorem 4.7 For all v ∈ G N and ρ ∈ FGN the cg-Myerson value satisfies

μ
cg
i (v, ρ) =

∫

c
ρ dμi (v).

Proof The proof follows from (4.10) and the above theorem. �

Example 4.21 In Example 4.19 we determine the cg-vertex game (v/ρ)cg (see
Table4.7) for the anonymous game v(S) = |S| − 1 and the fuzzy communication
structure ρ in Fig. 4.17. So, now we calculate the cg-Myerson value

μcg(v, ρ) = φ((v/ρ)cg) = (1.333, 1.433, 1.316, 1.216).

But we can also use the above formula integrated in the cg-algorithm.
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Table 4.7 Game (v/ρ)CV

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
(v/ρ)CV (S) 0 0 0 0 0.4 0.4 0.4 0.7

S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

(v/ρ)CV (S) 0 0 1.4 0.8 0.8 0.7 1.8

Table 4.8 cg-algorithm of Example 4.20 with Myerson values

1 2 

3 

4 

0.7 

0.7 0.7 0.4 

0.4 

0.4 

0.4 

0.7 

1 2 

3 

4 

0.3 

0.3 0.3 

0.3 

rk

1 2 

3 

4 

1 2 

3 

4 

sk 0. 04 .3
(v,rk) (1.166, 0.666, 0.666, 0.5) (0,0.5,0.5,0)

Example 4.22 We use the fuzzy graph in Example 4.14 to compare the cg-Myerson
valuewith theCV -Myerson value of v calculated in Example 4.20. Table4.8 includes
a new line in the cg-algorithm determining the Myerson value of each graph in the
partition. The combination of these Myerson values following Theorem 4.6 obtains

μcg(v, ρ) = (0.466, 0.416, 0.416, 0.2).

Remember that
μCV (v, ρ) = (0.5666, 0.5166, 0.5166, 0.2).

The CV -Myerson and cg-Myerson values verify different efficiencies because we
get γ CV (v, ρ) = 1.8 and γ cg(v, ρ) = 1.5.

Given ρ ∈ FGN a communication structure and θ ∈ �N a permutation over N
we introduce the new relation θρ is such θρ(θ(i), θ( j)) = ρ(i, j). Next we see
properties of the pl-Myerson values with an inherited admissible partition pl. All of
them are true from Theorem 4.6 and Proposition 4.11.
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Proposition 4.25 Let pl be an inherited admissible partition function for
fuzzy communication structures. The pl-Myerson value satisfies the following
properties for a fuzzy graph ρ and a game v.

(1) If θ ∈ �N then μ
pl
θ(i)(θv, θρ) = μ

pl
i (v, ρ) for all i ∈ N.

(2) If v,w ∈ G N then μpl(av + bw, ρ) = aμpl(v, ρ) + bμpl(w, ρ).
(3) If i ∈ dom (ρ) is a necessary player for v ∈ G N

sa and also v ≥ 0 then
μ

pl
j (v, ρ) ≤ μ

pl
i (v, ρ) for any another player j .

(4) If i ∈ dom (ρ) and v ∈ G N
sa then μ

pl
i (v, ρ) ≥ ρ(i i)v({i}).

(5) If S ⊆ N, ρ is pl-cycle-complete, and v ∈ G N
c then μpl(v, ρ)(S) ≥

(v/ρ)pl(S).
(6) μpl(−v, ρ) = −μpl(v, ρ).
(7) For all i ∈ dom (ρ) and v ∈ G N it holds

μ
pl
i (v, ρ) = ρ(i i)v({i}) − μ

pl
i (vsvg, ρ).

Two of the specific properties in Proposition 4.12 of the Myerson value can be
extended for all the fuzzy Myerson values following the same proofs.

Proposition 4.26 Let γ be a fuzzy graph-worth. The γ -Myerson value satisfies
the following properties for a fuzzy communication structure ρ.

(1) If i j ∈ L(ρ) and v ∈ G N
sa then μ

γ

i (v, ρ) ≥ μ
γ

i (v, ρ t
−i j ).

(2) If i j ∈ L(ρ) and v ∈ G N satisfies (v/ρ)γ = v/ρ t
−i j then μγ (v, ρ) =

μγ (v, ρ t
−i j ).

4.6 Transitive Fuzzy Communication Structures

If we take a transitive fuzzy communication structure thenwe get a “situation” similar
to the Aumann-Dreze model.

Definition 4.28 A transitive fuzzy communication structure is a fuzzy relation
satisfying: weakly reflexivity, symmetry and transitivity.

A particular case of transitive fuzzy graph is ρτ with τ ∈ [0, 1]N (see Example
3.5). Let i, j, k ∈ N . Suppose τ(i) ≥ τ( j), we have

ρτ (i j) = τ(i) ∧ τ( j) ≥ ρτ (ik) ∧ ρτ (k j).

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Transitivity in the crisp version implies the independence of two players in a
component to communicate between them with reward to the rest of the players.
Moreover, the Myerson value (Definition 4.9) for these communication structures
coincides with the coalitional value (Definition 4.3). In the fuzzy case, transitivity
guarantees for two players greater communication level straightly than using other
agents. Depending on the chosen fuzzy graph-worth, the above crisp condition is
satisfied or not in the fuzzy version (for instance the CV -worth can use the straight
link between the players and also the path by another one).Obviouslywe can consider
a transitive fuzzy communication structure as any fuzzy graph and then we can
apply all the models (Definition 4.27) in the above sections without problems. But
if we want to keep the crisp spirit of the coalitional structures explained before, we
have some troubles. We should look for an internal model using always transitive
elements. Hence the general concept of fuzzy graph-worth is not good, because it
is not controllable and the third condition in Definition 4.13 uses a fuzzy graph
which is not always transitive. If we use partition functions, the crisp graph in each
step should be transitive too. The axiomatization of the γ -Myerson values is also a
problem because fuzzy fairness is not internal for transitive structures, therefore we
should try to get an axiomatization in the way of the coalitional value.

Definition 4.29 A partition function pl for fuzzy communication structures is
transitive if for all transitive fuzzy graph ρ with pl(ρ) = {(rk, sk)}mk=1 it holds
that rk is a transitive communication structure for all k = 1, . . . ,m.

Fortunately both partition functions defined in the above sections (Definitions
4.16 and 4.17), the cg-partition and the pg-partition, are transitive.

Proposition 4.27 The cg-partition function and the pg-partition function are
transitive.

Proof Let ρ be a transitive fuzzy communication structure.
Choquet by graphs. Since (4.10) we know that rk = [ρ]k where im0 (ρ) =
{λ0 < λ1 < · · · < λm}. Denote cg(ρ) = {(rk, sk)}mk=1. We will prove that for all
k = 1, . . . ,m the graph rk is transitive. Suppose three different players i, i ′, i ′′ ∈ N
such that rk(i i ′) = rk(i ′i ′′) = 1. Hence ρ(i i ′), ρ(i ′i ′′) ≥ λk . As ρ is transitive,

ρ(i i ′′) ≥ ρ(i i ′) ∧ ρ(i ′i ′′) ≥ λk,

and then we get rk(i i ′′) = 1.
Proportional by graphs. We will prove again that for all k = 1, . . . ,m the
graph rk is transitive. Suppose three different players i, i ′, i ′′ ∈ N such that rk(i i ′) =
rk(i ′i ′′) = 1. Following the pg-algorithm, ρ(i i ′), ρ(i ′i ′′) = sk . Also ρ(i i) = ρ(i ′i ′)
= ρ(i ′′, i ′′) = sk . As ρ is transitive,
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Fig. 4.18 Transitive fuzzy
communication structure 1 3 
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sk = ρ(i i) ∧ ρ(i ′′i ′′) ≥ ρ(i i ′′) ≥ ρ(i i ′) ∧ ρ(i ′i ′′) = sk,

and then we get rk(i i ′′) = 1. �

The pl-Myerson values (with pl an inherited transitive partition function) applied
to transitive fuzzy communication structures can be considered as particular exten-
sions of the model proposed by Aumann and Dreze.

Proposition 4.28 Let pl be an transitive inherited extension for fuzzy commu-
nication structures. If ρ ∈ FGN is transitive and pl(ρ) = {(rk, sk)}mk=1 then
for all game v, (v/ρ)pl =∑m

k=1 skv
N/rk and the pl-Myerson value satisfies

μpl(v, ρ) =
m∑

k=1

skφ(v, N/rk).

Proof Theorem 4.6 says that if pl(ρ) = {(rk, sk)}mk=1 with ρ transitive then

μpl(v, ρ) =
m∑

k=1

skμ(v, rk).

As pl is transitive and also ρ each rk is a coalition structure. Hence μ(v, rk) =
φ(v, N/rk). �

Example 4.23 Suppose the anonymous game v(S) = |S|2 over N = {1, 2, 3}.
Figure4.18 shows a transitive fuzzy communication structure ρ among the play-
ers. We calculate the cg-Myerson value μcg(v, ρ), that we can consider as a fuzzy
coalitional solution of the game. All the players are symmetric in the only component
of the fuzzy graph because the game is anonymous but the solution is

μcg(v, ρ) = 0.3(3, 3, 3) + 0.4(2, 2, 1) + 0.3(0, 1, 1) = (1.7, 2, 1.4).

Remark 4.2 Transitive fuzzy communication structures represents actually a spe-
cial class of fuzzy coalition structures. The generalization of coalition structure
(Definition 4.1) in a fuzzy way is the following: a family of disjoint (two and two)
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Table 4.9 cg-Algorithm of Example 4.23 with coalitional values
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N/rk {{1,2,3}} {{1,2},{3}} {{2},{3}}
sk 0. 03 .4 0.3

(v,N/rk) (3, 3, 3) (2,2,1) (0,1,1)

fuzzy coalitions with union into the great coalition. Hence, this concept depends on
the used T-norm to do the intersection and the union. The more general concept is the
following. A fuzzy coalitional structure over N is a finite familyB = {β1, . . . , βm}
with βk ∈ [0, 1]N for any k and

∑m
k=1 βk ≤ eN . But there is no way to represent these

structures as fuzzy binary relations keeping all the information.

We propose now an axiomatization for Myerson values over the transitive fuzzy
communication structures. Let f be a value for gameswith transitive fuzzy communi-
cation structure and pl be a transitive partition function for fuzzy graphs (Table4.9).

pl-Efficiency by components. For all v ∈ G N and ρ ∈ FGN transitive,
f (v, ρ)(T ) = γ pl(v, ρT ) for every T ∈ N/ρ.

Restricted null player. Let i ∈ N be a null player in the game v, it holds fi (v, ρ) = 0
if i ∈ N ρ .

Necessary player. If i ∈ N ρ is a necessary player for a game v and ρ ∈ FGN

transitive then fi (v, ρ) ≥ f j (v, ρ).

Linearity. For all v,w ∈ G N , a, b ∈ R and a transitive fuzzy graph ρ it holds

f (av + bw, ρ) = a f (v, ρ) + b f (w, ρ).

Carrier. Let v ∈ G N and ρ ∈ FGN transitive. For all player i /∈ dom (ρ) it holds
fi (v, ρ) = 0.
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Theorem 4.8 Let pl be an transitive inherited extension for fuzzy commu-
nication structures. The pl-Myerson value is the only value for games with
transitive fuzzy communication structure satisfying pl-efficiency by compo-
nents, restricted null player, necessary player, linearity and carrier.

Proof First we prove that our value satisfies all the axioms. Proposition 4.28 says
that if pl(ρ) = {(rk, sk)}mk=1 with ρ transitive then

μpl(v, ρ) =
m∑

k=1

skμ(v, rk) =
m∑

k=1

skφ(v, N/rk).

The coalitional value verifies efficiency by components, restricted null player, addi-
tivity, carrier (Theorem 4.1) and also necessary player (Proposition 4.3).
pl- efficiency by components. It was proved in Theorem 4.5.
Restricted null player. Let i be a null player for v and i ∈ N ρ . We have
φi (v, N/rk) = 0 for each k from restricted null player and carrier axioms of the
coalitional value. So, μpl

i (v, ρ) = 0.
Necessary player. Suppose i ∈ N ρ necessary player for v ∈ G N

m and j ∈ N \ {i}.
If k satisfies that i /∈ Nrk then vN/rk = 0. Hence,

μ
pl
i (v, ρ) =

m∑

k=1

skφi (v, N/rk) ≥
m∑

k=1

skφ j (v, N/rk) = μ
pl
j (v, ρ).

Linearity. Proposition 4.20 says that ((av + bw)/ρ)pl = a(v/ρ)pl + b(w/ρ)pl .
Linearity of the Shapley value implies the axiom.
Carrier. It was proved in Theorem 4.5.

Now, considering linearity, we take an unanimity game uT . Players are divided in
three groups in order to determine their payoffs: out of the domain the payoff is zero
by carrier, out of T the payoff is also zero by restricted null player. Let i ∈ T ∩ N ρ ,
the payoff must be the same by necessary player. Efficiency by components implies
the uniqueness. �

The coalitional value satisfies symmetry in components, but now symmetric play-
ers in the same component can have different payoffs (see Example 4.23).

Another interesting difference between coalition structures and communication
structures in general is that convexity is an inheritable condition (see Proposition
4.1) for the first one and not for the second one. We obtain the same result for convex
games in the fuzzy case.
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Proposition 4.29 Let pl be an inherited transitive partition function. If v ∈
G N
c then (v/ρ)pl ∈ G N

c for all ρ transitive fuzzy communication structure.
Moreover

μpl(v, ρ)(S) ≥ (v/ρ)pl(S).

Proof Convex games form a non-negative cone, therefore the linear combina-
tion of convex games with non-negative coefficients is another convex game. Let
pl(ρ) = {(rk, sk)}mk=1 for a transitive fuzzy graph. From Proposition 4.1 we know
that vN/rk is convex when v ∈ G N

c for each k. Proposition 4.28 implies that (v/ρ)pl

is convex. Using Proposition 4.3 and the fact that pl is inherited we get the required
inequality. �

Let pl be an inherited transitive partition function for fuzzy communication struc-
tures. In Example 3.5 we introduced a fuzzy relation ρτ from a given fuzzy coalition
τ . For each i j ∈ N × N we put ρτ (i j) = τ(i) ∧ τ( j). We define the induced parti-
tion function for fuzzy coalitions from pl as pl∗ where for any τ ∈ [0, 1]N ,

pl∗(τ ) = {(Nrk , sk)}mk=1 (4.11)

with pl(ρτ ) = {(rk, sk)}mk=1. Remember that we have seen before that ρτ is transitive
for all fuzzy coalition τ . For instance, we will prove that cg∗ = ch. Let cg(ρτ ) =
{(rk, sk)}mk=1. From (4.10) we have that im0 (τ ) = {λ0 < λ1 < · · · < λm} = im (ρτ )

with sk = λk − λk−1 and rk = [ρτ ]k for any k. Observe that if i ∈ Nrk then τ(i) ≥ λk .
If i, j ∈ Nrk then ρτ (i j) = τ(i) ∧ τ( j) ≥ λk . So, N/rk = {[τ ]k} and then cg∗(τ ) =
ch(τ ). The reader can test that pg∗ = pr .

Proposition 4.30 Let pl be an transitive inherited extension for fuzzy com-
munication structures. For all τ ∈ [0, 1]N and v ∈ G N it holds

μpl(v, ρτ ) = φ pl∗(v, τ ).

Proof Let τ ∈ [0, 1]N . If pl(ρτ ) = {(rk, sk)}mk=1 then N/rk = {Nrk } for all k because
rk is transitive. Thus φ(v, N/rk) = φ(v, Nrk ) for all k. Hence, Proposition 4.28
implies

μpl(v, ρτ ) =
m∑

k=1

skφ(v, N/rk) =
m∑

k=1

skφ(v, Nrk ) = φ pl∗(v, τ ).

�

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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4.7 Probabilistic Communication Structures

Calvo et al. [4] introduced probabilistic communication situations before fuzzy com-
munication structures. Their model can be include in the fuzzy model described in
the book. But we have to adapt slightly the concept of fuzzy graph.

Definition 4.30 A probabilistic communication structure over N is a (undi-
rected) probabilistic graph ρ, namely a fuzzy bilateral relation over N which
satisfies:

(1) ρ is reflexive, ρ(i i) = 1 for all players i ∈ N ,
(2) ρ is symmetric, ρ(i, j) = ρ( j, i) = ρ(i j) for all i �= j .

Thus the difference between probabilistic graph and fuzzy graph is the definition
of reflexivity. Observe that a probabilistic graph is a proximity relation (see Sect. 3.3)
but perhaps this name will be more successful. Now the interpretation of ρ(i j) is the
probability of communication between players i and j , and then it is supposed that
each player i is always availability. All the crisp reflexive graphs are probabilistic
graphs. All the probabilistic graphs are fuzzy graphs but, not all the fuzzy graphs are
probabilistic too.

Example 4.24 Let N = {1, 2, 3, 4, 5, 6, 7, 8}. Fuzzy graph ρ in Fig. 4.10 is not a
probabilistic because ρ(i i) < 1 for all i ≥ 4. In Fig. 4.19 we show a probabilistic
communication structure over N .

Obviously all the develop of games with fuzzy communication structure given
in Sects. 4.4 and 4.5 is applicable to probabilistic communication structures because
they are also fuzzy graphs. For this special family of fuzzy communication structure
Calvo et al. [4] introduced aMyerson value which is really a pl-Myerson value using
a partition function based in the multilinear extension of Owen [11] (see Definition
2.10).

Fig. 4.19 Probabilistic
communication structure 1 
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Definition 4.31 The probabilistic function pb is defined for each ρ proba-
bilistic communication structure as

pb(ρ) =
⎧
⎨

⎩

⎛

⎝r,
∏

i j∈L(r)

ρ(i j)
∏

i j∈L(ρ)\L(r)

(1 − ρ(i j))

⎞

⎠

⎫
⎬

⎭
{r∈GN :[ρ]1≤r≤rρ }

.

The pb function for a probabilistic graph takes all the possible communication
structures into ρ (thosewith probability non-zero) and their probability of happening.
We will prove that pb is an admissible inherited extension.

Proposition 4.31 The mapping pb is an admissible inherited extension for
probabilistic communication structures.

Proof First we prove that pb is a partition function. Let ρ be a probabilistic graph.
As [ρ]1 ≤ r ≤ rρ then ρ(i j) > 0 for all i j ∈ L(r) and ρ(i j) < 1 for all i j /∈ L(r),
thus ∏

i j∈L(r)

ρ(i j)
∏

i j∈L(ρ)\L(r)

(1 − ρ(i j)) > 0.

We consider any ordering for the elements in {r ∈ GN : [ρ]1 ≤ r ≤ rρ} and let r
the first of them in that ordering. For each i0 j0 ∈ L(r) we rewrite, in order to apply
Lemma 2.1, the sum of all the levels in the partition with graphs containing this
element in the following sense

∑

{r∈GN :[ρ]1≤r≤rρ ,r(i0 j0)=1}

∏

i j∈L(r)

ρ(i j)
∏

i j∈L(ρ)\L(r)

(1 − ρ(i j))

= ρ(i0 j0)
∑

R⊆L(N )\{i0 j0}

∏

i j∈R

ρ(i j)
∏

L(N )\(R∪{i0 j0})
(1 − ρ(i j))

= ρ(i0 j0).

Hence ρ −∑(r,s)∈pb(ρ) sr = 0 and for each (r0, s0) ∈ pb(ρ) it holds

s0r0 ≤ ρ −
∑

(r,s)∈pb(ρ)\{(r0,s0)}
sr.

The proof to test that pb is inherited is equal to the proof of Proposition 3.9 where
we proved that the multilinear extension is inherited. As we did before, we must deal
with ρ as a fuzzy set of L(N ).

http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Finally we prove that pb is admissible. As pb is inherited we only have to prove
link monotonicity from Lemma 4.1.4 Let v ∈ G N

sa . If ρ is a probabilistic graph then
ρ t

−i0 j0
is also a probabilistic graph for all i0 j0 ∈ L(ρ) and t ∈ (0, ρ(i0 j0)]. We denote

as R = {r ∈ GN : dom (r) = N }. From Definition 4.18 we can use

γ pb(v, ρ) =
∑

{r∈GN :[ρ]1≤r≤rρ }

∏

i j∈L(r)

ρ(i j)
∏

i j∈L(ρ)\L(r)

(1 − ρ(i j))g(v, r),

γ pb(v, ρ) =
∑

r∈R

∏

i j∈L(r)

ρ(i j)
∏

i j∈L(N )\L(r)

(1 − ρ(i j))g(v, r), (4.12)

and also

γ pb(v, ρ t
−i0 j0) =

∑

r∈R

∏

i j∈L(r)

ρ t
−i0 j0(i j)

∏

i j∈L(N )\L(r)

(1 − ρ t
−i0 j0(i j))g(v, r), (4.13)

For each r ∈ R with i0 j0 ∈ L(r) we find r ′ ∈ R with L(r ′) = L(r) \ {i0 j0}. We
obtain for ρ in (4.12)

∏

i j∈L(r)

ρ(i j)
∏

i j∈L(N )\L(r)

(1 − ρ(i j))g(v, r) +
∏

i j∈L(r ′)
ρ(i j)

∏

i j∈L(N )\L(r ′)
(1 − ρ(i j))g(v, r ′)

=
∏

i j∈L(r ′)

ρ(i j)
∏

i j∈L(N )\L(r)

(1 − ρ(i j))
[
ρ(i0 j0)g(v, r) + (1 − ρ(i0 j0))g(v, r

′)
]
.

(4.14)
Also in (4.13), using that ρ t

−i0 j0
(i j) = ρ(i j) for all i j ∈ L(N ) \ {i0 j0}, we get

∏

i j∈L(r ′)
ρ(i j)

∏

i j∈L(N )\L(r)

(1 − ρ(i j))
[
(ρ(i0 j0) − t)g(v, r) + (1 − ρ(i0 j0) + t)g(v, r ′)

]
.

(4.15)
We do (4.14) and (4.15) obtaining

t
∏

i j∈L(r ′)

ρ(i j)
∏

i j∈L(N )\L(r)

(1 − ρ(i j))
[
g(v, r) − g(v, r ′)

]
.

But, as g satisfies link monotonicity we have g(v, r) ≥ g(v, r ′) and so

γ pb(v, ρ) − γ pb(v, ρ t
−i0 j0) ≥ 0.

�
So,we introduce the probabilisticMyerson value as the pb-Myerson value applied

to games with a probabilistic communication structure.

4Extension property in this case only use reflexive communication structure.
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Definition 4.32 The probabilistic Myerson value is a value for games with
probabilistic communication structure defined for each game v and each prob-
abilistic graph ρ as

μpb(v, ρ) = φ((v/ρ)pb),

with (v/ρ)pb(S) = γ pb(v, ρS) for all coalition S.

We test that our concept of probabilistic Myerson value coincides with that one
in [4] directly from Theorem 4.6.

Proposition 4.32 The probabilistic Myerson value satisfies for all game v and
probabilistic graph ρ that

μpb(v, ρ) =
∑

{r∈GN :[ρ]1≤r≤rρ }

∏

i j∈L(r)

ρ(i j)
∏

i j∈L(ρ)\L(r)

(1 − ρ(i j))μ(v, r).

if pb(ρ) =
{(

r,
∏

i j∈L(r) ρ(i j)
∏

i j∈L(ρ)\L(r)(1 − ρ(i j))
)}

{r∈GN :[ρ]1≤r≤rρ }
.

Axiomatization in Theorem 4.5 is applicable for the probabilistic Myerson value,
which is slight different to that in [4], and also all those properties given in Sects. 4.4
and 4.5.

Transitivity condition must be changed in probabilistic situations.

Definition 4.33 A transitive probabilistic communication structure is a prob-
abilistic graph ρ satisfying semi-transitivity.

Theorem 4.8 and Proposition 4.29 are valid for the probabilistic Myerson value
over transitive probabilistic communication structures.

Remark 4.3 Probabilistic communication structures canbe extended in the following
sense. A probabilistic graph is a fuzzy relation ρ verifying semi-reflexivity (ρ(i j) ≤
ρ(i i)ρ( j j)) and symmetry. In the case ρ(i j) is also the probability of communication
between i and j , andρ(i i) the probability to be active player i . For each graph r ∈ GN

the probability by ρ of obtaining r is



158 4 Fuzzy Communication

∏

i j∈L(r)

ρ(i j)
∏

{i j /∈L(r):i, j∈Nr }
ρ(i i)ρ( j j)(1 − ρ(i j))

∏

{i j /∈L(r):i∈Nr , j /∈Nr }
ρ(i i)(1 − ρ( j j))(1 − ρ(i j))

∏

{i j /∈L(r):i j /∈Nr }
(1 − ρ(i i))(1 − ρ( j j))(1 − ρ(i j)).

Results and proofs are similar to the studied case, but the expression are very long
and complicate.
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Chapter 5
A Priori Fuzzy Unions

5.1 Introduction

The model explained in the book studies the value of a cooperative game with an
additional information about the relations among the players. This information is
showed as a mathematical structure in order to introduce it in the characteristic
function of the game. But the same mathematical structure can be interpreted by
different situations and so, the way to modify the game is also different.

Aumann and Dreze [2] considered that a partition of the set of players is formed.
Later Myerson [12] supposed that also the links used to form these groups are known
(the communications). These systems are represented by graphs.Owen [13] proposed
a different model to deal with a coalition structure. The Aumann and Dreze model
(see Sect. 4.2) considered the coalition structure as a final distribution of the players
in unions, and then there is not side-payment between these unions. Hence each final
coalition obtains its worth for the characteristic function and then the players in it
bargain, separately from the rest, a payoff vector with reward to the restricted game
over the coalition (Definition3.5). On the other hand, Owen saw the coalition struc-
ture as a priori union system. Now,B is a “starting point for further negotiations”, as
said Sánchez-Soriano and Pulido [15]. So, each union represents a group of players
with similar interests, ideas or conditions. The unions must be considered in the
game when players use them to bargain. Suppose a situation where players have to
establish the terms of an agreement about certain subjects upon which the payoffs of
the agents depend. Players are distributed in unions with similar positions respect to
the terms of the agreement. Obviously, the position of the unions in the bargaining
should be the focus to determine the payoffs. Hart and Kurz analyzed deeply a priory
unions in [9]. Casajus [6] followed to Myerson in the way of the a priori unions,
namely he proposed to take into account in each a priori union the links producing
the group.

We studied in Chap. 4 extensions to fuzzy communication structures based on
Jiménez-Losada et al. [10]. In this chapter we analyze fuzzy extensions of the Owen

© Springer International Publishing AG 2017
A. Jiménez-Losada, Models for Cooperative Games with Fuzzy Relations
among the Agents, Studies in Fuzziness and Soft Computing 355,
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model [13] and the Casajus variant [6]. Fernández et al. [7] use proximity relations
to study fuzzy relations a priori. These relations allow us to describe more realistic
situations, because the closeness of ideas between agents has different degrees. The
crisp model will be seen as a simplification of the problem.

5.2 A Priori Unions. The Owen Model

Let B = {B1, . . . , Bm} be a coalition structure (Definition4.1) over the finite set of
players N in a game v ∈ G N . We takeB in the classical way of Aumann and Dreze
[2], namelyB is a partition of N , and we named the elements inB as unions. Owen
[13] proposed a different model to deal with a coalition structure. The Aumann and
Drezemodel (see Sect. 4.2) considered the coalition structure as a final distribution of
the players in unions, and then there is not side-payment between these unions. Hence
each union B ∈ B obtains v(B) and then the players in B bargain, separately from
the rest, a payoff vector with reward to the restricted game over B (Definition3.5).
On the other hand, Owen saw the coalition structure B as a priori union system, a
starting point for further negotiations. So, each union B ∈ B represents a group of
players with similar interests, ideas or conditions. The unions must be considered in
the game when players use them to bargain. Suppose a situation where players have
to establish the terms of an agreement about certain subjects upon which the payoffs
of the agents depend. Players are distributed in unions with similar positions respect
to the terms of the agreement. Obviously, the position of the unions in the bargaining
should be the focus to determine the payoffs.

Definition 5.1 Apriori union system for N is a non-empty family of coalitions
B = {B1, . . . , Bm} such that Bp ∩ Bq = ∅ for all p �= q and

⋃m
p=1 Bp = N .

The set of a priori union systems over N is denoted as PN . Each element of
B is named a union.

Each a priori union system B is associated to an equivalence relation (reflexive,
symmetric and transitive) rB where NrB = N and the equivalence classes are the
unions, i.e. B = N/rB. As we said before, a union is formed a priori in the sense
that its players have similar interests and not thinking about the communication level
among them. Hence the relation must be reflexive and not weakly reflexive, because
any player has the same ideas as herself.

Example 5.1 Figure5.1 shows a priori union systemover N = {1, 2, 3, 4, 5, 6, 7, 8},
the set of seller in Example4.1. In this case sellers also organize themselves by the
city where they sell,B = {{1, 2, 3, 4}, {5, 6, 7}, {8}}. But theywould like in this case
to establish an agreement in order to avoid competition in the same city (perhaps
some of them want to earn more money and visit the other cities). Hence, they put
their profits in common and they must decide how to allocate this amount. Matrix
rB represents the system.

http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_4
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Fig. 5.1 A priori union
system
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⎢
⎢
⎣

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Reflexive coalition structures and a priori union systems are the same mathemat-
ical objects, thus the difference of interpretation must appear in the definition of the
instrumental game incorporating the information to an original game. Owen [13]
proposed un way in two steps to get the new game, first the unions determine how
much each one receives and later the agents in each union fix how these receipts are
to be divided.

Definition 5.2 Let v ∈ G N be a game and B = {B1, . . . , Bm} ∈ PN be a
priori union system. Let M = {1, . . . ,m}. The quotient game is the game
wv,B ∈ G M defined for all Q ⊆ M as

wv,B(Q) = v

⎛

⎝
⋃

q∈Q
Bq

⎞

⎠ .

The quotient game is still not our instrumental game, it is only the tool for the
first step. We will apply the Shapley value for games over M in order to obtain a
payoff for each union, φM(wB). But each player, and also each coalition, into a
union aspires to get a payoff according to their possibilities in the whole game and
not only within the union. Otherwise they would break out the union. Owen [13], to
take into account this fact, proposed to define a quotient game for each coalition in
a union. LetB = {B1, . . . , Bm} be a priori union system. Suppose a union Bp ∈ B
and S ⊆ Bp. The restricted a priori union system of B to S is

BS = {B1, . . . , Bp−1, S, Bp+1, . . . , Bm} ∈ PN\(Bp\S). (5.1)
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Hence, the above system explains the same situation but without the action of rest
of players in the union. Next we define the restricted game for this model as a game
in each union.

Definition 5.3 Let B = {B1, . . . , Bm} ∈ PN , M = {1, . . . ,m} and p ∈ M .
The p-union game is vBp ∈ G Bp defined for each S ⊆ Bp as

vBp (S) = φM
p

(
wv,BS

)
.

Example 5.2 Let N = {1, 2, 3, 4}. Suppose the game in Table5.1. The a priori union
system B = {B1 = {1, 2, 3}, B2 = {4}} (Fig. 5.2) represents for instance the fact
that players 1, 2 and 3 are relatives. In this case M = {1, 2} and then we have
two union games. First we determine vB1 . If we take coalition S = {1} ⊂ B1 then
BS = {{1}, {4}}. We construct the quotient game wv,BS over M ,

wv,BS ({1}) = v({1}) = 0, wv,BS ({2}) = v(B2) = 0,

wv,BS ({1, 2}) = v({1, 4}) = 5.

So, φM(wv,BS ) = (2.5, 2.5) and the worth vB1 ({1}) = 2.5. In the same way,

vB1 ({2}) = vB1 ({3}) = vB1 ({1, 3}) = vB1 ({2, 3}) = 2.5.

If S = {1, 2} then BS = {{1, 2}, {4}} and

wv,BS ({1}) = v({1, 2}) = 1, wv,BS ({2}) = v(B2) = 0,

wv,BS ({1, 2}) = v({1, 2, 4}) = 5.

Table 5.1 Game v in Example5.2

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
v 0 0 0 0 1 0 5 0

S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

v 5 5 2 5 5 5 8

Fig. 5.2 A priori union
system in Example5.2 1 

3 

2 

4 
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We get nowφM(wv,BS ) = (3, 2) and theworth vB1 ({1, 2}) = 3. If S = B1 thenBS =
B and

wv,BS ({1}) = v(B1) = 2, wv,BS ({2}) = v(B2) = 0,

wv,BS ({1, 2}) = v(N ) = 8.

The new Shapley value is φM(wv,BS ) = (5, 3) and so vB1 (B1) = 5. Observe that we
also get vB2 (B2) = 3 from the before game.

We analyze in the next proposition several properties of the union games. Given
an a priori union system B = {B1, . . . , Bm} we will use for each non-empty Q ⊆
M = {1, . . . ,m}

BQ =
⋃

q∈Q
Bq . (5.2)

Proposition 5.1 LetB = {B1, . . . , Bm} ∈ PN , M = {1, . . . ,m} and p ∈ M.
For all v ∈ G N the p-union game satisfies

(1) If v is additive then vBp is additive, moreover vBp = vBp .
(2) If v is convex then so is vBp .
(3) If v is monotone then vBp is monotone.
(4) (av + bw)Bp = avBp + bwB

p for all a, b ∈ R. Hence (−v)Bp = −(vBp ).
(5) If v,w are strategically equivalent then so are vBp ,wB

p .
(6) (vsvg)Bp = (vBp )svg.
(7) (vdual)Bp = (vBp )dual .

Proof (1) Let v ∈ R
N . For each S ⊆ Bp we define the vector wS ∈ R

M with

wS
q =

{∑
i∈Bq

vi , if q �= p
∑

i∈S vi , if q = p.

If Q ⊆ M with p /∈ Q then

wv,BS (Q) = v
(
BQ
) =

∑

i∈BQ

vi =
∑

q∈Q

∑

i∈Bq

vi =
∑

q∈Q
wS
q .

Following the same way, if p ∈ Q then

wv,BS (Q) = v
(
BQ\{p} ∪ S

) =
∑

q∈Q\{p}

∑

i∈Bq

vi +
∑

i∈S
vi =

∑

q∈Q
wS
q .
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Hence, we obtain that wv,BS = wS . Example1.16 showed that the Shapley value of
a vector is the own vector, namely

vBp (S) = φM
p (wv,BS ) = wBS

p =
∑

i∈S
vi .

(2) Let S, T ⊆ Bp. Consider Q ⊆ M \ {p}. Convexity of v implies

v
(
BQ ∪ (S ∪ T )

)+ v
(
BQ ∪ (S ∩ T )

) ≥ v
(
BQ ∪ S

)+ v
(
BQ ∪ T

)
.

So, from Definition5.2 we have

(
wv,BS∪T + wv,BS∩T

)
(Q ∪ {p}) ≥ (

wv,BS + wv,BT
)
(Q ∪ {p}).

Furthermore (
wv,BS∪T + wv,BS∩T

)
(Q) = (

wv,BS + wv,BT
)
(Q),

thus we obtain

(
wv,BS∪T + wv,BS∩T

)
(Q ∪ {p}) − (

wv,BS∪T + wv,BS∩T
)
(Q) ≥

(
wv,BS + wv,BT

)
(Q ∪ {p}) − (

wv,BS + wv,BT
)
(Q).

We apply that the Shapley value satisfies marginality (Proposition1.12), and then

φM
p

(
wv,BS∪T + wv,BS∩T

) ≥ φM
p

(
wv,BS + wv,BT

)
.

Linearity of the Shapley value (Proposition1.8) and Definition5.3 conclude that

vBp (S ∪ T ) + vBp (S ∩ T ) ≥ vBp (S) + vBp (T ).

(3) Let S ⊆ T ⊆ Bp. Consider Q ⊆ M \ {p} and notation BQ again. Monotonicity
of v implies

v
(
BQ ∪ T

) ≥ v
(
BQ ∪ S

)
.

We obtain then

wv,BT (Q ∪ {p}) − wv,BT (Q) ≥ wv,BS (Q ∪ {p}) − wv,BS (Q).

Marginality of the Shapley value (Proposition1.12) say that

vBp (T ) = φM
p

(
wv,BT

) ≥ φM
p

(
wv,BS

) = vBp (S).

(4) For each coalition S ⊆ N and Q ⊆ M

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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wav+bw,BS (Q) =
{

(av + bw)(BQ\{p} ∪ S) if p ∈ Q
(av + bw)(BQ) if p /∈ Q

}

= awv,BS (Q) + bww,BS (Q)

Linearity of Shapley value implies again

(av + bw)Bp (S) = φM
p

(
wav+bw,BS

) = avBp (S) + bwB
p (S).

(5) It is a consequence of steps (4) and (1).
(6) Let v′ ∈ R

N with v′
i = v({i}). We have vsvg = v′ − v. For each coalition S ⊆ N

and Q ⊆ M

wvsvg ,BS (Q) =
{
vsvg(BQ\{p} ∪ S) if p ∈ Q
vsvg(BQ) if p /∈ Q

}

= wv′−v,BS (Q).

So, by steps (4) and (1)

(vsvg)Bp (S) = φp(w
vsvg ,BS ) = (v′ − v)Bp (S) =

∑

i∈S
v({i}) − vBp (S) = (vBp )svg.

(7) First we calculate wvdual ,BS for each coalition S ⊆ Bp. Let Q ⊆ M \ {p},

wvdual ,BS (Q) = v(N ) − v(N \ BQ) = v(N ) − v
(
BM\(Q∪{p}) ∪ Bp

)

wvdual ,BS (Q ∪{p}) = v(N ) − v(N \(BQ ∪S)) = v(N ) − v
(
BM\(Q∪{p}) ∪(Bp \S)

)
.

We denote Q′ = M \ (Q ∪ {p}), so

wvdual ,BS (Q ∪ {p}) − wvdual ,BS (Q) = v
(
BQ′ ∪ Bp

)− v
(
BQ′ ∪ (Bp \ S)

)

= wv,B(Q′ ∪ {p}) − wv,BBp\S (Q′ ∪ {p}).

Using that for all R ⊆ Bp the number wv,BR (Q′) is the same we obtain

wvdual ,BS (Q ∪ {p}) − wvdual ,BS (Q)

= [
wv,B(Q′ ∪ {p}) − wv,B(Q′)

]

− [
wv,BBp\S (Q′ ∪ {p}) − wv,BBp\S (Q′)

]

Hence, from Theorem1.1 we get

(vdual)Bp (S) = φM
p (wvdual ,BS ) = φM

p (wv,B) − φM
p (wv,BBp\S )

= vBp (Bp) − vBp (Bp \ S) = (vBp )dual(S).

�

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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But superadditivity is not inherited for a priori union systems as next example
given by Owen [14] shows.

Example 5.3 Consider the superadditive simple game given by the voting situ-
ation v = [4; 3, 1, 1, 1] (see Example1.14) with the a priori union system B =
{{1}, {2}, {3, 4}} = {B1, B2, B3}. We will calculate vB3 ∈ G {3,4}. For coalition {3}
we have wv,B{3} = [4; 3, 1, 1], namely it is also a voting game with the same
quota and the three unions B{3} = {{1}, {2}, {3}}. Then vB3 ({3}) = φ3(wv,B{3}) =
1/6. Also wv,B{4} = [4; 3, 1, 1] with B{4} = {{1}, {2}, {4}} and therefore vB3 ({4}) =
φ3(wv,B{4}) = 1/6. For coalition {3, 4} we get wv,B{3,4} = [4; 3, 1, 2], namely it is
also a voting game with the same quota and the three unions B{3,4} = B. Then
vB3 ({3, 4}) = φ3(wv,B{3,4}) = 1/6. But then game vB3 is not superadditive.

For communication situations convexity was a non-inherited property (Exam-
ple4.6) and it was proposed a particular kind of communication structures where
this condition is inherited, to be cycle-complete. But this option is not feasible here
if we observe the simple a priori union system used in the above example. More-
over, except for very particular cases, there exists a superadditive game with some
non-superadditive union game.

Union games of simple games are not simple games although they were super-
additive (that did not happen with coalition structures). Next example shows this
circumstance with an unanimity game.

Example 5.4 Suppose uR an unanimity game with R ⊆ N and B = {B1, B2} such
that R ∩ B1 �= ∅ and R ∩ B2 �= ∅. Let S ⊆ B1, we get wuR ,BS ({1}) = uR(S) = 0,
wuR ,BS ({2}) = uR(B2) = 0 and

wuR ,BS ({1, 2}) = uR(S ∪ B2) =
{
1, if B1 ∩ R ⊆ S
0, otherwise.

Hence, we obtain

(uR)B1 (S) = φ1(w
uR ,BS ) =

{
1/2, if B1 ∩ R ⊆ S
0, otherwise.

A value function for games with a priori union system is

f : G N × PN → R
N .

Each pair (v,B) ∈ G N × PN is called a game over N with a priori union system.
We define a Shapley value for games with an a priori union system using the Shapley
value of the modification of each union game.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Definition 5.4 The Owen value is a value for games over N with a priori
union system defined for each v ∈ G N ,B ∈ PN and i ∈ N as

ωi (v,B) = φi (v
B
p ),

where i ∈ Bp and B = {B1, . . . , Bm}.

Example 5.5 Following from Example5.2 we need to calculate the Shapley value
of both p-union games obtained there. So, as all the players are symmetric in each
game,

φ(vB1 ) = (1.75, 1.75, 1.5), φ(vB2 ) = 3.

The Owen value is
ω(v,B) = (1.75, 1.75, 1.75, 3).

We can observe that players 1, 2 and 3 increase the profit with their a priori union,
because the Shapley value for game v is φ(v) = (1.416, 1.416, 1.25, 3.91). But actu-
ally, this fact may not always be the case, remember that the unions are established
a priori for reasons out of characteristic function. In [3] the reader can find how to
use a priori unions in a context of coalition formation.

The Owen value has been modified using the same two-steps model, as the reader
can see in [11] or [4].

The classical situation in this case it happens when B = {{i} : i ∈ N } because
there is not any a priori relation, but also B = {N } can be interpreted in this sense.
Next proposition shows that the Owen value coincides with the Shapley value in both
cases.

Proposition 5.2 Let v ∈ G N . If B0 = {{i} : i ∈ N } and B1 = {N } then the
Owen value satisfies

ω(v,B0) = ω(v,B1) = φ(v).

Proof If we take B0 then each union is identified with a player. We get (B0)S =
B0 for all non-empty coalition S, hence wv,B0 = v. So vB0

i ∈ G {i} with vB0
i ({i}) =

φi (v). If we take B1 then there is only one union N , so (B1)S = {S} for all non-
empty coalition. Game wv,(B1)S ∈ G {1} and wv,(B1)S (1) = v(S). Now vB1

1 = v, thus
ω(v,B1) = φ(v). �

Owen [13] axiomatized his value using one axiom more than the Shapley value.
Other axiomatizations were given in [8, 9] or [1]. Let f : G N × PN → R

N a value
for games over N with a priori union system.
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In an a priori union system the great coalition is formed because the coalition
structure is only a priori.

Efficiency. For all v ∈ G N and B ∈ PN , f (v,B)(N ) = v(N ).

Null player. Let i ∈ N be a null player in the game v, it holds fi (v,B) = 0 for all
B ∈ PN .

Symmetry in unions. Let B ∈ PN and B ∈ B. If i, j ∈ B with are symmetric for
a game v then fi (v,B) = f j (v,B).

We have modified the next axiom from the original of Owen in order to be described
without using the quotient game. Let (v,B) ∈ G N × PN . Two unions B, B ′ ∈ B
are symmetric for the game v if for all S ⊆ N \ (B ∪ B ′) we have

v(S ∪ B) = v(S ∪ B ′).

Symmetry in the quotient. Let v be a game and B be an a priori union system. If
B, B ′ ∈ B are symmetric for v then

f (v,B)(B) = f (v,B)(B ′).

Linearity. For all v,w ∈ G N , a, b ∈ R and coalition T it holds

f (av + bw, T ) = a f (v, T ) + b f (w, T ).

We follow the proof of Owen [13] but adapting it to the new axiom.

Theorem 5.1 TheOwen value is the only value for games over N with a priori
union system satisfying efficiency, null player, symmetry in unions, symmetry
in the quotient and linearity.

Proof We test that theOwen value verifies the axioms. LetB = {B1, . . . , Bm} ∈ PN

and M = {1, . . . ,m}. Let also v ∈ G N .
Efficiency. Efficiency of the Shapley value (Proposition1.9) implies

∑

i∈N
ωi (v,B) =

m∑

p=1

∑

i∈Bp

φi (v
B
p ) =

m∑

p=1

vBp (Bp) =
m∑

p=1

φp
(
wv,B

)

= wv,B(M) = v

⎛

⎝
⋃

p∈M
Bp

⎞

⎠ = v(N ).

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Null player. Let i ∈ N be a null player for a game v. We consider i ∈ Bp. Player
i is also a null player of vBp . If S ⊆ Bp \ {i} and Q ⊆ M \ {p} then as i is null for v
we obtain

wv,BS∪{i}(Q ∪ p) = v
(
BQ ∪ S ∪ {i}) = v

(
BQ ∪ S

) = wv,BS (Q ∪ p).

Always it is true that wv,BS∪{i}(Q) = wv,BS (Q). If all the marginal contributions of
player p are the same for both games wv,BS∪{i} ,wv,BS then Theorem1.1 says that the
Shapley values are also the same, thus

vBp (S ∪ {i}) = φp
(
wv,BS∪{i}

) = φp
(
wv,BS

) = vBp (S).

By Definition5.4 and Proposition1.11 it holds ωi (v,B) = φi (vBp ) = 0.
Symmetry in unions. Let i, j ∈ Bp be symmetric players with p ∈ M . We will
prove the claim i, j are symmetric for game vBp .We take Q ⊆ M \ {p}, which verifies
wv,BS∪{i}(Q) = wv,BS∪{ j}(Q) for all S ⊆ N \ {i, j}, and as i, j are symmetric for v

wv,BS∪{i}(Q ∪ {p}) = v(BQ ∪ S ∪ { j}) = v(BQ ∪ S ∪ {i}) = wv,BS∪{ j}(Q).

Theorem1.1 again implies that

vBp (S ∪ {i}) = φp
(
wv,BS∪{i}

) = φp
(
wv,BS∪{ j}

) = vBp (S ∪ { j}).

As Shapley value satisfies symmetry (Proposition1.10) it holds ωi (v,B) =
ω j (v,B).
Symmetry in the quotient. Suppose p �= q ∈ M with Bp, Bq symmetric for v.
We test that p, q are symmetric for game wv,B. If Q ⊆ M \ {p, q} then

wv,B(Q ∪ {p}) = v(BQ ∪ Bp) = v(BQ ∪ Bq) = wv,B(Q ∪ {q}).

Therefore from efficiency and symmetry of Shapley value,

∑

i∈Bp

ωi (v,B) =
∑

i∈Bp

φi (v
B
p ) = vBp (Bp) = φp(w

v,B)

= φq(w
v,B) = vBp (Bq) =

∑

i∈Bp

φi (v
B
p ) =

∑

i∈Bp

ωi (v,B).

Linearity. Proposition5.1 implies the result.
Consider f a value for games with a priori union structure satisfying the axioms.

From linearity we only have to obtain the uniqueness for the unanimity games. Let
T ⊆ N be a non-empty coalition. Players out of T are null for uT thus their payoffs
are zero. We set C = {p ∈ M : Bp ∩ T �= ∅}. For all p, q ∈ C we have that Bp, Bq

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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are symmetric for uT because both are required to complete T . Symmetry for the
quotient (and also null player axiom) says that there exists A ∈ R with

∑

i∈Bp∩T
fi (uT ,B) = A

for all p ∈ C . Efficiency implies

∑

i∈N
fi (uT ,B) =

∑

p∈C

∑

i∈Bp∩T
fi (uT ,B) = |C |A = 1.

Hence A = 1/|C |. Two players i, j ∈ Bp ∩ T with p ∈ C are symmetric for v
because both are necessary to complete T , therefore there is Kp ∈ R with
fi (uT ,B) = Kp for all i ∈ Bp. So

∑

i∈Bp∩T
fi (uT ,B) = |Bp ∩ T |Kp = A = 1

|C | ,

and

Kp = 1

|C ||Bp ∩ T | .

�
We have needed five axioms to characterize the Owen value, we must analyze the

independence of the axioms.

Remark 5.1 We find values different to the Owen value verifying all the axioms
except one of them.

• Consider value f 1 defined for each v ∈ G N andB ∈ PN as f 1(v,B) = aω(v,B)

with a ∈ R \ {1}. This value satisfies all the axioms except efficiency.
• Let θ ∈ ΘN and suppose n ≥ 2. In Remark1.4 we proved that the marginal func-
tion mθ is a value for games satisfying efficiency, null player and linearity. Now
we follow the two steps model to generate a new value. Let B = {B1, . . . , Bm},
M = {1, . . . ,m} and p ∈ M . We denote θp the induced permutation in Bp by θ

(i <θp j if and only if i <θ j for all i, j ∈ Bp). For each player i ∈ Bp, we take

f 2i (v,B) = m
θp
i (vBp ).

Following the proof of Theorem5.1, as φ,mθp verifies efficiency, null player and
additivity then f 2 so is. Value f 2 satisfies symmetry in the quotient because φ

verifies symmetry and mθp is efficient (see again the proof of Theorem5.1). As
mθp does not verify symmetry then f 2 does not verify symmetry in the unions.

• Similar to the egalitarian value (see Remark1.4) is defined the egalitarian value
into the unions as

f 3i (v,B) = v(N )

mbp
,

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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where m is the number of unions and i ∈ Bp with |Bp| = bp. This value satisfies
all the axioms except the null player property.

• Following Remark1.4 again we take Null(v) = {i ∈ N : i null player in v}.
Let m ′ = |{B ∈ B : B ∩ (N \ Null(v)) �= ∅}|. If i ∈ Bp, then b′

p =
|{Bp \ Null(v)}|. It defines

f 4i (v) =
⎧
⎨

⎩

v(N )

m ′b′
p

, if i /∈ Null(v)

0, if i ∈ Null(v).

This value satisfies all the axioms except additivity.
• Finally if we consider the Shapley value, f 5(v,B) = φ(v), this value satisfies all
the axioms except symmetry in the quotient.

The Owen value admits similar formulas than the Shapley value. A permu-
tation θ ∈ ΘN is compatible with an a priori union system B = {B1, . . . , Bm},
M = {1, . . . ,m} if θ = (θπ(1), . . . , θπ(m))with θπ(p) ∈ Θ Bπ(p) and π ∈ ΘM , namely
those permutations θ such that for each p ∈ M and for all i, i ′ ∈ Bp there is no
j /∈ Bp with i <θ j <θ i ′. The family of compatible permutations withB is ΘN

B.

Theorem 5.2 LetB = {B1, . . . , Bm} ∈ PN , M = {1, . . . ,m} and v ∈ G N . It
holds:

(1) ω(v,B) = 1

|ΘN
B|

∑

θ∈ΘN
B

mθ (v).

(2) For each i ∈ Bp,

ωi (v,B) =
∑

Q⊆M\{p}

∑

S⊆Bp\{i}
cm|Q|c

Bp

|S| [v(BQ ∪ S ∪ {i}) − v(BQ ∪ S)].

Proof (1) If we denote bq = |Bq | for all q ∈ M then the number of compatible
permutations for B is

|ΘN
B| =

∏

q∈M
bq !.

Let i ∈ Bp ∈ B, by Definitions1.9, 1.10, 5.3 and 5.4 we obtain

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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ωi (v,B) = φ
Bp

i (vBp ) = 1

bp!
∑

θ p∈Θ Bp

mθ p

i (vBp )

= 1

bp!
∑

θ p∈Θ Bp

[
vBp (Siθ p ∪ {i}) − vBp (Siθ p )

]

= 1

bp!
∑

θ p∈Θ Bp

[
φM
p

(
w
v,BSi

θ
∪{i}
)

− φM
p

(
w
v,BSi

θ

)]

= 1

bp!
∑

θ p∈Θ Bp

1

m!
∑

π∈ΘM

[
mπ

p

(
w
v,BSi

θ
∪{i}
)

− mπ
p

(
w
v,BSi

θ

)]
.

The difference between games w
v,BSi

θ
∪{i} and w

v,BSi
θ is their application over sets

containing p, therefore they obtain the same worths for Q. So,

mπ
p

(
w
v,BSi

θ
∪{i}
)

− mπ
p

(
w
v,BSi

θ

)
= w

v,BSi
θ
∪{i}(Qp

π ∪ {p}) − w
v,BSi

θ
∪{i}(Qp

π )

−w
v,BSi

θ (Qp
π ∪ {p}) + w

v,BSi
θ (Qp

π )

= v
(
BQp

π
∪ Siθ ∪ {i})− v

(
BQp

π
∪ Siθ

)
.

For each θ p and π fixed, we consider all the compatible permutations θ for B
ordering M by π and using θp into Bp. We get

∏
q∈M\{p} bq ! of these permutations

such that
mθ

i (v) = v
(
BQp

π
∪ Siθ ∪ {i})− v

(
BQp

π
∪ Siθ

)
.

Thus we have,

ωi (v,B) = 1

m!∏q∈M bq !
∑

θ p∈Θ Bp

⎛

⎝
∏

q∈M\{p}
bq !
⎞

⎠
∑

π∈ΘM

mθ
i (v)

= 1

|ΘN
B|

∑

θ∈ΘN
B

mθ
i (v).

(2) Following the above proof, we have

ωi (v,B) = 1

m!
1

bp!
∑

θ p∈Θ Bp

∑

π∈ΘM

v
(
BQp

π
∪ Siθ ∪ {i})− v

(
BQp

π
∪ Siθ

)

As in the proof of Theorem1.1, for each Q ⊆ M \ {p} with cardinality |Q| = q
and S ⊆ Bp \ {i} with cardinality |S| = s we have q!(m − q − 1)! permutations of
M and s!(bp − s − 1)! of Bp such that the combination of which obtain always
the same marginal contribution, v

(
BQ ∪ S ∪ {i})− v

(
BQ ∪ S

)
. Hence, using again

Theorem1.1

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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ωi (v,B) =
∑

Q⊆M\{p}

∑

S⊆Bp\{i}

q!(m − q − 1)!
m!

s!(bp − s − 1)!
bp! v

(
BQ ∪ S ∪ {i})− v

(
BQ ∪ S

)

=
∑

Q⊆M\{p}

∑

S⊆Bp\{i}
cmq c

bp
s v

(
BQ ∪ S ∪ {i})− v

(
BQ ∪ S

)
.

�

Next we summarize other properties of the Owen value.

Proposition 5.3 The Owen value satisfies the following properties for an a
priori union system B = {B1, . . . , Bm}. Let M = {1, . . . ,m} and p ∈ M.

(1) If i ∈ Bp is a necessary player for v ∈ G N
m then ω j (v,B) ≤ ωi (v,B) for

all j ∈ Bp.
(2) Let v ∈ G N

c . If S ⊆ Bp then ω(v,B)(S) ≥ v(S).
(3) If v, v′ ∈ G N anda, b ∈ R thenω(av + bv′,B) = aω(v,B) + bω(v′,B).
(4) For all i ∈ Bp and v ∈ G N it holds ωi (v,B) = vBp ({i}) − ωi (vsvg,B).
(5) ω(vdual ,B) = ω(v,B).

Proof (1) We see that i is a necessary player for vBp . If S ⊆ Bp with i /∈ S then
wv,BS = 0. Hence, the p-union game verifies

vBp (S) = φM
p (wv,BS ) = 0.

Proposition5.1 implies that vBp ∈ G
Bp
m . As Shapley value satisfies necessary player

property (Proposition1.11) we get the result.
(2) Suppose S ⊆ Bp. Since Proposition5.1 we know that vBp is convex, thus Propo-
sition1.14 says

ω(v,B)(S) = φ(vBp )(S) ≥ vBp (S) = φM
p (wv,BS ).

We will prove that wv,BS is superadditive using v ∈ G N
c . Let Q, Q′ ⊆ M with Q ∩

Q′ = ∅. If p /∈ Q ∪ Q′

wv,BS (Q ∪ Q′) = v(BQ ∪ BQ′) ≥ v(BQ) + v(BQ′) = wv,BS (Q) + wv,BS (Q′).

If p ∈ Q (or Q′) then

wv,BS (Q ∪ Q′) = v(BQ\{p} ∪ BQ′ ∪ S) ≥ v(BQ\{p} ∪ S) + v(BQ′)

= wv,BS (Q) + wv,BS (Q′).

So, Proposition1.13

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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ω(v,B)(S) ≥ wv,BS ({p}) = v(S).

(3) It is trivial from the linearity of the Shapley value.
(4) Propositions5.1 and 1.15 imply

ωi (v
svg,B) = φ

Bp

i ((vsvg)Bp ) = φ
Bp

i ((vBp )svg)

= vBp ({i}) − φ
Bp

i (vBp ) = vBp ({i}) − ωi (v,B).

(5) It is trivial from Propositions5.1 and 1.15. �

Example5.3 showed that the union games are not always superadditive. Necessary
player property cannot extended to the whole set of players as we see in the next
example.

Example 5.6 Consider N = {1, 2, 3} and game v with v(N ) = 4 and v(S) = 0 for
the other coalitions S. All the players are necessary. We take B = {{1}, {2, 3}}. If
the Owen value satisfies necessary player property then all the payoffs of the players
will be the same. But, we get ω(v,B) = (2, 1, 1).

Next proposition is removed from the proof of the uniqueness in Theorem5.1.

Proposition 5.4 Let R ⊆ N, R �= ∅. Let B = {B1, . . . , Bm} ∈ PN , M =
{1, . . . ,m} and QR = {q ∈ M : Bq ∩ R �= ∅}. For each i ∈ Bp with p ∈ M it
holds

ωi (uR,B) =
⎧
⎨

⎩

1

|QR||Bp ∩ R| , if i ∈ Bp ∩ R

0, otherwise.

We can describe the Owen value from the dividends using the above proposition.

Theorem 5.3 For each v ∈ G N and a priori union systemB = {B1, . . . , Bm}
the Owen value of a player i ∈ Bp with p ∈ {1, . . . ,m} is

ωi (v,B) =
∑

i∈S⊆N

Δv
S

|S ∩ Bp||QS| ,

where QS = {q ∈ M : Bq ∩ S �= ∅}.

Proof From Proposition1.1 and linearity of the Owen value (Proposition5.3) we get

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Table 5.2 Dividends of the game v

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

Δv
S 0 0 5000 10000 25000 20000 −10000

ωi (v,B) =
∑

i∈S⊆N

Δv
Sωi (uS,B) =

∑

i∈S⊆N

Δv
S

1

|QS||Bp ∩ S| .

�

Example 5.7 Suppose the bankruptcy game in Example1.15 with three creditors.
The capital of the firm is Q = 50000 e and the demand vector of the creditors is
q = (25000, 20000, 40000). Table1.3 represented the worths of the game. We got
the dividends of the coalitions in Table1.7, that we recover as Table5.2, and also the
Shapleyvalueφ(v) = (14166.6, 13333.3, 22500). Consider now thatminor creditors
(1 and 2) are actually two business divisions of the same firm. They must work as a
union, hence we have B = {{1, 2}, {3}}. We use formula in Theorem5.3 to get the
Owen value. So,

ω1(v,B) = Δv
{1}
1

+ Δv
{1,2}
2

+ Δv
{1,3}
2

+ Δv
N

4
= 5000 + 12500 − 2500 = 15000.

ω2(v,B) = Δv
{2}
1

+ Δv
{1,2}
2

+ Δv
{2,3}
2

+ Δv
N

4
= 5000 + 10000 − 2500 = 12500.

ω3(v,B) = Δv
{3}
1

+ Δv
{1,3}
2

+ Δv
{2,3}
2

+ Δv
N

4
= 5000 + 12500 + 10000 − 5000 = 22500.

The solution is ω(v,B) = (15000, 12500, 22500). In this case, the a priori union
only means a different allocation in the union.

5.3 The Graph Variant

Several papers relate communication structures and a priori unions systems, for
instance [17] or [16]. We will use that one proposed by Casajus [6]. We take a
graph to represent the relations among the players. The components of the graph
represent the a priori unions of the players as in the Owen model but now we have
also information about how this groups are formed. For instance, me, my sister and
my brother in low form a priori familiar union, but without my sister not.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Definition 5.5 A cooperation structure over N is a bilateral relation r satis-
fying two conditions:

(1) r is reflexive, r(i i) = 1 for all i ∈ N ,
(2) r is symmetric, r(i, j) = r( j, i) = r(i j) if i, j ∈ N with i �= j .

The family of cooperation structures is denoted as CN

Thus cooperation structures are undirected graphs (communication structures)
which are reflexive over N , namely the domain is the whole set of players. The
difference as between coalition structures and a priori union systems lies in the
interpretation: final organization of the players in coalitions or a priori.

The quotient game is used again for analyzing the bargaining among unions.
But in the second step we take the Myerson value (Definition4.9), considering the
asymmetric position of the players in each union. So, we take the union games
(Definition5.3) to obtain one payoff for each coalition in a union. Remember that if
r is a reflexive graph then N/r is a partition of N , namely an a priori union system.
A value for games with cooperation structure over N is a mapping f : G N × CN →
R

N obtaining payoff vectors.

Definition 5.6 The Myerson–Owen value is a value for games over N with
cooperation structure defined for each v ∈ G N , r ∈ CN and i ∈ N as

ωi (v, r) = μi
(
vN/r
p , rBp

)
,

where i ∈ Bp and N/r = {B1, . . . , Bm}.

Although the Myerson value can be written by components (Proposition4.10), in
this case it is not possible to join the solution in only one expression because the
union games are different for each component.

Example 5.8 Let N = {1, 2, 3, 4}. Suppose the game in Table5.1. The a priori union
system is the same, {{1, 2, 3}, {4}} because 1, 2 and 3 are relatives. But now player
1 is the husband of player 2 and player 3 the cousin of player 1, thus we use the
cooperation structure r in Fig. 5.3. Observe that if player 1 decide not to be active
the relativity between players 2 and 3 disappears. The union games are the same,

vN/r
1 ({1}) = vN/r

1 ({2}) = vN/r
1 ({3}) = vN/r

1 ({1, 3}) = vN/r
1 ({2, 3}) = 2.5,

vN/r
1 ({1, 2}) = 3, = vN/r

1 ({1, 2, 3}) = 5. vN/r
2 ({4}) = 3.

We need to calculate the Myerson value of both p-union games. So, the Myerson–
Owen value is

ω(v,B) = (0.916, 2.166, 1.916, 3).

http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
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Fig. 5.3 Cooperation
structure in Example5.8

1 

3 

2 

4 

Observe that player 1 is harmed despite her position because game vN/r
1 is not super-

additive.

Following the definition of the Myerson value, the new solution is also a Shapley
value, so if v ∈ G N and r ∈ CN we have for each i ∈ Bp with N/r = {B1, . . . , Bm},

ωi (v, r) = φ
Bp

i

(
vN/r
p /rBp

)
.

The last game, that we apply the Shapley value over, inherits all the properties
and problems satisfied by both union game and vertice game, so we can guarantee
neither superadditivity nor convexity. The combination of both tool games satisfies
the following properties.

Proposition 5.5 Let v ∈ G N andr ∈ CN with N/r = {B1, . . . , Bm}and M =
{1, . . . ,m}. For each p ∈ M it holds:

(1) If v is additive then vN/r
p /rBp = vBp .

(2) (av + bw)
N/r
p /rBp = avN/r

p /rBp + bwN/r
p /rBp for all a, b ∈ R. Hence

(−v)N/r
p /rBp = −(vN/r

p /rBp ).

(3) If v,w are strategically equivalent then so are vN/r
p /rBp ,w

N/r
p /rBp .

(4) (vsvg)N/r
p /rBp = (vN/r

p /rBp )
svg.

(5) (vrdual)N/r
p /rBp = (vN/r

p /rBp )
dual .

(6) If v ∈ G N
c and r is cycle-complete then vN/r

p /rBp ∈ G N
c .

Proof (1) As v ∈ R
N we have from Proposition5.1 that vN/r

p = vBp . Relation r is

reflexive therefore NrBp = Bp, and then using Proposition4.7 vN/r
p /rBp = vBp .

(2), (3) and (4) follow directly from Propositions4.7 and 5.1.
5) If we repeat the proof with vrdual (1.5) in Proposition5.1 (7) then we obtain that
(vrdual)N/r

p = (vN/r
p )rdual . Proposition4.13 implies that

(
(vN/r

p )rdual
)
/rBp = (vN/r

p /rBp )
dual .

http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_4
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(6) Proposition5.1 says that vN/r
p is convex if v ∈ G N

c . As r is cycle-complete then
Proposition4.9 implies that vN/r

p /rBp ∈ G N
c . �

There are two axiomatizations of the Myerson–Owen value, Casajus [6] and
Fernández et al. [7]. The second one allows us to compare better the graph variant
with Owen value. Let f be a value for games with cooperation structure over N .

Efficiency. For all v ∈ G N and r ∈ CN , f (v, r)(N ) = v(N ).

Null players can obtain profits in a graph from their positions because there is
asymmetry, but if all the players connected to them are null then they cannot get
benefits. A null coalition in a game v is a non-empty coalition S ⊆ N such that if
i ∈ S then i is a null player in v. In a cooperation structure r we denote the set of
null unions for a game v as

nullv(r) = {B ∈ N/r : B is null for v}. (5.3)

Null union. Let r ∈ CN . If B ∈ nullv(r) for v ∈ G N then fi (v, r) = 0 for all i ∈ B.

Remember that two unions B, B ′ ∈ N/r are symmetric for the game v if for all
S ⊆ N \ (B ∪ B ′) we have

v(S ∪ B) = v(S ∪ B ′).

Symmetry in the quotient. Let v be a game and B be an a priori union system. If
B, B ′ ∈ B are symmetric for v then

f (v,B)(B) = f (v,B)(B ′).

Linearity. For all v,w ∈ G N , a, b ∈ R and cooperation structure r it holds f (av +
bw, r) = a f (v, r) + b f (w, r).

But symmetry in unions is not feasible for cooperation structures because players
depend on the position in the subgraph of each union. Nor can we use fairness (in the
sense ofMyerson, see Sect. 4.3) because if we delete a link then the set of components
changes and also the union games. Casajus [6] proposed amodification of the fairness
to solve this problem.Let (v, r) ∈ G N × CN and i j ∈ L(r). If B ∈ N/r with i, j ∈ B
then we denote as Bi , B j the components containing respectively i, j in r−i j (see
Definition4.6), namely i ∈ Bi ∈ N/r−i j and j ∈ B j ∈ N/r−i j . Let

Ni
i j = (N \ B) ∪ Bi and N j

i j = (N \ B) ∪ B j . (5.4)

http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
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Fig. 5.4 Modified fairness
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r−26

B

B2

B6

N2
26

Set Ni
i j consists in deleting also the component containing j when the link i j is

deleted, if this action disconnects i and j . We need to revise the next axiom for
suiting in our context.1 These changes affect the proof of the next theorem too.

Modified fairness. Let r ∈ CN and B ∈ N/r . If i j ∈ L(rB) then for any game v it
holds

fi (v, r) − fi (vNi
i j
, r−i j ) = f j (v, r) − fi (vN j

i j
, r−i j ).

Observe that it can be Bi = B because deleting i j we do not disconnect B and
then Ni

i j = N , hence modified fairness coincides with fairness in that case. In order
to be consistent with the rest of the book we keep the set of players fixed, and then
we will use the restricted game instead the subgame, so we put players in B \ Bi as
null players. Next example shows the idea.

Example 5.9 Let N = {1, 2, 3, 4, 5, 6, 7, 8} and i = 2, j = 6. Suppose the cooper-
ation structure r in Fig. 5.4. The component containing link 26 is B = {1, 2, 3, 6}.
In the same figure the reader can see the graph r−26. Now, players 2 and 6 are in
different components B2 = {1, 2, 3} and B6 = {6}. In this graph player 6 will be null
because we restrict the game to N 2

26. But if we take i j = 12 then B1 = B2 = B and
N 1
12 = N 2

12 = N .

We will use the following property of the Shapley value. Null players can be
removing as players, obtaining the same payoffs for the rest of players.

Lemma 5.1 Let v ∈ G N . If j ∈ N is a null player in v then for all i ∈ N \ { j}

φN
i (v) = φ

N\{ j}
i (v).

1Modified fairness in [6, 7] uses subgames but we need to use appropriated restricted games in our
context.
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Proof Observe that if j is null player in v then j is also null player in v|N\{i}. If i �= j
then by Proposition1.16 we apply balanced contributions property to the Shapley
value

φN
i (v) − φ

N\{ j}
i (v) = φN

j (v) − φ
N\{i}
j (v) = 0.

�

The proof of the next characterization theorem is slightly different to that in [7]
because we use the revised version of modified fairness.

Theorem 5.4 The Myerson–Owen value is the only value for games over N
with cooperation structure satisfying efficiency, null union, symmetry in the
quotient, linearity and modified fairness.

Proof We test that the Myerson–Owen value verifies the axioms. Let v ∈ G N , r ∈
CN , N/r = {B1, . . . , Bm} and M = {1, . . . ,m}.
Efficiency. We use that Myerson value satisfies efficiency by components (Theo-
rem4.3) and the Shapley value satisfies efficiency (Proposition1.9) to obtain

∑

i∈N
ωi (v, r) =

m∑

p=1

∑

i∈Bp

μi
(
vN/r
p

) =
m∑

p=1

vN/r
p (Bp) =

m∑

p=1

φp
(
wv,(N/r)Bp

)

But for all p we get the same quotient game wv,(N/r)Bp = wv,N/r , and so,

∑

i∈N
ωi (v, r) =

m∑

p=1

φp
(
wv,N/r

) = wv,N/r (M) = v
(∪m

p=1Bp
) = v(N ).

Linearity. Let p ∈ M . We have from Proposition5.5 that

(av + bw)N/r
p /rBp = avN/r

p /rBp + bwN/r
p /rBp .

As Shapley value verifies linearity then for each player i ∈ Bp,

ωi (av + bw, r) = φi
(
(av + bw)N/r

p /rBp

) = aφi
(
vN/r
p /rBp

)+ bφi
(
wN/r

p /rBp

)

= aωi (v, r) + bωi (w, r).

Null union. Suppose p ∈ M with Bp ∈ nullv(r) null union. Let Q ⊆ M \ {p}.
For each S = {i1, . . . , il} ⊆ Bp we denote Sk = {i1, . . . , ik} with k = 1, . . . , l and
S0 = ∅. We get from (5.2)

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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wv,(N/r)S (Q ∪ {p}) − wv,(N/r)S (Q) = v(BQ ∪ S) − v(BQ)

=
l∑

k=1

v(NQ ∪ Sk) − v(NQ ∪ Sk−1),

As each ik is a null player v(NQ ∪ Sk) − v(NQ ∪ Sk−1) = 0 and then

wv,(N/r)S (Q ∪ {p}) − wv,(N/r)S (Q) = 0.

Hence p is a null player inwv,(N/r)S and vN/r
p (S) = φp(wv,(N/r)S ) = 0 because Shap-

ley value satisfies the null player property. As vN/r
p = 0 then φBp (vN/r

p ) = 0 and
ωi (v, r) = 0 for all i ∈ Bp.
Symmetry in the quotient. Consider Bp, Bq symmetry unions in v. If Q ⊆
M \ {p, q} then

wv,N/r (Q ∪ {p}) = v(BQ ∪ Bp) = v(BQ ∪ Bq) = wv,N/r (Q ∪ {q}),

namely p, q are symmetric in the quotient game. But then, as Shapley value satisfies
symmetry (Proposition1.10),

vN/r
p (Bp) = φp(w

v,N/r ) = φq(w
v,N/r ) = vN/r

q (Bq).

Now we use that Myerson value is efficient by components

ω(v, r)(Bp) = μ
(
vN/r
p , rBp

)
(Bp) = vN/r

p (Bp) = vN/r
q (Bq) = ω(v, r)(Bq).

Modified fairness. Let i j ∈ L(r) and, without losing generality, take i, j ∈ Bm .
We use the notation in (5.4). First we suppose that Ni

i j = N , namely component

Bm is still connected in r−i j . In that case N/r−i j = N/r and then v
N/r−i j
m = vN/r

m .
Theorem4.3 proved that Myerson value satisfies fairness, thus

ωi (v, r) − ωi (v, r−i j ) = μi
(
vN/r
m , rBm

)− μi
(
vN/r
m , (rBm )−i j

)

= μ j
(
vN/r
m , rBm

)− μ j
(
vN/r
m , (rBm )−i j

)

= ω j (v, r) − ω j (v, r−i j ).

Now suppose that deleting link i j we get two components from Bm ,

N/r−i j = N/r \ {Bm} ∪ {Bi
m, B j

m+1},

with i ∈ Bi
m and j ∈ B j

m+1. We will prove the claim

vN/r
m =

(
vNi

i j

)N/r−i j

m
in Bi

m .

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_4
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Let S ⊆ Bi
m . As all the players in B j

m+1 are null in the restricted game vNi
i j
(Defini-

tion3.5) then B j
m+1 is a null union in that game. Next we see that union m + 1 is a

null player in w
vNi

i j
,(N/r−i j )S

. Let B j
m+1 = { j1, . . . , jl}. If Q ⊆ M then we B ′

Q = BQ

if m /∈ Q and B ′
Q = BQ\{m} ∪ S if m ∈ Q. Hence, taking Tk = { j1, . . . , jk} for each

k = 1, . . . , l

w
v
Ni
i j

,(N/r−i j )S
(Q ∪ {m + 1}) − w

v
Ni
i j

,(N/r−i j )S
(Q) = vNi

i j
(B ′

Q ∪ B j
m+1) − vNi

i j
(B ′

Q)

=
l∑

k=1

v(NQ ∪ Tk) − v(NQ ∪ Tk−1) = 0,

because each ik is a null player in vNi
i j
. Lemma5.1 implies

(
vNi

i j

)N/r−i j

m
(S) = φM∪{m+1}

m

(
w
vNi

i j
,(N/r−i j )S

)
= φM

m

(
w
vNi

i j
,(N/r−i j )S

)
.

But, as S ⊆ Bi
m then w

vNi
i j

,(N/r−i j )S = wv,(N/r)S , thus we obtain the claim

(
vNi

i j

)N/r−i j

m
(S) = φM

m

(
wv,(N/r)S

) = vN/r
m (S).

We use the properties of decomposability (Proposition4.10) and fairness (Theo-
rem4.3) of the Myerson value together with the above claim to get

ωi (v, r) − ωi (vNi
−i j

, r−i j ) = μi
(
vN/r
m , rBm

)− μi

(
(vNi

−i j
)
N/r−i j
m , (r−i j )Bi

m

)

= μi
(
vN/r
m , rBm

)− μi
(
vN/r
m , r−i j

)

= μ j
(
vN/r
m , rBm

)− μ j
(
vN/r
m , r−i j

)

= μ j
(
vN/r
m , rBm

)− μ j

(
(vN j

−i j
)
N/r−i j
m , (r−i j )B j

m+1

)

= ω j (v, r) − ω j (v, r−i j ).

Let f 1, f 2 be two values2 satisfying the axioms. Obviously if we take the null
game, v = 0, then all the unions in r ∈ CN are null unions and therefore f 1(0, r) =
f 2(0, r) = 0 from the null union property. From linearity it is only necessary to prove
the uniqueness for the unanimity games. Suppose r ∈ CN with L(r) = ∅, namely r
is a diagonal matrix, then N/r = {{i} : i ∈ N }. Let uT with T a non-empty coalition
be a unanimity game. Remember that all the players out of T are null in the unanimity
game and players in T are symmetric (Proposition1.7). If i /∈ T then {i} ∈ nulluT (r)
and by null union condition f 1i (uT , r) = 0. If i, j ∈ T then {i}, { j} are symmetric
unions and by symmetry in the quotient f 1i (uT , r) = f 1i (uT , r). Applying efficiency
we have for any i0 ∈ T

2It can be used f 1 = ω.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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f 1(uT , r)(N ) = f 1(uT , r)(T ) = |T | f 1i0(uT , r) = uT (N ) = 1.

Thus f 1i0(uT , r) = 1/|T |. We can repeat the reasoning with f 2 and then f 1(uT , r) =
f 2(uT , r). Suppose true that if |L(r)| = l then f 1(uT , r) = f 2(uT , r) for all the
unanimity games uT (and also for the null game). Let r ∈ CN be a cooperation
structure with |L(r)| = l + 1 and uT a unanimity game. We set

MT (r) = {B ∈ N/r : B ∩ T �= ∅}. (5.5)

If B ∈ N/r but B /∈ MT (r) then B ∈ nulluT (r) and f 1i (uT , r) = f 2i (uT , r) = 0 for
all i ∈ B. If B ∈ N/r with |B| > 1 then there exists i j ∈ L(r) with i, j ∈ B. We
use modified fairness to obtain by induction

f 1i (uT , r) − f 1j (uT , r) = f 1i
(
(uT )Ni

i j
, r−i j

)
− f 1j

(
(uT )N j

i j
, r−i j

)

= f 2i
(
(uT )Ni

i j
, r−i j

)
− f 2j

(
(uT )Ni

i j
, r−i j

)

= f 2i (uT , r) − f 2j (uT , r)

taking into account the sets defined in (5.4). Observe that (uT )R for any R is the null
game or the same unanimity game since Proposition3.7. Hence

f 1i (uT , r) − f 2i (uT , r) = f 1j (uT , r) − f 2j (uT , r).

Fix i0 ∈ B, we will see that both payoffs are the same for her. As B is a connected
coalition we can trace a path from any i ∈ B to i0 by players in B. Repeating the
above process sequentially in the path we get

f 1i (uT , r) − f 2i (uT , r) = f 1i0(uT , r) − f 2i0(uT , r) = KB, ∀i ∈ B.

Let now B0 ∈ MT (r) fixed. If we have another B ∈ MT (r) then they are symmetric
unions in uT because if S ⊆ N \ (B0 ∪ B) then uT (S ∪ B0) = uT (S ∪ B) = 0. So,
symmetry in the quotient says for any B ∈ MT (r)

f 1(uT , r)(B) = f 1(uT , r)(B0) = H1

f 2(uT , r)(B) = f 2(uT , r)(B0) = H2.

The subtraction of both expressions for any B ∈ MT (r) is

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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H1 − H2 =
∑

i∈B
f 1i (uT , r) − f 2i (uT , r) = |B|KB .

Finally we use that both f 1, f 2 satisfy efficiency, thus the payoffs must add uT (N ) =
1 for each of them,

0 = f 1(uT , r)(N ) − f 2(uT , r)(N ) =
∑

B∈MT (r)

f 1(uT , r)(B) − f 2(uT , r)(B)

= |MT (r)|(H1 − H2).

Hence H1 = H2 and we get for each B ∈ MT (r),

f 1(uT , r)(B) − f 2(uT , r)(B) = |B|KB = H1 − H2 = 0.

We conclude that KB = 0 and then f 1i0(uT , r) = f 2i0(uT , r). �

Other properties of the Myerson–Owen value are organized in two propositions.
The proof of the first one follows directly from Proposition5.5.

Proposition 5.6 The Myerson–Owen value satisfies the following properties
for a cooperation structure r with N/r = {B1, . . . , Bm} and game v. Let M =
{1, . . . ,m} and p ∈ M.

(1) For all i ∈ Bp it holds ωi (v, r) = vN/r
p ({i}) − ωi (vsvg, r).

(2) ω(vrdual , r) = ω(v, r).

The next proposition speaks about properties which need the convexity of the
game to be guaranteed for games with cooperation structure.

Proposition 5.7 The Myerson–Owen value satisfies the following properties
for a cooperation structure r with N/r = {B1, . . . , Bm} and game v ∈ G N

c .
Let M = {1, . . . ,m} and p ∈ M.

(1) If i ∈ Bp is a necessary player and v ≥ 0 then ω j (v, r) ≤ ωi (v, r) for all
j ∈ Bp.

(2) If i ∈ Bp then ωi (v, r) ≥ v({i}).
(3) If r is cycle-complete and S ⊆ Bp then ω(v, r)(S) ≥ vN/r

p /rBp (S).

Proof If v is convex from Proposition5.1 obtains that vN/r
p is convex.
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(1) As vN/r
p is convex and non-negative then it is superadditive and non-negative. Let

i ∈ Bp be a necessary player and j ∈ Bp, Proposition4.11 says that

ωi (v, r) = μi (v
N/r
p , rBp ) ≥ μ j (v

N/r
p , rBp ) = ω j (v, r).

(2) If vN/r
p is convex then it is superadditive. Proposition4.11 implies

ωi (v, r) = μi (v
N/r
p , rBp ) ≥ v({i}).

(3) We use again Proposition4.11 to get for each s ⊆ Bp,

ω(v, r)(S) = μ(vN/r
p , rBp )(S) ≥ vN/r

p /rBp (S). �

5.4 Games with a Proximity Relation Among Agents

In order to extend the above models we consider a proximity relation.

Definition 5.7 A proximity relation over N is a fuzzy bilateral relation ρ

satisfying

(1) Reflexivity: ρ(i, i) = ρ(i i) = 1 for all i ∈ N , and
(2) Symmetry: ρ(i, j) = ρ( j, i) = ρ(i j).

The set of proximity relations is denoted by FCN

Obviously, the family of cooperation structures CN is a subset of FCN . We
use notation FCN because we interpret proximity relations as fuzzy cooperation
structures. A proximity relation is actually a reflexive fuzzy graph. The difference
with the fuzzy communication structures is the interpretation. If ρ is a proximity then
ρ(i j) is interpreted as the closeness level (or also penchant, probability of) between
players i and j , obviously each player is closed to herself.

We consider again partitions by levels of fuzzy graphs but it seems natural to
keep the reflexivity in the crisp steps, namely each graph in the partition must be
a cooperation structure (Definition5.5). Following Definition4.15 we introduce the
next one.

Definition 5.8 Let ρ ∈ FCN be a proximity relation. A reflexive partition by
levels of ρ is a finite sequence {(rk, sk)}hk=1 satisfying:

(1) rk ∈ CN and sk > 0, for all k = 1, . . . , h,
(2) s1r1 ≤ ρ and for each k = 2, . . . , h

http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
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skrk ≤ ρ −
k−1∑

p=1

sprp.

(3) ρ −∑h
k=1 skrk = 0.

A reflexive partition function pl for proximity relations determines a reflexive
partition by levels for each proximity relation.

From (4.8) we obtain
h∑

k=1

sk = 1. (5.6)

Observe that we do not need to look for admissible (Definition4.19) partition
functions, but obviously we consider that they are extensions in the sense that
pl(r) = {(r, 1)} if r ∈ CN .

The Choquet by graphs extension (Definition4.17) is an example of reflexive
extension. Fernández et al. [7] analyzed this particular case using cg-partitions.

Proposition 5.8 TheChoquet by graphs partition function is a reflexive exten-
sion for proximity relations.

Proof We know since Proposition4.17 that cg is an extension for fuzzy graphs and
then for proximity relations. Now remember from (4.10) that if (r, s) ∈ cg(ρ) then
there exists t ∈ im(ρ) with r = [ρ]t . But, as ρ(i i) = 1 > t then r(i i) = 1 for all
i ∈ N . Thus cg is reflexive. �

The question of the interpretation is crucial in this case, and it is complicated to
explain the meaning of the partitions in general. So we explain the meaning with the
cg-partition, following [7]. Let ρ ∈ FCN be a proximity relation. To take t ∈ (0, 1]
means to simplify the problem in the following sense: determining certain degree of
closeness to be considered a union, so if we connect a coalition with level at least t
they have similar ideas. In other words, we think that if the closeness is less than t
then it is negligible. Thus we construct cooperation structures with different levels.
The cg-partition obtains a sequence of cooperation structures depending on the level
of exigency or requisite. Another interpretation focuses on temporal situations, i.e.
the proximity relation determine the duration of the a priori relation.

http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
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Fig. 5.5 Proximity structure
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Table 5.3 cg-algorithm applied to Fig. 5.5

rk

3 

1 2 

4 

3 

2 1 

4 

3 

4 

1 2 

3 

2 

4 

1 

sk 0. . .2 0 3 0 3 0.2

Example 5.10 Consider the proximity relation ρ in Fig. 5.5 with matrix

ρ =

⎡

⎢
⎢
⎣

1 0.5 0.2 0.2
0.2 1 0.8 0.2
0.5 0.8 1 0
0.2 0.2 0 1

⎤

⎥
⎥
⎦ .

Table5.3 shows the cg-partition of ρ. First we think that two players are in the same
union if and if their closeness is less or equal than 0.2. Obviously “to be in the
same union” is transitive. With transitivity here we do not say that two players has
certain level of closeness if there is a path with this level between them, but they are
in the same group in the bargaining although it can be for different circumstances.
Namely we simplify the problem to a crisp one using r1. In the example all the
players are in the same union but this union is formed by a particular communication
structure. If we suppose level 0.5 as the minimum closeness to be a union then they
use cooperation structure r2 with two components. If our requirement of closeness
is 0.8 then we use a priori union system r3. Finally, if we consider that players in a
union must have exactly the same criteria we obtain the classical situation without a
priori unions r4.

The proportional by graphs extension (Definition4.16) is also reflexive but it only
obtains one graph for all proximity relation because the algorithm takes all the vertices

http://dx.doi.org/10.1007/978-3-319-56472-2_4
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and the links with level 1 in the first step. Next definition introduces a modification of
the algorithm for proximity relations similar to the proportional by communication
extension (Example4.15). Let ρ ∈ FCN . For each t ∈ (0, 1] consider the crisp graph
rρ[t] with rρ[t](i j) = 1 if and only i = j or ρ(i j) = t . Particularly rρ[0] = rρ .

Definition 5.9 The prox-proportional extension pp takes the reflexive parti-
tion by levels obtained by the following algorithm (pp-algorithm),

Take k = 0, pp = ∅ and ρ = ρ

While ρ �= 0 do
..... k = k + 1
..... t = ∨{ρ(i j) : i �= j}
..... if t = 0 then
.......... sk = ρ(i i)
.......... rk = rρ

..... else

.......... sk = t

.......... rk = rρ[sk]

..... pp = pp ∪ {(rk, sk)}

..... ρ = ρ − skrk
pp(ρ) = pp

The pp-algorithm obtains the same result than pg when there exists at least a
link with level 1, but otherwise they are different. The pc-extension is not reflexive
because each step only chooses those vertices using links at the maximum level.

Example 5.11 Consider the proximity relation in Fig. 5.5. Table5.4 shows the appli-
cation of the pp-algorithm. The pp-algorithmworks as the pc-algorithm in the sense
that we use all the links with the same level (the maximum level of the links), but
now all the players are chosen in all the steps, regardless of the level. In this example,

∨{ρ(i j) : i j ∈ L(ρ)} = 0.8.

Hence we take (r1, s1) where s1 = 0.8 and r1 is a crisp graph using all the vertices
and the unique link with level 0.8.

Unions are the main elements of bargaining in cooperation structures. We intro-
duced the following concept as a generalization of union in a proximity relation.

http://dx.doi.org/10.1007/978-3-319-56472-2_4
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Table 5.4 pp-algorithm applied to Fig. 5.5



1 2 

3 

4 

1

1 1 0.5 

0.2 

0.2 

1 

0.2 

0.8 

1 2 

3 

4 

0.2 

0.2 0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

rk

1 2 

3 

4 

1 2 

3 

4 

sk 0. 08 .2

Definition 5.10 Let pl be a reflexive extension for proximity relations and
ρ ∈ FCN . Coalition B ⊆ N is named pl-group in ρ if B ∈ N/r for some
(r, s) ∈ pl(ρ). The family of all the pl-groups in ρ is denoted by

[N/ρ]pl =
⋃

(r,s)∈pl(ρ)

N/r.

If B ∈ [N/ρ]pl then the activity set of B is

pl(ρ, B) = {(r, s) ∈ pl(ρ) : B ∈ N/r}.

Observe that [N/ρ]pl is not equal to the set of components N/ρ (3.5), but if
ρ ∈ CN then both coincide.

Example 5.12 The cg-partition of the proximity relation in Fig. 5.5 for N =
{1, 2, 3, 4} is in Table5.3. The unions for the different cooperation structures are
the following.

N/r1 = {N },
N/r2 = {{1, 2, 3}, {4}},
N/r3 = {{1}, {2, 3}, {4}},
N/r4 = {{1}, {2}, {3}, {4}}.

The family of groups is

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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[N/ρ]cg = {N , {1, 2, 3}, {2, 3}, {1}, {2}, {3}, {4}}.

Observe that the components of the fuzzy graph (3.5) form another set, N/ρ = {N }.
For the cg-partition we can write [N/ρ]cg = ⋃

t∈(0,1] N/[ρ]t .
We determine the activity set of several groups:

cg(ρ, N ) = {(r1, 0.2)}, cg(ρ, {2, 3}) = {(r3, 0.3)}
or cg(ρ, {4}) = {(r2, 0.3), (r3, 0.3), (r4, 0.2)}.

Using the cg-partition is possible to see the activity set of group B as an activity
interval (tB, t B], with

tB = ∧{t ∈ (0, 1] : B ∈ N/[ρ]t } and t B = ∨{t ∈ (0, 1] : B ∈ N/[ρ]t }.

If B ∈ [N/ρ]cg then number tB is an infimum but t B is a maximum. Group B is
contained in a component of [ρ]t when t ≤ tB , it is a component when t is in the
activity interval (tB, t B] and it is a union of components when t > t B . The activity
interval of each group is the following:

N → (0, 0.2] {1, 2, 3} → (0.2, 0.5] {2, 3} → (0.5, 0.8] {1} → (0.5, 1]
{2} → (0.8, 1] {3} → (0.8, 1] {4} → (0.2, 1]

Fernández et al. [7] introduced several ways of reducing the image of a proximity
relation. We introduce in this book a generalization of these process. The scaling of
a proximity relation considers insignificant certain levels.

Definition 5.11 Let pl be a reflexive extension for proximity relations. Let
ρ ∈ FCN with pl(ρ) = {(rk, sk)}hk=1 and H = {1, . . . , h}. For each K ⊆ H
the K -scaling of ρ is a new proximity relation ρK

pl defined as

ρK
pl = 1

sK

∑

k∈K
skrk,

with sK = ∑
k∈K sk .

To test that ρK
pl is a proximity relation is enough to calculate the level of the

vertices. As each rk is reflexive we get

ρK
pl(i i) = 1

sK

∑

k∈K
skrk(i i) = 1

sK

∑

k∈K
sk = 1.

Remark 5.2 (1) Observe that ρH
pl = ρ is not always true because of the definition

of the subtraction of fuzzy graphs (Definition4.14). For instance we consider the

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_4
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Fig. 5.6 K -scalings of ρ
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pp-partition (Definition5.9). Let N = {1, 2, 3} and the proximity relation ρ with
matrix

ρ =
⎡

⎣
1 1 1
1 1 0.5
1 0.5 1

⎤

⎦ ,

the pp-partition is pp(ρ) = {(r, 1)} with

r =
⎡

⎣
1 1 1
1 1 0
1 0 1

⎤

⎦ .

So, 23 is not in the partition, and ρ �= ρH
pp = r .

(2) Particularly, we define ρ∅
pl = e{i i :i∈N } and s∅ = 0.

Example 5.13 Think of the cg-extension. We follow with the proximity relation
ρ in Fig. 5.5 (Example5.10) and Table5.3. Let K1 = {(r2, 0.3), (r3, 0.3)}. Number
sK1 = 0.6 and the K1-scaling of ρ is

ρK1
cg = 1

0.6
[0.3r2 + 0.3r3] =

⎡

⎢
⎢
⎣

1 0.5 0 0
0.5 1 1 0
0 1 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

Now we consider K2 = {(r1, 0.2), (r4, 0.2)}. We have

ρK2
cg = 1

0.4
[0.2r1 + 0.2r4] =

⎡

⎢
⎢
⎣

1 0.5 0.5 0.5
0.5 1 0.5 0.5
0.5 0.5 1 0
0.5 0.5 0 1

⎤

⎥
⎥
⎦ .

It can see both scalings in Fig. 5.6.

Remark 5.3 Fernández et al. [7] introduced the concept of interval scaling3 in the
context of the cg-extension. Let ρ ∈ FCN . If a, b ∈ [0, 1] and a < b then

3They also defined dual interval scaling of a proximity relation.
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Fig. 5.7 Interval scaling
of ρ
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ρb
a (i j) =

⎧
⎪⎨

⎪⎩

1, if ρ(i j) ≥ b
ρ(i j) − a

b − a
, if ρ(i j) ∈ (a, b)

0, if ρ(i j) ≤ a.

Figure5.7 shows the idea of the interval scaling calculating ρ0.6
0.3 of the proximity

relation in Fig. 5.5: to simplify interval [0, 1] to [0.3, 0.6] and rescaling. The interval
scaling coincides with a K -scaling when a, b ∈ im(ρ). Let im0(ρ) = {0 = λ0 <

λ1 < · · · < λh = 1} and H = {1, . . . , h}. Suppose a, b ∈ im0(ρ). Hence there exist
two numbers ka < kb with λka = a and λkb = b. We set

K[a,b] = {k ∈ H : ka < k ≤ kb}.

The reader can see that sK[a,b] = b − a. If ρ(i j) ≥ b then [ρ]k(i j) = 1 for all k ∈
K[a,b], thus ρ

K[a,b]
cg (i j) = 1. If ρ(i j) ≤ a then [ρ]k(i j) = 0 for all k ∈ K[a,b], thus

ρ
K[a,b]
cg (i j) = 0. Finally, if ρ(i j) ∈ (a, b), let ρ(i j) = λk ′ then [ρ]k(i j) = 1 for all

ka < k < k ′ (contained in K[a,b]), thus

ρ
K[a,b]
cg (i j) = 1

b − a

k ′
∑

k=ka+1

(λk − λk−1) = ρ(i j) − a

b − a
.

Scaling will allow us to describe axioms for values in this context when the
partition function works well with them.We require the extension to be able to obtain
the partition by levels of a K -scaling from the partition of the original proximity
relation.

Definition 5.12 A reflexive extension pl for proximity relations is inner if for
any ρ ∈ PN with pl(ρ) = {(rk, sk)}hk=1, H = {1, . . . , h} and K ⊆ H it holds

pl
(
ρK
cg

) =
{(

rk,
sk
sK

)}

k∈K
.

Next proposition shows two examples of inner extensions.
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Proposition 5.9 The Choquet by graphs function and the prox-proportional
function are inner extensions.

Proof Let ρ ∈ FCN . Consider for each extension pl the partition pl(ρ) =
{(rk, sk)}hk=1. We denote as H = {1, . . . , h} and take K ⊆ H nonempty (otherwise
it is trivial).
Choquet by graphs. We apply the cg algorithm (Definition4.17) to ρK

cg . From
(4.10) if im0(ρ) = {λ0 < λ1 < · · · < λh} then sk = λk − λk−1 and rk = [ρ]k . Fixed
i j we have

ρK
cg(i j) = 1

sK

∑

{k∈K :ρ(i j)≥λk }
(λk − λk−1).

Let λp = ∧
k∈K λk . Pair i j satisfies ρ(i j) < λp if and only if ρK

cg(i j) = 0. There
exists i j with ρ(i j) = λp. So, the cg-algorithm chooses (r ′

1, s
′
1) as

s ′
1 = ∧ρK

cg = 1

sK
(λp − λp−1) = sp

sK
.

Furthermore r ′
1(i j) = 1 if and only if ρK

cg(i j) ≥ s ′
1, namely if and only if ρ(i j) ≥ λp.

Hence r ′
1(i j) = 1 if and only if rp(i j) = 1. We get

(r ′
1, s

′
1) =

(

rp,
sp
sK

)

.

Now, in the second step,we takeρK
cg = ρK

cg − s ′
1r

′
1. The cg-algorithm chooses (r ′

2, s
′
2).

Let λq = ∧
k∈K\{p} λk . If ρ(i j) < λq then ρK

cg(i j) = 0 in this step. As there is i j with
ρ(i j) = λq then

s ′
2 = ∧ρK

cg = 1

sK
[(λq − λq−1) + (λp − λp−1)] − s ′

1 = 1

sK
(λq − λq−1) = sq

sK
.

We have r ′
2(i j) = 1 if and only if ρK

cg(i j) ≥ s ′
2, namely

ρK
cg(i j) = 1

sK

∑

{k∈K\{p}:ρ(i j)≥λk }
(λk − λk−1).

Therefore r ′
2(i j) = 1 if and if ρ(i j) ≥ λq if and if rq(i j) = 1. We repeat the process

with all the steps.
Prox- proportional. In this case we have s1 > · · · > sh . Following the pp-
algorithm, we look for the maximum level in ρK

pp. Each i j , i �= j , appears only
once at most in the graphs of the partition (i i appears always), namely or there

http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4


194 5 A Priori Fuzzy Unions

Fig. 5.8 Proximity relation
in Example5.14
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Table 5.5 pb-partition of Fig. 5.8

rk 1 2 

3 

1 2 

3 

1 2 

3 

1 2 

3 

sk 0. . .25 0 25 0 25 0.25

exists only one k ∈ K with rk(i j) = 1 or rk(i j) = 0 for all k ∈ K . Let p ∈ K with
sp = ∨

k∈K sk . We obtain

s ′
1 = sp

sK
.

Moreover, all the links i j with rp(i j) = 1 are chose by the algorithm and none more,
thus r ′

1 = rp. The process is repeated with the rest of the steps independently because
the links of the graphs are disjoint. Observe that although in this algorithm the level
of the links can be reduced when they are used (see Example5.15), this fact is not
possible for the scaling ρK

pp. �

Obviously, the probabilistic extension (Definition4.31) is also an example of
reflexive extension because of vertices are sure events in a proximity relations but it
is not inner.

Example 5.14 Consider N = {1, 2, 3} and the proximity relation

ρ =
⎡

⎣
1 0.5 1
0.5 1 0.5
1 0.5 1

⎤

⎦

in Fig. 5.8. The cooperation structures of the pb-partition are in Table5.5. For
instance, the probability of obtaining the complete graph r1 is

s1 = ρ(12)ρ(13)ρ(23) = 0.25.

Let H = {1, 2, 3, 4}. If we take K = {2, 3} the scaling ρK
pb, with sK = 0.5, satis-

fies
ρK
pb = 0.5r2 + 0.5r3 = ρ.

Hence pb is not inner.

http://dx.doi.org/10.1007/978-3-319-56472-2_4
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Inner extensions satisfy the following lemma which will be used in the next
section. Let pl be an extension for proximity relations. Consider F : FCN → R.
Mapping F is named consistent with pl if for all ρ ∈ PN with pl(ρ) = {(rk, sk)}hk=1
happens

F(ρ) =
h∑

k=1

sk F(rk). (5.7)

Namely, in a consistent mapping we only need to know the worths of the cooperation
structures.

Lemma 5.2 If pl is an inner reflexive extension and F is a consistent mapping
with pl over proximity relations then

F(ρ) =
q∑

p=1

sKp F
(
ρ
Kp

pl

)
,

with pl(ρ) = {(rk, sk)}hk=1, H = {1, . . . , h} and {Kp}qp=1 a partition of H.

Proof Suppose pl(ρ) = {(rk, sk)}hk=1, H = {1, . . . , h} and a partition of H given by
{Kp}qp=1. We obtain for a consistent mapping F with pl

F(ρ) =
h∑

k=1

sk F(rk) =
q∑

p=1

∑

k∈Kp

sk F(rk) =
q∑

p=1

sKp

∑

k∈Kp

sk
sKp

F(rk)

=
q∑

p=1

sKp F
(
ρ
Kp

pl

)
,

using that, as pl is inner, pl
(
ρ
Kp
cg

)
=
{(

rk,
sk
sK

)}

k∈K
. �

5.5 Fuzzy Myerson–Owen Values

The quotient game is used again for analyzing the bargaining among unions. But
in the second step we take the Myerson value (Definition4.9) of the union games
for elements in the partition. A game with a proximity relation among the agents
is a pair (v, ρ) with v ∈ G N and ρ ∈ FCN . Let ω be the Myerson–Owen value
(Definition5.6).

http://dx.doi.org/10.1007/978-3-319-56472-2_4
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Definition 5.13 Let pl be an inner extension for proximity relations. The pl-
Myerson–Owen value is a value for games over N with proximity relation
defined for each v ∈ G N , ρ ∈ FCN with pl(ρ) = {(rk, sk)}hk=1 and i ∈ N as

ω
pl
i (v, ρ) =

h∑

k=1

skωi (v, rk).

Although the Myerson value can be written by components (Proposition4.10), in
this case it is not possible to join the solution in only one expression because the
union games are different for each component. Observe that, fixed a player i ∈ N and
a game v ∈ G N , the pl-Myerson–Owen value is constructed as a consistent mapping
(5.7) with pl.

Example 5.15 Consider the unanimity game uS with S = {1, 3, 4} for N =
{1, 2, 3, 4}, and the proximity relation in Fig. 5.5. We use the cooperation struc-
tures in Table5.3. In the first graph r1, we have only one union. The Myerson–Owen
value coincides with the Myerson value, so

ω(u{1,3,4}, r1) = μ(u{1,3,4}, r1) = (1/3, 0, 1/3, 1/3).

In the second graph, r2, we have two unions {1, 2, 3} and {4}. Observe that both
are necessary to get a winning coalition and, into {1, 2, 3}, player 2 is necessary to
connect 1 and 3. So, we get

ω(u{1,3,4}, r2) = (1/6, 1/6, 1/6, 1/2).

Graph r3 is an a priori union system with three unions and then, by Proposition5.4,

ω(u{1,3,4}, r3) = (1/3, 0, 1/3, 1/3).

The last one represents the classical situation an then

ω(u{1,3,4}, r4) = φ(u{1,3,4}) = (1/3, 0, 1/3, 1/3).

The cg-Myerson–Owen value is

ωcg(u{1,3,4}, ρ) = 0.7(1/3, 0, 1/3, 1/3) + 0.3(1/6, 1/6, 1/6, 1/2)

= (0.283, 0.05, 0.283, 0.383).

http://dx.doi.org/10.1007/978-3-319-56472-2_4
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We find out a formula for the cg-extension as a Choquet integral. We take for any
player i ∈ N the signed capacity ωi (v) over cooperation structures4 defined for each
r ∈ CN as

ωi (v)(r) = ωi (v, r),

being ω the Myerson–Owen value. The next result follows of the above definition
and (4.10).

Theorem 5.5 Let ρ ∈ FCN . For each game v and player i it holds

ω
cg
i (v, ρ) =

∫

c
ρ dωi (v).

We propose now an axiomatization of the fuzzy Myerson–Owen values inspired
by the axioms of the Owen value (Theorem5.1) and the Myerson–Owen value (The-
orem5.4). This axiomatization is based on that given in [7] for the cg-partition. Let
f be a value for games with proximity relation, namely a function which obtains a
vector f (v, ρ) ∈ R

N for each game with proximity relation (v, ρ). Consider fixed a
reflexive extension pl for proximity relations in the following axioms.

Efficiency. For all v ∈ G N and ρ ∈ FCN it holds f (v, ρ)(N ) = v(N ).

Remember that S ⊆ N is a null coalition in a game v ∈ G N if each player i ∈ S
is a null player in v. In a cooperation structure, the agents in a null union have null
payoffs. Now, players in a null group do not obtain profit while the coalition was a
union. Let ρ be a proximity relation with pl(ρ) = {(rk, sk)}hk=1 and H = {1, . . . , h}.
We choose the next set of elements in the partition for a group B ∈ [N/ρ]pl

K+
B = {

k ∈ H : ∃ B ′ ∈ nullv(rk) with B ⊆ B ′} ,

and K−
B = H \ K+

B . Observe that, in ρ
K+

B
pl , group B is null.

pl-Null group. Let ρ ∈ FCN and v ∈ G N . If B ∈ [N/ρ]pl is a group then for all
i ∈ B it holds

fi (v, ρ) = sK−
B
fi
(
v, ρ

K−
B

pl

)
.

Particularly if we consider a cooperation structure r and B ∈ N/r a null coalition
for the game v, the axiom says that fi (v, ρ) = 0 for all i ∈ B, i.e., it coincides with
the null union axiom (Sect. 5.3). But pl-null group property also obtains information
when B is not null group, because in that case K−

B = H , sK−
B

= 1, and then

4In this case we add to the family of cooperation structures the graph 0 with worth 0 in order to be
a signed capacity.

http://dx.doi.org/10.1007/978-3-319-56472-2_4
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fi (v, ρ) = fi (v, ρ
H
pl ).

Two coalitions S, T ⊆ N with S ∩ T = ∅ are symmetry in a game v if v(R ∪
S) = v(R ∪ T ) for all R ⊆ N\(S ∪ T ). We can suppose that while two groups are
symmetry the total payoff for each group is the same, namely if B, B ′ ∈ [N/ρ]pl in
a proximity relation ρ with pl(ρ) = {(rk, sk)}hk=1, H = {1, . . . , h} and

K+
BB ′ = {k ∈ H : B, B ′ ∈ N/rk} �= ∅,

then
f
(
v, ρ

K+
BB′

pl

)
(B) = f

(
v, ρ

K+
BB′

pl

)
(B ′). (5.8)

But we propose a similar condition using the next axiom (in the same way as in
[7]), the part of the payoffs for each group which is not obtained out of the common
activity set must be the same. We denote K−

BB ′ = H \ K+
BB ′ .

pl-Symmetry in the quotient Let ρ ∈ FCN . If B, B ′ ∈ [N/ρ]pl with K+
BB ′ �= ∅ are

symmetry in v then

f (v, ρ)(B) − sK−
BB′ f

(
v, ρ

K−
BB′

pl

)
(B) = f (v, ρ)(B ′) − sK−

BB′ f
(
v, ρ

K−
BB′

pl

)
(B ′).

Whenwe take a cooperation structure r the axiomsays: if B, B ′ ∈ N/r are symmetric
in a game v then f (v, ρ)(B) = f (N , v, ρ)(B ′), i.e., it coincides with symmetry in
the quotient, see Sect. 5.3. Observe that, by Lemma5.2, our pl-Myerson–Owen value
satisfies the fuzzy symmetry in the quotient game if and only if it holds (5.8), because
it is a consistent mapping with pl.

We extend the modified fairness axiom (see Sect. 5.3) to a fuzzy situation. Let
ρ ∈ FCN with pl(ρ) = {(rk, sk)}hk=1 and H = {1, . . . , h}. Consider i, j ∈ N two
different players with ρ(i j) > 0, we denote as

Ki j = {k ∈ H : i j ∈ L(rk)}.

Observe that Ki j can be empty.

Modified pl-fairness Let ρ be a proximity relation. For each i, j ∈ N , i �= j , with
ρ(i j) > 0 and k ∈ Ki j it holds

fi (v, ρ) − f j (v, ρ) = (1 − sk)
[
fi
(
v, ρH\{k}

pl

)
− f j

(
v, ρH\{k}

pl

)]

+ sk
[
fi
(
vNi

i j
, (rk)−i j

)
− f j

(
vN j

i j
, (rk)−i j

)]
,

where Ni
i j , N

j
i j are defined for rk as in Sect. 5.3.
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If we consider a cooperation structure then last axiom coincides with the modified
fairness (Sect. 5.3).

Finally, we suppose a common axiom of the Shapley-type values: linearity.

Linearity For all games v,w ∈ G N , a, b ∈ R and ρ proximity relation over N ,

f (av + bw, ρ) = a f (v, ρ) + b f (w, ρ).

Next theoremcharacterizes the pl-Myerson–Owenvaluewith an inner extension.5

Theorem 5.6 Let pl be an inner extension for proximity relations. The pl-
Myerson–Owen value is the only value for games with proximity relation sat-
isfying the following axioms: efficiency, pl-null group, pl-symmetry in the
quotient, modified pl-fairness and linearity.

Proof First we will test each one of the axioms. Suppose ρ ∈ FCN and pl(ρ) =
{(rk, sk)}hk=1 with H = {1, . . . , h}. Observe that, fixed a game v and a player i ,
mapping ω

pl
i is consistent with pl.

Efficiency. Theorem5.4 showed that the Myerson–Owen value ω satisfies effi-
ciency. Hence,

∑

i∈N
ω

pl
i (v, ρ) =

h∑

k=1

sk
∑

i∈N
ωi (v, rk) = v(N )

h∑

k=1

sk = v(N ),

because as ρ is a proximity relation then
∑h

k=1 sk = 1.
pl-Null group. Let B ∈ [N/ρ]pl and i ∈ B.

Suppose K+
B �= ∅, namely B is a null coalition. Applying Lemma5.2 to the par-

tition of H , {K+
B , K−

B }.

ω
pl
i (v, ρ) = sK+

B
ω

pl
i

(
v, ρ

K+
B

pl

)
+ sK−

B
ω

pl
i

(
v, ρ

K−
B

pl

)
.

Let k ∈ K+
B . From the election of K+

B , there exists B
′ ∈ N/rk with B ⊆ B ′ and then

i ∈ B ′. Moreover B ′ is a union null for v. Since the Myerson–Owen value satisfies
null union (Theorem5.4), we get ωi (v, rk) = 0. So, following Definition5.11

ω
pl
i

(
v, ρ

K+
B

pl

)
=
∑

k∈K+
B

sk
sK+

B

ωi (v, rk) = 0.

5An open problem at this moment is to study probabilistic cooperation structures as Calvo et al. [5]
analyzed probabilistic communication structures. Remember that pb is not inner.
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If B is not a null coalition then K+
B = ∅, thus K−

B = H and sK−
B

= 1. As pl is inner
we have pl(ρH

pl ) = pl(ρ). Hence our value satisfies for all player i ∈ B

ω
pl
i (v, ρ) =

∑

k=1

skωi (v, rk) = ω
pl
i (v, ρH

pl ).

pl-Symmetry in the quotient.Let B, B ′ ∈ [N/ρ]pl , with K+
BB ′ �= ∅, symmetric

in a game v. Lemma5.2 over the partition {K+
BB ′ , K−

BB ′ } implies

∑

i∈B

[
ω

pl
i (v, ρ) − sK−

BB′ ω
pl
i

(
v, ρ

K−
BB′

pl

)]
= sK+

BB′

∑

i∈B
ω

pl
i

(
v, ρ

K+
BB′

pl

)
,

and also

∑

j∈B ′

[
ω

pl
j (v, ρ) − sK−

BB′ ω
pl
j

(
v, ρ

K−
BB′

pl

)]
= sK+

BB′

∑

j∈B ′
ω

pl
j

(
v, ρ

K+
BB′

pl

)
.

If k ∈ K+
BB ′ then B, B ′ ∈ N/rk . SinceTheorem5.4 theMyerson–Owenvalue verifies

symmetry in the quotient, therefore

∑

i∈B
ωi (v, rk) =

∑

j∈B ′
ω j (v, rk).

Hence,

∑

i∈B
ω

pl
i

(
v, ρ

K+
BB′

pl

)
=

∑

k∈K+
BB′

sk
sK+

BB′

∑

i∈B
ωi (v, rk) =

∑

k∈K+
BB′

sk
sK+

BB′

∑

j∈B ′
ω j (v, rk)

=
∑

j∈B ′
ω

pl
j

(
v, ρ

K+
BB′

pl

)
.

Modified pl- fairness.Suppose i j with i �= j ,ρ(i j) > 0 and Ki j �= ∅. Let k ∈ Ki j .
We use that

∑
k∈H sk = 1 to say from Lemma5.2 again

ω
pl
i (v, ρ) = (1 − sk)ω

pl
i

(
v, ρH\{k}

pl

)
+ skωi (v, rk),

and also
ω

pl
j (v, ρ) = (1 − sk)ω

pl
j

(
v, ρH\{k}

pl

)
+ skω j (v, rk).

The subtraction of both equalities is

ω
pl
i (v, ρ) − ω

pl
j (v, ρ) = (1 − sk)

[
ω

pl
i

(
v, ρH\{k}

pl

)
− ω

pl
j

(
v, ρH\{k}

pl

)]

+sk[ωi (v, rk) − ω j (v, rk)].
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Using notation (5.4),

ωi (v, rk) − ω j (v, rk) = ωi

(
vNi

i j
, (rk)i j

)
− ω j

(
vN j

i j
, (rk)i j

)
,

because of ω satisfies modified fairness since Theorem5.4.
Linearity. We get

ω
pl
i (av + bw, ρ) =

k∑

k=1

skωi (av + bw, rk)

= a
k∑

k=1

skωi (v, rk) + b
k∑

k=1

skωi (w, rk)

= aω
pl
i (v, ρ) + bωpl

i (w, ρ).

Suppose f 1, f 2 two values for games with proximity relation satisfying the five
axioms. Let ρ ∈ FCN with pl(ρ) = {(rk, sk)}hk=1 and H = {1, . . . , h}. We prove the
result by induction on the cardinality h.

Let h = 1. Of course pl(ρ) = {(r, 1)} but perhaps ρ �= r . Hence in this case we
will use the uniqueness for the family of cooperation structures (Theorem5.4). For
each i ∈ N there exists B ∈ N/r with i ∈ B. We have K+

B = ∅, namely ρH
pl = r ,

and then pl-null group axiom implies

f 1(v, ρ) = f 1(v, r) = f 2(v, r) = f 2(v, ρ).

Otherwise B is a null coalition and pl-null group axiom implies

f 1(v, ρ) = 0 = f 2(v, ρ),

because of K−
B = ∅.

We suppose that there is only one value for all the games with a proximity relation
ρ with h < d.

Consider now a proximity relation ρ with h = d. If f 1 �= f 2 linearity implies
that there exists a unanimity game uT satisfying

f 1(uT , ρ) �= f 2(uT , ρ).

We set MT = {B ∈ [N/ρ]pl : B ∩ T �= ∅}. If B /∈ MT then B is a null group for uT .
We apply the pl-null group property for each player i ∈ B,

f 1i (uT , ρ) = sK−
B
f 1i
(
uT , ρ

K−
B

pl

)
= sK−

B
f 1i
(
uT , ρ

K−
B

pl

)
= f 2i (uT , ρ),
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using that |K−
B | < d. Particularly if |K+

B | = d then sK−
B

= 0 and f 1i (uT , ρ) =
0 = f 2i (uT , ρ). Let B, B ′ ∈ MT with K+

BB ′ �= ∅. pl-Symmetry in the quotient, as
|K−

BB ′ | < d, implies that

f 1(uT , ρ)(B) − f 1(uT , ρ)(B ′)

= sK−
BB′

[
f 1
(
uT , ρ

K−
BB′

pl

)
(B) − f 1

(
uT , ρ

K−
BB′

pl

)
(B ′)

]

= sK−
BB′

[
f 2
(
uT , ρ

K−
BB′

pl

)
(B) − f 2

(
uT , ρ

K−
BB′

pl

)
(B ′)

]

= f 2(uT , ρ)(B) − f 2(uT , ρ)(B ′),

Thus f 1(uT , ρ)(B) − f 2(uT , ρ)(B) = f 1(uT , ρ)(B ′) − f 2(uT , ρ)(B ′). Choose
any k ∈ H . All B, B ′ ∈ MT ∩ N/rk satisfy K+

BB ′ �= ∅ and then there exists Jk with

f 1(uT , ρ)(B) − f 2(uT , ρ)(B) = Jk ∀B ∈ MT ∩ N/rk .

If B ∈ N/rk with B /∈ MT then we got before f 1i (uT , ρ) = f 1i (uT , ρ) for all i ∈ B.
As Nrk = N because ρ is a proximity relation, we obtain using efficiency

∑

i∈N
[ f 1i (uT , ρ) − f 2i (uT , ρ)] =

∑

B∈MT ∩N/rk

∑

i∈B
f 1i (N , uT , ρ) − f 2i (N , uT , ρ)

= |MT ∩ N/rk |Jk = 0,

and then Jk = 0. Let i ∈ N such that for all B ∈ [N/ρ]pl with i ∈ B it happens that
B ∈ MT . If {i} ∈ MT then f 1i (uT , ρ) = f 2i (uT , ρ). For each i ∈ B ∈ MT ∩ N/rk
then there exists j ∈ B \ {i}. If rk(i j) = 1 we apply modified pl-fairness to this link

f 1i (uT , ρ) − f 1j (uT , ρ) = (1 − sk)
[
f 1i
(
v, ρH\{k}

pl

)
− f 1j

(
v, ρH\{k}

pl

)]

+sk
[
f 1i
(
vNi

i j
, (rk)−i j

)
− f 1j

(
vN j

i j
, (rk)−i j

)]

= (1 − sk)
[
f 2i
(
v, ρH\{k}

pl

)
− f 2j

(
v, ρH\{k}

pl

)]

+sk
[
f 2i
(
vNi

i j
, (rk)−i j

)
− f 2j

(
vN j

i j
, (rk)−i j

)]

= f 2i (uT , ρ) − f 2j (uT , ρ).

If rk(i j) = 0 then there is a path from i to j , repeating the above reasoning we get
the same equality, thus

f 2j (uT , ρ) − f 1j (uT , ρ) = f 2i (uT , ρ) − f 1i (uT , ρ) ∀ j ∈ B.

Hence,

∑

j∈B
f 2j (uT , ρ) − f 1j (uT , ρ) = |B|[ f 2i (uT , ρ) − f 1i (uT , ρ)] = 0.



5.5 Fuzzy Myerson–Owen Values 203

We have finally f 1i (uT , ρ) = f 2i (uT , ρ). �

Next proposition enumerates several properties of the pl-Myerson–Owen values.
The proof follows from Propositions5.6 and 5.7.

Proposition 5.10 The pl-Myerson–Owen value satisfies the following prop-
erties for a proximity relation ρ with pl(ρ) = {(rk, sk)}hk=1 and game v.

(1) For all i ∈ N it holds

ω
pl
i (v, ρ) =

r∑

k=1

vN/rk
pk ({i}) − ω

pl
i (vsvg, ρ)

where i ∈ Bpk ∈ N/rk for each k.
(2) If v is convex and i ∈ N then ω

pl
i (v, ρ) ≥ v({i}).

5.6 Similarity Relations

The pl-Myerson–Owen value can be seen as fuzzy versions of the Myerson–Owen
value (Definition5.6) for games with proximity relation. Similarity relations is the
subfamily of proximity relations associated to the a priori unions structures of Owen
[13] because the bilateral relations among the players are transitive.

Definition 5.14 A similarity relation is a fuzzy bilateral relation ρ over N
satisfying

(1) Reflexivity: ρ(i, i) = ρ(i i) = 1 for all i ∈ N ,
(2) Symmetry: ρ(i, j) = ρ( j, i) = ρ(i j), for all i, j ∈ Nand
(3) Transitivity: ρ(i, j) ≥ ρ(i, k) ∧ ρ(k, j) for all i, j, k ∈ N .

The set of similarity relations is denoted by FPN

Obviously it is possible to analyze other models using different T-norms.
We consider again, as in Sect. 4.6, only extensions pl which are transitive (Defin-

ition4.29), namely if ρ is transitive and pl(ρ) = {(rk, sk)}hk=1 then rk is transitive too
for all k. Proposition4.27 showed that the cg-extension is transitive for communica-
tion structures and then also for proximity relations. We test in the next proposition
that the pp-extension is also transitive.

http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_4


204 5 A Priori Fuzzy Unions

Fig. 5.9 Similarity relation
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Proposition 5.11 The prox-proportional extension for proximity relations is
transitive.

Proof Let ρ be a similarity relation and pp(ρ) = {(rk, sk)}hk=1.Wemust to prove that
for all k = 1, . . . , h the graph rk is transitive. Consider r1. Suppose three different
players i, i ′, i ′′ ∈ N such that r1(i i ′) = r1(i ′i ′′) = 1 (otherwise the result is trivial).
Remember that s1 = ∨{ρ(i j) : i j ∈ L(ρ)} and r1(i j) = 1 with i �= j if and only if
ρ(i j) = s1. As ρ is transitive

s1 ≥ ρ(i i ′′) ≥ ρ(i i ′) ∧ ρ(i ′i ′′) = s1.

Therefore we obtain ρ(i i ′′) = s1 and r1(i i ′′) = 1. Nowwe test that, in the next step of
the algorithm, the new fuzzy graph ρ1 = ρ − s1r1 is also a transitive fuzzy bilateral
structure (although it is not a proximity relation). Observe that

ρ1(i j) = ρ(i j) ∧ (1 − s1),

if i �= j and ρ1(i j) > 0, because the links in L(r1) are deleted and the others only
reduce the level if their vertices obtain now less level than them. Using again the
transitivity condition of ρ, as ρ(i i ′′) ≥ ρ(i i ′) ∧ ρ(i ′i ′′) we get

ρ(i i ′′) ∧ (1 − s1) ≥ ρ(i i ′) ∧ ρ(i ′i ′′) ∧ (1 − s1).

Finally the reasoning can be repeated with ρ = ρ1 and go on. �

Example 5.16 We represent in Fig. 5.9 the similarity relation with matrix

ρ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.5 0.5 0 0 0 0 0
0.5 1 0.8 0 0 0 0 0
0.5 0.8 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0.6 0.6 0.2
0 0 0 0 0.6 1 0.8 0.2
0 0 0 0 0.6 0.8 1 0.2
0 0 0 0 0.2 0.2 0.2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Let pl be a transitive reflexive extension. The pl-Owen value is a value for games
with similarity relation defined as the pl-Myerson–Owen value of the game with
the similarity relation as a proximity one. We can obtain an axiomatization for the
pl-Owen value from the axiomatization of the pl-Myerson–Owen value, but not all
the axioms are feasible into the family of similarity relations. Next lemma will be
useful for this purpose.

Lemma 5.3 Let pl be a transitive reflexive extension. If ρ ∈ FPN with
pl(ρ) = {(rk, sk)}hk=1 and H = {1, . . . , h} then ρK

pl ∈ FPN for all K ⊆ H.

Proof Let K ⊆ H . We know that ρK
pl is a proximity relation, thus we only need to

test transitivity. Let i, i ′, i ′′ three different players. As pl is reflexive and transitive
then rk is also reflexive, symmetric and transitive for all k ∈ H , namely rk is an a
priori union system. Hence rk(i i ′′) ≥ rk(i i ′) ∧ rk(i ′i ′′). So,

ρK
pl(i i

′′) =
∑

k∈K

sk
sK

rk(i i
′′) ≥

∑

k∈K

sk
sK

[rk(i i ′) ∧ rk(i
′i ′′)]

=
[
∑

k∈K

sk
sK

rk(i i
′)

]

∧
[
∑

k∈K

sk
sK

rk(i
′i ′′)

]

= ρK
pl(i i

′) ∧ ρK
pl(i

′i ′′).

�

Observe that themodified pl-fairness is not feasible because if we reduce the level
of a pair of players we can break up the transitivity. In exchange, we introduce this
other axiom used for the Owen value. Let pl be a transitive and reflexive extension.
Let ρ be a similarity relation with pl(ρ) = {(rk, sk)}hk=1 and H = {1, . . . , h}. For
two different players i, j ∈ N we denote

K+
i j = {k ∈ H : ∃ B ∈ N/rk with i, j ∈ B},

and K−
i j = H \ K+

i j .
6 Suppose f a value for games with a similarity relation.

pl-Symmetry in a group Let pl be a transitive extension and ρ be a similarity
relation over N . If i, j are symmetric for the game v then

fi (v, ρ) − f j (v, ρ) = sK−
i j

[

fi

(

v, ρ
K−

i j

pl

)

− f j

(

v, ρ
K−

i j

pl

)]

.

6Set Ki j ⊆ K+
i j because of being in the same component does not imply a direct link.
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Theorem 5.7 Let pl be an inner, transitive and reflexive extension.
The pl-Owen value is the only value for games with a similarity relation which
satisfies efficiency, pl-null group, pl-symmetry in the quotient, pl-symmetry
in a group and linearity.

Proof Theorem5.6 andLemma5.3 ensure that the pl-Owenvalue satisfies efficiency,
pl-null group, pl-symmetry in the quotient and linearity. Hence we only have to
check that the pl-Owen value verifies pl-symmetry in a group. Let i, j ∈ N be two
symmetry players in a game v. We have

ωi (v, ρ) = sK+
i j
ωi

(

v, ρ
K+

i j

pl

)

+ sK−
i j
ωi

(

v, ρ
K−

i j

pl

)

,

and also

ω j (v, ρ) = sK+
i j
ω j

(

v, ρ
K+

i j

pl

)

+ sK−
i j
ω j

(

v, ρ
K−

i j

pl

)

.

The Owen value satisfies symmetry in a union, therefore for all k ∈ K+
i j we get

ωi (v, rk) = ω j (v, rk). So,

ωi

(

v, ρ
K+

i j

pl

)

= ω j

(

v, ρ
K+

i j

pl

)

.

The uniqueness part is similar to Theorem5.6 using pl-symmetry in a group instead
of modified pl-fairness. �
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Chapter 6
Fuzzy Permission

6.1 Introduction

In this chapter we present another interestingmodel of games with a bilateral relation
among the agents different to the communication model [6] (see Chap.4) and the a
priori unions one [7] (see Chap.5). Hierarchical structures appears in a lot of human
systems: firms, economic organizations, social networks, economic networks, pro-
tocolos... We consider several models in the literature with a same line which can be
studied from bilateral relations. Gilles et al. [4] in 1992 introduced the conjunctive
approach of permission structure. Permission structures analyze hierarchical organi-
zations with a certain interpretation, the influence of an agent on the action of another
one is based on permission: the last player needs the participation of the first one to
be considered as an active element. Huettner and Wiese [5] showed another differ-
ent vision of the hierarchical systems, the coercive structures. Now the influence is
thought as coercivity, the decision of certain agents implies the action of others.

We focus the chapter in the conjunctive approach [4] for permission systems.
The conjunctive approach in the permission way supposes that each player needs the
participation of all her superiors (understanding superiors not only those predecessors
with direct relation over the agent, also those influencing the before processors and
go on). We study in the chapter a broader option following van den Brink and Dietz
[11] and Gallardo et al. [1]. First we consider only direct relations and later, by a
transitivity extension, we arises the before conjunctive approach. This option has also
related a particular disjunctive version of the coercive model, where the presence of
an agent implies the action of all her successors. In 1997 van den Brink [9] analyzed
the disjunctive approach. In this approach players only need permission from one of
the direct predecessors, but this one needs one fromher direct predecessors and go on.

The fuzzy version of the conjunctive approach was studied by Gallardo et al.
[1] in 2014 following a particular fuzziness based on the Choquet integral. Later, in
2015, Gallardo et al. [2] introduced authorization structures. These systems permit to
study hierarchical situations in a more general sense although they are not based on

© Springer International Publishing AG 2017
A. Jiménez-Losada, Models for Cooperative Games with Fuzzy Relations
among the Agents, Studies in Fuzziness and Soft Computing 355,
DOI 10.1007/978-3-319-56472-2_6
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210 6 Fuzzy Permission

bilateral relations. In that context the reader can find the fuzzy version of the others
models in the permission line. A deep work about authorization structure is given in
Gallardo [3].

6.2 Permission Structures: The Conjunctive Approach

Hierarchical organizations are usual systems in firms, economic institutions and
networks. We understand, following van den Brink [8], a hierarchical structure as an
organization where “there are agents who have a direct influence on the actions taken
by other agent in the organization”. In this book we will use a concept of hierarchy
in a broad sense but into our context.1 Let N be our finite set of players.

Gilles et al. [4] introduced a permission structure over the set of players N as a
mapping su : N → 2N which is asymmetric, namely if i ∈ su ( j) then j /∈ su (i)
(note that this condition implies i /∈ su (i)). Players in su (i) are named successors
of i and the predecessors of i are su −1(i) = { j ∈ N : i ∈ su ( j)}. Let su be a per-
mission structure. A player j ∈ N is subordinate of another one i if there exists
{iq}pq=1 with i1 = i , i p = j and iq ∈ su (iq−1) for all q = 2, . . . , p. The set of sub-

ordinates of i is ˆsu (i) and the superiors of i are ˆsu −1
(i) = { j ∈ N : i ∈ ˆsu ( j)}.

The conjunctive approach2 supposes that a player i needs the permission of all her
predecessors to play. If a coalition S is formed in a game, only those players with all
their superiors into the coalition can actively play, so they only obtain the profit for
the subcoalition,

sov(S) = {i ∈ S : ˆsu −1
(i) ⊆ S}. (6.1)

Following the way of the general model in this book, Gilles et al. [4] introduced
the information in the characteristic function of the game using the worths of the
sovereign part, so the conjunctive permission game for each coalition S is

vsov(S) = v(sov(S)). (6.2)

The above structure supposes that all the players are active in the play time, we
explain a slight different concept in the context of bilateral relationswhere players can
obtain profits without being active. The modification is based on two points. The first
one, we suppose that although an agent can be necessary to give permission she may
not be active. In [4, 11] the authors introduced the idea of unproductive superiors but
as a property from the game, nowwe consider it into the structure following Gallardo

1The concept of hierarchy in van den Brink [8] for instance involves transitivity, reflexivity and also
only one top in the structure.
2van den Brink [9] introduced another approach, the disjunctive one, for hierarchical permission
structures. The fuzzy version of the model has been studied in Gallardo et al. [2] in the context
of authorization structures (a broader field for hierarchical structures which are not necessarily
bilateral relations).
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Fig. 6.1 Permission
structure
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et al. [2]. So, a predecessor can study if it is advisable to participate or not as active
player. The second one, following van den Brink and Dietz [11] and Gallardo et al.
[1], we propose a first step of dependency, directly from the predecessors without
mandatory transitivity. We define a permission structure here in this way.

Formally, a permission structure can be any bilateral relation, but we will impose
the anti-symmetric condition that is equivalent of working with acycle relations (van
den Brink [9] named these kind of permission structures as hierarchical).

Definition 6.1 Apermission structure is a bilateral relation r over N satisfying
antisymmetry, namely if r(i, j) = 1, with i �= j , then r( j, i) = 0. The family
of permission structures is denoted as AN .

In this case: if r(i, i) = 1 then player i is active and if r(i, j) = 1 with i �= j then
j needs the authorization of player i so as to enable her to work effectively.

Example 6.1 In Fig. 6.1 we show a permission structure over eight agents, N =
{1, 2, 3, 4, 5, 6, 7, 8}, with matrix

r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0
1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The structure represents a hierarchical situation where players 3 and 8 are not active
but they are needed for the action of several other players. Players 4 and 7 can play
without the permission of another player.

Van denBrink andDietz [11] introduced a local conjunctive option of dependence,
modifying the concept of sovereign part.We adapt the definition to our context. Now,
its formulation is as follows.
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Definition 6.2 Let S be a coalition. The (conjunctive) sovereign part of S in
a permission structure r ∈ AN is

σ r (S) = {i ∈ S ∩ Nr : j ∈ S ∀r( j, i) = 1}.

Example 6.2 Following Example 6.1, we determine the sovereign part of several
coalitions. We have σ r ({1, 2}) = ∅ but σ r ({1, 2, 3}) = {1, 2}, namely player 1 is
not active but her presence permits to play players 1 and 2. The sovereign part
σ r ({4, 5, 6, 7}) = {4, 7} because 5 and 6 need all their direct predecessors in the
directed graph, but there is none of 6 and only one of 5 (player 4). Now if player 8
joints to the before coalition we get σ c

r ({4, 5, 6, 7, 8}) = {4, 5, 7}. Observe that

σ r (N ) = {1, 2, 4, 5, 6, 7}.

The sovereign part satisfies the following properties.

Proposition 6.1 The sovereign part in a permission structure r satisfies the
following properties:

(1) σ r (∅) = ∅ and σ r (N ) = dom (r).
(2) If S ⊆ T then σ r (S) ⊆ σ r (T ).
(3) σ r (S) ∪ σ r (T ) ⊆ σ r (S ∪ T ).
(4) σ r (S) ∩ σ r (T ) = σ r (S ∩ T ).

Proof (1) It is trivial by definition of the sovereign part.
(2), (3) Suppose i ∈ σ r (S). If r( j, i) = 1 then j ∈ S ⊆ T , and thereforeweobtain i ∈
σ r (T ) because also i ∈ T . Now, as S, T ⊆ S ∪ T then σ r (S) ∪ σ r (T ) ⊆ σ r (S ∪ T ).
(4)As S ∩ T ⊆ S and S ∩ T ⊆ T thenσ r (S ∩ T ) ⊆ σ r (S) ∩ σ r (T ). Let i ∈ σ r (S) ∩
σ r (T ) then we have for all j ∈ N with r( j, i) = 1 that j ∈ S ∩ T . Hence i ∈
σ r (S ∩ T ). �

Observe that the sovereign part is different than (6.1), proposed by Gilles et al.
[4], because here the action of a player is feasible only with the permission of her
direct superiors and not the others, but also is slight different than that in van den
Brink and Dietz [11] because not all the players need to be active (they coincide
when Nr = N ). We relate our structures with those given by Gilles et al. [4].
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Proposition 6.2 Each structure su is identifiedwith an order relation, a reflex-
ive and transitive permission structure r .

Proof In a permission structure following [4] all players are active, thus any relation
defining the situation must be reflexive. Now, for i �= j we take rsu(i, j) = 1 if and
only if j ∈ ˆsu(i). So σ rsu (S) = sov (S) for all coalition S. Obviously rsu is transitive
because if rsu(i, j) = 1 and rsu( j, k) = 1 then there is a path from i to j and another
one from j to k. Adding both paths we get a path from i to j . �

We will consider next reduction and extension in order to get better conditions
for our permission structure.

Definition 6.3 Let r be a permission structure.

(1) Thequasi-reflexive interior of r is another permission structure r◦ verifying
r◦(i, j) = 0 if r( j, j) = 0 and r◦(i, j) = r(i, j) otherwise.

(2) The transitive closure of r is a new permission structure r̂ such that
r̂(i, j) = 1 if and only if there is a path in r from i to j , namely there exists
( jk)

p
k=0 ⊆ N with j0 = i , jp = j and r(ik−1, jk) = 1 for all k = 1, . . . , p.

Observe that quasi-reflexivity (see Sect. 3.3) in a permission structure implies that
we only use the permission relationswhen they affect to active players, otherwise they
are irrelevant. We show now that it is enough to analyze quasi-reflexivity permission
structures for our conjunctive option. Let r ∈ AN be a permission structure. It is
trivial to prove that the quasi-reflexive interior of r satisfies

σ r◦
(S) = σ r (S). (6.3)

So, given a permission structure we will usually consider its sovereign part as the
sovereign part of its quasi-reflexive interior. The transitive closure permits to change
from the direct model to the usual permission model. Next example shows these
operations over a permission structure. Generally r̂◦ �= r̂◦, because of the first one
loses important information from the original structure r .

Example 6.3 Figure6.2 represents a hierarchical structure r in a firmby a permission
structure with matrix

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Fig. 6.2 Hierarchical
structure
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Fig. 6.3 Hierarchical
structure
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r◦ r̂◦

r =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0
0 0 0 1 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In this classical hierarchical organizations each player has at most one predecessor,
and there is only one big boss on the top. The direct model suppose that each element
in the hierarchy needs the permission of her immediately predecessor to play but not
all her superiors. For instance, player 6 needs permission of player 3 to act, but not
of the big boss 1. Hence link 12 is not useful in the direct model. In this case player
1 cannot obtain profits from the action of players 4, 5 or 6. Thus we can use only
permission structure r◦ on the left in Fig. 6.3. But if we use the transitive closure then
we suppose that each player needs the permission of all her superiors, so r̂◦ on the
right in Fig. 6.3 represents this new situation. Now player 5 needs the participation
of players 1,2. We take in the second option also the quasi-reflexive interior but from
the transitive closure, in order to reduce the relations. So, we delete again link 12.

r◦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 1 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

r̂◦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1
0 0 0 1 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Fig. 6.4 Different ordering
closure and interior
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r◦̂

Observe that we cannot change the ordering of closure and interior. Figure6.4 repre-
sents r̂◦. We have lost information with respect to the another option, players 4 and
5 do not depend on player 1 in spite of the transitivity.

Given a cooperative game and a permission structure we construct a new game
using the worths of the sovereign parts of the coalitions.

Definition 6.4 Let v ∈ G N and r ∈ AN . The (conjunctive) permission game
is defined for all coalition S as

vr (S) = v(σ r (S)) = v(σ r◦
(S)).

We use here vr as permission game because there in not incongruence.

Example 6.4 Consider r the permission structure in Fig. 6.5 for four players. If we
take the anonymous game v(S) = |S|, the conjunctive permission game for the non-
empty coalitions is in Table6.1. For instance, player 2 needs permission from both
players, 1 and 3, and player 3 is not active, thus

vr ({2, 3, 4}) = v(σ r ({2, 3, 4}) = v({4}) = 1.

Fig. 6.5 The permission
structure in Example 6.4
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3 

2 

4 

Table 6.1 Game vr

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
vr (S) 1 0 0 1 1 1 2 0

S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

vr (S) 1 1 2 2 2 1 3
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The profit obtained by a coalition taking into account the permission structure is
actually the profit that its sovereign part can earn. Next properties are satisfied by the
direct conjunctive game.

Proposition 6.3 Let v ∈ G N be a game and r ∈ AN be a permission structure.

(1) If v is monotonic then vr is monotonic.
(2) If v is monotonic and superadditive then so is vr

(3) If v is monotonic and convex then vr is convex.
(4) If v is simple then so is vr .
(5) (av + bw)r = avr + bwr for all a, b ∈ R. Hence (−v)r = −(vr ).

Proof (1) Let v ∈ G N
m . From Proposition 6.1 σ r (S) ⊆ σ r (T ) when S ⊆ T . Hence

vr (S) = v(σ r (S)) ≤ v(σ r (T )) = vr (T ).

(2) Suppose v ∈ G N
sa ∩ G N

m . Let S, T be coalitions with S ∩ T = ∅. Proposition
6.1 implies σ r (S) ∪ σ r (T ) ⊆ σ r (S ∪ T ). Moreover, as σ r (S) ∩ σ r (T ) = ∅. Thus,
monotonicity and superadditivity of v imply

vr (S ∪ T ) = v(σ r (S ∪ T )) ≥ v(σ r (S) ∪ σ r (T ))

≥ v(σ r (S)) + v(σ r (T )) = vr (S) + vr (T ).

(3) Let v ∈ G N
c . The proof is similar because σ r (S ∩ T ) = σ r (S) ∩ σ r (T ). We get

vr (S ∪ T ) + vr (S ∩ T ) = v(σ r (S ∪ T )) + v(σ r (S ∩ T ))

≥ v(σ r (S)) + v(σ r (T )) = vr (S) + vr (T ).

(4) The first step said that vr is monotone if so is v. But the worth of a coalition in
the direct conjunctive game is the worth of one of its sub-coalitions then if v is a
{0, 1}-game then so is vr .
(5) A simple exercise for the reader. �

Observe that we have needed monotonicity for getting that superaditivity and
convexity are inherited. This is either because it can be σ r (S) ∪ σ r (T ) � σ r (S ∪ T ).
Unlike the other models in the above chapters, additivity is not inheritable.

Example 6.5 Suppose the permission structure with matrix

r =
[
1 1
0 1

]
,
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representing two players with 2 depending on 1. If v = (v1, v2) is an additive game
then vr ({1}) = v1, vr ({2}) = 0 but vr (N ) = v1 + v2. Except if v2 = 0 game vr is not
additive. If we take v2 = −v1 with v1 > 0 then v superadditive but it is not monotone.
The permission game is not superadditive, vr ({1}) = v1, vr ({2}) = 0 and vr (N ) = 0.

Hence, if two games are strategically equivalent their direct conjunctive games are
not always strategically equivalent. Also the saving game has problems. If v ∈ G N

and r ∈ AN then

(vsvg)r (S) = vsvg(σ r (S)) =
∑

i∈σ r (S)

v({i}) − v(σ r (S)) =
∑

i∈σ r (S)

v({i}) − vr (S),

but

(vr )svg(S) =
∑
i∈S

vr ({i}) − vr (S) =
∑

i∈indr∩S

v({i}) − vr (S),

where indr = {i ∈ Nr : r( j, i) = 0 ∀ j �= i} is the set of independent active players
in r . Obviously indr ∩ S ⊆ σ r (S) but the equality is not always true. Thus generally
(vr )svg �= (vsvg)r . If for a game vwe define the additive game rv ∈ R

N for each i ∈ N
as

rvi =
{
0, if i ∈ indr
v({i}), otherwise

then we get the following property from the above equalities.

Proposition 6.4 Let v ∈ G N and r ∈ AN . It holds

(vsvg)r = (rv)r + (vr )svg.

Proof From the above equalities,

(vsvg)r (S) − (vr )svg(S) =
∑

i∈σ r (S)\indr
v({i}) = rv(σ r (S)) = (rv)r (S).

�

Furthermore, last proposition says that (vr )svg is the permission game of certain
game strategically equivalent to vsvg because of

(vr )svg = (vsvg − rv)r ,

by Proposition 6.3.



218 6 Fuzzy Permission

The dual game of a permission game is

(vdual)r (S) = vdual(σ r (S)) = v(N ) − v(N \ σ r (S))

but in the other hand

(vr )dual(S) = vr (N ) − vr (N \ S) = v(Nr ) − v(σ r (N \ S)).

We can use the T -dual game (3.7) with T = Nr but so we only solve the problem of
non active players,

(vN
r dual)r (S) = vN

r dual(σ r (S)) = v(Nr ) − v(Nr \ σ r (S)), (6.4)

and Nr \ σ r (S) �= σ r (N \ S). In fact, if we use again Example 6.1, we obtained
in Example 6.2 that σ r ({1, 2, 3} = {1, 2} and then Nr \ σ r ({1, 2, 3}) = {4, 5, 6, 7}.
But we also got σ r ({4, 5, 6, 7, 8}) = {4, 5, 7}.

Huettner and Wiese [5] introduced disjunctive coercive structures.3 Now the per-
mission structure is understood as a coercive relation, in the sense that if a player
decides to participate (actively or not) in a coalition then all her successors must be
active in the coalition. In our context the coercive game is given as follows.

Definition 6.5 The (disjunctive) coercive game is defined for a game v ∈ G N

and a permission structure r ∈ AN as

v̄r (S) = v(σ̄ r (S)),

where σ̄ r (S) = {i ∈ Nr : ∃ j ∈ S with r( j, i) = 1} is named the coercive
part.

Observe that we have in this case S ∩ Nr ⊆ σ̄ r (S) for any coalition because
r(i, i) = 1 if i ∈ S ∩ Nr . We name this version disjunctive because a player is
obliged to participate only with the presence of one of her predecessors. The reader
can also see that σ̄ r = σ̄ r◦

.

Example 6.6 In this example we look at Fig. 6.5 as a coercive structure. Obviously
we see the same but we change our interpretation. Now if player 3 is in the coalition
then the activity of players 1, 2 is guaranteed. So

σ̄ r ({3}) = {1, 2}.

3They introduced the model as the permission one in Gilles et al. [4], we present the model in a local
way, as the permission one in [11]. It is also posible to define a coercive option in the conjunctive
sense.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Table 6.2 Game v̄r

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
v̄r (S) 2 1 1 1 2 2 3 2

S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

v̄r (S) 2 3 2 3 3 3 3

But in this case agents do not need the predecessors to play, so σ̄ r ({2}) = {2}.
Table6.2 shows the coercive game of game v(S) = |S|.

There is a strong relation between both models, coercive and permission. Next
proposition explains this goal in our context.

Proposition 6.5 Let r be a permission structure. For all game v ∈ G N it holds

(v̄r )dual = (vN
r dual)r .

Proof We use the worth of the T -dual game in (6.4) with T = Nr . For the great
coalition we get vr (N ) = v̄r (N ) = v(Nr ). Let S ⊆ N be a coalition. We prove the
claim

Nr \ σ r (S) = σ̄ r (N \ S).

As σ r (S) ⊆ S then Nr ∩ (N \ S) ⊆ Nr \ σ r (S). Also,

Nr ∩ (N \ S) ⊆ N \ S ⊆ σ̄ r (N \ S).

Observe that players in both sets must be in Nr . Suppose then i ∈ Nr ∩ S. Player i /∈
σ r (S) if and only if there is j ∈ N \ S with r( j, i) = 1 if and only if i ∈ σ̄ r (N \ S).
The claim is true. Now we have

(vN
r dual)r (S) = v(Nr ) − v(Nr \ σ r (S))

= v̄r (N ) − v(σ̄ r (N \ S)) = (v̄r )dual(S).

�

Hence, the coercive model has actually a strong relation with the permission one.

6.3 Values for Games with Permission Structure

In this section we study several values inspired on the conjunctive approach and
following Gilles et al. [4]. Each pair (v, r) ∈ G N × AN is called a game over N with
a permission structure. A value function for games with permission structure is
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f : G N × AN → R
N .

We define a first Shapley value for this model using the Shapley value of the direct
conjunctive sovereign part, following [11].

Definition 6.6 The local (conjunctive) permission value is a value for games
over N with hierarchical structure defined for each v ∈ G N and r ∈ AN as

δ(v, r) = φ(vr ) = φ(vr
◦
).

Example 6.7 We consider game v(S) = |S|2 with the permission structure r in
Fig. 6.6 which is quasi-reflexive. Table6.3 shows the sovereign part of each coalition
and the worth in the permission game. Player 1 is not active in the structure but
her permission is needed for some players. So, her payoff uses only the non-null
marginal contributions in the permission game

δ1(v, r) = φ1(v
r ) = 1

12
[vr ({1, 2} − vr ({2})] + 1

12
[vr ({1, 2, 3}) − vr ({2, 3})]

+ 1

12
[vr ({1, 2, 4}) − vr ({2, 4})] + 1

4
[vr (N ) − vr ({2, 3, 4})] = 32

12
= 8

3
.

The local permission value is

δ(v, r) =
(
16

6
,
19

6
,
9

6
,
10

6

)
.

Gilles et al. [4] axiomatized his value using five axioms. Another axiomatization
was given in [10]. We follow Gallardo et al. [1] here taking similar axioms. Let
f : G N × AN → R

N a value function for games over N with permission structure.
Only active players can participate obtaining profits, thus efficiency is restricted

to the domain of the relation.

Restricted efficiency. For all v ∈ G N and r ∈ AN , f (v, r)(N ) = v(Nr ).

The payoff of an agent not only comes from her own activity also from the activity
of her successors. Hence, to get a null player we need the same condition for all

Fig. 6.6 Hierarchical
structure in Example 6.7

1 

2 

4 3 

r
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Table 6.3 Game vr and sovereign part in Example 6.7

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
σ r (S) ∅ ∅ ∅ ∅ {2} ∅ ∅ ∅
vr (S) 0 0 0 0 1 0 0 0

S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

σ r (S) {4} ∅ {2, 3} {2, 4} ∅ {4} {2, 3, 4}
vr (S) 1 0 4 4 0 1 9

her successors. In our context an inessential player4 for a game v and a permission
structure r is a player i ∈ N satisfying that j is a null player in v when r(i, j) = 1

Inessential player.5 Let r ∈ AN and v ∈ G N . If i ∈ N is an inessential player it
holds fi (v, r) = 0.

Next classical axiom (see Sect. 1.3) is true independently of the hierarchical structure.

Linearity For all v,w ∈ G N , a, b ∈ R and r ∈ AN it holds

f (av + bw, r) = a f (v, r) + b f (w, r).

Players with veto power over necessary players are also necessaries.

Veto power over necessary players.6 Let v ∈ G N
m be a monotone game and r ∈ AN .

If i ∈ N is a necessary player for v then for any k ∈ N with r(k, i) = 1 it holds
fk(v, r) ≥ f j (v, r) for all j ∈ N .

These axioms allow us to determine the local permission value in our context.

Theorem 6.1 The local permission value is the only value for games over
N with permission structure satisfying restricted efficiency, inessential player,
veto power over necessary player, linearity.

Proof We test that the local permission value verifies the four axioms. Suppose r a
permission structure. As σ r = σ r◦

we can consider without losing generality that r
is quasi-reflexive.

4The concept of inessential player here differs of the definition in [1, 11], because player i may not
be active.
5van den Brink [8] called this axiom weakly inessential player because he used another stronger
version for the disjunctive approach.
6This axiom is named strong necessary player in [11] and slight different of this one in [1].

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Restricted efficiency. Let v ∈ G N , as Shapley value is an efficient value (Propo-
sition 1.9) we have

∑
i∈N

δi (v, r) =
∑
i∈N

φi (v
r ) = vr (N ) = v(Nr ).

Inessential player. Let i ∈ N such that j is a null player in a game v when
r(i, j) = 1. We will prove the claim i is a null player in vr . If there is not j ∈
N with r(i, j) = 1 then σ r (S ∪ {i})) = σ r (S) for all S ⊆ N \ {i} and we get the
claim.Suppose thenσ r (S ∪ {i}) �= σ r (S). FromProposition6.1 it holds thatσ r (S) ⊂
σ r (S ∪ {i}), so we denote

σ r (S ∪ {i}) \ σ r (S) = {i1, . . . , im}.

Since Definition 6.3 each ik with k = 1, . . . ,m verifies r(i, ik) = 1 because of ik /∈
σ r (S) but ik ∈ σ r (S ∪ {i}). Hence they are null players. Using the concept of null
player,

v(σ r (S ∪ {i})) = v(σ r (S ∪ {i}) \ {i1}) = v(σ r (S ∪ {i}) \ {i1, i2}) = · · · = v(σ r (S)).

Furthermore

vr (S ∪ {i}) = v(σ r (S ∪ {i})) = v(σ r (S)) = vr (S).

Shapley value verifies null player (Proposition 1.11), thus by the claim δli (v, r) = 0.
Veto power over necessary players. Let i be a necessary player in v ∈ G N

m .
Suppose r(k, i) = 1. We see that k is a necessary player in vr . Let S be a coalition
with k /∈ S. Obviously i /∈ σ r (S) and then

vr (S) = v(σ r (S)) = 0.

Shapley value satisfies necessary player (Proposition 1.11), therefore for all j

δk(v, r) = φk(v
r ) ≥ φ j (v

r ) = δ j (v, r).

Linearity. The result follows from Proposition 6.2 because of (av + bw)r = avr +
bwr .

Consider now f a value for games with permission structure satisfying the five
axioms. From linearity we only have to obtain the uniqueness for the unanimity
games. Let T ⊆ N be a non-empty coalition. Remember that, for the unanimity game
uT , players out of T are null players and players within T are necessary players. We
set

RT = {i ∈ N : ∃ j ∈ T with r(i, j) = 1}.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Let i /∈ RT . In that case there is not j ∈ T with r(i, j) = 1, namely if r(i, j) = 1
then j /∈ T . Hence j is a null player for uT . We get that player i is inessential.
The inessential player axiom says that fi (uT , r) = 0. As players in T are necessary
players, the veto power over necessary players axiom implies that all the players in
RT must have the same payoff, K . Now restricted efficiency says

∑
i∈N

fi (uT , r) = |RT |K = uT (Nr ).

So, we obtain

K =
⎧⎨
⎩

1

|RT | , T ⊆ Nr

0, otherwise.

�

We have needed four axioms to characterize the local permission value, we must
analyze the independence of the axioms.

Remark 6.1 We find values different from the local permission value verifying all
the axioms except one of them.

• Consider value f 1 defined for each v ∈ G N and r ∈ AN as

f 1i (v, r) =
∑

{ j∈Nr :r(i, j)=1}

v({ j})
|{h ∈ N : r(h, j) = 1}|

for all player i ∈ N (0, if there is not j with r(i, j) = 1). This value satisfies all
the axioms except restricted efficiency. Linearity is trivial. If i is an inessential
player then every player j with r(i, j) = 1 is a null player for game v, therefore
v({ j}) = 0 and f 1i (v, r) = 0. Let i a necessary player for v. We have v({ j}) = 0
for all j ∈ N \ {i}. If v ∈ G N

m then v({i}) ≥ 0. Observe that

f 1k (v, r) =
⎧⎨
⎩

v({i})
|{h ∈ N : r(h, i) = 1}| , if r(k, i) = 1

0, otherwise.

Obviously f 1 �= δ.
• Thevalue defined as f 2i (v, r) = φ(v, Nr ) satisfies all the axioms except veto power
over the necessary players.We take into account the axiomatization of the extended
Shapley value, Theorem 3.1. Observe that inessential player is true because of the
extended Shapley value satisfies restricted null player and carrier. The extended
Shapley value also verifies restricted efficiency and linearity. But f 2 �= δ.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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• Similar to the egalitarian value (see Remark 1.4) we defined

f 3i (v,B) = v(Nr )

n
.

This value satisfies all the axioms except inessential player axiom.
• Following Remark 1.4 again we take

I ner (v) = {i ∈ N : j null player in v if r(i, j) = 1}.

It defines

f 4i (v) =
⎧⎨
⎩

v(Nr )

|N \ I ne(v)| , if i /∈ I ne(v)

0, if i ∈ I ne(v).

This value satisfies all the axioms except additivity. As f 3 this value satisfies
restricted efficient and veto power over the necessary players property. But also
the inessential player axiom by construction. The problem is that the denominator
in the formula depends of the game (I ner (v) changes with the game).

Remark 6.2 The above axioms imply particularly a logical property of the local
permission value from its definition, the payoffs of the players do not depend of
the superfluous links. We can determine values such that the payoff of a player
in the structure is not the same than in the quasi-reflexive interior. Consider for
instance a pair (v, r) ∈ G N × AN the following new permission structure rv ∈ AN .
Let i /∈ Nr and j ∈ Nr \ null(v) (remembernull(v) is the set of null players in v) then
rv(i, j) = 1 if they are connected in r by a path {ik}mk=1 (i1 = i , im = j) with ik /∈ Nr

for all k = 1, . . . ,m − 1, and rv(i, j) = r(i, j) otherwise. Let f (v, r) = φ(vrv). If
we take for instance

r =
⎡
⎣
0 1 0
0 0 1
0 0 1

⎤
⎦ ru{3} =

⎡
⎣
0 1 1
0 0 1
0 0 1

⎤
⎦ (r◦)u{3} =

⎡
⎣
0 0 0
0 0 1
0 0 1

⎤
⎦

then f (u{3}, r) = (1/3, 1/3, 1/3) and f (u{3}, r◦) = (0, 1/2, 1/2).

Next we prove some properties of the local permission value.

Proposition 6.6 The local permission value satisfies the following properties
for a permission structure r .

(1) Let v ∈ G N
c ∩ G N

m . If S ⊆ N then δ(v, r)(S) ≥ v(σ c
r (S)).

(2) If v ∈ G N then

δi (v
svg, r) = vr ({i}) + δi (r

v, r) − δi (v, r).

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Proof (1) Proposition 6.3 implies that vr is convex. Hence, Proposition 1.14 says

δ(v, r)(S) = φ(vr )(S) ≥ vr (S) = v(σ r (S)).

(2) We use Proposition 6.4, the linearity of the Shapley value (Proposition 1.8) and
Proposition 1.15 to get the equality. So, for every i ∈ N

δi (v
svg, r) = φi ((v

svg)r ) = φi ((r
v)r ) + φi ((v

r )svg)

= φi ((r
v)r ) + vr ({i}) − φi (v

r ) = δi (r
v, r) + vr ({i}) − δi (v, r).

�

The proof of the next proposition is removed from the proof of the uniqueness
in Theorem 6.1. Remember that eS represents the canonical vector for coalition S.
We obtain the payoffs of the players in a unanimity game working in a permission
systems r .

Proposition 6.7 Let T ⊆ N be a non empty coalition. Let r ∈ AN and Rr
T =

{i ∈ N : ∃ j ∈ T with r(i, j) = 1}. For each i ∈ N it holds

δ(uT , r) =
⎧⎨
⎩

1

|Rr
T |e

Rr
T , if T ⊆ Nr

0, otherwise.

We can describe the local permission value from the dividends using the above
proposition.

Theorem 6.2 For each v ∈ G N and a permission structure r ∈ AN the local
permission value of a player i ∈ N is

δi (v, r) =
∑

{T⊆Nr :i∈Rr
T }

Δv
T

|Rr
T | ,

where Rr
T = {i ∈ N : ∃ j ∈ T with r(i, j) = 1}.

Proof From Proposition 1.1 and Proposition 6.5 we get

δi (v, r) =
∑

i∈T⊆N

Δv
T δi (uT , r) =

∑
{T⊆Nr :i∈Rr

T }
Δv

T

1

|Rr
T | .

�

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Table 6.4 Dividends of the game and sets Rr
T in Example 6.8

T {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}
Rr
T {1, 2} {1, 2, 3} {2, 4} {1, 2, 3} {1, 2, 4} N N

Δv
T 1 1 1 2 2 2 0

Example 6.8 We test the above formula over the game v(S) = |S|2 in Example 6.7.
The permission structure r is in Fig. 6.6. Table6.4 shows the dividends (calculated
using formula (1.2)) of the game and the corresponding sets Rr

T . Observe that we
only use coalitions T ⊆ Nr . Now we determine the payoff of Player 1 as

δ1(v, r) = Δv
{2}
2

+ Δv
{3}
3

+ Δv
{2,3}
3

+ Δv
{2,4}
3

+ Δv
{3,4}
4

= 8

3
.

We get again

δ(v, r) =
(
16

6
,
19

6
,
9

6
,
10

6

)
.

The second Shapley value for games with a permission structure uses the Shapley
value of the sovereign part in the transitive closure, following [1].

Definition 6.7 The (conjunctive) permission value is a value for games over
N with permission structure defined for each v ∈ G N and r ∈ AN as

δ̂(v, r) = δ(v, r̂) = φ(vr̂ ).

This value coincides with the permission value in Gilles et al. [4] when r is
reflexive.

Example 6.9 We consider again game v(S) = |S|2 in Example 6.7 with the permis-
sion structure r in Fig. 6.6. Figure6.7 shows the transitive closure. We use again
formula in Theorem 6.2, and then we can take the dividends of the game calculated
before. We only need to change to sets Rr̂

T . The payoff of player 1 for the permission
value is

Fig. 6.7 Transitive closure
in Example 6.9

1 

2 

4 3 r̂

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Table 6.5 Dividends of the game and sets Rr̂
T in Example 6.9

T {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}
Rr̂
T {1, 2} {1, 2, 3} {1, 2, 4} {1, 2, 3} {1, 2, 4} N N

Δv
T 1 1 1 2 2 2 0

δ̂1(v, r) = Δv
{2}
2

+ Δv
{3}
3

+ Δv
{4}
3

+ Δv
{2,3}
3

+ Δv
{2,4}
3

+ Δv
{3,4}
4

= 3.

The permission value is, using Table6.5,

δ̂(v, r) = (3, 3, 1.5, 1.5) .

Next axioms determine the permission value. Only active players can participate
obtaining profits, thus efficiency is restricted to the domain of the relation. For all
v ∈ G N and r ∈ AN , f (v, r)(N ) = v(Nr ).
Transitive inessential player. Let r ∈ AN and v ∈ G N . If i ∈ N is a player satisfying
that j is an inessential player in r̂ for v, it holds fi (v, r) = 0.

Transitive veto power over necessary players. Let v ∈ G N
m be a monotone game

and r ∈ AN . If i ∈ N is a necessary player for v then fk(v, r) ≥ f j (v, r) for all j ∈ N
and r̂(k, i) = 1.

The proof of next theorem is like that one of Theorem 6.1.

Theorem 6.3 The permission value is the only value for games over N
with permission structure satisfying restricted efficiency, transitive inessen-
tial player, transitive veto power over necessary player and linearity.

Also Proposition 6.5 implies the following properties of the permission value.
Observe that for all r ∈ AN we have indr̂ = indr , and then r̂ v = rv.

Proposition 6.8 The permission value satisfies the following properties for a
permission structure r .

(1) Let v ∈ G N
c ∩ G N

m . If S ⊆ N then δ̂(v, r)(S) ≥ v(σ r̂ (S)).
(2) If v ∈ G N then

δ̂i (v
svg, r) = δ̂i (r

v, r) + vr ({i}) − δ̂i (v, r).

Finally we study a coercive value using the coercive game given in Definition 6.5.
It was introduced by Huettner and Wiese [5].
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Definition 6.8 The local coercive value is a value for games with permission
structure defined for each game v and permission structure r as

δ̄(v, r) = φ(v̄r ).

Next proposition permits to calculate the coercive value from the permission value
using the T -dual game (3.7).

Theorem 6.4 Let v ∈ G N and r ∈ AN . The local coercive value satisfies

δ̄(v, r) = δ(vN
r dual , r).

Proof Proposition 6.5 established a relation between the duals of the local permission
game and the local coercive game. So, from Proposition 1.15

δ̄(v, r) = φ(v̄r ) = φ
(
(v̄r )dual

) = φ
(
(vN

r dual)r
)

= δ(vN
rdual , r).

�

Example 6.10 Nowweuse thepermission structure inFig. 6.6 as a coercive structure.
We consider again game v(S) = |S|2. Table6.6 shows the active part of each coalition
in the coercive sense and the worth in the coercive game. Player 1 is not active in
the structure but her coercive activity imposes the activity of some players. So, her
payoff uses only the non-null marginal contributions in the coercive game

δ̄1(v, r) = φ1(v̄
r ) = 1

4
v̄r ({1}) + 1

12
[v̄r ({1, 3}) − v̄r ({3})]

+ 1

12
[vr ({1, 4}) − vr ({4})] + 1

12
[vr ({1, 3, 4}) − vr ({3, 4})] = 28

12
= 7

3
.

The local coercive value is

δ̄(v, r) =
(
14

6
,
29

6
,
3

6
,
8

6

)
.

We calcule now the value by dividends using formulas in Theorems 6.2 and 6.4. We
need to do the Tr -dual of v,

vN
r dual(S) = 9 − |{2, 3, 4} \ S|2.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Table 6.6 Game v̄r and coercive part in Example 6.10

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
σ̄ r (S) {2, 3} {2, 3, 4} {3} {4} {2, 3, 4} {2, 3} {2, 3, 4} {2, 3, 4}
v̄r (S) 4 9 1 1 9 4 9 9

S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

σ̄ r (S) {2, 3, 4} {3, 4} {2, 3, 4} {2, 3, 4} {2, 3, 4} {2, 3, 4} {2, 3, 4}
v̄r (S) 9 4 9 9 9 9 9

Table 6.7 Dividends of the T -dual game and sets Rr
T in Example 6.10

T {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}
Rr
T {1, 2} {1, 2, 3} {2, 4} {1, 2, 3} {1, 2, 4} N N

ΔvTr−dual

T 5 5 5 −2 −2 −2 0

Table6.7 determines the T -dual dividends and its local permission value. We can
test that δ̄(v, r) = δ(vN

rdual , r).

Huettner andWiese [5] introduced a new axiom to distinguish the coercive model
from the permission value. We present here a slight different axiom. Let v be a game.
A player i ∈ N is named sufficient in v if

v({i}) =
∨
T⊆N

v(T ). (6.5)

Coercion power over sufficient players. Let v ∈ G N
m be a monotone game and

r ∈ AN . If i ∈ N is a sufficient player for v and k ∈ N with r(k, i) = 1 then fk(v, r) ≥
f j (v, r) for all j ∈ N .

This axiom replaces veto power over necessary players property in the axiomati-
zation for the new value.

Theorem 6.5 The local coercive value is the only value for games over N
with permission structure satisfying restricted efficiency, inessential player,
coercion power over sufficient player and linearity.

Proof We test that the local coercive value verifies the four axioms. Suppose r a
permission structure (quasi-reflexive without losing generality).
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Efficiency. Let v ∈ G N , efficiency of the Shapley value (Proposition 1.9) implies

∑
i∈N

δ̄i (v, r) =
∑
i∈N

φi (v̄
r ) = v̄r (N ) = v(Nr ).

Inessential player. If i is a null player for v then she is also a null player for
vN

r dual . In fact, if S ⊆ N \ {i} then

vN
r dual(S ∪ {i}) = v(Nr ) − v(Nr \ (S ∪ {i}))

= v(Nr ) − v(Nr \ S) = vN
r dual(S).

Suppose now i satisfies the conditions of the axiom, Theorem 6.1 implies that

δ̄i (v, r) = δi (v
Nr dual , r) = 0.

Coercion power over sufficient players. First we prove that if v is monotone
then vN

r dual is also monotone. Let T ⊆ S. Obviously Nr \ S ⊆ Nr \ T . We get

vN
r dual(T ) = v(Nr ) − v(Nr \ T )

≤ v(Nr ) − v(Nr \ S) = vN
r dual(S).

Let i ∈ Nr be a sufficient player in v ∈ G N
m . We prove that i is a necessary player in

vTr−dual . Let S ⊆ N \ {i}

0 ≤ vN
r dual(S) = v(Nr ) − v(Nr \ S)

≤ v({i}) − v(Nr \ S) ≤ 0.

Hence vN
r dual(S) = 0.We take k with r(k, i) = 1 (therefore i ∈ Nr ) and i sufficient.

Theorem 6.1 implies

δ̄k(v, r) = δk(v
Nr dual , r) ≥ δ j (v

Nr dual , r) = δ̄ j (r, v),

for all j ∈ N .
Linearity. The result follows also from Theorem 6.1.

For each non-empty coalition T we define the anyone game wT as

wT (S) =
{
1, S ∩ T �= ∅
0, otherwise.

(6.6)

These games constitute a base of the games as the unanimity games. The cardinality
of anyone games is the same as the cardinality of unanimity games, so it is enough if
we see that they are independent.Anyone games are actually the dual of the unanimity
games,

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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(uT )dual (S) = uT (N ) − uT (N \ S) = 1 − uT (N \ S) =
{
0, if T ⊆ N \ S
1, otherwise

= wT (S),

because of T ⊆ N \ S if and only if T ∩ S = ∅. Furthermore it is easy to test that
(av + bw)dual = avdual + bwdual . Thus, if we consider

∑
{T⊆N :T �=∅}

aTwT = 0 =
∑

{T⊆N :T �=∅}
aT (wT )dual =

∑
{T⊆N :T �=∅}

aT uT

we deduce that aT = 0 for all T . Consider f a value for games with permission struc-
ture satisfying the five axioms. From linearity we only have to obtain the uniqueness
for the anyone games. Let T ⊆ N be a non-empty coalition. Players out of T are
null. We denote as

RT = {k ∈ N : r(k, i) = 1 for some i ∈ T }.

Players out of RT are inessential in r for wT thus their payoffs are zero. Players in
T are sufficient in the anyone game. Coercion power over sufficient players implies
that all the players in RT must have the same payoff, K . Now efficiency says

∑
i∈N

fi (uT , r) = |RT |K = wT (Nr ).

So, we obtain

K =
⎧⎨
⎩

1

|RT | , T ⊆ Nr

0, otherwise.

�

6.4 Games with Fuzzy Permission Structure

The concept of fuzzy permission structure was introduced in Gallardo et al. [1].
They considered any reflexive fuzzy bilateral relation, but here we suppose weakly
anti-transitivity in the sense of Sect. 3.3, following the crisp case. Also we consider
reflexivity non necessary. The reader can think about other models only changing
the T -norm in the concept of anti-symmetry.

Definition 6.9 A fuzzy permission structure is a fuzzy bilateral relation r
which is weakly anti-transitive, namely ρ(i, j) + ρ( j, i) ≤ 1 for all i, j ∈ N
with i �= j . The family of fuzzy permission structures over N is FAN .

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Fig. 6.8 Fuzzy permission
structure 1 
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In this case, if ρ(i, i) is the level of i as active agent, ρ(i, j) with i �= j means
the level of player j that needs the authorization of player i .

Example 6.11 Figure6.8 shows a fuzzy permission structure over eight agents,
N = {1, 2, 3, 4, 5, 6, 7, 8} similar to the crisp one in Fig. 6.1, with matrix

ρ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7 0.3 0 0 0 0 0 0
0 1 0 0 0 0.5 0 0
0.5 0.8 0.2 0 0 0 0 0
0 0 0 0.8 0.5 0 0 0
0 0 0 0.3 0.5 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0.2 0
0 0 0 0 0.5 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Player 5 depends on players 4 and 8 as in Fig. 6.1 but she only acts at level 0.5. Player
2 needs permission of player 1 and player 3 but at different levels. Player 6 needs
player 2 at level 0.5 and then she has level 0.5 of autonomy. Player 4 depends on
player 5 but player 5 depends also on player 4, for disjoint reasons.

Gallardo [1] introduced the local fuzzy conjunctive option of dependence. In our
context we change it in the following sense. Remember from Sect. 3.3 that the fuzzy
domain τρ for a fuzzy relation ρ is given by τρ(i) = ρ(i, i) for each player i (3.4).

Definition 6.10 Let S be a coalition. The fuzzy (conjunctive) sovereign part
of S in a fuzzy permission structure ρ ∈ FAN is σρ(S) ∈ [0, 1]N with

σρ(S)(i) =
⎡
⎣τρ(i) −

∨
j∈N\S

ρ( j, i)

⎤
⎦ ∨ 0,

for each player i ∈ N .

The fuzzy sovereign part is actually a fuzzy coalition (Definition 2.1), namely
given a coalition the fuzzy permission structure determines the level of activity of
each player.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_3
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Example 6.12 Following Example 6.11, we determine the fuzzy sovereign part of
several coalitions. We obtain σρ({1, 2}) = (0.2, 0.2, 0, 0, 0, 0, 0, 0) but

σρ({1, 2, 3}) = (0.7, 1, 0.2, 0, 0, 0, 0, 0),

namely player 3 is not very active but her presence permits to play players 1 and 2 at
maximum level. Nowwe get σρ({2}) = (0, 0.2, 0, 0, 0, 0, 0, 0). The fuzzy sovereign
part

σρ({4, 5, 6, 7}) = (0, 0, 0, 0.8, 0, 0.6, 0.2, 0)

but σρ({4, 6, 7}) = (0, 0, 0, 0.5, 0, 0.5, 0.2, 0). Observe that

σρ(N ) = (0.7, 1, 0.2, 0.8, 0.5, 1, 0.2, 0) = τρ.

As in the crisp case, the fuzzy relation can be reduced in those superfluous levels
of links. We look for the fuzzy weakly reflexive interior of the fuzzy permission
structure. The concept follows the definition of weakly reflexive fuzzy binary rela-
tion (see Sect. 3.3).

Definition 6.11 Let ρ ∈ FAN be a fuzzy permission structure. The weakly
reflexive interior of ρ is another permission structure ρ◦ verifying for all i, j ∈
N

ρ◦(i, j) = ρ(i, j) ∧ ρ( j, j).

Observe that weakly reflexivity in a fuzzy permission structure implies again that
we only use the linkswhile they affect to active players.We shownow that it is enough
to analyze weakly reflexivity fuzzy permission structures for our conjunctive option.
Let ρ ∈ FAN be a fuzzy permission structure. We test the claim

σρ◦
(S) = σρ(S). (6.7)

In fact, for each i ∈ N ,σρ◦
(S)(i) �= σρ(S)(i) if and only if

∨
j∈N\S ρ( j, i) < ρ(i, i).

Example 6.13 Figure6.9 represents a fuzzy permission structure ρ and its weakly
reflexive interior. Observe that player 2 depends on players 1, although the level of
dependency is 0.5 the level of activity of player 2 is only 0.2. Hence the level of
permission of player 1 over agent 2 can be reduced.

We summarize some properties of the fuzzy sovereign part.

http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Fig. 6.9 weakly reflexive
interior
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Proposition 6.9 The fuzzy sovereign part in a fuzzy permission structure ρ

satisfies the following properties:

(1) σρ(S) ≤ τρ × eS, moreover σρ(∅) = 0 and σρ(N ) = τρ .
(2) If ρ = r ∈ AN then σρ(S) = eσ r (S) for all S ⊆ N.
(3) If S ⊆ T then σρ(S) ≤ σρ(T ).
(4) σρ(S) ∨ σρ(T ) ≤ σρ(S ∪ T ).
(5) σρ(S) ∧ σρ(T ) = σρ(S ∩ T ).

Proof (1) It is trivial by definition of fuzzy sovereign part.
(2) Let ρ = r ∈ AN . If i /∈ Nr then σρ(S)(i) = 0. If i /∈ S but i ∈ Nr then σρ(S)

(i) = 0 because there exists i ∈ N \ S with ρ(i, i) = 1. Suppose then i ∈ S ∩ Nr ,
the fuzzy sovereign part verifies

∨
j∈N\S ρ( j, i) ∈ {0, 1}. If∨ j∈N\S ρ( j, i) = 0 then

σρ(S)(i) = 1 and r( j, i) = 0 for all j /∈ S, so i ∈ σ r (S). If
∨

j∈N\S ρ( j, i) = 1 then
σρ(S)(i) = 0 and there is j /∈ S with r( j, i) = 0, so i /∈ σ r (S).
(3) If S ⊆ T then N \ T ⊆ N \ S, therefore, for all ∈ N

∨
j∈N\T

ρ( j, i) ≤
∨

j∈N\S
ρ( j, i).

We get then
ρ(i, i) −

∨
j∈N\S

ρ( j, i) ≤ ρ(i, i) −
∨

j∈N\T
ρ( j, i).

So, σρ(S)(i) ≤ σρ(T )(i).
(4) As S, T ⊆ S ∪ T then, following the above step, σρ(S), σ ρ(T ) ≤ σρ(S ∪ T ).
So,

σρ(S) ∨ σρ(T ) ≤ σρ(S ∪ T ).

(5) Obviously σρ(S) ∧ σρ(T ) ≥ σρ(S ∩ T ). Let i ∈ N . We prove the another
inequality.There exists k /∈ S (or k /∈ T ) such thatσρ (S ∩ T ) (i) = ρ(i, i) − ρ (k, i),
namely
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ρ (k, i) =
∨

j∈N\(S∩T )

ρ ( j, i) =
∨

j∈N\S
ρ ( j, i) .

So, σρ (S ∩ T ) (i) = σρ (S) (i) ≥ σρ (S) (i) ∧ σρ (T ) (i). �

The fuzzy sovereign part determines a fuzzy coalition into each coalition. Now
we can use a partition by levels (Definition 2.7) of this fuzzy coalition to calculate
the worth of the coalition taking into account the information. Given a cooperative
game and a fuzzy permission structure we construct a new game using the worths of
the sovereign parts of the coalitions.

Definition 6.12 Let v ∈ G N and ρ ∈ FAN . Let pl be an extension for fuzzy
coalitions. The pl-permission game is defined for all coalition S as

vρ

pl(S) = vpl(σ ρ(S)) =
m∑

k=1

skv(Sk),

where pl(σ ρ(S)) = {(Sk, sk)}mk=1.

Gallardo et al. [1] analyzed this value using the Choquet extension and only for
reflexive fuzzy relations.

Example 6.14 Considerρ the fuzzypermission structure inFig. 6.10 for four players.
Suppose game v(S) = |S|2. We take the Choquet extension (see Definition 2.12).
The ch-permission game for the non-empty coalitions is in Table6.8, namely for any
coalition S

vρ

ch(S) =
∫
c
σρ(S) dv.

For instance, the worth of the great coalition is the Choquet integral of σρ(N ) =
(1, 1, 0.2, 0.7)

vρ

ch(N ) =
∫
c
σρ(N ) dv = 0.2v(N ) + 0.5v({1, 2, 4}) + 0.3v({1, 2}) = 8.9.

If we use the proportional extension (Definition 2.11) the game changes as we show
in Table6.9. Now, the worth of the great coalition is

Fig. 6.10 The fuzzy
permission structure in
Example 6.14
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http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Table 6.8 Game vρ
ch

S {1} {2} {3} {4} {1, 2}
σρ(S) (0.3, 0, 0, 0) (0, 0.5, 0, 0) (0, 0, 0.2, 0) (0, 0, 0, 0.7) (0.3, 0.6, 0, 0)

vρ
ch(S) 0.3 0.5 0.2 0.7 1.5

S {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
σρ(S) (1, 0, 0.2, 0) (0.3, 0, 0, 0.7) (0, 0.5, 0, 2, 0) (0, 0.5, 0, 0.7) (0, 0, 0.2, 0.7)

vρ
ch(S) 1.6 1.6 1.1 2.2 1.3

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

σρ(S) (1, 1, 0.2, 0) (0.3, 0.6, 0, 0.7) (1, 0, 0.2, 0.7) (0, 0.5, 0.2, 0.7) (1, 1, 0.2, 0.7)

vρ
ch(S) 5 4 4.1 3.2 8.9

Table 6.9 Game vρ
pr

S {1} {2} {3} {4} {1, 2}
σρ(S) (0.3, 0, 0, 0) (0, 0.5, 0, 0) (0, 0, 0.2, 0) (0, 0, 0, 0.7) (0.3, 0.6, 0, 0)

vρ
pr (S) 0.3 0.5 0.2 0.7 0.9

S {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
σρ(S) (1, 0, 0.2, 0) (0.3, 0, 0, 0.7) (0, 0.5, 0, 2, 0) (0, 0.5, 0, 0.7) (0, 0, 0.2, 0.7)

vρ
pr (S) 1.2 1 0.7 1.2 0.9

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

σρ(S) (1, 1, 0.2, 0) (0.3, 0.6, 0, 0.7) (1, 0, 0.2, 0.7) (0, 0.5, 0.2, 0.7) (1, 1, 0.2, 0.7)

vρ
pr (S) 4.2 1.6 1.9 1.4 4.9

vρ
pr (N ) = 1v({1, 2}) + 0.2v({3}) + 0.7v({4}) = 4.9.

Remark 6.3 There exist another way to analyze fuzzy permission, following the
strategy in the above chapters: partition by levels of the fuzzy graph. Taking into
account the philosophy of the book, we prefer to present a different technique.7 First
we should consider for this way anti-symmetric fuzzy relations and not the weak
condition because of bringing problems to the model. If ρ is a permission structure
and pl(ρ) = {(rk, sk)}mk=1 a partition by levels of the fuzzy graph, then we can use
the game

vρ

pl(S) =
m∑

k=1

skv
rk (S), ∀S ⊆ N

where vrk is the permission game (Definition 6.4) for each permission structure rk .
Look at the next example. We consider the fuzzy permission structure in Fig. 6.10.
Table6.10 shows the Choquet by graphs partition of the directed fuzzy graph

7Furthermore this option is not yet available in the literature.
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Table 6.10 cg-partition of a fuzzy permission structure

rk

1 

3 

2 

4 

1 

3 

2 

4 

1 

3 

2 

4 

1 

3 

2 

4 

1 

3 

2 

4 

sk 0.2 0.2 0.1 0.2 0.3

following Definition 4.17. So, taking the same game in Example 6.14, v(S) = |S|2,
the worth for instance of coalition {2, 3} is

vρ
cg({2, 3}) = 0.2vr1({2, 3}) + 0.2vr2({2, 3}) + 0.1vr3({2, 3})

+0.2vr4({2, 3}) + 0.3vr5({2, 3})
= 0.2 + 0 + 0 + 0.2 + 0.3 = 0.7.

Hence vρ
cg �= vρ

ch .

Following the crisp case, next properties are true for the pl-permission game using
any extension for fuzzy coalitions.

Proposition 6.10 Let v be a game and ρ be a fuzzy permission structure. For
every extension pl over coalitions it holds:

(1) If ρ = r ∈ AN then vρ

pl = vr .
(2) For all w ∈ G N and a, b ∈ R,

(av + bw)
ρ

pl = avρ

pl + bwρ

pl .

Particularly, (−v)ρpl = −(vρ

pl).
(3) For each coalition S,

(vsvg)ρpl(S) = (vρ

pl)
svg(S) +

∑
i∈S

[
σ

ρ

i (S) − σ
ρ

i ({i})] v({i}).

Proof (1) As pl is an extension (Definition 2.9) then we have pl(eT ) = {(T, 1)}
for all T ⊆ Nr . Proposition 6.9 implies that σρ(S) = eσ r (S). Hence pl(σ ρ(S)) =
{(σ r (S), 1)} and

vρ

pl(S) = 1v(σ r (S)) = vr (S).

(2) It is easy to test for the reader.

http://dx.doi.org/10.1007/978-3-319-56472-2_4
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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(3) Let S ⊆ N and pl(σ ρ(S)) = {(Sk, sk)}mk=1. Remember thatσρ(S)(i) = 0 if i /∈ S.
We obtain from (2.6),

(vsvg)ρpl(S) =
m∑

k=1

skv
svg(Sk) =

m∑
k=1

sk

⎡
⎣∑
i∈Sk

v({i}) − v(Sk)

⎤
⎦

=
⎡
⎣

m∑
k=1

sk
∑
i∈Sk

v({i})
⎤
⎦−

m∑
k=1

skv(Sk)

=
⎡
⎣∑
i∈N

⎛
⎝ ∑

{k:i∈Sk }
sk

⎞
⎠ v({i})

⎤
⎦− vρ

pl(S) =
[∑
i∈S

σρ(S)(i)v({i})
]

− vρ
pl(S).

On the other hand, as vρ

pl({i}) = σρ({i})(i)v({i}) for all player i ,

(vρ

pl)
svg(S) =

[∑
i∈S

vρ

pl({i})
]

− vρ

pl(S) =
[∑

i∈S
σρ({i})(i)v({i})

]
− vρ

pl(S)

The subtraction of both equalities gets

(vsvg)ρpl(S) − (vρ

pl)
svg(S) =

∑
i∈S

[
σρ(S)(i) − σρ({i})(i)] v({i}).

�

It is not possible to analyze for all the extensions pl the inherited properties from
the original game. Following Sect. 2.4, for the proportional extension the only inher-
ited property is the superadditivity, but for the Choquet extension all the properties
are inherited. However now we need monotonicity since Proposition 6.9. We can say
from Propositions 6.9 and 2.8 for the Choquet extension the following properties.

Proposition 6.11 Let v be a game and ρ be a fuzzy permission structure.

(1) If v is monotonic then vρ

ch is monotonic.
(2) If v is monotonic and superadditive then so is vρ

ch
(3) If v is monotonic and convex then vρ

ch is convex.

Following Huettner andWiese [5] the coercive version of the model is introduced.

http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Definition 6.13 Given an extension pl for fuzzy coalitions. The pl-coercive
game is defined for a game v ∈ G N and a fuzzy permission structure ρ ∈ FAN

as
v̄ρ

pl(S) = vpl(σ̄ ρ(S)),

where the fuzzy coercion part for each i ∈ N is

σ̄ ρ(S)(i) = τρ(i) ∧
∨
j∈S

ρ( j, i).

Observe that we have in this case ρ(i, i) ≤ σ̄ r (S)(i) if i ∈ S. We can also test that
σ̄ ρ = σ̄ ρ◦

. In fact, given a coalition S, if we take i with some j ∈ S with ρ( j, i) >

ρ(i, i) then ρ◦( j, i) = ρ(i, i). Hence σ̄ ρ(S)(i) = ρ(i, i) = σ̄ ρ◦
(S)(i).

Example 6.15 In this example we look at Fig. 6.10 as a coercive structure. Obvious
we say see the same but we change our interpretation. Now the coercive coalition of
{3} is

σ̄ ρ({3}) = (0.7, 0.4, 0.2, 0).

So, the worth using the Choquet extension for the game in Example 6.14 is

v̄ρ

ch({3}) =
∫
c
σ̄ ρ({3}) dv = 2.9.

Table6.11 shows the ch-coercive game of that example.

There is also relation between both models, the fuzzy permission one and the
fuzzy coercive one, in a dual way as in the crisp case (Proposition 6.5).

Table 6.11 Game v̄ρ
ch

S {1} {2} {3} {4} {1, 2}
σ̄ ρ(S) (1, 0.5, 0, 0) (0, 1, 0, 0) (0.7, 0.4, 0.2, 0) (0, 0, 0, 0.7) (1, 1, 0, 0)

v̄ρ
ch(S) 2.5 1 2.9 0.7 4

S {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
σ̄ ρ(S) (1, 0.5, 0.2, 0) (1, 0.5, 0, 0.7) (0.7, 1, 0.2, 0) (0, 1, 0, 0.7) (0.7, 0.4, 0.2, 0.7)

v̄ρ
ch(S) 3.5 5.6 4.1 3.1 6.5

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

σ̄ ρ(S) (1, 1, 0.2, 0) (1, 1, 0, 0.7) (1, 0.5, 0.2, 0.7) (0.7, 1, 0.2, 0.7) (1, 1, 0.2, 0.7)

v̄ρ
ch(S) 5 7.5 7 8 8.9
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Proposition 6.12 Let pl be an extension for fuzzy coalitions and let ρ ∈ FAN

be a fuzzy permission structure. For all v ∈ G N it holds

(v̄ρ

pl)
dual(S) = vpl(τ ρ) − vpl(τ ρ − σρ(S)),

with S ⊆ N.

Proof For the great coalition we get σ̄ ρ(N ) = τρ because for each player i ,

σ̄ ρ(N )(i) = ρ(i, i) ∧
∨
j∈N

ρ( j, i) = ρ(i, i) = τρ(i).

So, vpl(σ̄ ρ(N )) = vpl(τ ρ). We prove the claim

τρ − σρ(S) = σ̄ r (N \ S).

We can suppose ρ weakly reflexive. Let i ∈ N . We obtain

τρ(i) − σρ(S)(i) = ρ(i, i) −
⎡
⎣ρ(i, i) −

∨
j∈N\S

ρ( j, i)

⎤
⎦

=
∨

j∈N\S
ρ( j, i) = σ̄ ρ(N \ S)(i).

Using the definition of the dual game (1.5), we get for each coalition S

(v̄ρ

pl)
dual(S) = v̄ρ

pl(N ) − v̄ρ

pl(N \ S) = vpl(σ̄ ρ(N )) − vpl(σ̄ ρ(N \ S))

= vpl(τ ρ) − vpl(τ ρ − σρ(S)).

�

6.5 Values for Games with Fuzzy Permission Structure

We study several values inspired on the fuzzy conjunctive approach. Each pair
(v, ρ) ∈ G N × FAN is called a game over N with a fuzzy permission structure.
A value for games with fuzzy permission structure is

f : G N × FAN → R
N .

We extend first the local permission value (Definition 6.6) to the fuzzy context.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Definition 6.14 The local pl-permission value is a value for games over N
with fuzzy permission structure defined for each v ∈ G N and ρ ∈ FAN as

δ pl(v, ρ) = φ(vρ

pl).

Example 6.16 We consider again game v(S) = |S|2 with the permission structure ρ

in Fig. 6.10. Table6.8 determined the fuzzy sovereign parts of the coalitions and the
ch-permission game. The local ch-permission value is

δch(v, r) = φ(vρ

ch) = (2.48, 2.27, 2.07, 2.08) .

But alsowecandefine the local pr -permissionvalueusing theproportional extension.
Now we take Table6.9 obtaining

δ pr (v, r) = φ(vρ
pr ) = (1.5, 1.35, 1.35, 0.7) .

In this model we follow Gallardo et al. [1] using an axiomatization only for
the Choquet model and reflexive fuzzy permission structures. So, we can see how
the models can be studied using particular properties of the Choquet integral (see
Sect. 2.1).

We look for axioms to determine the local ch-permission value for games with a
broader family of permission structures.

Definition 6.15 A fuzzy permission structure ρ ∈ FAN is z-reflexive with
z ∈ (0, 1] if for all ρ(i, j) > 0 it holds ρ(i, j) ≤ ρ( j, j) = z. The family of
fuzzy permission structures which are z-reflexive for some z is denoted as
FAN

0 .

If ρ is a z-reflexive permission structure then ρ is weakly reflexive and the fuzzy
domain satisfies τρ = zeN

ρ

being N ρ the domain of ρ. Figure6.11 represents a 0.7-
reflexive permission structure. We use ρ ∈ FAN

0 with constant z to say z-reflexive
permission structure.

Fig. 6.11 0.7-reflexive
permission structure

0.4 

0.7 1 

3 

2 

0.7 

0.2 

http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Efficiency would depend now on the chosen partition by levels of the sovereign
part of the great coalition, the fuzzy domain, but as the structure is z-reflexive coin-
cides with the crisp domain.

Restricted efficiency. For all v ∈ G N and ρ ∈ FAN
0 with constant z,

f (v, ρ)(N ) = zv(N ρ).

We say that i ∈ N is fuzzy inessential for ρ ∈ FAN
0 and v ∈ G N if j is a null

player in v when ρ(i, j) > 0.

Fuzzy inessential player. Let ρ ∈ FAN
0 and v ∈ G N . If i ∈ N is a fuzzy inessential

player, it holds fi (v, ρ) = 0.

Linearity. For all v,w ∈ G N , a, b ∈ R and r ∈ FAN
0 it holds

f (av + bw, r) = a f (v, r) + b f (w, r).

Players with veto power over necessary players are also necessaries, but in this case
veto power implies total control of the activity of the another agent.

Fuzzy veto power over necessary players.8 Let v ∈ G N
m be a monotone game and

ρ ∈ FAN
0 with constant z. If i ∈ N is a necessary player for v and k ∈ N with

ρ(k, i) = z then fk(v, r) ≥ f j (v, r) for all j ∈ N .
For the fuzzy case we need another axiom linked to a usual characteristic of the

Choquet integral, comonotonicity (2.3). If ρ, ρ ′ ∈ FAN
0 with τρ = τρ ′ = zeN

ρ

then
for all t ∈ [0, 1] we have tρ + (1 − t)ρ ′ ∈ FAN

0 . If i, j ∈ N then

tρ(i, j) + (1 − t)ρ ′(i, j) + tρ( j, i) + (1 − t)ρ ′( j, i)
= t[ρ(i, j) + ρ( j, i)] + (1 − t)[ρ ′(i, j) + ρ ′( j, i)] ≤ 1.

Also when we suppose ρ(i, j) > 0 (or ρ ′(i, j) > 0)

tρ(i, j) + (1 − t)ρ ′(i, j) ≤ tρ( j, j) + (1 − t)ρ ′( j, j) = z,

because if ρ( j, j) = z then ρ ′( j, j) = z.

Comonotonicity.9 Let v ∈ G N and t ∈ [0, 1]. For all ρ, ρ ′ ∈ FAN
0 comonotone (as

fuzzy sets, see Sect. 3.3) with τρ = τρ ′
it holds

f (v, tρ + (1 − t)ρ ′) = t f (v, ρ) + (1 − t) f (v, ρ ′).

Gallardo et al. [1] proved that these axioms (similar to them) permit to determine
the local permission value.

8This axiom is not satisfied for all extension pl.
9This axiom is also not satisfied for any extension pl.

http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_3
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Theorem 6.6 The local ch-permission value is the only value for games
over N with z-reflexive fuzzy permission structure satisfying restricted effi-
ciency, inessential player, veto power over necessary player, linearity and
comonotonicity.

Proof We test that the local ch-permission value verifies the axioms.
Restricted efficiency.As ρ is z-reflexive then σρ(N ) = τρ = zeN

ρ

. Let v ∈ G N ,
efficiency of the Shapley value (Proposition 1.9), Proposition 6.9 and property (C7)
of the Choquet integral imply

∑
i∈N

δchi (v, ρ) =
∑
i∈N

φi (v
ρ

ch) = vρ

ch(N ) = vch(σ ρ(N )) =
∫
c
zeN

ρ

dv = zv(N ρ).

Inessential player. We denote the different worths in {z − ρ( j, i)}( j,i)∈N×N as
the set D = {0 = t0 < · · · < tm}. This set satisfies

im0(σ
ρ(S)) ⊆ D

for all coalition S. In fact, if t ∈ im(σ ρ(S)) then there exist i ∈ S and j ∈ N \ S
with t = z − ρ( j, i). Property (C10) of the Choquet integral in Sect. 2.1 implies that

∫
c
σρ(S) dv =

m∑
p=1

(tp − tp−1)v
([

σρ(S)
]
tp

)
.

Let i ∈ N such that j is a null player in a game v when ρ(i, j) > 0. We will prove
that i is a null player in vρ

ch . We take S with i ∈ S. Fixed tp, with p = 1, . . . ,m, if
player j ∈ [σρ(S)]tp \ [σρ(S \ {i})]tp then:
• z −∨k∈N\S ρ(k, j) ≥ tp thus z − tp ≥ 0,
• and z − ρ(i, j) < tp therefore ρ(i, j) > z − tp ≥ 0.

As in the crisp case (Theorem 6.1), we get v
(
[σρ(S)]tp

) = v
(
[σρ(S \ {i})]tp

)
and

finally
vρ

ch(S) = vρ

ch(S \ {i}).

Shapley value satisfies null player, hence δchi (v, ρ) = 0.
Veto power over necessary players. Let i a necessary player and j ∈ N with
ρ( j, i) = z. We will prove that j is a necessary player for vρ

ch . Suppose S ⊆ N \ { j},

σρ(S)(i) = z −
∨

k∈N\S
ρ(k, i) = 0.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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For all t the corresponding cut verifies i /∈ [σρ(S)]t , so v ([σρ(S)]t ) = 0. Property
(C6) implies vρ

ch(S) = 0. Necessary player is satisfied by Shapley value (Proposition
1.11),

δchj (v, ρ) = φ j (v
ρ

ch) ≥ φk(v
ρ

ch) = δ
ρ

ch(v, ρ),

for all k ∈ N .
Linearity. The result follows from Proposition 6.10 and the linearity of the Shapley
value.
Comonotonicity. Let t ∈ [0, 1]. Let also ρ, ρ ′ ∈ FAN

0 comonotone with τρ = τρ ′
.

Remember from (2.3) that for all (i, j), (i ′, j ′) ∈ N × N it holds

[
ρ(i, j) − ρ(i ′, j ′)

] [
ρ ′(i, j) − ρ ′(i ′, j ′)

] ≥ 0.

Hence for any coalition S and i ∈ N we obtain the same ki /∈ S satisfying

∨
k∈N\S

ρ (k, i) = ρ(ki , i) and
∨

k∈N\S
ρ ′ (k, i) = ρ ′(ki , i).

This last reason implies two things for a coalition S:

• Fuzzy coalitions σρ(S), σ ρ ′
(S) are comonotone (and then also tσρ(S), (1 −

t)σ ρ ′
(S)). Let i, j ∈ N with σρ(S)(i) ≥ σρ(S)( j). We have ρ(ki , i) ≤ ρ(k j , j).

Comonotonicity of ρ, ρ ′ implies ρ ′(ki , i) ≤ ρ ′(k j , j), and then we get the result
because of τρ = τρ ′

.
• The fuzzy sovereign part verifies

σ tρ+(1−t)ρ ′ = tσρ + (1 − t)σ ρ ′
,

because we obtain for all S ⊆ N

t
∨

j∈N\S
ρ ( j, i) + (1 − t)

∨
j∈N\S

ρ ′ ( j, i) = tρ(ki , i) + (1 − t)ρ ′(ki , i)

=
∨

j∈N\S

[
tρ ( j, i) + (1 − t)ρ ′ ( j, i)

]
.

These two facts allow us to calculate the ch-permission game of the convex combi-
nation for each coalition S. We use properties (C4) and (C5) of the Choquet integral
obtaining

vtρ+(1−t)ρ ′
ch (S) =

∫
c
σ tρ+(1−t)ρ ′

(S) dv =
∫
c
tσρ(S) + (1 − t)σ ρ ′

(S) dv

= t
∫
c
σρ(S) dv + (1 − t)

∫
c
σρ ′

(S) dv = tvρ

ch(S) + (1 − t)vρ ′
ch(S).

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_2
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Consider f a value for games with fuzzy reflexive permission structure satisfying
the four axioms. Suppose ρ ∈ FAN

0 with constant z. From linearity we only have to
obtain the uniqueness for the unanimity games. Let T ⊆ N be a non-empty coalition.
We reason by induction on |im(ρ)|. If |im(ρ)| = 1 then im(ρ) = {z} because ρ is
z-reflexive. Hence, ρ = zr with r ∈ AN . We can repeat the uniqueness part of the
proof in Theorem 6.1. Players out of T are null. We denote as

RT = {k ∈ N : ∃i ∈ T with r(k, i) = 1}.

Players out of RT are fuzzy inessential in ρ for uT thus their payoffs are zero. Players
in T are necessary in the unanimity game. Fuzzy veto power over necessary players
implies that all the players in RT must have the same payoff, K . Now efficiency says

∑
i∈N

fi (uT , r) = |RT |K = uT (N ).

So, we obtain K = 1/|RT |. Suppose true the uniqueness when |im(ρ)| < d with
d > 1. Finally we apply comonotonicity when we have ρ ∈ FAN

0 with |im(ρ)| = d.
If im(ρ) = {λ1 < · · · < λd = z}. Consider the fuzzy permission structures,

ρ1(i, j) =
{
z, if ρ(i, j) = z
0, otherwise

ρ2(i, j) =
⎧⎨
⎩
z, if ρ(i, j) = z
zρ(i, j)

λd−1
, otherwise.

Obviously,

ρ =
(
1 − λd−1

z

)
ρ1 + λd−1

z
ρ2,

and τρ1 = τρ2 . The fuzzy relations ρ1, ρ2 are comonotone because if we take
(i, j), (i ′, j ′) with ρ1(i, j) = z and ρ1(i ′, j ′) = 0 then

ρ2(i
′, j ′) = z

ρ(i, j)

λd−1
≤ z = ρ2(i, j).

Furthermore |im(ρ1)| = 1 and |im(ρ2)| = d − 1. �

Remark 6.4 Certain conditions are necessary for working comonotonicity in the
above theorem. The problem is that we cannot guarantee the comonotonicity of the
sovereign parts from the comonotonicity of the structures. Look at the next example.
Consider the structures in Fig. 6.12. Obviously ρ and ρ ′ are comonotone but for
instance σρ({2, 3}) = (0, 0.7, 0) and σρ ′

({2, 3}) = (0, 0.117, 0.35), thus they are
not comonotone.

Next we prove some properties of the local permission value.



246 6 Fuzzy Permission

Fig. 6.12 Comonotonicity
needs reflexivity 1 
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Proposition 6.13 The local pl-permission value satisfies the following prop-
erties for a permission structure ρ.

(1) Let v ∈ G N
c ∩ G N

m . If S ⊆ N then δ pl(v, ρ)(S) ≥ v(σ ρ

pl(S)).
(2) For all game v it holds δ pl(v, ρ)(N ) = vpl(τ ρ).

Proof (1) Proposition 6.3 implies that vr is convex. Hence, Proposition 1.14 says

δ(v, r)(S) = φ(vr )(S) ≥ vr (S) = v(σ r (S)).

(2) We have σρ(N ) = τρ . Let v ∈ G N , efficiency of the Shapley value (Proposition
1.9) and Proposition 6.9 imply

∑
i∈N

δ
pl
i (v, ρ) =

∑
i∈N

φi (v
ρ

pl) = vρ

pl(N ) = vpl(τ ρ).

�

Gallardo et al. [1] introduced also a fuzzy transitive closure for fuzzy permission
structures in order to define a fuzzy permission value. This concept can change if we
use another T-norms.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Definition 6.16 Let ρ ∈ FAN . The fuzzy transitive closure of ρ is a fuzzy
permission structure ρ̂ defined, for all i, j ∈ N , with i �= j by

ρ̂ (i, j) =
∨

{i p}qp=0∈Pi j

q∧
p=1

ρ
(
i p−1, i p

)

where Pi j =
{{

i p
}q
p=0 ⊆ N : i0 = i, iq = j

}
and ρ̂(i, i) = ρ(i, i) for any

player i ∈ N .

The fuzzy permission structure ρ̂ is obviously transitive. Moreover, if ρ is transi-
tive then ρ̂ = ρ. If ρ = r ∈ AN then ρ̂ = r̂ , namely it is an extension of the transitive
closure (Definition 6.3) in the crisp case. Also generally ρ̂◦ �= ρ̂◦.

Example 6.17 Suppose the fuzzy permission structure ρ in Fig. 6.13. The fuzzy
transitive closure of ρ is in the same figure. In this case transitivity not only implies
new links, for instance ρ̂(1, 3) = 0.3, but also the level of a feasible link can increase,
for instance ρ(1, 4) = 0.2 but ρ̂(1, 4) = 0.5.

The second Shapley value for games with a fuzzy permission structure will use
the Shapley value of the fuzzy sovereign part in the transitive closure depending on
the chosen extension.

Definition 6.17 Let pl be an extension for fuzzy coalitions. The pl-permission
value is a value for games over N with fuzzy permission structure defined for
each v ∈ G N and ρ ∈ FAN as

δ̂ pl(v, ρ) = δ pl(v, ρ̂).

Fig. 6.13 Fuzzy transitive
closure for fuzzy permission
structure
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Fig. 6.14 The transitive
closure of the fuzzy
permission structure in
Example 6.14
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Table 6.12 Game v̂ρ
ch

S {1} {2} {3} {4} {1, 2}
σ ρ̂(S) (0.3, 0, 0, 0) (0, 0.5, 0, 0) (0, 0, 0.2, 0) (0, 0, 0, 0.7) (0.3, 0.5, 0, 0)

vρ
ch(S) 0.3 0.5 0.2 0.7 1.4

S {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
σρ(S) (1, 0, 0.2, 0) (0.3, 0, 0, 0.7) (0, 0.5, 0, 2, 0) (0, 0.5, 0, 0.7) (0, 0, 0.2, 0.7)

vρ̂
ch(S) 1.6 1.6 1.1 2.2 1.3

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

σ ρ̂(S) (1, 1, 0.2, 0) (0.3, 0.5, 0, 0.7) (1, 0, 0.2, 0.7) (0, 0.5, 0.2, 0.7) (1, 1, 0.2, 0.7)

vρ̂
ch(S) 5 3.7 4.1 3.2 8.9

Example 6.18 Consider the transitive closure ρ̂ of the fuzzy permission structure
in Fig. 6.10 for four players (see Fig. 6.14) an again the game v(S) = |S|2. The ch-
permission game for the non-empty coalitions is in Table6.12. Observe that there
is only an slight difference between the closure and the original structure, link 32
increases from 0.4 to 0.5. Tables6.8 and 6.12 have two different worths for coalitions
{1, 2} and {1, 2, 4}. The ch-permission value is

δ̂ch(v, ρ) = (2.45, 2.23, 2.15, 2.06)

Next axioms determine the ch-permission value for games over FAN
0 .

Transitive fuzzy inessential player. Let ρ ∈ FAN
0 and v ∈ G N . If i ∈ N is a player

satisfying that j is a null player in v when ρ̂(i, j) > 0, it holds fi (v, ρ) = 0.

Transitive fuzzy veto power over necessary players. Let v ∈ G N
m be a monotone

game and ρ ∈ FAN
0 with constant z. If i ∈ N is a necessary player for v then

fk(v, r) ≥ f j (v, r) for all j ∈ N and ρ̂(k, i) = z or k = i .

Theorem 6.7 The ch-permission value is the only value for games over N with
z-reflexive fuzzy permission structure satisfying restricted efficiency, transitive
fuzzy inessential player, transitive fuzzy veto power over necessary player,
linearity and comonotonicity.
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Proof The proof is like that one of Theorem 6.6. We only need to prove that
closure works well with comonotonicity. We take ρ, ρ ′ ∈ FAN

0 with τρ = τρ ′

and comonotone. Let t ∈ [0, 1]. If ρ ′′ = tρ + (1 − t) ρ ′ then we show that ρ̂ ′′ =
t ρ̂ + (1 − t) ρ̂ ′, for t ∈ [0, 1]. Indeed, given i, j ∈ N , it holds that

ρ̂ ′′ (i, j) =
∨

{i p}qp=0∈Pi j

q∧
p=1

(
tρ + (1 − t) ρ ′) (i p−1, i p

)

= t
∨

{i p}qp=0
∈Pi j

q∧
p=1

ρ
(
i p−1, i p

)+ (1 − t)
∨

{i p}qp=0
∈Pi j

q∧
p=1

ρ ′ (i p−1, i p
)

= t ρ̂ (i, j) + (1 − t) ρ̂ ′ (i, j)

These equalities are true because ρ, ρ ′ are comonotone and then the minimum is
obtained for the sameρ

(
i p−1, i p

)
and themaximum is obtained by the same sequence{

i p
}q
p=0 . Moreover, it is easy to check that ρ̂ and ρ̂ ′ are also comonotone. �

Finallywe study a fuzzy coercive value using the coercive gamegiven inDefinition
6.13.

Definition 6.18 Let pl be an extension for fuzzy coalitions. The local pl-
coercive value is a value for games with fuzzy permission structure defined for
each game v and fuzzy permission structure ρ as

δ̄ pl(v, ρ) = φ(v̄ρ

pl).

Example 6.19 We look again at Fig. 6.10 as a coercive structure. Table6.13 deter-
mine the ch-coercive game, thus the local ch-coercive value is

δ̄ch(v, ρ) = (2.041, 1.56, 2.51, 2.79)

We follow Huettner and Wiese [5] to axiomatize the new value for games with
reflexive fuzzy permission structure.

Fuzzy coercion power over sufficient players. Let v ∈ G N
m be amonotone game and

ρ ∈ FAN
0 with constant z. If i ∈ N is a sufficient player for v then fk(v, r) ≥ f j (v, r)

for all j ∈ N and ρ(k, i) = z.

The proof of the following theorem is similar to that in Theorem 6.6.

http://dx.doi.org/10.1007/978-3-319-56472-2_6
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Table 6.13 Game v̄ρ
ch

S {1} {2} {3} {4} {1, 2}
σ̄ ρ(S) (1, 0.5, 0, 0) (0, 1, 0, 0) (0.7, 0.4, 0.2, 0) (0, 0, 0, 0.7) (1, 1, 0, 0)

v̄ρ
ch(S) 2.5 1 2.9 0.7 4

S {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
σ̄ ρ(S) (1, 0.5, 0.2, 0) (1, 0.5, 0, 0.7) (0.7, 1, 0.2, 0) (0, 1, 0, 0.7) (0.7, 0.4, 0.2, 0.7)

v̄ρ
ch(S) 3.5 5.6 4.1 3.1 6.5

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

σ̄ ρ(S) (1, 1, 0.2, 0) (1, 1, 0, 0.7) (1, 0.5, 0.2, 0.7) (0.7, 1, 0.2, 0.7) (1, 1, 0.2, 0.7)

v̄ρ
ch(S) 5 7.5 7 8 8.9

Theorem 6.8 The local ch-coercive value is the only value for games over
N with z-reflexive fuzzy permission structure satisfying efficiency, fuzzy
inessential player, fuzzy coercion power over sufficient player, linearity and
comonotonicity.

Proof We test that the local coercive value verifies the four axioms. Suppose ρ a
reflexive fuzzy permission structure.
Efficiency. Let v ∈ G N , as the fuzzy permission structure is z-reflexive τρ = zeN

ρ

again. By efficiency of the Shapley value (Proposition 1.9) we get by property (C7)
of the Choquet integral,

∑
i∈N

δ̄chi (v, ρ) =
∑
i∈N

φi (v
ρ

ch) =
∫

zeN
ρ

dv = zv(N ρ).

Fuzzy inessential player. We have

{ρ( j, i)}(i, j)∈N×N ∪ {0} = {0 = t0 < · · · < tm = z} ⊇ im0(σ̄
ρ(S))

for all coalition S. In fact, if t ∈ im(σ̄ ρ(S)) then there exist j ∈ S with t = ρ( j, i).
Property (C10) of the Choquet integral implies again that

∫
c
σ̄ ρ(S) dv =

m∑
p=1

(tp − tp−1)v
([

σ̄ ρ(S)
]
tp

)
.

Let i ∈ N such that j is a null player in a game v when ρ(i, j) > 0. We will prove
that i is a null player in v̄ρ

ch . We take S with i ∈ S. Fix tp, with p = 1, . . . ,m. Player
j ∈ [σ̄ ρ(S)]tp \ [σ̄ ρ(S \ {i})]tp if and only if ρ(i, j) ≥ tp > 0 from Definition 6.13.

http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Hence j is a null player in v. As in the crisp case (Theorem 6.1), we get

v
([

σ̄ ρ(S)
]
tp

)
= v
([

σ̄ ρ(S \ {i})]
tp

)

and finally v̄ρ

ch(S) = v̄ρ

ch(S \ {i}). Shapley value satisfies null player, therefore
δ̄chi (v, ρ) = 0.
Fuzzy coercion power over sufficient players.Wedefine gamew ∈ G N by

w(S) = zv(N ρ) −
∫
c

[
zeN

ρ − σρ(S)
]
dv

for each coalition S. We prove that if v ∈ G N
m then w ∈ G N

m . Let T ⊆ S. Proposi-
tion 6.9 implies σρ(T ) ⊆ σρ(S) and then zeN

ρ − σρ(S) ≤ zeN
ρ − σρ(S). As v is

monotone we can use property (C8) of the Choquet integral (Sect. 2.1) to obtain

∫
c
[zeNρ − σρ(S)] ≤

∫
c
[zeNρ − σρ(T )].

We get

w(T ) = zv(N ρ) −
∫
c
[zeNρ − σρ(S)] dv ≤ zv(N ρ) −

∫
c
[zeNρ − σρ(T )] = w(S).

Let k ∈ N be a fuzzy sufficient player in v and i with ρ(i, k) = z. We prove now
that i is a necessary player in w. If we consider S ⊆ N \ {i}, we have that ze{k} ≤
zeN

ρ − σρ(S) because σ
ρ

k (S) = 0 by Definition 6.10. So, using (C7) and (C8),

0 ≤ w(S) = zv(N ρ) −
∫
c
[zeNρ − σρ(S)]

≤ zv({k}) −
∫
c
[zeNρ − σρ(S)] =

∫
c
ze{k} dv −

∫
c
[zeNρ − σρ(S)] ≤ 0.

Hence w(S) = 0. Observe that Proposition 6.12 says
(
v̄ρ

ch

)dual = w. Propositions
1.15 and 1.11 imply

δ̄chi (v, ρ) = φi (v̄
ρ

ch) = φi

((
v̄ρ

ch

)dual) = φi (w) ≥ φ j (w) = δ̄chj (v, ρ)

for all j ∈ N .
Linearity. The result is easy and similar to Theorem 6.6.
Comonotonicity. Let t ∈ [0, 1]. Let also ρ, ρ ′ ∈ FAN

0 comonotone with τρ = τρ ′
.

For any coalition S and i ∈ N we obtain the same ki /∈ S satisfying

∨
k∈N\S

ρ (k, i) = ρ(ki , i) and
∨

k∈N\S
ρ ′ (k, i) = ρ ′(ki , i).

http://dx.doi.org/10.1007/978-3-319-56472-2_2
http://dx.doi.org/10.1007/978-3-319-56472-2_1
http://dx.doi.org/10.1007/978-3-319-56472-2_1
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Thus fuzzy coalitions σ̄ ρ(S), σ̄ ρ ′
(S) are comonotone (and then also tσρ(S), (1 −

t)σ ρ ′
(S)). Furthermore it holds

σ̄ tρ+(1−t)ρ ′ = t σ̄ ρ + (1 − t)σ̄ ρ ′
,

because we obtain for all S ⊆ N

t
∨

j∈N\S
ρ ( j, i) + (1 − t)

∨
j∈N\S

ρ ′ ( j, i) = tρ(ki , i) + (1 − t)ρ ′(ki , i)

=
∨

j∈N\S

[
tρ ( j, i) + (1 − t)ρ ′ ( j, i)

]
.

We use properties (C4) and (C5) of the Choquet integral obtaining

v̄tρ+(1−t)ρ ′
ch (S) =

∫
c
σ̄ tρ+(1−t)ρ ′

(S) dv =
∫
c
t σ̄ ρ(S) + (1 − t)σ̄ ρ ′

(S) dv

= t
∫
c
σ̄ ρ(S) dv + (1 − t)

∫
c
σ̄ ρ ′

(S) dv = t v̄ρ

ch(S) + (1 − t)v̄ρ ′
ch(S).

Consider f a value for games with fuzzy z-reflexive permission structure sat-
isfying the axioms. Suppose ρ ∈ FAN

0 . From linearity we only have to obtain the
uniqueness for the family of anyonegames (6.6)wT withT non-empty set. LetT ⊆ N
be a non-empty coalition. We follow by induction on |im(ρ)|. If |im(ρ)| = 1 then
im(ρ) = {z} because ρ is z-reflexive. Hence, ρ ∈ AN . Players out of T are null in
wT . We denote as

RT = {k ∈ N : ρ(k, i) = z for some i ∈ T }

Players in T are sufficient in the anyone game. Coercion power over sufficient players
implies that all the players in RT must have the same payoff, K . We apply efficiency
to get ∑

i∈N
fi (wT , ρ) = |RT |K = wT (N ) = 1.

So, we obtain K = 1/|RT |. Suppose true the uniqueness when |im(ρ)| < d with d >

1. Let ρ ∈ FAN
0 with |im(ρ)| = d. Consider as in Theorem 6.7 the fuzzy permission

structures ρ1, ρ2 which are comonotone, and |im(ρ1)|, |im(ρ2)| < d. �

Another interesting extension studied inChap. 2 is themultilinear one.But remem-
ber that this extension has a probabilistic sense, and then we should change the def-
inition of fuzzy sovereign part. If we suppose ρ ∈ FAN

0 then we interpret ρ(i, j) as
the probability of player j depends on player i . So, for all coalition S we can define

η
ρ

i (S) =
∏
j /∈S

(1 − ρ( j, i)),

http://dx.doi.org/10.1007/978-3-319-56472-2_2
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namely, the probability of player i does not depend on players out of S. There exists
one option where both concept of sovereign parts coincide, taking ρ as a forest of
rooted tree.

Definition 6.19 A fuzzy permission structure ρ is named hierarchical if it is
reflexive and for each i ∈ N there is at most one j ∈ N \ {i} with ρ( j, i) > 0.
The family of hierarchical fuzzy permission structures is denoted as FAN

1 .

Let ρ ∈ FAN
1 and S ⊂ N . If i ∈ S such there is not j ∈ N \ {i} with ρ( j, i) > 0

then η
ρ

i (S) = 1 = σ
ρ

i (S). Otherwise there is only one ji ∈ N \ {i}with ρ( ji , i) > 0.
If ji ∈ S then η

ρ

i (S) = 1 = σ
ρ

i (S) but if ji /∈ S then η
ρ

i (S) = 1 − ρ( ji , i) = σ
ρ

i (S).
Hence

ηρ(S) = σρ(S).

Let ρ ∈ FAN
1 . For all game v the ml-permission structure, following Definition

6.12, is

vρ

ml(S) = vml(σ ρ(S)) =
∑
T⊆S

⎡
⎣∏

i∈T
σ

ρ

i (S)
∏

i∈S\T
σ

ρ

i (S)

⎤
⎦ v(T ).

Observe that we can reduce the sum in the above multilinear expression to only
coalitions contain in S because otherwise the probability is zero.

Example 6.20 Figure6.15 shows a hierarchical fuzzy permission structurewith three
players. We construct the ml-permission game using the multilinear extension (Def-
inition 2.10) of game v(S) = |S|2. For instance, if we take coalition {2, 3} the fuzzy
sovereign part is σρ({2, 3}) = (0, 0.8, 0.6), and the worth in the multilinear exten-
sion,

vρ

ml({2, 3}) = vml(0, 0.8, 0.6)

= 0.2 · 0.4v(∅) + 0.8 · 0.4v({2}) + 0.2 · 0.6v({3}) + 0.8 · 0.6v({2, 3})
= 0.32 + 0.12 + 0.48 · 4 = 2.36.

Observe that vρ

ch({2, 3}) = 0.6v({2, 3}) + 0.2v({2}) = 2.8. Table6.14 determines all
the worths of vρ

ml . Now we determine the local ml-permission value,

δml(v, ρ) = φ(vρ

ml) = (3.64, 2.73, 2.63).

Fig. 6.15 Hierarchical fuzzy
permission structure

0.4 

1 

3 

2 
0.2 
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Table 6.14 Game vρ
ml

S {1} {2} {3} {1, 2}
σρ(S) (1, 0, 0) (0, 0.8, 0) (0, 0, 0.6) (1, 1, 0)

vρ
ml (S) 1 0.8 0.6 4

S {1, 3} {2, 3} {1, 2, 3}
σρ(S) (1, 0, 1) (0, 0.8, 0.6) (1, 1, 1)

vρ
ml (S) 4 2.36 9

Next we get an axiomatization of the localml-permission value. We introduce the
following axiom for a value f for games with hierarchical fuzzy permission structure
replacing comonotonicity.

Conditional reduction. Let ρ ∈ FAN
1 . If ρ(i, j) > 0 then for all game v,

f (v, ρ) = ρ(i, j) f (v, ρi j
1 ) + (1 − ρ(i, j)) f (v, ρi j

0 ).

where ρ
i j
1 = ρ except ρi j

1 (i, j) = 1 and ρ
i j
0 = ρ except ρi j

0 (i, j) = 0.

Theorem 6.9 The local ml-permission value is the only value for games
with hierarchical fuzzy permission value satisfying efficiency, fuzzy inessen-
tial player, fuzzy veto power over necessary players, linearity and conditional
reduction.

Proof First we prove that our value satisfies all the axioms. Let ρ ∈ FAN
1 .

Efficiency. As ρ is efficient the σρ(N ) = eN . We obtain

∑
i∈N

δml
i (v, ρ) =

∑
i∈N

φi (v
ρ

ml) = vρ

ml(N ) = vml(eN ) = v(N ).

Fuzzy inessential player. Suppose i ∈ N such that i and all player j with
ρ(i, j) > 0 are null players for a game v. We test that i is a null player for vρ

ml . Let S
be a coalitionwith i ∈ S. Let j with σ

ρ

j (S) > σ
ρ

j (S \ {i}). Theremust beρ(i, j) > 0,
σ

ρ

j (S) = 1 and σ
ρ

j (S \ {i}) = 1 − ρ(i, j). So, j is a null player in v. We denote as

M = { j ∈ S \ {i} : σ
ρ

j (S) > σ
ρ

j (S \ {i})}.

If R ⊆ S with i ∈ R then we take T = R \ {i} obtaining
∏
k∈R

σ
ρ

k (S)
∏

k∈S\R
(1 − σ

ρ

k (S))v(R) = σ
ρ

i (S)
∏
k∈T

σ
ρ

k (S)
∏

k∈(S\{i})\T
(1 − σ

ρ

k (S))v(T ).
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Also for any T ⊆ S with i /∈ T we get

∏
k∈T

σ
ρ
k (S)

∏
k∈S\T

(1 − σ
ρ
k (S))v(T ) = (1 − σ

ρ
i (S))

∏
k∈T

σ
ρ
k (S)

∏
k∈(S\{i})\T

(1 − σ
ρ
k (S))v(T ).

Adding the two above equalities

vρ

ml(S) =
∑

T⊆S\{i}

∏
k∈T

σ
ρ

k (S)
∏

k∈(S\{i})\T
(1 − σ

ρ

k (S))v(T ).

Now we use that if j ∈ M then σ
ρ

j (S) = 1, hence

vρ

ml(S) =
∑

M⊆T⊆S\{i}

∏
k∈T \M

σ
ρ

k (S)
∏

k∈(S\{i})\T
(1 − σ

ρ

k (S))v(T \ M).

Now take coalition S \ {i}. Let T ⊆ S \ {i} with j ∈ M \ T . We can give T ∪ { j}
verifying

∏
k∈T

σ
ρ

k (S \ {i})
∏

k∈(S\{i})\T
(1 − σ

ρ

k (S \ {i}))v(T )

= (1 − σ
ρ

j (S \ {i}))
∏
k∈T

σ
ρ

k (S \ {i})
∏

k∈(S\{i})\(T∪{ j})
(1 − σ

ρ

k (\{i}))v(T ∪ { j}).

and

∏
k∈T∪{ j}

σ
ρ

k (S \ {i})
∏

k∈(S\{i})\(T∪{ j})
(1 − σ

ρ

k (S \ {i}))v(T ∪ { j})

= σ
ρ

j (S \ {i})
∏
k∈T

σ
ρ

k (S \ {i})
∏

k∈(S\{i})\(T∪{ j})
(1 − σ

ρ

k (\{i}))v(T ∪ { j}).

If we repeat the reasoning with all the players in M \ T and we add all the two
obtained expressions we have

vρ

ml(S \ {i}) =
∑

M⊆T⊆S\{i}

∏
k∈T \M

σ
ρ

k (S)
∏

k∈(S\{i})\T
(1 − σ

ρ

k (S))v(T \ M).

Fuzzy veto power over necessary players. Let j be a necessary player for
v ∈ G N

m . If i ∈ N satisfying ρ(i, j) = 1 then i is a necessary player for vρ

ml . In fact,
if S is a coalition with i /∈ S then σ

ρ

j (S) = 0. So, as j is necessary for v

vρ

ml(S) =
∑
j∈T⊆S

∏
k∈T

σ
ρ

k (S)
∏

k∈S\T
(1 − σ

ρ

k (S))v(T ) = 0.
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Linearity. The proof is similar to the others axiomatizations in the section.
Conditional reduction. Suppose ρ(i, j) > 0 with i �= j . Observe that for all

coalition S it holds vρ

ml(S) = v
ρ
i j
1

ml (S) = v
ρ
i j
0

ml (S) except if j ∈ S and i /∈ S. Let S
verifying these conditions, we get σρ

j (S) = 1 − ρ(i, j) and

vρ

ml(S) =
∑
T⊆S

∏
k∈T

σ
ρ

k (S)
∏

k∈S\T
(1 − σ

ρ

k (S))v(T )

= (1 − ρ(i, j))
∑
j∈T⊆S

∏
k∈T \{ j}

σ
ρ

k (S)
∏

k∈S\T
(1 − σ

ρ

k (S))v(T )

+ρ(i, j)
∑
j /∈T⊆S

∏
k∈T

σ
ρ

k (S)
∏

k∈S\(T∪{ j})
(1 − σ

ρ

k (S))v(T )

= (1 − ρ(i, j))v
ρ
i j
1

ml (S) + ρ(i, j)v
ρ
i j
0

ml (S).

Last equality is true because we have ρ
i j
1 (i, j) = 1 and ρ

i j
1 (i, j) = 0.

Thefirst part of the uniqueness is the same that inTheorem6.6, reasoningby induc-
tion in this case on the number of links with ρ(i, j) ∈ (0, 1). Conditional reduction
gets the result. �
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V
Value, 16, 20
Value with fuzzy information, 65
Value with information, 64
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W
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