
Constraint Programming for Association Rules

Mohamed-Bachir Belaid∗ Christian Bessiere∗ Nadjib Lazaar∗

Abstract

Discovering association rules among items in a dataset
is one of the fundamental problems in data mining. It
has recently been shown that constraint programming
is a flexible way to tackle data mining tasks. In this pa-
per we propose a declarative model based on constraint
programming to capture association rules. Our model
also allows us to specify any additional property and/or
user’s constraints on the kind of rules the user is looking
for. To implement our model, we introduce a new global
constraint, Confident, for ensuring the confidence of
rules. We prove that completely propagating Confi-
dent is NP-hard. We thus provide a decomposition of
Confident. In addition to user’s constraints on the
items composing body and head of the rules, we show
that we can capture the popular minimal non-redundant
property of association rules. An experimental analysis
shows the practical effectiveness of our approach com-
pared to existing approaches.

1 Introduction

Mining association rules aims at discovering interest-
ing regularities between items in large-scale datasets.
Association rules (ARs) were originally introduced by
Agrawal et al. [1] for sales transactions and products.
An association rule captures an information of the kind
”if we have A and B, the chances to have C are high”.
Nowadays, a broad spectrum of application domains ask
for this kind of information with a variety of datasets.

In practice, the number of rules is often huge and
can easily exceed the size of the dataset itself. In this
case the user faces an enormous number of irrelevant
rules. However, most of the time the user is interested in
rules that satisfy some specific properties. For instance,
the user may ask for rules containing/not containing
some specific items [11], or rules with a body and/or
head of a given size, etc. The user may also ask
for some representative rules according to a condensed
representation. The cover operator allows us to derive
a set of rules from a representative one [8]. A stronger
version of representative rules consists in looking for
rules with minimum body maximum head [9]. Finally,

∗LIRMM, University of Montpellier, CNRS, Montpellier,
France, {belaid, bessiere, lazaar}@lirmm.fr

the most common notion of representative rules are the
minimal non-redundant association rules (MNR) [2]. A
rule is an MNR if there does not exist any other rule
with the same support and the same confidence that is
obtained by removing items from the body or adding
items to the head.

Several specialized algorithms have been proposed
to discover ARs and MNRs. For ARs, the process
starts first by discovering all frequent itemsets and
then generating all ARs. Discovering MNRs can be
reduced to seeking the set of frequent closed itemsets
(FCIs) and their frequent generator itemsets (FGIs).
The specialized algorithms differ in the way to reach
a matching between FCIs and FGIs. zart [14] is a
refined version of pascal [3] with an optimal way to
link an FGI to its FCI. The hybrid algorithm Eclat-
Z [15] combines zart with the vertical representation
of the dataset of the algorithm Eclat. Eclat-Z acts
in three steps. First, it uses the vertical algorithm
Eclat for extracting all frequent itemsets. Second, it
filters out the set of frequent itemsets to get FCIs and
FGIs. Then, it associates FGIs to their FCIs. Such
hybridization makes Eclat-Z one of the fastest AR
mining algorithms.

Nevertheless, looking for ARs with additional user-
specified constraints remains a bottleneck. According
to Wojciechowski and Zakrzewicz [16], there are three
ways to handle the additional user’s constraints. We
can use a pre-processing step that restricts the dataset
to only transactions that satisfy the constraints. Such
a technique cannot be used on all kinds of constraints.
We can integrate the filtering of the user’s constraints
into the specialized data mining process in order to
extract only the ARs satisfying the constraints. Such a
technique requires the development of a new algorithm
for each new AR problem with user’s constraints. We
can finally use a post-processing step to filter out the
ARs violating the user’s constraints. Such a brute-force
technique can be computationally infeasible when the
problem without the user’s constraints has too many
solutions.

In a recent line of work [7, 10, 13], constraint
programming (CP) has been used as a declarative
way to solve some data mining tasks, such as itemset
mining or sequence mining. Such an approach has

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

not competed yet with state of the art data mining
algorithms in terms of CPU time for standard data
mining queries but the CP approach is competitive
as soon as we need to add user’s constraints. In
addition, adding constraints is easily done by specifying
the constraints directly in the model without the need
to revise the solving process. However, the CP approach
has not yet been applied to association rules.

The mining of association rules can be formulated as
a propositional satisfiability problem (SAT) with some
linear inequalities to ensure the minimum frequency and
the minimum confidence of a given rule [5, 6]. The
solving process is based on a pseudo-Boolean solver.

In this paper, we propose a full CP model for
finding ARs. We use global constraints to ensure
frequency and confidence of the rules. We take the
frequency global constraint from existing literature (i.e.,
CoverSize constraint [13]) but we need to introduce
a new global constraint Confident for ensuring the
minimum confidence of the extracted rules. We show
that domain consistency on Confident is NP-hard.
We then propose a decomposition of Confident. We
show that our CP model can easily be extended for
taking into account any kind of user’s constraints, such
as cardinality of the rule, mandatory or forbidden items
in the rule, etc. We show that our CP model is also able
to capture the notion of MNR. Experiments on several
known large-scale datasets show the effectiveness of our
CP model.

The paper is organized as follows. Section 2 gives
some background material. Section 3 presents our CP
model for computing association rules. Section 4 defines
the global constraint Confident, a global constraint
for ensuring the confidence of a rule. Section 5 presents
the extension of our CP model to compute MNRs. The
global constraint Generator, which is needed in that
model, is defined and a propagator is proposed. Section
6 reports experiments. Finally, we conclude in Section 7.

2 Background

2.1 Itemsets Let I = {1, . . . , n} be a set of n item
indices and T = {1, . . . ,m} a set of m transaction
indices. An itemset P is a non-empty subset of I.
D = {t1, . . . , tm} is the transactional dataset, where for
all i ∈ T , ti is an itemset. The cover of an itemset
P , denoted by cover(P), is the set of transactions
containing P . The (relative) frequency of an itemset

P is freq(P) = |cover(P)|
|T | . Let s ∈ [0..1] be some given

constant called a minimum support. An itemset P is
frequent if freq(P) ≥ s. An itemset P is closed if and
only if there does not exist any itemset Q) P such
that freq(Q) = freq(P). A generator is an itemset P
such that there does not exist any itemset Q (P such

Table 1: Transaction dataset example with six items and
five transactions.

trans. Items
t1 A B
t2 A C D E
t3 B C D F
t4 A B C D
t5 A B C F

that freq(Q) = freq(P). Generators were introduced
for efficiently mining frequent itemsets [3].

2.2 Association Rules An association rule is an
implication of the form X → Y , where X and Y are
itemsets such that X ∩ Y = ∅ and Y 6= ∅. X represents
the body of the rule and Y represents its head. The
frequency of a rule X → Y is the frequency of the
itemset X ∪ Y , that is, freq(X → Y) = freq(X ∪ Y).
The confidence of a rule captures how often Y occurs in
transactions containing X, that is, conf(X → Y) =
freq(X→Y)

freq(X) . Given a minimum confidence c, a rule

X → Y is confident if conf(X → Y) ≥ c. A rule
X → Y is valid if it is frequent and confident.

Example 1. Consider the transaction dataset pre-
sented in Table 1. The itemset BCD is closed, but
CF is not as freq(CF) = freq(BCF) = 40%. The
itemset AC is a generator because freq(AC) = 60%
and none of its subsets (∅, A, C) have the same fre-
quency (freq(∅) = 100%, freq(A) = freq(C) = 80%).
The itemset CD is not a generator because it has the
same frequency as one of its subsets: freq(CD) =
freq(D) = 60%. If s = 60% and c = 70%, C → A
is a valid association rule because freq(C → A) = 60%

and conf(C → A) = freq(C→A)
freq(C) = 75% ≥ 70%.

2.3 Constraint Programming (CP) A CP model
specifies a set of variables X = {x1, . . . , xn}, a set
of domains dom = {dom(x1), . . . , dom(xn)}, where
dom(xi) is the finite set of possible values for xi, and
a set of constraints C on X. A constraint cj ∈ C is
a relation that specifies the allowed combinations of
values for its variables var(cj). An assignment on a set
Y ⊆ X of variables is a mapping from variables in Y to
values, and a valid assignment is an assignment where
all values belong to the domain of their variable. A
solution is an assignment on X satisfying all constraints.
Constraint programming is the art of writing problems
as CP models and solving them by finding solutions.
Constraint solvers typically use backtracking search to
explore the search space of partial assignments. At each
assignment, constraint propagation algorithms (aka,

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

propagators) prune the search space by enforcing local
consistency properties such as domain consistency.

A constraint c on X(c) is domain consistent (DC) if
and only if, for every xi ∈ X(c) and every dj ∈ dom(xi),
there is a valid assignment satisfying c such that xi = dj .

Global constraints are constraints defined by a rela-
tion on any number of variables. The constraint AllDif-
ferent, specifying that all its variables must take differ-
ent values is an example of global constraint (see [12]).

Example 2. Consider the following instance of a CP
model. X = {x1, x2, x3}, dom(x1) = {0, 2}, dom(x2) =
{0, 2, 4}, dom(x3) = {1, 2, 3, 4}, and C = {x1 ≥
x2, x1 + x2 = x3}. Value 4 for x2 will be removed
by DC because of constraint x1 ≥ x2. Values 1 and
3 for x3 will be removed by DC because of constraint
x1 + x2 = x3. This CP model admits the two solutions
(x1 = 2, x2 = 0, x3 = 2) and (x1 = 2, x2 = 2, x3 = 4).

3 A CP Model for Association Rules

In this section we present CP-Rule, a CP model for
mining association rules. We introduce three vectors
x, y and z of n Boolean variables, where xi, yi and zi
respectively represent the presence of item i in the body
of the rule, in the head of the rule, and in the rule as a
whole. In the rest of the paper we will use the following
notations:

• x−1(1) = {i ∈ I | dom(xi) = {1}}
• x−1(0) = {i ∈ I | dom(xi) = {0}}

We use similar notations for vectors y and z. The model
CP-Rule should be specified so that for any assignment
on x, y, z that is a solution, x−1(1) → y−1(1) is a valid
association rule.

CP-Rule involves five types of constraints:

CP-RuleD,s,c(x, y, z) =

∀i ∈ I : ¬xi ∨ ¬yi (1)∨
i∈I yi (2)

∀i ∈ I : zi ⇐⇒ xi ∨ yi (3)

ConfidentD,c(x, y) (4)

FrequentD,s(z) (5)

The role of each type of constraint is the following:

(1) ensures that a given item cannot be both in the
body and in the head of a rule;

(2) ensures that the head of a rule is not empty;

(3) is a channelling constraint ensuring that z−1(1) =
x−1(1) ∪ y−1(1);

(4) is a global constraint that ensures that the rule
x−1(1)→ y−1(1) is confident w.r.t. c;

(5) is a global constraint that ensures that z−1(1) is
frequent w.r.t s.

The constraint FrequentD,s has already been
studied in the literature on itemset mining [7]. The
constraint ConfidentD,c, however, does not exist yet.
We define it in the next section.

4 The Global Constraint Confident

In this section, we present a new global constraint for
ensuring the confidence of an association rule. We prove
that it is unfortunately NP-hard to enforce domain con-
sistency on this constraint. We finally give a decompo-
sition, using existing constraints, which is semantically
equivalent to the Confident constraint.

Definition 1. (Confident constraint) Let x and
y be two vectors of Boolean variables. Let D be a
dataset and c a minimum confidence. The constraint
ConfidentD,c(x, y) holds if and only if conf(x−1(1)→
y−1(1)) ≥ c.

Theorem 1. Enforcing domain consistency on the con-
straint ConfidentD,c is NP-hard.

Proof. From [4] we know that if it is NP-complete to de-
cide whether there exists a valid assignment satisfying
a global constraint, then, enforcing domain consistency
on this constraint is NP-hard. We then prove that it is
NP-complete to decide if there exists a valid assignment
for ConfidentD,c.
Membership. Given the constraint ConfidentD,c(x, y)
and a valid assignment on x and y, we traverse the ta-
ble D and compute the size of the covers of the itemsets
x−1(1) and x−1(1) ∪ y−1(1). This is linear in |D|. We

then compute the ratio |cover(x
−1(1)∪y−1(1))|

|cover(x−1(1))| and com-

pare it to c to decide if the assignment satisfies the con-
straint. This is linear in log|D|.
Completeness. We reduce 3SAT to the problem of
deciding if there exists a valid assignment satisfying
ConfidentD,c(x, y). Given a 3SAT formula F on the
set V = {v1, . . . , vn} of Boolean variables, we construct
the following instance of the constraint ConfidentD,c.
For clarity purpose, we denote the items in the trans-
action table D by pos1, neg1, · · · , posn, negn, z.
Thus, x = {xpos1, xneg1, . . . , xposn, xnegn, xz} and y =
{ypos1, yneg1, . . . , yposn, ynegn, yz}. Domains are de-
fined by D(xposi) = {0, 1},∀i, D(xnegi) = {0, 1},∀i,
D(xz) = {0}, D(yposi) = {0},∀i, D(ynegi) = {0},∀i
and D(yz) = {1}. We denote by All the set of all
items. The confidence ratio c is set to 0.5.

The transactions table D is:

(i) All \ {z} (n times)

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

(ii) All \ {posi},∀vi ∈ V

(iii) All \ {negi},∀vi ∈ V

(iv) All \ {posi, negi, z},∀vi ∈ V (2 times)

(v) All\{it1, it2, it3, z}, for each clause cl in F , where
iti = posj if the ith literal in cl is vj , iti = negj

if the ith literal in cl is ¬vj .

Suppose a formula F is satisfiable. Let us denote by
S a solution of F . We construct the valid assignment
on x, y such that xposi = 1 and xnegi = 0 for each i
such that S[vi] = 1, and xposi = 0 and xnegi = 1 for
each i such that S[vi] = 0. Bear in mind that xz and
y are already assigned as they have a singleton domain.
By construction of D, x−1(1) ∪ y−1(1) appears in n
transactions (ii) and (iii). By construction again, x−1(1)
appears in the n transactions where x−1(1) ∪ y−1(1)
appears plus the n transactions (i). x−1(1) does not
appear in any transaction (iv) because they all miss
posi and negi for some i, whereas x−1(1) contains
posi or negi for all i. Finally, as S satisfies F ,
x−1(1) does not appear in any transaction (v) because
these transactions all miss at least the item of x−1(1)
corresponding to the literal satisfying the clause. As
a result, the rule x−1(1) → y−1(1) has confidence
n
2n = 0.5, and our assignment on (x, y) satisfies the
constraint ConfidentD,c(x, y).

Suppose now that A is a valid assignment on x, y
satisfying the constraint ConfidentD,c(x, y). Remem-
ber that y−1(1) necessarily contains z, so x−1(1) does
not. Hence, x−1(1) appears at least in the n trans-
actions (i) where y−1(1) does not appear. Now, y−1(1)
only appears in transactions (ii) and (iii) because it con-
tains z. Thus, x−1(1) must appear in at least n trans-
actions (ii) and (iii) to reach the confidence of 50%.
For a given i, x−1(1) must contain at least one among
posi and negi, otherwise the two corresponding trans-
actions (iv) would cover x−1(1) and not y−1(1), making
confidence impossible to reach. Thus, x−1(1) can (and
must) appear in exactly n transactions (ii) and (iii),
which means that for each i, exactly one among posi

and negi is in x−1(1). We then can build the mapping
from the assignment A on x, y to the instantiation S
on v1, . . . , vn such that S[vi] = 1 if A[xposi] = 1, and
S[vi] = 0 if A[xnegi] = 1. We have n transactions (i-
iv) covering x−1(1) ∪ y−1(1) and 2n covering x−1(1).
As transactions (v) do not contain z, they must not
cover x−1(1), otherwise confidence cannot be reached.
As a result, for every transaction (v), x−1(1) necessarily
contains at least one item (other than z) which is not
in the transaction. By construction of transactions (v)
and thanks to the mapping from A to S, this item cor-
responds to the truth value of a Boolean variable that

satisfies the clause of F associated with the transaction.
Therefore, F is satisfiable.

Consequently, deciding if there exists a valid assign-
ment satisfying the constraint ConfidentD,c is NP-
complete, and domain consistency on ConfidentD,c is
NP-hard. �

Theorem 1 tells us that we cannot efficiently enforce
domain consistency on ConfidentD,c unless P = NP .
We thus propose a weaker propagation operated by
a decomposition of ConfidentD,c using the global
constraint CoverSize [13], which is able to capture
the frequencies of x and z = x ∪ y. CoverSizeD(x, p)
holds if and only if p = |cover(x−1(1))|, where p is
an additional variable internal to the model. The
decomposition of ConfidentD,c is as follows.

ConfidentD,c(x, y) ≡

CoverSizeD(x, p)

CoverSizeD(x ∪ y, q)
q
p ≥ c

5 A CP model for computing MNRs

In this section we show how our CP-Rule model can
be extended to only return MNRs.

Definition 2. (Minimal Non-redundant Rule (MNR) [2])
Given a minimum support s and a minimum confi-
dence c, a minimal non-redundant association rule
r : X → Y is a valid rule such that there does not
exist any rule r′ : X ′ → Y ′ with X ′ ⊆ X, Y ⊆ Y ′,
freq(r) = freq(r′), conf(r) = conf(r′), and r 6= r′.

Example 3. From the transaction dataset presented in
Table 1 and with s = 20% and c = 20%. The rule
CD → E is redundant to the rule D → CE as D ⊂ CD,
E ⊂ CE, freq(CD → E) = freq(D → CE) = 20% and
conf(CD → E) = conf(D → CE) = 33.3%.

There exists an interesting operational characteri-
zation of MNRs [2].

Proposition 1. ([2]) An association rule X → Y is
an MNR if and only if:

freq(X → Y) ≥ s ∧ conf(X → Y) ≥ c (1)

X is a generator (2)

X ∪ Y is closed (3)

According to Proposition 1, our CP-Rule model
can be extended to a model able to extract MNRs by
adding two constraints:

mnRuleD,s,c(x, y, z) =

CP-RuleD,s,c(x, y, z) (1)

GeneratorD(x) (2)

ClosedD(z) (3)

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

In the model mnRule,

(1) CP-Rule ensures that the rule x−1(1) → y−1(1)
is valid;

(2) is a global constraint that ensures that the itemset
x−1(1) is a generator;

(3) is a global constraint that ensures that the itemset
z−1(1) is closed.

The new global constraint Generator is intro-
duced in the rest of this section.

Definition 3. (Generator constraint) Let x be a
vector of Boolean variables and D be a dataset. The
global constraint GeneratorD(x) holds if and only if
x−1(1) is a generator.

The propagator we propose for the Generator
constraint is based on the following property of gen-
erators.

Proposition 2. Given two itemsets P and Q, if P is
not a generator and P (Q, then Q is not a generator.

Proof. Derived from Theorem 2 in [3], where we set
frequency to 0. �

Algorithm. The propagator Filter-Generator
for the global constraint Generator is presented in
Algorithm 1. Filter-Generator takes as input the
variables x. Filter-Generator starts by computing
the cover of the itemset x−1(1) and stores it in cover

(line 3). Then, for each item j ∈ x−1(1), Filter-
Generator computes the cover of the subset x−1(1) \
{j}, and stores it in cov[j] (lines 4-5). Filter-
Generator can then remove items i that cannot
belong to a generator containing x−1(1). To do that,
for every item j in x−1(1) ∪ {i}, we compare the cover
of x−1(1) ∪ {i} (i.e., cover ∩ cover(i)) to the cover of
x−1(1)∪{i}\{j} (i.e., cov[j]∩cover(i)) (line 8). If they
have equal size (i.e., same frequency), we remove i from
the possible items, that is, we remove 1 from dom(xi)
and break the loop (line 9).

Theorem 2. The propagator Filter-GeneratorD
enforces domain consistency.

Proof. We first prove that the value 0 for a variable
xi such that i 6∈ (x−1(1) ∪ x−1(0)) always belongs
to a solution of the constraint Generator, and so
cannot be pruned by domain consistency. Suppose i 6∈
x−1(1)∪ x−1(0). If x−1(1) is a generator, removing the
value 0 from dom(xi) increases x−1(1) to x−1(1) ∪ {i},
and then x−1(1) cannot be returned as a generator,
which contradicts the hypothesis. Suppose now that

Algorithm 1: Filter-GeneratorD (x)

1 InOut: x = {x1 . . . xn}: Boolean item variables;

2 begin

3 cover← cover(x−1(1));
4 foreach j ∈ x−1(1) do

5 cov[j]← cover(x−1(1) \ {j});

6 foreach i 6∈ x−1(1) ∪ x−1(0) do
7 foreach j ∈ x−1(1) ∪ {i} do
8 if |cover ∩ cover(i)| = |cov[j] ∩ cover(i)|

then
9 dom(xi)← dom(xi) \ {1}; break;

x−1(1) is not a generator. We know from Proposition 2
that for any Q) x−1(1), Q is not a generator. Thus,
x−1(1) ∪ {i} cannot belong to any generator, and value
0 cannot be pruned from dom(xi).

We now prove that Filter-Generator prunes
value 1 from dom(xi) exactly when i cannot belong to
a generator containing x−1(1). Suppose value 1 of xi is
pruned by Filter-Generator. This means that the
test in line 8 was true, that is, there exists a sub-itemset
of x−1(1)∪{i} with the same frequency as x−1(1)∪{i}.
Thus, by definition, x−1(1) ∪ {i} does not belong to
any generator. Suppose now that value 1 of xi is not
pruned. From line 8, we deduce that there does not exist
any subset of x−1(1) ∪ {i} with the same frequency as
x−1(1)∪{i}. Thus x−1(1)∪{i} is a generator and value
1 of xi is domain consistent. �

Theorem 3. Given a transaction dataset D of n
items and m transactions, the algorithm Filter-
GeneratorD has an O(n2 ×m) time complexity.

Proof. Computing the size of the cover of an itemset is
in O(n ×m). Line 5 is called at most n times, leading
to a time complexity of O(n2×m). The test at line 8 is
done at most n2 times. The covers of x−1(1) ∪ {i} and
x−1(1)∪{i}\{j} at line 8 are computed in O(m) thanks
to the cover and cov data structures. Thus, the time
complexity of lines 6-9 is bounded above by O(n2×m).
As a result, Filter-Generator has an O(n2×m) time
complexity. �

Note that without the use of the cov structure (that
is, by recomputing cover(x−1(1)\{j}) at each execution
of the loop at line 6), the time complexity becomes
O(n3 × m). However, this version is less memory
consuming and can be more efficient in practice. It
is also important to stress that domain consistency
on Generator does not depend on x−1(0). Thus,
Filter-Generator is not called during the solving
process when a variable is instantiated to zero.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Table 2: Dataset Characteristics.

Dataset |T | |I| |T | ρ(%) Type of Data

Zoo 101 36 16 44 Animals data
Vote 435 48 16 33 Vote data
Anneal 812 93 42 45 Anneal data
Chess 3,196 75 37 49 Game steps
Mushroom 8,124 119 23 19 Species of mushrooms
Connect 67,557 129 43 33 Game steps
T10 100,000 1,000 10 1 Synthetic dataset
T40 100,000 1,000 40 4 Synthetic dataset
Pumsb 49,046 7,117 74 1 Census data
Retail 88,162 16,470 10 0.06 Retail market basket data

T10 = T10I4D100K T40 = T40I10D100K

6 Experimental Evaluation

We made several experiments to evaluate our CP model
for mining pure and constrained association rules. We
compared it to the state of the art approaches.

6.1 Benchmark datasets. We selected several real-
sized datasets from the FIMI repository.1 These
datasets have various characteristics representing dif-
ferent application domains. Table 2 reports for each
dataset the number of transactions |T |, the number
of items |I|, the average size of transactions |T |, the
density ρ (i.e., |T |/|I|), and its application domain.
The datasets are presented by increasing size |I| · |T |.
We selected datasets of various size and density. Some
datasets, such as Zoo and Chess, are very dense (resp.
44% and 49%). Others, such as T10 and Retail, are
very sparse (resp. 1% and 0.06%). The sizes of these
datasets vary from around 4, 000 to more than 109.

6.2 Experimental protocol. The implemen-
tation of our CP models and constraint prop-
agators were carried out in the Oscar solver
using Scala.2 The code is publicly available at
https://gite.lirmm.fr/belaid/cp4ar. For propa-
gating the Confident constraint, we have used the
decomposition of Confident presented in Section 3.
In the mnRule model presented in Section 5, we have
used the global constraint Generator presented in
the same section, and to ensure closedness, we have
used the constraint CoverClosure introduced in [13].
After a few preliminary tests, we decided to use 〈x, y, z〉
as variable ordering heuristics and smallest value first
as value ordering heuristics.

We compared our CP approach to the Eclat-Z
specialized algorithm for extracting ARs and MNRs
[15], and to a SAT-based approach [5, 6]. We used
the implementation of Eclat-Z publicly available in
the coron Data Mining Platform.3 In all the instances

1http://fimi.ua.ac.be/data/
2bitbucket.org/oscarlib/oscar/
3http://coron.loria.fr

presented in the following experiments, the minimum
confidence has been fixed to 90% so that we focus on
highly confident rules. All experiments were conducted
on an Intel core i7, 2.2Ghz with a RAM of 8Gb and a
timeout of one hour.

6.3 Mining association rules. Our first experi-
ment compares Eclat-Z to the SAT and CP ap-
proaches (denoted by sat and cp in the following) for
extracting the whole set of ARs. For each dataset, an
instance is characterized by its minimum support. For
instance, Zoo 50 denotes the instance of the Zoo dataset
with a minimum support of 50% (and always a minimum
confidence of 90%). For each dataset, we have selected
three instances according to the number of solutions.
The first instance has less than 1, 000 ARs, the sec-
ond instance has between 100, 000 and one million ARs,
and the third instance has more than one million ARs.
The only exception is the very large and sparse dataset
Retail, for which we could not reach large numbers of
solutions. Table 3 reports the CPU time, in seconds, for
each approach on each selected instance. We also report
the total number of ARs (#Tot) for each instance.4

The first observation that we can draw from Table 3
is that, as expected, the specialized algorithm Eclat-Z
performs very well. However, the CP approach is very
competitive too, and sometimes faster than Eclat-Z
(see the first instance of each dataset, where only a
few valid ARs exist). The explanation for this good
behavior of cp is the strength of constraint propagation
to rule out inconsistent parts of the search space. On
the contrary, on an instance as loose as Pumsb 80,
with 49, 000 transactions, 7, 000 items, and around 20
million solutions, the CP solver is almost reduced to an
enumerating process.

Concerning the SAT approach, on small and
middle-sized datasets (i.e., from Zoo to Connect), we
observe that sat performs reasonably well, although be-
ing slower than cp on almost all the instances. On larger
and larger datasets, the results of sat become worse and
worse. On very large datasets, sat reaches the one hour
timeout for T10 and T40 instances and out-of-memory
on all the instances of Pumsb and Retail. The out-of-
memory state is due to the fact that sat generates huge
propositional formulas to represent the dataset and the
constraints. For a dataset of n items and m transac-
tions, sat generates a formula of (2n+2m) variables and
a number of clauses bounded below by (n+m+nm). On
the instances where we observe an out-of-memory, sat
generates formulas of size ranging from 14Gb to 63Gb.

Finally, it is important to note that even when cp

4This number is computed by releasing the timeout.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Table 3: Eclat-Z vs sat vs cp for extracting ARs (time in
seconds)

Instances Eclat-Z sat cp #Tot

Zoo 50 0.07 0.02 0.04 292
Zoo 30 0.40 0.92 0.82 198,971
Zoo 5 24.99 106.52 43.45 30,792,317
Vote 35 0.04 0.32 0.05 271
Vote 10 1.81 255.52 1.79 419,204
Vote 5 5.66 1054.81 6.43 2,075,212

Anneal 96 0.08 0.19 0.06 798
Anneal 90 0.28 1.11 1.17 174,710
Anneal 80 93.96 467.83 208.87 84,589,753
Chess 95 0.08 0.56 0.07 474
Chess 80 0.62 5.97 2.16 349,298
Chess 60 15.98 260.21 68.74 17,522,446

Mushroom 50 0.10 3.78 0.10 469
Mushroom 21.5 0.59 51.87 1.43 112,826
Mushroom 10 27.81 686.39 50.67 14,331,056
Connect 99 0.64 26.90 0.04 70
Connect 94 0.99 95.97 7.70 201,928
Connect 90 3.03 1126.91 125.48 3,640,704
T10 0.5 0.29 to 2.71 532
T10 0.1 1.63 to 9.92 160,171
T10 0.02 15.12 to 63.35 1,303,932
T40 1.6 1.35 to 5.36 648
T40 1.3 1.73 to 13.16 101,588
T40 0.1 to to to > 7.109

Pumsb 96 1.31 oom 0.11 338
Pumsb 89 2.07 oom 8.39 135,677
Pumsb 80 34.35 oom 1567.72 19,749,382
Retail 0.5 1.59 oom 0.52 37
Retail 0.3 1.74 oom 2.27 75
Retail 0.1 2.53 oom 58.76 255

to: timeout oom: out-of-memory

reaches the timeout, it returns solutions on the fly before
the timeout. This is because cp, as opposed to Eclat-
Z, does not need to build any complex data structure
before starting the search for ARs. On T40 0.1, cp
returns the first solution in only 1.25 seconds and
returns more than 390 million solutions before the
timeout, whereas Eclat-Z does not return any AR to
the user before having computed its whole structure,
that is, no solution before the timeout on T40 0.1.

6.4 Mining MNRs. Our second experiment com-
pares Eclat-Z to sat and cp for extracting MNRs.
Table 4 reports the CPU time, in seconds, for each ap-
proach on each selected instance. We also report the
total number of MNRs (#Tot).

sat wins only on the smallest dataset (i.e., Zoo

instances). For larger datasets, the encoding of the
MNR constraints in sat can take three times more space
than the encoding of the original AR problem and then
can lead to an out-of-memory state. For instance, sat
encodes the AR problem on a Retail instance with a
formula of 63Gb. When moving to the MNR problem,
we reach 187Gb.

Eclat-Z can take significantly more time to enu-
merate MNRs than ARs. On the T10 0.02 instance, it
is easier for Eclat-Z to enumerate more than 1 million
ARs (15.12 seconds) than to enumerate 257 thousands

Table 4: Eclat-Z vs sat vs cp for extracting MNRs (time
in seconds)

Instances Eclat-Z sat cp #Tot

Zoo 50 0.04 0.03 0.07 177
Zoo 30 0.39 0.08 0.16 2,262
Zoo 5 8.21 0.47 0.61 13,988
Vote 35 0.05 0.38 0.08 271
Vote 10 10.95 29.08 2.02 259,445
Vote 5 47.40 49.14 3.23 505,225

Anneal 96 0.05 0.39 0.05 87
Anneal 90 0.18 0.60 0.38 4,825
Anneal 80 5.70 1.48 1.44 46,871
Chess 95 0.09 1.90 0.08 465
Chess 80 0.92 7.64 1.78 191,158
Chess 60 70.94 254.87 25.45 4,633,266

Mushroom 50 0.09 30.57 0.06 105
Mushroom 21.5 0.42 72.88 0.26 2,211
Mushroom 10 3.45 205.46 0.78 11,421
Connect 99 0.62 828.00 0.06 70
Connect 94 1.10 863.17 3.94 51,754
Connect 90 7.28 1107.33 19.39 322,838
T10 0.5 0.53 oom 6.40 532
T10 0.1 42.58 oom 21.01 147,549
T10 0.02 1131.39 oom 195.95 257,318
T40 1.6 3.54 oom 13.93 648
T40 1.3 8.97 oom 22.79 101,588
T40 0.1 to oom to > 109

Pumsb 96 1.44 oom 0.21 277
Pumsb 89 1.99 oom 7.43 69,222
Pumsb 80 71.96 oom 355.40 3,668,125
Retail 0.5 2.07 oom 2.47 37
Retail 0.3 2.01 oom 7.88 75
Retail 0.1 12.67 oom 120.94 253

to: timeout oom: out-of-memory

MNRs (1131.39 seconds). The opposite is observed on
cp. Such a performance is mainly due to the constraints
Generator and CoverClosure that provide the CP
solving process with more propagation to remove more
inconsistent values in the search space. This is especially
true when the number of non-solutions to prune is im-
portant. Nevertheless, the Retail instances contradict
this trend. This is explained by the fact that on Retail

almost all ARs are MNRs whereas in average on all our
instances only 7% of the ARs are MNRs. Hence, on
Retail the constraints Generator and CoverClo-
sure are redundant to the model for ARs (CP-Rule).
Thus, the propagators of Generator and CoverClo-
sure do not participate to the reduction of the search
space. They just waste time. For instance, cp ex-
plores exactly the same search space (2, 750 nodes) on
Retail 0.3 to extract ARs and MNRs (because all ARs
are MNRs).

Again, on the timeout instance T40 0.1, cp returns
its first solution in 1.23 seconds and returns more than
160 million MNRs before the timeout. Eclat-Z is not
able to return any MNR before the timeout.

6.5 Mining constrained association rules. In
many practical cases, the user asks for patterns satisfy-
ing some additional constraints. Such user’s constraints
are handled by data mining researchers, whenever possi-

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

ble, with (i) a pre-processing step reducing the dataset;
(ii) a filtering integrated in the specialized algorithm
(which requires to implement an ad hoc algorithm for
each user’s constraint); (iii) a post-processing step to
filter out the undesirable patterns.

In this section, we present experiments that show
the expressiveness of our cp approach in taking into
account user’s constraints, and the power of cp to
solve such combinatorial problems. We illustrate
with mandatory/forbidden-item constraints and with
cardinality constraints on the body or the head of
the rule. We compare our cp approach with sat
and Eclat-Z-pp (Eclat-Z with a post-processing
step filtering out the rules not satisfying the user’s
constraints). We selected the instances having more
than one million ARs in Table 3 (i.e., #Tot ≥ 106).

Mining rules with constraints on items. The
user can ask for rules with some specific items in the
body and/or the head. In the same way, a user can
ask for rules not involving a particular set of items.
For instance, we can want to extract rules between
electronics and cleaning items only. Or to extract rules
outside food items. We perform an experiment on the
following user query:

Q1 : Given two sets of items F and M, extract ARs
not containing F in the body,
and containing M in the head.

Q1 can easily be expressed in cp with the following
constraints:

CP-RuleD,s,c(x, y, z) ∧ ForbF (x) ∧MandM(y)

where, ForbF (x) ≡ (∀i ∈ F : xi = 0) and MandM(y) ≡
(∀i ∈M : yi = 1).

For our experiment, we generate sets F and M of
the same size. We randomly select a pair of items and
we put one in F and one in M. We repeat the process
until the number of solutions to Q1 falls under a very
low threshold. Table 5 reports the penultimate step,
that is, the F and M where the number of solutions
is the smallest above 10. We made an exception with
T10 0.02, that we will use to illustrate what happens on
an instance with no solution. Table 5 reports the CPU
time of Eclat-Z-pp, sat and cp on Q1. We also report
the number of solutions to Q1 (#Tot).

The main observation is that the declarative ap-
proaches sat and cp outperform Eclat-Z-pp. Eclat-
Z-pp extracts all ARs and filters out the rules the user is
not asking for. For Anneal 80, Eclat-Z-pp spends 14
minutes to extract and save more than 84 million ARs.
The post-processing step spends 10 minutes to filter out
this huge number of ARs and to return the only 21 so-

Table 5: Eclat-Z-pp vs sat vs cp on Q1 (time in seconds).

Instances |F| |M| Eclat-Z-pp sat cp #Tot

Zoo 5 11 11 535.69 0.02 0.02 15
Vote 5 7 7 38.57 0.16 0.04 14

Anneal 80 12 12 1454.23 0.19 0.01 21
Chess 60 9 9 292.59 0.54 0.07 32

Mushroom 10 10 10 263.93 19.82 0.02 21
Connect 90 9 9 61.04 24.22 0.02 19
T10 0.02 10 10 84.04 to 0.02 0
T40 0.1 10 10 to to 0.06 19
Pumsb 80 12 12 765.67 oom 0.02 23

to: timeout oom: out-of-memory

lutions of Q1. With sat and cp, the 21 solutions are
returned in less than one second.

For the SAT approach, the forbidden and manda-
tory constraints can easily be encoded with monomi-
als (i.e., unit clauses) that reduce the search space and
speed-up the resolution. However, when the size of the
dataset increases, the performance of sat decreases.
sat cannot solve T40 0.1 within the time out. In ad-
dition, sat faces again the problem of the size of the
formulas: Pumsb 80 has an out-of-memory.

On the instance with no solution T10 0.02, sat
cannot prove that no solution exists within the timeout.
Eclat-Z-pp spends more than 1 minute to extract
more than 1 million useless solutions and filter them
out. cp proves the absence of solutions in 0.02s.

Mining rules with cardinality constraints.
The user can also ask for rules with particular sizes of
body or head. We performed an experiment with the
following query:

Q2 : Extract ARs with a body not exceeding a size of ub
and a head of a minimum size of lb.

Q2 can easily be expressed in cp with:

CP-RuleD,s,c(x, y, z) ∧ atMostub(x) ∧ atLeastlb(y)

where atMostub(x) ≡
∑
i∈I

xi ≤ ub and atLeastlb(y) ≡∑
i∈I

yi ≥ lb.

For each instance, we select a lower-bound lb and an
upper-bound ub in order to have at least 10 solutions to
Q2. For that, we use two scenarios. The first scenario
starts by selecting the largest value for lb for which there
exist at least 10 ARs with a head of minimum size lb.
Then, we take for ub the size of the smallest body for
which there still exist at least 10 solutions. The second
scenario selects the smallest value for ub for which there
exist at least 10 ARs with a body not exceeding this
value. Then, we take for lb the size of the largest head
for which there still exist at least 10 solutions. Again,
for T10 0.02, we select lb and ub in order to illustrate
the case of no solution. Table 6 compares Eclat-Z-pp,

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Table 6: Eclat-Z-pp vs sat vs cp on Q2 (time in seconds).

Instances ub lb Eclat-Z-pp sat cp #Tot

Zoo 5 2 11 479.26 3.92 0.36 27
Zoo 5 1 9 491.48 0.17 0.06 12
Vote 5 4 8 37.69 282.25 0.66 13
Vote 5 1 2 38.49 1.41 0.05 23

Anneal 80 2 13 1567.48 1.14 0.26 76
Anneal 80 1 12 1622.19 0.53 0.15 73
Chess 60 2 9 280.60 2.17 0.20 20
Chess 60 1 8 284.22 1.07 0.08 24

Mushroom 10 1 11 249.00 47.52 0.07 14
Connect 90 1 11 61.80 30.41 0.26 12
T10 0.02 1 11 84.47 to 5.44 0
T40 0.1 1 11 to to 8.33 39
Pumsb 80 1 12 741.49 oom 0.34 32

to: timeout oom: out-of-memory

sat and cp acting on the query Q2. We report the CPU
time, in seconds. For each instance, we also report the
total number of solutions (#Tot).

We observe that cp wins on all instances. sat
reaches the one hour timeout on two instances whereas
these two instances are solved by cp in less than 10
seconds. Once again, sat faces an out-of-memory state
on Pumsb 80.

When comparing cp to Eclat-Z-pp we can observe
that for the instances having more than 10 million ARs
we have a significant gap in terms of CPU time. cp
on Anneal 80 returns the 73 solutions in less than one
second, whereas Eclat-Z-pp spends 13 minutes on the
post-processing step.

For the instance with no solution T10 0.02, sat
cannot prove there is no solution before the time out.
Eclat-Z-pp needs a post-processing of more than 1
minute to deal with the 1 million extracted ARs. cp
proves there is no solution in less than 6 seconds.

7 Conclusion

We have introduced a constraint programming model
for mining association rules. This model requires the
global constraint Confident for ensuring the confi-
dence of a rule. We proved that enforcing domain con-
sistency on this constraint is NP-hard, ruling out the
possibility of a polynomial domain consistency propa-
gator for Confident (unless P = NP). We thus pro-
posed a decomposition of the constraint. Our CP model
can easily be extended to extract different types of rules.
For instance, minimal non-redundant rules can be ex-
tracted thanks to a new global constraint Generator
for generators, for which we have proposed a polynomial
propagator achieving domain consistency. We also can
capture any kind of user’s constraint, such as mandatory
or forbidden items, cardinality, etc. We have empiri-
cally evaluated our CP approach for extracting associa-
tion rules with or without additional user’s constraints.
We have shown that the CP approach can solve huge

datasets as opposed to the SAT approach. Eclat-Z
needs to extract the whole set of rules before applying a
post-processing step and is thus not able to return any
solution before the rules extraction process has finished.

References

[1] R. Agrawal, T. Imieliński, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
In Acm sigmod record, volume 22, pages 207–216.
ACM, 1993.

[2] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and
L. Lakhal. Mining minimal non-redundant association
rules using frequent closed itemsets. Computational
Logic, pages 972–986, 2000.

[3] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and
L. Lakhal. Mining frequent patterns with counting
inference. SIGKDD Explorations, 2(2):66–75, 2000.

[4] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh.
The complexity of reasoning with global constraints.
Constraints, 12(2):239–259, 2007.

[5] A. Boudane, S. Jabbour, L. Sais, and Y. Salhi. A sat-
based approach for mining association rules. In IJCAI,
pages 2472–2478. AAAI Press, 2016.

[6] A. Boudane, S. Jabbour, L. Sais, and Y. Salhi. Enu-
merating non-redundant association rules using satisfi-
ability. In PAKDD, pages 824–836. Springer, 2017.

[7] L. De Raedt, T. Guns, and S. Nijssen. Constraint
programming for itemset mining. In KDD, pages 204–
212. ACM, 2008.

[8] M. Kryszkiewicz. Representative association rules. In
PAKDD, pages 198–209. Springer, 1998.

[9] M. Kryszkiewicz. Representative association rules and
minimum condition maximum consequence association
rules. PKDD, pages 361–369, 1998.

[10] N. Lazaar, Y. Lebbah, S. Loudni, M. Maamar,
V. Lemière, C. Bessiere, and P. Boizumault. A global
constraint for closed frequent pattern mining. In CP,
pages 333–349. Springer, 2016.

[11] D. Nguyen and B. Vo. Kse 2013. In Knowledge and
Systems Engineering, pages 307–318. Springer, 2014.

[12] F. Rossi, P. Van Beek, and T. Walsh. Handbook of
constraint programming. Elsevier, 2006.

[13] P. Schaus, J. O. Aoga, and T. Guns. Coversize: A
global constraint for frequency-based itemset mining.
In CP, pages 529–546. Springer, 2017.

[14] L. Szathmary, A. Napoli, and S. O. Kuznetsov. Zart:
A multifunctional itemset mining algorithm. In CLA,
pages 26–37, 2007.

[15] L. Szathmary, P. Valtchev, A. Napoli, and R. Godin.
An efficient hybrid algorithm for mining frequent clo-
sures and generators. In CLA, pages 47–58, 2008.

[16] M. Wojciechowski and M. Zakrzewicz. Dataset filtering
techniques in constraint-based frequent pattern min-
ing. Pattern detection and discovery, pages 301–318,
2002.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

