M646 Advanced Partial Differential Equations II

Theory of SemiGroups

Unbounded Operators

closed, densely defined operators accretive operators and uniqueness for the IVP the linear space, L(H), of bounded linear operators on H

Abstract IVP's

Solution operators and semigroups infinitesimal generator of semigroup properties of S(t) properties of the generator existence-uniqueness for the abstract IVP

Semigroups

exponential of a bounded operator Hille-Yosida theorem existence-uniqueness for the abstract IVP Lumer-Phillips theorem- examples Groups of solution operators- hyperbolic examples sectorial operators analytic semigroups existence-uniqueness for parabolic IVP's

Applications of S/G's to nonlinear IVP's

existence-uniqueness for the abstract semilinear IVP a nonlinear diffusion equation on \mathbb{R}^n an IBVP in 1-d a more difficult semilinear example in 1-d a semilinear problem in 2,3-d: $F(u) = f(u), F(u) = f(u) - u\nabla u$

The Navier-Stokes Equations

Equations of fluid flow

the conservations equations special cases: N-S eqs; Euler eqs; Steady N-S eqs; Stokes eqs

Stokes' problem

Settings: R^n ; $U \subset R^n$ open, bounded; $Q_n = (0,L)^n$ with periodic BC's Stokes problem in $Q_n = (0,L)^n$ with periodic BC's

Weak Formulation of Stokes Problem (part I)

The function space E(U); trace theorem in E(U) The function space V^o , H, and V ∇p for distributions, pCharacterization of H, V The Stokes Operator A, orthogonal projections

Weak Formulation of Stokes Problem (part II)

weak and variational formulation of the problem Existence theorem using Riesz theorem

Stationary N-S equations

weak formulation and the trilinear form Embedding results Properties of the trilinear form Fixed Point theorems existence using the Brouwer FP theorem existence using the Leray-Schauder theorem Uniqueness of the weak solution a non-uniqueness result inhomogeneous boundary data

Evolution N-S equations

Application of semigroups to prove local existence Linearized N-S equations Some more results from fctl analysis Existence of weak solutions to the N-S eqs existence of approximate solutions a-priori estimates and convergent subseqences passing to the limit uniqueness when n = 2 and results for n > 2Existence proof using semidiscretization

Bifurcation of Solutions to NL problems

Bifurcation examples- Taylor and Benard Problems Derivatives Gateaux derivative, Frechet derivative examples Implicit Function theorem on B-spaces Bifurcation from a simple eigenvalue theorem and proof examples Lyapunov-Schmidt method