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Contention Resolution in a Distributed System

Contention resolution
Instance

Given n processes A,..., P,, each competing for access to a
shared database. If two or more processes access the database
simultaneously, all processes are locked out.

Objective:

Devise a protocol to ensure all processes get through on a regular

basis.
P,

Restriction: Processes cannot communicate. P,

Challenge. Need symmetry-breaking paradigm. | /

P
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Contention Resolution: Randomized Protocol

Protocol:

Each process requests access to the database at time t with
probability p = 1/n.

Claim

Let S[i, t] denote the event that process i succeeds in accessing
the database at time t. Then

1 . 1
—<Pr[S5(@,1)]<—
e-n 2n
Proof process i requests access none of remaining n-1 processes request access

: . \ / n—1
By independence, Pr[S(i,1)]= p(1— p)

Setting p = 1/n, we have Pr[S(i,t)]:%(l_%)n—l
H_/

value that maximizes Pr[S(i, t)] between 1/e and 1/2
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Contention Resolution: Randomized Protocol

Useful facts from calculus.
As n increases from 2, the function:
- (1—%)" converges monotonically from 1/4 up to 1/e
- (1—%)"_1 converges monotonically from 1/2 down to 1/e.

Claim

The probability that process i fails to access the database in
e-n rounds is at most 1/e.  After e-n-(c In n) rounds, the probability is
atmost n~¢
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Contention Resolution: Randomized Protocol

Proof

Let F[i, t] be the event that process i fails to access database in
rounds 1 through t. By independence and previous claim, we have

PrF (i< (1- L)
— Choose t=|e-n| Pr[F (i t)]< )(eﬂ 1 g%

)cln n —c

— Choose t=[e-nllcihnl Pr[F(@if)]< (l =n
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Contention Resolution: Randomized Protocol

Claim

The probability that all processes succeed within 2e-n-In n rounds is
at least 1-1/n.

Proof

Let F[t] be the event that at least one of the n processes fails to
access database in any of the rounds 1 through t.

Pr[F1]] = P{CJ F[i,t]} < i PriFlisN <nll—Lf

o]

union bound previous slide

Union bound: Given events E;, ..., E, P{U E} <> Pr[E;]
i=1 =1
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Contention Resolution: Randomized Protocol

Choosing t=2[en|[Inn] yields Pr[F[f]] <nn?2=1/n
QED
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Global Minimum Cut

Global min cut
Instance
A connected, undirected graph G = (V, E)
Objective
Find a cut (A, B) of minimum cardinality.

Applications.

Partitioning items in a database, identify clusters of related
documents, network reliability, network design, circuit design, TSP
solvers.
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Global Minimum Cut

Network flow solution:
- Replace every edge (u, v) with two antiparallel edges (u, v) and
(v, u).
- Pick some vertex s and compute min s-v cut separating s from
each other vertex ve V.

False intuition; Global min-cut is harder than min s-t cut.
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Contraction Algorithm

Contraction algorithm ([Karger 1999]):

- Pick an edge e = (u,v) uniformly at random.

- Contract edge e.
- replace uand v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v; and v,
Return the cut (aII nodes that were contracted to form v,).
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Contraction Algorithm

Claim
The contraction algorithm returns a min cut with probability > 2

2
n

Proof
Consider a global min-cut (A*, B*) of G. A’ .
Let F* be edges with one endpoint in A* ><
and the other in B*. Let k = |F*| = size of
min cut. i

In first step, algorithm contracts an edge in F* with probability k/|E|.

Every node has degree >k since otherwise (A*, B*) would not be
min-cut. = |E| = "2kn.

Thus, algorithm contracts an edge in F* with probability < 2/n.
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Contraction Algorithm

Let E; be the event that an edge in F* is not contracted in iteration |.

Pr[El ﬁE2~~ﬁEn_2 ]
=P1’[E1]><Pr[E2 |E1] X"'XPI[En_Z |E1(WE2F\E”_3]

>(1-2)1--2.)-(1-2)1-2)
=225 0)
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Contraction Algorithm: Amplification

Amplification:
To amplify the probability of success, run the contraction algorithm
many times.

Claim.

If we repeat the contraction algorithm n?In n times with independent
random choices, the probability of failing to find the global min-cut is
at most 1/n?.

Proof
By independence, the probability of failure is at most

— 1 2_211171
21’1

n*Inn =
2 2 1 Rlnn ]
(3 T e
n i n | W n
(

1- 1) < 1fe
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Contraction Algorithm: The context

Remark:

Overall running time is slow since we perform ®(n?log n) iterations
and each takes ©(m) time.

Improvement: (Karger-Stein 1996) O(n? log®n).
— Early iterations are less risky than later ones: probability of

contracting an edge in min cut hits 50% when n/~2 nodes
remain.

— Run contraction algorithm until n/~2 nodes remain.

— Run contraction algorithm twice on resulting graph, and return
best of two cuts.

Extensions: Naturally generalizes to handle positive weights.
Best known: [Karger 2000] O(m log®n)

21-14

faster than best known max flow algorithm or

deterministic global min cut algorithm
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Expectation

Expectation.
Given a discrete random variables X, its expectation E[X] is defined by:

E[XED) v; Pr[X =v;]
j=0
Example
Waiting for a first success. Coin turns up heads with probability p and
tails with probability 1-p. How many independent flips X are
needed until first heads?

ElX]= ZJPr[X i= z]a p) T p="L j1-p)
-0 -0 I-p 5
Jj= Jj= \ / J

p l-p_ 1 j1tails 1 head
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Expectation: Two Properties

Lemma
If Xis a 0/1 random variable, E[X]=Pr[X=1].
Proof

n 1
E[X]=) v;Pr[X =v;]=) jPr[X = jl=Pr[X =1]
j=0 j=0

Linearity of expectation.

Given two random variables X and Y defined over the same sample
space, E[X + Y] = E[X] + E[Y]
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Guessing Cards

Game: Shuffle a deck of n cards; turn them over one at a time; try to
guess each card.

Memoryless guessing:  No psychic abilities; cannot even remember
what has been turned over already. Guess a card from full deck
uniformly at random.

Claim.
The expected number of correct guesses is 1.
Proof
Let X =1 if i"" prediction is correctand 0 otherwise.
Let X be the number of correct guesses, i.e. X;+... + X..
E[X]= PrX =1] = 1/n.
E[X] = E[X{] + ... + E[X] =1n+...+1n =1.
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Guessing Cards (cntd)

Game: Shuffle a deck of n cards; turn them over one at a time; try to
guess each card.

Guessing with memory:  Guess a card uniformly at random from
cards not yet seen.

Claim
The expected number of correct guesses is ®(log n).
Proof
Let X =1 if i"" prediction is correctand 0 otherwise.
Let X be the number of correct guesses, i.e. X, +...+X.
EX]=PriXi=1] =1/(n-i-1).
E[X] =E[X] + ... + E[X] = 1n+...+12+1/1=H(n).

|

In(n+1) <H(n) <1+Inn



