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Chapter 1

First Order Differential
Equations

We consider differential equations of the form

du
= fw). M)

where f : R — R is a continuous differentiable function.

A point u* is called a fized point of the differential equation if f(u*) = 0.

The variational equation of du/dt = f(u) is given by

&= (L) @)

where it is assumed that f is continuous differentiable.

Problem 1. (i) Solve the initial value problem u(¢ = 0) = 0 for the first
order ordinary differential equation

du
E—k(a—u)(b—u)
where £ > 0, a > 0 and b > 0.

(ii) Find the fixed points.
(iii) What happens for ¢ — oco?
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Problem 2. Discuss the qualitative behaviour of the one-dimensional
nonlinear differential equation

d

171:_’"_“2

d

di;_m_“Q

d

—d? = —(147r*)u?

where 7 is a bifurcation parameter. Study the behaviour of the fixed points.

Problem 3. Find the solution of the initial value problem the linear
differential equation

Z—z:x—i—u, u(0) = 0.

Problem 4. Consider the nonlinear differential equation

with the initial value u(t = 0) = ug = 7/2.
(i) Find the fixed points.
(ii) Solve the differential equation by direct integration. Hint.

/ sind(Zu) B éln (tan (%)) ’

What happens if ¢t — co?

(iii) Find the solution of the initial value problem using the Lie series
expansion

u(t) = exp <t sin(u) di) u

uU=ugp

Problem 5. Consider the initial value problem of the nonlinear differen-
tial equation

d
d—?zu—u% u(t =0) =wup > 0.

(i) Solve the differential equation by direct integration. Find u(¢) for t — oo.
(i) Solve the differential equation using the Lie series

u(t) = eVu

U—ug



First Order Differential Equations 3

where V is the vector field V associated with the differential equation

V= (u—u%%.

Problem 6. Consider the logistic equation

S (1 —
o ru( u)

with u(t = 0) = up. Find the solution of the initial value problem.

Problem 7. Solve the Bernoulli equation
du

T +P@ju=Q@u", n#0L M)

Problem 8. An ordinary differential equation

H (t,u(t), CZ:) =0 (1)

may often be simplified or reduced to a standard form by introducing new
variables, T', U by means of the equations

T(t) =Gt ut),  UTQ®) = Ft ult)). (2)

We assume that H(t,u,u), G(t,u) and F(¢,u) are smooth functions. All
considerations are local. Geometrically, we regard (2) as a point transfor-
mation , for it transforms points (¢,u) of the tu-plane to points (T,U) of
the TU-plane. We assume that the Jacobian determinant

oG 0G

_OT.U) |3t ou
T = B = | oF o | *O (3)

ot Ou

over a region R of the tu-plane. There is then no functional relation between
u and U; for this would imply J = 0. Moreover, if the point (T7,U;)
corresponds to (t1,u1) we can solve equations (2) uniquely for ¢,u in the
neighbourhood of t1,u;. We thus obtain the inverse transformation

HT) = Q(T,U(T)),  u(t(T)) = P(T,U(T)). (4)

Thus we can transform (1) into another

~

H (T, U(T), jg) = 0. (5
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If (5) can be integrated to give
p(T,U(T),C) =0 (6)

we obtain a solution of (1) on replacing u and v by their values (2) in terms
of t and u. Show that

OF du _ OF
ﬂ _ Ou dt ot (7)
aT = 0 0G

Ou dt ot

Problem 9. Solve the Bernoulli equation

d
£+u=u3. (1)

Problem 10. Solve the Bernoulli equation

ﬁ—&—utanx:u?’se(flx (1)

where secx := 1/ cos .

Problem 11. Solve the Riccati equation

du _
— — e Ty?

Cu—et =0 1
T u—e® =0 (1)

Problem 12. Find the solution of the initial value problem of the special
Riccati equation

i w?+t,  u(0)=1. (1)

Problem 13. Prove the following. If in the generalized Riccati equation

d

o (x)u? + g(z)u + h(zx) (1)
dx

the coefficients f, g and h, defined and continuous in some open interval
(a,b) C R, are related as

d ., a a-pf

with a(z) and B(x) properly chosen functions differentiable in (a,b) such
that o8 > 0, then (1) is integrable by quadratures.

(af —Bh) (2)
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Problem 14. Consider the initial value problem for the Riccati equation

% =22 +u+01u?  w(0)=0. (1)

There is no elementary solution. Therefore one neglects the quadratic term
and solves the linear equation

%:ﬁ—kul, u1(0) = 0. (2)

(i) Show that this gives a first approximate solution
up(z) = 2e% — (22 + 2z + 2). (3)
(ii) Reintroduce this solution into (1) and now solve the differential equation

% = 2% 4+ uy + 0.1(uy (2))?, uz(0) = 0. (4)

(iii) Show that

2 2 1
ug(x) = g (m)—i—gezx—1—5675(303—&-33:2—1—695—54)—E(m4+8x3+32x2+721’—|—76).
(5)

Problem 15. Abel’s differential equation of the first kind is written in

the form d
== ao(t) + ar(Hu+ as(t)u’ + a(t)u’ (1)

where a; (j =0,1,2,3) are known smooth functions of ¢. (i) Show that (1)
can be put into the standard form as

T 0) 2)

by introducing the following transformations

u(t) = a(t)z(x(t)) +0(t),  x(t) :/ a*(s)as(s)ds 3)

with

alt) == exp ( / t (al(s) - 3“5;3) ds) b = 3“;3(3). )

Here p(t) in (2) has the form

laias 2 ag’ 1d as 3 \—1
)= (ag— = Bl S . 5
p(t) (ao 3 a5 | 27a2 | 3dia (a”as) (5)
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(ii) Show that if ag = 0, (1) reduces to the Ricatti equation.

(iii) Show that for ag = 0, a; # 0 and either as = 0, az # 0 or as # 0,
as = 0, it becomes the nonlinear differential equation of Bernoulli type,
which has an explicit general solution.

Problem 16. Show that the homogeneous equation

du U
e ) = 1
dx +f (x) 0 (1)
is transformed by
u(z
y=o o) = "2 )
into the separable equation
d
v—f—yd—z—i—f(v)zo. (3)

Problem 17. Show that the differential equation

du ar +bu+c
- e 1
dx f(ax+ﬁu+’y) )

can be integrated by means of a point transformation.

Problem 18. Solve
du 2xr+3u—4

st = 1
dx dr+u—3 (1)

Problem 19. Solve the initial value problem of the differential equation

%:k(afu)(b—u), a>b>0 (1)

by direct integration if u(t = 0) = 0.

Problem 20. (i) Find the fixed points of the differential equation

(ii) Find the solution of (1) with the initial condition u(¢ = 0) = uo.
(iii) Find the variational equation.
(iv) Study the stability of the fixed points.
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Problem 21. Consider the nonlinear ordinary differential equation

d’U, 1+(1/q)

— = , t>0 1
o qu (1)
with u(0) = 1, where ¢ is any positive integer.

(i) Show that using (1) recursively, we obtain

d"u

dtn = (_1)HQ(Q+1)((]+TL— 1)u1+n/q7 n = ]_727.... (3)

(ii) Show that the Taylor series expansion of u is then given by

(="

u(t)y=1—qt+---+ o

glg+1)---(g+n—-1)t"4---. (4)

(iii) Show that from the Cauchy-Hadamard theorem it follows that the
radius of convergence of series (4) is 1. Show that the solution of the initial
value problem is given by

u(t) = (1+1)7 (5)

Thus, ¢ = 1 is not a singular point of u and the solution of the problem is
defined for any ¢ > 0. But Taylor series (4) in its original form does not
give any informations about w for ¢ > 1. (iv) Apply Padé approzimation to
(4), and show that the [N/N + L] (L > 0) approximant to it is given by

1+ait+---+antV

N/N + L] =
IN/N + 1] 1+bit+ -+ byyptVtl

(6)

where

NN (N-m+)(N+L-—q)(N+L—-1-¢)---(N+L-—m+1—gq)
m!(2N+L)2N+L—-1)---2N+L—-m+1)

Am =

(7)
withm =1,2,---, N and

N+L((N+L-1)--- (N+L-m+1D)(N+q(N+qg—1)---(N+qg—m+1)

_
bm = m!(2N + LY2N +L—1)---(2N +L—m+1)

(8)
with m = 1,2,--- N + L. Show that the [N/N + L] approximants for
N + L > g in a form of irreducible rational fractions reduce to the exact
solution (5).

Problem 22. Try to solve the classical brachystochrone problem

2 2
<ii;;> :%—1 or u(f;:) +u=1L (1)
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by a series solution. We suppose h = 0 and the initial value u(0) = 0.

Problem 23. Consider the nonlinear differential equation

du 9
=~ = _ 1
with the initial condition u(t = 0) = ug =1 and t € [0, 00).

(i) Show that the exact solution of the initial value problem is given by

1

u(t) = e

(2)

(ii) Solve initial value problem of the differential equation (1) with the help
of Lie series.

Problem 24. Find the solution of the differential equation

du 9 -
pria ki u(0) =0 (1)

as a function of the bifurcation parameter r, where r > 0, r = 0 and r < 0.

Problem 25. Discuss the behaviour of the differential equation

d
d—?:rquu?’ (1)

as a function of the bifurcation parameter r.

Problem 26. Discuss the behaviour of the differential equation

W, u)=0 (1)

as a function of the bifurcation parameter y, where g > 0, p =0 and p < 0.

Problem 27. Define a function u(z) (the inverse error function)

x = % /Ou exp(—t?)dt (1)

and show that it satisfies the differential equation

Z—Z = g exp(u?), u(0) = 0. (2)

Obtain recursion formulas for its Taylor coefficients.
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Problem 28. Show that the differential equation

2
% = (—usinx + tan z)u, u(m/6) = 7 (1)
admits the solution 1
= . 2
u(z) cos () (2)

Problem 29. (i) Show that the general solution of

sin@j—z = |sin ¢| (1)

is given by
sinh ¢ 4+ cosh ¢ cos 6

cos $(0) = (2)

cosh ¢ + sinh ccos 0
where c is the constant of integration with —oco < ¢ < oco. Show that when

c=0—¢0) =0
when

c>0—¢(0) <0
and when

c<0—¢0)>0
Hint. Notice that

d . d¢
75 €% () = —sin (;5(9)%. (3)

Problem 30. The majorizing differential equation is given by

du M
&~ G—an—umy “O=0 )

where M and r are positive constants. Find the solution.

Problem 31. Consider the initial problem

du 5
— =1 1
dt_t+u’ u(0) (1)

Show that the solution explodes somewhere in the interval [7/4, 1].

Problem 32. Discuss the fixed points (equilibrium points) of the nonlin-
ear ordinary differential equation

d
d—ltt = ~ sin(wt) sin'/3 (%)
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where v, w, and « are positive constants.

Problem 33. Solve the initial problem for the differential equation

du_i 1/3

E - ’
Study the stability of the fixed point u* = 0.

u(0) = up > 0. (1)

Problem 34. A first order differential equation modelling the concentra-
tion u(t) of an allosteric enzyme is given by

du a-+bu

E__chrquduQ

where u(t = 0) > 0 and a, b, ¢, d are positive constants. Find the fixed
points and study their stability.

Problem 35. Let f be an analytic function of z and u. In Picard’s
method one approximates a solution of a first order differential equation

du

% :f(xvu)

with initial conditions u(xg) = ug as follows. Integrating both sides yields

u(z) = uo + /x F(s,u(s))ds.

Now starting with wug this formula can be used to approach the exact so-
lution iteratively if the series converges. The next approximation is given
by

x
Upt1(T) :u0+/ f(s,uk(s))ds, k=0,1,2,....
zo

Apply this approach to the linear differential equation

d—u—x—l—u
de

where zg = 0, u(xo) = 1.

Problem 36. Consider the nonlinear differential equation

du 1
— == t=0)= 0.
dat u’ u( ) =0 >
Solve the initial value problem using
u(t) = etvu’

uU—1ug
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where the vector field V is given by
_1d
udu’

solve the initial value problem by direct integration of the differential equa-
tion. Compare the two solutions. Discuss.

Problem 37. (i) Consider

d

d—ltt = —2u+ 3u® — u?
where u(t = 0) = ug > 0. Find the fixed points of the differential equation.
(ii) Calculate the Gateaux derivative of

d
d—?+2u—3u2—|—u3

and thus find the variational equation.
(iii) Study the stability of the fixed points.

Problem 38. (i) Consider

where u(t = 0) = ug > 0. Find the fixed points of the differential equation.
(ii) Calculate the Gateaux derivative of

i cos(u).

and thus find the variational equation. Study the stability of the fixed
points.

Problem 39. (i) Consider

fl—? = cos(u) sin(u)
where

u(t =0) =wup > 0.

Find the fixed points of the differential equation.
(ii) Calculate the Gateaux derivative of

du .
i cos(u) sin(u)
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and thus find the variational equation. Study the stability of the fixed
points.

Problem 40. Consider the intial value problem for the nonlinear differ-

ential equation
du

E =e
Find the fixed points and study their stability.

u

Problem 41. Find the solutions of the initial value problem of the non-
linear differential equation

Problem 42. Consider the first order linear scalar differential equation
d
d—? =7r(t)+ k(t)u

where r(t) and k(t) are continuous functions on a finite closed interval [a, b]

of the real line. Let T be an arbitrary point of [a, b]. Show that the general
solution of this differential equation is given by

u(t) = exp < /T t k(s)ds) u(r) + /T "exp ( / t k(sl)dsl) r(s)ds.

Problem 43. Find the solution of the initial value problem

d
ditt =u?, u(0) = 1.
Discuss.

Problem 44. Consider the nonlinear differential equation

d

ditl = cos(u) sin(u).

(i) Find all fixed points.

(ii) Find the variational equation and study the stability of one of the fixed
point.

(iii) Find the solution of the initial value problem u(t = 0) = uo.
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5 d
exp | tx Ir xT.

All terms must be summed up. Describe the connection with the solution
of the differential equation

Problem 45. Calculate

d
dizf = z(t =0) = xo.
Problem 46. Consider the first order differential equation

d
d—?:u—u?’.

Find the fixed points. Study the stability of the fixed points. Show that
the differential equation can be written as

du oV

dt— ou’

Find the potential V. Give the solution for the initial value problem.

Problem 47. Consider the initial value problem

d
di: F2tu=0,  u(0)=1.

Let Lu := —2tu and

with .
L7Yf(t) ::/O f(s)ds.

Use the recursion

uj1(t) = 2L Y(tu; (1)),  j=0,1,2,...
with ug = u(0) = 1 to find the solution of the intial value problem.
Problem 48. Consider the nonlinear ordinary differential equation
— = cos?(u)

with the initial condition u(t = 0) = ug = 0.
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(1) Find the (local) solution of the initial value problem using the exponen-
tial map

u(t) = exp(tV)u|u_,u(0):O
where V' is the vector field

d
V(u) = cos?(u)—.
(u) = cos®(u) o
Discuss the radius of convergence.
(ii) Find the solution of the initial value problem by direct integration of

the differential equation. Use

/cojgzu) = tan(u).

Compare the result from (i) and (ii). Discuss.
(iii) Find u(t — 0o) and compare with the solutions of the equation cos?(u) =
0 (fixed points).

Problem 49. Solve the initial value problem of the nonlinear differential

equation

du
—=u—u’

dt
where u(t = 0) = up > 0 and up < 1. What happens for t — oo?

Problem 50. By an e-neighbourhood of a point xy € R”, we define an
open ball of positive radius e, i.e.
Ne(x0) ={x€eR" : |[x —x¢| <€}.

A function f is said to satisfy a Lipschitz condition on F if there is a positive
constant K such that for all x,y € £

f(x) —f(y)| < K|x—y].

A function f is said to be locally Lipschitz on E if for each point xg € E
there is an e-neighbourhood of xg, N.(xg) C F and a constant K > 0 such
that for all x,y € N.(xo)

f(x) — f(y)| < Kolx —yl.

Let E be an open subset of R™. Let f : E — R"™. Show that if f € C1(E),
then the function f is locally Lipschitz on FE.

exp (txgjx) xT.

Problem 51. Calculate
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All terms must be summed up. Describe the connection with the solution
of the initial value problem of the differential equation

dx
T =3, z(t = 0) = xo.

Problem 52. Consider the linear first order delay-differential equation

du
— = —u(t—1).
7 u(t —1)
Find the solution with the ansatz
u(t) = Ce.

Problem 53. Consider the first order differential equation
du\®
— | —3u?=0.
(&) -
Find the singular solution. Find the general solution.

Problem 54. Solve the Pfaffian differential equation

(.’EQ + .’Eg)d.’bl + ((Eg + xl)d[L'Q + (1'1 + l'g)d.’Eg =0.

Problem 55. Describe the behaviour of the differential equation

at the fixed points.

Problem 56. Consider the function v : R — R

—22x<0
U(l’): l’2$>0

The function is continuously differentiable. Show that the function satisfies
the first order differential equation

— —2u=0.
xdm U
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Problem 57. Solve the first order ordinary differential equation

d
ﬁ = —2)\zu.

Problem 58. Consider the differential equation

du

— =1-u>

dt “
(i) Show that the fixed point ©v* =1 is an asymptotically stable solution.
(ii) Show that the fixed point u* = —1 is not stable.

Problem 59. When two hermitian operators A, B do not commute, i.e.
[A, B] = iC, the product of their uncertainties satisfies the relation

(AA)(AB) > L(O)]

Equality only holds when the hermitian operators A and B are proportional.
This means the states with minimal uncertainty satisfy the equation

(B~ B)u= 5 (A~ (D

where I is the identity operator. Assume that A is the one-dimensional
position operator x and B is the one dimensional momentum operator p,,
i.e. b "
i
- — u(zr) = —=(x — (z))u(x).
(240 = ) ) o) = 53zl = (a)ute)

Solve this linear first order differential equation.

Problem 60. Find the general solution of the first order linear ordinary

differential equation
du

dt
where f is an analytic function.

+ f(t)u= f(t)

Problem 61. Solve the ordinary differential equation

dv du

UE = 'UE.

Problem 62. Consider the one-dimensional stochastic differential equa-
tion

dx
& = Fwe)
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where the Gaussian random force £(t) is defined by the correlators

€@)y =0,  (§(1EE)) = Dot —t')

and f is a given smooth function of z. Show that under the transformation

x dx/
=@
we obtain p
y _
U]

Problem 63. Given the first order differential equation

W ) = w2

(i) Apply the hodographic transformation

(ii) Solve both differential equations.

Problem 64. Show that (ug > 0)
u(t) = ug cosh(t/ugp)

satisfies the differential equation

du 1,
— ) = Su? -1
<dt> W

This differential equation plays a role in general relativity.

Problem 65. Consider the initial value problem for the autonomous
system of first order ordinary differential equation

d

T=fw), () =

where it is assumed that the vector field f is defined in the whole of R™ and
is analytic. Runge’s second order method is given by

h
Up41 = Uy + A (un + 2f(u,,b)) , n=0,1,2,...
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where h denotes the time step and u, is the solution at time ¢, := nh.
Apply Runge’s second order method to the differential equation (n = 1)

du

I =u(l —u).

Problem 66. Consider the general Riccati equation

d
= = f(2)u? + g(x)u + hiz)
dx
where the continuously differentiable functions f, g and h are defined on
an interval (a,b). Show that if

d. (al@)) o) pB)
h(z) = —1 — — h
fa) + )+ hio) = 5o (5 ) = S o) ) = (o)
with the differentiable function «, § properly chosen such that a(z)g8(x) >
0, then the general Riccati equation is integrable by quadrature.

Hint. The general Riccati equation is invariant with respect to a linear
fractional transformation given by

a(z)o(z) +7(x)
) +6(x)

@
—
=
=

with A := ad — 0y # 0.

Problem 67. (i) Solve the initial value problem (u(t = 0) = ug > 0 of
the differential equation
du 3
at "
using the Lie series technique.
(ii) Solve the initial value problem by direct integration of the differential

equation.

Problem 68. Find the solution of the ordinary differential equation

d’LL2 dU1
Ul —— = U2 ——

dz dr

Problem 69. Let ¢y, co,c3 € R with ¢3 # 0. Consider the vector field

d
V={(c1+cox+ 031‘2)%.
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Calculate z(t) = exp(tV)z. Compare with the solution of the initial value
problem of the nonlinear differential equation

—x—c —|—cm—|—cx2
dt—l 2 3L .

Problem 70. (i) Consider the initial value problem of the nonlinear
ordinary differential equation

dz 3

— =", z(t=0)=z9 > 0.

- (t=0) =
Find a solution using the Lie series technique The Lie series expansion is
given by

1 1
z(t) = exp(tV)z|,_, = (L +tV + EVQ + §V3 +-)x
° ° T=x0
with the vector field J
V=u—.
. dx

(ii) Solve the initial value problem by direct integration of the differential
equation. Compare the two solutions.

Problem 71. Consider the initial value problem of the differential equa-
tion i )
x
== t=0)=x0=1.
dt 2 ) ‘T( ) To
Use the Lie series technique to solve this differential equation.

Problem 72. Consider the Riccati equation
2

— = Cu” +ciu+c¢

at 2 1 0

where c¢g,c1,co are constants. Show that v(t) = 1/u(t) also satisfies a

Riccati equation.

Problem 73. Find the solutions to the first order differential equation

du\?
—4u = 0.
(&) -~

Problem 74. Consider the first order differential equation
du

i sin(t)u



20 Problems and Solutions

with «(0) > 0.
(i) Solve the initial value problem by direct integration.
(ii) Let vy (t) = sin(t) and therefore dvy(t)/dt = cos(t) = vo. Thus we can
consider the autonomous system of first order ordinary differential equa-
tions

du dvy dvy

E = ViU, E = V2, — = —71.
The corresponding vector field is

0
V= vlu% + vga—vl — vla—vz.

Solve the autonomous system with the Lie series technique.

Problem 75. Solve
/ e Tf(s)ds=e " +x—1
0

applying differentiation.

Problem 76. Solve the initial value problem for the differential equation

du 1
dt 1+ u?
with «(0) > 0. First find the fixed points of the differential equation and
study their stability. Can the vector field
1 4
T 1+uldu

be used to solve the initial value problem via the Lie series?

Problem 77. Let w be a fixed frequency and ¢ the time. Solve the initial

value problem of

du _ wsin(wt)u
dt

with u(t = 0) = «(0) > 0. What happens for t — oco?

Problem 78. Let r > 0. Solve the ordinary differential equation
du\ 2
u? (dZ) +u? =12

Problem 79. Let ¢ > 0. Find trivial and nontrivial solutions of

(o)
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Problem 80. Consider the first order differential equation

e

u(z) = <ix2 + c>2

is a solution. Show that u(z) = 0 is a singular solution.

d
Y ul/?.

Show that

Problem 81. Consider the initial value problem

d
L oru+2, u(r=0)=1.
dr

Show that the solution is given by

Problem 82. Consider the equation of motion for the average velocity
of a Brownian particle in one dimension

m{du(t)/dt) + m/_ y(t =) (u(t"))dt' = F(t)

where m is the mass of the particle, u(t) is the velocity, v(t —t’) represents
the retarded effect of the frictional force and K(¢) is the external force.
Show that under the Fourier transform

1 . 1 )
/ w(t)etd, Flw) = — / P()e“tdt
R 27 Jr

T or

u(w)

the differential equation takes the form

where



Chapter 2

Second Order Differential
Equations

Problem 1. (i) Find the general solution to the linear differential equa-
tion
d*u
dax?
where u(z) is a real valued function.
(ii) Solve the initial value problem

+u=0

Problem 2. Integrate the second order nonlinear differential equation

d?a 4 1
= 37 (1)

once, where G is a constant.

22
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Problem 3. Consider the one-dimensional Schrédinger equation

O+ (B~ V(@)(x) = 0

where the potential V' is given by
k
V(z) = Zvjmzj, v > 0.
j=1

(i) Find the differential equation for the function

_ ldy p
f(x)**@%Jr;

where p = 0 for the ground state and p = 1 for the first excited state.
(ii) Assume that the function f is regular and can be expanded in a Taylor
series around the origin

oo
fl@)=7)_ fie**h.
§=0
Find the recursion relation for the coefficients f;.

Problem 4. Consider the power series

e .
u(z) = Z c;x’.
Jj=0

Then - '
d 1 odu _ 35gdea’ )

75 m(u()) = e R A S

which is the ratio of two power series. Thus formally

u(z) = exp ( / ’ % dl;f) d5> .

We can truncate the power series for u and expand (1/u(x))du/dz as a
continued fraction which when summed and integrated yields an approxi-
mation for u that is more accurate then the original truncate power series.
Consider the second order nonlinear differential equation

v 1du 1
Gu L 28 a1+ u?) =0
d;v2+xdm x2u( +u)
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Let
u(x) = Z bz

n=0
n even

Apply the method described above to find a solution of this differential
equation.

Problem 5. Consider the motions of non-sero-rest-mass particles in a
gravitional field created by a mass M and characterized by the Schwarzschild
metric

ds® = —(1 — 2M/r)dt® + dr® +1%(d6? + sin® 0dg?) (1)
T

1-2M/
where r, 6, and ¢ are spherical co-ordinates and units are chosen such that
G = ¢ = 1. One can take advantage of the spherical symmetric by choosing
the equatorial plane § = /2.
(i) Show that the (bound) orbits satisfy the second order differential equa-
tion )

d*u 9 1
where u := M/r, p is the particle rest mass and LT := L/(Mu).
(ii) Find that the solution of this differential equation using Jacobi elliptic
functions.

Problem 6. Solve

d?u
) = f(u). (1)
Problem 7. Solve )
d*u
T (1)

given that du/dr = 0 when v =0 and z = 0 when u = oco.

d’u du
a2 f (% dx) . (1)

Problem 8. Solve

Problem 9. Solve

2 2 3
udi _(du\" _ [du ) (1)
dx? dxz dxz
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Problem 10. When a solid sphere of radius a and density o falls verti-
cally in a viscous liquid of density p (< o) and coefficient of viscosity p, the
viscous resistance according to Stokes’ law is 6mapuv, where v is the down-
ward velocity at any stage. Find the velocity when the sphere has fallen a
depth y from rest. Let v be the velocity, dv/dt the acceleration at y below
the initial position.

Problem 11. Consider the falling body of mass m where air resistance
varies as v2. Choose the origin and z-axis. The body falls from rest, i.e.
z(t=0) =0, v(t=0)=0. (1)

Find v and z.

Problem 12. Consider the free-particle equation

d*U

An invertible point transformation is given by

U = F(u,t), u=P(U,T) (2a)
T=Gut), t=QUT) (20)
with
_oGor _oGor "
Ot Ju  Ou Ot '
(i) Show that we find the following equation
d*u du du du
prel A3<dt> +A2<dt> +A1—+A0_0 4)
where

0G O*°F  0°G OF
ou Ou2  OuZ ou

~x (o

1 <8G 82F BG 0*F B 28F 0*G _OF 82(}’)
A\ ot 6u2 8u otou Ou Otdu Ot Ou?
1 (0G 0*F 8G O*F OF 0°G  OF 0°G
s (o )
1
s (o

ou 02 2ot oiou 2ot 0tou  Ou 0
0G *F  9*G OF
ot o2 o2 ot

Show that the A; satisfy

920, A, A5 . 0Ny . OAs . OA . OAs . OA
I R T TR TR b P AU W TR L R TR

+2M0—

0As
ot

=0
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82A2 0%’N,  _0%Ag O0As 0Ag 0A2 0Ag 0A2 0A4
2 A A A A —A +2A
5 T gugr S gur oM T3Ms G Bh FE B R R M Tk =
Problem 13. The Pinney equation is given by
d’u 1)
@ T (1)

Show that the general solution (which is expressible in terms of the general
solution of the linear version (§ = 0)) is given by

u(t) = B(1 + acos(2t + ¢))*/? (2)
provided B and a satisfy the relation
B*(1-d% =5¢. (3)
The constants of integration are a and c.

Problem 14. Let C be a real number.
(i) Show that the differential equation d?u/dz? + u = C admits the partic-
ular solution

u(z) =C.

(ii) Show that the differential equation d*u/dz? +u = C cos(z) admits the
particular solution

u(z) = %Cx sin(x).

(i) Show that the differential equation d?u/dz? 4+ u = C cos?(z) admits the
particular solution

1 1
u(z) = 50 - 60 cos(2x).

Problem 15. Consider the quantum mechanical eigenvalue problem

d2
(de - V(z )) U () = Eptim (). (1)
Consider the logarithmic derivative of the mth excited-state wave function,

gm(x) = % 10ty () (2)

which has proven to be useful in classifying most of the exactly solvable
Hamiltonians. Show that g, satisfies a Ricatti equation.
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Problem 16. Consider

2
% —u+u®=0. (1)
Let Ld
u
=—— 2
VT udn @
Show that -
u(z) = exp </ v(s)ds) (3)
and g
u(cbi+v2)u+u30 (4)
or

%+v2—1+exp (2/960(5)615) =0. (5)

Problem 17. Consider the weakly nonlinear van der Pol equation

du o (du L (du) W
az TN w3\ ’

Insert the "naive” expansion
u(t) = uo(t) + eur (t) + 2ug(t) + - - - 2)

and find the functions wug, uy, ug, ... by comparing coefficients for €”. Show
that secular terms arise.

Problem 18. According to the Thomas-Fermi model, the number of
electrons per unit volume in an isolated neutral atom is given by

8T
p(r) = %(27”6)3/2(‘/(7") - Vp)*? (1)
in which r is the distance from the nucleus, V (r) is the electrostatic poten-
tial, and Vj is a reference value of the potential. The electrostatic potential
can be expressed in SI units as

Zed(z)
V—-V=- 2
0 47eg 2)
in which x := ~vr,
3272 /3)2/3me? Z1/3
v G0 0

2megh?
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and @ is a solution to the dimensionless equation
d’® _
de?

in which ®(0) = 1. The initial slope d®(0)/dz is to be determined so that
®(00) = 0. (i) Show that the transformation

1,—1/2(1)3/2 (4)

z(t) =1%,  ®(z(t) = u(t) (5)
yields ,
d*u  du
T 42032 (6)

(ii) Show that expanding (6) in a Taylor series
ult) = a;t! (7)
=0

around ¢ = 0 yields
4 2a2

a0:13 (11:07 a3:§, a4:0, a5:? (8)
and
pia=Mm+1)"H(n+3)2-1)""
3 n n—2
|3 Z;(J +D)((n+2—-4)* = Dajr1an4s—; — z%(] +1)((5 +3)? = Dajyaa,,
j= iz

(9)
where n = 2,3,.... Thus all coefficients a; can be calculated in terms of
the initial slope as according to this recurrence relation.

(iii) Consider the transformation

s(x) =", (x(s))—v(s)
where r = (7 — 73'/2) /2. Show that (4) takes the form
d? d
22 4 65 4 120 = 1207/

ds? ds

Remark. This transformation is useful for the studying of the asymptotic
behaviour (i.e. large values of z of ®. Expand v into a Taylor series around
5=0.

Problem 19. Consider the first Painlevé transcendent

d2
chZ = 6u® + \x (1)
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where A is an arbitrary parameter.
(i) Show that the parameter can be set equal to 1 by using the transfor-
mation

z(t) = A7V0 w(z(t)) = N Pw(t). (2)
(ii) Find the general solution of (1) of the form

a— a_
u(z) = (I—;O)Q + x—;o +ap+ay(z —x0) Fag(zx —x0)>+ -+ (4)

Problem 20. Consider the equation

d?u du
W+3UE+U3:O (1)

which arises in the investigation of univalued functions defined by second-
order differential equations and in the study of the modified Emden equa-
tion. Perform a Painlevé analysis of this equation.

Problem 21. Consider

d*w 1 [dw)?
@ ~w @) )
(i) Let dw/dz = u. Show that (1) takes the form

dw du  u?
= — == 2
dz " dz  w? @
(ii) Let w = AW and u = A*U. Show that
aw v U?
P e ®)

(iii) The solutions of (3) are analytic functions of the parameter A. Thus
they can be expanded with respect to A. For A = 0 we write

aWy v, U2
= —_— = . 4
dz 0, dz W¢ (4)

The solutions of (3) are denoted by W(z, A) and U(z,\) and
W(z,A) =W(z,0) + Awy + - -, U(zAN)=U(z,0 4+ s +---. (5)
Consider the A independent initial conditions

W(Zo, A) = Wo 7é 0, U(Zo, A) = Ug 7é 0. (6)
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Show that
w2u0
Wo =W (z,0) = Up=U(z,0)= 52— 7
0 (27 ) = wo, 0 (Z’ ) w(g] —ug(z — 20) ( )
(iv) Show that
dw1
— =U(z,0 8
L= U(2,0) Q
and )
2 Wo
=wiln | —7F7—— 9
wile) = wh n<w3—U0(z—ZO)) ©)
and therefore w; has a logarithmic singularitry at z. = 2o + %
Problem 22. Consider the first Painlevé transcendent
d*u 9
Let 1
- . 2
u(z) = o + ) 2)
Find the differential equation for f.
Problem 23. Consider the nonlinear differential equation
d2
d—;;+€u+mu3+nu5:0. (1)
Let
u(z) = /¢(x) (2)
(i) Show that ¢ satisfies the differential equation
& do\?
2¢—¢ _ (% + 4% + 4me® + dng? = 0. (3)
dx? dx

(ii) Insert the ansatz

) Aexp(ale + 1))
u(@) = (1 + exp(a(x + x0)))% + Bexp(alz + o)) )

where A, B, a are undetermined and z is a fixed real number. Show that
A, B and « satisfy the condition

o> +40=0, 2mA+40(2+B)-a*(2+B)=0

—5a% 4+ 20(2 4+ (2 + B)?) + 2mA(2 + B) + 2nA? = 0. (5)
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Problem 24. Consider the quantum mechanical eigenvalue problem

% + %(E —V(z))u=0. (1)
Let 5
u(z) = exp(iw(z)/h), w(z) = S(z) + n In(A(x)). (2)

(i) Show that inserting (2) into (1) leads to

ds\? , 1 d2A dAdS ~—  d*S

(ii) Show that the second equation of (3) can be integrated to yield

4s\ ~1/2

Alz)=C | — 4
w=c(%) 0

where C is a constant.

(iii) Show that substituting this expression for A into the first equation of

(3) results in

2 3

ds\? 3 [ &5 148

<d$> — 9m(E — V() + I 4<ff;; 1
dx dx

Remark. In the WKB approzimation one expands S in a power series in A2
S = Sy+h%S; +--- (6)

then one substitutes this expansion into (5) and keeps only zero-order terms.

Problem 25. The equation

Pu
dt2

has a unique stable limit cycle under the following conditions:
(a) fis even, g odd, both continuous for all u, and f(0) < 0;
(b) ug(u) > 0 for u # 0;
(c) for every interval |u| < K there is an L such that

lg(u1) — g(uz2)| < Llug — usgl, (Lipschitz condition);

(d) F(u) = [ f(s)ds T oo as u T oo;
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(e) F has a single positive zero at v = a and is monotone increasing for
U > a.

Give a physical interpretation of the criterion for the existence of a limit
cyle.

Problem 26. Consider the eigenvalue problem
Hu = Eu (1)
with the non-dilation Hamilton operator of a one dimensional anharmonic

oscillator )

F d 2 4
H:*@‘i’ﬂ? *)\I‘, >\>0 (2)
(i) Show that a function

d

p(z) = ——In(u(z)) (3)

where u is a solution of the eigenvalue equation (1), obeys the equation

dfiigj)—gaz:E—szr/\m‘l (4)

where E is an eigenvalue for H in (1). (i) Show that in the common case the
function ¢ has pole singularities which correspond to nodes of the function
U.

Problem 27. Consider the Schrédinger equation (in units of & = 2m = 1)

(-5 + V) vle) = Bote) 1)

da?
for a potential V. Consider the transformation
w(u) = f(u), w@)=f""=z), @) =Vflu@)@E) (2

where the prime denotes differentiation with respect to the variable w. (i)
Show that the Schrédinger equation (1) takes the form

( i + V() ) €0) = Bré(u) 3)

du?

where

and

L) 3 (w))?
2 fllw) 1 (f’(u))
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(ii) Choose any exactly solvable potential as Vr and find the transformation
functions f(u) such that one would have new analytically solvable potentials
V(z). The non-trivial part is the proper choice of f(u) so that V(x) as well
as energy eigenvalues and eigenfunctions can be expressed in a closed form.
(iii) Consider the mapping function in (2) as

z = f(u) = log(sinh u) or sinhu=e¢e". (6)

Obviously, the domain of the variable u is 0 < u < oo corresponding to
—o0 < z < oo. Find AV (u).

Problem 28. The second order differential equation
d*u du\?
— +b| — 2u=0
az " (dt) ot

represents a classical one-dimensional damped harmonic oscillator, where
the force of friction is proportional to the square of the velocity. Find the
first integral, the Lagrangian function and the Hamilton function.

Problem 29. Consider the motion of a free particle in a medium with
quadratic damping. The equation of motion takes the form

d?u du

Let u = u; and duq/dt = ug. Then

dU1 - d’LLQ - 2
7 = U i kus. (2)
Let 5 5
p— —_ 27
U=uy o kus g (3)

the vectoir field associated with the first order system (2). Let

V= fkugekul%. (4)
2

(i) Show that
[U, V] = 1Y, flug,ug) = —kug exp(kuy). (5)

(ii) Show that
—fdivV + Ly (divV =0 (6)
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where Ly (.) denotes the Lie derivative. (iii) Show that
f(u,uz) + divU = —3kug exp(kuy) (7)
is a constant of motion.

Problem 30. Consider the nonlinear second order differential equation

o
dt?

= ce".

Show that there is a first integral.

Problem 31. Let f: R — R be an analytic function. Consider the first

order differential equation

du

i (u).
Differentiating the differential equation and inserting du/dt = f(u) yields
the second order differential equation

Pu_df
2 du’’
Show that the second order differential equation

dPu

ﬁ:u—SuQ—I—Qu?’

can be derived from a first order differential equation using the approach
given above. Show that the solution of this first order differential equation
is also a (particular) solution of the second order differential equation.

Problem 32. Show that the general solution of the linear second order
differential equation

d?u 1
a2 T 3ru=0

is given by

u(z) = \/E(Ajl/S(g) + BJ_1/3(£))

where ¢2 = 42%/27, A, B are the constants of integration and Ji3, J_1/3
are Bessel functions.

Problem 33. Solve the initial value problem of

d2i_|_ dEQ_b
aez T\ ) T
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or

d
d—:—&-avzzb

where v = dz/dt and v(t =0) = dx(t = 0)/dt = 0.

Problem 34. Solve the initial value problem

Az dz\"
—_— — ] =0 =0,1,2,...
dt2+/8<dt> b n ) ) )

with 8 > 0 and dz(t = 0)/dt > 0. Write dz/dt = v and use the first order
differential equation

W .
rUTL

Problem 35. Solve the initial value problem

dQ—erad—m—b
dt? dt

with @ > 0 and dz(t = 0)/dt > 0. Write dz/dt = v and solve first

d
d—:—l—av:b v(0) > 0.

Problem 36. Find the solution of the second order differential equation

d?z dz
A T
az Ty T

where z is complex valued.

Problem 37. Integrate the ordinary differential equation

@f _3df &[0

dz? zdzx drz 0-

Problem 38. Two solid iron spheres, each 1 m in diameter, are in a
region of interstellar space where the gravitational field of the rest of the
universe is negligible. Intially, they are at rest with respect to each other
and the distance between teir centres is 10 m.

(i) Calculate the absolute speed at which the two sphere collide.

(ii) Find the time required for the contact to be effected.
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Problem 39. Consider the eigenvalue problem

_d2¢($)
dx?

= Ey(x)

with the boundary condition

%w(m =0)+cp(x=0)=0

where ¢ < 0. Let H be the Heaviside step function. Show this problem
admits the solution

Y(x) = H(—x)v/—2cexp(—cz).

Problem 40. Let ¢ > 0. Show that the linear differential equation
d L 2\ du 5
— 4+ — | — =2cu
der =z ) dx

can be solved exactly to give the asymptotic solution for u

~ —V2cx
u(z) ~ e .

Problem 41. Consider the differential equations

d?q 9
2 T (t)g=0 (1)
and 2
P 2 _ 1
W—i—w (t)p—;. (2)

Show that under the invertible point transformation

_alt) [
arw) =45, 10 = [ = g
(1) takes the form
d*Q
a2 +Q=0 (4)

where p satisfies (2). We have
aQ _dQdr _1dg 1y

dt _dT dt  pdt ‘2 dt
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and

ar 1
dt — p?’

Thus
dQ 1 1dq qdp

TE~pdt P ©)

Problem 42. At time ¢t = 0 a dog is at the z-axis at point xg > 0 and
runs with constant speed w in the direction of his master, who walks with
constant speed v along the y-axis. Show that this leads to the differential

equation
1/2
d’y v dy 2
~ 7 -2 (1 - 1
i T w ( * <dm> )
(ii) Solve the differential equation.

Problem 43. Consider the nonlinear differential equation

d? .
d—;;+€u+mu3+nu5:0. (1)
Let
u(@) = /o(x). (2)
(1) Show that ¢ satisfies the differential equation
PO (AN s
20— — | — 44 4 4 =0.
7n? <dm> + 4o + 4me° + 4ng= =0 (3)

(ii) Insert the ansatz

Aexp(a(z + )
(1+ exp(a(z + x9)))? + Bexp(a(z + xq))

(4)

u(z) =
where A, B, a are undetermined and 1z is a fixed real number. Show that
A, B and « satisfy the condition

o’ 40 =0, 2mA + 402+ B) —a*(2+B) =0

—5a% 4+ 20(2 4 (2+ B)*) + 2mA(2 + B) + 2nA* = 0. (5)

Problem 44. Consider the pair of coupled nonlinear differential equations
relevant to the quantum field theory of charged solitons
d?c

Tz —o + 0% +dp*o (1la)
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d?p 3 2
Zmz = fp 20" +dp(o” ~ 1) (1b)

where o and p are real scalar fields and d, f, A are constants. Try to find
an excat solution with the ansatz

p(x) = by tanh(Ao(z + co)), o(x) = Z an tanh™(No(z + o). (2)

n=1
Problem 45. Show that
u(x) = % tanh(ma/v/2)
satisfies the nonlinear second order differential equation
d2
d—;; —m*u + cu® = 0.

Problem 46. Solve the inital value problem of the second order differen-
tial equation

@ + L 1 du +u=0

dt? u dt B
with u(t = 0) = 1 and du(t = 0)/dt = 0.

Problem 47. The Schrodinger equation for the radial function x has the
form

d*x(r)  2m
M4 2 U = 0
bet omE 2mU (r)
m mU (r
k? = T V(r):= T

(i) Find the Schrédinger equation in this form.
(ii) Assume that x(r) = xo(r)f(r) with

Xo(r) = %sin(kr).

Find V(r) as function of f.
(iil) We define

C(r) = %%
Show that J
V(r) = 20 + 20 L oretg(r)cr).

dr
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Problem 48. Let a,b > 0. Find the differential equation the function

b

u(x) = atanh(z) — cosh(2)

obeys.

Problem 49. The Airy function Ai(z) is the solution of the second order
differential equation
d? Ai
dz?

Show that its asymptotoc behaviour at large |z| is given by

— zAi(z) = 0.

1 2
Ai(z) ~ 2 Y% exp (—323/2)

v

where |arg(z)| < m and |z| > 1.

Problem 50. Consider the second order differential equation

dPw dw

el +p(z)£ +q(z)w =0.

Show that the transformation

we) =)o (— [ o)

casts the differential equation into its normal form

d%y
2 1Ry =0
where I is given by
ldp(z) 1,
I(z) = - = S .
() = () - 522 - ()

Problem 51. Consider the second order linear ordinary differential equa-
tion and boundary condition for the wave function u of a one-dimensional
particle confined between a hard wall and a gravitional potential
d’>u  2m?¢g ( E
—+——(——-2)u=0 for >0
dx? + h2 mg

and u(z) = 0 for x <0.
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(i) Show that with the variable transform

y(x) = (2m*g/h*)'* (@ — E/(mg)), u(y(x) = u(z)
the ordinary differential equation takes the form

d*u ~

(ii) Show that the solution of this differential equation is given as a linear
combination of the Airy functions, Ai(y) and Bi(y). Show that by including
the boundary conditions the solution Bi(y) has to be excluded. Find the
energy eigenvalues by imposing the boundary condition at x = 0.

Problem 52. Let o1 and o3 be the Pauli spin matrices and

vo=(oi wi8)

Consider the matrix differential equation

dw 1

— = (203 — — g

i = (2600 gm )

This differential equation has an irregular singularity of order 3 at infinity,
and T = (2/3)¢303. Consequently there are six Stokes sectors defined by
the rays 0 = £7/6, 0 = £7/2, § = £57/6. Stokes sectors are the angular
regions inside an angle drwan by the two Stokes half lines. Let Ai and

Bi be the Airy functions. Show that defining Ai(z) := Ai(ze=27"/3) the
fundamental solution valid in the sector {¢ : —7/6 < arg{ < w/2} is

UAGE \/7 (Az‘&(cﬂ) +CAR(C?) AT(C) + <Az’<<2>) (/ 0 )
1 ¢ \ A (C?) = CAin(¢?) AT(C?) = CAi¢) )\ 0 —1
and in the sector {¢ : 7/6 < arg { < 57/6} one has
Wa(e) = | <—i(Ai’(42)+CAi(C2)) —(Ai’(C2)+CAi(CQ))>
4¢ \ —i(A'(C%) — CAi(¢%))  —(Ai'(¢?) — CAi(¢?))
+\/7 <Bi’(42) +¢Bi(¢?) i(Bi'(¢?) + CBi(CQ))>
4¢ \ Bi'(¢?) = ¢Bi(¢?) i(Bi'(¢*) - ¢Bi(¢?) )
These two solutions are single-valued and holomorphic in the region arg  #

.

Problem 53. Consider the nonlinear second order differential equation

d2
d—xg = sinh(u).
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(i) Show that

BN osh(u) +C
dx = zcoshn(u

is a first integral and C denotes a constant of integration.
(ii) Show that for C = —2 one has the solution

u(z) = In(coth?(x/2)).

Problem 54. Counsider the Hilbert space Ls(R) and the one-dimensional
Schrodinger equation (eigenvalue equation)

(_j; V(@) ule) = Bulo)

where the potential V' is given by

ax2

2
Viz) == —i_l—l—bx2

where b > 0. Insert the ansatz
u(z) = e*IQ/Zv(z)

and find the differential equation for v. Discuss. Make a polynomial ansatz
for v.

Problem 55. Consider the second order differential equation

2
20 = (wla) + N9 (1)

where u is a smooth function. This equation can be viewed as an eigenvalue
equation. The transformation

¥(@) = F@)ox) + () 2 2

is called a Darboux transformation (with f and g are smooth functions) if
1) satisfies the second order differential equation

% — (v(z) + A (3)

Consider the case g(z) = 1. Find the condition on the smooth function f
such that we have a Darboux transformation.
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Problem 56. Consider the Hilbert space Lo(R). Let g > 0. Consider
the one-dimensional Schrodinger equation (eigenvalue equation)

(—d2 +2% + Al ) u(z) = Eu(x).

dz? 1+ ga?

Find a solution of the second order differential equation by making the
ansatz
u(z) = A(1 + gx?) exp(—z?/2).

Problem 57. Let g,m,e > 0. Solve the second order nonlinear ordinary
differential equation

d2
au 2meu + 6mgu’® = 0
dx?

with the boundary conditions

du(x)
dz

u(z) — 0, —0 for z — +oo.

Problem 58. Consider the the second order ordinary differential equation
f(z,u(x),du/dx,d*u/dz*) =0

where f(z,u, Uy, uz,) is an analytic function. Find the f such that the
second order ordinary differential equation admits the Lie symmetry vector
fields (projective group)

o 9o 90 9 0
9z’ 0w oz ¢
9,0  ,0

PR PR 27
Yor xuam—i-u o * or ou’

Problem 59. Let J be a positive integer. Consider the one-dimensional
Schrédinger equation

d*u

) + (V(z) — B)u(z) =0

where the potential V' is given by

V(r) = 2% — (4 — 1)z2.
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Consider the ansatz
J-1
4
u(z) =e /4 Z e’
k=0

Find the recursion relation for the coefficients c;. Then consider the special
case J = 2.

Problem 60. Consider the second order nonlinear differential equation
d*u n du 1 n 14 0
— t+u—— -—u+ -u’=0.
dx? de 2 9

Show that the equation can be solved with the ansatz

3 dv

Problem 61. Consider the system of first order differential equations

duy dus

pralaklty - = —(a +bud)ug + cuy — us.

Show that

I(uy,us) = exp ((3/b)t) <u2 + gu:{’ + 11)u1> .

is a first integral of the system if a = (4/b) and ¢ = —(3/b%)

Problem 62. Consider the second order ordinary differential equation

d*u

T2 +A=V(z)u=0

with the boundary conditions u(+o00) = 0 and u(—o0) = 0. Let
V(x) = —2sech®(x).

Show that
u(x) = sech(x)

with A = —1 is a solution of the differential equation.

Problem 63. (i) Show that the second order linear ordinary differential
equation
o d*u du V2 4 22,
- Ty

Y -1 2= Y
o z(2x )dx (4+22)u 3 ¢
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admits the particular solution

V25 V2

2 o
u(zx) = 5 T

(ii) Show that the second order linear ordinary differential equation

d*u du V2
2 3
i —x(2z — 1)~ —du = —5 T

admits the particular solution

u(r) = —=a°.

V3

Problem 64. Solve the nonlinear differential equation

d?u du\?
u—s = | —
dx? dx
by inspection.

Problem 65. Let ¢ > 0. Consider the second order linear differential

equation
d*u
ﬁ + eiﬁtu =0.

Show that under the change of the independent variable

s(0) = 2 expl(—t/2),  ls(1)) = u(t

the differential equation reduces to a zeroth order Bessel differential equa-
tion

d®u  ldu  _ B

@ + g% +u=0
with the general solution

u(s) = e1do(s) + c2Yo(s).

Problem 66. Consider the second order ordinary differential equation
2
da?

where V : R — R is an analytic function. Set

u(z) + E2(1+ V(z))u(z) =0

u(z) = A(z)e™*® 4+ B(x)e
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with A(x) and B(z) satisfying the condition

dA .. dB
—e"" + —e

—ikx __
dz dz =0

Show that

Problem 67. Show that the solution of of the initial value problem
u(0) = 1 of the differential equation

du)®_ 22
de )] — 9ud

u(w) = (6\5@(:32 B 1)2/5.

Problem 68. Let r >0, a > 0 and ¢ > 0. Consider the potential

is given by

V(u) = C(u? — a?)2.
Study the second order differential equation

d?u  3du A%V

@ e T @l

with u(o0) = ¢ and du(r = 0)/dr = 0.

Problem 69. Solve the initial value problem of the second order differ-

ential equation
d*u n du 0
bl ke
dx? d

with u(0) > 0 and du(0)/dx > 0.

Problem 70. (i) Solve the initial value problem of

2
du1 2

Tz = Ul
(ii) Solve the initial value problem of

d2u1 ) dZ’UQ _
d{L‘2 = Uy, d$2 = Ui1UuUs.
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Problem 71. Consider the second order ordinary differential equation

d*u 3
—@ +u” = 0.

Apply the transformation

Problem 72. Solve the integral equation

| =2 = 21wy = 10
0
applying differentiation and the solving the resulting differential equation.

Problem 73. Let a > 0 and § > 0. Consider the van der Pol equation

d*u 9y du

We set f(u,du/dt) = u — (o — pu?)du/dt. Insert the ansatz
u(t) = A(t) cos(wt)

into the differential equation with A(¢) a slowly changing function of ¢, i.e.
dA/dt < Aw, d*A/dt?> < Aw? to find a approximate solution for the van
der Pol equation.

Problem 74. Study the driven one-dimensional harmonic oscillator

P

I + w?(1 + kcos(wt))u = 0.

Problem 75. Bessel’s equation of order zero is given by

d’y | dy
2 2
zJ hat- =0
T dx? + r Ty
which is a second order linear differential equation. Apply the transfor-
mation
1dy
v= -2

U=z, = -
y dx

and find dv/du.
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Problem 76. Solve the second order ordinary differential equation

Pu 1 (du\?
— == — 2=0.
dx? 2 <dm> * 0

Problem 77. Show that the second order ordinary linear differential
equation

d*u
22 =0

dt?
admits the eight Lie symmetries

6 9 .0 .98

o’ ou’ ot Ou
0 0 0 5 0 0 5 0
U—, U ut— +u'—, ut— +1t°—.

ouw ot ot du ou ot
Find the commutators. Classify the Lie algebra.

Problem 78. Let C be a real constant.

(i) Show that the differential equation d?u/dz? +u = C admits the partic-
ular solution u(z) = C.

(ii) Show that the differential equation d?u/dz? +u = C cos(z) admits the
particular solution

u(x) = %Cw sin(z).

(iii) Show that the differential equation d?u/dz? + u = Acos?(z) admits
the particular solution

1 1
u(z) = 50 - 60 cos(2x).



Chapter 3

First Order Autonomous
Systems in the Plane

We consider exercises for first order autonomous systems in the plane

d'LLQ

= fi(u1,uz), g = folu1, ug)

du1

dt
where f1, fo are continuous differentiable functions. The fized points are
the solutions of the equations

fi(ul,uz) =0, fa(ug, uz) = 0.
A differentiable function I(uq(t),us(t)) is called a first integral if

d DL duy | 01 duy

a0 = 50y ar f=0.

oI ht oI
dt - 0wy ! Oug
The second order differential equation d?u; /dt?> = f(uy, duy/dt) can be cast
into an first order autonomous system

dU1 d’UQ

W:u% E:f(uh%@)

48
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Problem 1. Show that the polynomial system

d d
d—fzw(aw—i—c% d—gzy(an—&—by—i—c)
admits the first integral
(azx + ¢)(ax + by)
z(ax + by + ¢)

I(z,y) =
where a, b, ¢ are nonzero real numbers.

Problem 2. Show that the polynomial system

dx dy
22—y — b(x? 42 - =
priai Al C ik

admits the first integral
I(z,y) = e (@® +y°)

where b is a real number.

Problem 3. Show that the polynomial system

dx
di

d
=2(1 + 22 — 2ax® + 6xy), d—i =8 — 3a — l4az — 2axy — 8y°

with 0 < @ < 1/4 possesses the (irreducible) invariant algebraic curve

1
H(m,y)zZ+x—x2+ax3+xy+x2y2:0.

Problem 4. Consider the x — y plane. At time ¢t = 0, there is a man
at origin (0,0) and a dog on the y-axis at (0,a), where a > 0. At ¢t =0
the man starts moving along the z-axis at a constant velocity v. At the
same time, the dog starts moving towards the man at a constant velocity
kv, where k > 1. The dog moves towards the man at all times.

(i) Find the differential equation for the motion of the dog.

(ii) How long does it take for the dog to catch up with the man?

Problem 5. Consider the system of differential equations

duz
dt

du1

e = (u1 +ug) (1 —uf —u3). (1)

= (u1 — ug)(1 — uf — u3),

i) Show that every point on the circle C' : u? 4+ u2 = 1, is a fixed point.
1 2
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(ii) Show that there is also an isolated fixed point (0, 0).
(iii) Study the stability of the fixed point (0,0) and show that the origin
(0,0) is an unstable focus.

Hint. Let U(uy,uz2) := u? + u3. Then

d
U (w1, u2) =2(1 —ui — u3)(uf +u3) (2)

is positive definite within C.

(iv) Show that every trajectory that starts from a point (u1,us) inside the
circle C will end on C.

(v) Show that outside of C, dU (u1,us2)/dt < 0 and every trajectory that
starts from a point (u1,uz) outside of C will also on C.

(vi) Show that a change to polar coordinates

up(r,0) = rcos(0), us(r,0) = rsin(0) (3)
reduces (1) to
dr 9 ﬁ 2
dt—r(l %), dt_l re. (4)

Problem 6. (i) Show that the equations

duz
dt

du
d—tl =uy — up — uy(ul +uj), =uy +up —ug(ui +u3) (1)
have their only fixed point at (0, 0).

(ii) Show that the origin is an unstable focus for the linear approximation
and also for the nonlinear system. (iii) Express (1) in polar coordinates

and solve the system of differential equations.

Problem 7. Consider the system of differential equations

dU1 dU2
W = U2, E :4U1 7'(1};’ (1)

(i) Show that it admits three fixed points (0,0), (£2,0) and study the
stability of the fixed points.
(ii) Show that (1) admits the first integral

1
I(uy,ug) = 4u% — iu% — u% (2)

(iii) Discuss the phase portrait.
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Problem 8. Consider the system of differential equations
du du
ditl = P(uy, u2), deQ = Q(u1, u2). (1)

Let P, Q, OP/duy, 0Q/Ous be continuous in the open region U bounded
by a simple closed curve. Show that if OP/0u; + 0Q/Jus has a fixed sign
in U, the equations can have no limit cycle C' in U.

Hint. Apply Green’s theorem to the cycle C

(PdUQ — Qduy) = — + — | duydus.
3u1 8u2

Note that if f = (P, Q), then

OP aQ
ou T ous

and the circuit integral is the normal flux of f through C.

divf :=

Problem 9. Apply Bendizon’s theorem to show that the Van der Pol
equation

d d
%:u% %:a(l—u%)ug—ul a>0

can have no limit cycle within the circle u? + u3 = 1 in the phase plane.

Problem 10. We consider the Van der Pol oscillator
duq dus
ar " dt

where a > 0. Study the stability of the fixed points.

=a(l —u)uy —uy (1)

Problem 11. The system of differential equations

d d
%:u1(2—u1—u2), %:uz(i%—?m—w)

describes competing species u; > 0, ug > 0. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.

Problem 12. Two species uj, us (u1 > 0, ug > 0 are in symbiosis if an
increase of either population leads to an increase in the growth rate of the
other. Thus we assume

duy
dt

duz

dt = N(ul,UQ)UQ (1)

= M (uq1,u2)us,
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with
oM ON

Guz =5 an (9’[1,1

We also suppose that the total food supply is limited. Hence for some
A >0, B >0 we have

> 0. (2)

M(u1,u2) <0if ug > A, N(u1,u2) < 0if ug > B. (3)
If both populations are very small, they both increase; hence
M(0,0) >0 and N(0,0) > 0.

Assuming that the intersections of the curves M~1(0), N~1(0) are finite,
and all are transverse, show that:

(a) every trajectory tends to an equilibrium in the region 0 < u; < A,
0 < ug < B;

(b) there are no sources;
(c) there is at least one sink;

(d) if 9M/Juy < 0 and ON/Jug < 0, there is a unique sink.

Problem 13. A system describing the time evolution (Goodwin model)
of a metabolic feedback control cycle of protein synthesis are given by

dX a dy

dt  A+kY 7 at ~ p S
where a, b, A, k, a, 8 are positive constants. The X and Y variables measure
m-RNA and protein concentrations, respectively. (i) Find the fixed points.
(ii) Show that there is a constant of motion.

Problem 14. Consider the Lotka Volterra model

duq dus
— = C1U] — CoULU —
a 1U1 2U1 U2, i

where u; > 0, us > 0 and ¢y, co, c3 and ¢4 are positive constants. Show
that

= —C3Ug + C4UL U (1)

I(uyg,ug2) = uPug' exp(—cauq ) exp(—causg) (2)

is a first integral of the Lotka Volterra model.

Problem 15. (i) Show that the system of first order ordinary differential

equations
dU1 1 dUQ 1
=l T =y wn )
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can be cast into the form
du1 1

o + Zu + u? = cexp(t). (2)

(ii) Show that this equation can be linearized by using the transformation
1dv

=——. 3

u = (3)

Problem 16. The Selkov model is given by

d d
%:a—cul—ulug—i—dug, %zb—uz—l—ulu%—dug (1)

where a, b, ¢ and d are constants. Show that the system admits the time
dependent first integral

I(uy,u,t) = (ug +us — a— be’ (2)

ife=1.

Problem 17. The Selkov model can also be written as

d

% =1 —buy +uus
d

% = a(ujul — us)

where a, b be positive bifurcation parameters. Find the fixed points and
study the stability of the fixed points.

Problem 18. Consider the motion of a free particle in a medium with
quadratic damping. The equation of motion takes the form

d*u du\ 2
2 k(dt) , k>0 (1)

Let u = u; and duq /dt = ug. Then

du du
Let 9 9
_ —_— 27
U = us o kuj s (3)

the vector field associated with the first order system (2). Let

0
V = —ku? exp(kul)a—uQ.
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(1) Show that the commutator [V, U] can be written as
[U.V]=fU. ()

Find f.
(ii) Show that
—fdivU + Ly (divU) =0 (6)

where Ly (.) denotes the Lie derivative.
(iii) Show that ug exp(kuq) is a first integral.

Problem 19. Let f be a C' vector field on a neighbourhood of the
annulus

A={xecR? : 1< |z] <2}

Suppose that f has no zeros and that f is transverse to the boundary,
pointing inward.

(a) Prove there is a closed orbit.

(b) If there are exactly seven closed orbits, show that one of them has
orbits spiraling toward it from both sided.

Problem 20. Let f: R? — R be a C* vector field with no zeros. Suppose
that flow @, generated by f preserves area (that is, if S is any open set, the
area of ®;(S) is independent of ¢). Show that every trajectory is a closed
set.

Problem 21. Let f and g be C! vector fields on R? such that (f(u), g(u)) =
0 for all w. If f has a closed orbit, prove that g has a zero.

Problem 22. Let f be a C! vector field on an open set W C R2 and
H:W — R a C! function such that

DH(u)f(u) =0
for all u. Prove that:
(a) H is constant on solution curves of du/dt = f(u);
(b) DH(u) = 0 if u belongs to a limit cycle;

(¢) If u belongs to a compact invariant set on which DH is never 0, then
u lies on a closed orbit.
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Problem 23. Consider the two-dimensional autonomous system in the
(z,y) plane described by

v et Yosy-ne-w) O
(i) Show that the fixed points are given by A(-1,-1), B(1,1), C(1,-1),
D(-1,1), E(-2,1), F(1,2), G(2,-1), H(—1,—2) and I(0,0) in the z —y)
plane.

(ii) Show that the fixed points A, B, C, D are saddles with eigenvalues
—6 and +2. The fixed points E, F, G, H are stable attractors whilst I is
neutral.

(iii) The phase space is clearly not compact. Show but it can be made so
by a coordinate change to a four dimensional system (u,v,w, z) where

zZ = x_17 U = yac_l, we = y_l, V= xy_l.
A new time coordinate 7 can be introduced to simplify the system if we
define it by d7/dt = 8. The system can be restored to two dimensions by
examining its behaviour on the slice where z = 0 and w = 0. On this plane

we have p
£ = 2u’(l — 2)(u + 22%)

% = (u? = 2% (—u + 22%) + u*(l — 22)(u + 22%)

and the new system has the fixed points A — I within a bounded circular
region. These fixed points are augmented by J—@ on the circular boundary.
The separatrix diagram indicates the generic fate of any trajectory. For
example, a trajectory lying in the cell CADB will wind around in a spiral
clockwise, indicative of quasi-periodic, oscillatory behaviour. The motion
of a generic trajectory through the cell complex can be determined and a
discrete mapping set up to desribe the sequence of separatrix changes.

Problem 24. Hopf bifurcation theorem is as follows. Let G be an open
connected domain in R™, ¢ > 0, and let F be a real analytic function defined
on G x [—¢,c]. Consider the differential system

d

d—? =F(u,p), where uweqG, |ul<ec (1)
Suppose there is an analytic, real, vector function g defined on [—¢, ¢] such
that

F(g(p),n) = 0. (2)
This one can expand F(u, i) about g(u) in the form

Flu,p) =L,a+F(a,p), uw=u-—g) (3)
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where L, is an n x n real matrix which depends only on p, and F*(u, p) is
the nonlinear part of F. Suppose there exist exactly two complex conjugate
eigenvalues a(u), a(p) of L, with the properties

R(x(0)) =0 and  R((0)) #0 ("= d/du). (3)

Then there exists a periodic solution P(t,€) with period T'(¢) of (2) with
= u(e), such that u(0) = 0, P(¢,0) = g(0) and P(t,¢) # g(u(e)) for all
sufficiently small ¢ # 0. Morover u(e), P(t,¢), and T(e) are analytic at

€ =0, and 0
T(0) = Sa0)] (4)

These “small” periodic solutions exist for exactly one of three cases: either
only for p > 0, or only for p < 0, or only for u = 0.

Consider the system of differential equation

du
= u%uQ — Bui —u1 + A, d—; = —u%ug + Buy (5)

duy
dt

where A and B are positive constants. Apply Hopf bifurcation theorem to

().

Problem 25. (i) Show that the system of first order ordinary differential
equations

duy 1 dus 1
W= Tl tun g =g wu (M)
can be cast into the form
d 1
% + Ju +u? = cexp(t). (2)

(ii) Show that this equation can be linearized by using the transformation

1dv
U = ——.
VT dt

3)

Problem 26. Let f and g be C! vector fields on R? such that (f(u), g(u)) =
0 for all w. If f has a closed orbit, prove that g has a zero.

Problem 27. Consider the two-dimensional autonomous system in the
(z,y) plane described by

@ -netm), Yo -ne-m). 0
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(i) Show that the fixed points are given by A(-1,-1), B(1,1), C(1,-1),
D(-1,1), E(-2,1), F(1,2), G(2,—1), H(—1,—2) and 1(0,0) in the  — 1)
plane.

(ii) Show that the fixed points A, B, C, D are saddles with eigenvalues
—6 and +2. The fixed points F, F', (G, H are stable attractors whilst I is
neutral.

(iii) The phase space is clearly not compact. Show but it can be made so
by a coordinate change to a four dimensional system (u,v,w, z) where

z= Jfl, U= yafl, we = yil, V= a:yil,
A new time coordinate 7 can be introduced to simplify the system if we
define it by dr/dt = c®. The system can be restored to two dimensions by
examining its behaviour on the slice where z = 0 and w = 0. On this plane

we have

de _ 2 (1 — 2%) (u + 222)
dr

;Lu = (u? = 2% (—u + 222) + u*(l — 2?)(u + 22?)
-

and the new system has the fixed points A — I within a bounded circular
region. These fixed points are augmented by J—@ on the circular boundary.
The separatrix diagram indicates the generic fate of any trajectory. For
example, a trajectory lying in the cell CADB will wind around in a spiral
clockwise, indicative of quasi-periodic, oscillatory behaviour. The motion
of a generic trajectory through the cell complex can be determined and a
discrete mapping set up to desribe the sequence of separatrix changes.

Problem 28. Show that a special solutions of the equations

N
Az, T
dt :ZZZ;;—Z;;L (1)

describing the motion of point vortices in an ideal two-dimensional fluid is
given by
Zn(t) = pexp(iwt +ipy) (2)

where
w=T(N—-1)/(2p%), ©n = 27n/N, 0<n<N-1. (3)
Consider first the case N = 2, i.e.

dz, . Iy dz, . Ty

At 'Zp—z dt Zr -2
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Problem 29. We consider the Van der Pol oscillator

d’LL1 dUQ

o = o a(l —u?)uy —uy (1)

where a > 0. Study the stability of the fixed points.

Problem 30. The system of differential equations

du
d—tlzul(Z—ul—uz)
du
d—; = u2(3 — 2uy — ua)

describes competing species u; > 0, us > 0. Why do these equations
make it mathematically possible, but extremely unlikely, for both species
to survive?

Problem 31. (i) Show that the system of first order ordinary differential
equations

dU1 1 dUQ 1
L S i L &
can be cast into the form
d 1
% + Pk +u? = cexp(t). (2)

(ii) Show that this equation can be linearized by using the transformation

1dv
U = ——.
VT dt

(3)

Problem 32. The system of differential equations

du
:U1(2—U1—U2), d7t2:U2(3—2ul—U2)

du1
dt
describes competing species u; > 0, up > 0. Explain why these equations

make it mathematically possible, but extremely unlikely, for both species
to survive.

Problem 33. Consider the initial value problem for the two linear sys-
tems of differential equations

du dv
% = Au, E = Bv
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a-(5 ) om0 %)

() ()

Then B = RAR™'. Given the solution of the initial value problem of the
first system u(t) = e*4ug. Show that v(t) = Ret4vy is the solution of the
second system through Ruy.

where

Let

Problem 34. The cycloide is given by
x(t) = a(t — sint), y(t) = a(l 4+ cost)

where a > 0. Find the corresponding system of differential equations with
the initial values.

Problem 35. Consider the Lotka-Volterra system

du1

— =U] —UIU
dt 1 1u2
dUQ +

— = —U UrU2.
dt 2 12

(i) Find the variational equation.
(ii) Assume that v = (v1,v2), w = (w1, w2) satisfy the variational equaton.

Show that
vAW = (vjws — vowy) ((é) A (?))

where A denotes the exterior product.
(iii) Calculate the time-evolution of

a(t) := vy (t)wa(t) — va(t)w ().

Problem 36. Consider the van der Pol oscillator

dU1 dUQ

’r = Uy, a :T’(l—u%)UQ—Ul

where r > 0. Study the stability of the fixed point
(u, u3) = (0,0)

and apply the Hopf bifurcation theorem.
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Problem 37. The Brusselator model is given by

du

7;:&_ (1+b)U1 +U%UQ
du

aTtZ =bu; — ufuz.

where uy > 0, us > 0 denote concentrations and a, b are positive constants.
Find the fixed points and study their stability.

Problem 38. Given one of the 16 binary matrices

0 0 10 01 0
0 0)’ 0 0)’ 0 0)’ 1
1

|
) G |
G20 0

)
GO C () (Y

As underlying field we consider R. The solution of the initial value problem
du duy /dt Uy u1(0) U1
—_— = = A = A = .
dt < d'LLQ/dt > u ( U9 ’ U9 (0) U20

is given by
u = (o)) =< ()

where A is one of the binary matrices given above. Obviously, we have
(M(O)) _ e <ul<t>>.
u2(0) us(t)

uy () u1(0)
up(t”) )’ u2(0)
for one of these binary matrices. Can we reconstruct this matrix from

this data? Obviously the solution depends on t* and the chosen initial
conditions. Discuss.

S =
N—
7N
— =
o O
N—
7 N
O =
— = O o O

Given t* > 0 and

Problem 39. A predator-prey model with Michaelis-Menton-type func-
tional response is given by

dU U AUV
P (1_ K>  V+AHU
v _ BAUV

dr  V+ AHU
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where U and V stand for prey and predator density, respectively. The
parameters are positive constants. R stands for maximal growth rate of
the prey, K for carrying capacity, A for capture rate, H for handling time,
B for conversion efficiency, and D for predator death rate. Introducing the
scaling

AHU AHV Br
“=Bx "TBE 'TH
and
p_ RH - _HD o AH
B’ B’ B
we obtain

du u suv
=ru (1 — 7> —

E_ S v+ su
@_ suv
dt v+ su

where 4(0) > 0 and v(0) > 0 for the initial populations. Find the fixed
points and study their stability.

Problem 40. Let a,b,«,3 > 0. Consider the autonomous system in the
plane

du1

2y

at — °

d

% = —auy — buy + au? + ful.

Use the Dulac function B : R? — RT
B(u1, uz) = bexp(—28u1)

to show that this autonomous system has no limit cycle.

Problem 41. Consider the Emden-Fowler differential equation

d 5du «n
o d? 2d
u _77u _ ra=2,n
- cac S )
Find the system of differential equations under the transformation
d a—1,n
PO = =y = &g =mie). @)

u(¢) d¢’ a
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Problem 42. Solve the system

dM, M,
— ~HoM, — ==
ac oMy T
M, M,
— —HyM, — =Y.
dt o T

with the ansatz

M, (t) = mcos(wt) exp(—t/T), M, (t) = —msin(wt) exp(—t/T).

Problem 43. Find the solution of initial value problem of the non-
autonomous system of differential equation

dul

1k

dt “

d

% = he Ftuy + (2 sin(2t) — cos(2t) — 2k)us.

Problem 44. Let f, g be analytic functions. Consider the autonomous
system of first order differential equations

duy duy 2
hadel &2 _ o _ _

dt f(eaul)a dt €U1f(€,ul) g(€7u1)(u2 €U1)
where f(e,0) = g(€,0) = 0 and € € R is the bifurcation parameter.
(i) Show that

0
V= (uz — eu%)a—u2

is Lie symmetry.
(ii) Show that for each fixed e there is a flow-invariant manifold

M = {(uy,us) : uy = eus }.

Problem 45. Consider the autonomous system

duz
dt

du1

2 3
— = —ujuU + us.
dt 1m2r T

= —u? + ulug + ug,
Show that (0,0) is a fixed point. Is the fixed point stable? Show that the
divergence of the corresponding vector changes sign in any neighbourhood
of the fixed point (0,0).
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Problem 46. Study the coupled oscillator

do .
ditl =wi + ksin(fs — 61)
do .
d—; =wy + ksin(6; — 6).

Hint: Set ¢(t) = 01(t) — 0=2(t).

Problem 47. Consider the autonomous system of differential equations

du3
=e" 4", —= =ce" 4 2.

dt

din e du2
dt dt

Show that
I(Ul,UQ, u3) =ek27 1" | C(UQ — ul) — Uus

is a first integral.

Problem 48. (i) Find the solution of the initial value problems of the
system of differential equations

du1 du2

o U g T

(ii) Find the solution of the initial value problems of the system of differ-
ential equations

duz
dt

d
e sin(us),

dt

= —sin(uy).

(iii) Find the solution of the initial value problems of the system of differ-
ential equations

d
= sinh(us), % = —sinh(uy).

duy
dt

Problem 49. Consider the autonomous system of first order ordinary
differential equations

dUQ

g = fi(u1,us), g = fa(u1,us).

Find the conditions (and solve it) on the smooth functions fi, fa such that

0 0] 0]
Sy = u?— — Sy = — i
! ul 8’11,1 +U1UQ 6u2’ 2 iz 8u1 +u2 8UQ
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are Lie symmetry vector fields of the differential equations.

Problem 50. Find the solution of the initial value of the system of
nonlinear differential equations equation

du1 2 d’LL2
E = Ug, E Ug1U2
by solving first J p
u u
1731 = u1u22 = dt

to find a constant of motion. Find the commutator of the two vector fields

0
3 Vo = uqug—.

‘/1 :u287,u/17 au2

Discuss.

Problem 51. (i) Let & > 0. Consider the autonomous system of differ-
ential equations

du du
d—tl:uQ, cT;:kul(ul_l)'

Find the fixed points and study their stability.

(ii) Motivated by the Lie series expansion for the solution of the system of
differential equations and truncation we replace the system of differential
equations by the two-dimensional map

fi(z,22) = 1 + 22 + kxi (21 — 1), fo(z1, 22) = o + ka1 (21 — 1).

Study this map.

Problem 52. Consider the non-autonomous linear system of differential

equations
dui/dt\ [ —sin(2t) cos(2t) —1 U
dus/dt )~ \ cos(2t) + 1 sin(2t) us )’
Show that the system admits the solutions

[ e'(cos(t) — sin(t) wlf) = e~ t(cos(t) + sin(t)
w(t) = (et(cos(t) + sin(t)) ’ 2(t) = (e_t(— cos(t) + sin(t)) '

Problem 53. Consider a two-dimensional phase space with motion de-
scribed by the differential equations
dx dy

& — 1
dt ’ ar ~“ (1)
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where « is a real parameter. We take as a subset of phase space of finite
measure the unit square

0<z<l1l, 0<y<l (2)

and impose periodic boundary conditions. This, in fact, is equivalent to
choosing the phase space to be a torus. Discuss the solution of (1) as a
function of o and show that the system is ergodic if « is irrational.

Problem 54. Solve the initial value problem for the autonomous system
of first order differential equations

dU1 2 2 dUQ - 2

2
— = -—uj tuy, — =
dt LU

—u5 + uj.

Hint: Set
n(t) == ui(t) +ua(t), J(t) = ui(t) — ua(t).

Problem 55. Solve the initial value problem for the autonomous system
of differential equations

duq 2uq dus 2uz

7:—77 7:1—7
i+ dt Vi +u3

with the initial conditions u;(0) = 1, u2(0) = 0.

Problem 56. Find solutions of the autonomous first order system of
differential equations

du du )
ditl = cos?(u1), d—; = sin(uy).
Show that 1
I(uy,ug) = sec(uy) —ug = m — Uy

is a first integral.

Problem 57. Let zo be a fixed point of dz/dt = f(z) in M C R". A
central manifold is an invariant manifold that touches in the fixed point a
eigenspace E. belonging to the eigenvalues with vanishing real part. Using
the two-dimensional example

d —_ .2
— U = ul,

dt

Ug = —U2

dt

show that the central manifold does not need to be unique.
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Problem 58. Evaluate the behavior of the autonomous system
duy /dt = —uqug, dus/dt = —Pus + u%

with 8 > 0, near the fixed point (0, 0).

Problem 59. Study the fixed points of the dynamical system

Show that the dynamical system has a nilpotent center at (0,0). Show that
the dynamical system admits the symmetry

(u17u27t) = (—Ul,ug, _t)

Problem 60. Let e € (0,1). Consider the three linear systems of differ-

ential equations
(o) = (3 ) ()
() = (5 0) (i)
(dry = (0 ) (1),

Find the fixed points for the three systems and find the eigenvalues of the
three matrices.



Chapter 4

Higher Order Differential
Equations

We consider differential equations of the form
d’n
Wlf = ft,u, ..., d" ‘u/dt" 1)

for n > 3 and autonomous systems of first order differential equations of

the form J
%:fj(ulaUQW'wun% j:1727"'7n

where n > 3.

Problem 1. Consider the initial value problem for the system of linear
first order ordinary differential equations

du

My
ar "

with u = (ug,usa,...,u,)T, Ais an n x n matrix over R and up = u(t = 0).
Then the solution of the initial value problem is given by

u(t) = euy.
Find the solution of the initial value problem

dul dUQ dU3
— = us, — = Uy, — =1U
a0 At !

67
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i.e. we have

b

Il
= o O
o = O
O O =

and ug = (1,0, 1)T.

Problem 2. Consider the initial value problem for the system of linear
first order ordinary differential equations
du

with u = (uy,ug,...,u,)T, b= (by,ba,...,b,), Aisan nxn matrix over R
and ug = u(t = 0). Then the solution of the initial value problem is given
by

t
u(t) = ettug + et / 677Ab(7')d7'.
0
Find the solution of the initial value problem for

duy dus dus

7:’“:7 —_ = U —_— = U
dt 3 dt 2, 1

i.e. we have

and up = (1,0,1).

Problem 3. Let A, B be n x n matrices over R. Consider the systems
of linear equations with constant coefficients

ar o dt

with the initial conditions x(t = 0) = xo and y(t = 0) = yy, respectively.
Derive the differential equation for

dx A d—y—By

z11(t) x1(t)y1(t)
212(t) x1(t)y2(t)

2(t) = | zn(t) | = | m(ua®) | =x) 0 y(0)
221(t) zo(t)y1 (1)

zun(®) Zn(t)yn(®)
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where ® denotes the Kronecker product and find the solution.

Problem 4. The geodesic flow on a sphere S™

Tx=lx[* =1 (1)

(x,X) =x
where x(t) = (2o(t),21(¢),...,2,(t))T (T denotes the transpose, (, ) the
scalar product and ||.|| the norm is described by the autonomous system of
differential equations

d*x

dt?
where the Lagrange parameter ) is determined such that (1) is compatible
with the differential equation (2). Find this compatibility and show that

= Ax (2)

d*x
P —ldx/dt|*x. (3)

Problem 5. Consider the initial value problem of the autonomous system

du1 2
— = U ulu

dt 2ty
d’LL2 2
— =Uu UU

at 1+ uguj
d’LL3

W+ ).

Show that
I(uy,ug,uz) = u% + u% + ug

is a first integral. Discuss.

Problem 6. In the study of the Lagrangian structure of the ABC-flow
we consider the dynamical system

d
* = Asinz + Ccosy

dt
d
d—i{ = Bsinx + Acos z

d

d—j =(C'siny + Bcosz

where A, B, C are real parameters. Since the right-hand side is 27-periodic
in x, y, and z we have a dynamical system defined on the three-dimensional
torus 7°. Find a first integral when C' = 0.
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Problem 7. The autonomous system of ordinary differential equations

d
% =xox3 — x1(T2 + x3)
d
% =x3x) — x2(T3 + 21)
d
% =z — z3(x1 + T2)

is called the Darbouz-Halphen system.
(i) Show that the three hyperplanes

Hi(x): =21 —22=0, Hy(x): =21 —23=0, H3(x):=x9—23=0

are invariant by the flow of the Darboux-Halphen system.
(ii) Let y = —2(z1+x2+x3). Find the differential equation for y. Calculate
up to d3y/dt3.
(iii) Consider the matrix-valued differential equation

aM

— = (det MYM YT + MTM — (teM)M
where M is a 3 x 3 matrix-valued function of ¢{. Show that the Darboux-
Halphen system can be obtained by setting M to the diagonal matrix

X1 (t) 0 0

Problem 8. (i) Find the first integrals of the system

dl’l o

— =x129 — 2123 = x1(xT2 — T3)
dt

dl’g o

—= =93 — T1x2 = xo(x3 — T1)
dt

dag _

b =321 — Tox3 = x3(T1 — T2).

(i) Find the first integrals of the system

dx

ditl =x1(c — x9 + x3)
dx

d—; =xo(c — x3 + 1)
dzs

I =x3(c — x1 + x2).
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Problem 9. The Halphen-Darbouz system of ordinary differential equa-
tions is given by

dU1 ( + )
— =ugu3z — u1(u U

a 2U3 1(U2 3
d

% =ujuz — uz(ug + ug)
d

%ZUWQ—US)(M + ug).

The system is invariant under the six permutations of the u;’s. One gener-
ating set of invariants of the permutation group is

VU1 = U1 + U2 + U3

Vg = U1U2 + UgU3 + UTUS3

V3 = U1U2U3.

Express the system of differential equations in terms of the variables vy, v,
V3.

Problem 10. Consider the autonomous system of first order differential
equations

d d
% = wows — w1 (wa + w3) + 72, % = —71 (w2 + w3)
d d
%:wg,wl—wg(wg +w1)—|—72, %:—Tg(u)g—f—wl)
d d
% = wiwy — wa(wy + wo) + 72, % = —73(w1 + w2)

where 72 := 7% + 75 + 7. Using the ansatz

wl(t):_;iln<@), rl(t):\/%
”2(t)1dln< : > mit) = 2

s—1
=2 (5), m =

find the differential equation for s(t), where § = ds/dt. Here k; are con-
stants.

Problem 11. Find all time dependent 2 x 2 matrices A1, Ay, A3 such
that

dA;
t

3
1 .
=0 D el (0, A, =123

J,k=1
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where €123 = €321 = €132 = 1, €913 = €321 = €132 = —1. All other €ijk are
equal to 0.

Problem 12. Consider the nonlinear ordinary differential equation of
third order

dPu d?u du du 2
F=— +4u—-: 2= — 4=0. 1
dx3+ udz2+6u dz+3<da:> +u* =0 (1)

Show that this equation can be linearized with the ansatz

d
é = u(x)v(z). (2)
Find the general solution to (1).
Problem 13. Show that
d3u du
Z a2 = 1
dz3 ~ dr 0 (1)
admits the first integrals
d*u 1 Pu 1 (du\® 1
F = — ——u? F: —u— — = [ — | —=u. 2
() dz? 2" 2(u) a2 T 2 <dm> 3" @

Problem 14. The Lorenz model is given by

d d d
d—f:g(y—gj)’ d—z:—xz—&—rx—y, d—j:xy—bz (1)
where o, and b are three real positive parameters. Show that by eliminat-

ing y and z from the above system, we obtain the third-order equation

Bz dx &Pz dz\?
(z® + b(o + 1)) Z—j +o(z* +b(1 —r)z?) = 0. (2)

Problem 15. Consider the diffential equation

2

>z dx d°x dz\”
xdt3_(dt_(o+b+1)x>dt2_(g+l)(dt> +
(z° + b(o + 1)) dr +o (2 +b(1 —r)2?) =0. (1)

dt
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Find the Lie symmetry vector fields of (1). Assume that the Lie symmetry
vector field is of the form

V=Wolt,x, &) + %(t,x,a’:)i)%. (2)
Hint. The invariance condition is
prPV(Aa) =0 (3)
where A is given by
2% —(i—(oc+b+1)z)i—(c+1) (&) +
(z® +b(o + V)x) & + o (z* +b(1 — r)2?) = 0. (4)

and pr®V denotes the third prolongation of V. Let

x = Vo(t,z, %) + Vi(t,z, o).

3] d 3] d? 3]
prV . Xon +< >6x+( t2x>6 (5)

Hint. The total derivative operator d/dt is given by

Then

a "o T an T e

Problem 16. The Lorenz model is given by

dx dy

=oly-a), o " =y b (1)

n d

=—y—xz+re, —
Y C
The system (1) can be represented as a third order differential equation

ud?’u du d*u ‘u 3du +(b+o+ 1 d2u+
— = — o
a3 dt dt? dt dt?

(o + )(b ?;(i?;) >+au4+b(1r)cru2—0 (2)

where v = z. Show that (2) admits the following first integrals:
1) b=2c0

1 1d?
II:( 20(r — 1) +u? +2(c + 1)~ du 2 du)eQ"t

wdt Tiuae
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2)b=0,0=1/3
3 du\* d*u
I = [ —2,4 au o 47U 413
2 ( ke +3<dt> 3udt2>e

Nb=1,7r=0

1du 2 du 1 [du)\® (0 +1)2
Li=[1+w?+20+1)—2 4+ 220 (24 (140720
8 ( 2o+ )Judt+0udt+o2 <dt) ( + u?

1 d%u 1 2u\ 2 1 dud?u
22— (52) 420 +1)—— e
T (ﬂuz(dﬁ> Ao+ D a g am )

DHb=40=1
1du

1
A 1\2 2 Lo _
Ii=(—4(r—-1)°"+2(r—1u 2 + 8(r 1)u o

du du\? 1 d%u du
2+ () 4 - 1) = —u—)et
“ﬁ'%(m) A =D e g

1 du du du\’
Is = ((r =12 = (r — Du® — 4(r — DEE +2ua (dt>

1 (du’ 1d>u 1 (d?u\’ 1 dud?u, o
(dt) —2Ar =Dy u(dt) AE T aE e

6) b=60—2,r=20—1

+4

u2

I = (O'_l(O' ~1)(30 — )u? — %U‘ ut — o7 (30 — I)UE

Problem 17. Consider the Kuramoto differential equation in the complex
domain N
1 d d
9 U u (1)
Show that the equation admits the general solution (psi series)

1 .
ue) = oo (120 + P(A(z = 20)") + Q(B(z — 20)))  (2)
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where P and @ are two power series without constant term

Py) =Y amy™, Q@)=Y bmy™ (3)

Problem 18. The Schwarzian derivative plays an important role in sev-
eral branches of complex analysis. Let w be a holomorphic function. The
Schwarzian derivative {w; z} of w is defined by

dPw d>w

Y T
{w; z} := do "2 | dw | - (1)

dz dz

(i) Show that if w(z) = z we find {w;2} = 0.
(ii) Prove the following Theorem. Let y; and y2 be two linearly independent
solutions of the equation

d*y

12 +Q(z)y=0 (2)
which are defined and holomorphic in some simply connected domain D in
the complex plane C. Then

w(z) = 21 ®)

satisfies the differential equation
{w; 2} =2Q(2) (4)

at all points of D where y2(z) # 0. Conversely, if w is a solution of (4),
holomorphic in some neighbourhood of a point z5 € D, then one can find
two linearly independent solutions, u(z) and v(z), of (2) defined in D so
that

u(2)

w(z) =, (5)

and, if v(zo) = 1, the solutions v and v are uniquely defined.

Problem 19. The Lorenz equations are

dusg dus

du1 +
— = UlU ru; — ug, —
dt 1u3 1 2 dt

o = ujug — bus
ar 1U2 3

= 0'(’LL2 — ’11,1)7

where o, and b are three real positive parameters.



76  Problems and Solutions

(i) Show that these equations are invariant under the discrete transfor-
mation

(u1, ug,usz) — (—uy, —uz,us).
Repeating this parity transformation gives back the identity mapping.
(ii) Show that there can exist orbits which are invariant under this reflection
or pairs of orbits which are mapped into each other.

Problem 20. The Lorenz model is given by

d d d
% =o(ug —up), % = ujuz + ru; — ug, % = uyug — bus (1)

where o, r and b are three real positive parameters. Find the fixed points
and study their stability.

Problem 21. A Volterra’s dynamics for the populations N; of m inter-
acting species is

dN; 1 & .
dt :eiNi+ENiI;akiNk, 2:1,2,...,m (1)

where N; > 0. (i) Show that the stationary population levels N; = ¢; (fixed
points) occur for

1 m
“@=7 Z ik (2)
! k=1

(all dN;/dt = 0) and will be unique when « is non-singular (this requires
the number of species m to be even, since otherwise odd-order skew « is
necessarily singular). (ii) Show that introducing the new dependent varibles

vi(t) == In (Zﬁ;) (3)

brings the Volterra dynamics to

dv; =~ 0G
— = E i —— = E — 2
dt e Vki avk P G — Ta (eXp(Ua) Uoc) ( )
where .
= e = =y, Ti = q;if3i. 3

(iii) Show that in the one-predator/one-prey case of Lotka-Volterra, these
equations are in Hamiltonian form, with

v = Q, vy = P, Y12 = —7Y21 = —7Y 4)
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and
H(Q, P) =71(e? = Q) +y72(e” = P) (5)
where the Hamilton equations of motion are
dQ_oH P __oH o
dt 9P’ dt Q"

Problem 22. In the Jaynes-Cummings model a single-mode field and
a two-state atom couple to each other via the undamped Bloch-Maxwell
equations

dsy dss dss

dt 52 ar 1S a2 (la)
&2E
W + 1% E= asiy (lb)

where the dimensionless parameter u = w/wyp, the coupling constant a =
8T Nd?woh~! and N is the number of two-level atoms. In (1) s1, so, s3 are
components of Bloch’s vector describing polarization and inversion. The
electric field E = 2dE /hwg, d being the electric dipole moment of the
atom, is dimensionless and equals the ratio of the Rabi frequency and the
atomic transition frequency wg. The dimensionless time ¢ is scaled with the
atomic transition frequency wgy. The model of a two-level atom described
by (1) is valid under the assumption that F < 1.

(i) Show that the system (1) possesses conservation laws for length of the
Bloch vector and energy

sit+sp+sy=1 (2)

1 1 (dE\?
W = asg — CLSlE + 5/142E2 + 5 (dt) . (3)

(ii) Show that the system (1) admits the following particular solution
E(t) = Eoen(Qt, k) 4)
1/2

1 2\ 1 1\°
gt (2= 2oal2- 2 5
3 (“ 27) T3 (a B 5)

1 1 1 1
oo (og)rp Boa(iog)et o

(iii) Show that the inversion sz and the components of the dipole moment
expressed in terms of F takes the form

1{ 3 1\? N\ 3 1 3
_ = _ 2 2_ - 2_4 2 _ - e 2 _ - EQ—i
BTy 2(” 9) +<a (“ 9)) +4<“ 9) 32

(7)

E4
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13, 1 1, ds
sl—a<2<p—9>E—8E>, 2= (8)

(iv) Show that the solution is valid only for
1/2
1 5\ 5 1\°
W=-2(p?-= 2_ = a4 (p?—= . 9
(u 9> (u 9>+3<a (u 9 (9)

Problem 23. Consider the coupled Riccati equation

du
dt

N N
! :di—l—Zeijuj—&- Z fijkujuk, 1=1,2,...,N. (1)
Jj=1 J,k=1

(1) Find analytical solutions for the special cases, e.g. if fijx = f;0i (pro-
jective Riccatis).
(ii) Show that the N x N matrix Riccati equation

du

E:a+b~u+u~b'+u~c~u (2)
is linearizable due to the non-commutative property of matrices, where b
and c are N x N matrices.

(iii) Insert

N
u(t) =Y As()ui(t) + Ao(t) (3)
=1
into (2) and use (1). Show that one gets the compatibility relations
dAy &
0 _ /
WJrZz:;Aidi_awrlo-AHAOb +Agc- Ay (4a)
dA; &
dtl + ZAjeji = (b+Agc)A; + A;(b' +c- Ay, i=1,...,N (4b)
j=1
N
2> Aifijk=Ajc- A+ Arc-A;, jk=1,... N (4¢)
=1

Problem 24. Consider the differential difference isotropic Heisenberg
spin chain
gs _ SnXSn+1 _ Sn,len
dt™" 148, -Spy1 14+8S,.1-S,’

(1)
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(1) Show that this differential-difference solition equation can be reduced to
a difference equation assuming a simple time-dependence

S,.(t) = (cos ¢y, coswt, cos ¢y, sin wt, sin ¢,,) (2)

with .
Ty := tan —¢, (3)

2

where
(223 + w2 + 22, —w — Ty 1 (=22 — w2l +wr, + 1)) ()
Tpgl = )
Tt Z0rd oz, + 1 — 2 (wrk — 223 — wa? — 21,))

(ii) Show that its one-parameter family of invariant curves is given by the
symmetric biquadratic relation

(1+2K)2222 )+ w(l+ K) (22 2n41 + 2p22 ) + (1+ K) (22 + 22 )+

2Kxp@pni1 + w(l + K) (2 + Zp1) + 1 +2K =0 (4)

where K is the invariant parametrizing the family curves.

Problem 25. Consider a discrete modified Korteweg-de Vries equation

d 1 1

gﬂcn = (1+$i)(5€n71_$n+1+§($n+2+xn)(1+xi+1)_§($n+xn72)(1+$?ﬁl))'
(1)

(i) Show that stationary solutions of this equation are given by

Pt = o En2) (1 240) = a1 — 3 (on e +2)(1+ ). ()
(ii) Equation (2) defines a 4 dimensional mapping.
(iii) Show that this mapping can be integrated to a two dimensional map-
ping
_ 2man1 + 2Ky — 9, 2(1 + 73, _)
B 1+ x%nfl

Ton (3)

2$2n + 2K1 — xgn,l(l + x%n) (4)
1+ 23, '

where K7, Ky are integration constants. This mapping is integrable. Its

one-parameter family of invariant curves is given by the asymmetric bi-

quadratic relation

Ton41 =

2 2 2 2
L5, o 11 + Toy + Topyq — 2T2nTon41 — 2K122n41 — 2K5x2, + K3 =0 (5)

where K3 is the third integration constant.
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Problem 26. Consider the autonomous system

du

— =F(u) = gradV(u) (1)
dt

which is called a gradient system of ordinary differential equations. Show

that a gradient system cannot have any limit cycle solutions.

Problem 27. Within the rotating wave approzimation the dynamical
system of perturbed Mazwell-Bloch equations is

de P »
—_ = - = ww D
7 P, o (€ +ee™)
dD 1 ) ,
E = —5((5 + 66’“‘”5)7)* + (5* + Ee_wt)P). (1)

The variables in this set of equations are dimensionless. £ denotes the self-
consistent electric field, P is the polarizability of the matter, and D is the
difference of its occupation numbers, assuming the material response may
be modeled by two levels - a ground state and an excited state. Here, £
and P are complex scalar functions of time, D is real, € is the (constant)
amplitude of the external driving field, and w is the detuning of the laser
probe frequency from resonance with the two-level atoms.

(i) Show that for non-zero € and w, these equations possess two first integrals

1 1
H=Z|P?+:D? 2
LPE @
L= 5w|c€'|2 +wD + Z((é‘ + ee“NP* — (£* + ee ) P). (3)

These two first integrals result from unitarity (H) and energy conservation
(L). The three summands in L involve the self-consistent electric field
energy, %|5 |2, the excitation energy of the atoms, D, and the interaction
energy of the polarizable medium with the total electric field, £ + ee®“?.
Notice that

dpP dp*

d 27d * _ Ty
PP = ZPPT = Zp P (4)

Problem 28. The unperturbed Mazwell-Bloch equations are

d€ aP D 1, . o
— =P, - =ED, - =—(EP +EP). (1)

Show that these unperturbed equations posses three integrals of motion

1 1
H=_|P]*+ -D? 2
S|P+ 5D, (20)
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1
J = 2—2,(573* - &'P), (2b)

K= %\5|2 +D. (2¢)

Problem 29. The surface of a two-dimensional ellipsoid can be imbedded
in three-dimensional FEuclidean space by the equation

CC2 y2 22

po) + 2 + o) =1 (1)
where the axes satisfy the inequality a > b > ¢ > 0. When a particle with
mass m moves freely on this surface, it is subject to a force that is always
perpendicular to the tangent plane, and whose direction is, therefore, given
by the vector (x/a?, y/b?, z/c?) times some factor A to be determined. (i)
Show that the equations of motion then become

du x dv Y dw z

— =)= — =)= — =)A= 2
dt 2 dt 2 dt 2 (2a)
dr u dy v dz w
_ = — _—=— -_ = — 2
dt  m’ dt m’ dt m (20)

where (u,v,w) is the momentum. (ii) Show that by taking two derivatives
with respect to time in (1) and replacing the second derivatives of (z,y, 2)
according to (2), one gets the condition,

_u?/a? + 0?0 +w? /P
- x2/at +y2 /bt + 22/t )
(iii) Show that if the initial position of the particle satisfies (1), and the

initial momentum is tangential to (1), then the whole trajectory stays on
the ellipsoid. (iv) Show that the quantity

3)

(v —yu)? (2w — zu)?
a2 _ b2 a2 _ 2

A=u?+ (4)
and similar ones, B and C, which are obtained by the cyclic permutation
of the triples (z,y, 2), (u,v,w), and (a,b, c) are first integrals. These three
quantities are not independent since one has the relation A + B + C' =
u? + v? + w?, where the right-hand side is the kinetic energy which is in
fact the Hamiltonian of the system. A, B, and C are in involution.

Problem 30. Show that a special solutions of the equations

N
dz, . |
RPN Z (1)

m#n



82  Problems and Solutions

describing the motion of point vortices in an ideal two-dimensional fluid is
given by
Zn(t) = pexpliwt + ipy,) (2)

where
w=T(N—-1)/(2p%), on = 27n/N, 0<n<N-1 (3)
Consider first the case N = 2, i.e.
dzg . I4 dz, . Ty

At 'zZp—zp dt Zr -2

Problem 31. Consider the system of differential equations
dPy,
dr

where k > 1. Here the first term is self-explanatory. In the second term the
probability Py is used because a larger cluster must be actually occupied
in order for a reaction event involving a site outside the original k-site
cluster to proceed. The most interesting quantity is Py(7) = c(7r). It
is expected to decrease in time but remain finite as 7 — oo. All other
probabilities Py~ are expected to vanish for large times. Show that the
solution of the differential equation (1) can be obtained by the ansatz

Py(r) = c(r)[o(r)]" (2)

where o(0) = p, eliminates the k dependence.

= —(k—1)P, — (2k — 2k +2) Py (1)

Problem 32. A model for epidemics is given by

s dl dR
E——’I‘SI, E—TSI—CLI, i

where S stands for the number of susceptibles, I for those infected and
R denotes the removals. The constants a, r determine the infection and
removal rates of infectives, respectively. Show that the system admits the
two first integrals

al (1)

Hi=S+I+R, H2:R+gln(S). (2)

Problem 33. Find the Lie symmetries and first integrals of the system

d
i::cwr;—|—by—&—z—2342

dt

d

d—‘:{ =ay — bx + 2zy
d

& _ —2z — 2zx.

dt
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This system of differential equations corresponds to the interaction of three
quasi-synchronous waves in a plasma with quadratic nonlinearities.
(i) Let

y=y+0b/2
Show that the system then takes the form
d
d—f:axfberznyz (la)
dy
o= ay + ab/2 + 2xy (1b)
d
d—j = —2z — 2zxz. (1c)

Problem 34. Consider the system of ordinary differential equations

ZZ(AijklPkPl — Awiij P Pj) (1)

1k=11=1

a

dpP, <&
j:

where ¢ =1,2,...,n and A;ji; > 0. Assume that

S A =1 o)

i=1 j=1

for all pairs (k,l). The quantities denotes transition probabilities. Show
that

Z P; = const (3)
i=1

The model given above is a caricature of Boltzmann’s equation. . The j-th
component P; is the probability to find a particle in the j-th phase space
(or configuration) cell. Obviously, P; > 0 for j =1,2,...,n and

n

d Pt=0)=1. (4)

Jj=1

Owing to (3) we find that

Problem 35. Consider the equations of motion

;— _— m, — = — — f— = — — 1 =
Mg ox;’ 2 Oy;’ i 0z’ T
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where
U= 7m1m2F(7‘%2) —mgmgF(r§3) —mgmlF(rgl), m; =1, i=1,2,3

(71, yr, zx) are the coordinates of the k-th body, k = 1,2,3, F(r?) is an
arbitrary, sufficiently smooth function, and

rig = (i — )% + (yi —y;) 2 + (2 — 25)?) /2 (3)

(i) Show that (1) is invariant under the 10-parameter Galilean group G(1, 3).
(ii) Show that the Lie algebra of this group has a basis consisting of the
following infinitesimal generators

0 0 0 0 0 0 0
Xi=/—4—74— Xo=—+—+—,
! ? o 0y 0y3

E’ 8951 8%2 81'3,
0 0 0 0 0 0
X = o Vo T X‘*—t(axﬁawaxs)’

X_t i+i+i X_t i+i+i
o Oy1 Oya  Oys )’ 6 0z1 0Ozy Oz3)’

0 0 0 0 0
Xe=yp=— —2k=—, Xs=2k=— —Th—=—, X9=Tp— —Yk—=——-
7T =Yk D2 2k ayk’ 8 = 2k Dz Ty Dzr’ 9 = Tk o Yk Oz
(4)
Remark. Ten integrals of motion of the spatial three-body problem were
known already to Lagrange

Xo =

Problem 36. Euler’s equations for rotation of a rigid body about a fixed
point are given by

dw
1171 = (12 — Ig)u.)gwg (1(1)

t

dwg
I27 = (13 — Il)wgwl (lb)

t

dw:
.[37; = (I1 — Ig)wlwg (16)

A plane lamina has principal moments of inertia I, 21 and 31. It is rotating
freely with angular velocity n about an axis through its centre of mass
perpendicular to its plane when it is given an additional angular velocity
V/3 n about its principal axis with moment of inertia I.

(i) Prove that, at time ¢ later, the components of the angular velocity of
the lamina along its principal axes are

(v/3nsech(nt), v/3n tanh(nt), sech(nt)). (2)

(ii) What is the eventual motion as ¢ — co?
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Problem 37. Find the solution of the initial value problem

du

with u(t = 0) = g, du(t = 0)/dt = us, d*u(t = 0)/dt? = uyo and u is a
real-valued function.

Problem 38. Consider the Lorenz model of the form

d
d—ItU:R—zy—w
%—w —z
at Y

d

d%—a(z—y)

Consider the case that R > ¢ and Ro > 1. Find the Lorenz model under
the scaling

; y w z Y 1
—€el, w— —— Z — — y— =, €= .
€ vV Ro

€20’ €20’
Show that for e = 0 we find two first integrals (constants of motion). Thus
for this case the system is completely integrable.

Problem 39. Consider the system of differential equations

du1 _

— =ujuz — ugug = u(uz — usz)
dt

dUQ _

—= =uguz — Uy = uz(us — uy)
dt

dU3 _

- = uguy — ugug = ug(ug — ug).

(i) Show that u} = uj = uj = ¢ (c € R) is a fixed point.
(i) Find the variational equation.
(iii) Study the stability of the fixed point.

Problem 40. Consider the dynamical system

du1 dU,Q dU3 2 (1)
— = —UoUs, — = UjUs, — = —Uq.

dt 2 a0 dt 3

This system has a simple system-theoretic interpretation: w; and ug are
the states of an oscillator, frequency modulated by us.
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(1) Show that for ug(0) > 0 the solution of the initial value problem is given
by

u1(t) = Rcos(In(1 + tus(0)) + 0), uz(t) = Rsin(In(1 + tus(0)) + 9)

(2)

where

R = /uf(0) + u3(0)) 3)

5 = arctan (zl<°>> . (4)

(ii) Show that the trajectories are bounded when u3(0) > 0. (iii) Show that
if u3(0) > 0, then the trajectory u has no autocorrelation, that is, the limit
in

and

R, (1) := lim u(t)u(t + 7)dt (5)

T—o0

does not exist, and hence u has no spectrum.

Problem 41. Suppose that an elementary magnet is situated at the
origin and that its axis corresponds to the z-axis. The trajectory (z(t),
y(t), z(t)) of an electrical particle in this magnetic field is then given as the
autonomous system of second order ordinary differential equations

where 72 := 22 + y? + 22. Show that the system can be simplified by
introducing polar coordinates

z(t) = R(t)cos(o(t)),  y(t) = R(t)sin(e(t)).

Problem 42. Consider the pair of coupled nonlinear differential equations
relevant to the quantum field theory of charged solitons
d’o 3 2 d*p 3 2
@:—U—FU + dp“o, ﬁzf/H—/\p +dp(c”—1) (1)

where o and p are real scalar fields and d, f, A are constants.



Higher Order Differential Equations 87

(i) Try to find an excat solution with the ansatz

p(x) = by tanh(Ag(x + ¢o)), o(x) = Z ap tanh™ (Ao(z + ¢0)).  (2)

n=1

Problem 43. The coupled system of ordinary differential equations

d? 1
a tetu= oo (3 (1a)
d? 1
et = oz (3) (1)

is a so-called Ermakov-type system, where F and fo are arbitrary differen-
tiable functions. Show that the system admits the first integral

1 d d 2 v/u u/v
r=1 (ud: _vdjj) + / fds+ [ fB)ds. @)

Problem 44. Consider the linear system of first order ordinary differen-
tial equations

duy dus duz

— =aug, —— =—au;, — =0bu
dt 7 Y dt ’

where @ > 0 and b > 0. The corresponding vector field is given by

V = auy=— — auy =— + buz——
QUQaul @t 8u2 + u36u3

with the Lie series solution of the initial value problem

u(t) = etvu‘

u—ug

where u(t = 0) = ug. Find the curvature £(t) and torsion w(t) of this
curve, where

9 - 1 _ 1'121':12 _ (uTu)2
SR IO R T
det (it i)

w(t) = PZ(t)W

Problem 45. Consider the Lorenz model

du1 ( ) dU2 + dU3 b
— = —0(uU1 —Uu2), — = —U1u rTu1 — U2, — = UjUg — Ous.
dt 1 2 dt 13 1 2 dt 1u2 3
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Find the system of differential equation under the transformation

7(t) = to(r — 1)'/2
u(r(t) = Gy 0

1
mir(t) = =,

Set ¢ = 1/(r —1)*/2 and study the case that e is small which relates to high
Rayleigh numbers r > 1.

us(t) — u?(r(1)).

Problem 46. Consider the system of first order differential equations

du1
W = —VUu1 + miuaus
dU,Q
W = —VU2 + MaU3U|
dU,3
ﬁ = —ru3 + msuiu

where v, my1, mo, mg are nonzero constants. The system plays a role in
nonlinearly coupled positive and negative energy waves in plasma physics.
Find the system of differential equations under the transformation

i (8(t) = u;(t)exp(vt),  (t) = v (1 - exp(-vt))

where 7 =1,2,3.

Problem 47. Consider the nonlinear autonomous system

du1 dUQ du3

— = —2u UgU3, —— = U] — ULUZ, —— = UUs3.
i 2 + ugu3 i 1 1u3 i 1U2

Show that there is one fixed point (equilibrium point). Study the stability
of this fixed point. Let

2 2 2
V(u) = cruy + cous + caus.

Find the time evolution of V, i.e. dV/dt. Find the condition on the co-
efficients ¢y, ¢a, ¢3 such that V(u) > 0 for u # 0 and dV/dt = 0 for all
ueR3.

Problem 48. Consider the initial value problem of the autonomous sys-
tem of differential equations

da

T = f(u), u(t =0) =uy (1)
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where f € C1(R"). Show that for each uy € R™ the initial value problem

du  f(u) o
E_m’ u(t=0)=ug (2)

has unique solution u(t) for all ¢ € R, i.e. system (2) defines an autonomous
system on R™ and (2) is topologically equivalent to (1) on R™.

Problem 49. Consider the Lorenz model

dx

e =oly—a)
@—m— —xz
dt Y

dz

E—xy—bz

(i) Show that the Lorenz model is invariant under the involution (z,y, z) —
(7‘%7 -Y, Z) .

(ii) Find the solution for z(¢) if z(f) = 0 and y(¢) = 0. Is the solution
stable.

Problem 50. Consider an autonomous system of first order differential

equation

du

— = f(u), ucR"”

AL
where f : RTR" is an analytic function. Assume it admits a first integral
I(u), ie.

ol ol 0

Fl) - VI@) = fylw) g+ fou)g e o) =

6’&1 aUQ 0

Then the system can be written as

du

— = S(u)VI(u

M= SV

where S(u) is a skew-symmetric n x n matrix. Consider the autonomous
system

du

7; =u1 (u2 - U3)
du

7; = U2(u3 - U1)
dU3

o uz(uy — uz).
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(1) It admits the first integral
I(u) = uy + ug + us.

Find the representation described above.
(ii) The autonomous system also admits the first integral

I(u) = uyugus.

Find the representation described above.
Problem 51. Consider the first order autonomous system

d
—x:—ax—&—y—i—lOyz

dt

d

dit/ =—x — 0.4y + Sz
d

ch =bz — bay

where a and b are real and positive bifurcation parameters. Find the fixed
points and study their stability. Set a = 0.4. Show that there is Hopf
bifurcation.

Problem 52. Consider a set n identical elements, where each of them
is characterized by a state variable u;(t) with —1 < u; < +1 and j =
1,2,...,n. Without coupling the individual dynamics the state variable
u;(t) obeys the nonlinear differential equation

d
d—?zu—u‘n’

with —1 < «(0)! 4+ 1. This differential equation describes an overdamped
motion in the one-dimensional potential V (u) = —u?/2 + u*/4. The fixed
points are 0, 1. The solution of the initial value problem is

u(t)

Ve 2t (1 —u?) + ul

with ug = u(0). For ¢ — oo u(t) preserves its sign and approaches the fixed
points +1. The fixed points u* = 0 is unstable. Define

u(t) == % > uy(t).
j=1

Study the behaviour of the autonomous system

du;

o =u; —u) + k(i —uj) = (1 — k)u; + ki — u)

J
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where k = 1.

Problem 53. Consider the initial value problem of the system of linear
differential equations

ay

S ANY@®),  Y(=0)=Y

where the n x n matrix is a smooth function of t. We express the solution
as

Y (t) = exp(Q(t)Ys
and find Q(t) as expansion (Magnus expansion)

Ot) = i O (t)
k=1

One finds for the first three terms

/ A(ty)dty
Qg(t) 2 /(; dtl/ dt2 tlvA(tQ)]
/ dt1 /t1 dto /t?’ dtg tl (tg) A(ts)}] + [A(td), [A(tg), A(tl)]])
Let

—sint cost

A(t) _ ( c0§t smt>'
Find Ql, QQ, Qg.

Problem 54. Consider a model for the Belousov-Zhabotinskii reaction

dz 9
a—s(y—xy—&—x—qm)
dy _

5 =5 (frmy—ay)
dz

yr =w(z — 2)

where f, s, ¢ and w are positive real parameters and (z,y, z) are concentra-
tions and therefore nonnegative. Show the existence of periodic solutions
applying the theorem of Hopf.
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Problem 55. The time evolution equations of a particle of mass m and
electric charge ¢ in an electric potential are given by

d*y
F) + —cos(Qt) (t)=0
d?z
) + — cos(Qt) (t)=0
d?z _
dt?
Let 24 Qt
q%0
b:= = —
mrgQ?’ ¢=
Then we can write the first two differential equations as
d2
dzé(zo + 2bcos(2Q)y(¢) =
d2
dz(zo —2bcos(2¢)z(¢) =0.

This a special cases of the Mathieu differential equation

d?y(C)
dc?

+ (a4 2bcos(2¢))y(¢) = 0.

Study the stability of the general solution
— Z Czn()\+e+uce+2in{ + /\_e—,une—Qin()
nez

with general integration constants A+ which have to mached with the inital
conditions and certain constants Cs,, and p depending on a, b.

Problem 56. The autonomous system of ordinary differential equations
for energy level motion in quantum mechanics is given by

dE,
de =DPn
dpn Vnmvmn
—2
de g Ep— EBm

de Z(; )Vmé‘/ﬁn < m _E@ + En —Eg) — Em _Envmn(pm —pn)

where m # n and V,,, = Vp,,. Consider the case with three level, i.e.
n =0,1,2. Write down the differential equation for this case and solve the



Higher Order Differential Equations 93

initial value problem

Eo(e=0)=—1, Ej(e=0)=0, Eye=0)=1

Problem 57. Consider the system of first order ordinary differential
equations

N

dzm . K
= = (i + 1= |2l + n;(zn — 2m)
where z,(t) (m =1,...,N) is a complex number representing the ampli-

tude 7, (t) and phase 6,,(¢) of the m-th oscillator, i.e.

Zm (t) =Tm (t) eXp(iem (t))

and w,, is the natural frequency. The natural frequency is chosen from a
distribution g(w). Rewrite the system using 7, (t) and 6(t). Discuss the
behaviour of the dynamical system.

Problem 58. The Mobuis band can be represented in parameter repre-
sentation as

1(t, ) = (1 + Acos(t/2)) cos(t)
x2(t, A) = (1 + Acos(t/2)) sin(t)
x3(t, A) = Asin(¢/2).

We consider A as a fixed parameter. Find the autonomous system of dif-
ferential equations for x1(t), x2(t), x3(t).

Problem 59. Consider the autonomous system of differential equations

du1
— = U2U
dt 2U3
d’UQ
— =U1U
dt 143
d’lL3
— = U1U2.
dt 142

(i) Show that

1
I= 5(“? —u%)
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is a first integral.
(ii) Show that the system can be written as

du
i SVI

where S is a 3 x 3 skew-symmetric matrix (ST = —S) and
8]/8u1

VI = :
oI /ouy,

Problem 60. Let u;(t),us(t), us(t) € R®. Solve the initial value problem
of the nonlinear autonomous system of first order differential equations
dU1 % dUQ % dII3 %
— =1 u — =1Uu u — =u u
dt 2 3 dt 3 1 1 2

dt
where x denotes the vector product.

Problem 61. Let ¢ be a constant. Solve the differential equations

(2) + du/dx B

u\r du/dz + d?u/dz? ¢
du/dx

u(z) + d*u/dx? -C

du/dz +
u/de d?u/dx® + d*u/dx®

Problem 62. Consider the autonomous system

du
—=A 1—1r2
o u+( ro)u

where u = (uj ug uz)?, 72 = u? + uZ + u3 and A is the 3 x 3 matrix

2u 0 0
A=1 0 0 V2
0 —vV2 0

Here p is a bifurcation parameter. Discuss the behaviour of the system.

Problem 63. Study Hopf bifurcation for the coupled system of first order
differential equations

du1

o = U2t pu + o1 (0] +03)
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du

ditZ =y + piug + v2 (V] + v3)
dv

LT; =y + po1 + ug (uf + u3)
dv

7; = —v1 + poy + uz(uf + u3)

where 1 is the bifurcation parameter. Utilize the symmetry of the problem.

Problem 64. Solve the initial value problem of the autonomous system
of first order differential equations

du _,
a
du
ditQ = (]. — Ul)’LLQ
du
d—tS = (1 — U1)(1 - U2)u3
du,,
S (1= u) (=) (1= ),

Problem 65. Consider the autonomous system of differential equations

du1

— =C1Uu

dt 1%1
d’UQ

— = (C13U1U
dt 13¢1u3
d’LL3
— = C3U

dt 3U3

where c1, c3, c13 are nonzero bifurcation parameters. Find the fixed points.
Solve the initial value problem.

Problem 66. Consider the autonomous system of first order differential
equations

duq 3 dus dusg 2 ) duy 4
—— = _8u —= =4y —= = 2(uqur — usug). —— = duous —u
i g 5 Ta 47 5U6 i 2Us5 7
dU5 U Uy

= ug — dusuy, —— = —ULUD + UsU7, —— = ULU4 — 2UUg — dugs.

dt dt dt
(i) Show that this system admits the first integrals

I(u) = ug +4dug — 8uy, Iz(u) =ujus +4dug, Is(u) =wus+ uZ + ug,
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I,(u) = uaus + ugue + usuy, Is(u) = —ujus + u% + u%

(ii) Consider the autonomous system in the complex domain (¢t — z,u;(t) —
w;(z)) and perform a Painlevé analysis, i.e. insert the ansatz

o0
w;(2) = (2 =20) 7 Y exjlz = 20)"
k=0
where j=1,...,7.
Problem 67. Consider the first order autonomous system of ordinary

differential equations

du; .
dit]:uj(uj-i-l_uj—l)a .]:177N

and up = 0, uy41 = 0. Solve the initial value problem.
Problem 68. Consider the driven van der Pol equation
— +a— (2 — 1) + 2 = beos(wt) (1)

where a # 0. Extend the equation into the complex domain and perfom a
singular point analysis. Show that all of its solutions posses only square-
root singularities in the complex time plane.

Problem 69. Consider the differential equation
dx
=P
o = Plx

where P(t) is periodic with principal period 7" and differentiable. Thus T' is

the smallest positive number for which P(t+7T) = P(t) and —oo < t < 0.
Can we conclude that all solutions are periodic? For example, consider

d
d—f = (1 +sint)z.

Problem 70. (i) Find the first integrals of the system

dZEl
W = X1T2 — T1T3
dZEQ
at = T2T3 — T1T2
d$3

5, T X3%1 — L2T3
dt
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(i) Find the first integrals of the system

d
% =x1(c — x2 + x3)
d
% =xzo(c — x3 + 1)
d
% =x3(c — x1 + x2).

Problem 71. Solve the initial value problem for the system of linear
differential equations

d 1 o
dCtO _ iiﬂe—quez(w—u)tcl
d 1 .
% _ §Z~Qez¢e—z(w—u)t60

where €, w, v are constant frequencies. Note the the system depends
explicitly on the time ¢. Then study the special case w = v.

Problem 72. Given the surface in R?

f(t,0)= ((1 —l—tsinZ) cos 0, (1 + tcos g) sin@,tsini)

11
te < 3’ 2> 0 eR
(i) Build three models of this surface using paper, glue and a scissors. Color
the first model with the South African flag. For the second model keep ¢
fixed (say t = 0) and cut the second model along the 6 parameter. For
the third model keep 6 fixed (say # = 0) and cut the model along the ¢
parameter. Submit all three models.

(ii) Describe the curves with respect to ¢ for 6 fixed. Describe the curve
with respect to @ for ¢ fixed.

where

voluntary (iii) The map given above can also be written in the form

0
x(t,0) = <1 + tsin 2) cos @

y(t,0) = <1 + tcos g) sin 6

)
2(t,0) = tsin 7



98 Problems and Solutions

For fixed ¢ the curve
(z(0),y(0),2(9))

can be considered as a solution of a differential equation. Find this differ-
ential equation. Then ¢ plays the role of a bifurcation parameter.

Problem 73. Consider the dynamical system of two coupled harmonic
oscillators
d2u1
dt?

dQUQ

e + wiug = sin(ug — uy).

+ wiuy = sin(u; — us),

Solve the initial value problem.

Problem 74. (i) Solve the initial value problem of the linear autonomous
system of differential equations

du
7; = kl(u2 — US)
du
ditz = ko(us — u1)
du
7; = ks(u1 — u2)

where k‘l = k‘g = ]4}3 = k.
(ii) Solve the initial value problem of the nonlinear autonomous system of
differential equations

du .
d—tl = ky sin(uz — us)
du .
d—; = ko sin(ug — u1)
du .
d—; = k3 sin(u; — ug)

where k1 = ko = k3 = k. Can the system show chaotic behaviour?
(iii) Solve the initial value problem of the nonlinear autonomous system of
differential equations

du .

W; = ky sin(ug — u3)
du .

?22 = ko sin(uz — uq)
d2

dtq;?) = ks sin(u; — us)

where k1 = ko = k3 = k. Can the system show chaotic behaviour?
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Problem 75. Solve the initial value problem of the first order autonomous
system of differential equations

duy dus dus

—— =, — = Uz, —— = UIUU3.
i 1 i 1U2 i 1U2U3

Problem 76. Let u(t) € R3. Solve the initial value problem for the

differential equation
d*u du

dt? dt
where x denotes the vector product.

Problem 77. The Chazy class III third order differential equation is

given by
d3u d*u du\?
— —2u——=+3(— ) =0.
a@ e T (dt)

Show that the differential equation admits the two-parameter particular

solution
t— C1

(t—c2)?
where ¢y, co arbitrary in the complex plane.

u(t) = —6

Problem 78. Let wy be real and positive. Solve the coupled system of
linear equations

d2u1 o dUQ d2UQ - du1

dt?

wo——, =wyg—.
0" dt dt2 Ot

Problem 79. Show that the Lorenz model

dU1

- = o(ug — uy)

dUQ

ﬁ:ul(r—u;),) — Us
dU3

ﬁ =UuUirug — bU3

can be written as

d
d—ltl = gradH; x gradHs + gradD

where
1 1

Hiy(uq,us,ug) = §(u§ + (uz —1)?), Hy(uy,us,us) = ous — iuf
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and 1
D(uq,ug,us) = —§(au§ + u3 + bu3)

Problem 80. Consider the nonlinear differential equation

iy
dr  Cdzda? " ded

Show that u(x) = e~1*! is a solution in the sense of generalized function.

Problem 81. Study the system of differential equations

de ) -
ditl =wi + Sln(el — 9)
do ) -
d—; =wy + sin(fy — 0)
do . =
d—tg =ws + sin(fs — 0)

where

00) = 5(Or(1) + 6a(0) + 05(1).
Hint. Consider the sum 6(t) := 01 (t) + 62(t) + 03(t).

Problem 82. Study Hopf bifurcation for the coupled oscillator

d2u1 du1
g =t (i - aug) Tn
dPuy dus
g = et g - auf) T

Problem 83. Let z,,(t) = rn(t)exp(ib,(t)), wm > 0, K > 0 and

m = 1,2,...,N. Study the autonomous system of first order differential
equations
N
dz K
d;fn (iwm 4+ 1 = |2m]?) N; n— Zm)-

Problem 84. Consider the linear operators

d? a3 d du
L:=——+ A=—-4—+ — +3—.
- u(z), - 6u(z) - 3
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Let [,] be the commutator. Show that the condition [L, AJy(z) = ey (z)
provides the nonlinear third order differential equation

dPu 6udu n
— = 6u— +e.
da3 dx

Problem 85. Consider the linear fourth order differential equation

4
% = Fu.
Show that (even solution)
u(x) = Acos(kzx) + B cosh(kx)
satisfies the differential equation with £ = k?. Show that (odd solution)
u(z) = Asin(kz) + B sinh(kx)

satisfies the differential equation with E = k*.

Problem 86. The governing Einstein equations for the mixmaster metric
tensor fields are given by the autonomous system of second order ordinary
differential equations

2
1
L = S =y —acH)
-
2
1
G T
T
d*h 1
= = —geth)
-

where f, g, h are the scale factors of the metric tensor field and the deriva-
tive is with respect to the (logarithmic) time variable 7. Find the discrete
symmetries of the system. Show that this coupled system of differential
equations admits the first integral

df dg | dgdh _dhdf

_ 9 i) i _Af 49 4k 2(f+9) 4 2(g+h) 4 2(h+f)
I(7:9:1) 4:<d7'd7' drdr = dr dT) e e —eT 2 e te te )-

Problem 87. (i) Consider the autonomous system of first order differen-
tial equations
du; _
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where f; : R" — R are analytic functions. Assume that the system is
invariant under the transformation u — —u. Show that if v(¢) satisfies the

system then w(t) = —v(t) also satisfies the system.
(ii) Assume that f(u) = f(—u). Show that if v(¢) is a solution of the
system, then w(t) = —v(—t) is also a solution.

Problem 88. Consider an autonomous system of first order differential
equations
da%:fj(u)7 ji=1,....n

where f; : R" — R are C' functions. The traditional flow box theorem
asserts that if £ is a C! vector field and ug € R™ is not a fixed point, i.e.
f(uo) # 0, then there is a diffeomorphism which maps the vector field f
near ug to a constant vector field. In other words, the local flow of the
vector field f is conjugate via diffeomorphism to translation. Apply the
flow box theorem to the autonomous system in the plane

duq _ 3u§ dus 1

At 1+ 2uy’ dt 1+ 2us

(which admits no fixed points) and the transformation

vy (U1, ug) = ug —|—u§, Ug(ul,ug):ug—l—u%.

Problem 89. Consider the autonomous system

duy dusg dus

T (ug), sz(u:s)v o (u1)

where f : R — R is an analytic function. We also assume that the au-
tonomous system admits a fixed point at (0,0,0) and the first term in the
Taylor expansion of f around 0 is u. The following five functions with these
properties are studied

fi(u) =sin(u), fo(u) = arctan(u), f3(u) = sinh(u),
fa(u) = tanh(u), f5(u) = sinh™*(u).
First study the stability of the fixed pont (0,0,0). What are the discrete
symmetries of the autonomous system? Note that the divergence of the

vector field of the autonomous system is 0. Apply the Lie series technqgiue
to find solutions of the initial value problem.

Problem 90. (i) Consider the autonomous systems of first order differ-
ential equation
Wi py e 3w j=1m (1)
— = f(uy =1,...
dt J ks J ) i

k=1k#j
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where c is a positive constant and f is an analytic function. Assume we
know the solution of du;/dt = f(u;) for j = 1,2,...,n. What can be said
about the solution of (1)? Let n > 3. Can we find a function f and a
constant ¢ such that equation (1) shows chaotic behaviour?

(ii) Consider the autonomous systems of first order differential equation

—L = f(u;) +e I w j=1...n 2)

k=1,k#j

where ¢ is a positive constant and f is an analytic function. Assume we
know the solution of du;/dt = f(u;) for j = 1,2,...,n. What can be said
about the solution of (2)? Let n > 3. Can we find a function f and a
constant ¢ such that equation (1) shows chaotic behaviour?

Problem 91. Counsider the autonomous system of first order ordinary
differential equations
dx
— =f(x).
o = [(x)
Assume that I is a first integral and that VI is nonzero. Then the system
can be written as

(:% =f(x) = A(x)VI(x)
where A is antisymmetric. Show that the matrix A is given by
1
A= —— (F(vD)T — (VD)fT).
e (VD" = (VDY)

Problem 92. Consider the Lorenz model

dr _

g oy or

d
di’z—zz—&—m:—y
d

djz—zy—bz.

Find the fixed points of the system and study the stability.

Problem 93. Consider the dynamical system

d d d
d—?zoy—am, d—?z—y—i—rw—w& d—i:—bz—i—xy (1)
where o, r and b are control parameters. The behaviour of this system was

first investigated numerically by Lorenz in 1963 for » = 28, ¢ = 10 and
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b= %. It was found that the system starts a rotation around one of the
(unstable) focuses with amplitude increasing with time, thereby forming a
divergent spiral. After a number of such oscillations, the system suddenly
leaves this regime and goes monotonically towards the second available
(unstable) focus around which it starts again an oscillatory motion along a
divergent spiral. Again, after a certain number of oscillations around this
focus, the system jumps anew towards the vicinity of the previous focus,
from which it starts again a divergent oscillatory trajectory and so on.
The interesting thing is that the time intervals the system spends in the
vicinity of each focus before jumping into the vicinity of the other focus
are stochastically distributed and there is no regularity, whatsoever, in the
process, which nevertheless is created by the unfolding of a deterministic
(non-linear) dynamics. (i) Show that eliminating y in (1) and solving z in
terms of 2 we obtain the following equation for z(t)

d*z dx 1, b o 9
ﬁ—i-(l-l-a)a—l-o (1 Tt g Tt (1 - 20) /0 (x(t—7)) exp(—br)dr) z=0.
(2)

(ii) We assume that the motion started at —oo, Show that if b > 0 we can
split exp(—7) into a d-function and the deviation from it to obatin

% + (1 Jra)i% + % + (<o — b) /Ooo(xz(t —7)— xz(t))el"dr) z=0
3)

where

_ l—7r 5 1 4
U(x)—a( 5% +4b:v) (4)
depends on the history of motion. (iii) Discuss (3).

Problem 94. (i) Consider the autonomous systems of first order differ-
ential equation

—L = f(u;) +e Z up, j=1,...,n (1)

k=1,k#j

where ¢ is a positive constant and f is an analytic function. Assume we
know the solution of du;/dt = f(u;) for j = 1,2,...,n. What can be said
about the solution of (1)? Let n > 3. Can we find a function f and a
constant ¢ such that equation (1) shows chaotic behaviour?

(ii) Consider the autonomous systems of first order differential equation

duy

dt :f(Uj)+C H Uk, j:]-a'-->n (2)

k=1,k#j
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where c is a positive constant and f is an analytic function. Assume we
know the solution of du;/dt = f(u;) for j = 1,2,...,n. What can be said
about the solution of (2)? Let n > 3. Can we find a function f and a
constant ¢ such that equation (1) shows chaotic behaviour?

Problem 95. (i) Solve the initial value problem of the linear autonomous
system of differential equations

du

7; = k1 (ug — u3)
du

7; = k2(u3 - ul)
d

% = ks(u1 — u2)

where kl = kQ = kg = k.
(ii) Solve the initial value problem of the nonlinear autonomous system of
differential equations

du .
ditl = ky sin(uz — ug)
du .
d—tz = ko sin(us — uq)
du .
d—tg = kg sin(u; — ug)

where k1 = ko = k3 = k. Can the system show chaotic behaviour?

(iii) Solve the initial value problem of the nonlinear autonomous system of
differential equations

d2

dtzl = ky sin(ug — u3)
d?u .

W; = ko sin(uz — uq)
d2

T;?) = ks sin(u; — us)

where k1 = ko = k3 = k. Can the system show chaotic behaviour?

Problem 96. Let N >2and j=0,1,..., N — 1. Study the initial value
problem of the coupled system of differential equations

dz;

7 = @)+ 2 ai(h(z;(t) - M), i=0,1,....N 1
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where A = (a;;) (4,7 =0,1,..., N — 1) is the coupling matrix with a;; =0
fori=0,1,...,N — 1. Assume that N =3, f(z) = 42(1 — z) and h(z) =
tanh(z).

Problem 97. Let fi1, fa2, f33, faa be analytic functions f;; : R — R.
Consider the 4 x 4 matrix

fu 0 0 0
!
M=1109 "0 fu 1
fii fae fis 0

where ’ denotes differentiation with respect to x. Find the determinant of
the matrix and write down the ordinary differential equation which follows
from det(M) = 0. Find solutions of the differential equation.

Problem 98. Let ¢ > 0. Consider the autonomous system of first order
differential equations

dU1 1

- = §u2(u3 —c)

dUQ 1 1
- = —iul(u;), —c)— Vs
dU3 o

-

dUl

E = V2U3 — V3U2

dUg

0t =U3U1p — V1U3

dU3

E = V11U — V2Uq.

Show that this system admits the first integrals
2,2, 19
H=uj +u2+§u3 — v

1
L =ujv; 4+ ugve + §(U3 + ¢)vs

K = (u? —u? +v1)? + (Quiug + v2)% + 2¢((us — ¢)(u? + u3) + 2uyv3).

Problem 99. Solve the initial value problem of the system of ordinary
differential equations

du1
- = U2U4 — UIU3

dt
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duz __du
dt —dt
dus _ duy
dt — dt

dug __du
dt —dt

with 0 < w;(t) <1 (j=1,2,3,4) and

Zuj(t) =1

Problem 100. Study the coupled limit cycle system

duy
dt
duz
dt
dus
dt
dus
dt
dus
dt
dus
dt

=uy(
UQ(

= uz(

= us(

ug(r

2

r—ut —ul) —uy + s(uz — up)

2 2

r—uj —uj) +up + s(ug — ug)

2

r—ui —ul) —ug + s(us — ugz)

2

=ug(r —uj — ui) + us + s(ug — ug)

2

r—u? —ul) — ug + s(u; — us)

—u? —ud) + us + s(uz — ug).

107

with » = 1 and s = 2. Obviously (u1,uz,us, uq, us,us) = (0,0,0,0,0,0) is
a fixed point. Study the stability of the fixed point. Does Hopf bifurcation
occur? Now consider s as a bifurcation parameter. Does the system admit

limit cycles?

Problem 101. Consider the system of second order ordinary differential

equations

(i) Find

d?r

de?

rX

adr p
r2dt  r3

d2r+a ><dr
a2 T \" )

r=10
0

(ii) Let L :=r x dr/dt (angular momentum). Find the time evolution of L.

(iii) Find dL/dt x L.
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Problem 102. The coagulation equation for the concentrations of /-mers
ug(t), £=1,2,3,...,t>0

dUg 1 . >
o =3 Z Jkujuy — éwz kuy,
jHk=0 k=1

together with the initial condition u,(t = 0) = d1 . Show that the solution
of the initial value problem is given by

62_2
up(t) = Tte_l exp(—~t)
for0<t<1.
(ii) Show that for ¢ € [0,1) the quantity >, fu, is conserved.
(iii) Show that at ¢ = 1 a singularity occurs where the second moment
diverge for ¢ > 1.

Problem 103. Solve the initial value problem for the system of differen-
tial equations

d2u1 - U1 d2UQ - u2

at? o (ui+u3)¥? e (uf +up)/

with
ur(0) =1/2, uz(0) =0,  duy(0)/dt =0, duy(0)/dt = /3.

Problem 104. Let ¢y, co, c3 be real constants. Solve the initial value
problem of the autonomoua system of first order ordinary differential equa-
tions

duq duy

2
— =1 + Ccoul — Cc3u — =9 — 2c3uy
dt dt ’

with ul(O) = ’LLQ(O) = U3(O) =0.

S = cz exp(uz)

dus
dt

Problem 105. Study the initial value problem for the two coupled oscil-
lator

d2u1 d2UQ

pTea —kiuy — ka(ur — ug), ez —kyug + ko(ur — ug).

Problem 106. Consider the autonomous system of first order differential
equations
du1 duz d’LL3

E :ul(ul—uQ—U3), E :’LLQ(UQ—Ug—Ul), W =U3(U3—’U,1—UQ).



Higher Order Differential Equations 109

Introduce the new variables
V1 = UL+ U2 U3, Vg 1= UIU2 + U2U3 + U3U, V3 = U1ULU3

and express the system in these variables.

Problem 107. Consider the Darboux-Halphen system

dl‘l dajg da)‘?,
7 — T2X3—T1T2—T3T1 7 — T3X1—T1T2—T2T3 7 — T1T2—T3T1—T2T3
dt Toodt Toodt
with the corresponding vector field
0
V= ($2$37$1$27£L’3.’£1)7+(£L'3f£171’1(5271’2$3)7+($1$271’3$175L’2$3)7.
8.131 8332 81‘3

(i) Is the autonomous system of differential equations invariant under the
transformation (ad — Gy # 0)

at + yt+6  (yt+9)?
t,x; 2 ;
(t,2) = (’yt—|—5’ 7@6—76—'_ ad—’yﬂw]

with j = 1,2, 3.
(ii) Consider the vector fields

0 0 W 0 0 0

T Oy Ory | Oxy’

Find the commutators [U, V], U, W], [V,W]. Do we have basis of a Lie
algebra? Discuss.

Problem 108. Consider the system of second order differential equations

d%u d%u
W; = flug —w), mo—> = —f(us —uy)

m i

where f: R — R is a smooth function.
(i) Let v = ug — uy. Show that

where 1/m =1/mq + 1/ma.

(ii) Show that
d du1 d’UQ o
% (mldt +m2dt> =0.
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Problem 109. Solve the initial value problem for the infinite system of
linear equations

dCq dN
1o o-nN, Yo N
dt Gr=N

dCy,

% = =0 k>2

7 Cr—1 ks >

with C(t = 0) = d1%.

Problem 110. Let C be a fixed nonzero vector in R3. Solve the initial
value problem of the first order autonomous system of differential equations
in R3

du

Ezuxc

where x denotes the vector product, i.e.

duy /dt U2C3 — U3C2
dUQ/dt = usC1 — uU1Cs
dus/dt U1 — U2Cy
with the vector field
V= )2k )0 ( )
= (ugc3 — uzca) =—— + (uzcy — urc3) =— + (u1co — ugcy) —.
2C3 32(9u1 3C1 138u2 1C2 218U3

First find the fixed points and study their stability. The bifurcation pa-
rameters are ¢y, co, c3. Find the first integeral of the dynamical system if
there are any.

Problem 111. Let

uq (t) c1
u(t) = | wa(t) |, C=|c
U3(t) C3

where we assume that C is nonzero vector. We consider the autonomous
system of first differential equations

du
—=ux(uxC
o ( )
or written in components
duy /dt c1(—u3 — u3) + caurus + czuguz
dug/dt | = | cruguz + co(—u? — u3) + czuqus

dug/dt cruruz + cauguz + cz3(—u? — u3)
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Thus the corresponding vector field is given by

V = (c1(—u3 — u2) + cauqug + c3uiuz) —

3u1

0 1o}
+(crurus + 02(—u? — u%) + cgugus) =— + (crurus + cougus + c;;(—u? — u%))—
8UQ 6’&3

(i) Apply the Jacobi identity to the right-hand side of the system of differ-
ential equations. Discuss.
(ii) The fixed points are the solutions of the equations

ux (uxC)=0.

Find the fixed points.
(iii) Write down the variational equation and then study the stability of
the fixed points.
(iv) Let Ly (.) denote the Lie derivative and £ = duj Adug Adus. Calculate
Ly and thus find the divergence of the vector field.
(v) Let
a = urdusg + usdusg + uzduy .
Find Ly a. Discuss.

(vi) Consider the vector fields

S=u 9 +u 0 +u 9
- 8u1 2 8u2 3 8’&3 '
Find the commutator [V, S]. Discuss.
(vii) Is u? + u2 + u3 a first integral?

Problem 112. Consider the system of first order ordinary differential
equations

d2u1 d2U2
= ujug, = U u
a2 1U2 pre) 1U2
Show that a solution is given by
Ug

’U,l(z) - UZ(m) = (1 ¥ (U0/6)1/23))2

with Ul(O) = UQ(O) = Uug-.

Problem 113. Solve the initial value problem of

dzxy/dt z2(t)ys(t) — z3(t)ya(t
dwa/dt | =x(t) x y(t) = | x3(t)ys(t) — 1 (t)ys(t
dwx3/dt z1(t)y2(t) — z2()yr (t

~— — —
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dyy /dt y2(t)ws(t) — ys(t)za(t)
dyz/dt | =y(t) xx(t) = | ys()z1(t) — yr(t)ws(t)
dys/dt y1(t)xa(t) = ya ()1 (1)
First find the fixed points (if there are any) and study their stability. Find

first integrals (if there are any).

Problem 114. Study the system of nonlinear differential equations

duy duy !
dt dt
This system plays a role for renormalization groups.

= 27m%u].

= (2 — mug)uq,

Problem 115. Solve the initial value problem of linear system of differ-
ential equations

dul/dt 0 1 0 0 (5% 0
dUQ/dt o 0 0 1 0 U + 0
duz/dt | — 0 0 0 1 us 0
dugy/dt —cg —C1 —Cy —C3 Uy d

Problem 116. Let kK =1,2,.... Show that the function

satisfies a linear differential equatlon of order k with coefficients in C(z).

Problem 117. Show that the third order ordinary linear differential
equation
d3u
dat3
admits the seven Lie symmetries
0 0 00
ot ou’ ot’  ou

=0

L9 d
t %, U%, ut— + —t—.

Find the commutators.

Problem 118. Consider the coupled system of second order ordinary
differential equations

d*z, dry
a7 =+ (e—ai—and)
dQIQ d'rQ
TR + (e — o3 — ax?) == e
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Show that if the bifurcation parameter € varies through 0, there is a Hopf
bifurcation with Dy symmetry. The D4 symmetry consists of four rotations
each of /2 and four reflection mirrors with each angle betweem them being
/4.



Chapter 5

Elliptic Functions and
Differential Equations

The Jacobi elliptic functions can be defined as inverse of the elliptic integral
of first kind. Thus, if we write

(6 k)f/lood—x
e = 0 1—k2gin®s

where k € [0, 1] we can define the following functions

sn(z, k) := sin(¢), cn(z, k) := cos(¢), dn(z, k) := /1 — k2 sin? ¢.

Here k is called the modulus. For k£ = 0 we obtain
sn(z,0) = sin(x), cn(x,0) = cos(z), dn(z, k) =1

and for £ = 1 we have
2
1) = tanh 1H)y=d = ——.
sn(z, 1) anh(z), cn(zx, 1) n(z,1) prp—

We have the following identities
_ 2sn(x/2,k)en(z/2, k)dn(z/2, k)

S k =
su(e, k) 1 —k2sn*(z/2, k)
1 —2sn?(z/2 sn (/2
ena, k) = sn®(x/2,k) + k*sn*(x/2, k)
1 — k2sn*(z/2, k)
91202 2.4
dn(a, k) = 1 —2k%*sn?(z/2, k) + k*sn*(x/2, k)

1 — k2sn(xz/2, k)

114
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The expansions of the Jacobi elliptic functions in powers of x up to order
4 are given by

23
sn(x,k):x—(1+k2)§+~-~

$4
1_

2
dn(z, k) =1— kQ% + (42 + K?)

2
en(z, k) =1— % +(4K2 + &)
4

T
1_...

For z sufficiently small this will be a good approximation.

Problem 1. Consider the equations of motion

dw dw dw
L=+ = (- Bwws, L—> = (I3~ I))wswi, —737753

dt dt = (Il—IQ)QJ1LU2.

(1)

We assume that all the principle moments of inertia I} have different values.
(i) Show that (1) admits the constant of motion

1? = [Fw? + Tws 4 1202, 2F := [w? + Lw? + Iw3. (2)

(ii) Show that we can to eliminate two of the variables from (1) to obtain
an equation for the third alone.
(iii) Find the solution of this equation.

Problem 2. Consider the equation

2
(fllr) = Ar* 4+ Br? +C + Dr2 (1)
x

where A, B, C and D are given scalar constants. Show that the equation
can be reduced to the standard form

dy 2
(%) =wa -0 -r 2
by the change of variables

r?=ay® +b, y :=sn(px, k) (3)

and a, b, u, are constant.

Problem 3. Establish the derivatives

dx
(1)

isn(sc,k) = cn(z, k)dn(z, k), %cn(az,k) = —sn(x, k)dn(z, k), %dn(m,k) = —k*sn(x, k)en(z, k).
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Problem 4. Show that y(t) = cn(ut, k) and r(t) = dn(ut, k) are solutions

of the differential equations

d 2
(di) = 12(1 = y*)(K"” + K?y)
2
(%) =wea-re2 -2
where k2 := 1 — k2.

Problem 5. Find a change of variables that transforms

dw\? [
<w> = Aw + Bw? + Cw?® + Dw*
dx

into an equation of the form

g\ 2
<dr> =Ar*+Br?4+C' +D'r 2.
x

Problem 6. Show that

d2 — k3cn2 2
dn(z + y)dn(z — y) = n“y cn®ysn®z

1 — k2sn?ysn?z

Problem 7. Prove that

2dn?z

l1+dn2z = ——+—.
+dn2z 1 — k2snz

Problem 8. Prove that

snzenydny 4 snycnzdnz

sz +y) = 1 — k2sn?zsn2y

Problem 9. Show that

1
sn(z+iK') = .

and similarly
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and 12
i 2—
d i K') = ——
n(z+iK") . + G
It follows that at the point z = iK’; the functions snz, cnz, dnz have simple
poles, with the residues

izt

1 )
k’ k’
respectively.

Problem 10. Directed by the expansion

1 1
Q—Zm (1)

sin” z

Weistrass defined a new function (elliptic function of Weierstrass)

1< 1 1
p(z) = ol + n;l ((z — 2mw — 2nw')?2 - (2mw + 2nw’)2> (2)

where the summation is taken over all positive and negative integral values
of m and n, including zero, except when m and n are simultaneously zero. w
and w’ are two numbers the ration of which is nor real. Note that cosec(a) =
1/sin(«). Prove that

o(z) = C + (;)2 cosec? (‘Z_znw%) 3)

w1 2&)1

2 o)
m 1 9 2nwy
== — -+ . 4
C (2w1> (3 E cosec o 7r> (4)

where

n=—oo

(i) Show that the function p(z) is an even function of z, i.e. it satisfies the
equation

(ii) Show that
oz + 2w1) = pl2). (6)
(iii) Show that
(2 + 2w2) = p(2) (7)
and generally
p(z + 2mw + 2nwq) = p(2)

where m and n are any integers. Therefore the function p(z) admits the
two periods 2w and 2ws.
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Problem 11. Show that the function p(z) satisfies the differential equa-
tion

(fg)z =49°(2) — gop(2) — 93 (1)

where go and g3 (called the invariants) are given in terms of the periods of
p(z) by the equations

92 =60 (2mwr +2nwo) ™4, g5 = 140> (2nwy + 2nwn) . (2)
Show that this differential equation can be written in the form

dt\?
(dz) = 4t3 — ggt — 33 (3)

t=p(z) (4)

and therefore (since p(z) is infinite when z is zero) we have

where

v = / (465 — got — g3) Rt (5)
p(2)

which is the required expression of p(z) in terms of an integral.

Problem 12. If y = p(z), show that

d3y d2y 2
g ()

+or =y —e) P+ (y—e) P+ (y—es) )
@) )
_gy(y—el)‘l(y—ez)_l(y—%)_l 1)

where ey, es, ez are the roots of the equation

4y® — goy — g3 = 0. (2)

Problem 13. Consider the differential equation

Lp(z) o' ()
Lp(z) p'(2) | = 0. (1)
Lo(y) 9'(y)

Show that



Elliptic Functions and Differential Equations 119

Problem 14. Integrate
(az* + 4ba® 4 6ca? +4dx+e)*%. (1)

Problem 15. Solve the the integration-problem discussed in the previous
problem.

Problem 16. Show that the theorem given above may be stated some-
what differently as follows.

Problem 17. The function {(z) is defined by the differential equation

d¢(2)
dz

= —p(2) (1)
with the condition that ((z) — 27! be equal to zero when z = 0. Since

the infinite series which represents g(z) is uniformly convergent, it can be
integrated term by term. Show that

C(z) =— /(2_2 + Z((z — 2mw; — 2nws) "2 — (2mwy + 2nws) %))dz. (2)

The summation is extended over all positive and negative integer and zero
values of m and n, except simultaneous zero values.
(ii) Show that

C(z) = z_1+Z((z—2mw1—2nw2)_1+(2mw1+2nw2)_1+z(2mw1+2nw2)_2).

(3)
Hint: Since the condition, which ((z) has to satisfy at z = 0, is satisfied by
this choice of the constant of integration.

Problem 18. If z 4+ y + z = 0, show that

(C(2) + ¢y) + C(2))* + (=) + ¢ (y) + '(2) = 0. (1)

Problem 19. The function

(w1, w2) = 21;[ (1 - sz) exp [;k + é (&)21 (1)

with
Qp = mpwy + npws (2)
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where my, ny is the sequence of all pairs of integers. The prime after the
product sign indicates that the pair (0,0) should be omitted. w; and wsy
are two complex numbers with

S} (“’1) £0. (3)
w2
In the following the dependence on wy and ws will be omitted. The logarith-
mic derivative ¢’(z)/o(z) where ¢/(2) = do/dz is the meromorphic function
¢(2) of Weierstrass. The function p(z) = —¢’(z) is a meromorhic, doubly
periodic (or elliptic) function with periods wy, wa whose only singularities
are double poles mw; + nwy. We find

1 ’ 1 1
olsonen) = 35+ X (= - ) W

Remark: The function g is called Weierstrass’ o function.
(i) Show that

0(2) =2+ c52° 42"+ (5)
(ii) Show that

o (u)
o' (u)

=—¢'(u),  20(2u) — 4¢(u) =

Problem 20. Let a(g) be a meromorphic function. Let r, k, I =
1,2,..., N. Assume that a satifies the following equation

algr — gr)a’(ar — @) — a(qr — ar)alar — a)
alqr — q1)

=9k — ¢) —9(gr —a) (1)

where a’ denotes differentiation with respect to the arguments and k # .
Let

Ulq) = a*(q). (2)
Show that

(U(x)U'(y)—U’(w)U(y))+(U(y)U'(2)—U’(y)U(Z)H(U(Z)U'(w)—U’(Z)U((f))) =0

r+y+z= (% —¢)+ (¢ —a)+(@—qa)=0. (5)

where

Problem 21. A large class of polynomials can be reduced to solving a
differential equation of the standard form

(&) = a-u-r) 0
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for 0 < k < 1and —1 < y < 1. The solution of this equation for the
conditions

y(z =0) =0, >0 (2)
is denoted by
y = sn(z, k). (3)

This function depends on the value of the parameter k, which is called the
modulus. Direct integration of (1) produces the inverse function

—snly = Y dy
o i /0((1—y2)(1—k2y2))1/2~ (4)

(i) Show that it is an odd function of y, which increases steadily from 0 to

_ [ dy
K= [ (=21 B )

as y increases from 0 to 1.
(ii) Show that y = sn(xz, k) is an odd function of z, and it has period 4K.
This means

sn(x + 4K (k), k) = sn(x, k). (6)

The integral (5) is called a complete elliptic integral of the first kind. The
function sn(z, k) is called a Jacobi elliptic function.

(iii) Show that it can be evaluated by a change of variables and a series
expansion

/2 du /2 k'2
K - = 1 7'2 ..
(k) /0 (1= k2 sin® u)1/2 /0 (-i— 5 Sin u+ )du
™ /13 2n—1)\° ,
=T (1 n .
(3 (M) s o

Remark: Two other Jacobi elliptic functions cn z and dn x can be defined
by the equations

en?(x, k) = 1—sn?(z, k) cn(0,k) =1, dn?(z, k) = 1—k%sn?(z, k) dn(0,k) = 1.
(8)

Problem 22. Prove the following identity for the Jacobi elliptic functions

E*sn(u + a, k)en(u — v, k)sn(v + a, k) = dn(u — v, k) — dn(u + a, k)dn(v + a, k)
sn(u + a, k)dn(u — v, k)sn(v + a, k) =cn(u — v, k) — cn(u + a, k)en(v + a, k).
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Problem 23. Consider (elliptic cylindrical coordinates)
ui (e, B, ¢, k) = sn(a, k)dn(B, k') cos(¢),  ua(a, B, ¢, k) = sn(a, k)dn(B, k') sin(¢),

’U,3(Oé, ﬂa k) = dn(a, k)sn(@ k/)v ’LL4(O&7 ﬂ7 k) = CH(O[, ]{)CH(ﬂ, k/)

where k and k' = /1 — k? are the modulus and complementary modulus,
respectively. Show that

u%+u§+u§+ui =1
Problem 24. The Jacobi elliptic functions sn(z, k), cn(zx, k), dn(z, k)
with & € [0,1] and k? + k> = 1 have the properties

sn(z,0) =sin(z), cn(z,0) = cos(x), dn(z,0)=1

and . . )
e’ —e
Sn(l’, 1) = m, CH(I, 1) = m = dn(m, 1)
We define
ui(z,y, k, k') =sn(x, k)dn(y, k')
U2 (ZL’, Y, kv k/) = cn(x, k)cn(yv kl)
us(@,y, k, k') = dn(z, k)sn(y, k).

(l) Find U1 (.’I}, Y, 0) 1)7 ’LLQ(.Z', Y, 07 1)’ u;),(m, Y, 0’ 1) and calculate U%(J?, Y, 07 1)+
u3(@,y,0,1) + ui(z,y,0,1).

ii) Find uy (2,9, 1,0), us(z,y, 1,0), uz(z, y, 1,0) and calculate u?(x,y, 1,0)+
u3(2,y,1,0) + ui(z,y,1,0).



Chapter 6

Nonautonomous Systems

Problem 1. Consider the driven van der Pol equation
— +a— (u¥ — 1) +u = beos(wt) (1)

where a # 0. Extend the equation into the complex domain and perfom a
singular point analysis. Show that all of its solutions posses only square-
root singularities in the complex time plane.

Problem 2. Consider the differential equation

du

— = P(t

o = Pl

where P(t) is periodic with principal period 7" and differentiable. Thus T' is

the smallest positive number for which P(t+T) = P(t) and —oo < t < 0.

Can we conclude that all solutions are periodic? For example, consider
du

i (14 sint)u.

Problem 3. Solve the initial value problem for the system of linear
differential equations

d 1 L
% — *iQ€71¢€l(W7V)tcl
d 1 . .
% = iiQew’eﬂ(“*”)tcO.

123
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where €, w, v are constant frequencies. Note the the system depends
explicitly on the time ¢. Then study the special case w = v.

Problem 4. Consider the differential equations

d?q

2
~ 1 = 1
and 2
P 2 1
= —. 2
== )
Show that under the invertible point transformation
q(t) !
QT(t)) = —=, th/ids 3
=43 0= [ 5 3)
(1) takes the form
d*Q

where p satisfies (2). We have
dQ _ dQdI' _ 1ldq 1 dp

G drd  pdt TR (5a)
and T )
@ - 5b
Thus

dQ1 _ldg  qdp (6)
dl p?2  pdt p?dt’

Problem 5. A system of differential equations describing the forced
negative-resistance oscillator is given by

Ldil(tt) + Ri(t) + v(t) = E cos(wt)
in(t) = cdig), i(8) = i1 (1) + ia(t)

where the voltage-current characteristic is given by

iat) = 5(0(0) = -50(0) (1- 55

with S = 1/R and V; constants. R is the resistance of the inductor L.
Write these equations in dimensionless form using the MKSA-system.
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Hint. Note that 1V = 1m?s 3kgA~! and we have the following dimensions
[R] =1VA~!' =10hm, [C]=14sV"!, [L]=1VsA~! = 1Henry
] =[Vi] =[E]=1V, [i]=1A4, [t]=1s, [w]=1s""'.

Problem 6. Consider the driven anharmonic system

d? d
d—TZ + k% — au + bu® = Acos(wr)
where k,a,b > 0. Find the differential equation under the transformation
b
t(r) =7V 2a, z(t(r)) = u(r) .

Problem 7. The driven Morse oscillator is given by

d*u du
prel + ay + Bexp(—u)(1 — exp(—u)) = k cos(wt).

Find the driven Morse oscillator under the transformation

t(r) =, v(7) = exp(—u(t(r)).

Problem 8. Find solutions of the linear system of non-autonomous first
order differential equations

() = (om0 (1),

Problem 9. Study Hill’s equation
d*u
el —fu, fE+T)=[f()

where )
) wte 05t
Ft) = {wz—e, T <t<2m

and f(t+2m) = f(t). Derive the shape of the Arnold tongues for 0 < € < 1.

Problem 10. Study the initial value problem of the second order differ-
ential equation

d? d
Wg + kd%ft + wlu =0, cos(wt) + Co sin(wt)

with «(0) > 0 and du(0)/dt > 0.



Chapter 7

Hamilton Systems

Consider the Hamilton function
N 2
H =Y —k 4y 1
(p,aq) k§=12 -t (q) (1)

The first term of the right hand side is the kinetic part of the Hamilton
function and the second term is the potential part. Then the Hamilton
equations of motion are given by

dp; _ _oH — da; _OH

- iy 2
dt dq;’ dt  Op; @
From (1) and (2) we find
d*q ov
A 0
dt Jq
A function I(p(t),q(t),t) is called a first integral if
N
al _ ol dpj | oL g5 L 92 4
at Z(@pjdt+3qjdt Ta =0 )

Jj=1

Inserting (2) into (4) yields

i(fﬂaﬂwﬂ)ﬁ_o -
= dqj Op;  Opj pg; ot ’

126
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The Poisson bracket is defined as

N
{A(p,q), B(p,q)} := Z(

k=1

oam _oa on)
g Opr, ~ Opr Oqi )

Definition. Two first integrals I; and I5 are called in involution if
{l,1,} =0.

Definition. A Hamilton system is called integrable if there are n first
integrals.

Problem 1. Consider the Toda lattice with cyclic boundary conditions
and two equal particles. The Hamilton function for this system can be
written as

H( — ﬁ é EV a(q1—qz2) algz—q1) _ 9 1
pa) = 2 ¢ 2 Ly ot Y

where Vj and a are constants which fix the scale of the potential. Consider
a canonical transformation to center-of-mass and relative coordinates

1

P :=py + po, D= 5(171 —p2) (2a)

1
Q= 5(91 + q2), q:=q1 — qa2. (20)

Assume that P = 0. Find the Hamilton function for this coordinate system.

Problem 2. Given the Hamilton function

Hppopc, 0.C) = 50 + 502+ V(0.0) (1)
with )
V(p,Q) = %pZ + %/\QCQ + 2”? + W 2)
and dp %
=T = 3)

This Hamilton function describes the relative motion of two charged par-
ticles in a Paul trap in the pseudo potential approximation with A and
v related to the asymmetry of the time average trapping potential and
the relative angular momentum, respectively. It can be interpreted as the
Hamilton function of a single particle moving in two dimensions, p and ¢,
respectively.
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(1) Show that the equations of motion derived from (1) are

d?p V2 0
Pl Rl e ek W
P, ¢
@ = e ®)

(ii) The Hamilton function H is conservative and autonomous. Therefore,
E, the total energy of the system, is a constant of the motion. Show that for
arbitrary v two further integrals of the motion exist for A = 2 and A = 5,
respectively.

(iii) Show that the first integral F', which applies for the case A = 2, is
given by

¢\ _(de\*_ dCdp ¢ 20, V¢
< 7C»* >_C<dt> PEE+W—PC+F~ (6)

(iv) Show that for A = 1 a first integral is given by

( % )=I§+f;+u2<p2+¢2> (7)
here
k I i+ WV dede o L (8)
p P at dt dt — (p2+ ()2 4 P
d
N foi==2 (o5 +¢5) Q
¢ Par " %ar )

Problem 3. Let

r:=(z,y,2) (1)

be a triplet of dynamical variables (canonical triplet) which span a three-
dimensional phase space. This is a formal generalization of the conventional
phase space spanned by a canonical pair (p,q). Next introduce two func-
tions, H and G, of (z,y,z), which serve as a pair of Hamilton functions
to determine the motion of points in phase space. We define the following
Hamilton equations

dx  O(H,QG) dy O0(H,G) dz 0(H,G)

dat Ay, 2) dat d(z,x) dat A(x,y) 2)

or in vector notation P
izﬁHxﬁG (3)
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(1) Show that for any function F(z,y, z)

dF _ O(F,H,G)

T Py =VF-(VH x VG). (4)

We may call the right-hand side of (2) a generalized Poisson bracket, to be
denoted by [F, H, G].

(ii) Show that the generalized Poisson bracket is antisymmetric under in-
terchange of any pair of its components. (iii) Show that

dH

dG
a0

— =0 5
i ()
i.e., both H and G are constants of motion.

(iv) Show that the orbit of a system in phase space is thus determined as
the intersection of two surfaces,

H(z,y,z) =C, G(z,y,z) = Cs (6)

where C7 and Cy are constants.
(v) Show that the velocity field dr/dt (r = (z,y, 2)) is divergenceless,

V- (VH x VG) =0 (7)

and that this amounts to a Liouville theorem in the three dimensional phase
space.

Problem 4. Consider the Hamilton function
1 2 —2q
H(p,q) = 5(»" + 7).

Find the Hamilton equations of motion and solve the initial value problem
p(0) =0, ¢(0) = 0.

Problem 5. The construction of integrable Hamilton systems can be
extended as follows: In Nambu mechanics the phase space is spanned by an
n-tuple of dynamical variables u; (i =1,...,n). The equations of motion of
the Nambu mechanics (i.e., the autonomous system of first order ordinary
differential equations) is now constructed as follows: Let I : R — R
(k=1,...,n—1) be smooth functions. Then

dui - 3(ui,Il7...,In,1)
dt a 8(U1,U2,...,un)’

(1)
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where O(uy, I1,...,I,—1)/0(u1,ua,...,u,) denotes the Jacobian. Conse-
quently, the equations of motion can also be written as (summation con-
vention)

dui

y €ijk..00511. Opln_1 (2)
where €;;._¢ is the generalized Levi-Cevita symbol and 0; = 0/du;. Show
that Iy, Is, ..., I,,_1 are first integrals of (1).

Problem 6. In the discussion of the modulational instability of a Lang-
muir condensate one finds the following set of equations

.d .
(i— +01) A1 = —T(|Ao[* A1 + A543) (1a)
d 2 2 g%
(i +02)A2 = —T'(JAo[" A2 + Ap A7) (1b)
d
Z%Ao F(A0(|A1|2 + ‘A2|2) + 2A8A1A2) (10)

where Ag, A1, Ao are complex quantities and 01, §2, and I are real constants.

(1) Show that system (1) can be derived from a Hamilton function H given

by

H(A,A") = 51| Ay |*+02| Ao +T (| Ao (| A1 * +] Aa|*) + A AT A5+ AT Ay A)
(2)

using the canonical equations

dA oOH
T aA;‘. ’

J=12,3 (3)

where the A; and A} are the canonically conjugate variables.
(ii) Show that system (1) can also be derived from a Langragian L, where

2

=~ LS A - azdy) - m @

j=0

l\Dr—\

(iii) As H does not contain the time explicitly, it is an integral of the motion.
Show that L is invariant under the gauge transformation

Aj — Ajexp(io). (5)

(iv) We define

2
0C; 0Cy  0C; 0C;
{C1,Ca} Z()(@AjaA; 8Aj8AJ> (6)
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Let
2

G = Z 147, Cy = |Aof* — A1) (7)
j=0
Calculate {C4,C2}, {C1,H}, {Ca, H}. Discuss.

Problem 7. We begin with the definition of the SU(v) Calogero spin
system. Particles have su(v) spins as an internal degree of freedom, and
move about on a line interacting through spin-dependent inverse square in-
teractions. We denote by N and a the number of particles and a parameter
for the interaction strength, respectively. The Hamilton operator is (the
units =1 and 2m = 1 will be employed)

- N 9 a? — aPjy,
H=Y"p?+2 Y Gy (1)
j=1

2
T;—
1<j<k<N 77 k)

where p; := —id/0x; denotes the momentum operator. Here Pj; is a
permutation operator in spin space, and exchanges the spin state of the jth
and the kth particles. As a basis of the su(v) Lie algebra, we use v? — 1
traceless Hermitian matrices ¢ which are normalized to be

tr(t*t?) = %5,15. (2)

The commutation relation is

A Al (3)
Yy

where ¢ acts on the jth particle and 87 is the structure constant. In
terms of these operators 7, the permutation operator Pj is expressed as

1
Pjr 1=+ 2> oty (4)

(i) Show that the Lax operators L and My, which are N x N operator-valued
matrices, are found to be

i (5)

ij; = (Sjkﬁj + (1 - (Sjk)i(lxj — l‘k’
Pjy,

Py
- (zj — xp)?

Ms) i = 9,52 —_—

(Mz) . = Ojk GZ (z; — 21)?
1#]

(ii) Show that the Lax equation

[H, Ljx) = [L, Ma]ji = > [Lju(Ma)us — (Ma) i Lig], (7)
l

— (1 — 5jk)2a



132  Problems and Solutions

with (2) and (3) yields the Heisenberg equation of motion. The operator
M, satisfies the sum-to-zero condition

> (M)je =Y (M) = 0. (8)

J k

Problem 8. The Hamilton function for the three-body periodic Toda
lattice can be written in a dimensionless form as

1
H(p,q) = 5(1)? +p3+p3) +exp(q1 — g2) +exp(qz — g3) +explgs — q1). (1)

(i) Show that there are three conserved quantities, the total momentum

P(p,q) =p1 +p2+ps3 (2)

the energy F and an additional quantity A. The third quantity A is the
third-order polynomial of the momenta,

A(p,q) = p1p2p3 — prexp(q2 — q3) — p2exp(gs — q1) — p3exp(q1 — q2). (3)

(ii) Show that the first integrals are in involution.

Problem 9. Consider the one-parameter family of Hamilton functions

Hperpye,) = 5 (0248 + (027)) 1)
where 0 < a < 1. In the limit ¢ — 0 we obtain the hyperbola billiard.
Increasing a means a gradual softening of the billiard walls and when a = 1
we recover the frequently studied z2y? potential. The symmetry group of
this family is Cly,.

(i) Show that the periodic orbits in these systems may be described by a
symbolic dynamics using a three letter [2,1,0] alphabet.

(ii) Show that the motion in these horn regions may thus be treated in the
adiabatic approximation.

Problem 10. Consider the equation of motion for a charged particle

& d
=SB+ —

ar B 1
dt2 my moc dt *Bo (1)

where the constant magnetic field By is directed along the z-axis and

E(r,t) = Egsin(k,x + k,z — vot). (2)
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(1) Show that from (1) and (2) one obtains the following equations of motion

R

2 +whr = %Eoﬁ, sin(kyx + kyz — vot) (3a)
d?z e .
i EEOZ sin(kyx + k2 — vot) (30)
where 5 %
8= Ezi- = ﬁ = const. (4)

(ii) Find a Hamilton function for system (3).

x| := /2% + 23 + 23. (1)

Hy,x) = gly” + V(x) 2)

Problem 11. Let

Let

be a Hamilton function in R invariant under the orthogonal group SO(3)
x — Rx, y — Ry, where R € SO(3). (3)
(i) Show that

Fi(x,y) = 22ys —asy2,  Fa(x,y) = z3y1 —m1ys,  F3(x,y) = 2192 — 2211
(4)

are first integrals, defining the angular momentum vector.

(ii) Show that the Hamilton function (2) can be reduced to a one-dimensional

Hamilton function.

Problem 12. Consider the non-relativistic motion of a charged particle
of mass m and charge ¢ moving in the field of a magnetic dipole of magnetic
moment M. It is described by the Hamilton function

1
H = (p—gA 1
(p.r) = 5—(p—qA) (1)
where the vector potential A is given by

A(r) = ~(Mxr). 2)

r

(i) Show that by choosing the z axis in the direction of M, ie. M =
(0,0, M), we have

H(px,py,x,y)=1(< x+(:g)2+<py—w>2+p§>. 3)
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(ii) Show that with m = 1, 7 := (2? + y? + 22)/? and a = ¢M we obtain

2
H(pa,py2,9) = 5 (0 + 1+ 82) + 5 (upe = omy) + g (0 47). (4)

(iii) Show that the equations of motion for this system are time-independent,

axisymmetric and have also a scale symmetry.

(iv) Show that the following first integrals of motion exist: the Hamilton

function (4) and the projection of the angular momentum in the direction

of M

(v) Show that if we choose cylindrical coordinates (p, ¢, z), the Hamilton
function (4) becomes

1 P
H(py, Dy, Dz, ps 6, 2) = §(p,2)+ p%’ +p2)+

a?p? 1 n 1
2 (p2+22)3 P2y 2
(6)

and pg = L, = constant of motion.

Problem 13. Consider the anisotropic Kepler problem, whose Hamilton
function reads
2 2
P 1
Py + Y _

2 20\ JxZyy?

In the anisotropic Kepler problem the effective masses p and v, are different.
This system is effectively chaotic when the mass ration p/v is sufficiently
high (> 5). (i) Show that a symbolic coding can be obtained as follows. We
take a set of trajectories starting on the x positive axis, with zero initial
p, momentum. We fix a constant energy surface, e.g. H = —1/2. Then
x labels an unique trajectory, for any 0 < x < 2. Following the time
evolution, one records a bit sequence b; : b; = 0 if the i-th intersection
with the xz-axis occurs for x < 0, and b; = 1 otherwise. A coding function

F' is then defined via .
F(z) =) b2". (2)

(1)

H(pvayaxay) =

(ii) Show that this function is non-decreasing, and shows multifractal fea-
tures.

Problem 14. (i) For a system of N particles with central two-body
interactions described by the Hamilton function

N2
r= P,y (1a)
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where
1N
V = 5 Z Vkl(rkl) (1[))
k=1
k#l
and rg; = |rx — r;|. Show that the first integrals are given by
N 2
pj. oL
H=S 2t 1y =L =
;1 oy, +V, Pk avy MgV

N N N
P:Zpk, J:ZPkka, G:kar;c—Pt.
k=1 k=1 k=1

(ii) Show that if the potential is of the form Vi = Ckr/r%; then there
two additional first integrals

N N

1
D:QHt—Zrk~pk, A:HtQ—Z(rk-pkt—imkri).
k=1 k=1

Problem 15. The geodesic flow on a sphere S™

Xl =1 = el et b el ] (1)
where x = (29,1, ...,7,) € R"" is described by the differential equation
d’x

where the Lagrange parameter A is determined such that
x| =1 3)

Show that d?x/dt? = —|dx/dt|*x and that this differential equation can be
derived from the Hamilton function

H(x,y) = 5Py @

Problem 16. Consider the Hamilton function

2 2
py. P cos¢ +c
H(p7‘ap¢7rv (ZS) = ? + 2j2 + 972 . (1)
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The Hamilton equations of motions are given by

dr O0H dp O0H py
o = py, g (2a)
dt  Op, dt  Opy 12
dp,  OH pjtcos¢+c  dp,  OH sing ()
e or 73 ’ a0 22’
Show that the system admits the first integral
I(pr,pe,r, ) :pi+cos¢+c. (3)
Problem 17. Consider the Hamilton function
2 2
D p
H(pe,py, 2,y) = 5 + 5 + V(z,y) (1)
where
V(z,y) = z* + ax?y® + by*. (2)

(i) Show that the system is integrable in the following five cases

(a) b=1,a=0, separablein z, y;

(b) b=1,a=2, separable in polar coordinates;
(¢)b=1,a=6, separablein z =+ y;

(d) b=16, a =12, separable in parabolic coordinates;

(e) b =28, a = 6, which possesses an invariant quartic in momenta,

C? = py+43* (2 +6y°)pl — 162 ypepy +4a'p, +4x* (' +42°y> +4y*). (3)

(ii) Find the singular behaviour of the equation of motions for b = 8 and
a = 6.

Problem 18. Counsider the Calogero-Moser system in the case of two
degrees of freedom. The Hamilton function is given by

1
H(pa,py,,y) = 5 (0% + 1) + V(@,9) (1)
where
k
(z —y)?
This system is completely integrable only in the symmetric case A = B.
The equations of motion are

1
V(z,y) = +5(A2" + ByY) kA B>0 (2)

2 2
dfx _ 4 2k , d=y — _py- 2k '
dt? (z—y)? di? (z—y)?
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(i) Show that for A = B the equations of motion (3) uncouple under the
transformation

2(x,y) i=x —y, w(z,y) ==z +vy. (4)

Find an additional first integral.

(iii) Show that in the case A = B the solutions possess exactly two Riemann
sheets corresponding to the + choice in taking the square root of (7).

(iv) The local two-sheetedness of solutions can also be revealed, by singu-
larity analysis. Show that, for general A and B, one can expand z(t) and
y(t) near a (movable) singularity ¢ = ¢, of (3) and that the only leading
behaviour allowed is of the form

x(T):CJé+ClTl/2—|—~“, y(q—):a+827-1/2_|_... T=1t—1,

where a is a free constant and ¢; = —co = (—k)/%. The only type of
singularity, therefore, in this problem occurs when the equations of motion
themselves are singular, at x — y = 0. These singularities are, of course,
finite, since the configuration variables z(t), y(t) are finite at t = t,.. No
logaritmic terms enter the expansion (8).

Problem 19. Consider the Hénon-Heiles model
1 1
H(p,q) = 5 +p3 + A} + Ba) + 6> — 53 (1)

(1) Show that the following three cases are integrable

e=—1, A=B (2a)
e = —6, forall A,B (2b)
e=-16, B=164 (2¢)

(ii) Find the first integrals.

Problem 20. The Hamilton function of the two-dimensional hydrogen
atom in a uniform electric field F' reads (we set electron mass and charge
me=1,le|=1)
1 1 1
Pt

— 2 _——_—
5 9Py (22 1 y2)1/2 + Fa. (1)

H(pvayaxay) =

(i) Show that the system has simple discrete symmetry: the Hamilton func-
tion is invariant under reflections through the z-axis, y — —y, i.e. under
the canonical transformation

(ﬂfapm,y,Py) - (‘T7p177ya *py) (2)
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(ii) Show that the system is separable in semi-parabolic coordinates

y(u,v) = uv, z(u,v) = %(u2 —?) (3)

in which the Hamilton function (1) takes the form

1 P2 p? 2 u? — v?
Howrowd) = i (54 5) ot Py @

Problem 21. We consider a classical particle with charge e, mass m,
and energy E moving in a two-dimensional periodic potential under the
influence of a homogeneous magnetic field

B = Bz = (0,0, B) (1)

described by the Hamilton function

1 eBy\ > eBz\ 2
H(pxapyamvy):% <<P1+2y> + (py_2> >+V($7y) (20,)

where
V(z,y) = Vo(2 + cos(2mz/a) + cos(2my/a)) (2b)

is an isotropic (superlattice) potential. We measure energy in units of Vj,
lengths in units of the lattice constant a, and time in units of the inverse

harmonic frequency
CHO ®)
wp = .
0 a’m

This leads to scaled variables

- H B B

H:= e T = 271'2, Y= 271'%, T := wot. (4)
(i) Show that the equations of motion then read (omitting the tildes for
convenience)

dx dv, .

- = U o =sinz + 2\, (5a)
d d

—d7y_ = vy, —d? =siny — 2\vu, (50)

corresponding to the Hamilton function

1 1
H(pz,py,2,y) = 5(pa + Ay)? + 5Py — Az)? + V(z,y) (6)
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with
V(z,y) =2+ cosx + cosy. (7)

(ii) Show that there are two integrable limits in this model, that is A — 0
and A — oo.

(iii) Show that the potential V' of (7) has minima at the energy F = 0,
saddle points at F = 2, and maxima at F = 4.

Remark 1. Thus in the regime F < 2 all orbits are restricted to one unit
cell for all values of A. For FE > 2, localized and delocalized orbits may
coexist.

Remark 2. The dimensionless quantity

eBa We
Aim————————— = —— 8
(16m2mVp)t/2  2wg (®)

proportional to the applied magnetic field B describes the nonintegrable
coupling between the two degrees of freedom and is related to the bare
cyclotron frequency we.

Problem 22. Consider the equations of motion

dQJZi oUu d2yi oUu d2zi oUu
7 = - ) 7 = - ) % = - ) | = 17 273 1
mn dt2 8% m dt2 3yl m dt2 82’1 ‘ ( )
where
U = —mimaF(rly) —momsF(ri) —msmi F(r3,), m; =1, i=1,2,3,

(2)
(2, Yk, 2x) are the coordinates of the k-th body, k = 1,2,3, F(r?) is an
arbitrary, sufficiently smooth function, and

rig o= (= g+ s — ) (i — )22 )

(1) Show that (1) is invariant under the 10-parameter Galilean group G(1, 3).
(ii) Show that the Lie algebra of this group has a basis consisting of the
following infinitesimal generators

0 0 0 0 0 0 0

Xo=5, Xi=z—+7—+7—, Xo=a—+—+—
0 ! 81'1 + 61‘2 + (9.%‘3, 2 8y1 6y2 6y3’

P Y O S R
3 82:1 82’2 82’37 1T 8%‘1 8332 8I3 ’

X =t i+i+i Xe =1t i+i+i
ST oy oy ays) T \0z | 0z 023)
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0 0 0 0 0 0
Xe=yp=— —2k=—, Xs=2k=— —Th=—, Xo=Tp— —Y=——-
7= Yk D2k 2k Do 8 = 2k Dz Ty D2k 9 = Tk o Yk Orr

(4)
Remark. Ten integrals of motion of the spatial three-body problem were
known already to Lagrange

Problem 23. The Kepler problem is the paradigm of the two-body prob-
lem in mechanics. Kepler proposed three empirical laws governing the
motion of planets: (1) the orbit is an ellipse, (2) the area velocity of the
orbit is a constant, (3) the period of revolution and the semimajor axis of
the orbit are related according to T' < R3/2. In reduced coordinates the
equation of motion is

d*r ur

@

in the standard notation, where r = ||r|| = /2% + 23 + z3.
(i) Show that the equation of motion (1) can be derived from the Lagrange

function

(1)

. 1. .
L(r,r) = §r~r+% (2)

where - denotes the scalar product.
(ii) Show that the system admits the first integrals

1
E=_ii- "

2 T
L=rxr
J=rxL—ur

jI;

K=r—"—

L

where x denotes the vector product and w is the unit vector in the direction
of the angular velocity (w := L x r). In plane polar coordinates, it coincides
with 6.

(iii) Are the first integrals independent?

(iv) Give the Hamilton function H.

Problem 24. Consider the Hamilton system

1
fﬂphpmqhqﬂ==50%-%p@-%Vthqﬁ

where the potential V' is given by

k
N

- A¢? + Bg), k,A,B > 0.
(1 — ¢ (Aqy )

DN | =

V(qh C]2) =

Show that the system is integrable if A = B.
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Problem 25. (i) Find the first integral of the differential equation

i

dt2+a+ﬂx+’yw2+ex3:0 (1)

where «, 3,7 and € are constants.

(ii) Show that the differential equation can be derived from a Hamilton
function.

(ii) Find the general solution to the differential equation.

Problem 26. The Emden equation is given by

v 2du

WﬁLEE‘FUn:O (1)

which represents in general an anharmonic oscillator subject to damping
dependent upon the velocity.

(i) Show that in the case n = 5 the Emden equation can be derived from
the variational integral

h 1 /du\®> 1
2 6
J_/to t (2( t> 6u dt. (2)

Lty ut) = £2 (;@R _ éu6> . 3)

Then the equation of motion (1) follows from the Euler-Lagrange equation

Remark. Let

d oL OL
pT A T (4)

(ii) Use Noether’s theorem to show that (1) admits the first integral

1 1, (du\> 1, du
I=_t*uS+ ¢ — —tPu—.
¢ Tt ) T (5)
(iii) Show that the generalized equation
d*u du m
ﬁ—i-ﬁ(t)a—i—a(t)u =0, m # —1 (6)

admits the first integral

du ? 2a m+1 ! AP 7Y
IZ((dt) o +>exp<2/ ﬂ(t)dt)
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X <C+C4 /t exp (— t ﬁ(t”)dt”) dt’) C4u— exp (/ Bt dt)

exists when «(t) and 3(t) satisfy the relation

t t t’
a2/ (mH3) exp (—3/ 6(t’)dt’) —04/ exp (—/ ﬂ(t”)dt”> dt' =C

and C and Cy are constants

(8)
Problem 27. Consider Emden’s equation
Po 2 .
dt? t dt

which is of special significance in astrophysics

(i) Show that this equation can be obtained from Lagrange’s equation with
a Lagrangian given as

L) = (5~ ga°) ©)

(ii) Let p := OL/9¢. Show that the Hamilton function for (1) is found to
be

1p
H t) = == + —¢5>. 3
(p,q:t) = 2t2+6 (3)
Hint: The Fuler-Lagrange equation is given by

d oL 0L

#aqi g W

and the Hamilton function takes the form

oL
H t)=—q¢—L 5
(pgt) = 574 (5)
Problem 28. Show that the equation of motion
dp h? . 9 . dq h?
i —sing + 24(sm2q — p“sing),

——p-— 1
o =P gbeose (1)
can be derived from the Hamilton function
2

1
H(p,q):§p2+(1—cosq) 48( 2p? cos ¢ + cos2q — 1).
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Here h is a (small) positive constant.

Problem 29. Consider the system

dp . h2 2 . .
i —sing — ﬂ(p sin ¢ + 2sin 2q) (la)
dq h?
— _ 1
yr P+ GPeosd (10)

where h is a (small) positive constant.

(i) Show that this system is not Hamiltonian, but has the reversibility
property of being invariant under the change of p into —p and ¢ into —t.
(ii) Show that it has the first integral

_ P’ 7 sins + (h?/3)sin 2s
Fo 9 = 50 2 /6y cong) 2 +/0 0+ (2/6)coss)izss (2

Problem 30. Consider the second order differential equation
d*q dg\*  dq
t— = — —. 1
dt? (dt + dt (1)

Show that it has the Hamilton function

1 t2
H(p,q,t) = —4t(¢°p/2)2 —4tq,  p=2¢" — 2(?2 (2)

and first integrals )
Li(p.q,t) =2(¢° — p/2)7 +2¢
1
L(p,q,t) = t* — > — 2q(¢* — p/2)>

2 — % —2¢(q*> — p/2)®
2q +2(¢q* — p/2)?

I3(p,q,t) = (3)

Problem 31. Consider a pendulum with varying length r(¢). The total
length is I = r(¢) + y(¢).
(i) Show that the governing equation is

d? dydf d%y

(I =y) gy +gsing — 20— — =5 sinf =0. (1)

(ii) Show that linearizing the equation yields
d?0 — d?y/dt? dy/dtdo
g—dy/dt* , ,dy/dtdd _

dt? l—y l—y
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Problem 32. (i) Consider a pendulum attached to a rotating base. Show
that the governing equation is

dt?

2
09 Loz —o. (1)
I 2
(ii) Let
Qt) = Qo(1 + ecos(wt))
where € <« 1. Linearize (1) and show that
2
273 + (% — Qg — QQge cos(wt) — QgeQ cosQ(wt)) 0=0. (2)

Problem 33. Consider the system

d2
% +uy + 3au% + 2buius + cu% =0 (1)
d2
W? + ug 4 bu? + 2cuyug + 3dui =0 (2)

which represents a class of Hamiltonian systems. Find the first integrals.

Problem 34. Find the Hamilton function H (pg,, ps,,01,02) of two pen-
dulums coupled by a massless spring. Write down the Hamilton equations
of motion. Show that

d
—H =0.
dt

Problem 35. Let

1 1
H(p,q) = 5—(pl +p3) + Sh(n — 22)°

where k is a positive constant. Find the equations of motion and solve them
for the initial values

q1(t =0) =quo, @2(t=0)=gqoo, pi1(t=0)=pio, p2(t=0)=p.

Draw the phase portrait (g1 (t),p1(t)) and (g2(¢),p2(t)) for k = m =1 and
qi0 =1, g20 = 1, pro = 1, p2o = 2.

Problem 36. We consider systems of (2n + 1) ordinary nonlinear dif-
ferential equations. These are the multiple three-wave interaction system
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describing triads (aj,b;,u), j = 1,...,n, evolving in time alone and in-
teracting with each other through the single common member u. These
systems can be derived from a Hamilton function

1 n
H(b,c,u) 52263 cjc; — bby) —|—z;oz] (ubjcj +u*bje;) (1)

and with Poisson bracket defined as

BB LR ..
' ab; ov;  Obs db;  Oc;Oc;  Oc;Ocy |

(2)

Thus (u,u*), (bj,}), (¢j,c}) are pairs of canonical variables (where * means

complex conjugate). The arbitrary real parameters «a;, €; play the role of

frequencies.

(i) Show that from (1) and (2), with the o; = 1, it follows that the Hamil-

ton’s equations of motion are

du =~ ., db; 1. , de; 1. .
i lzz:bjcj, ditj = —ile]—bj—i—zucj, d—tj = izejcj—i—zu bj, and c.c.
3)

where c.c. stands for complex conjugate. (ii) Show that they have the Lax
representation

=400 (4)

in which L and A are the (2n + 2) x (2n + 2) matrices

T o1 -+ Op 0 wop -+ wop
1| el 0 1 | mw
L:==-1] . . , A:==i
21 - . 2 0
Tn 0 EnI TnW

The 7, 0; and 7; are the 2 x 2 matrices

0 —2u br  —c* —-b;, —ct
- — J J — J J
v (e o) n=(Y ) w= (2 9)

and w = diag(—1,1). I is the 2 x 2 identity matrix.
(iv) Show that Hamilton function (1) is given by

2
H= gitr(Lg‘) + const. (7)

where tr denotes the trace.
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Hint. From (2) we find

du OH
a_{u)H}_ 6’“*.

(8)

Problem 37. The motion of the N particle Toda lattice is described by
the Hamilton function

N N
1
H(p,a) = 3 > P2+ explg; — gjs1)
=1 =

where (g;,p;) are coordiantes and momenta, and gny1 = ¢1.
(i) Write down the Hamilton equations of motion.
(ii) We define variables a;(t), b;(t) ( =1,2,...,N) with

1 1 1
aj = 5 exp 5(%‘ = qj+1) | by = §pj~
Find the equations of motion for these variables.

(iii) Show that for the variables a;, b; we can find a Lax representation

dL
— =[ALI(t) = (AL - LA)(#)

where L and A are N x N matrices.
(iv) Show that

tr(L¥)(t) = const, k=1,2,...,N
where tr denotes the trace.

Problem 38. Consider the Lax representation

dL

— = [A,L](t
=4, 1))
where L := AJ + JA with
0 us —U2 C1 0 0
A= —us 0 Uy , J=10 ¢ 0
u9 —UuUl 0 0 0 C3

where ¢; # 0. Note that A is skew-symmetric. Find the equations of motion
for uy, us, us.
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Problem 39. Consider the autonomous system

%—u(u — Up)
dt — w12 n
%—u(u —up)
g delus —w
du,,

7S =up (U1 — Un—1).

(i) Find a Lax representation for the case n = 3 and the first integrals using
trL™.

(ii) Find the Lax representation for the case n = 4 and the first integrals.
(iii) Find the Lax representation for arbitrary n.

Problem 40. Consider the Hamilton function

1 1
H(q1,p1,q2,p2) = 5(1?? +ai+p+a3) — gqg-

Find the the Hamilton equations of motion and show that they admit the
periodic orbits

To: vo(t) = (q1(t), p1(t), q2(¢), p2(t)) = (kcost, —ksint, 0,0)
Ty () = (), p1(t), a2(2),p2(t)) = (VK2 — 1/3 cost, —/k% — 1/3sint, 1,0)

which lie on the surface

9
ai + 91+ a3 +pf - ik =K

for k%2 > 1/3.
Problem 41. Given the Lagrange function

1, (d\?
L(z,dz/dt,t) = 56’” <dj) — "V (z,t)

describing a dynamical system with damping.
(i) Find the equations of motion.
(ii) Find the corresponding Hamilton function.

Problem 42. The motion of the NV particle Toda lattice is described by
the Hamilton function

N N
1
H(p.a) =5 > 05+ D exp(g; — gj41)
j=1 =1
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where (gj,p;) are coordiantes and momenta, and gn4+1 = qi.
(i) Write down the Hamilton equations of motion.
(ii) We define variables a;(t), b;(t) (j =1,2,...,N) with

1 1 1
a; 1= 5 exp 5((]3' —qjt1) |, bj = 3P

Find the equations of motion for these variables.
(ili) Show that for the variables a;, b; we can find a Lax representation

dL
= = A L](t) = (AL — LA)(t)

where L and A are N x N matrices.
(iv) Show that

tr(L*)(t) = const, k=1,2,...,N
where tr denotes the trace.

Problem 43. Consider the Lax representation

dL
— =[A,L](t
o
where L := AJ + JA with
0 us —U2 C1 0 0
A= —Uus 0 U1 s J = 0 Co 0
us —u; 0 0 0 ec3

Find the equations of motion for uy, us, us.

Problem 44. Let

0 1 0 U1
o U 0 1 O
L= 0 us 0 1
1 0 Uy 0
and
U1 + ug 0 1 0
A— 0 Uy + us 0 1
o 1 0 U3 + Uq 0
0 1 0 Ug + U1

(i) Show that L and A are the Lax representation

dL
= AL = [A(1), L))
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of the autonomous first order system

duq

o= uy (ug — ug)
% = ug(uz — u1)
% = uz(ug — uz)
% = uy(ug — ug).

(ii) Show that

Il(u) =Uy + Uz +us + uy
Ir(u) = ugugusuy

Ig(u) = ULU3 + U2Uy

are first integrals of the system.
(iii) Which first integrals do we find from L*, where k =2,3,...?

Problem 45. The motion of a charged particle in the plane perpendicular
to the uniform constant magnetic field is described in the classical case by
system of second order ordinary differential equations

d’z @ d?y _ dx

ar =~ a ar T Y

where w is a constant frequency. Show that this system of differential
equations can be derived from the Hamilton function

1 1 \° 1 1 \?
H(pz,py,x,y) = 5 <px + wa> + B (py — 2&)33) .

Problem 46. In case of linear dissipation the Lagrangian of a particle
moving in a one-dimensional potential V() is given by

L(z,dz/dt,t) = (”; (‘f;’)Q - V(a:))

Find the associated Hamilton function. Find the equation of motion.

Problem 47. Consider the Hamilton function for N particles
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where

N 3 pi

k=1j=1

and p = (p11, P12, P13, P21, - - -, PN3), A4 = (q11, 12, €13, G215 - - -, qN3) With p,
q are the corresponding momenta and positions. Here V(q) is a differen-
tiable potential. The Hamilton equations of motion are

dpkj - 6V quj _ ]ﬁ

dt B Oqi;’ dt my,’

The formal solution of these system of ordinary differential equation is
®*(p(0),q(0)), where ®' denotes the flow and (p(0),q(0) the initial con-
ditions. Let R denote the momentum reversion, i.e. R(p,q) = (—p,q).
Show that the flow ®¢ is R-reversible, i.e.

Ro®toR=

Problem 48. Consider the Hamilton function

N 3 2 N 3
Dok
H(pla"'apN7q17'-~7qN):ZZ = +ZZU(X5(|qak_qﬁkD
a=1k=1

2m
« a<fB k=1

where a denotes the particle and k is the component of the vectors pa, qa
with £ = 1,2,3. N is the number of particles. Show that the Hamilton
function admits the first integrals

N
P, = Zpak, k=1,2,3 total momentum

a=1

=1

Q

N 3
I, = Z Z €ikeGakPat, +=1,2,3 total angular momentum
k=1

N
Gr = Z(pakt —Mafar), k=1,2,3 centre of mass
a=1

and the Hamilton function. Here

1 even permutation of (1,2, 3)
€ij¢ = § —1 odd permutation of (1,2,3)
0 otherwise

The total number of first integrals is given by 3+ 3+ 3+ 1 = 10.
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Problem 49. From the previous problem consider the case N = 2 (Kepler
problem). Assume that the potential U depends only on ¢, where q :=

q1 —dz2, ¢ = |lqf| and
mims

Ulg) = =v——

with the gravitational constant v = 6.685 - 10~ 8cm3gsec 2. Find Newton’s
equation of motion.

Problem 50. Consider the Newton’s equations of motion from the pre-
vious problem. The centre of mass with N mass points with masses m;
(j=1,2,...,N) and vectors q; is defined as

N
Zj:l m;q;
N
Zj:l mj

The centre of mass system is defined as R = 0. Find the equations of
motion for this case.

R :=

Problem 51. Consider the equation of motion

mimg  d’q d*q )
mi + ma dt2 e Va qu
Show that the Lenz vector defined by
L._P xJ q
om q

is a first integral of this equation, where J := q X p and § = ymims.

Problem 52. Let q = (q1,92,¢3)7, P = (p1,p2,p3)T be the coordinates
and associated momenta of a Hamilton system in a 6-dimensional phase
space with Hamilton function

H(q,p) = T(p) + V(q) = -p"p + V(q).

2
A fictive time 7 is introduced through the ordinary differential equation
dt
o~ = 9(a.p)

defining a Sundman transformation, where g is a positive scalar monitor
function which is taken to be small if the solution of the Hamilton system is
evolving rapidly and 7 is the fictive time which is used for all computation.
Two new conjugate coordinates are introduced

¢" == H(qo,po), p':=t.
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To preserve the Hamiltonian structure of the system after rescaling in
terms of the fictive time 7, one applies a Poincaré transformation. Us-
ing the Poincareé transformation the system (q,¢’,p,p') is Hamiltonian
and evolves in the fictive time, 7, with Hamilton function

K(q,¢",p.p") = g(a,p)(H(q,p) — ¢").

g(a) =\/ai + 43 + 3.

Find the Hamilton function

Let

K(qv qt, p,pt) = g(qa p)(H(qa p) - qt)

and the equations of motion.
Problem 53. Consider the Hamilton function

1 1
H(p,q) = %(pf +p3) + k@ - a)*

where k is a positive constant. Find the equations of motion. Solve the
initial value problem

q1(t=0) =qio, @2(t=0)=go0, p1(t=0)=pio, pa2(t=0)=pa.
Draw the phase portrait (¢1(t),p1(t)) and (g2(t), p2(t)) for k =m =1 and
10 =1, q20 =1, p1o =1, p2o = 2.

Problem 54. Consider the Hamilton function

H(p.q) = %(p? +p3) + Us(q)

where 0 < € < 1 and the potential is given by

1—¢ 1
Us(a) = —5 (a1 + 2) + 501 05-

Show that the potential U.(q) admits the Cy, point group.

Problem 55. The Hamilton function for a linear chain with cyclic bound-
ary condition (N = 0) is given by

|

N N
1
H(p,q) = 5 ZP? + Z(Qj —gj—1—a)’.
j=1 j=1
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Introducing the transformation ¢; — g; — ja we obtain the Hamilton func-

tion
N N

1
H(p,q) = o Zp? + k‘Z(q]Q —q1gj-1)-

The Hamilton equations of motions are given by

. H . H
dq7:8 , @:—877 j:1’2,,N
dt apj dt 8‘1]’

Let N = 3. Then the equations of motion can be written in matrix form

dgy /dt 0 0 0 1/m 0 0 )
dgo/dt 0 0 0 0 1/m O Q2
dgs/dt | 0 0 0 0 0 1/m q3
dpr/dt | | -2k k k 0 0 0 D1
dpo /dt k- =2k kK 0 0 0 P2
dpg/dt k k —2k 0 0 0 P3

Find the eigenvalues and normalized eigenvectors of the 6 x 6 matrix on
the right-hand side. Use the normalized eigenvectors to rotate this matrix
into diagonal form.

Problem 56. Consider the Hamilton function H : R2 — R

2 2 4
p q q
H =— — =+ —.
Pa)=75-5+7
Show that there is saddle and centers. Show that there are two homoclinic

orbits.

Problem 57. Consider N vortices with the strengths (velocity circula-
tion around the vortex), x; (j = 1,2,...,N). We denote the cartesian
coordinates of the vortices in a flow plane by (z;,y;), (j = 1,2,...,N).
Then the dyanamics of the vortices is given by the system

. des _ OH
J dt 78yj
o 0Yi _OH
J dt 8.%‘j

with the Hamilton function

1
H(x,y) = ~5- Zﬁjﬁjk In(a;x), aji = \/(mk —x;)% + (yr — ;)%

i<k

Find the first integrals.
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Problem 58. Let u be a solution of the Painlevé equation of the first
kind )

d*u 9
Then u(t) is meromorphic on the complex plane C and the function 7(t)
defined by

d? dr/dt)? — 7(t)d>1/dt?
f(z):—(dtz> log 7(t) = L47/2) T(t)(f) fa

is holomorphic on C. Show that the Painlevé equation of first kind is
equivalent to the Hamiltonion system

du  OH dv  OH

dat v’ dt  ou
i.e. find the Hamilton function H (u,v).

Problem 59. (i) Show that the second Painlevé equation Prr(a) (o € C)
is the Hamilton system

dg 9H  dp  OH

dt ~ dp’ dt ~  9q

where the Hamilton function is

p2 2 t
H(p,q.t,a) = 5 (q +2)p—0<q-

(ii) Let (p, q) be a solution to Prr(«). Show that birational canonical trans-
formations defined by

!
spa)=(a+ p) 7(a) = (~q.—p 24"+ 1)
give solutions to Prj(—a) and Prr(1 — «), respectively.

Problem 60. The equation of motion for a particle of unit mass moving
in a conservative central force field is given by the second order differential
equation

where 7 := \/m
(i) Show that the angular momentum

L:= —
rxdt
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is a constant of motion, where x denotes the vector product.
(ii) Show that the total energy given by

ldr dr 1 [T

H=-——.——-- d
24t dt 2/ J(e)de

is a constant of motion, where - denotes the scalar product.

Problem 61. (i) Show that the second Painlevé equation Prr(a) (o € C)
is the Hamilton system

dg _9H  dp  OH

dt ~ dp’ dt ~  9q

where

P2 2 t
H(q,p,t,a)ZE— (q +2>p—ozq~

(ii) Let (¢,p) be a solution to Pry(«). Show that the birational canonical
transformations defined by

e
s@p)=(a+p),  mep)=(~¢,—p+20" +1)
give solutions to Pry(—a), Prr(1 — ), respectively.

Problem 62. Show that the non-relativistic Coulomb Hamilton function
1 «
H=—p?+—
2m r
possesses the angular momentum L = r X p and the Lenz vector

1 .
%(pr—L—l—p)—&—ar

A:

as vector invariants, where ¥ :=r/r.

Problem 63. Let g1, g2, g3 be positive constants. Consider the Hamilton
function (Calogero potential)

He(p1,p2,p3, 01,492, 93) =

1 1 g1 g2 g3
—(p}+p3+P3)+= (1 —¢2)*+(02—3)*+(13—q1)%)) +

+ + :
2 6 (1 —q2)? (g2 —a3)* (a3—q1)?
Transform the Hamilton function to the centre of mass and Jacobi coordi-

nates R, =, y

1
R(q1,q2,q93) = 5(91 +q2+q3)
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1
(q1,92,93) = —=(q1 — q2)

-5

y(q1,92,q3) = %((h +q2 — 2q3).

Show that the centre of mass only executes free motion, and the (z,y)
dynamics is described by the reduced Hamilton function
g1 292 293

1 1
H(ps,py) = 503 + 1) + 5(° + %) + 55 + -
(pz: py) 2(px 2 2( v 222 (z—3y)2 (v +V3y)?

Problem 64. Consider the Hamilton function

g1 g2

g3

1 1
H = 5(P%‘FP%‘*‘P%)‘*‘@((fh—Q2)2+(CI2—QS)2+(QS—(]1)2)+(

+
ry — $2)2 (CI2 - Q3)2

where g1, g2, g3 are positive constants. Transform the Hamilton function
to the centre of mass and Jacobi coordinates

1
R(q1,q2,q3) = g(ch + g2+ q3)
1
z(q1,92,93) = ﬁ(fh —q2)
1
y(q1,q2,q3) = %(QI + g2 — 2¢3).

Problem 65. Consider the symmetry operation

Inversion P : (q1,q2,p1,p2) — (—q1, —q2, —p1, —D2)
Time reversal T : (q1,q2,p1,P2) — (q1, 492, —P1, —P2)
Reflection S1 : (q1, g2, p1,p2) — (—q1,¢2, —p1,D2).

Does the Hamilton function

1 1 1
H{(q1,2,p1,p2) = 5 (0 +03) + 5 (af +@3) + e qlas

satisfies these symmetries?

Problem 66. Consider the Hamilton function H for a three body problem

1 1 1
H(p1,P2,P3,d1,92,93) = mp%+mpg+%P§+V(Q1—Q2a d2—q3,93—q1)-

Show that the Hamilton function and equations of motion can be simplified

by introducing Jacobi variables

M(q1 + q2) + mqs vm
s X = —_ y = — 2 —_ —_ .
50T 1 d2—qi, Yy 2Mij( q3 —d1 —q2)

R:

(Q3 - (I1)2
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Problem 67. Assume that a autonomous system of ordinary differential
equations can be written as

% = J(x)VH(x)
where x = (21, 29,...,2,)", J, H are differentiable functions and J an

antisymmetric n X n matrix. Show that dH/dt = 0.

Problem 68. Consider the Hamilton function H : R* — R

1 1 1
H(p,a) = 5 (0} +p3) + 50°(ai + @) + 59°(0162)”

with H = Hy + Hy, where

1 1 1
Ho(p,q) = (07 +93) + 5w*(ai +@3),  Hi(p.a) = 50 (0a)”

(i) Introduce the new variables J;, ¢; (i =1,2)
qi = (2Ji/w)1/2 sin ¢;, pi = (2J¢w)1/2 COS ©;

and write down the Hamilton function.
(ii) Introduce the variables

1

J1=J1+ Ja, o1 = 5(@1 + ¢2)

. 1
Jo=J1— Ja, ¢2:§(901—802)
and write down the Hamilton equations of motion. Find the Hamilton

equations of motion for Hy. Discuss.

(iii) Calculate
2

HiG.o0) =5 [ M@)o

This means we average the Hamilton function Hi (j, ¢) over the fast variable
and extracting the secular part of Hy. Discuss the Hamilton equations of
motion for the Hamilton function H = Hy + H;.

Problem 69. The equations of motion of a solid in an ideal fluid have
the form

dpr _ OH  OH
ar  P2o0,  P3ar,
dp,  OH  OH

dt *pSaigl *plaig3
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% 5H OH
ar  Prar, ~P2an
a, OH  9H  9H  OH

E:maipg*p?’aip;r 26763* 3%

a, _ OH  OH  ,0H |, 0H
at  Pap,  Pops T a0 T ot

dls 0OH oOH OH 0H

@ Pap Pop Ton o

with the Hamilton function

3

1

= Z (ailily + 201l ipr + CjkDiDK)-
7,k=1

\V]

Show that besides H = I; we have the first integrals

L(p,0) =pl +p3+p3,  I3(p,€) = pils + palo + p3ls.

Problem 70. Show that
G;(t) == tPf"™ — MR;, j=1,2,3

where

N N LN
PFm = Zpkj, M := ka, R; = i kaij
k=1 k=1 k=1

are explictly time-dependent first integrals for the Hamilton system

N
zz;jj; = zvke i — ae).
k=1 =1 <"k kkl;ézlj 1

Problem 71. Given a smooth Hamilton function
" ps

with n degrees of freedom (p = (p1,...,0n), A= (¢1,.--,qn). Let V(E) be
the classical phase space volume at energy E of a smooth Hamilton function
is given by

SN

V(E) = - O(E — H(p,q))d"pd"q
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where © is the step function. Assume that U(eq) = e™U(q).
(i) Consider the transformation
p = EY?p, q=E'/"q
with the inverse transformation
p=E'’p, q=E""q
Find d"p’d"q’ and H(p',q’).

(ii) Calculate V(E) with the assumption that £ > 0. Find the asymptotic
behaviour.

Problem 72. Consider the three-particle nonrelativistic Schrédinger
eigenvalue equation (MKSA-system)

P W W Ze o Ze
V& V& V&
2M 0 2m ! 2m 2 47T€0|R0 — R1| 47T60‘R0 — RQ‘

62

&« _ g
+47T€0|R1 — R2|) u(Ro,R1,R2) u(Ro, R1,Ro)

where Ry = (Ro1, Ro2, Ro3)? is the position vector of the nucleus of mass
M, and Ry = (Ry1, Ri2, R13)T and Ry = (Ra1, Roz, Ro3)T are the position
vectors of the two electrons of mass m and Z = 2. The Jacobi coordinates
are given by

r=(R; —Ro)/a,

x=A(R; - Ry —y(R1 — Ro))/a,

X=ARo+y(Ri+Ra—Ry))/a,
where r = (11,79,73)7, X = (21,22, 23)7, X = (X1, X2, X3)7,

mM

= u/M A:i=1/(1—12
e VAR p/M, /(1 =y7)

:u:

and a, = (m/p)ag is the reduced Bohr radius with ag = (4mwegh?)/(me?).
Thus r, x, X are dimensionless.

(i) Find the inverse of this transformation.

(ii) Express the Hamilton operator

[ n_, R,
- (_QMVRO o R g VR
Ze? Ze? N e? )
4’/T60|R0 - R1| 47T€()|R() - R2| 47T€(]‘R1 - R2|

in this coordinates.
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Problem 73. Consider a bead of mass m slides frictionless upon a smooth
circular wire of radius r. The wire rotates with constant frequency w about
a vertical axis parallel to the earth’s gravitational field. Consider the bi-
furcation parameter y := w?r/g. Find the value p. of the bifurcation
parameter for which there is a bifurcation. The kinetic energy is

, 2 (rdp\?
T(G,H):m; <<dt> +w2sin20>

The potential energy is

V() = mgr(l — cosb)

with the Lagrange function L =T — V.

Problem 74. (i) Consider the Hamilton function
1
H(O,p,t) = E‘DQ + mBy cos(6) sin(wt)
which depends explicitly on time and B = Bysin(wt) is a time periodic
magnetic field. I is the moment of inertia of the dipole and m the dipole

moment. Find the equation of motion. Does the system show chaotic
behaviour depending on By?

Problem 75. (i) Show that the second order ordinary differential equa-
tion
dt e T

can be derived from the Lagrange function
L(u, %) = ur/(w)? + 1.

(ii) Setting u(t) = exp(v(t)) show that the differential equation takes the

form )
d*v —20(t)

ar e

Problem 76. (i) Consider the damped anharmonic oscillator

d*z n dx n PN

— +c1— +er+r =

aez a7
where ¢1, ¢o are constants. Show that the equation of motion can be derived
from the explicitly time-dependent Lagrange function

L(t, 2(t), (1)) = %ecltx'Z — etV (a)
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where

V(z) = /O " f(s)ds

where the function f is given by f(z) = cox + 2°.
(ii) Show that the corresponding Hamilton function is given by

H(t,z(t),p(t)) = %e‘cltp2 + etV (2).

Problem 77. Consider three masses my, mg, m¢ and the Hamilton
function

P p? p?
A 1 ZB 4 2C 41 Va(as —qc) + Va(ac —qa) + Velqa — aB).

H =
2mA 2mB 2mc

Let M =ma+mp+me.
(i) Are the total momentum

P=ps+ps+pC

and the position of the centre of mass

1
S= M(mACIA +mpap +mcac)

are constants of motions?
(ii) Show that the centre of mass can be separated out.

Problem 78. Consider the Lagrange function

L($(t),0(t), b(1), (1)) = T\/(é)Q sin’(6) + (6)2.
The Euler-Lagrange equation takes the form

OL _d9L . 9L _dOL
00 dtop T 09 dtos

Write down the Euler-Lagrange equation and solve the initial value prob-
lem.
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