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Chapter 1

First Order Differential
Equations

We consider differential equations of the form

du

dt
= f(u). (1)

where f : R→ R is a continuous differentiable function.

A point u∗ is called a fixed point of the differential equation if f(u∗) = 0.

The variational equation of du/dt = f(u) is given by

dy

dt
=
(
df

du
(u(t))

)
y (2)

where it is assumed that f is continuous differentiable.

Problem 1. (i) Solve the initial value problem u(t = 0) = 0 for the first
order ordinary differential equation

du

dt
= k(a− u)(b− u)

where k > 0, a > 0 and b > 0.
(ii) Find the fixed points.
(iii) What happens for t→∞?

1



2 Problems and Solutions

Problem 2. Discuss the qualitative behaviour of the one-dimensional
nonlinear differential equation

du

dt
= r − u2

du

dt
= ru− u2

du

dt
=−(1 + r2)u2

where r is a bifurcation parameter. Study the behaviour of the fixed points.

Problem 3. Find the solution of the initial value problem the linear
differential equation

du

dx
= x+ u, u(0) = 0.

Problem 4. Consider the nonlinear differential equation

du

dt
= sin(u)

with the initial value u(t = 0) = u0 = π/2.
(i) Find the fixed points.
(ii) Solve the differential equation by direct integration. Hint.∫

du

sin(cu)
=

1
c

ln
(

tan
(cu

2

))
.

What happens if t→∞?
(iii) Find the solution of the initial value problem using the Lie series
expansion

u(t) = exp
(
t sin(u)

d

du

)
u

∣∣∣∣
u=u0

.

Problem 5. Consider the initial value problem of the nonlinear differen-
tial equation

du

dt
= u− u2, u(t = 0) = u0 > 0.

(i) Solve the differential equation by direct integration. Find u(t) for t→∞.
(ii) Solve the differential equation using the Lie series

u(t) = etV u
∣∣
u→u0
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where V is the vector field V associated with the differential equation

V = (u− u2)
d

du
.

Problem 6. Consider the logistic equation

du

dt
= ru(1− u)

with u(t = 0) = u0. Find the solution of the initial value problem.

Problem 7. Solve the Bernoulli equation

du

dx
+ P (x)u = Q(x)un, n 6= 0, 1. (1)

Problem 8. An ordinary differential equation

H

(
t, u(t),

du

dt

)
= 0 (1)

may often be simplified or reduced to a standard form by introducing new
variables, T , U by means of the equations

T (t) = G(t, u(t)), U(T (t)) = F (t, u(t)). (2)

We assume that H(t, u, u̇), G(t, u) and F (t, u) are smooth functions. All
considerations are local. Geometrically, we regard (2) as a point transfor-
mation , for it transforms points (t, u) of the tu-plane to points (T,U) of
the TU -plane. We assume that the Jacobian determinant

J :=
∂(T,U)
∂(t, u)

=

∣∣∣∣∣∣∣
∂G

∂t

∂G

∂u
∂F

∂t

∂F

∂u

∣∣∣∣∣∣∣ 6= 0 (3)

over a region R of the tu-plane. There is then no functional relation between
u and U ; for this would imply J = 0. Moreover, if the point (T1, U1)
corresponds to (t1, u1) we can solve equations (2) uniquely for t, u in the
neighbourhood of t1, u1. We thus obtain the inverse transformation

t(T ) = Q(T,U(T )), u(t(T )) = P (T,U(T )). (4)

Thus we can transform (1) into another

H̃

(
T,U(T ),

dU

dT

)
= 0. (5)
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If (5) can be integrated to give

ϕ(T,U(T ), C) = 0 (6)

we obtain a solution of (1) on replacing u and v by their values (2) in terms
of t and u. Show that

dU

dT
=

∂F

∂u

du

dt
+
∂F

∂t
∂G

∂u

du

dt
+
∂G

∂t

. (7)

Problem 9. Solve the Bernoulli equation

du

dx
+ u = u3. (1)

Problem 10. Solve the Bernoulli equation

du

dx
+ u tanx = u3 sec4 x (1)

where secx := 1/ cosx.

Problem 11. Solve the Riccati equation

du

dx
− e−xu2 − u− ex = 0. (1)

Problem 12. Find the solution of the initial value problem of the special
Riccati equation

du

dt
= u2 + t, u(0) = 1. (1)

Problem 13. Prove the following. If in the generalized Riccati equation

du

dx
= f(x)u2 + g(x)u+ h(x) (1)

the coefficients f , g and h, defined and continuous in some open interval
(a, b) ⊂ R, are related as

f + g + h =
d

dx
ln
α

β
− α− β

αβ
(αf − βh) (2)

with α(x) and β(x) properly chosen functions differentiable in (a, b) such
that αβ > 0, then (1) is integrable by quadratures.
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Problem 14. Consider the initial value problem for the Riccati equation

du

dx
= x2 + u+ 0.1u2, u(0) = 0. (1)

There is no elementary solution. Therefore one neglects the quadratic term
and solves the linear equation

du1

dx
= x2 + u1, u1(0) = 0. (2)

(i) Show that this gives a first approximate solution

u1(x) = 2ex − (x2 + 2x+ 2). (3)

(ii) Reintroduce this solution into (1) and now solve the differential equation

du2

dx
= x2 + u2 + 0.1(u1(x))2, u2(0) = 0. (4)

(iii) Show that

u2(x) = u1(x)+
2
5
e2x− 2

15
ex(x3+3x2+6x−54)− 1

10
(x4+8x3+32x2+72x+76).

(5)

Problem 15. Abel’s differential equation of the first kind is written in
the form

du

dt
= a0(t) + a1(t)u+ a2(t)u2 + a3(t)u3 (1)

where aj (j = 0, 1, 2, 3) are known smooth functions of t. (i) Show that (1)
can be put into the standard form as

dz

dx
= z3 + p(t) (2)

by introducing the following transformations

u(t) = a(t)z(x(t)) + b(t), x(t) =
∫ t

a2(s)a3(s)ds (3)

with

a(t) := exp
(∫ t(

a1(s)− a2
2(s)

3a3(s)

)
ds

)
, b(t) =

a2(t)
3a3(t)

. (4)

Here p(t) in (2) has the form

p(t) =
(
a0 −

1
3
a1a2

a3
+

2
27
a3
2

a2
3

+
1
3
d

dt

a2

a3

)
(a3a3)−1. (5)
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(ii) Show that if a3 = 0, (1) reduces to the Ricatti equation.
(iii) Show that for a0 = 0, a1 6= 0 and either a2 = 0, a3 6= 0 or a2 6= 0,
a3 = 0, it becomes the nonlinear differential equation of Bernoulli type,
which has an explicit general solution.

Problem 16. Show that the homogeneous equation

du

dx
+ f

(u
x

)
= 0 (1)

is transformed by

y = x, v(y(x)) =
u(x)
x

(2)

into the separable equation

v + y
dv

dy
+ f(v) = 0. (3)

Problem 17. Show that the differential equation

du

dx
= f

(
ax+ bu+ c

αx+ βu+ γ

)
(1)

can be integrated by means of a point transformation.

Problem 18. Solve
du

dx
=

2x+ 3u− 4
4x+ u− 3

. (1)

Problem 19. Solve the initial value problem of the differential equation

du

dt
= k(a− u)(b− u), a > b > 0 (1)

by direct integration if u(t = 0) = 0.

Problem 20. (i) Find the fixed points of the differential equation

du

dt
= u− u2. (1)

(ii) Find the solution of (1) with the initial condition u(t = 0) = u0.
(iii) Find the variational equation.
(iv) Study the stability of the fixed points.
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Problem 21. Consider the nonlinear ordinary differential equation

du

dt
= −qu1+(1/q), t > 0 (1)

with u(0) = 1, where q is any positive integer.
(i) Show that using (1) recursively, we obtain

dnu

dtn
= (−1)nq(q + 1) · · · (q + n− 1)u1+n/q, n = 1, 2, · · · . (3)

(ii) Show that the Taylor series expansion of u is then given by

u(t) = 1− qt+ · · ·+ (−1)n

n!
q(q + 1) · · · (q + n− 1)tn + · · · . (4)

(iii) Show that from the Cauchy-Hadamard theorem it follows that the
radius of convergence of series (4) is 1. Show that the solution of the initial
value problem is given by

u(t) = (1 + t)−q. (5)

Thus, t = 1 is not a singular point of u and the solution of the problem is
defined for any t > 0. But Taylor series (4) in its original form does not
give any informations about u for t > 1. (iv) Apply Padé approximation to
(4), and show that the [N/N + L] (L ≥ 0) approximant to it is given by

[N/N + L] =
1 + a1t+ · · ·+ aN t

N

1 + b1t+ · · ·+ bN+LtN+L
(6)

where

am =
N(N − 1) · · · (N −m+ 1)(N + L− q)(N + L− 1− q) · · · (N + L−m+ 1− q)

m!(2N + L)(2N + L− 1) · · · (2N + L−m+ 1)
(7)

with m = 1, 2, · · · , N and

bm =
(N + L)(N + L− 1) · · · (N + L−m+ 1)(N + q)(N + q − 1) · · · (N + q −m+ 1)

m!(2N + L)(2N + L− 1) · · · (2N + L−m+ 1)
(8)

with m = 1, 2, · · · , N + L. Show that the [N/N + L] approximants for
N + L ≥ q in a form of irreducible rational fractions reduce to the exact
solution (5).

Problem 22. Try to solve the classical brachystochrone problem(
du

dt

)2

=
L

u
− 1 or u

(
du

dt

)2

+ u = L (1)
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by a series solution. We suppose h = 0 and the initial value u(0) = 0.

Problem 23. Consider the nonlinear differential equation

du

dt
= −u2 (1)

with the initial condition u(t = 0) ≡ u0 = 1 and t ∈ [0,∞).
(i) Show that the exact solution of the initial value problem is given by

u(t) =
1

1 + t
. (2)

(ii) Solve initial value problem of the differential equation (1) with the help
of Lie series.

Problem 24. Find the solution of the differential equation

du

dt
= r − u2, u(0) = 0 (1)

as a function of the bifurcation parameter r, where r > 0, r = 0 and r < 0.

Problem 25. Discuss the behaviour of the differential equation

du

dt
= ru+ u3 (1)

as a function of the bifurcation parameter r.

Problem 26. Discuss the behaviour of the differential equation

du

dt
= µ− u2, u(0) = 0 (1)

as a function of the bifurcation parameter µ, where µ > 0, µ = 0 and µ < 0.

Problem 27. Define a function u(x) (the inverse error function)

x =
2√
π

∫ u

0

exp(−t2)dt (1)

and show that it satisfies the differential equation

du

dx
=
√
π

2
exp(u2), u(0) = 0. (2)

Obtain recursion formulas for its Taylor coefficients.



First Order Differential Equations 9

Problem 28. Show that the differential equation

du

dx
= (−u sinx+ tanx)u, u(π/6) =

2√
3

(1)

admits the solution
u(x) =

1
cos(x)

. (2)

Problem 29. (i) Show that the general solution of∣∣∣∣sin θdφdθ
∣∣∣∣ = |sinφ| (1)

is given by

cosφ(θ) =
sinh c+ cosh c cos θ
cosh c+ sinh c cos θ

(2)

where c is the constant of integration with −∞ < c <∞. Show that when

c = 0→ φ(θ) = θ

when
c > 0→ φ(θ) ≤ θ

and when
c < 0→ φ(θ) ≥ θ

Hint. Notice that
d

dθ
cosφ(θ) = − sinφ(θ)

dφ

dθ
. (3)

Problem 30. The majorizing differential equation is given by

du

dx
=

M

(1− x/r)(1− u/r)
, u(0) = 0 (1)

where M and r are positive constants. Find the solution.

Problem 31. Consider the initial problem

du

dt
= t+ u2, u(0) = 1 (1)

Show that the solution explodes somewhere in the interval [π/4, 1].

Problem 32. Discuss the fixed points (equilibrium points) of the nonlin-
ear ordinary differential equation

du

dt
= γ sin(ωt) sin1/3

(ωu
α

)
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where γ, ω, and α are positive constants.

Problem 33. Solve the initial problem for the differential equation

du

dt
= −u1/3, u(0) ≡ u0 > 0. (1)

Study the stability of the fixed point u∗ = 0.

Problem 34. A first order differential equation modelling the concentra-
tion u(t) of an allosteric enzyme is given by

du

dt
= −u a+ bu

c+ u+ du2

where u(t = 0) > 0 and a, b, c, d are positive constants. Find the fixed
points and study their stability.

Problem 35. Let f be an analytic function of x and u. In Picard’s
method one approximates a solution of a first order differential equation

du

dx
= f(x, u)

with initial conditions u(x0) = u0 as follows. Integrating both sides yields

u(x) = u0 +
∫ x

x0

f(s, u(s))ds.

Now starting with u0 this formula can be used to approach the exact so-
lution iteratively if the series converges. The next approximation is given
by

uk+1(x) = u0 +
∫ x

x0

f(s, uk(s))ds, k = 0, 1, 2, . . . .

Apply this approach to the linear differential equation

du

dx
= x+ u

where x0 = 0, u(x0) = 1.

Problem 36. Consider the nonlinear differential equation

du

dt
=

1
u
, u(t = 0) = u0 > 0.

Solve the initial value problem using

u(t) = etV u
∣∣
u→u0
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where the vector field V is given by

V =
1
u

d

du
.

solve the initial value problem by direct integration of the differential equa-
tion. Compare the two solutions. Discuss.

Problem 37. (i) Consider

du

dt
= −2u+ 3u2 − u3

where u(t = 0) = u0 > 0. Find the fixed points of the differential equation.
(ii) Calculate the Gateaux derivative of

du

dt
+ 2u− 3u2 + u3

and thus find the variational equation.
(iii) Study the stability of the fixed points.

Problem 38. (i) Consider

du

dt
= cos(u)

where u(t = 0) = u0 > 0. Find the fixed points of the differential equation.
(ii) Calculate the Gateaux derivative of

du

dt
− cos(u).

and thus find the variational equation. Study the stability of the fixed
points.

Problem 39. (i) Consider

du

dt
= cos(u) sin(u)

where
u(t = 0) = u0 > 0.

Find the fixed points of the differential equation.
(ii) Calculate the Gateaux derivative of

du

dt
− cos(u) sin(u)
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and thus find the variational equation. Study the stability of the fixed
points.

Problem 40. Consider the intial value problem for the nonlinear differ-
ential equation

du

dt
= eu − 1.

Find the fixed points and study their stability.

Problem 41. Find the solutions of the initial value problem of the non-
linear differential equation

du

dt
= 3u2/3, u(0) = 0.

Problem 42. Consider the first order linear scalar differential equation

du

dt
= r(t) + k(t)u

where r(t) and k(t) are continuous functions on a finite closed interval [a, b]
of the real line. Let τ be an arbitrary point of [a, b]. Show that the general
solution of this differential equation is given by

u(t) = exp
(∫ t

τ

k(s)ds
)
u(τ) +

∫ t

τ

exp
(∫ t

s

k(s1)ds1

)
r(s)ds.

Problem 43. Find the solution of the initial value problem

du

dt
= u2, u(0) = 1.

Discuss.

Problem 44. Consider the nonlinear differential equation

du

dt
= cos(u) sin(u).

(i) Find all fixed points.
(ii) Find the variational equation and study the stability of one of the fixed
point.
(iii) Find the solution of the initial value problem u(t = 0) = u0.
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Problem 45. Calculate

exp
(
tx3 d

dx

)
x.

All terms must be summed up. Describe the connection with the solution
of the differential equation

dx

dt
= x3, x(t = 0) = x0.

Problem 46. Consider the first order differential equation

du

dt
= u− u3.

Find the fixed points. Study the stability of the fixed points. Show that
the differential equation can be written as

du

dt
= −∂V

∂u
.

Find the potential V . Give the solution for the initial value problem.

Problem 47. Consider the initial value problem

du

dt
+ 2tu = 0, u(0) = 1.

Let Lu := −2tu and

u(t) = u(0)− 2L−1(tu(t))

with

L−1f(t) :=
∫ t

0

f(s)ds.

Use the recursion

uj+1(t) = −2L−1(tuj(t)), j = 0, 1, 2, . . .

with u0 = u(0) = 1 to find the solution of the intial value problem.

Problem 48. Consider the nonlinear ordinary differential equation

du

dt
= cos2(u)

with the initial condition u(t = 0) = u0 = 0.
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(i) Find the (local) solution of the initial value problem using the exponen-
tial map

u(t) = exp(tV )u|u→u(0)=0

where V is the vector field

V (u) = cos2(u)
d

du
.

Discuss the radius of convergence.
(ii) Find the solution of the initial value problem by direct integration of
the differential equation. Use∫

du

cos2(u)
= tan(u).

Compare the result from (i) and (ii). Discuss.
(iii) Find u(t→∞) and compare with the solutions of the equation cos2(u) =
0 (fixed points).

Problem 49. Solve the initial value problem of the nonlinear differential
equation

du

dt
= u− u3

where u(t = 0) = u0 > 0 and u0 < 1. What happens for t→∞?

Problem 50. By an ε-neighbourhood of a point x0 ∈ Rn, we define an
open ball of positive radius ε, i.e.

Nε(x0) := {x ∈ Rn : |x− x0| < ε }.

A function f is said to satisfy a Lipschitz condition on E if there is a positive
constant K such that for all x,y ∈ E

|f(x)− f(y)| ≤ K|x− y|.

A function f is said to be locally Lipschitz on E if for each point x0 ∈ E
there is an ε-neighbourhood of x0, Nε(x0) ⊂ E and a constant K0 > 0 such
that for all x,y ∈ Nε(x0)

|f(x)− f(y)| ≤ K0|x− y|.

Let E be an open subset of Rn. Let f : E → Rn. Show that if f ∈ C1(E),
then the function f is locally Lipschitz on E.

Problem 51. Calculate

exp
(
tx3 d

dx

)
x.
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All terms must be summed up. Describe the connection with the solution
of the initial value problem of the differential equation

dx

dt
= x3, x(t = 0) = x0.

Problem 52. Consider the linear first order delay-differential equation

du

dt
= −u(t− 1).

Find the solution with the ansatz

u(t) = Ceλt.

Problem 53. Consider the first order differential equation(
du

dx

)3

− 3u2 = 0.

Find the singular solution. Find the general solution.

Problem 54. Solve the Pfaffian differential equation

(x2 + x3)dx1 + (x3 + x1)dx2 + (x1 + x2)dx3 = 0.

Problem 55. Describe the behaviour of the differential equation

du

dt
= u− u3

at the fixed points.

Problem 56. Consider the function u : R→ R

u(x) =
{
−x2 x < 0
x2 x ≥ 0

The function is continuously differentiable. Show that the function satisfies
the first order differential equation

x
du

dx
− 2u = 0.
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Problem 57. Solve the first order ordinary differential equation

du

dx
= −2λxu.

Problem 58. Consider the differential equation

du

dt
= 1− u2.

(i) Show that the fixed point u∗ = 1 is an asymptotically stable solution.
(ii) Show that the fixed point u∗ = −1 is not stable.

Problem 59. When two hermitian operators A, B do not commute, i.e.
[A,B] = iC, the product of their uncertainties satisfies the relation

(∆A)(∆B) ≥ 1
2
|〈C〉|.

Equality only holds when the hermitian operators A andB are proportional.
This means the states with minimal uncertainty satisfy the equation

(B − 〈B〉I)u =
i

2
〈C〉

(∆A)2
(A− 〈A〉I)u

where I is the identity operator. Assume that A is the one-dimensional
position operator x and B is the one dimensional momentum operator px,
i.e. (

~
i

d

dx
− 〈px〉

)
u(x) =

i~
2(∆x)2

(x− 〈x〉)u(x).

Solve this linear first order differential equation.

Problem 60. Find the general solution of the first order linear ordinary
differential equation

du

dt
+ f(t)u = f(t)

where f is an analytic function.

Problem 61. Solve the ordinary differential equation

u
dv

dt
= v

du

dt
.

Problem 62. Consider the one-dimensional stochastic differential equa-
tion

dx

dt
= f(x)ξ(t)
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where the Gaussian random force ξ(t) is defined by the correlators

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = Dδ(t− t′)

and f is a given smooth function of x. Show that under the transformation

y(x) =
∫ x

x0

dx′

f(x′)

we obtain
dy

dt
= ξ(t).

Problem 63. Given the first order differential equation

du

dt
= f(u) = u2.

(i) Apply the hodographic transformation

t̄(t) = u(t), ū(t̄(t)) = t.

(ii) Solve both differential equations.

Problem 64. Show that (u0 > 0)

u(t) = u0 cosh(t/u0)

satisfies the differential equation(
du

dt

)
=

1
u2

0

u2 − 1.

This differential equation plays a role in general relativity.

Problem 65. Consider the initial value problem for the autonomous
system of first order ordinary differential equation

du
dt

= f(u), u(0) = u0

where it is assumed that the vector field f is defined in the whole of Rn and
is analytic. Runge’s second order method is given by

un+1 = un + hf
(

un +
h

2
f(un)

)
, n = 0, 1, 2, . . .
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where h denotes the time step and un is the solution at time tn := nh.
Apply Runge’s second order method to the differential equation (n = 1)

du

dt
= u(1− u).

Problem 66. Consider the general Riccati equation

du

dx
= f(x)u2 + g(x)u+ h(x)

where the continuously differentiable functions f , g and h are defined on
an interval (a, b). Show that if

f(x) + g(x) + h(x) =
d

dx
ln
(
α(x)
β(x)

)
− α(x)− β(x)

α(x)β(x)
(α(x)f(x)− β(x)h(x))

with the differentiable function α, β properly chosen such that α(x)β(x) >
0, then the general Riccati equation is integrable by quadrature.
Hint. The general Riccati equation is invariant with respect to a linear
fractional transformation given by

u(x) =
α(x)v(x) + γ(x)
β(x)v(x) + δ(x)

with ∆ := αδ − βγ 6= 0.

Problem 67. (i) Solve the initial value problem (u(t = 0) = u0 > 0 of
the differential equation

du

dt
= u3

using the Lie series technique.
(ii) Solve the initial value problem by direct integration of the differential
equation.

Problem 68. Find the solution of the ordinary differential equation

u1
du2

dx
= u2

du1

dx
.

Problem 69. Let c1, c2, c3 ∈ R with c3 6= 0. Consider the vector field

V = (c1 + c2x+ c3x
2)
d

dx
.
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Calculate x(t) = exp(tV )x. Compare with the solution of the initial value
problem of the nonlinear differential equation

dx

dt
= c1 + c2x+ c3x

2.

Problem 70. (i) Consider the initial value problem of the nonlinear
ordinary differential equation

dx

dt
= x3, x(t = 0) = x0 > 0.

Find a solution using the Lie series technique The Lie series expansion is
given by

x(t) = exp(tV )x|x=x0
= (1 + tV +

1
2!
V 2 +

1
3!
V 3 + · · ·)x

∣∣∣∣
x=x0

with the vector field
V = x3 d

dx
.

(ii) Solve the initial value problem by direct integration of the differential
equation. Compare the two solutions.

Problem 71. Consider the initial value problem of the differential equa-
tion

dx

dt
=

1
2x
, x(t = 0) = x0 = 1.

Use the Lie series technique to solve this differential equation.

Problem 72. Consider the Riccati equation

du

dt
= c2u

2 + c1u+ c0

where c0, c1, c2 are constants. Show that v(t) = 1/u(t) also satisfies a
Riccati equation.

Problem 73. Find the solutions to the first order differential equation(
du

dx

)2

− 4u = 0.

Problem 74. Consider the first order differential equation

du

dt
= sin(t)u
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with u(0) > 0.
(i) Solve the initial value problem by direct integration.
(ii) Let v1(t) = sin(t) and therefore dv1(t)/dt = cos(t) = v2. Thus we can
consider the autonomous system of first order ordinary differential equa-
tions

du

dt
= v1u,

dv1
dt

= v2,
dv2
dt

= −v1.

The corresponding vector field is

V = v1u
∂

∂u
+ v2

∂

∂v1
− v1

∂

∂v2
.

Solve the autonomous system with the Lie series technique.

Problem 75. Solve ∫ x

0

e−xf(s)ds = e−x + x− 1

applying differentiation.

Problem 76. Solve the initial value problem for the differential equation

du

dt
=

1
1 + u2

with u(0) > 0. First find the fixed points of the differential equation and
study their stability. Can the vector field

V =
1

1 + u2

d

du

be used to solve the initial value problem via the Lie series?

Problem 77. Let ω be a fixed frequency and t the time. Solve the initial
value problem of

du

dt
= ω sin(ωt)u

with u(t = 0) ≡ u(0) > 0. What happens for t→∞?

Problem 78. Let r > 0. Solve the ordinary differential equation

u2

(
du

dx

)2

+ u2 = r2.

Problem 79. Let c > 0. Find trivial and nontrivial solutions of

du(x)
dx

= c
(
eu(x) − eu(x+1)

)
.
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Problem 80. Consider the first order differential equation

du

dx
= xu1/2.

Show that

u(x) =
(

1
4
x2 + C

)2

is a solution. Show that u(x) = 0 is a singular solution.

Problem 81. Consider the initial value problem

du

dτ
= 2τu+ 2, u(τ = 0) = 1.

Show that the solution is given by

u(τ) = 2eτ
2
∫ τ

0

e−s
2
ds+ eτ

2
.

Problem 82. Consider the equation of motion for the average velocity
of a Brownian particle in one dimension

m〈du(t)/dt〉+m

∫ t

−∞
γ(t− t′)〈u(t′)〉dt′ = F (t)

where m is the mass of the particle, u(t) is the velocity, γ(t− t′) represents
the retarded effect of the frictional force and K(t) is the external force.
Show that under the Fourier transform

u(ω) =
1

2π

∫
R
u(t)eiωtdt, F (ω) =

1
2π

∫
R
F (t)eiωtdt

the differential equation takes the form

〈u(ω)〉 =
1
m

1
γ̂(ω)− iω

F (ω)

where
γ̂(ω) =

∫ ∞
0

eiωtdt.



Chapter 2

Second Order Differential
Equations

Problem 1. (i) Find the general solution to the linear differential equa-
tion

d2u

dx2
+ u = 0

where u(x) is a real valued function.
(ii) Solve the initial value problem

u(x = 0) = 0,
du(x = 0)

dx
= 1.

(iii) Solve the following three boundary value problems

u(0) = 1 u(1) = 1

u(0) = 1 u(π) = −1

u(0) = 1 u(π) = −2

Problem 2. Integrate the second order nonlinear differential equation

d2a

dt2
= −4

3
πG

1
a2

(1)

once, where G is a constant.

22
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Problem 3. Consider the one-dimensional Schrödinger equation

d2ψ

dx2
+ (E − V (x))ψ(x) = 0

where the potential V is given by

V (x) =
k∑
j=1

vjx
2j , vk > 0.

(i) Find the differential equation for the function

f(x) = − 1
ψ

dψ

dx
+
p

x

where p = 0 for the ground state and p = 1 for the first excited state.
(ii) Assume that the function f is regular and can be expanded in a Taylor
series around the origin

f(x) =
∞∑
j=0

fjx
2j+1.

Find the recursion relation for the coefficients fj .

Problem 4. Consider the power series

u(x) =
∞∑
j=0

cjx
j .

Then
d

dx
ln(u(x)) =

1
u(x)

du

dx
=

∑∞
j=0 jcjx

j−1∑∞
j=0 cjx

j

which is the ratio of two power series. Thus formally

u(x) = exp
(∫ x 1

u(s)
du(s)
ds

ds

)
.

We can truncate the power series for u and expand (1/u(x))du/dx as a
continued fraction which when summed and integrated yields an approxi-
mation for u that is more accurate then the original truncate power series.
Consider the second order nonlinear differential equation

d2u

dx2
+

1
x

du

dx
− 1
x2
u(1 + u2) = 0.
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Let

u(x) =
∞∑
n=0
n even

bnx
n+1.

Apply the method described above to find a solution of this differential
equation.

Problem 5. Consider the motions of non-sero-rest-mass particles in a
gravitional field created by a massM and characterized by the Schwarzschild
metric

ds2 = −(1− 2M/r)dt2 +
1

1− 2M/r
dr2 + r2(dθ2 + sin2 θdφ2) (1)

where r, θ, and φ are spherical co-ordinates and units are chosen such that
G = c = 1. One can take advantage of the spherical symmetric by choosing
the equatorial plane θ = π/2.
(i) Show that the (bound) orbits satisfy the second order differential equa-
tion

d2u

dφ2
− 3u2 + u− 1

L+2
= 0 (2)

where u := M/r, µ is the particle rest mass and L+ := L/(Mµ).
(ii) Find that the solution of this differential equation using Jacobi elliptic
functions.

Problem 6. Solve
d2u

dx2
= f(u). (1)

Problem 7. Solve
d2u

dx2
= u2 (1)

given that du/dx = 0 when u = 0 and x = 0 when u =∞.

Problem 8. Solve
d2u

dx2
= f

(
u,
du

dx

)
. (1)

Problem 9. Solve

u
d2u

dx2
=
(
du

dx

)2

−
(
du

dx

)3

. (1)
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Problem 10. When a solid sphere of radius a and density σ falls verti-
cally in a viscous liquid of density ρ (< σ) and coefficient of viscosity µ, the
viscous resistance according to Stokes’ law is 6πaµv, where v is the down-
ward velocity at any stage. Find the velocity when the sphere has fallen a
depth y from rest. Let v be the velocity, dv/dt the acceleration at y below
the initial position.

Problem 11. Consider the falling body of mass m where air resistance
varies as v2. Choose the origin and x-axis. The body falls from rest, i.e.

x(t = 0) = 0, v(t = 0) = 0. (1)

Find v and x.

Problem 12. Consider the free-particle equation

d2U

dT 2
= 0. (1)

An invertible point transformation is given by

U = F (u, t), u = P (U, T ) (2a)

T = G(u, t), t = Q(U, T ) (2b)

with
∆ ≡ ∂G

∂t

∂F

∂u
− ∂G

∂u

∂F

∂t
6= 0. (3)

(i) Show that we find the following equation

d2u

dt2
+ Λ3

(
du

dt

)3

+ Λ2

(
du

dt

)2

+ Λ1
du

dt
+ Λ0 = 0 (4)

where

Λ3 =
1
∆

(
∂G

∂u

∂2F

∂u2
− ∂2G

∂u2

∂F

∂u

)
Λ2 =

1
∆

(
∂G

∂t

∂2F

∂u2
+ 2

∂G

∂u

∂2F

∂t∂u
− 2

∂F

∂u

∂2G

∂t∂u
− ∂F

∂t

∂2G

∂u2

)
Λ1 =

1
∆

(
∂G

∂u

∂2F

∂t2
+ 2

∂G

∂t

∂2F

∂t∂u
− 2

∂F

∂t

∂2G

∂t∂u
− ∂F

∂u

∂2G

∂t2

)
Λ0 =

1
∆

(
∂G

∂t

∂2F

∂t2
− ∂2G

∂t2
∂F

∂t

)
Show that the Λi satisfy

∂2Λ1

∂u2
−2

∂2Λ2

∂u∂t
+3

∂2Λ3

∂t2
+6Λ3

∂Λ0

∂u
+3Λ0

∂Λ3

∂u
−3Λ3

∂Λ1

∂t
−3Λ1

∂Λ3

∂t
−Λ2

∂Λ1

∂u
+2Λ2

∂Λ2

∂t
= 0
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−∂
2Λ2

∂t2
+2

∂2Λ1

∂u∂t
−3

∂2Λ0

∂u2
+6Λ0

∂Λ3

∂t
+3Λ3

∂Λ0

∂t
−3Λ0

∂Λ2

∂u
−3Λ2

∂Λ0

∂u
−Λ1

∂Λ2

∂t
+2Λ1

∂Λ1

∂u
= 0.

Problem 13. The Pinney equation is given by

d2u

dt2
+ u =

δ

u3
. (1)

Show that the general solution (which is expressible in terms of the general
solution of the linear version (δ = 0)) is given by

u(t) = B(1 + a cos(2t+ c))1/2 (2)

provided B and a satisfy the relation

B4(1− a2) = δ. (3)

The constants of integration are a and c.

Problem 14. Let C be a real number.
(i) Show that the differential equation d2u/dx2 + u = C admits the partic-
ular solution

u(x) = C.

(ii) Show that the differential equation d2u/dx2 + u = C cos(x) admits the
particular solution

u(x) =
1
2
Cx sin(x).

(i) Show that the differential equation d2u/dx2 + u = C cos2(x) admits the
particular solution

u(x) =
1
2
C − 1

6
C cos(2x).

Problem 15. Consider the quantum mechanical eigenvalue problem(
d2

dx2
− V (x)

)
um(x) = Emum(x). (1)

Consider the logarithmic derivative of the mth excited-state wave function,

gm(x) =
d

dx
lnum(x) (2)

which has proven to be useful in classifying most of the exactly solvable
Hamiltonians. Show that gm satisfies a Ricatti equation.
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Problem 16. Consider

d2u

dx2
− u+ u3 = 0. (1)

Let
v :=

1
u

du

dx
. (2)

Show that

u(x) = exp
(∫ x

v(s)ds
)

(3)

and

u

(
dv

dx
+ v2

)
− u+ u3 = 0 (4)

or
dv

dx
+ v2 − 1 + exp

(
2
∫ x

v(s)ds
)

= 0. (5)

Problem 17. Consider the weakly nonlinear van der Pol equation

d2u

dt2
+ u = ε

(
du

dt
− 1

3

(
du

dt

)3
)
. (1)

Insert the ”naive” expansion

u(t) = u0(t) + εu1(t) + ε2u2(t) + · · · (2)

and find the functions u0, u1, u2, . . . by comparing coefficients for εn. Show
that secular terms arise.

Problem 18. According to the Thomas-Fermi model, the number of
electrons per unit volume in an isolated neutral atom is given by

ρ(r) =
8π
3h3

(2me)3/2(V (r)− V0)3/2 (1)

in which r is the distance from the nucleus, V (r) is the electrostatic poten-
tial, and V0 is a reference value of the potential. The electrostatic potential
can be expressed in SI units as

V − V0 = −ZeΦ(x)
4πε0

(2)

in which x := γr,

γ :=
(32π2/3)2/3me2Z1/3

2πε0h2
(3)
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and Φ is a solution to the dimensionless equation

d2Φ
dx2

= x−1/2Φ3/2 (4)

in which Φ(0) = 1. The initial slope dΦ(0)/dx is to be determined so that
Φ(∞) = 0. (i) Show that the transformation

x(t) = t2, Φ(x(t)) = u(t) (5)

yields

t
d2u

dt2
− du

dt
= 4t2u3/2 (6)

(ii) Show that expanding (6) in a Taylor series

u(t) =
∞∑
j=0

ajt
j (7)

around t = 0 yields

a0 = 1, a1 = 0, a3 =
4
3
, a4 = 0, a5 =

2a2

5
(8)

and
an+4 = (n+ 1)−1((n+ 3)2 − 1)−1

×

3
2

n∑
j=1

(j + 1)((n+ 2− j)2 − 1)aj+1an+3−j −
n−2∑
j=0

(j + 1)((j + 3)2 − 1)aj+4an−j


(9)

where n = 2, 3, . . .. Thus all coefficients aj can be calculated in terms of
the initial slope a2 according to this recurrence relation.
(iii) Consider the transformation

s(x) = xr, Φ(x(s))
144
x3

v(s)

where r = (7− 731/2)/2. Show that (4) takes the form

r2s2
d2v

ds2
+ 6s

dv

ds
+ 12v = 12v3/2

Remark. This transformation is useful for the studying of the asymptotic
behaviour (i.e. large values of x of Φ. Expand v into a Taylor series around
s = 0.

Problem 19. Consider the first Painlevé transcendent

d2u

dx2
= 6u2 + λx (1)
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where λ is an arbitrary parameter.
(i) Show that the parameter can be set equal to 1 by using the transfor-
mation

x(t) = λ−1/5t, u(x(t)) = λ2/5w(t). (2)

(ii) Find the general solution of (1) of the form

u(x) =
a−2

(x− x0)2
+

a−1

x− x0
+ a0 + a1(x− x0) + a2(x− x0)2 + · · · (4)

Problem 20. Consider the equation

d2u

dt2
+ 3u

du

dt
+ u3 = 0 (1)

which arises in the investigation of univalued functions defined by second-
order differential equations and in the study of the modified Emden equa-
tion. Perform a Painlevé analysis of this equation.

Problem 21. Consider

d2w

dz2
=

1
w2

(
dw

dz

)2

. (1)

(i) Let dw/dz = u. Show that (1) takes the form

dw

dz
= u,

du

dz
=
u2

w2
(2)

(ii) Let w = λW and u = λ2U . Show that

dW

dz
= λU,

dU

dz
=

U2

W 2
. (3)

(iii) The solutions of (3) are analytic functions of the parameter λ. Thus
they can be expanded with respect to λ. For λ = 0 we write

dW0

dz
= 0,

dU0

dz
=

U2
0

W 2
0

. (4)

The solutions of (3) are denoted by W (z, λ) and U(z, λ) and

W (z, λ) = W (z, 0) + λw1 + · · · , U(z, λ) = U(z, 0) + λu1 + · · · . (5)

Consider the λ independent initial conditions

W (z0, λ) = w0 6= 0, U(z0, λ) = u0 6= 0. (6)
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Show that

W0 = W (z, 0) = w0, U0 = U(z, 0) =
w2

0u0

w2
0 − u0(z − z0)

. (7)

(iv) Show that
dw1

dz
= U(z, 0) (8)

and

w1(z) = w2
0 ln

(
w2

0

w2
0 − u0(z − z0)

)
(9)

and therefore w1 has a logarithmic singularitry at z∗ = z0 + w2
0
u0

.

Problem 22. Consider the first Painlevé transcendent

d2u

dz2
= 6u2 + z. (1)

Let
u(z) =

1
(z − z0)2

+ f(z). (2)

Find the differential equation for f .

Problem 23. Consider the nonlinear differential equation

d2u

dx2
+ `u+mu3 + nu5 = 0. (1)

Let
u(x) =

√
φ(x) (2)

(i) Show that φ satisfies the differential equation

2φ
d2φ

dx2
−
(
dφ

dx

)2

+ 4`φ2 + 4mφ3 + 4nφ4 = 0. (3)

(ii) Insert the ansatz

u(x) =
A exp(α(x+ x0))

(1 + exp(α(x+ x0)))2 +B exp(α(x+ x0))
(4)

where A, B, α are undetermined and x0 is a fixed real number. Show that
A, B and α satisfy the condition

α2 + 4` = 0, 2mA+ 4`(2 +B)− α2(2 +B) = 0

−5α2 + 2`(2 + (2 +B)2) + 2mA(2 +B) + 2nA2 = 0. (5)
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Problem 24. Consider the quantum mechanical eigenvalue problem

d2u

dx2
+

2m
~2

(E − V (x))u = 0. (1)

Let
u(x) = exp(iw(x)/~), w(x) := S(x) +

~
i

ln(A(x)). (2)

(i) Show that inserting (2) into (1) leads to(
dS

dx

)2

− 2m(E − V (x)) = ~2 1
A

d2A

dx2
, 2

dA

dx

dS

dx
+A

d2S

dx2
= 0. (3)

(ii) Show that the second equation of (3) can be integrated to yield

A(x) = C

(
dS

dx

)−1/2

(4)

where C is a constant.
(iii) Show that substituting this expression for A into the first equation of
(3) results in

(
dS

dx

)2

= 2m(E − V (x)) + ~2

3
4

(
d2S
dx2

dS
dx

)2

− 1
2

d3S
dx3

dS
dx

 . (5)

Remark. In the WKB approximation one expands S in a power series in ~2

S = S0 + ~2S1 + · · · (6)

then one substitutes this expansion into (5) and keeps only zero-order terms.

Problem 25. The equation

d2u

dt2
+ f(u)

du

dt
+ g(u) = 0 (1)

has a unique stable limit cycle under the following conditions:

(a) f is even, g odd, both continuous for all u, and f(0) < 0;

(b) ug(u) > 0 for u 6= 0;

(c) for every interval |u| < K there is an L such that

|g(u1)− g(u2)| < L|u1 − u2|, (Lipschitz condition);

(d) F (u) :=
∫ u
0
f(s)ds ↑ ∞ as u ↑ ∞;
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(e) F has a single positive zero at u = a and is monotone increasing for
u ≥ a.

Give a physical interpretation of the criterion for the existence of a limit
cyle.

Problem 26. Consider the eigenvalue problem

Ĥu = Eu (1)

with the non-dilation Hamilton operator of a one dimensional anharmonic
oscillator

Ĥ = − d2

dx2
+ x2 − λx4, λ > 0. (2)

(i) Show that a function

ϕ(x) := − d

dx
ln(u(x)) (3)

where u is a solution of the eigenvalue equation (1), obeys the equation

dϕ(x)
dx

− ϕ2 = E − x2 + λx4 (4)

where E is an eigenvalue for Ĥ in (1). (ii) Show that in the common case the
function ϕ has pole singularities which correspond to nodes of the function
u.

Problem 27. Consider the Schrödinger equation (in units of ~ = 2m = 1)(
− d2

dx2
+ V (x)

)
ψ(x) = Eψ(x) (1)

for a potential V . Consider the transformation

x(u) = f(u), u(x) = f−1(x), ψ(x) =
√
f ′(u(x))ξ(u(x)) (2)

where the prime denotes differentiation with respect to the variable u. (i)
Show that the Schrödinger equation (1) takes the form(

− d2

du2
+ VT (u)

)
ξ(u) = ET ξ(u) (3)

where
VT (u)− ET = (f ′(u))2(V (f(u))− E) + ∆V (u) (4)

and

∆V (u) =

[
−1

2
f ′′′(u)
f ′(u)

+
3
4

(
f ′′(u)
f ′(u)

)2
]
. (5)
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(ii) Choose any exactly solvable potential as VT and find the transformation
functions f(u) such that one would have new analytically solvable potentials
V (x). The non-trivial part is the proper choice of f(u) so that V (x) as well
as energy eigenvalues and eigenfunctions can be expressed in a closed form.
(iii) Consider the mapping function in (2) as

x = f(u) = log(sinhu) or sinhu = ex. (6)

Obviously, the domain of the variable u is 0 ≤ u ≤ ∞ corresponding to
−∞ ≤ x ≤ ∞. Find ∆V (u).

Problem 28. The second order differential equation

d2u

dt2
+ b

(
du

dt

)2

+ ω2u = 0

represents a classical one-dimensional damped harmonic oscillator, where
the force of friction is proportional to the square of the velocity. Find the
first integral, the Lagrangian function and the Hamilton function.

Problem 29. Consider the motion of a free particle in a medium with
quadratic damping. The equation of motion takes the form

d2u

dt2
= −k

(
du

dt

)
, k > 0 (1)

Let u = u1 and du1/dt = u2. Then

du1

dt
= u2,

du2

dt
= −ku2

2. (2)

Let

U = u2
∂

∂u1
− ku2

2

∂

∂u2
(3)

the vectoir field associated with the first order system (2). Let

V = −ku2
2e
ku1

∂

∂u2
. (4)

(i) Show that

[U, V ] = fY, f(u1, u2) = −ku2 exp(ku1). (5)

(ii) Show that
−fdivV + LU (divV = 0 (6)
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where LU (.) denotes the Lie derivative. (iii) Show that

f(u1, u2) + divU = −3ku2 exp(ku1) (7)

is a constant of motion.

Problem 30. Consider the nonlinear second order differential equation

d2u

dt2
= ceu.

Show that there is a first integral.

Problem 31. Let f : R → R be an analytic function. Consider the first
order differential equation

du

dt
= f(u).

Differentiating the differential equation and inserting du/dt = f(u) yields
the second order differential equation

d2u

dt2
=
df

du
f.

Show that the second order differential equation

d2u

dt2
= u− 3u2 + 2u3

can be derived from a first order differential equation using the approach
given above. Show that the solution of this first order differential equation
is also a (particular) solution of the second order differential equation.

Problem 32. Show that the general solution of the linear second order
differential equation

d2u

dx2
+

1
3
xu = 0

is given by
u(x) =

√
x(AJ1/3(ξ) +BJ−1/3(ξ))

where ξ2 = 4x3/27, A, B are the constants of integration and J1/3, J−1/3

are Bessel functions.

Problem 33. Solve the initial value problem of

d2x

dt2
+ α

(
dx

dt

)2

= b
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or
dv

dt
+ αv2 = b

where v = dx/dt and v(t = 0) = dx(t = 0)/dt = 0.

Problem 34. Solve the initial value problem

d2x

dt2
+ β

(
dx

dt

)n
= 0, n = 0, 1, 2, . . .

with β > 0 and dx(t = 0)/dt > 0. Write dx/dt = v and use the first order
differential equation

dv

vn
= −βdt.

Problem 35. Solve the initial value problem

d2x

dt2
+ a

dx

dt
= b

with a > 0 and dx(t = 0)/dt > 0. Write dx/dt = v and solve first

dv

dt
+ av = b v(0) > 0.

Problem 36. Find the solution of the second order differential equation

d2z

dt2
+ 2i

dz

dt
− z = 0

where z is complex valued.

Problem 37. Integrate the ordinary differential equation

d2f

dx2
− 3
x

df

dx
+ 2

d2f(0
dx2

= 0.

Problem 38. Two solid iron spheres, each 1 m in diameter, are in a
region of interstellar space where the gravitational field of the rest of the
universe is negligible. Intially, they are at rest with respect to each other
and the distance between teir centres is 10 m.
(i) Calculate the absolute speed at which the two sphere collide.
(ii) Find the time required for the contact to be effected.
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Problem 39. Consider the eigenvalue problem

−d
2ψ(x)
dx2

= Eψ(x)

with the boundary condition

d

dx
ψ(x = 0) + cψ(x = 0) = 0

where c < 0. Let H be the Heaviside step function. Show this problem
admits the solution

ψ(x) = H(−x)
√
−2c exp(−cx).

Problem 40. Let c > 0. Show that the linear differential equation(
d

dx
+

2
x

)
du

dx
= 2cu

can be solved exactly to give the asymptotic solution for u

u(x) ∼ 1
x
e−
√

2cx.

Problem 41. Consider the differential equations

d2q

dt2
+ ω2(t)q = 0 (1)

and
d2ρ

dt2
+ ω2(t)ρ =

1
ρ3
. (2)

Show that under the invertible point transformation

Q(T (t)) =
q(t)
ρ(t)

, T (t) =

t∫
1

ρ2(s)
ds (3)

(1) takes the form
d2Q

dT 2
+Q = 0 (4)

where ρ satisfies (2). We have

dQ

dt
=
dQ

dT

dT

dt
=

1
ρ

dq

dt
− q 1

ρ2

dρ

dt
(5a)
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and
dT

dt
=

1
ρ2
. (5b)

Thus
dQ

dT

1
ρ2

=
1
ρ

dq

dt
− q

ρ2

dρ

dt
. (6)

Problem 42. At time t = 0 a dog is at the x-axis at point x0 > 0 and
runs with constant speed w in the direction of his master, who walks with
constant speed v along the y-axis. Show that this leads to the differential
equation

x
d2y

dx2
=
v

w

(
1 +

(
dy

dx

)2
)1/2

(1)

(ii) Solve the differential equation.

Problem 43. Consider the nonlinear differential equation

d2u

dx2
+ `u+mu3 + nu5 = 0. (1)

Let
u(x) =

√
φ(x). (2)

(i) Show that φ satisfies the differential equation

2φ
d2φ

dx2
−
(
dφ

dx

)2

+ 4`φ2 + 4mφ3 + 4nφ4 = 0. (3)

(ii) Insert the ansatz

u(x) =
A exp(α(x+ x0)

(1 + exp(α(x+ x0)))2 +B exp(α(x+ x0))
(4)

where A, B, α are undetermined and x0 is a fixed real number. Show that
A, B and α satisfy the condition

α2 + 4` = 0, 2mA+ 4`(2 +B)− α2(2 +B) = 0

−5α2 + 2`(2 + (2 +B)2) + 2mA(2 +B) + 2nA2 = 0. (5)

Problem 44. Consider the pair of coupled nonlinear differential equations
relevant to the quantum field theory of charged solitons

d2σ

dx2
= −σ + σ3 + dρ2σ (1a)
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d2ρ

dx2
= fρ+ λρ3 + dρ(σ2 − 1) (1b)

where σ and ρ are real scalar fields and d, f, λ are constants. Try to find
an excat solution with the ansatz

ρ(x) = b1 tanh(λ0(x+ c0)), σ(x) =
∑
n=1

an tanhn(λ0(x+ c0)). (2)

Problem 45. Show that

u(x) =
m√
c

tanh(mx/
√

2)

satisfies the nonlinear second order differential equation

d2u

dx2
−m2u+ cu3 = 0.

Problem 46. Solve the inital value problem of the second order differen-
tial equation

d2u

dt2
+
(

1
u
− 1
)
du

dt
+ u = 0

with u(t = 0) = 1 and du(t = 0)/dt = 0.

Problem 47. The Schrödinger equation for the radial function χ has the
form

d2χ(r)
dr2

+
2m
~2

(E − U(r))χ(r) = 0.

Let

k2 :=
2mE
~2

, V (r) :=
2mU(r)

~2
.

(i) Find the Schrödinger equation in this form.
(ii) Assume that χ(r) = χ0(r)f(r) with

χ0(r) =
1
k

sin(kr).

Find V (r) as function of f .
(iii) We define

C(r) :=
1
f

df

dr
.

Show that

V (r) = C2(r) +
dC(r)
dr

+ 2kctg(kr)C(r).
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Problem 48. Let a, b > 0. Find the differential equation the function

u(x) = a tanh(x)− b

cosh(x)

obeys.

Problem 49. The Airy function Ai(z) is the solution of the second order
differential equation

d2Ai

dz2
− zAi(z) = 0.

Show that its asymptotoc behaviour at large |z| is given by

Ai(z) ≈ 1
2
√
π
z−1/4 exp

(
−2

3
z3/2

)
where |arg(z)| < π and |z| � 1.

Problem 50. Consider the second order differential equation

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0.

Show that the transformation

w(z) = y(z) exp
(
−1

2

∫ z

p(z′)dz′
)

casts the differential equation into its normal form

d2y

dz2
+ I(z)y = 0

where I is given by

I(z) = q(z)− 1
2
dp(z)
dz

− 1
4
p2(z).

Problem 51. Consider the second order linear ordinary differential equa-
tion and boundary condition for the wave function u of a one-dimensional
particle confined between a hard wall and a gravitional potential

d2u

dx2
+

2m2g

~2

(
E

mg
− x
)
u = 0 for x > 0

and u(x) = 0 for x ≤ 0.
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(i) Show that with the variable transform

y(x) = (2m2g/~2)1/3(x− E/(mg)), ũ(y(x) = u(x)

the ordinary differential equation takes the form

d2ũ

dy2
− yũ = 0.

(ii) Show that the solution of this differential equation is given as a linear
combination of the Airy functions, Ai(y) and Bi(y). Show that by including
the boundary conditions the solution Bi(y) has to be excluded. Find the
energy eigenvalues by imposing the boundary condition at x = 0.

Problem 52. Let σ1 and σ3 be the Pauli spin matrices and

W (ζ) =
(
w11(ζ) w12(ζ)
w21(ζ) w22(ζ)

)
.

Consider the matrix differential equation

dW

dζ
=
(

2ζ2σ3 −
1
2ζ
σ1

)
W.

This differential equation has an irregular singularity of order 3 at infinity,
and T = (2/3)ζ3σ3. Consequently there are six Stokes sectors defined by
the rays θ = ±π/6, θ = ±π/2, θ = ±5π/6. Stokes sectors are the angular
regions inside an angle drwan by the two Stokes half lines. Let Ai and
Bi be the Airy functions. Show that defining Ai1(z) := Ai(ze−2πi/3) the
fundamental solution valid in the sector {ζ : −π/6 < arg ζ < π/2} is

W1(ζ) =
√
π

ζ

(
Ai′1(ζ2) + ζAi1(ζ2) Ai′(ζ2) + ζAi(ζ2)
Ai′1(ζ2)− ζAi1(ζ2) Ai′(ζ2)− ζAi(ζ2)

)(
e−iπ/6 0

0 −1

)
and in the sector {ζ : π/6 < arg ζ < 5π/6} one has

W2(ζ) =
√

π

4ζ

(
−i(Ai′(ζ2) + ζAi(ζ2)) −(Ai′(ζ2) + ζAi(ζ2))
−i(Ai′(ζ2)− ζAi(ζ2)) −(Ai′(ζ2)− ζAi(ζ2))

)
+
√

π

4ζ

(
Bi′(ζ2) + ζBi(ζ2) i(Bi′(ζ2) + ζBi(ζ2))
Bi′(ζ2)− ζBi(ζ2) i(Bi′(ζ2)− ζBi(ζ2))

)
.

These two solutions are single-valued and holomorphic in the region arg ζ 6=
π.

Problem 53. Consider the nonlinear second order differential equation

d2u

dx2
= sinh(u).



Second Order Differential Equations 41

(i) Show that (
du

dx

)2

= 2 cosh(u) + C

is a first integral and C denotes a constant of integration.
(ii) Show that for C = −2 one has the solution

u(x) = ln(coth2(x/2)).

Problem 54. Consider the Hilbert space L2(R) and the one-dimensional
Schrödinger equation (eigenvalue equation)(

− d2

dx2
+ V (x)

)
u(x) = Eu(x)

where the potential V is given by

V (x) = x2 +
ax2

1 + bx2

where b > 0. Insert the ansatz

u(x) = e−x
2/2v(x)

and find the differential equation for v. Discuss. Make a polynomial ansatz
for v.

Problem 55. Consider the second order differential equation

d2φ

dx2
= (u(x) + λ)φ (1)

where u is a smooth function. This equation can be viewed as an eigenvalue
equation. The transformation

ψ(x) = f(x)φ(x) + g(x)
dφ(x)
dx

(2)

is called a Darboux transformation (with f and g are smooth functions) if
ψ satisfies the second order differential equation

d2ψ

dx2
= (v(x) + λ)ψ. (3)

Consider the case g(x) = 1. Find the condition on the smooth function f
such that we have a Darboux transformation.
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Problem 56. Consider the Hilbert space L2(R). Let g > 0. Consider
the one-dimensional Schrödinger equation (eigenvalue equation)(

− d2

dx2
+ x2 +

λx2

1 + gx2

)
u(x) = Eu(x).

Find a solution of the second order differential equation by making the
ansatz

u(x) = A(1 + gx2) exp(−x2/2).

Problem 57. Let g,m, ε > 0. Solve the second order nonlinear ordinary
differential equation

d2u

dx2
− 2mεu+ 6mgu5 = 0

with the boundary conditions

u(x)→ 0,
du(x)
dx

→ 0 for x→ ±∞.

Problem 58. Consider the the second order ordinary differential equation

f(x, u(x), du/dx, d2u/dx2) = 0

where f(x, u, ux, uxx) is an analytic function. Find the f such that the
second order ordinary differential equation admits the Lie symmetry vector
fields (projective group)

∂

∂x
,

∂

∂u
, x

∂

∂x
, u

∂

∂u
, x

∂

∂u

u
∂

∂x
, xu

∂

∂x
+ u2 ∂

∂u
, x2 ∂

∂x
+ xu

∂

∂u
.

Problem 59. Let J be a positive integer. Consider the one-dimensional
Schrödinger equation

−d
2u

dx2
+ (V (x)− E)u(x) = 0

where the potential V is given by

V (x) = x6 − (4J − 1)x2.
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Consider the ansatz

u(x) = e−x
4/4

J−1∑
k=0

ckx
2k.

Find the recursion relation for the coefficients ck. Then consider the special
case J = 2.

Problem 60. Consider the second order nonlinear differential equation

d2u

dx2
+ u

du

dx
− 1

2
u+

1
9
u3 = 0.

Show that the equation can be solved with the ansatz

u(x) =
3

v(x)
dv

dx
.

Problem 61. Consider the system of first order differential equations

du1

dt
= u2,

du2

dt
= −(a+ bu2

1)u2 + cu1 − u3
1.

Show that

I(u1, u2) = exp ((3/b)t)
(
u2 +

b

3
u3

1 +
1
b
u1

)
.

is a first integral of the system if a = (4/b) and c = −(3/b2)

Problem 62. Consider the second order ordinary differential equation

d2u

dx2
+ (λ− V (x))u = 0

with the boundary conditions u(+∞) = 0 and u(−∞) = 0. Let

V (x) = −2sech2(x).

Show that
u(x) = sech(x)

with λ = −1 is a solution of the differential equation.

Problem 63. (i) Show that the second order linear ordinary differential
equation

x2 d
2u

dx2
− x(2x− 1)

du

dx
− (4 + 2x)u = −

√
2

3
x3 +

2
√

2
3
x4
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admits the particular solution

u(x) = −
√

2
6
x3 −

√
2

4
x2.

(ii) Show that the second order linear ordinary differential equation

x2 d
2u

dx2
− x(2x− 1)

du

dx
− 4u = −

√
2

3
x3

admits the particular solution

u(x) =
1√
3
x2.

Problem 64. Solve the nonlinear differential equation

u
d2u

dx2
=
(
du

dx

)2

by inspection.

Problem 65. Let ε > 0. Consider the second order linear differential
equation

d2u

dt2
+ e−εtu = 0.

Show that under the change of the independent variable

s(t) =
2
ε

exp(−εt/2), ũ(s(t)) = u(t)

the differential equation reduces to a zeroth order Bessel differential equa-
tion

d2ũ

ds2
+

1
s

dũ

ds
+ ũ = 0

with the general solution

ũ(s) = c1J0(s) + c2Y0(s).

Problem 66. Consider the second order ordinary differential equation

d2

dx2
u(x) + k2(1 + V (x))u(x) = 0

where V : R→ R is an analytic function. Set

u(x) = A(x)eikx +B(x)e−ikx
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with A(x) and B(x) satisfying the condition

dA

dx
eikx +

dB

dx
e−ikx = 0.

Show that

d

dx

(
A(x)
B(x)

)
= i

k

2
V (x)

(
1 e−2ikx

−e2ikx −1

)(
A(x)
B(x)

)
.

Problem 67. Show that the solution of of the initial value problem
u(0) = 1 of the differential equation(

du

dx

)2

=
2
9
x2

u3

is given by

u(x) =
(

5
6
√

2
(x2 − 1) + 1

)2/5

.

Problem 68. Let r ≥ 0, a > 0 and c > 0. Consider the potential

V (u) = C(u2 − a2)2.

Study the second order differential equation

d2u

dr2
+

3
r

du

dr
=
d2V

du2

with u(∞) = c and du(r = 0)/dr = 0.

Problem 69. Solve the initial value problem of the second order differ-
ential equation

d2u

dx2
+ u

du

dx
= 0

with u(0) > 0 and du(0)/dx > 0.

Problem 70. (i) Solve the initial value problem of

d2u1

dx2
= u2

1.

(ii) Solve the initial value problem of

d2u1

dx2
= u2

1,
d2u2

dx2
= u1u2.
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Problem 71. Consider the second order ordinary differential equation

−d
2u

dx2
+ u3 = 0.

Apply the transformation

x̃(x) = x, ũ(x̃(x)) = sinh(u(x)).

Problem 72. Solve the integral equation∫ x

0

((x− y)2 − 2)f(y)dy = −4x

applying differentiation and the solving the resulting differential equation.

Problem 73. Let α > 0 and β > 0. Consider the van der Pol equation

d2u

dt2
− (α− βu2)

du

dt
+ u = 0.

We set f(u, du/dt) = u− (α− βu2)du/dt. Insert the ansatz

u(t) = A(t) cos(ωt)

into the differential equation with A(t) a slowly changing function of t, i.e.
dA/dt � Aω, d2A/dt2 � Aω2 to find a approximate solution for the van
der Pol equation.

Problem 74. Study the driven one-dimensional harmonic oscillator

d2u

dt2
+ ω2(1 + k cos(ωt))u = 0.

Problem 75. Bessel’s equation of order zero is given by

x2 d
2y

dx2
+ x

dy

dx
+ x2y = 0

which is a second order linear differential equation. Apply the transfor-
mation

u = x, v =
1
y

dy

dx

and find dv/du.
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Problem 76. Solve the second order ordinary differential equation

d2u

dx2
− 1

2

(
du

dx

)2

+ 2 = 0.

Problem 77. Show that the second order ordinary linear differential
equation

d2u

dt2
= 0

admits the eight Lie symmetries

∂

∂t
,

∂

∂u
, t

∂

∂t
, t

∂

∂u

u
∂

∂u
, u

∂

∂t
, ut

∂

∂t
+ u2 ∂

∂u
, ut

∂

∂u
+ t2

∂

∂t
.

Find the commutators. Classify the Lie algebra.

Problem 78. Let C be a real constant.
(i) Show that the differential equation d2u/dx2 + u = C admits the partic-
ular solution u(x) = C.
(ii) Show that the differential equation d2u/dx2 + u = C cos(x) admits the
particular solution

u(x) =
1
2
Cx sin(x).

(iii) Show that the differential equation d2u/dx2 + u = A cos2(x) admits
the particular solution

u(x) =
1
2
C − 1

6
C cos(2x).



Chapter 3

First Order Autonomous
Systems in the Plane

We consider exercises for first order autonomous systems in the plane

du1

dt
= f1(u1, u2),

du2

dt
= f2(u1, u2)

where f1, f2 are continuous differentiable functions. The fixed points are
the solutions of the equations

f1(u∗1, u
∗
2) = 0, f2(u∗1, u

∗
2) = 0.

A differentiable function I(u1(t), u2(t)) is called a first integral if

d

dt
I(u1(t), u2(t)) =

∂I

∂u1

du1

dt
+

∂I

∂u2

du2

dt
=

∂I

∂u1
f1 +

∂I

∂u2
f2 = 0.

The second order differential equation d2u1/dt
2 = f(u1, du1/dt) can be cast

into an first order autonomous system

du1

dt
= u2,

du2

dt
= f(u1, u2).

48
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Problem 1. Show that the polynomial system

dx

dt
= x(ax+ c),

dy

dt
= y(2ax+ by + c)

admits the first integral

I(x, y) =
(ax+ c)(ax+ by)
x(ax+ by + c)

where a, b, c are nonzero real numbers.

Problem 2. Show that the polynomial system

dx

dt
= −y − b(x2 + y2),

dy

dt
= x

admits the first integral

I(x, y) = e2by(x2 + y2)

where b is a real number.

Problem 3. Show that the polynomial system

dx

dt
= 2(1 + 2x− 2ax2 + 6xy),

dy

dt
= 8− 3a− 14ax− 2axy − 8y2

with 0 < a < 1/4 possesses the (irreducible) invariant algebraic curve

H(x, y) ≡ 1
4

+ x− x2 + ax3 + xy + x2y2 = 0.

Problem 4. Consider the x − y plane. At time t = 0, there is a man
at origin (0, 0) and a dog on the y-axis at (0, a), where a > 0. At t = 0
the man starts moving along the x-axis at a constant velocity v. At the
same time, the dog starts moving towards the man at a constant velocity
kv, where k > 1. The dog moves towards the man at all times.
(i) Find the differential equation for the motion of the dog.
(ii) How long does it take for the dog to catch up with the man?

Problem 5. Consider the system of differential equations

du1

dt
= (u1 − u2)(1− u2

1 − u2
2),

du2

dt
= (u1 + u2)(1− u2

1 − u2
2). (1)

(i) Show that every point on the circle C : u2
1 + u2

2 = 1, is a fixed point.
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(ii) Show that there is also an isolated fixed point (0, 0).
(iii) Study the stability of the fixed point (0, 0) and show that the origin
(0, 0) is an unstable focus.

Hint. Let U(u1, u2) := u2
1 + u2

2. Then

d

dt
U(u1, u2) = 2(1− u2

1 − u2
2)(u2

1 + u2
2) (2)

is positive definite within C.

(iv) Show that every trajectory that starts from a point (u1, u2) inside the
circle C will end on C.
(v) Show that outside of C, dU(u1, u2)/dt < 0 and every trajectory that
starts from a point (u1, u2) outside of C will also on C.
(vi) Show that a change to polar coordinates

u1(r, θ) = r cos(θ), u2(r, θ) = r sin(θ) (3)

reduces (1) to
dr

dt
= r(1− r2),

dθ

dt
= 1− r2. (4)

Problem 6. (i) Show that the equations

du1

dt
= u1 − u2 − u1(u2

1 + u2
2),

du2

dt
= u1 + u2 − u2(u2

1 + u2
2) (1)

have their only fixed point at (0, 0).
(ii) Show that the origin is an unstable focus for the linear approximation
and also for the nonlinear system. (iii) Express (1) in polar coordinates
and solve the system of differential equations.

Problem 7. Consider the system of differential equations

du1

dt
= u2,

du2

dt
= 4u1 − u3

1. (1)

(i) Show that it admits three fixed points (0, 0), (±2, 0) and study the
stability of the fixed points.
(ii) Show that (1) admits the first integral

I(u1, u2) = 4u2
1 −

1
2
u4

1 − u2
2. (2)

(iii) Discuss the phase portrait.
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Problem 8. Consider the system of differential equations

du1

dt
= P (u1, u2),

du2

dt
= Q(u1, u2). (1)

Let P , Q, ∂P/∂u1, ∂Q/∂u2 be continuous in the open region U bounded
by a simple closed curve. Show that if ∂P/∂u1 + ∂Q/∂u2 has a fixed sign
in U , the equations can have no limit cycle C in U .

Hint. Apply Green’s theorem to the cycle C∮
C

(Pdu2 −Qdu1) =
∫
U

∫ (
∂P

∂u1
+
∂Q

∂u2

)
du1du2.

Note that if f = (P,Q), then

divf :=
∂P

∂u1
+
∂Q

∂u2

and the circuit integral is the normal flux of f through C.

Problem 9. Apply Bendixon’s theorem to show that the Van der Pol
equation

du1

dt
= u2,

du2

dt
= a(1− u2

1)u2 − u1 a > 0

can have no limit cycle within the circle u2
1 + u2

2 = 1 in the phase plane.

Problem 10. We consider the Van der Pol oscillator
du1

dt
= u2,

du2

dt
= a(1− u2

1)u2 − u1 (1)

where a > 0. Study the stability of the fixed points.

Problem 11. The system of differential equations

du1

dt
= u1(2− u1 − u2),

du2

dt
= u2(3− 2u1 − u2)

describes competing species u1 ≥ 0, u2 ≥ 0. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.

Problem 12. Two species u1, u2 (u1 ≥ 0, u2 ≥ 0 are in symbiosis if an
increase of either population leads to an increase in the growth rate of the
other. Thus we assume

du1

dt
= M(u1, u2)u1,

du2

dt
= N(u1, u2)u2 (1)
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with
∂M

∂u2
> 0, and

∂N

∂u1
> 0. (2)

We also suppose that the total food supply is limited. Hence for some
A > 0, B > 0 we have

M(u1, u2) < 0 if u1 > A, N(u1, u2) < 0 if u2 > B. (3)

If both populations are very small, they both increase; hence

M(0, 0) > 0 and N(0, 0) > 0.

Assuming that the intersections of the curves M−1(0), N−1(0) are finite,
and all are transverse, show that:

(a) every trajectory tends to an equilibrium in the region 0 < u1 < A,
0 < u2 < B;

(b) there are no sources;

(c) there is at least one sink;

(d) if ∂M/∂u1 < 0 and ∂N/∂u2 < 0, there is a unique sink.

Problem 13. A system describing the time evolution (Goodwin model)
of a metabolic feedback control cycle of protein synthesis are given by

dX

dt
=

a

A+ kY
− b, dY

dt
= αX − β (1)

where a, b, A, k, α, β are positive constants. The X and Y variables measure
m-RNA and protein concentrations, respectively. (i) Find the fixed points.
(ii) Show that there is a constant of motion.

Problem 14. Consider the Lotka Volterra model

du1

dt
= c1u1 − c2u1u2,

du2

dt
= −c3u2 + c4u1u2 (1)

where u1 > 0, u2 > 0 and c1, c2, c3 and c4 are positive constants. Show
that

I(u1, u2) = uc31 u
c1
2 exp(−c4u1) exp(−c2u2) (2)

is a first integral of the Lotka Volterra model.

Problem 15. (i) Show that the system of first order ordinary differential
equations

du1

dt
= −1

2
u1 + u2

2,
du2

dt
= −1

2
u2 − u1u2 (1)
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can be cast into the form

du1

dt
+

1
2
u1 + u2

1 = c exp(t). (2)

(ii) Show that this equation can be linearized by using the transformation

u1 =
1
v

dv

dt
. (3)

Problem 16. The Selkov model is given by

du1

dt
= a− cu1 − u1u

2
2 + du2

2,
du2

dt
= b− u2 + u1u

2
2 − du3

2 (1)

where a, b, c and d are constants. Show that the system admits the time
dependent first integral

I(u1, u2, t) = (u1 + u2 − a− b)et (2)

if c = 1.

Problem 17. The Selkov model can also be written as

du1

dt
= 1− bu1 + u1u

2
2

du2

dt
= a(u1u

2
2 − u2)

where a, b be positive bifurcation parameters. Find the fixed points and
study the stability of the fixed points.

Problem 18. Consider the motion of a free particle in a medium with
quadratic damping. The equation of motion takes the form

d2u

dt2
= −k

(
du

dt

)2

, k > 0. (1)

Let u = u1 and du1/dt = u2. Then

du1

dt
= u2,

du2

dt
= −ku2

2. (2)

Let
U = u2

∂

∂u1
− ku2

2

∂

∂u2
(3)

the vector field associated with the first order system (2). Let

V = −ku2
2 exp(ku1)

∂

∂u2
. (4)
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(i) Show that the commutator [V,U ] can be written as

[U, V ] = fU. (5)

Find f .
(ii) Show that

−fdivU + LV (divU) = 0 (6)

where LV (.) denotes the Lie derivative.
(iii) Show that u2 exp(ku1) is a first integral.

Problem 19. Let f be a C1 vector field on a neighbourhood of the
annulus

A = {x ∈ R2 : 1 ≤ |x| ≤ 2 }.

Suppose that f has no zeros and that f is transverse to the boundary,
pointing inward.

(a) Prove there is a closed orbit.

(b) If there are exactly seven closed orbits, show that one of them has
orbits spiraling toward it from both sided.

Problem 20. Let f : R2 → R be a C1 vector field with no zeros. Suppose
that flow Φ, generated by f preserves area (that is, if S is any open set, the
area of Φt(S) is independent of t). Show that every trajectory is a closed
set.

Problem 21. Let f and g be C1 vector fields on R2 such that 〈f(u),g(u)〉 =
0 for all u. If f has a closed orbit, prove that g has a zero.

Problem 22. Let f be a C1 vector field on an open set W ⊂ R2 and
H : W → R a C1 function such that

DH(u)f(u) = 0

for all u. Prove that:

(a) H is constant on solution curves of du/dt = f(u);

(b) DH(u) = 0 if u belongs to a limit cycle;

(c) If u belongs to a compact invariant set on which DH is never 0, then
u lies on a closed orbit.
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Problem 23. Consider the two-dimensional autonomous system in the
(x, y) plane described by

dx

dt
= y3(x2 − 1)(2 + xy),

dy

dt
= x3(y2 − 1)(2− xy). (1)

(i) Show that the fixed points are given by A(−1,−1), B(1, 1), C(1,−1),
D(−1, 1), E(−2, 1), F (1, 2), G(2,−1), H(−1,−2) and I(0, 0) in the x− y)
plane.
(ii) Show that the fixed points A, B, C, D are saddles with eigenvalues
−6 and +2. The fixed points E, F , G, H are stable attractors whilst I is
neutral.
(iii) The phase space is clearly not compact. Show but it can be made so
by a coordinate change to a four dimensional system (u, v, w, z) where

z = x−1, u = yx−1, we = y−1, v = xy−1.

A new time coordinate τ can be introduced to simplify the system if we
define it by dτ/dt = c6. The system can be restored to two dimensions by
examining its behaviour on the slice where z = 0 and w = 0. On this plane
we have

dz

dτ
= zu3(l − z2)(u+ 2z2)

du

dτ
= (u2 − z2)(−u+ 2z2) + u4(l − z2)(u+ 2z2)

and the new system has the fixed points A − I within a bounded circular
region. These fixed points are augmented by J−Q on the circular boundary.
The separatrix diagram indicates the generic fate of any trajectory. For
example, a trajectory lying in the cell CADB will wind around in a spiral
clockwise, indicative of quasi-periodic, oscillatory behaviour. The motion
of a generic trajectory through the cell complex can be determined and a
discrete mapping set up to desribe the sequence of separatrix changes.

Problem 24. Hopf bifurcation theorem is as follows. Let G be an open
connected domain in Rn, c > 0, and let F be a real analytic function defined
on G× [−c, c]. Consider the differential system

du
dt

= F(u, µ), where u ∈ G, |µ| < c. (1)

Suppose there is an analytic, real, vector function g defined on [−c, c] such
that

F(g(µ), µ) = 0. (2)

This one can expand F(u, µ) about g(µ) in the form

F(u, µ) = Lµū + F∗(ū, µ), ū := u− g(µ) (3)
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where Lµ is an n×n real matrix which depends only on µ, and F∗(ū, µ) is
the nonlinear part of F. Suppose there exist exactly two complex conjugate
eigenvalues α(µ), ᾱ(µ) of Lµ with the properties

<(α(0)) = 0 and <(α′(0)) 6= 0 (′:= d/dµ). (3)

Then there exists a periodic solution P(t, ε) with period T (ε) of (2) with
µ = µ(ε), such that µ(0) = 0, P(t, 0) = g(0) and P(t, ε) 6= g(µ(ε)) for all
sufficiently small ε 6= 0. Morover µ(ε), P(t, ε), and T (ε) are analytic at
ε = 0, and

T (0) =
2π

|=α(0)|
. (4)

These “small” periodic solutions exist for exactly one of three cases: either
only for µ > 0, or only for µ < 0, or only for µ = 0.

Consider the system of differential equation

du1

dt
= u2

1u2 −Bu1 − u1 +A,
du2

dt
= −u2

1u2 +Bu2 (5)

where A and B are positive constants. Apply Hopf bifurcation theorem to
(5).

Problem 25. (i) Show that the system of first order ordinary differential
equations

du1

dt
= −1

2
u1 + u2

2,
du2

dt
= −1

2
u2 − u1u2 (1)

can be cast into the form

du1

dt
+

1
2
u1 + u2

1 = c exp(t). (2)

(ii) Show that this equation can be linearized by using the transformation

u1 =
1
v

dv

dt
. (3)

Problem 26. Let f and g be C1 vector fields on R2 such that 〈f(u),g(u)〉 =
0 for all u. If f has a closed orbit, prove that g has a zero.

Problem 27. Consider the two-dimensional autonomous system in the
(x, y) plane described by

dx

dt
= y3(x2 − 1)(2 + xy),

dy

dt
= x3(y2 − 1)(2− xy). (1)
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(i) Show that the fixed points are given by A(−1,−1), B(1, 1), C(1,−1),
D(−1, 1), E(−2, 1), F (1, 2), G(2,−1), H(−1,−2) and I(0, 0) in the x− y)
plane.
(ii) Show that the fixed points A, B, C, D are saddles with eigenvalues
−6 and +2. The fixed points E, F , G, H are stable attractors whilst I is
neutral.
(iii) The phase space is clearly not compact. Show but it can be made so
by a coordinate change to a four dimensional system (u, v, w, z) where

z = x−1, u = yx−1, we = y−1, v = xy−1,

A new time coordinate τ can be introduced to simplify the system if we
define it by dτ/dt = c6. The system can be restored to two dimensions by
examining its behaviour on the slice where z = 0 and w = 0. On this plane
we have

dz

dτ
= zu3(l − z2)(u+ 2z2)

du

dτ
= (u2 − z2)(−u+ 2z2) + u4(l − z2)(u+ 2z2)

and the new system has the fixed points A − I within a bounded circular
region. These fixed points are augmented by J−Q on the circular boundary.
The separatrix diagram indicates the generic fate of any trajectory. For
example, a trajectory lying in the cell CADB will wind around in a spiral
clockwise, indicative of quasi-periodic, oscillatory behaviour. The motion
of a generic trajectory through the cell complex can be determined and a
discrete mapping set up to desribe the sequence of separatrix changes.

Problem 28. Show that a special solutions of the equations

dZn
dt

= i

N∑
m 6=n

Γm
Z∗n − Z∗m

(1)

describing the motion of point vortices in an ideal two-dimensional fluid is
given by

Zn(t) = ρ exp(iωt+ iϕn) (2)

where

ω = Γ(N − 1)/(2ρ2), ϕn = 2πn/N, 0 ≤ n ≤ N − 1. (3)

Consider first the case N = 2, i.e.

dZ0

dt
= i

Γ1

Z∗0 − Z∗1
,

dZ1

dt
= i

Γ0

Z∗1 − Z∗0
.
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Problem 29. We consider the Van der Pol oscillator

du1

dt
= u2,

du2

dt
= a(1− u2

1)u2 − u1 (1)

where a > 0. Study the stability of the fixed points.

Problem 30. The system of differential equations

du1

dt
= u1(2− u1 − u2)

du2

dt
= u2(3− 2u1 − u2)

describes competing species u1 ≥ 0, u2 ≥ 0. Why do these equations
make it mathematically possible, but extremely unlikely, for both species
to survive?

Problem 31. (i) Show that the system of first order ordinary differential
equations

du1

dt
= −1

2
u1 + u2

2,
du2

dt
= −1

2
u2 − u1u2 (1)

can be cast into the form

du1

dt
+

1
2
u1 + u2

1 = c exp(t). (2)

(ii) Show that this equation can be linearized by using the transformation

u1 =
1
v

dv

dt
. (3)

Problem 32. The system of differential equations

du1

dt
= u1(2− u1 − u2),

du2

dt
= u2(3− 2u1 − u2)

describes competing species u1 ≥ 0, u2 ≥ 0. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.

Problem 33. Consider the initial value problem for the two linear sys-
tems of differential equations

du
dt

= Au,
dv
dt

= Bv
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where

A =
(
−1 −3
−3 −1

)
, B =

(
2 0
0 −4

)
.

Let

R =
1√
2

(
1 −1
1 1

)
, R−1 =

1√
2

(
1 1
−1 1

)
.

Then B = RAR−1. Given the solution of the initial value problem of the
first system u(t) = etAu0. Show that v(t) = RetAv0 is the solution of the
second system through Ru0.

Problem 34. The cycloide is given by

x(t) = a(t− sin t), y(t) = a(1 + cos t)

where a > 0. Find the corresponding system of differential equations with
the initial values.

Problem 35. Consider the Lotka-Volterra system

du1

dt
= u1 − u1u2

du2

dt
=−u2 + u1u2.

(i) Find the variational equation.
(ii) Assume that v = (v1, v2), w = (w1, w2) satisfy the variational equaton.
Show that

v ∧w = (v1w2 − v2w1)
((

1
0

)
∧
(

0
1

))
where ∧ denotes the exterior product.
(iii) Calculate the time-evolution of

a(t) := v1(t)w2(t)− v2(t)w1(t).

Problem 36. Consider the van der Pol oscillator

du1

dt
= u2,

du2

dt
= r(1− u2

1)u2 − u1

where r > 0. Study the stability of the fixed point

(u∗1, u
∗
2) = (0, 0)

and apply the Hopf bifurcation theorem.
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Problem 37. The Brusselator model is given by

du1

dt
= a− (1 + b)u1 + u2

1u2

du2

dt
= bu1 − u2

1u2.

where u1 > 0, u2 > 0 denote concentrations and a, b are positive constants.
Find the fixed points and study their stability.

Problem 38. Given one of the 16 binary matrices(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
(

0 0
0 1

)
,

(
1 1
0 0

)
,

(
1 0
1 0

)
,

(
1 0
0 1

)
(

0 1
1 0

)
,

(
0 1
0 1

)
,

(
0 0
1 1

)
,

(
1 1
1 0

)
(

1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
,

(
1 1
1 1

)
.

As underlying field we consider R. The solution of the initial value problem

du
dt

=
(
du1/dt
du2/dt

)
= Au = A

(
u1

u2

)
,

(
u1(0)
u2(0)

)
=
(
u10

u20

)
.

is given by

u(t) =
(
u1(t)
u2(t)

)
= etA

(
u1(0)
u2(0)

)
where A is one of the binary matrices given above. Obviously, we have(

u1(0)
u2(0)

)
= e−tA

(
u1(t)
u2(t)

)
.

Given t∗ > 0 and (
u1(t∗)
u2(t∗)

)
,

(
u1(0)
u2(0)

)
for one of these binary matrices. Can we reconstruct this matrix from
this data? Obviously the solution depends on t∗ and the chosen initial
conditions. Discuss.

Problem 39. A predator-prey model with Michaelis-Menton-type func-
tional response is given by

dU

dτ
=RU

(
1− U

K

)
− AUV

V +AHU

dV

dτ
=

BAUV

V +AHU
−DV
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where U and V stand for prey and predator density, respectively. The
parameters are positive constants. R stands for maximal growth rate of
the prey, K for carrying capacity, A for capture rate, H for handling time,
B for conversion efficiency, and D for predator death rate. Introducing the
scaling

u =
AHU

BK
, v =

AHV

B2K
, t =

Bτ

H

and
r =

RH

B
, d =

HD

B
, s =

AH

B

we obtain

du

dt
= ru

(
1− u

s

)
− suv

v + su
dv

dt
=

suv

v + su
− dv

where u(0) > 0 and v(0) > 0 for the initial populations. Find the fixed
points and study their stability.

Problem 40. Let a, b, α, β > 0. Consider the autonomous system in the
plane

du1

dt
= u2

du2

dt
=−au1 − bu2 + αu2

1 + βu2
2.

Use the Dulac function B : R2 → R+

B(u1, u2) = b exp(−2βu1)

to show that this autonomous system has no limit cycle.

Problem 41. Consider the Emden-Fowler differential equation

d

dζ

(
ζ2 du

dζ

)
+ ζαun = 0 (1)

or
d2u

dζ2
= −2

ζ

du

dζ
− ζα−2un. (2)

Find the system of differential equations under the transformation

x(t(ζ)) =
ζ

u(ζ)
du

dζ
, y(t(ζ)) =

ζα−1un(ζ)
du
dζ

, t(ζ) = ln(|ζ|). (3)
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Problem 42. Solve the system

dMx

dt
= γH0My −

Mx

T2

dMy

dt
=−γH0Mx −

My

T2
.

with the ansatz

Mx(t) = m cos(ωt) exp(−t/T ), My(t) = −m sin(ωt) exp(−t/T ).

Problem 43. Find the solution of initial value problem of the non-
autonomous system of differential equation

du1

dt
=−ku1

du2

dt
= he−ktu1 + (2t sin(2t)− cos(2t)− 2k)u2.

Problem 44. Let f , g be analytic functions. Consider the autonomous
system of first order differential equations

du1

dt
= f(ε, u1),

du2

dt
= 2εu1f(ε, u1)− g(ε, u1)(u2 − εu2

1)

where f(ε, 0) = g(ε, 0) = 0 and ε ∈ R is the bifurcation parameter.
(i) Show that

V = (u2 − εu2
1)

∂

∂u2

is Lie symmetry.
(ii) Show that for each fixed ε there is a flow-invariant manifold

M = { (u1, u2) : u2 = εu2
1 }.

Problem 45. Consider the autonomous system

du1

dt
= −u3

1 + u1u
2
2 + u3

2,
du2

dt
= −u2

1u2 + u3
2.

Show that (0, 0) is a fixed point. Is the fixed point stable? Show that the
divergence of the corresponding vector changes sign in any neighbourhood
of the fixed point (0, 0).
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Problem 46. Study the coupled oscillator

dθ1
dt

= ω1 + k sin(θ2 − θ1)

dθ2
dt

= ω2 + k sin(θ1 − θ2).

Hint: Set φ(t) = θ1(t)− θ2(t).

Problem 47. Consider the autonomous system of differential equations

du1

dt
= eu3 ,

du2

dt
= eu1 + eu3 ,

du3

dt
= ceu1 + eu2 .

Show that
I(u1, u2, u3) = eu2−u1 + c(u2 − u1)− u3

is a first integral.

Problem 48. (i) Find the solution of the initial value problems of the
system of differential equations

du1

dt
= u2,

du2

dt
= −u1.

(ii) Find the solution of the initial value problems of the system of differ-
ential equations

du1

dt
= sin(u2),

du2

dt
= − sin(u1).

(iii) Find the solution of the initial value problems of the system of differ-
ential equations

du1

dt
= sinh(u2),

du2

dt
= − sinh(u1).

Problem 49. Consider the autonomous system of first order ordinary
differential equations

du1

dt
= f1(u1, u2),

du2

dt
= f2(u1, u2).

Find the conditions (and solve it) on the smooth functions f1, f2 such that

S1 = u2
1

∂

∂u1
+ u1u2

∂

∂u2
, S2 = u1u2

∂

∂u1
+ u2

2

∂

∂u2
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are Lie symmetry vector fields of the differential equations.

Problem 50. Find the solution of the initial value of the system of
nonlinear differential equations equation

du1

dt
= u2

2,
du2

dt
= u1u2

by solving first
du1

u2
2

=
du2

u1u2
= dt

to find a constant of motion. Find the commutator of the two vector fields

V1 = u2
2

∂

∂u1
, V2 = u1u2

∂

∂u2
.

Discuss.

Problem 51. (i) Let k > 0. Consider the autonomous system of differ-
ential equations

du1

dt
= u2,

du2

dt
= ku1(u1 − 1).

Find the fixed points and study their stability.
(ii) Motivated by the Lie series expansion for the solution of the system of
differential equations and truncation we replace the system of differential
equations by the two-dimensional map

f1(x1, x2) = x1 + x2 + kx1(x1 − 1), f2(x1, x2) = x2 + kx1(x1 − 1).

Study this map.

Problem 52. Consider the non-autonomous linear system of differential
equations (

du1/dt
du2/dt

)
=
(
− sin(2t) cos(2t)− 1

cos(2t) + 1 sin(2t)

)(
u1

u2

)
.

Show that the system admits the solutions

u1(t) =
(
et(cos(t)− sin(t)
et(cos(t) + sin(t)

)
, u2(t) =

(
e−t(cos(t) + sin(t)
e−t(− cos(t) + sin(t)

)
.

Problem 53. Consider a two-dimensional phase space with motion de-
scribed by the differential equations

dx

dt
= 1,

dy

dt
= α (1)
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where α is a real parameter. We take as a subset of phase space of finite
measure the unit square

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (2)

and impose periodic boundary conditions. This, in fact, is equivalent to
choosing the phase space to be a torus. Discuss the solution of (1) as a
function of α and show that the system is ergodic if α is irrational.

Problem 54. Solve the initial value problem for the autonomous system
of first order differential equations

du1

dt
= −u2

1 + u2
2,

du2

dt
= −u2

2 + u2
1.

Hint: Set
n(t) := u1(t) + u2(t), j(t) = u1(t)− u2(t).

Problem 55. Solve the initial value problem for the autonomous system
of differential equations

du1

dt
= − 2u1√

u2
1 + u2

2

,
du2

dt
= 1− 2u2√

u2
1 + u2

2

with the initial conditions u1(0) = 1, u2(0) = 0.

Problem 56. Find solutions of the autonomous first order system of
differential equations

du1

dt
= cos2(u1),

du2

dt
= sin(u1).

Show that
I(u1, u2) = sec(u1)− u2 ≡

1
cos(u1)

− u2

is a first integral.

Problem 57. Let x0 be a fixed point of dx/dt = f(x) in M ⊂ Rn. A
central manifold is an invariant manifold that touches in the fixed point a
eigenspace Ec belonging to the eigenvalues with vanishing real part. Using
the two-dimensional example

d

dt
u1 = u2

1,
d

dt
u2 = −u2

show that the central manifold does not need to be unique.
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Problem 58. Evaluate the behavior of the autonomous system

du1/dt = −u1u2, du2/dt = −βu2 + u2
1

with β > 0, near the fixed point (0, 0).

Problem 59. Study the fixed points of the dynamical system

du1

dt
= u2 + u2

1,
du2

dt
= −u3

1.

Show that the dynamical system has a nilpotent center at (0, 0). Show that
the dynamical system admits the symmetry

(u1, u2, t) 7→ (−u1, u2,−t).

Problem 60. Let ε ∈ (0, 1). Consider the three linear systems of differ-
ential equations (

du1/dt
du2/dt

)
=
(

0 −ε
1 0

)(
u1

u2

)
(
du1/dt
du2/dt

)
=
(

0 1
−ε 0

)(
u1

u2

)
(
du1/dt
du2/dt

)
=
(

0 1− ε
1− ε 0

)(
u1

u2

)
.

Find the fixed points for the three systems and find the eigenvalues of the
three matrices.
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Higher Order Differential
Equations

We consider differential equations of the form

dnu

dtn
= f(t, u, . . . , dn−1u/dtn−1)

for n ≥ 3 and autonomous systems of first order differential equations of
the form

duj
dt

= fj(u1, u2, . . . , un), j = 1, 2, . . . , n

where n ≥ 3.

Problem 1. Consider the initial value problem for the system of linear
first order ordinary differential equations

du
dt

= Au

with u = (u1, u2, . . . , un)T , A is an n×n matrix over R and u0 ≡ u(t = 0).
Then the solution of the initial value problem is given by

u(t) = etAu0.

Find the solution of the initial value problem

du1

dt
= u3,

du2

dt
= u2,

du3

dt
= u1

67
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i.e. we have

A =

 0 0 1
0 1 0
1 0 0

 .

and u0 = (1, 0, 1)T .

Problem 2. Consider the initial value problem for the system of linear
first order ordinary differential equations

du
dt

= Au + b(t)

with u = (u1, u2, . . . , un)T , b = (b1, b2, . . . , bn), A is an n×n matrix over R
and u0 ≡ u(t = 0). Then the solution of the initial value problem is given
by

u(t) = etAu0 + etA
∫ t

0

e−τAb(τ)dτ.

Find the solution of the initial value problem for

du1

dt
= u3,

du2

dt
= u2,

du3

dt
= u1

i.e. we have

A =

 0 0 1
0 1 0
1 0 0


b(t) = (cos(t), sin(t), 0)T

and u0 = (1, 0, 1).

Problem 3. Let A, B be n × n matrices over R. Consider the systems
of linear equations with constant coefficients

dx
dt

= Ax,
dy
dt

= By

with the initial conditions x(t = 0) = x0 and y(t = 0) = y0, respectively.
Derive the differential equation for

z(t) =



z11(t)
z12(t)

...
z1n(t)
z21(t)

...
znn(t)


=



x1(t)y1(t)
x1(t)y2(t)

...
x1(t)yn(t)
x2(t)y1(t)

...
xn(t)yn(t)


≡ x(t)⊗ y(t)
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where ⊗ denotes the Kronecker product and find the solution.

Problem 4. The geodesic flow on a sphere Sn

〈x,x〉 ≡ xTx = ‖x‖2 = 1 (1)

where x(t) = (x0(t), x1(t), . . . , xn(t))T (T denotes the transpose, 〈 , 〉 the
scalar product and ‖.‖ the norm is described by the autonomous system of
differential equations

d2x
dt2

= λx (2)

where the Lagrange parameter λ is determined such that (1) is compatible
with the differential equation (2). Find this compatibility and show that

d2x
dt2

= −‖dx/dt‖2x. (3)

Problem 5. Consider the initial value problem of the autonomous system

du1

dt
=−u2 + u1u

2
3

du2

dt
= u1 + u2u

2
3

du3

dt
=−u3(u2

1 + u2
2).

Show that
I(u1, u2, u3) = u2

1 + u2
2 + u2

3

is a first integral. Discuss.

Problem 6. In the study of the Lagrangian structure of the ABC-flow
we consider the dynamical system

dx

dt
=A sin z + C cos y

dy

dt
=B sinx+A cos z

dz

dt
=C sin y +B cosx

where A,B,C are real parameters. Since the right-hand side is 2π-periodic
in x, y, and z we have a dynamical system defined on the three-dimensional
torus T 3. Find a first integral when C = 0.
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Problem 7. The autonomous system of ordinary differential equations

dx1

dt
= x2x3 − x1(x2 + x3)

dx2

dt
= x3x1 − x2(x3 + x1)

dx3

dt
= x1x2 − x3(x1 + x2)

is called the Darboux-Halphen system.
(i) Show that the three hyperplanes

H1(x) := x1 − x2 = 0, H2(x) := x1 − x3 = 0, H3(x) := x2 − x3 = 0

are invariant by the flow of the Darboux-Halphen system.
(ii) Let y = −2(x1+x2+x3). Find the differential equation for y. Calculate
up to d3y/dt3.
(iii) Consider the matrix-valued differential equation

dM

dt
= (detM)(M−1)T +MTM − (trM)M

where M is a 3 × 3 matrix-valued function of t. Show that the Darboux-
Halphen system can be obtained by setting M to the diagonal matrix

M(t) =

x1(t) 0 0
0 x2(t) 0
0 0 x3(t)

 .

Problem 8. (i) Find the first integrals of the system

dx1

dt
= x1x2 − x1x3 ≡ x1(x2 − x3)

dx2

dt
= x2x3 − x1x2 ≡ x2(x3 − x1)

dx3

dt
= x3x1 − x2x3 ≡ x3(x1 − x2).

(ii) Find the first integrals of the system

dx1

dt
= x1(c− x2 + x3)

dx2

dt
= x2(c− x3 + x1)

dx3

dt
= x3(c− x1 + x2).
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Problem 9. The Halphen-Darboux system of ordinary differential equa-
tions is given by

du1

dt
= u2u3 − u1(u2 + u3)

du2

dt
= u1u3 − u2(u1 + u3)

du3

dt
= u1u2 − u3(u1 + u2).

The system is invariant under the six permutations of the uj ’s. One gener-
ating set of invariants of the permutation group is

v1 = u1 + u2 + u3

v2 = u1u2 + u2u3 + u1u3

v3 = u1u2u3.

Express the system of differential equations in terms of the variables v1, v2,
v3.

Problem 10. Consider the autonomous system of first order differential
equations

dω1

dt
= ω2ω3 − ω1(ω2 + ω3) + τ2,

dτ1
dt

= −τ1(ω2 + ω3)

dω2

dt
= ω3ω1 − ω2(ω3 + ω1) + τ2,

dτ2
dt

= −τ2(ω3 + ω1)

dω3

dt
= ω1ω2 − ω3(ω1 + ω2) + τ2,

dτ3
dt

= −τ3(ω1 + ω2)

where τ2 := τ2
1 + τ2

2 + τ2
3 . Using the ansatz

ω1(t) =−1
2
d

dt
ln
(

ṡ

s(s− 1)

)
, τ1(t) =

κ1ṡ√
s(s− 1)

ω2(t) =−1
2
d

dt
ln
(

ṡ

s− 1

)
, τ2(t) =

κ2ṡ

s
√
s− 1

ω3(t) =−1
2
d

dt
ln
(
ṡ

s

)
, τ3(t) =

κ3ṡ√
s(s− 1)

find the differential equation for s(t), where ṡ ≡ ds/dt. Here κj are con-
stants.

Problem 11. Find all time dependent 2 × 2 matrices A1, A2, A3 such
that

dAi
dt

=
1
2

3∑
j,k=1

εijk[Aj(t), Ak(t)], i = 1, 2, 3
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where ε123 = ε321 = ε132 = 1, ε213 = ε321 = ε132 = −1. All other εijk are
equal to 0.

Problem 12. Consider the nonlinear ordinary differential equation of
third order

F ≡ d3u

dx3
+ 4u

d2u

dx2
+ 6u2 du

dx
+ 3

(
du

dx

)2

+ u4 = 0. (1)

Show that this equation can be linearized with the ansatz

dv

dx
= u(x)v(x). (2)

Find the general solution to (1).

Problem 13. Show that

d3u

dx3
− udu

dx
= 0 (1)

admits the first integrals

F1(u) =
d2u

dx2
− 1

2
u2, F2(u) = u

d2u

dx2
− 1

2

(
du

dx

)2

− 1
3
u3. (2)

Problem 14. The Lorenz model is given by

dx

dt
= σ(y − x),

dy

dt
= −xz + rx− y, dz

dt
= xy − bz (1)

where σ, r and b are three real positive parameters. Show that by eliminat-
ing y and z from the above system, we obtain the third-order equation

x
d3x

dt3
−
(
dx

dt
− (σ + b+ 1)x

)
d2x

dt2
− (σ + 1)

(
dx

dt

)2

+

(
x3 + b(σ + 1)x

) dx
dt

+ σ(x4 + b(1− r)x2) = 0. (2)

Problem 15. Consider the diffential equation

x
d3x

dt3
−
(
dx

dt
− (σ + b+ 1)x

)
d2x

dt2
− (σ + 1)

(
dx

dt

)2

+

(
x3 + b(σ + 1)x

) dx
dt

+ σ
(
x4 + b(1− r)x2

)
= 0. (1)
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Find the Lie symmetry vector fields of (1). Assume that the Lie symmetry
vector field is of the form

V = (V0(t, x, ẋ) + V1(t, x, ẋ)ẍ)
∂

∂x
. (2)

Hint. The invariance condition is

pr(3)V (∆) .= 0 (3)

where ∆ is given by

x
...
x − (ẋ− (σ + b+ 1)x) ẍ− (σ + 1) (ẋ)2 +(

x3 + b(σ + 1)x
)
ẋ+ σ

(
x4 + b(1− r)x2

)
= 0. (4)

and pr(3)V denotes the third prolongation of V . Let

χ := V0(t, x, ẋ) + V1(t, x, ẋ)ẍ.

Then

pr(3)V := χ
∂

∂x
+
(
d

dt
χ

)
∂

∂ẋ
+
(
d2

dt2
χ

)
∂

∂
...
x

(5)

Hint. The total derivative operator d/dt is given by

d

dt
:=

∂

∂t
+ u̇

∂

∂u
+ ü

∂

∂u̇
+ · · · (6)

Problem 16. The Lorenz model is given by

dx

dt
= σ(y − x),

dy

dt
= −y − xz + rx,

dz

dt
= xy − bz. (1)

The system (1) can be represented as a third order differential equation

u
d3u

dt3
− du

dt

d2u

dt2
+ u3 du

dt
+ (b+ σ + 1)u

d2u

dt2
+

(σ + 1)

(
bu
du

dt
−
(
du

dt

)2
)

+ σu4 + b(1− r)σu2 = 0 (2)

where u ≡ x. Show that (2) admits the following first integrals:

1) b = 2σ

I1 =
(
−2σ(r − 1) + u2 + 2(σ + 1)

1
u

du

dt
+ 2

1
u

d2u

dt2

)
e2σt
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2) b = 0, σ = 1/3

I2 =

(
−3

4
u4 + 3

(
du

dt

)2

− 3u
d2u

dt2

)
e4t/3

3) b = 1, r = 0

I3 =

(
1 + u2 + 2(σ + 1)

1
σu

du

dt
+

2
σ
u
du

dt
+

1
σ2

(
du

dt

)2(
1 +

(σ + 1)2

u2

)

+2
1
σu

d2u

dt2
+

1
σ2u2

(
d2u

dt2

)2

+ 2(σ + 1)
1

σ2u2

du

dt

d2u

dt2
)e2t

4) b = 4, σ = 1

I4 = (−4(r − 1)2 + 2(r − 1)u2 − 1
4
u4 + 8(r − 1)

1
u

du

dt

−2u
du

dt
+
(
du

dt

)2

+ 4(r − 1)
1
u

d2u

dt2
− ud

2u

dt2
)e4t

5) b = 1, σ = 1

I5 = ((r − 1)2 − (r − 1)u2 − 4(r − 1)
1
u

du

dt
+ 2u

du

dt
+
(
du

dt

)2

+4
1
u2

(
du

dt

)2

− 2(r − 1)
1
u

d2u

dt2
+

1
u2

(
d2u

dt2

)2

+ 4
1
u2

du

dt

d2u

dt2
)e2t

6) b = 6σ − 2, r = 2σ − 1

I6 =
(
σ−1(σ − 1)(3σ − 1)u2 − 1

4
σ−1u4 − σ−1(3σ − 1)u

du

dt

+ σ−1

(
du

dt

)2

− σ−1u
d2u

dt2

)
e4σt.

Problem 17. Consider the Kuramoto differential equation in the complex
domain

1
2
u2 +

du

dz
+
d3u

dz3
= 0. (1)

Show that the equation admits the general solution (psi series)

u(z) =
1

(z − z0)3
(

120 + P (A(z − z0)r) +Q(B(z − z0)r
∗
)
)

(2)
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where P and Q are two power series without constant term

P (y) :=
∞∑
m=1

amy
m, Q(y) :=

∞∑
m=1

bmy
m. (3)

Problem 18. The Schwarzian derivative plays an important role in sev-
eral branches of complex analysis. Let w be a holomorphic function. The
Schwarzian derivative {w; z} of w is defined by

{w; z} :=

d3w

dz3

dw

dz

− 3
2

 d2w

dz2

dw

dz


2

. (1)

(i) Show that if w(z) = z we find {w; z} = 0.
(ii) Prove the following Theorem. Let y1 and y2 be two linearly independent
solutions of the equation

d2y

dz2
+Q(z)y = 0 (2)

which are defined and holomorphic in some simply connected domain D in
the complex plane C. Then

w(z) =
y1(z)
y2(z)

(3)

satisfies the differential equation

{w; z} = 2Q(z) (4)

at all points of D where y2(z) 6= 0. Conversely, if w is a solution of (4),
holomorphic in some neighbourhood of a point z0 ∈ D, then one can find
two linearly independent solutions, u(z) and v(z), of (2) defined in D so
that

w(z) =
u(z)
v(z)

, (5)

and, if v(z0) = 1, the solutions u and v are uniquely defined.

Problem 19. The Lorenz equations are

du1

dt
= σ(u2 − u1),

du2

dt
= u1u3 + ru1 − u2,

du3

dt
= u1u2 − bu3

where σ, r and b are three real positive parameters.
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(i) Show that these equations are invariant under the discrete transfor-
mation

(u1, u2, u3)→ (−u1,−u2, u3).

Repeating this parity transformation gives back the identity mapping.
(ii) Show that there can exist orbits which are invariant under this reflection
or pairs of orbits which are mapped into each other.

Problem 20. The Lorenz model is given by

du1

dt
= σ(u2− u1),

du2

dt
= u1u3 + ru1− u2,

du3

dt
= u1u2− bu3 (1)

where σ, r and b are three real positive parameters. Find the fixed points
and study their stability.

Problem 21. A Volterra’s dynamics for the populations Ni of m inter-
acting species is

dNi
dt

= εiNi +
1
βi
Ni

m∑
k=1

αkiNk, i = 1, 2, . . . ,m (1)

where Ni > 0. (i) Show that the stationary population levels Ni = qi (fixed
points) occur for

εi =
1
βi

m∑
k=1

αkiqk (2)

(all dNi/dt = 0) and will be unique when α is non-singular (this requires
the number of species m to be even, since otherwise odd-order skew α is
necessarily singular). (ii) Show that introducing the new dependent varibles

vi(t) := ln
(
Ni(t)
qi(t)

)
(3)

brings the Volterra dynamics to

dvi
dt

=
m∑
k=1

γki
∂G

∂vk
, G :=

m∑
α=1

τα(exp(vα)− vα) (2)

where
γij :=

αij
βiβj

= −γji, τi ≡ qiβi. (3)

(iii) Show that in the one-predator/one-prey case of Lotka-Volterra, these
equations are in Hamiltonian form, with

v1 ≡ Q, v2 ≡ P, γ12 = −γ21 = −γ (4)
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and
H(Q,P ) = γτ1(eQ −Q) + γτ2(eP − P ) (5)

where the Hamilton equations of motion are

dQ

dt
=
∂H

∂P
,

dP

dt
= −∂H

∂Q
. (6)

Problem 22. In the Jaynes-Cummings model a single-mode field and
a two-state atom couple to each other via the undamped Bloch-Maxwell
equations

ds1
dt

= −s2,
ds2
dt

= s1 + s3E,
ds3
dt

= s2E (1a)

d2E

dt2
+ µ2E = as1 (1b)

where the dimensionless parameter µ = ω/ω0, the coupling constant a =
8πNd2ω0~−1 and N is the number of two-level atoms. In (1) s1, s2, s3 are
components of Bloch’s vector describing polarization and inversion. The
electric field E = 2dẼ/~ω0, d being the electric dipole moment of the
atom, is dimensionless and equals the ratio of the Rabi frequency and the
atomic transition frequency ω0. The dimensionless time t is scaled with the
atomic transition frequency ω0. The model of a two-level atom described
by (1) is valid under the assumption that E � 1.
(i) Show that the system (1) possesses conservation laws for length of the
Bloch vector and energy

s21 + s22 + s23 = 1 (2)

W = as3 − as1E +
1
2
µ2E2 +

1
2

(
dE

dt

)2

. (3)

(ii) Show that the system (1) admits the following particular solution

E(t) = E0cn(Ωt, k) (4)

Ω4 =
1
3

(
µ2 − 2

27

)
+

1
3

(
a2 − 4

(
µ2 − 1

9

)3
)1/2

(5)

k2 =
1

4Ω2

(
µ2 − 1

3

)
+

1
2
, E2

0 = 4
(
µ2 − 1

3

)
+ 8Ω2. (6)

(iii) Show that the inversion s3 and the components of the dipole moment
expressed in terms of E takes the form

s3 =
1
a

−3
2

(
µ2 − 1

9

)2

+

(
a2 − 4

(
µ2 − 1

9

)3
)1/2

+
3
4

(
µ2 − 1

9

)
E2 − 3

32
E4


(7)
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s1 =
1
a

(
3
2

(
µ2 − 1

9

)
E − 1

8
E3

)
, s2 = −ds1

dt
. (8)

(iv) Show that the solution is valid only for

W = −2
(
µ2 − 1

9

)(
µ2 − 5

9

)
+

5
3

(
a2 − 4

(
µ2 − 1

9

)3
)1/2

. (9)

Problem 23. Consider the coupled Riccati equation

dui
dt

= di +
N∑
j=1

eijuj +
N∑

j,k=1

fijkujuk, i = 1, 2, . . . , N. (1)

(i) Find analytical solutions for the special cases, e.g. if fijk = fjδik (pro-
jective Riccatis).
(ii) Show that the N ×N matrix Riccati equation

du
dt

= a + b · u + u · b′ + u · c · u (2)

is linearizable due to the non-commutative property of matrices, where b
and c are N ×N matrices.
(iii) Insert

u(t) =
N∑
i=1

Ai(t)ui(t) + A0(t) (3)

into (2) and use (1). Show that one gets the compatibility relations

dA0

dt
+

N∑
i=1

Aidi = a + b ·A0 + A0b′ + A0c ·A0 (4a)

dAi

dt
+

N∑
j=1

Ajeji = (b + A0c)Ai + Ai(b′ + c ·A0, i = 1, . . . , N (4b)

2
N∑
i=1

Aifijk = Ajc ·Ak + Akc ·Aj , j, k = 1, . . . , N. (4c)

Problem 24. Consider the differential difference isotropic Heisenberg
spin chain

d

dt
Sn =

Sn × Sn+1

1 + Sn · Sn+1
− Sn−1 × Sn

1 + Sn−1 · Sn
. (1)
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(i) Show that this differential-difference solition equation can be reduced to
a difference equation assuming a simple time-dependence

Sn(t) = (cosφn cosωt, cosφn sinωt, sinφn) (2)

with
xn := tan

1
2
φn (3)

where

xn+1 =
(2x3

n + ωx2
n + 2xn − ω − xn−1(−x4

n − ωx3
n + ωxn + 1))

(−x4
n − ωx3

n + ωxn + 1− xn−1(ωx4
n − 2x3

n − ωx2
n − 2xn))

. (4)

(ii) Show that its one-parameter family of invariant curves is given by the
symmetric biquadratic relation

(1 + 2K)x2
nx

2
n+1 + ω(1 +K)(x2

nxn+1 + xnx
2
n+1) + (1 +K)(x2

n + x2
n+1)+

2Kxnxn+1 + ω(1 +K)(xn + xn+1) + 1 + 2K = 0 (4)

where K is the invariant parametrizing the family curves.

Problem 25. Consider a discrete modified Korteweg-de Vries equation

d

dt
xn = (1+x2

n)(xn−1−xn+1+
1
2

(xn+2+xn)(1+x2
n+1)−1

2
(xn+xn−2)(1+x2

n−1)).

(1)
(i) Show that stationary solutions of this equation are given by

xn+1 −
1
2

(xn + xn+2)(1 + x2
n+1) = xn−1 −

1
2

(xn−2 + xn)(1 + x2
n−1). (2)

(ii) Equation (2) defines a 4 dimensional mapping.
(iii) Show that this mapping can be integrated to a two dimensional map-
ping

x2n =
2x2n−1 + 2K2 − x2n−2(1 + x2

2n−1)
1 + x2

2n−1

(3)

x2n+1 =
2x2n + 2K1 − x2n−1(1 + x2

2n)
1 + x2

2n

. (4)

where K1, K2 are integration constants. This mapping is integrable. Its
one-parameter family of invariant curves is given by the asymmetric bi-
quadratic relation

x2
2nx

2
2n+1 + x2

2n + x2
2n+1− 2x2nx2n+1− 2K1x2n+1− 2K2x2n +K3 = 0 (5)

where K3 is the third integration constant.
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Problem 26. Consider the autonomous system

du
dt

= F(u) = gradV (u) (1)

which is called a gradient system of ordinary differential equations. Show
that a gradient system cannot have any limit cycle solutions.

Problem 27. Within the rotating wave approximation the dynamical
system of perturbed Maxwell-Bloch equations is

dE
dt

= P, dP
dt

= (E + εeiωt)D

dD
dt

= −1
2

((E + εeiωt)P∗ + (E∗ + εe−iωt)P). (1)

The variables in this set of equations are dimensionless. E denotes the self-
consistent electric field, P is the polarizability of the matter, and D is the
difference of its occupation numbers, assuming the material response may
be modeled by two levels - a ground state and an excited state. Here, E
and P are complex scalar functions of time, D is real, ε is the (constant)
amplitude of the external driving field, and ω is the detuning of the laser
probe frequency from resonance with the two-level atoms.
(i) Show that for non-zero ε and ω, these equations possess two first integrals

H =
1
2
|P|2 +

1
2
D2 (2)

L =
1
2
ω|E|2 + ωD +

1
2i

((E + εeiωt)P∗ − (E∗ + εe−iωt)P). (3)

These two first integrals result from unitarity (H) and energy conservation
(L). The three summands in L involve the self-consistent electric field
energy, 1

2 |E|
2, the excitation energy of the atoms, D, and the interaction

energy of the polarizable medium with the total electric field, E + εeiωt.
Notice that

d

dt
|P|2 =

d

dt
PP∗ =

dP
dt
P∗ + P dP

∗

dt
. (4)

Problem 28. The unperturbed Maxwell-Bloch equations are

dE
dt

= P, dP
dt

= ED, dD
dt

= −1
2

(EP∗ + E∗P). (1)

Show that these unperturbed equations posses three integrals of motion

H =
1
2
|P|2 +

1
2
D2, (2a)
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J =
1
2i

(EP∗ − E∗P), (2b)

K =
1
2
|E|2 +D. (2c)

Problem 29. The surface of a two-dimensional ellipsoid can be imbedded
in three-dimensional Euclidean space by the equation

x2

a2
+
y2

b2
+
z2

c2
= 1 (1)

where the axes satisfy the inequality a > b > c > 0. When a particle with
mass m moves freely on this surface, it is subject to a force that is always
perpendicular to the tangent plane, and whose direction is, therefore, given
by the vector (x/a2, y/b2, z/c2) times some factor λ to be determined. (i)
Show that the equations of motion then become

du

dt
= −λ x

a2
,

dv

dt
= −λ y

b2
,

dw

dt
= −λ z

c2
(2a)

dx

dt
=

u

m
,

dy

dt
=

v

m
,

dz

dt
=
w

m
(2b)

where (u, v, w) is the momentum. (ii) Show that by taking two derivatives
with respect to time in (1) and replacing the second derivatives of (x, y, z)
according to (2), one gets the condition,

mλ =
u2/a2 + v2/b2 + w2/c2

x2/a4 + y2/b4 + z2/c4
. (3)

(iii) Show that if the initial position of the particle satisfies (1), and the
initial momentum is tangential to (1), then the whole trajectory stays on
the ellipsoid. (iv) Show that the quantity

A = u2 +
(xv − yu)2

a2 − b2
+

(xw − zu)2

a2 − c2
(4)

and similar ones, B and C, which are obtained by the cyclic permutation
of the triples (x, y, z), (u, v, w), and (a, b, c) are first integrals. These three
quantities are not independent since one has the relation A + B + C =
u2 + v2 + w2, where the right-hand side is the kinetic energy which is in
fact the Hamiltonian of the system. A,B, and C are in involution.

Problem 30. Show that a special solutions of the equations

dZn
dt

= i

N∑
m 6=n

Γm
Z∗n − Z∗m

(1)
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describing the motion of point vortices in an ideal two-dimensional fluid is
given by

Zn(t) = ρ exp(iωt+ iϕn) (2)

where

ω = Γ(N − 1)/(2ρ2), ϕn = 2πn/N, 0 ≤ n ≤ N − 1. (3)

Consider first the case N = 2, i.e.

dZ0

dt
= i

Γ1

Z∗0 − Z∗1
,

dZ1

dt
= i

Γ0

Z∗1 − Z∗0
.

Problem 31. Consider the system of differential equations

dPk
dτ

= −(k − 1)Pk − (zk − 2k + 2)Pk+1 (1)

where k ≥ 1. Here the first term is self-explanatory. In the second term the
probability Pk+1 is used because a larger cluster must be actually occupied
in order for a reaction event involving a site outside the original k-site
cluster to proceed. The most interesting quantity is P1(τ) = c(τ). It
is expected to decrease in time but remain finite as τ → ∞. All other
probabilities Pk>1 are expected to vanish for large times. Show that the
solution of the differential equation (1) can be obtained by the ansatz

Pk(τ) = c(τ)[σ(τ)]k−1 (2)

where σ(0) = ρ, eliminates the k dependence.

Problem 32. A model for epidemics is given by

dS

dt
= −rSI, dI

dt
= rSI − aI, dR

dt
= aI (1)

where S stands for the number of susceptibles, I for those infected and
R denotes the removals. The constants a, r determine the infection and
removal rates of infectives, respectively. Show that the system admits the
two first integrals

H1 = S + I +R, H2 = R+
a

r
ln(S). (2)

Problem 33. Find the Lie symmetries and first integrals of the system

dx

dt
= ax+ by + z − 2y2

dy

dt
= ay − bx+ 2xy

dz

dt
=−2z − 2zx.
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This system of differential equations corresponds to the interaction of three
quasi-synchronous waves in a plasma with quadratic nonlinearities.
(i) Let

y ⇒ y + b/2

Show that the system then takes the form

dx

dt
= ax− by + z − 2y2 (1a)

dy

dt
= ay + ab/2 + 2xy (1b)

dz

dt
= −2z − 2xz. (1c)

Problem 34. Consider the system of ordinary differential equations

dPi
dt

=
n∑
j=1

n∑
k=1

n∑
l=1

(AijklPkPl −AklijPiPj) (1)

where i = 1, 2, . . . , n and Aijkl ≥ 0. Assume that
n∑
i=1

n∑
j=1

Aijkl = 1 (2)

for all pairs (k, l). The quantities denotes transition probabilities. Show
that

n∑
i=1

Pi = const (3)

The model given above is a caricature of Boltzmann’s equation. . The j-th
component Pj is the probability to find a particle in the j-th phase space
(or configuration) cell. Obviously, Pj ≥ 0 for j = 1, 2, . . . , n and

n∑
j=1

Pj(t = 0) = 1. (4)

Owing to (3) we find that
n∑
j=1

Pj(t) = 1. (5)

Problem 35. Consider the equations of motion

mi
d2xi
dt2

= − ∂U
∂xi

, mi
d2yi
dt2

= −∂U
∂yi

, mi
d2zi
dt2

= −∂U
∂zi

, i = 1, 2, 3 (1)
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where

U = −m1m2F (r212)−m2m3F (r223)−m3m1F (r231), mi = 1, i = 1, 2, 3
(2)

(xk, yk, zk) are the coordinates of the k-th body, k = 1, 2, 3, F (r2) is an
arbitrary, sufficiently smooth function, and

rij := ((xi − xj)2 + (yi − yj)2 + (zi − zj)2)1/2. (3)

(i) Show that (1) is invariant under the 10-parameter Galilean groupG(1, 3).
(ii) Show that the Lie algebra of this group has a basis consisting of the
following infinitesimal generators

X0 =
∂

∂t
, X1 =

∂

∂x1
+

∂

∂x2
+

∂

∂x3
, X2 =

∂

∂y1
+

∂

∂y2
+

∂

∂y3
,

X3 =
∂

∂z1
+

∂

∂z2
+

∂

∂z3
, X4 = t

(
∂

∂x1
+

∂

∂x2
+

∂

∂x3

)
,

X5 = t

(
∂

∂y1
+

∂

∂y2
+

∂

∂y3

)
, X6 = t

(
∂

∂z1
+

∂

∂z2
+

∂

∂z3

)
,

X7 = yk
∂

∂zk
− zk

∂

∂yk
, X8 = zk

∂

∂xk
− xk

∂

∂zk
, X9 = xk

∂

∂yk
− yk

∂

∂xk
.

(4)
Remark. Ten integrals of motion of the spatial three-body problem were
known already to Lagrange

Problem 36. Euler’s equations for rotation of a rigid body about a fixed
point are given by

I1
dω1

dt
= (I2 − I3)ω2ω3 (1a)

I2
dω2

dt
= (I3 − I1)ω3ω1 (1b)

I3
dω3

dt
= (I1 − I2)ω1ω2 (1c)

A plane lamina has principal moments of inertia I, 2I and 3I. It is rotating
freely with angular velocity n about an axis through its centre of mass
perpendicular to its plane when it is given an additional angular velocity√

3 n about its principal axis with moment of inertia I.
(i) Prove that, at time t later, the components of the angular velocity of
the lamina along its principal axes are

(
√

3nsech(nt),
√

3n tanh(nt), sech(nt)). (2)

(ii) What is the eventual motion as t→∞?
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Problem 37. Find the solution of the initial value problem

d3u

dt3
+ u = 0

with u(t = 0) = u0, du(t = 0)/dt = ut0, d2u(t = 0)/dt2 = utt0 and u is a
real-valued function.

Problem 38. Consider the Lorenz model of the form

dw

dt
=R− zy − w

dz

dt
=wy − z

dy

dt
= σ(z − y).

Consider the case that R� σ and Rσ � 1. Find the Lorenz model under
the scaling

t→ εt, w → w

ε2σ
, z → z

ε2σ
, y → y

ε
, ε =

1√
Rσ

.

Show that for ε = 0 we find two first integrals (constants of motion). Thus
for this case the system is completely integrable.

Problem 39. Consider the system of differential equations

du1

dt
= u1u2 − u1u3 ≡ u1(u2 − u3)

du2

dt
= u2u3 − u1u2 ≡ u2(u3 − u1)

du3

dt
= u3u1 − u2u3 ≡ u3(u1 − u2).

(i) Show that u∗1 = u∗2 = u∗3 = c (c ∈ R) is a fixed point.
(ii) Find the variational equation.
(iii) Study the stability of the fixed point.

Problem 40. Consider the dynamical system

du1

dt
= −u2u3,

du2

dt
= u1u3,

du3

dt
= −u2

3. (1)

This system has a simple system-theoretic interpretation: u1 and u2 are
the states of an oscillator, frequency modulated by u3.
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(i) Show that for u3(0) ≥ 0 the solution of the initial value problem is given
by

u1(t) = R cos(ln(1 + tu3(0)) + δ), u2(t) = R sin(ln(1 + tu3(0)) + δ)

u3(t) =
u3(0)

(1 + tu3(0))
(2)

where
R :=

√
u2

1(0) + u2
2(0)) (3)

and

δ := arctan
(
u1(0)
u2(0)

)
. (4)

(ii) Show that the trajectories are bounded when u3(0) ≥ 0. (iii) Show that
if u3(0) > 0, then the trajectory u has no autocorrelation, that is, the limit
in

Ru(τ) := lim
T→∞

u(t)u(t+ τ)dt (5)

does not exist, and hence u has no spectrum.

Problem 41. Suppose that an elementary magnet is situated at the
origin and that its axis corresponds to the z-axis. The trajectory (x(t),
y(t), z(t)) of an electrical particle in this magnetic field is then given as the
autonomous system of second order ordinary differential equations

d2x

dt2
=

1
r5

(
3yz

dz

dt
− (3z2 − r2)

dy

dt

)
d2y

dt2
=

1
r5

(
(3z2 − r2)

dx

dt
− 3xz

dz

dt

)
d2z

dt2
=

1
r5

(
3xz

dy

dt
− 3yz

dx

dt

)
where r2 := x2 + y2 + z2. Show that the system can be simplified by
introducing polar coordinates

x(t) = R(t) cos(φ(t)), y(t) = R(t) sin(φ(t)).

Problem 42. Consider the pair of coupled nonlinear differential equations
relevant to the quantum field theory of charged solitons

d2σ

dx2
= −σ + σ3 + dρ2σ,

d2ρ

dx2
= fρ+ λρ3 + dρ(σ2 − 1) (1)

where σ and ρ are real scalar fields and d, f, λ are constants.
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(i) Try to find an excat solution with the ansatz

ρ(x) = b1 tanh(λ0(x+ c0)), σ(x) =
∑
n=1

an tanhn(λ0(x+ c0)). (2)

Problem 43. The coupled system of ordinary differential equations

d2u

dt2
+ ω(t)u =

1
u2v

f1

( v
u

)
(1a)

d2v

dt2
+ ω(t)v =

1
uv2

f2

(u
v

)
(1b)

is a so-called Ermakov-type system, where F1 and f2 are arbitrary differen-
tiable functions. Show that the system admits the first integral

F =
1
2

(
u
dv

dt
− v du

dt

)2

+
∫ v/u

f1(s)ds+
∫ u/v

f2(s)ds. (2)

Problem 44. Consider the linear system of first order ordinary differen-
tial equations

du1

dt
= au2,

du2

dt
= −au1,

du3

dt
= bu3

where a > 0 and b > 0. The corresponding vector field is given by

V = au2
∂

∂u1
− au1

∂

∂u2
+ bu3

∂

∂u3

with the Lie series solution of the initial value problem

u(t) = etV u
∣∣
u→u0

where u(t = 0) = u0. Find the curvature κ(t) and torsion ω(t) of this
curve, where

κ2(t) :=
1

ρ2(t)
=

u̇2ü2 − (u̇T ü)2

(u̇2)3

ω(t) = ρ2(t)
det(u̇ü

...
u)

(u̇2)3

Problem 45. Consider the Lorenz model

du1

dt
= −σ(u1 − u2),

du2

dt
= −u1u3 + ru1 − u2,

du3

dt
= u1u2 − bu3.
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Find the system of differential equation under the transformation

τ(t) = tσ(r − 1)1/2

u(τ(t)) =
1

(2σ(r − 1))1/2
u1(t)

m(τ(t)) =
1

(r − 1)
u3(t)− u2(τ(t)).

Set ε = 1/(r−1)1/2 and study the case that ε is small which relates to high
Rayleigh numbers r � 1.

Problem 46. Consider the system of first order differential equations

du1

dt
=−νu1 +m1u2u3

du2

dt
=−νu2 +m2u3u1

du3

dt
=−νu3 +m3u1u2

where ν, m1, m2, m3 are nonzero constants. The system plays a role in
nonlinearly coupled positive and negative energy waves in plasma physics.
Find the system of differential equations under the transformation

ūj(t̄(t)) = uj(t) exp(νt), t̄(t) = ν−1(1− exp(−νt))

where j = 1, 2, 3.

Problem 47. Consider the nonlinear autonomous system

du1

dt
= −2u2 + u2u3,

du2

dt
= u1 − u1u3,

du3

dt
= u1u2.

Show that there is one fixed point (equilibrium point). Study the stability
of this fixed point. Let

V (u) = c1u
2
1 + c2u

2
2 + c3u

2
3.

Find the time evolution of V , i.e. dV/dt. Find the condition on the co-
efficients c1, c2, c3 such that V (u) > 0 for u 6= 0 and dV/dt = 0 for all
u ∈ R3.

Problem 48. Consider the initial value problem of the autonomous sys-
tem of differential equations

du
dt

= f(u), u(t = 0) = u0 (1)
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where f ∈ C1(Rn). Show that for each u0 ∈ Rn the initial value problem

du
dt

=
f(u)

1 + |f(u)|
, u(t = 0) = u0 (2)

has unique solution u(t) for all t ∈ R, i.e. system (2) defines an autonomous
system on Rn and (2) is topologically equivalent to (1) on Rn.

Problem 49. Consider the Lorenz model

dx

dt
= σ(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz.

(i) Show that the Lorenz model is invariant under the involution (x, y, z)→
(−x,−y, z).
(ii) Find the solution for z(t) if x(t) = 0 and y(t) = 0. Is the solution
stable.

Problem 50. Consider an autonomous system of first order differential
equation

du
dt

= f(u), u ∈ Rn

where f : R→Rn is an analytic function. Assume it admits a first integral
I(u), i.e.

f(u) · ∇I(u) ≡ f1(u)
∂I

∂u1
+ f2(u)

∂I

∂u2
+ · · ·+ fn(u)

∂

∂un
= 0

Then the system can be written as

du
dt

= S(u)∇I(u)

where S(u) is a skew-symmetric n × n matrix. Consider the autonomous
system

du1

dt
= u1(u2 − u3)

du2

dt
= u2(u3 − u1)

du3

dt
= u3(u1 − u2).
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(i) It admits the first integral

I(u) = u1 + u2 + u3.

Find the representation described above.
(ii) The autonomous system also admits the first integral

I(u) = u1u2u3.

Find the representation described above.

Problem 51. Consider the first order autonomous system

dx

dt
=−ax+ y + 10yz

dy

dt
=−x− 0.4y + 5xz

dz

dt
= bz − 5xy

where a and b are real and positive bifurcation parameters. Find the fixed
points and study their stability. Set a = 0.4. Show that there is Hopf
bifurcation.

Problem 52. Consider a set n identical elements, where each of them
is characterized by a state variable uj(t) with −1 ≤ uj ≤ +1 and j =
1, 2, . . . , n. Without coupling the individual dynamics the state variable
uj(t) obeys the nonlinear differential equation

du

dt
= u− u3

with −1 ≤ u(0)l + 1. This differential equation describes an overdamped
motion in the one-dimensional potential V (u) = −u2/2 + u4/4. The fixed
points are 0,±1. The solution of the initial value problem is

u(t) =
u0√

e−2t(1− u2
0) + u2

0

with u0 = u(0). For t→∞ u(t) preserves its sign and approaches the fixed
points ±1. The fixed points u∗ = 0 is unstable. Define

ū(t) :=
1
n

n∑
j=1

uj(t).

Study the behaviour of the autonomous system

duj
dt

= uj − u3
j + k(ū− uj) = (1− k)uj + kū− u3

j



Higher Order Differential Equations 91

where k = 1.

Problem 53. Consider the initial value problem of the system of linear
differential equations

dY

dt
= A(t)Y (t), Y (t = 0) = Y0

where the n× n matrix is a smooth function of t. We express the solution
as

Y (t) = exp(Ω(t))Y0

and find Ω(t) as expansion (Magnus expansion)

Ω(t) =
∞∑
k=1

Ωk(t)

One finds for the first three terms

Ω1(t) =
∫ t

0

A(t1)dt1

Ω2(t) =
1
2

∫ t

0

dt1

∫ t1

0

dt2[A(t1, A(t2)]

Ω3(t) =
1
6

∫ t

0

dt1

∫ t1

0

dt2

∫ t3

0

dt3([A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]]).

Let

A(t) =
(

cos t sin t
− sin t cos t

)
.

Find Ω1, Ω2, Ω3.

Problem 54. Consider a model for the Belousov-Zhabotinskii reaction

dx

dt
= s(y − xy + x− qx2)

dy

dt
= s−1(fz − y − xy)

dz

dt
=w(x− z)

where f , s, q and w are positive real parameters and (x, y, z) are concentra-
tions and therefore nonnegative. Show the existence of periodic solutions
applying the theorem of Hopf.
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Problem 55. The time evolution equations of a particle of mass m and
electric charge q in an electric potential are given by

d2y

dt2
+
qΦ0

mr20
cos(Ωt)y(t) = 0

d2z

dt2
+
qΦ0

mr20
cos(Ωt)z(t) = 0

d2x

dt2
= 0.

Let
b :=

2qΦ0

mr20Ω2
, ζ :=

Ωt
2
.

Then we can write the first two differential equations as

d2y(ζ)
dζ2

+ 2b cos(2ζ)y(ζ) = 0

d2z(ζ)
dζ2

− 2b cos(2ζ)z(ζ) = 0.

This a special cases of the Mathieu differential equation

d2y(ζ)
dζ2

+ (a+ 2b cos(2ζ))y(ζ) = 0.

Study the stability of the general solution

y(ζ) =
∑
n∈Z

C2n(λ+e
+µζe+2inζ + λ−e

−µηe−2inζ)

with general integration constants λ± which have to mached with the inital
conditions and certain constants C2n and µ depending on a, b.

Problem 56. The autonomous system of ordinary differential equations
for energy level motion in quantum mechanics is given by

dEn
dε

= pn

dpn
dε

= 2
∑
m(6=n)

VnmVmn
En − Em

dVmn
dε

=
∑

`( 6=m,n)

Vm`V`n

(
1

Em − E`
+

1
En − E`

)
− 1
Em − En

Vmn(pm − pn)

where m 6= n and Vmn = Vnm. Consider the case with three level, i.e.
n = 0, 1, 2. Write down the differential equation for this case and solve the
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initial value problem

E0(ε = 0) = −1, E1(ε = 0) = 0, E2(ε = 0) = 1

p0(ε = 0) = 0, p1(ε = 0) = 0, p2(ε = 0) = 0

V01(ε = 0) = 1, V02(ε = 0) = 0, V12(ε = 0) = 1.

Problem 57. Consider the system of first order ordinary differential
equations

dzm
dt

= (iωm + 1− |zm|2)zm +
K

N

N∑
n=1

(zn − zm)

where zm(t) (m = 1, . . . , N) is a complex number representing the ampli-
tude rm(t) and phase θm(t) of the m-th oscillator, i.e.

zm(t) = rm(t) exp(iθm(t))

and ωm is the natural frequency. The natural frequency is chosen from a
distribution g(ω). Rewrite the system using rm(t) and θ(t). Discuss the
behaviour of the dynamical system.

Problem 58. The Möbuis band can be represented in parameter repre-
sentation as

x1(t, λ) = (1 + λ cos(t/2)) cos(t)
x2(t, λ) = (1 + λ cos(t/2)) sin(t)
x3(t, λ) = λ sin(t/2).

We consider λ as a fixed parameter. Find the autonomous system of dif-
ferential equations for x1(t), x2(t), x3(t).

Problem 59. Consider the autonomous system of differential equations

du1

dt
= u2u3

du2

dt
= u1u3

du3

dt
= u1u2.

(i) Show that

I =
1
2

(u2
1 − u2

2)
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is a first integral.
(ii) Show that the system can be written as

du
dt

= S∇I

where S is a 3× 3 skew-symmetric matrix (ST = −S) and

∇I =

 ∂I/∂u1

...
∂I/∂un

 .

Problem 60. Let u1(t),u2(t),u3(t) ∈ R3. Solve the initial value problem
of the nonlinear autonomous system of first order differential equations

du1

dt
= u2 × u3,

du2

dt
= u3 × u1,

du3

dt
= u1 × u2

where × denotes the vector product.

Problem 61. Let c be a constant. Solve the differential equations

u(x) +
du/dx

du/dx+ d2u/dx2
= c

u(x) +
du/dx

du/dx+
d2u/dx2

d2u/dx2 + d3u/dx3

= c.

Problem 62. Consider the autonomous system

du
dt

= Au + (1− r2)u

where u = (u1 u2 u3)T , r2 = u2
1 + u2

2 + u2
3 and A is the 3× 3 matrix

A =

 2µ 0 0
0 0

√
2

0 −
√

2 0

 .

Here µ is a bifurcation parameter. Discuss the behaviour of the system.

Problem 63. Study Hopf bifurcation for the coupled system of first order
differential equations

du1

dt
=−u2 + µu1 + v1(v2

1 + v2
2)
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du2

dt
= u1 + µu2 + v2(v2

1 + v2
2)

dv1
dt

= v2 + µv1 + u1(u2
1 + u2

2)

dv2
dt

=−v1 + µv2 + u2(u2
1 + u2

2)

where µ is the bifurcation parameter. Utilize the symmetry of the problem.

Problem 64. Solve the initial value problem of the autonomous system
of first order differential equations

du1

dt
= u1

du2

dt
= (1− u1)u2

du3

dt
= (1− u1)(1− u2)u3

...
dun
dt

= (1− u1)(1− u2) · · · (1− un−1)un.

Problem 65. Consider the autonomous system of differential equations

du1

dt
= c1u1

du2

dt
= c13u1u3

du3

dt
= c3u3

where c1, c3, c13 are nonzero bifurcation parameters. Find the fixed points.
Solve the initial value problem.

Problem 66. Consider the autonomous system of first order differential
equations

du1

dt
= −8u7,

du2

dt
= 4u5,

du3

dt
= 2(u4u7 − u5u6).

du4

dt
= 4u2u5 − u7,

du5

dt
= u6 − 4u2u4,

du6

dt
= −u1u5 + u2u7,

du7

dt
= u1u4 − 2u2u6 − 4u3.

(i) Show that this system admits the first integrals

I1(u) = u1 + 4u2 − 8u4, I2(u) = u1u2 + 4u6, I3(u) = u3 + u2
4 + u2

5,
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I4(u) = u2u3 + u4u6 + u5u7, I5(u) = −u1u3 + u2
6 + u2

7.

(ii) Consider the autonomous system in the complex domain (t→ z, uj(t)→
wj(z)) and perform a Painlevé analysis, i.e. insert the ansatz

wj(z) = (z − z0)−nj

∞∑
k=0

ckj(z − z0)k

where j = 1, . . . , 7.

Problem 67. Consider the first order autonomous system of ordinary
differential equations

duj
dt

= uj(uj+1 − uj−1), j = 1, . . . , N

and u0 = 0, uN+1 = 0. Solve the initial value problem.

Problem 68. Consider the driven van der Pol equation

d2x

dt2
+ a

dx

dt

(
x2 − 1

)
+ x = b cos(ωt) (1)

where a 6= 0. Extend the equation into the complex domain and perfom a
singular point analysis. Show that all of its solutions posses only square-
root singularities in the complex time plane.

Problem 69. Consider the differential equation

dx
dt

= P (t)x

where P (t) is periodic with principal period T and differentiable. Thus T is
the smallest positive number for which P (t+ T ) = P (t) and −∞ < t <∞.
Can we conclude that all solutions are periodic? For example, consider

dx

dt
= (1 + sin t)x.

Problem 70. (i) Find the first integrals of the system

dx1

dt
= x1x2 − x1x3

dx2

dt
= x2x3 − x1x2

dx3

dt
= x3x1 − x2x3
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(ii) Find the first integrals of the system

dx1

dt
= x1(c− x2 + x3)

dx2

dt
= x2(c− x3 + x1)

dx3

dt
= x3(c− x1 + x2).

Problem 71. Solve the initial value problem for the system of linear
differential equations

dc0
dt

=
1
2
iΩe−iφei(ω−ν)tc1

dc1
dt

=
1
2
iΩeiφe−i(ω−ν)tc0

where Ω, ω, ν are constant frequencies. Note the the system depends
explicitly on the time t. Then study the special case ω = ν.

Problem 72. Given the surface in R3

f(t, θ) =
((

1 + t sin
θ

2

)
cos θ,

(
1 + t cos

θ

2

)
sin θ, t sin

θ

2

)
where

t ∈
(
−1

2
,

1
2

)
θ ∈ R

(i) Build three models of this surface using paper, glue and a scissors. Color
the first model with the South African flag. For the second model keep t
fixed (say t = 0) and cut the second model along the θ parameter. For
the third model keep θ fixed (say θ = 0) and cut the model along the t
parameter. Submit all three models.
(ii) Describe the curves with respect to t for θ fixed. Describe the curve
with respect to θ for t fixed.

voluntary (iii) The map given above can also be written in the form

x(t, θ) =
(

1 + t sin
θ

2

)
cos θ

y(t, θ) =
(

1 + t cos
θ

2

)
sin θ

z(t, θ) = t sin
θ

2
.
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For fixed t the curve
(x(θ), y(θ), z(θ))

can be considered as a solution of a differential equation. Find this differ-
ential equation. Then t plays the role of a bifurcation parameter.

Problem 73. Consider the dynamical system of two coupled harmonic
oscillators

d2u1

dt2
+ ω2

1u1 = sin(u1 − u2),
d2u2

dt2
+ ω2

2u2 = sin(u2 − u1).

Solve the initial value problem.

Problem 74. (i) Solve the initial value problem of the linear autonomous
system of differential equations

du1

dt
= k1(u2 − u3)

du2

dt
= k2(u3 − u1)

du3

dt
= k3(u1 − u2)

where k1 = k2 = k3 = k.
(ii) Solve the initial value problem of the nonlinear autonomous system of
differential equations

du1

dt
= k1 sin(u2 − u3)

du2

dt
= k2 sin(u3 − u1)

du3

dt
= k3 sin(u1 − u2)

where k1 = k2 = k3 = k. Can the system show chaotic behaviour?
(iii) Solve the initial value problem of the nonlinear autonomous system of
differential equations

d2u1

dt2
= k1 sin(u2 − u3)

d2u2

dt2
= k2 sin(u3 − u1)

d2u3

dt2
= k3 sin(u1 − u2)

where k1 = k2 = k3 = k. Can the system show chaotic behaviour?
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Problem 75. Solve the initial value problem of the first order autonomous
system of differential equations

du1

dt
= u1,

du2

dt
= u1u2,

du3

dt
= u1u2u3.

Problem 76. Let u(t) ∈ R3. Solve the initial value problem for the
differential equation

d2u
dt2

= u× du
dt

where × denotes the vector product.

Problem 77. The Chazy class III third order differential equation is
given by

d3u

dt3
− 2u

d2u

dt2
+ 3

(
du

dt

)2

= 0.

Show that the differential equation admits the two-parameter particular
solution

u(t) = −6
t− c1

(t− c2)2

where c1, c2 arbitrary in the complex plane.

Problem 78. Let ω0 be real and positive. Solve the coupled system of
linear equations

d2u1

dt2
= −ω0

du2

dt
,

d2u2

dt2
= ω0

du1

dt
.

Problem 79. Show that the Lorenz model

du1

dt
= σ(u2 − u1)

du2

dt
= u1(r − u3)− u2

du3

dt
= u1u2 − bu3

can be written as

du
dt

= gradH1 × gradH2 + gradD

where

H1(u1, u2, u3) =
1
2

(u2
2 + (u3 − r)2), H2(u1, u2, u3) = σu3 −

1
2
u2

1
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and
D(u1, u2, u3) = −1

2
(σu2

1 + u2
2 + bu2

3)

Problem 80. Consider the nonlinear differential equation

3u
du

dx
= 2

du

dx

d2u

dx2
+ u

d3u

dx3
.

Show that u(x) = e−|x| is a solution in the sense of generalized function.

Problem 81. Study the system of differential equations

dθ1
dt

= ω1 + sin(θ1 − θ̄)

dθ2
dt

= ω2 + sin(θ2 − θ̄)

dθ3
dt

= ω3 + sin(θ3 − θ̄)

where
θ̄(t) =

1
3

(θ1(t) + θ2(t) + θ3(t)).

Hint. Consider the sum θ(t) := θ1(t) + θ2(t) + θ3(t).

Problem 82. Study Hopf bifurcation for the coupled oscillator

d2u1

dt2
=−u1 + (µ− u2

1 − αu2
2)
du1

dt
d2u2

dt2
=−u2 + (µ− u2

2 − αu2
1)
du2

dt
.

Problem 83. Let zm(t) = rm(t) exp(iθm(t)), ωm > 0, K > 0 and
m = 1, 2, . . . , N . Study the autonomous system of first order differential
equations

dzm
dt

= (iωm + 1− |zm|2)zm +
K

N

N∑
n=1

(zn − zm).

Problem 84. Consider the linear operators

L := − d2

dx2
+ u(x), A := −4

d3

dx3
+ 6u(x)

d

dx
+ 3

du

dx
.
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Let [, ] be the commutator. Show that the condition [L,A]ψ(x) = εψ(x)
provides the nonlinear third order differential equation

d3u

dx3
= 6u

du

dx
+ ε.

Problem 85. Consider the linear fourth order differential equation

d4u

dx4
= Eu.

Show that (even solution)

u(x) = A cos(kx) +B cosh(kx)

satisfies the differential equation with E = k4. Show that (odd solution)

u(x) = A sin(kx) +B sinh(kx)

satisfies the differential equation with E = k4.

Problem 86. The governing Einstein equations for the mixmaster metric
tensor fields are given by the autonomous system of second order ordinary
differential equations

d2f

dτ2
=

1
2

((e2g − e2h)2 − 4e4f )

d2g

dτ2
=

1
2

((e2h − e2f )2 − 4e4g)

d2h

dτ2
=

1
2

((e2f − e2g)2 − 4e4h)

where f , g, h are the scale factors of the metric tensor field and the deriva-
tive is with respect to the (logarithmic) time variable τ . Find the discrete
symmetries of the system. Show that this coupled system of differential
equations admits the first integral

I(f, g, h) = 4
(
df

dτ

dg

dτ
+
dg

dτ

dh

dτ
+
dh

dτ

df

dτ

)
−e4f−e4g−e4h+2(e2(f+g)+e2(g+h)+e2(h+f)).

Problem 87. (i) Consider the autonomous system of first order differen-
tial equations

duj
dt

= fj(u), j = 1, . . . , n
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where fj : Rn → R are analytic functions. Assume that the system is
invariant under the transformation u→ −u. Show that if v(t) satisfies the
system then w(t) = −v(t) also satisfies the system.
(ii) Assume that f(u) = f(−u). Show that if v(t) is a solution of the
system, then w(t) = −v(−t) is also a solution.

Problem 88. Consider an autonomous system of first order differential
equations

duj
dt

= fj(u), j = 1, . . . , n

where fj : Rn → R are C1 functions. The traditional flow box theorem
asserts that if f is a C1 vector field and u0 ∈ Rn is not a fixed point, i.e.
f(u0) 6= 0, then there is a diffeomorphism which maps the vector field f
near u0 to a constant vector field. In other words, the local flow of the
vector field f is conjugate via diffeomorphism to translation. Apply the
flow box theorem to the autonomous system in the plane

du1

dt
= − 3u2

2

1 + 2u2
,

du2

dt
=

1
1 + 2u2

(which admits no fixed points) and the transformation

v1(u1, u2) = u1 + u2
2, v2(u1, u2) = u2 + u2

2.

Problem 89. Consider the autonomous system

du1

dt
= f(u2),

du2

dt
= f(u3),

du3

dt
= f(u1)

where f : R → R is an analytic function. We also assume that the au-
tonomous system admits a fixed point at (0, 0, 0) and the first term in the
Taylor expansion of f around 0 is u. The following five functions with these
properties are studied

f1(u) = sin(u), f2(u) = arctan(u), f3(u) = sinh(u),

f4(u) = tanh(u), f5(u) = sinh−1(u).

First study the stability of the fixed pont (0, 0, 0). What are the discrete
symmetries of the autonomous system? Note that the divergence of the
vector field of the autonomous system is 0. Apply the Lie series technqiue
to find solutions of the initial value problem.

Problem 90. (i) Consider the autonomous systems of first order differ-
ential equation

duj
dt

= f(uj) + c

n∑
k=1,k 6=j

uk, j = 1, . . . , n (1)
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where c is a positive constant and f is an analytic function. Assume we
know the solution of duj/dt = f(uj) for j = 1, 2, . . . , n. What can be said
about the solution of (1)? Let n ≥ 3. Can we find a function f and a
constant c such that equation (1) shows chaotic behaviour?
(ii) Consider the autonomous systems of first order differential equation

duj
dt

= f(uj) + c

n∏
k=1,k 6=j

uk, j = 1, . . . , n (2)

where c is a positive constant and f is an analytic function. Assume we
know the solution of duj/dt = f(uj) for j = 1, 2, . . . , n. What can be said
about the solution of (2)? Let n ≥ 3. Can we find a function f and a
constant c such that equation (1) shows chaotic behaviour?

Problem 91. Consider the autonomous system of first order ordinary
differential equations

dx
dt

= f(x).

Assume that I is a first integral and that ∇I is nonzero. Then the system
can be written as

dx
dt

= f(x) = A(x)∇I(x)

where A is antisymmetric. Show that the matrix A is given by

A =
1
|∇I|2

(
f(∇I)T − (∇I)fT

)
.

Problem 92. Consider the Lorenz model

dx

dt
= σy − σx

dy

dt
=−xz + rx− y

dz

dt
=−xy − bz.

Find the fixed points of the system and study the stability.

Problem 93. Consider the dynamical system

dx

dt
= σy − σx, dy

dt
= −y + rx− xz, dz

dt
= −bz + xy (1)

where σ, r and b are control parameters. The behaviour of this system was
first investigated numerically by Lorenz in 1963 for r = 28, σ = 10 and
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b = 8
3 . It was found that the system starts a rotation around one of the

(unstable) focuses with amplitude increasing with time, thereby forming a
divergent spiral. After a number of such oscillations, the system suddenly
leaves this regime and goes monotonically towards the second available
(unstable) focus around which it starts again an oscillatory motion along a
divergent spiral. Again, after a certain number of oscillations around this
focus, the system jumps anew towards the vicinity of the previous focus,
from which it starts again a divergent oscillatory trajectory and so on.
The interesting thing is that the time intervals the system spends in the
vicinity of each focus before jumping into the vicinity of the other focus
are stochastically distributed and there is no regularity, whatsoever, in the
process, which nevertheless is created by the unfolding of a deterministic
(non-linear) dynamics. (i) Show that eliminating y in (1) and solving z in
terms of x2 we obtain the following equation for x(t)

d2x

dt2
+(1+σ)

dx

dt
+σ
(

1− r +
1

2σ2
x2 +

(
1− b

2σ

)∫ ∞
0

(x(t− τ))2 exp(−bτ)dτ
)
x = 0.

(2)
(ii) We assume that the motion started at −∞, Show that if b > 0 we can
split exp(−τ) into a δ-function and the deviation from it to obatin

d2x

dt2
+ (1 + σ)

dx

dt
+
dU

dx
+
((

σ − b

2

)∫ ∞
0

(x2(t− τ)− x2(t))e−bτdτ
)
x = 0

(3)
where

U(x) = σ

(
1− r

2
x2 +

1
4b
x4

)
(4)

depends on the history of motion. (iii) Discuss (3).

Problem 94. (i) Consider the autonomous systems of first order differ-
ential equation

duj
dt

= f(uj) + c

n∑
k=1,k 6=j

uk, j = 1, . . . , n (1)

where c is a positive constant and f is an analytic function. Assume we
know the solution of duj/dt = f(uj) for j = 1, 2, . . . , n. What can be said
about the solution of (1)? Let n ≥ 3. Can we find a function f and a
constant c such that equation (1) shows chaotic behaviour?
(ii) Consider the autonomous systems of first order differential equation

duj
dt

= f(uj) + c

n∏
k=1,k 6=j

uk, j = 1, . . . , n (2)
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where c is a positive constant and f is an analytic function. Assume we
know the solution of duj/dt = f(uj) for j = 1, 2, . . . , n. What can be said
about the solution of (2)? Let n ≥ 3. Can we find a function f and a
constant c such that equation (1) shows chaotic behaviour?

Problem 95. (i) Solve the initial value problem of the linear autonomous
system of differential equations

du1

dt
= k1(u2 − u3)

du2

dt
= k2(u3 − u1)

du3

dt
= k3(u1 − u2)

where k1 = k2 = k3 = k.
(ii) Solve the initial value problem of the nonlinear autonomous system of
differential equations

du1

dt
= k1 sin(u2 − u3)

du2

dt
= k2 sin(u3 − u1)

du3

dt
= k3 sin(u1 − u2)

where k1 = k2 = k3 = k. Can the system show chaotic behaviour?
(iii) Solve the initial value problem of the nonlinear autonomous system of
differential equations

d2u1

dt2
= k1 sin(u2 − u3)

d2u2

dt2
= k2 sin(u3 − u1)

d2u3

dt2
= k3 sin(u1 − u2)

where k1 = k2 = k3 = k. Can the system show chaotic behaviour?

Problem 96. Let N ≥ 2 and j = 0, 1, . . . , N − 1. Study the initial value
problem of the coupled system of differential equations

dxj
dt

= f(xj(t)) +
N−1∑
j=0

aij(h(xj(t))− h(xi(t))), i = 0, 1, . . . , N − 1
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where A = (aij) (i, j = 0, 1, . . . , N − 1) is the coupling matrix with aii = 0
for i = 0, 1, . . . , N − 1. Assume that N = 3, f(x) = 4x(1− x) and h(x) =
tanh(x).

Problem 97. Let f11, f22, f33, f44 be analytic functions fjj : R → R.
Consider the 4× 4 matrix

M =


f11 0 0 0
1 f22 0 1
0 0 f33 1
f ′11 f ′22 f ′33 0


where ′ denotes differentiation with respect to x. Find the determinant of
the matrix and write down the ordinary differential equation which follows
from det(M) = 0. Find solutions of the differential equation.

Problem 98. Let c > 0. Consider the autonomous system of first order
differential equations

du1

dt
=

1
2
u2(u3 − c)

du2

dt
=−1

2
u1(u3 − c)−

1
2
v3

du3

dt
= v2

dv1
dt

= v2u3 − v3u2

dv2
dt

= v3u1 − v1u3

dv3
dt

= v1u2 − v2u1.

Show that this system admits the first integrals

H = u2
1 + u2

2 +
1
2
u2

3 − v1

L= u1v1 + u2v2 +
1
2

(u3 + c)v3

K = (u2
1 − u2

2 + v1)2 + (2u1u2 + v2)2 + 2c((u3 − c)(u2
1 + u2

2) + 2u1v3).

Problem 99. Solve the initial value problem of the system of ordinary
differential equations

du1

dt
= u2u4 − u1u3
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du2

dt
=−du1

dt
du3

dt
=
du1

dt
du4

dt
=−du1

dt

with 0 < uj(t) < 1 (j = 1, 2, 3, 4) and

4∑
j=1

uj(t) = 1.

Problem 100. Study the coupled limit cycle system

du1

dt
= u1(r − u2

1 − u2
2)− u2 + s(u3 − u1)

du2

dt
= u2(r − u2

1 − u2
2) + u1 + s(u4 − u2)

du3

dt
= u3(r − u2

3 − u2
4)− u4 + s(u5 − u3)

du4

dt
= u4(r − u2

3 − u2
4) + u3 + s(u6 − u4)

du5

dt
= u5(r − u2

5 − u2
6)− u6 + s(u1 − u5)

du6

dt
= u6(r − u2

5 − u2
6) + u5 + s(u2 − u6).

with r = 1 and s = 2. Obviously (u1, u2, u3, u4, u5, u6) = (0, 0, 0, 0, 0, 0) is
a fixed point. Study the stability of the fixed point. Does Hopf bifurcation
occur? Now consider s as a bifurcation parameter. Does the system admit
limit cycles?

Problem 101. Consider the system of second order ordinary differential
equations

d2r
dt2

+
α

r2
dr
dt

+
µ

r3
r =

 0
0
0

 .

(i) Find

r× d2r
dt2

+
α

r2

(
r× dr

dt

)
.

(ii) Let L := r×dr/dt (angular momentum). Find the time evolution of L.
(iii) Find dL/dt× L.
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Problem 102. The coagulation equation for the concentrations of `-mers
u`(t), ` = 1, 2, 3, . . ., t ≥ 0

du`
dt

=
1
2

∑
j+k=`

jkujuk − `u`
∞∑
k=1

kuk

together with the initial condition u`(t = 0) = δ1,`. Show that the solution
of the initial value problem is given by

u`(t) =
``−2

`!
t`−1 exp(−`t)

for 0 ≤ t < 1.
(ii) Show that for t ∈ [0, 1) the quantity

∑∞
`=1 `u` is conserved.

(iii) Show that at t = 1 a singularity occurs where the second moment
diverge for t > 1.

Problem 103. Solve the initial value problem for the system of differen-
tial equations

d2u1

dt2
= − u1

(u2
1 + u2

2)3/2
,

d2u2

dt2
= − u2

(u2
1 + u2

2)3/2

with

u1(0) = 1/2, u2(0) = 0, du1(0)/dt = 0, du2(0)/dt =
√

3.

Problem 104. Let c1, c2, c3 be real constants. Solve the initial value
problem of the autonomoua system of first order ordinary differential equa-
tions

du1

dt
= c1 + c2u1 − c3u2

1,
du2

dt
= c2 − 2c3u1,

du3

dt
= c3 exp(u2)

with u1(0) = u2(0) = u3(0) = 0.

Problem 105. Study the initial value problem for the two coupled oscil-
lator

d2u1

dt2
= −k1u1 − k2(u1 − u2),

d2u2

dt2
= −k1u2 + k2(u1 − u2).

Problem 106. Consider the autonomous system of first order differential
equations

du1

dt
= u1(u1−u2−u3),

du2

dt
= u2(u2−u3−u1),

du3

dt
= u3(u3−u1−u2).
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Introduce the new variables

v1 := u1 + u2 + u3, v2 := u1u2 + u2u3 + u3u1, v3 := u1u2u3

and express the system in these variables.

Problem 107. Consider the Darboux-Halphen system

dx1

dt
= x2x3−x1x2−x3x1,

dx2

dt
= x3x1−x1x2−x2x3,

dx3

dt
= x1x2−x3x1−x2x3

with the corresponding vector field

V = (x2x3−x1x2−x3x1)
∂

∂x1
+(x3x1−x1x2−x2x3)

∂

∂x2
+(x1x2−x3x1−x2x3)

∂

∂x3
.

(i) Is the autonomous system of differential equations invariant under the
transformation (αδ − βγ 6= 0)

(t, xj) 7→
(
αt+ β

γt+ δ
, 2γ

γt+ δ

αδ − γβ
+

(γt+ δ)2

αδ − γβ
xj

)
with j = 1, 2, 3.
(ii) Consider the vector fields

U = 2(x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
), W =

∂

∂x1
+

∂

∂x2
+

∂

∂x3
.

Find the commutators [U, V ], U,W ], [V,W ]. Do we have basis of a Lie
algebra? Discuss.

Problem 108. Consider the system of second order differential equations

m1
d2u1

dt2
= f(u2 − u1), m2

d2u2

dt2
= −f(u2 − u1)

where f : R→ R is a smooth function.
(i) Let v = u2 − u1. Show that

m
d2v

dt2
= f(v)

where 1/m = 1/m1 + 1/m2.
(ii) Show that

d

dt

(
m1

du1

dt
+m2

du2

dt

)
= 0.
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Problem 109. Solve the initial value problem for the infinite system of
linear equations

dC1

dt
= −C1 −N,

dN

dt
= −N

dCk
dt

= Ck−1 − Ck, k ≥ 2

with Ck(t = 0) = δ1k.

Problem 110. Let C be a fixed nonzero vector in R3. Solve the initial
value problem of the first order autonomous system of differential equations
in R3

du
dt

= u×C

where × denotes the vector product, i.e. du1/dt
du2/dt
du3/dt

 =

u2c3 − u3c2
u3c1 − u1c3
u1c2 − u2c1


with the vector field

V = (u2c3 − u3c2)
∂

∂u1
+ (u3c1 − u1c3)

∂

∂u2
+ (u1c2 − u2c1)

∂

∂u3
.

First find the fixed points and study their stability. The bifurcation pa-
rameters are c1, c2, c3. Find the first integeral of the dynamical system if
there are any.

Problem 111. Let

u(t) =

u1(t)
u2(t)
u3(t)

 , C =

 c1
c2
c3


where we assume that C is nonzero vector. We consider the autonomous
system of first differential equations

du
dt

= u× (u×C)

or written in components du1/dt
du2/dt
du3/dt

 =

 c1(−u2
2 − u2

3) + c2u1u2 + c3u1u3

c1u1u2 + c2(−u2
1 − u2

3) + c3u2u3

c1u1u3 + c2u2u3 + c3(−u2
1 − u2

2)

 .
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Thus the corresponding vector field is given by

V = (c1(−u2
2 − u2

3) + c2u1u2 + c3u1u3)
∂

∂u1

+(c1u1u2 + c2(−u2
1 − u2

3) + c3u2u3)
∂

∂u2
+ (c1u1u3 + c2u2u3 + c3(−u2

1 − u2
2))

∂

∂u3
.

(i) Apply the Jacobi identity to the right-hand side of the system of differ-
ential equations. Discuss.
(ii) The fixed points are the solutions of the equations

u× (u×C) = 0.

Find the fixed points.
(iii) Write down the variational equation and then study the stability of
the fixed points.
(iv) Let LV (.) denote the Lie derivative and Ω = du1∧du2∧du3. Calculate
LV Ω and thus find the divergence of the vector field.
(v) Let

α = u1du2 + u2du3 + u3du1.

Find LV α. Discuss.
(vi) Consider the vector fields

S = u1
∂

∂u1
+ u2

∂

∂u2
+ u3

∂

∂u3
.

Find the commutator [V, S]. Discuss.
(vii) Is u2

1 + u2
2 + u2

3 a first integral?

Problem 112. Consider the system of first order ordinary differential
equations

d2u1

dx2
= u1u2,

d2u2

dx2
= u1u2.

Show that a solution is given by

u1(x) = u2(x) =
u0

(1 + (u0/6)1/2x)2

with u1(0) = u2(0) = u0.

Problem 113. Solve the initial value problem of dx1/dt
dx2/dt
dx3/dt

 = x(t)× y(t) =

x2(t)y3(t)− x3(t)y2(t)
x3(t)y1(t)− x1(t)y3(t)
x1(t)y2(t)− x2(t)y1(t)
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dy2/dt
dy3/dt

 = y(t)× x(t) =

 y2(t)x3(t)− y3(t)x2(t)
y3(t)x1(t)− y1(t)x3(t)
y1(t)x2(t)− y2(t)x1(t)


First find the fixed points (if there are any) and study their stability. Find
first integrals (if there are any).

Problem 114. Study the system of nonlinear differential equations

du1

dt
= (2− πu2)u1,

du−1
2

dt
= 2π3u2

1.

This system plays a role for renormalization groups.

Problem 115. Solve the initial value problem of linear system of differ-
ential equations

du1/dt
du2/dt
du3/dt
du4/dt

 =


0 1 0 0
0 0 1 0
0 0 0 1
−c0 −c1 −c2 −c3



u1

u2

u3

u4

+


0
0
0
d

 .

Problem 116. Let k = 1, 2, . . .. Show that the function

fk(z) =
∞∑
n=1

zkn

(n!)k

satisfies a linear differential equation of order k with coefficients in C(z).

Problem 117. Show that the third order ordinary linear differential
equation

d3u

dt3
= 0

admits the seven Lie symmetries
∂

∂t
,

∂

∂u
, t

∂

∂t
, t

∂

∂u

t2
∂

∂u
, u

∂

∂u
, ut

∂

∂u
+

1
2
t2
∂

∂t
.

Find the commutators.

Problem 118. Consider the coupled system of second order ordinary
differential equations

d2x1

dt2
=−x1 + (ε− x2

1 − αx2
2)
dx1

dt
d2x2

dt2
=−x2 + (ε− x2

2 − αx2
1)
dx2

dt
.
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Show that if the bifurcation parameter ε varies through 0, there is a Hopf
bifurcation with D4 symmetry. The D4 symmetry consists of four rotations
each of π/2 and four reflection mirrors with each angle betweem them being
π/4.



Chapter 5

Elliptic Functions and
Differential Equations

The Jacobi elliptic functions can be defined as inverse of the elliptic integral
of first kind. Thus, if we write

x(φ, k) =
∫ ∞

0

dx√
1− k2 sin2 s

where k ∈ [0, 1] we can define the following functions

sn(x, k) := sin(φ), cn(x, k) := cos(φ), dn(x, k) :=
√

1− k2 sin2 φ.

Here k is called the modulus. For k = 0 we obtain

sn(x, 0) ≡ sin(x), cn(x, 0) ≡ cos(x), dn(x, k) ≡ 1

and for k = 1 we have

sn(x, 1) ≡ tanh(x), cn(x, 1) ≡ dn(x, 1) ≡ 2
ex + e−x

.

We have the following identities

sn(x, k)≡ 2sn(x/2, k)cn(x/2, k)dn(x/2, k)
1− k2sn4(x/2, k)

cn(x, k)≡ 1− 2sn2(x/2, k) + k2sn4(x/2, k)
1− k2sn4(x/2, k)

dn(x, k)≡ 1− 2k2sn2(x/2, k) + k2sn4(x/2, k)
1− k2sn4(x/2, k)

.
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The expansions of the Jacobi elliptic functions in powers of x up to order
4 are given by

sn(x, k) = x− (1 + k2)
x3

3!
+ · · ·

cn(x, k) = 1− x2

2!
+ (4k2 + k2)

x4

4!
− · · ·

dn(x, k) = 1− k2x
2

2!
+ (4k2 + k2)

x4

4!
− · · ·

For x sufficiently small this will be a good approximation.

Problem 1. Consider the equations of motion

I1
dω1

dt
= (I2−I3)ω2ω3, I2

dω2

dt
= (I3−I1)ω3ω1, I3

dω3

dt
= (I1−I2)ω1ω2.

(1)
We assume that all the principle moments of inertia Ik have different values.
(i) Show that (1) admits the constant of motion

l2 := I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3 , 2E := I1ω

2
1 + I2ω

2
2 + I3ω

2
3 . (2)

(ii) Show that we can to eliminate two of the variables from (1) to obtain
an equation for the third alone.
(iii) Find the solution of this equation.

Problem 2. Consider the equation(
dr

dx

)2

= Ar4 +Br2 + C +Dr−2 (1)

where A, B, C and D are given scalar constants. Show that the equation
can be reduced to the standard form(

dy

dt

)2

= µ2(1− y2)(1− k2y2) (2)

by the change of variables

r2 := ay2 + b, y := sn(µx, k) (3)

and a, b, µ, are constant.

Problem 3. Establish the derivatives

d

dx
sn(x, k) = cn(x, k)dn(x, k),

d

dx
cn(x, k) = −sn(x, k)dn(x, k),

d

dx
dn(x, k) = −k2sn(x, k)cn(x, k).

(1)
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Problem 4. Show that y(t) = cn(µt, k) and r(t) = dn(µt, k) are solutions
of the differential equations(

dy

dt

)2

= µ2(1− y2)(k′2 + k2y) (1)

(
dr

dt

)2

= µ2(1− r2)(r2 − k′2) (2)

where k′2 := 1− k2.

Problem 5. Find a change of variables that transforms(
dw

dx

)2

= Aw +Bw2 + Cw3 +Dw4 (1)

into an equation of the form(
dr

dx

)2

= A′r4 +B′r2 + C ′ +D′r−2. (2)

Problem 6. Show that

dn(z + y)dn(z − y) =
dn2y − k3cn2ysn2z

1− k2sn2ysn2z
.

Problem 7. Prove that

1 + dn2z =
2dn2z

1− k2sn4z
. (1)

Problem 8. Prove that

sn(z + y) =
snzcnydny + snycnzdnz

1− k2sn2zsn2y
. (1)

Problem 9. Show that

sn(z+ iK ′) =
1

ksnz
=

1
kz

(
1− 1

6
(1 + k2)z2 + · · ·

)−1

=
1
kz

+
1 + k2

6k
z+ · · ·

and similarly

cn(z + iK ′) =
−i
kz

+
2k2 − 1

6k
iz + · · ·
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and

dn(z + iK ′) = − i
z

+
2− k2

6
iz + · · ·

It follows that at the point z = iK ′; the functions snz, cnz, dnz have simple
poles, with the residues

1
k
, − i

k
, −i

respectively.

Problem 10. Directed by the expansion

1
sin2 z

=
∞∑

n=−∞

1
(z − nπ)2

(1)

Weistrass defined a new function (elliptic function of Weierstrass)

℘(z) =
1
z2

+
′∑

m,n

(
1

(z − 2mω − 2nω′)2
− 1

(2mω + 2nω′)2

)
(2)

where the summation is taken over all positive and negative integral values
of m and n, including zero, except when m and n are simultaneously zero. ω
and ω′ are two numbers the ration of which is nor real. Note that cosec(α) =
1/ sin(α). Prove that

℘(z) = C +
(

π

2ω1

)2

cosec2

(
z − 2nω2

2ω1
π

)
(3)

where

C := −
(

π

2ω1

)2
(

1
3

+
∞∑

n=−∞
cosec2 2nω2

ω1
π

)
. (4)

(i) Show that the function ℘(z) is an even function of z, i.e. it satisfies the
equation

℘(z) = ℘(−z). (5)

(ii) Show that
℘(z + 2ω1) = ℘(z). (6)

(iii) Show that
℘(z + 2ω2) = ℘(z) (7)

and generally
℘(z + 2mω1 + 2nω2) = ℘(z)

where m and n are any integers. Therefore the function ℘(z) admits the
two periods 2ω1 and 2ω2.
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Problem 11. Show that the function ℘(z) satisfies the differential equa-
tion (

d℘

dz

)2

= 4℘3(z)− g2℘(z)− g3 (1)

where g2 and g3 (called the invariants) are given in terms of the periods of
℘(z) by the equations

g2 = 60
∑

(2mω1 + 2nω2)−4, g3 = 140
∑

(2nω1 + 2nω2)−6. (2)

Show that this differential equation can be written in the form(
dt

dz

)2

= 4t3 − g2t− g3 (3)

where
t = ℘(z) (4)

and therefore (since ℘(z) is infinite when z is zero) we have

z =
∫ ∞
℘(z)

(4t3 − g2t− g3)−
1
2 dt (5)

which is the required expression of ℘(z) in terms of an integral.

Problem 12. If y = ℘(z), show that

−1
2

d3y

dz3(
dy
dz

)3 +
4
3

(
d2y
dz2

)2

(
dy
dz

)4 =
3
16

((y − e1)−2 + (y − e2)−2 + (y − e3)−2)

−3
8
y(y − e1)−1(y − e2)−1(y − e3)−1 (1)

where e1, e2, e3 are the roots of the equation

4y3 − g2y − g3 = 0. (2)

Problem 13. Consider the differential equation∣∣∣∣∣∣
1 ℘(x) ℘′(x)
1 ℘(z) ℘′(z)
1 ℘(y) ℘′(y)

∣∣∣∣∣∣ = 0. (1)

Show that

℘(z + y) =
1
4

(
℘′(z)− ℘′(y)
℘(z)− ℘(y)

)2

− ℘(z)− ℘(y). (2)
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Problem 14. Integrate

(ax4 + 4bx3 + 6cx2 + 4dx+ e)−
1
2 . (1)

Problem 15. Solve the the integration-problem discussed in the previous
problem.

Problem 16. Show that the theorem given above may be stated some-
what differently as follows.

Problem 17. The function ζ(z) is defined by the differential equation

dζ(z)
dz

= −℘(z) (1)

with the condition that ζ(z) − z−1 be equal to zero when z = 0. Since
the infinite series which represents ℘(z) is uniformly convergent, it can be
integrated term by term. Show that

ζ(z) = −
∫

(z−2 +
∑

((z − 2mω1 − 2nω2)−2 − (2mω1 + 2nω2)−2))dz. (2)

The summation is extended over all positive and negative integer and zero
values of m and n, except simultaneous zero values.
(ii) Show that

ζ(z) = z−1+
∑

((z−2mω1−2nω2)−1+(2mω1+2nω2)−1+z(2mω1+2nω2)−2).
(3)

Hint: Since the condition, which ζ(z) has to satisfy at z = 0, is satisfied by
this choice of the constant of integration.

Problem 18. If z + y + z = 0, show that

(ζ(z) + ζ(y) + ζ(z))2 + ζ ′(x) + ζ ′(y) + ζ ′(z) = 0. (1)

Problem 19. The function

σ(z;ω1, ω2) = z
∏
k

′
(

1− z

Ωk

)
exp

[
z

Ωk
+

1
2

(
z

Ωk

)2
]

(1)

with
Ωk = mkω1 + nkω2 (2)
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where mk, nk is the sequence of all pairs of integers. The prime after the
product sign indicates that the pair (0, 0) should be omitted. ω1 and ω2

are two complex numbers with

=
(
ω1

ω2

)
6= 0. (3)

In the following the dependence on ω1 and ω2 will be omitted. The logarith-
mic derivative σ′(z)/σ(z) where σ′(z) ≡ dσ/dz is the meromorphic function
ζ(z) of Weierstrass. The function ℘(z) = −ζ ′(z) is a meromorhic, doubly
periodic (or elliptic) function with periods ω1, ω2 whose only singularities
are double poles mω1 + nω2. We find

℘(z;ω1, ω2) =
1
z2

+
∑
k

′
(

1
(z − Ωk)2

− 1
(Ωk)2

)
. (4)

Remark: The function ℘ is called Weierstrass’ ℘ function.
(i) Show that

σ(z) = z + c5z
5 + c7z

7 + · · · (5)

(ii) Show that

σ(2u)
σ4(u)

= −℘′(u), 2ζ(2u)− 4ζ(u) =
℘′′(u)
℘′(u)

. (6)

Problem 20. Let a(q) be a meromorphic function. Let r, k, l =
1, 2, . . . , N . Assume that a satifies the following equation

a(qk − qr)a′(qr − ql)− a′(qk − qr)a(qr − ql)
a(qk − ql)

= g(qk − qr)− g(qr − ql) (1)

where a′ denotes differentiation with respect to the arguments and k 6= l.
Let

U(q) = a2(q). (2)

Show that

(U(x)U ′(y)−U ′(x)U(y))+(U(y)U ′(z)−U ′(y)U(z))+(U(z)U ′(x)−U ′(z)U(x)) = 0
(4)

where
x+ y + z = (qk − qr) + (qr − ql) + (ql − qk) = 0. (5)

Problem 21. A large class of polynomials can be reduced to solving a
differential equation of the standard form(

dy

dx

)2

= (1− y2)(1− k2y2) (1)
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for 0 ≤ k ≤ 1 and −1 ≤ y ≤ 1. The solution of this equation for the
conditions

y(x = 0) = 0,
dy(x = 0)

dx
> 0 (2)

is denoted by
y = sn(x, k). (3)

This function depends on the value of the parameter k, which is called the
modulus. Direct integration of (1) produces the inverse function

x = sn−1y =
∫ y

0

dy

((1− y2)(1− k2y2))1/2
. (4)

(i) Show that it is an odd function of y, which increases steadily from 0 to

K(k) :=
∫ 1

0

dy

((1− y2)(1− k2y2))1/2
. (5)

as y increases from 0 to 1.
(ii) Show that y = sn(x, k) is an odd function of x, and it has period 4K.
This means

sn(x+ 4K(k), k) = sn(x, k). (6)

The integral (5) is called a complete elliptic integral of the first kind. The
function sn(x, k) is called a Jacobi elliptic function.
(iii) Show that it can be evaluated by a change of variables and a series
expansion

K(k) =
∫ π/2

0

du

(1− k2 sin2 u)1/2
=
∫ π/2

0

(
1 +

k2

2
sin2 u+ · · ·

)
du

=
π

2

(
1 +

∞∑
n=1

(
1 · 3 · . . . · (2n− 1)

2 · 4 · . . . · 2n

)2

k2n

)
. (7)

Remark: Two other Jacobi elliptic functions cn x and dn x can be defined
by the equations

cn2(x, k) = 1−sn2(x, k) cn(0, k) = 1, dn2(x, k) = 1−k2sn2(x, k) dn(0, k) = 1.
(8)

Problem 22. Prove the following identity for the Jacobi elliptic functions

k2sn(u+ a, k)cn(u− v, k)sn(v + a, k) = dn(u− v, k)− dn(u+ a, k)dn(v + a, k)
sn(u+ a, k)dn(u− v, k)sn(v + a, k) = cn(u− v, k)− cn(u+ a, k)cn(v + a, k).
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Problem 23. Consider (elliptic cylindrical coordinates)

u1(α, β, φ, k) = sn(α, k)dn(β, k′) cos(φ), u2(α, β, φ, k) = sn(α, k)dn(β, k′) sin(φ),

u3(α, β, k) = dn(α, k)sn(β, k′), u4(α, β, k) = cn(α, k)cn(β, k′)

where k and k′ =
√

1− k2 are the modulus and complementary modulus,
respectively. Show that

u2
1 + u2

2 + u2
3 + u2

4 = 1.

Problem 24. The Jacobi elliptic functions sn(x, k), cn(x, k), dn(x, k)
with k ∈ [0, 1] and k2 + k′2 = 1 have the properties

sn(x, 0) = sin(x), cn(x, 0) = cos(x), dn(x, 0) = 1

and

sn(x, 1) =
ex − e−x

ex + e−x
, cn(x, 1) =

2
ex + e−x

= dn(x, 1).

We define

u1(x, y, k, k′) = sn(x, k)dn(y, k′)
u2(x, y, k, k′) = cn(x, k)cn(y, k′)
u3(x, y, k, k′) = dn(x, k)sn(y, k′).

(i) Find u1(x, y, 0, 1), u2(x, y, 0, 1), u3(x, y, 0, 1) and calculate u2
1(x, y, 0, 1)+

u2
2(x, y, 0, 1) + u2

3(x, y, 0, 1).
(ii) Find u1(x, y, 1, 0), u2(x, y, 1, 0), u3(x, y, 1, 0) and calculate u2

1(x, y, 1, 0)+
u2

2(x, y, 1, 0) + u2
3(x, y, 1, 0).



Chapter 6

Nonautonomous Systems

Problem 1. Consider the driven van der Pol equation

d2u

dt2
+ a

du

dt

(
u2 − 1

)
+ u = b cos(ωt) (1)

where a 6= 0. Extend the equation into the complex domain and perfom a
singular point analysis. Show that all of its solutions posses only square-
root singularities in the complex time plane.

Problem 2. Consider the differential equation

du
dt

= P (t)u

where P (t) is periodic with principal period T and differentiable. Thus T is
the smallest positive number for which P (t+ T ) = P (t) and −∞ < t <∞.
Can we conclude that all solutions are periodic? For example, consider

du

dt
= (1 + sin t)u.

Problem 3. Solve the initial value problem for the system of linear
differential equations

dc0
dt

=
1
2
iΩe−iφei(ω−ν)tc1

dc1
dt

=
1
2
iΩeiφe−i(ω−ν)tc0.
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where Ω, ω, ν are constant frequencies. Note the the system depends
explicitly on the time t. Then study the special case ω = ν.

Problem 4. Consider the differential equations

d2q

dt2
+ ω2(t)q = 0 (1)

and
d2ρ

dt2
+ ω2(t)ρ =

1
ρ3
. (2)

Show that under the invertible point transformation

Q(T (t)) =
q(t)
ρ(t)

, T (t) =
∫ t 1

ρ2(s)
ds (3)

(1) takes the form
d2Q

dT 2
+Q = 0 (4)

where ρ satisfies (2). We have

dQ

dt
=
dQ

dT

dT

dt
=

1
ρ

dq

dt
− q 1

ρ2

dρ

dt
(5a)

and
dT

dt
=

1
ρ2
. (5b)

Thus
dQ

dT

1
ρ2

=
1
ρ

dq

dt
− q

ρ2

dρ

dt
. (6)

Problem 5. A system of differential equations describing the forced
negative-resistance oscillator is given by

L
di(t)
dt

+Ri(t) + v(t) =E cos(ωt)

i1(t) =C
dv(t)
dt

, i(t) = i1(t) + i2(t)

where the voltage-current characteristic is given by

i2(t) = f(v(t)) ≡ −Sv(t)
(

1− v2(t)
V 2
s

)
with S = 1/R and Vs constants. R is the resistance of the inductor L.
Write these equations in dimensionless form using the MKSA-system.
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Hint. Note that 1V = 1m2s−3kgA−1 and we have the following dimensions

[R] = 1V A−1 = 1Ohm, [C] = 1AsV −1, [L] = 1V sA−1 = 1Henry

[v] = [Vs] = [E] = 1V, [i] = 1A, [t] = 1s, [ω] = 1s−1 .

Problem 6. Consider the driven anharmonic system

d2u

dτ2
+ k

du

dτ
− au+ bu3 = A cos(ω̄τ)

where k, a, b > 0. Find the differential equation under the transformation

t(τ) = τ
√

2a, x(t(τ)) = u(τ)

√
b

a
.

Problem 7. The driven Morse oscillator is given by

d2u

dt2
+ α

du

dt
+ β exp(−u)(1− exp(−u)) = k cos(ωt).

Find the driven Morse oscillator under the transformation

t(τ) = τ, v(τ) = exp(−u(t(τ)).

Problem 8. Find solutions of the linear system of non-autonomous first
order differential equations(

du1/dt
du2/dt

)
=
(

cos(t) − sin(t)
sin(t) cos(t)

)(
u1

u2

)
.

Problem 9. Study Hill’s equation

d2u

dt2
= −f(t)u, f(t+ T ) = f(t)

where

f(t) :=
{
ω2 + ε, 0 ≤ t ≤ π
ω2 − ε, π ≤ t < 2π

and f(t+2π) = f(t). Derive the shape of the Arnold tongues for 0 < ε� 1.

Problem 10. Study the initial value problem of the second order differ-
ential equation

d2u

dt2
+ k

du

dt
+ ω2u = C1 cos(ωt) + C2 sin(ωt)

with u(0) > 0 and du(0)/dt > 0.



Chapter 7

Hamilton Systems

Consider the Hamilton function

H(p,q) =
N∑
k=1

p2
k

2mk
+ V (q) (1)

The first term of the right hand side is the kinetic part of the Hamilton
function and the second term is the potential part. Then the Hamilton
equations of motion are given by

dpj
dt

= −∂H
∂qj

,
dqj
dt

=
∂H

∂pj
. (2)

From (1) and (2) we find
d2q
dt2

= −∂V
∂q

. (3)

A function I(p(t),q(t), t) is called a first integral if

dI

dt
≡

N∑
j=1

(
∂I

∂pj

dpj
dt

+
∂I

∂qj

dqj
dt

)
+
∂I

∂t
= 0. (4)

Inserting (2) into (4) yields

N∑
j=1

(
∂I

∂qj

∂H

∂pj
− ∂I

∂pj

∂H

pqj

)
+
∂I

∂t
= 0. (5)

126
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The Poisson bracket is defined as

{A(p,q), B(p,q)} :=
N∑
k=1

(
∂A

∂qk

∂B

∂pk
− ∂A

∂pk

∂B

∂qk

)
. (6)

Definition. Two first integrals I1 and I2 are called in involution if

{I1, I2} = 0.

Definition. A Hamilton system is called integrable if there are n first
integrals.

Problem 1. Consider the Toda lattice with cyclic boundary conditions
and two equal particles. The Hamilton function for this system can be
written as

H(p,q) =
p2
1

2m
+

p2
2

2m
+

1
2
V0(ea(q1−q2) + ea(q2−q1) − 2) (1)

where V0 and a are constants which fix the scale of the potential. Consider
a canonical transformation to center-of-mass and relative coordinates

P := p1 + p2, p :=
1
2

(p1 − p2) (2a)

Q :=
1
2

(q1 + q2), q := q1 − q2. (2b)

Assume that P = 0. Find the Hamilton function for this coordinate system.

Problem 2. Given the Hamilton function

H(pρ, pζ , ρ, ζ) =
1
2
p2
ρ +

1
2
p2
ζ + V (ρ, ζ) (1)

with

V (ρ, ζ) =
1
2
ρ2 +

1
2
λ2ζ2 +

ν2

2ρ2
+

1
(ρ2 + ζ2)1/2

(2)

and
pρ :=

dρ

dt
, ρζ :=

dζ

dt
. (3)

This Hamilton function describes the relative motion of two charged par-
ticles in a Paul trap in the pseudo potential approximation with λ and
ν related to the asymmetry of the time average trapping potential and
the relative angular momentum, respectively. It can be interpreted as the
Hamilton function of a single particle moving in two dimensions, ρ and ζ,
respectively.
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(i) Show that the equations of motion derived from (1) are

d2ρ

dt2
=
ν2

ρ3
− ρ+

ρ

(ρ2 + ζ2)3/2
, (4)

d2ζ

dt2
= −λ2ζ +

ζ

(ρ2 + ζ2)3/2
. (5)

(ii) The Hamilton function H is conservative and autonomous. Therefore,
E, the total energy of the system, is a constant of the motion. Show that for
arbitrary ν two further integrals of the motion exist for λ = 2 and λ = 1

2 ,
respectively.
(iii) Show that the first integral F , which applies for the case λ = 2, is
given by

F

(
ρ,
dρ

dt
, ζ,

dζ

dt
, ν

)
= ζ

(
dρ

dt

)2

− ρdζ
dt

dρ

dt
+

ζ

(ρ2 + ζ2)1/2
− ρ2ζ +

ν2ζ

ρ2
. (6)

(iv) Show that for λ = 1
2 a first integral is given by

G

(
ρ,
dρ

dt
, ζ,

dζ

dt
, ν

)
= I2

ρ + I2
φ + ν2(ρ2 + ζ2) (7)

where

Iρ :=
ν2

ρ
+ ρ

(
dζ

dt

)2

− ζ dρ
dt

dζ

dt
+

ρ

(ρ2 + ζ2)1/2
− 1

4
ζ2ρ (8)

and

Iφ := −ν
ρ

(
ρ
dρ

dt
+ ζ

dζ

dt

)
. (9)

Problem 3. Let
r := (x, y, z) (1)

be a triplet of dynamical variables (canonical triplet) which span a three-
dimensional phase space. This is a formal generalization of the conventional
phase space spanned by a canonical pair (p, q). Next introduce two func-
tions, H and G, of (x, y, z), which serve as a pair of Hamilton functions
to determine the motion of points in phase space. We define the following
Hamilton equations

dx

dt
=
∂(H,G)
∂(y, z)

dy

dt
=
∂(H,G)
∂(z, x)

dz

dt
=
∂(H,G)
∂(x, y)

(2)

or in vector notation
dr
dt

= ~∇H × ~∇G. (3)



Hamilton Systems 129

(i) Show that for any function F (x, y, z)

dF

dt
=
∂(F,H,G)
∂(x, y, z)

= ~∇F · (~∇H × ~∇G). (4)

We may call the right-hand side of (2) a generalized Poisson bracket, to be
denoted by [F,H,G].

(ii) Show that the generalized Poisson bracket is antisymmetric under in-
terchange of any pair of its components. (iii) Show that

dH

dt
= 0,

dG

dt
= 0 (5)

i.e., both H and G are constants of motion.
(iv) Show that the orbit of a system in phase space is thus determined as
the intersection of two surfaces,

H(x, y, z) = C1, G(x, y, z) = C2 (6)

where C1 and C2 are constants.
(v) Show that the velocity field dr/dt (r = (x, y, z)) is divergenceless,

~∇ · (~∇H × ~∇G) ≡ 0 (7)

and that this amounts to a Liouville theorem in the three dimensional phase
space.

Problem 4. Consider the Hamilton function

H(p, q) =
1
2

(p2 + e−2q).

Find the Hamilton equations of motion and solve the initial value problem
p(0) = 0, q(0) = 0.

Problem 5. The construction of integrable Hamilton systems can be
extended as follows: In Nambu mechanics the phase space is spanned by an
n-tuple of dynamical variables ui (i = 1, . . . , n). The equations of motion of
the Nambu mechanics (i.e., the autonomous system of first order ordinary
differential equations) is now constructed as follows: Let Ik : Rn → R
(k = 1, . . . , n− 1) be smooth functions. Then

dui
dt

=
∂(ui, I1, . . . , In−1)
∂(u1, u2, . . . , un)

, (1)



130 Problems and Solutions

where ∂(u1, I1, . . . , In−1)/∂(u1, u2, . . . , un) denotes the Jacobian. Conse-
quently, the equations of motion can also be written as (summation con-
vention)

dui
dt

= εijk...`∂jI1...∂`In−1 (2)

where εijk...` is the generalized Levi-Cevita symbol and ∂j ≡ ∂/∂uj . Show
that I1, I2, . . . , In−1 are first integrals of (1).

Problem 6. In the discussion of the modulational instability of a Lang-
muir condensate one finds the following set of equations

(i
d

dt
+ δ1)A1 = −Γ(|A0|2A1 +A2

0A
∗
2) (1a)

(i
d

dt
+ δ2)A2 = −Γ(|A0|2A2 +A2

0A
∗
1) (1b)

i
d

dt
A0 = −Γ(A0(|A1|2 + |A2|2) + 2A∗0A1A2) (1c)

where A0, A1, A2 are complex quantities and δ1, δ2, and Γ are real constants.
(i) Show that system (1) can be derived from a Hamilton function H given
by

H(A,A∗) = δ1|A1|2+δ2|A2|2+Γ(|A0|2(|A1|2+|A2|2)+A2
0A
∗
1A
∗
2+A∗20 A1A2)

(2)
using the canonical equations

i
dAj
dt

= − ∂H
∂A∗j

, j = 1, 2, 3 (3)

where the Aj and A∗j are the canonically conjugate variables.
(ii) Show that system (1) can also be derived from a Langragian L, where

L(A, Ȧ) =
1
2
i

2∑
j=0

(AjȦ∗j −A∗j Ȧj)−H. (4)

(iii) As H does not contain the time explicitly, it is an integral of the motion.
Show that L is invariant under the gauge transformation

Aj → Aj exp(iφ). (5)

(iv) We define

{C1, C2} :=
2∑
j=0

(
∂C1

∂Aj

∂C2

∂A∗j
− ∂C1

∂A∗j

∂C2

∂Aj

)
. (6)
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Let

C1 =
2∑
j=0

|Aj |2, C2 = |A2|2 − |A1|2. (7)

Calculate {C1, C2}, {C1, H}, {C2, H}. Discuss.

Problem 7. We begin with the definition of the SU(ν) Calogero spin
system. Particles have su(ν) spins as an internal degree of freedom, and
move about on a line interacting through spin-dependent inverse square in-
teractions. We denote by N and a the number of particles and a parameter
for the interaction strength, respectively. The Hamilton operator is (the
units ~ = 1 and 2m = 1 will be employed)

Ĥ =
N∑
j=1

p̂2
j + 2

∑
1≤j<k≤N

a2 − aPjk
(xj − xk)2

(1)

where p̂j := −i∂/∂xj denotes the momentum operator. Here Pjk is a
permutation operator in spin space, and exchanges the spin state of the jth
and the kth particles. As a basis of the su(ν) Lie algebra, we use ν2 − 1
traceless Hermitian matrices tα which are normalized to be

tr(tαtβ) =
1
2
δαβ . (2)

The commutation relation is

[tαj , t
β
k ] = δjk

∑
γ

fαβγtγk (3)

where tαj acts on the jth particle and fαβγ is the structure constant. In
terms of these operators tαj , the permutation operator Pjk is expressed as

Pjk :=
1
ν

+ 2
∑
α

tαj t
α
k . (4)

(i) Show that the Lax operators L and M2, which are N×N operator-valued
matrices, are found to be

Ljk = δjkp̂j + (1− δjk)ia
Pjk

xj − xk
, (5)

(M2)jk = δjk2a
∑
l 6=j

Pjl
(xj − xl)2

− (1− δjk)2a
Pjk

(xj − xk)2
. (6)

(ii) Show that the Lax equation

[Ĥ, Ljk] = [L,M2]jk =
∑
l

[Ljl(M2)lk − (M2)jlLlk], (7)
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with (2) and (3) yields the Heisenberg equation of motion. The operator
M2 satisfies the sum-to-zero condition∑

j

(M2)jk =
∑
k

(M2)jk = 0. (8)

Problem 8. The Hamilton function for the three-body periodic Toda
lattice can be written in a dimensionless form as

H(p,q) =
1
2

(p2
1 +p2

2 +p2
3) + exp(q1− q2) + exp(q2− q3) + exp(q3− q1). (1)

(i) Show that there are three conserved quantities, the total momentum

P (p,q) = p1 + p2 + p3 (2)

the energy E and an additional quantity A. The third quantity A is the
third-order polynomial of the momenta,

A(p,q) = p1p2p3 − p1 exp(q2 − q3)− p2 exp(q3 − q1)− p3 exp(q1 − q2). (3)

(ii) Show that the first integrals are in involution.

Problem 9. Consider the one-parameter family of Hamilton functions

H(px, py, x, y) =
1
2

(
p2
x + p2

y + (x2y2)1/a
)

(1)

where 0 ≤ α ≤ 1. In the limit a → 0 we obtain the hyperbola billiard.
Increasing a means a gradual softening of the billiard walls and when a = 1
we recover the frequently studied x2y2 potential. The symmetry group of
this family is C4v.
(i) Show that the periodic orbits in these systems may be described by a
symbolic dynamics using a three letter [2,1,0] alphabet.
(ii) Show that the motion in these horn regions may thus be treated in the
adiabatic approximation.

Problem 10. Consider the equation of motion for a charged particle

d2r
dt2

=
e

m0
E(r, t) +

e

m0c

dr
dt
×B0 (1)

where the constant magnetic field B0 is directed along the z-axis and

E(r, t) = E0 sin(kxx+ kzz − v0t). (2)
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(i) Show that from (1) and (2) one obtains the following equations of motion

d2x

dt2
+ ω2

Hx =
e

m
E0x sin(kxx+ kzz − v0t) (3a)

d2z

dt2
=

e

m
E0z sin(kxx+ kzz − v0t) (3b)

where
β =

E0z

E0x
=
kz
kx

= const. (4)

(ii) Find a Hamilton function for system (3).

Problem 11. Let
|x| :=

√
x2

1 + x2
2 + x2

3. (1)

Let
H(y,x) =

1
2
|y|2 + V (|x|) (2)

be a Hamilton function in R6 invariant under the orthogonal group SO(3)

x→ Rx, y→ Ry, where R ∈ SO(3). (3)

(i) Show that

F1(x,y) = x2y3−x3y2, F2(x,y) = x3y1−x1y3, F3(x,y) = x1y2−x2y1
(4)

are first integrals, defining the angular momentum vector.
(ii) Show that the Hamilton function (2) can be reduced to a one-dimensional
Hamilton function.

Problem 12. Consider the non-relativistic motion of a charged particle
of mass m and charge q moving in the field of a magnetic dipole of magnetic
moment M. It is described by the Hamilton function

H(p, r) =
1

2m
(p− qA) (1)

where the vector potential A is given by

A(r) =
1
r3

(M× r). (2)

(i) Show that by choosing the z axis in the direction of M, i.e. M =
(0, 0,M), we have

H(px, py, x, y) =
1
2

((
px +

ay

r3

)2

+
(
py −

ax

r3

)2

+ p2
z

)
. (3)
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(ii) Show that with m = 1, r := (x2 + y2 + z2)1/2 and a = qM we obtain

H(px, py, x, y) =
1
2

(p2
x + p2

y + p2
x) +

a

r3
(ypx − xpy) +

a2

2r6
(x2 + y2). (4)

(iii) Show that the equations of motion for this system are time-independent,
axisymmetric and have also a scale symmetry.
(iv) Show that the following first integrals of motion exist: the Hamilton
function (4) and the projection of the angular momentum in the direction
of M

Lz = xpy − ypx. (5)

(v) Show that if we choose cylindrical coordinates (ρ, φ, z), the Hamilton
function (4) becomes

H(pρ, pφ, pz, ρ, φ, z) =
1
2

(p2
ρ+

p2
φ

ρ2
+p2

z)+
a2ρ2

2
1

(ρ2 + z2)3
+apφ

1
(ρ2 + z2)3/2

(6)
and pφ = Lz = constant of motion.

Problem 13. Consider the anisotropic Kepler problem, whose Hamilton
function reads

H(px, py, x, y) =
p2
x

2µ
+
p2
y

2ν
− 1√

x2 + y2
. (1)

In the anisotropic Kepler problem the effective masses µ and ν, are different.
This system is effectively chaotic when the mass ration µ/ν is sufficiently
high (≥ 5). (i) Show that a symbolic coding can be obtained as follows. We
take a set of trajectories starting on the x positive axis, with zero initial
px momentum. We fix a constant energy surface, e.g. H = −1/2. Then
x labels an unique trajectory, for any 0 ≤ x ≤ 2. Following the time
evolution, one records a bit sequence bj : bi = 0 if the i-th intersection
with the x-axis occurs for x ≤ 0, and bi = 1 otherwise. A coding function
F is then defined via

F (x) =
∑
i

bi2−i. (2)

(ii) Show that this function is non-decreasing, and shows multifractal fea-
tures.

Problem 14. (i) For a system of N particles with central two-body
interactions described by the Hamilton function

H =
N∑
k=1

p2
k

2mk
+ V (1a)
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where

V =
1
2

N∑
k,l=1
k 6=l

Vkl(rkl) (1b)

and rkl := |rk − rl|. Show that the first integrals are given by

H =
N∑
k=1

p2
k

2mk
+ V, pk :=

∂L

∂vk
= mkvk

P =
N∑
k=1

pk, J =
N∑
k=1

rk × pk, G =
N∑
k=1

mkrk −Pt.

(ii) Show that if the potential is of the form VKL = CKL/r
2
KL then there

two additional first integrals

D = 2Ht−
N∑
k=1

rk · pk, A = Ht2 −
N∑
k=1

(rk · pkt−
1
2
mkr2

k).

Problem 15. The geodesic flow on a sphere Sn

|x| = 1, |x| :=
√
x2

0 + x2
1 + x2

2 + · · ·+ x2
n (1)

where x = (x0, x1, . . . , xn) ∈ Rn+1 is described by the differential equation

d2x
dt2

= λx (2)

where the Lagrange parameter λ is determined such that

|x| = 1 (3)

Show that d2x/dt2 = −|dx/dt|2x and that this differential equation can be
derived from the Hamilton function

H(x,y) =
1
2
|x|2|y|2. (4)

Problem 16. Consider the Hamilton function

H(pr, pφ, r, φ) =
p2
r

2
+

p2
φ

2r2
+

cosφ+ c

2r2
. (1)
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The Hamilton equations of motions are given by

dr

dt
=
∂H

∂pr
= pr,

dφ

dt
=
∂H

∂pφ
=
pφ
r2

(2a)

dpr
dt

= −∂H
∂r

=
p2
φ + cosφ+ c

r3
,

dpφ
dt

= −∂H
∂φ

=
sinφ
2r2

. (2b)

Show that the system admits the first integral

I(pr, pφ, r, φ) = p2
φ + cosφ+ c. (3)

Problem 17. Consider the Hamilton function

H(px, py, x, y) =
p2
x

2
+
p2
y

2
+ V (x, y) (1)

where
V (x, y) = x4 + ax2y2 + by4. (2)

(i) Show that the system is integrable in the following five cases

(a) b = 1, a = 0, separable in x, y;
(b) b = 1, a = 2, separable in polar coordinates;
(c) b = 1, a = 6, separable in x± y;
(d) b = 16, a = 12, separable in parabolic coordinates;
(e) b = 8, a = 6, which possesses an invariant quartic in momenta,

C2 = p4
x+4x2(x2+6y2)p2

x−16x3ypxpy+4x4p2
y+4x4(x4+4x2y2+4y4). (3)

(ii) Find the singular behaviour of the equation of motions for b = 8 and
a = 6.

Problem 18. Consider the Calogero-Moser system in the case of two
degrees of freedom. The Hamilton function is given by

H(px, py, x, y) =
1
2

(p2
x + p2

y) + V (x, y) (1)

where
V (x, y) =

k

(x− y)2
+

1
2

(Ax2 +By2) k,A,B > 0 (2)

This system is completely integrable only in the symmetric case A = B.
The equations of motion are

d2x

dt2
= −Ax+

2k
(x− y)3

,
d2y

dt2
= −By − 2k

(x− y)3
. (3)
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(i) Show that for A = B the equations of motion (3) uncouple under the
transformation

z(x, y) := x− y, w(x, y) := x+ y. (4)

Find an additional first integral.
(iii) Show that in the case A = B the solutions possess exactly two Riemann
sheets corresponding to the ± choice in taking the square root of (7).
(iv) The local two-sheetedness of solutions can also be revealed, by singu-
larity analysis. Show that, for general A and B, one can expand x(t) and
y(t) near a (movable) singularity t = t∗ of (3) and that the only leading
behaviour allowed is of the form

x(τ) = α+ c1τ
1/2 + · · · , y(τ) = α+ c2τ

1/2 + · · · τ = t− t∗

where α is a free constant and c1 = −c2 = (−k)1/4. The only type of
singularity, therefore, in this problem occurs when the equations of motion
themselves are singular, at x − y = 0. These singularities are, of course,
finite, since the configuration variables x(t), y(t) are finite at t = t∗. No
logaritmic terms enter the expansion (8).

Problem 19. Consider the Hénon-Heiles model

H(p,q) =
1
2

(p2
1 + p2

2 +Aq21 +Bq22) + q21q2 −
1
3
εq32 . (1)

(i) Show that the following three cases are integrable

ε = −1, A = B (2a)

ε = −6, for all A,B (2b)

ε = −16, B = 16A (2c)

(ii) Find the first integrals.

Problem 20. The Hamilton function of the two-dimensional hydrogen
atom in a uniform electric field F reads (we set electron mass and charge
me = 1, |e| = 1)

H(px, py, x, y) =
1
2
p2
x +

1
2
p2
y −

1
(x2 + y2)1/2

+ Fx. (1)

(i) Show that the system has simple discrete symmetry: the Hamilton func-
tion is invariant under reflections through the x-axis, y → −y, i.e. under
the canonical transformation

(x, px, y, py)→ (x, px,−y,−py). (2)
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(ii) Show that the system is separable in semi-parabolic coordinates

y(u, v) = uv, x(u, v) =
1
2

(u2 − v2) (3)

in which the Hamilton function (1) takes the form

H(pu, pv, u, v) =
1

u2 + v2

(
p2
u

2
+
p2
v

2

)
− 2
u2 + v2

+ F
u2 − v2

2
. (4)

Problem 21. We consider a classical particle with charge e, mass m,
and energy E moving in a two-dimensional periodic potential under the
influence of a homogeneous magnetic field

B = Bz = (0, 0, B) (1)

described by the Hamilton function

H(px, py, x, y) =
1

2m

((
px +

eBy

2

)2

+
(
py −

eBx

2

)2
)

+ V (x, y) (2a)

where
V (x, y) = V0(2 + cos(2πx/a) + cos(2πy/a)) (2b)

is an isotropic (superlattice) potential. We measure energy in units of V0,
lengths in units of the lattice constant a, and time in units of the inverse
harmonic frequency

ω0 :=
(

4π2V0

a2m

)1/2

. (3)

This leads to scaled variables

H̃ :=
H

V0
, x̃ := 2π

x

a
, ỹ := 2π

y

a
, τ := ω0t. (4)

(i) Show that the equations of motion then read (omitting the tildes for
convenience)

dx

dτ
= vx,

dvx
dτ

= sinx+ 2λvy (5a)

dy

dτ
= vy,

dvy
dτ

= sin y − 2λvx (5b)

corresponding to the Hamilton function

H(px, py, x, y) =
1
2

(px + λy)2 +
1
2

(py − λx)2 + V (x, y) (6)
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with
V (x, y) = 2 + cosx+ cos y. (7)

(ii) Show that there are two integrable limits in this model, that is λ → 0
and λ→∞.
(iii) Show that the potential V of (7) has minima at the energy E = 0,
saddle points at E = 2, and maxima at E = 4.

Remark 1. Thus in the regime E ≤ 2 all orbits are restricted to one unit
cell for all values of λ. For E > 2, localized and delocalized orbits may
coexist.

Remark 2. The dimensionless quantity

λ :=
eBa

(16π2mV0)1/2
=

ωc
2ω0

(8)

proportional to the applied magnetic field B describes the nonintegrable
coupling between the two degrees of freedom and is related to the bare
cyclotron frequency ωc.

Problem 22. Consider the equations of motion

mi
d2xi
dt2

= − ∂U
∂xi

, mi
d2yi
dt2

= −∂U
∂yi

, mi
d2zi
dt2

= −∂U
∂zi

, i = 1, 2, 3 (1)

where

U = −m1m2F (r212)−m2m3F (r223)−m3m1F (r231), mi = 1, i = 1, 2, 3,
(2)

(xk, yk, zk) are the coordinates of the k-th body, k = 1, 2, 3, F (r2) is an
arbitrary, sufficiently smooth function, and

rij := ((xi − xj)2 + (yi − yj)2 + (zi − zj)2)1/2. (3)

(i) Show that (1) is invariant under the 10-parameter Galilean groupG(1, 3).
(ii) Show that the Lie algebra of this group has a basis consisting of the
following infinitesimal generators

X0 =
∂

∂t
, X1 =

∂

∂x1
+

∂

∂x2
+

∂

∂x3
, X2 =

∂

∂y1
+

∂

∂y2
+

∂

∂y3
,

X3 =
∂

∂z1
+

∂

∂z2
+

∂

∂z3
, X4 = t

(
∂

∂x1
+

∂

∂x2
+

∂

∂x3

)
,

X5 = t

(
∂

∂y1
+

∂

∂y2
+

∂

∂y3

)
, X6 = t

(
∂

∂z1
+

∂

∂z2
+

∂

∂z3

)
,
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X7 = yk
∂

∂zk
− zk

∂

∂yk
, X8 = zk

∂

∂xk
− xk

∂

∂zk
, X9 = xk

∂

∂yk
− yk

∂

∂xk
.

(4)
Remark. Ten integrals of motion of the spatial three-body problem were
known already to Lagrange

Problem 23. The Kepler problem is the paradigm of the two-body prob-
lem in mechanics. Kepler proposed three empirical laws governing the
motion of planets: (1) the orbit is an ellipse, (2) the area velocity of the
orbit is a constant, (3) the period of revolution and the semimajor axis of
the orbit are related according to T ∝ R3/2. In reduced coordinates the
equation of motion is

d2r
dt2

= −µr
r3

(1)

in the standard notation, where r = ‖r‖ =
√
x2

1 + x2
2 + x2

3.
(i) Show that the equation of motion (1) can be derived from the Lagrange
function

L(ṙ, r) =
1
2
ṙ · ṙ +

µ

r
(2)

where · denotes the scalar product.
(ii) Show that the system admits the first integrals

E =
1
2
ṙ · ṙ− µ

r
L = r× ṙ

J = ṙ× L− µr̂

K = ṙ− µω̂

L

where × denotes the vector product and ω̂ is the unit vector in the direction
of the angular velocity (ω̂ := L̂× r̂). In plane polar coordinates, it coincides
with θ̂.
(iii) Are the first integrals independent?
(iv) Give the Hamilton function H.

Problem 24. Consider the Hamilton system

H(p1, p2, q1, q2) =
1
2

(p2
1 + p2

2) + V (q1, q2)

where the potential V is given by

V (q1, q2) =
k

(q1 − q2)2
+

1
2

(Aq21 +Bq22), k, A,B > 0.

Show that the system is integrable if A = B.
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Problem 25. (i) Find the first integral of the differential equation

d2x

dt2
+ α+ βx+ γx2 + εx3 = 0 (1)

where α, β, γ and ε are constants.
(ii) Show that the differential equation can be derived from a Hamilton
function.
(ii) Find the general solution to the differential equation.

Problem 26. The Emden equation is given by

d2u

dt2
+

2
t

du

dt
+ un = 0 (1)

which represents in general an anharmonic oscillator subject to damping
dependent upon the velocity.
(i) Show that in the case n = 5 the Emden equation can be derived from
the variational integral

J =
∫ t1

t0

t2

(
1
2

(
du

dt

)2

− 1
6
u6

)
dt. (2)

Remark. Let

L(u̇, u, t) = t2
(

1
2
u̇2 − 1

6
u6

)
. (3)

Then the equation of motion (1) follows from the Euler-Lagrange equation

d

dt

∂L

∂u̇
− ∂L

∂u
= 0. (4)

(ii) Use Noether’s theorem to show that (1) admits the first integral

I =
1
6
t3u6 +

1
2
t3
(
du

dt

)2

+
1
2
t2u

du

dt
. (5)

(iii) Show that the generalized equation

d2u

dt2
+ β(t)

du

dt
+ α(t)um = 0, m 6= −1 (6)

admits the first integral

I =

((
du

dt

)2

+
2α

m+ 1
um+1

)
exp

(
2
∫ t

β(t′)dt′
)
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×

(
C + C4

∫ t

exp

(
−
∫ t′

β(t′′)dt′′
)
dt′

)
− C4u

du

dt
exp

(∫ t

β(t′)dt′
)
(7)

exists when α(t) and β(t) satisfy the relation

α−2/(m+3) exp
(
− 4
m+ 3

∫ t

β(t′)dt′
)
−C4

∫ t

exp

(
−
∫ t′

β(t′′)dt′′
)
dt′ = C

(8)
and C and C4 are constants.

Problem 27. Consider Emden’s equation

d2q

dt2
+

2
t

dq

dt
+ q5 = 0 (1)

which is of special significance in astrophysics.
(i) Show that this equation can be obtained from Lagrange’s equation with
a Lagrangian given as

L(t, q, q̇) =
(

1
2
q̇2 − 1

6
q6
)
t2. (2)

(ii) Let p := ∂L/∂q̇. Show that the Hamilton function for (1) is found to
be

H(p, q, t) =
1
2
p2

t2
+

1
6
q6t2. (3)

Hint: The Euler-Lagrange equation is given by

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (4)

and the Hamilton function takes the form

H(p, q, t) =
∂L

∂q̇
q̇ − L (5)

Problem 28. Show that the equation of motion

dp

dt
= − sin q +

h2

24
(sin 2q − p2 sin q),

dq

dt
= p− h2

12
p cos q (1)

can be derived from the Hamilton function

H(p, q) =
1
2
p2 + (1− cos q) +

h2

48
(−2p2 cos q + cos 2q − 1). (2)
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Here h is a (small) positive constant.

Problem 29. Consider the system

dp

dt
= − sin q − h2

24
(p2 sin q + 2 sin 2q) (1a)

dq

dt
= p+

h2

6
p cos q (1b)

where h is a (small) positive constant.
(i) Show that this system is not Hamiltonian, but has the reversibility
property of being invariant under the change of p into −p and t into −t.
(ii) Show that it has the first integral

F (p, q) =
p2

2(1 + (h2/6) cos q)1/2
+
∫ q

0

sin s+ (h2/3) sin 2s
(1 + (h2/6) cos s)3/2

ds. (2)

Problem 30. Consider the second order differential equation

t
d2q

dt2
=
(
dq

dt

)3

+
dq

dt
. (1)

Show that it has the Hamilton function

H(p, q, t) = −4t(q3p/2)
1
2 − 4tq, p = 2q2 − 2

t2

q̇2
(2)

and first integrals
I1(p, q, t) = 2(q2 − p/2)

1
2 + 2q

I2(p, q, t) = t2 − q2 − 2q(q2 − p/2)
1
2

I3(p, q, t) =
t2 − q2 − 2q(q2 − p/2)

1
2

2q + 2(q2 − p/2)
1
2

. (3)

Problem 31. Consider a pendulum with varying length r(t). The total
length is l = r(t) + y(t).
(i) Show that the governing equation is

(l − y)
d2θ

dt2
+ g sin θ − 2

dy

dt

dθ

dt
− d2y

dt2
sin θ = 0. (1)

(ii) Show that linearizing the equation yields

d2θ

dt2
+
g − d2y/dt2

l − y
θ − 2

dy/dtdθ

l − y
= 0. (2)
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Problem 32. (i) Consider a pendulum attached to a rotating base. Show
that the governing equation is

d2θ

dt2
+
g

l
− 1

2
Ω2 sin(2θ) = 0. (1)

(ii) Let
Ω(t) = Ω0(1 + ε cos(ωt))

where ε� 1. Linearize (1) and show that

d2θ

dt2
+
(g
l
− Ω2

0 − 2Ω2
0ε cos(ωt)− Ω2

0ε
2 cos2(ωt)

)
θ = 0. (2)

Problem 33. Consider the system

d2u1

dt2
+ u1 + 3au2

1 + 2bu1u2 + cu2
2 = 0 (1)

d2u2

dt2
+ u2 + bu2

1 + 2cu1u2 + 3du2
2 = 0 (2)

which represents a class of Hamiltonian systems. Find the first integrals.

Problem 34. Find the Hamilton function H(pθ1 , pθ2 , θ1, θ2) of two pen-
dulums coupled by a massless spring. Write down the Hamilton equations
of motion. Show that

d

dt
H = 0.

Problem 35. Let

H(p,q) =
1

2m
(p2

1 + p2
2) +

1
2
k(q1 − q2)2

where k is a positive constant. Find the equations of motion and solve them
for the initial values

q1(t = 0) = q10, q2(t = 0) = q20, p1(t = 0) = p10, p2(t = 0) = p20.

Draw the phase portrait (q1(t), p1(t)) and (q2(t), p2(t)) for k = m = 1 and
q10 = 1, q20 = 1, p10 = 1, p20 = 2.

Problem 36. We consider systems of (2n + 1) ordinary nonlinear dif-
ferential equations. These are the multiple three-wave interaction system
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describing triads (aj , bj , u), j = 1, . . . , n, evolving in time alone and in-
teracting with each other through the single common member u. These
systems can be derived from a Hamilton function

H(b, c, u) =
1
2
i

n∑
j=1

εj(cjc∗j − bjb∗j ) + i

n∑
j=1

αj(ub∗jcj + u∗bjc
∗
j ) (1)

and with Poisson bracket defined as

{f, g} :=
∂f

∂u

∂g

∂u∗
− ∂f

∂u∗
∂g

∂u
+

n∑
j=1

(
∂f

∂bj

∂g

∂b∗j
− ∂f

∂b∗j

∂g

∂bj
+
∂f

∂cj

∂g

∂c∗j
− ∂f

∂c∗j

∂g

∂cj

)
.

(2)
Thus (u, u∗), (bj , b∗j ), (cj , c∗j ) are pairs of canonical variables (where ∗ means
complex conjugate). The arbitrary real parameters αj , εj play the role of
frequencies.
(i) Show that from (1) and (2), with the αj = 1, it follows that the Hamil-
ton’s equations of motion are

du

dt
= i

n∑
j=1

bjc
∗
j ,

dbj
dt

= −1
2
iεjbj+iucj ,

dcj
dt

=
1
2
iεjcj+iu∗bj , and c.c.

(3)
where c.c. stands for complex conjugate. (ii) Show that they have the Lax
representation

dL

dt
= {L,H}(t) ≡ [A,L](t) (4)

in which L and A are the (2n+ 2)× (2n+ 2) matrices

L :=
1
2


π σ1 · · · σn
τ1 ε1I 0
...

. . .
τn 0 εnI

 , A :=
1
2
i


0 ωσ1 · · · ωσn
τ1ω

... 0
τnω

 .

(5)
The π, σj and τj are the 2× 2 matrices

π :=
(

0 −2u
2u∗ 0

)
, τj :=

(
b∗j −c∗j
−cj −bj

)
, σj :=

(
−bj −c∗j
−cj b∗j

)
(6)

and ω = diag(−1, 1). I is the 2× 2 identity matrix.
(iv) Show that Hamilton function (1) is given by

H =
2
3
itr(L3) + const. (7)

where tr denotes the trace.
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Hint. From (2) we find

du

dt
= {u,H} =

∂H

∂u∗
. (8)

Problem 37. The motion of the N particle Toda lattice is described by
the Hamilton function

H(p,q) =
1
2

N∑
j=1

p2
j +

N∑
j=1

exp(qj − qj+1)

where (qj , pj) are coordiantes and momenta, and qN+1 = q1.
(i) Write down the Hamilton equations of motion.
(ii) We define variables aj(t), bj(t) (j = 1, 2, . . . , N) with

aj :=
1
2

exp
(

1
2

(qj − qj+1)
)
, bj :=

1
2
pj .

Find the equations of motion for these variables.
(iii) Show that for the variables aj , bj we can find a Lax representation

dL

dt
= [A,L](t) ≡ (AL− LA)(t)

where L and A are N ×N matrices.
(iv) Show that

tr(Lk)(t) = const, k = 1, 2, . . . , N

where tr denotes the trace.

Problem 38. Consider the Lax representation

dL

dt
= [A,L](t)

where L := AJ + JA with

A =

 0 u3 −u2

−u3 0 u1

u2 −u1 0

 , J =

 c1 0 0
0 c2 0
0 0 c3


where cj 6= 0. Note that A is skew-symmetric. Find the equations of motion
for u1, u2, u3.
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Problem 39. Consider the autonomous system

du1

dt
= u1(u2 − un)

du2

dt
= u2(u3 − u1)

...
dun
dt

= un(u1 − un−1).

(i) Find a Lax representation for the case n = 3 and the first integrals using
trLn.
(ii) Find the Lax representation for the case n = 4 and the first integrals.
(iii) Find the Lax representation for arbitrary n.

Problem 40. Consider the Hamilton function

H(q1, p1, q2, p2) =
1
2

(p2
1 + q21 + p2

2 + q22)− 1
3
q32 .

Find the the Hamilton equations of motion and show that they admit the
periodic orbits

Γ0 : γ0(t) = (q1(t), p1(t), q2(t), p2(t)) = (k cos t,−k sin t, 0, 0)

Γ1 : γ1(t) = (q1(t), p1(t), q2(t), p2(t)) = (
√
k2 − 1/3 cos t,−

√
k2 − 1/3 sin t, 1, 0)

which lie on the surface

q21 + p2
1 + q22 + p2

2 −
2
3
q32 = k2

for k2 > 1/3.

Problem 41. Given the Lagrange function

L(x, dx/dt, t) =
1
2
eγt
(
dx

dt

)2

− eγtV (x, t)

describing a dynamical system with damping.
(i) Find the equations of motion.
(ii) Find the corresponding Hamilton function.

Problem 42. The motion of the N particle Toda lattice is described by
the Hamilton function

H(p,q) =
1
2

N∑
j=1

p2
j +

N∑
j=1

exp(qj − qj+1)
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where (qj , pj) are coordiantes and momenta, and qN+1 = q1.
(i) Write down the Hamilton equations of motion.
(ii) We define variables aj(t), bj(t) (j = 1, 2, . . . , N) with

aj :=
1
2

exp
(

1
2

(qj − qj+1)
)
, bj :=

1
2
pj .

Find the equations of motion for these variables.
(iii) Show that for the variables aj , bj we can find a Lax representation

dL

dt
= [A,L](t) ≡ (AL− LA)(t)

where L and A are N ×N matrices.
(iv) Show that

tr(Lk)(t) = const, k = 1, 2, . . . , N

where tr denotes the trace.

Problem 43. Consider the Lax representation

dL

dt
= [A,L](t)

where L := AJ + JA with

A =

 0 u3 −u2

−u3 0 u1

u2 −u1 0

 , J =

 c1 0 0
0 c2 0
0 0 c3

 .

Find the equations of motion for u1, u2, u3.

Problem 44. Let

L =


0 1 0 u1

u2 0 1 0
0 u3 0 1
1 0 u4 0


and

A =


u1 + u2 0 1 0

0 u2 + u3 0 1
1 0 u3 + u4 0
0 1 0 u4 + u1

 .

(i) Show that L and A are the Lax representation

dL

dt
= [A,L](t) ≡ [A(t), L(t)]
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of the autonomous first order system

du1

dt
= u1(u2 − u4)

du2

dt
= u2(u3 − u1)

du3

dt
= u3(u4 − u2)

du4

dt
= u4(u1 − u3).

(ii) Show that

I1(u) = u1 + u2 + u3 + u4

I2(u) = u1u2u3u4

I3(u) = u1u3 + u2u4

are first integrals of the system.
(iii) Which first integrals do we find from Lk, where k = 2, 3, . . .?

Problem 45. The motion of a charged particle in the plane perpendicular
to the uniform constant magnetic field is described in the classical case by
system of second order ordinary differential equations

d2x

dt2
= ω

dy

dt
,

d2y

dt2
= −ωdx

dt

where ω is a constant frequency. Show that this system of differential
equations can be derived from the Hamilton function

H(px, py, x, y) =
1
2

(
px +

1
2
ωy

)2

+
1
2

(
py −

1
2
ωx

)2

.

Problem 46. In case of linear dissipation the Lagrangian of a particle
moving in a one-dimensional potential V (x) is given by

L(x, dx/dt, t) = eγt

(
m

2

(
dx

dt

)2

− V (x)

)

Find the associated Hamilton function. Find the equation of motion.

Problem 47. Consider the Hamilton function for N particles

H(p,q) = Hkin(p) + V (q)
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where

Hkin(q) =
N∑
k=1

3∑
j=1

p2
kj

2mk

and p = (p11, p12, p13, p21, . . . , pN3), q = (q11, q12, q13, q21, . . . , qN3) with p,
q are the corresponding momenta and positions. Here V (q) is a differen-
tiable potential. The Hamilton equations of motion are

dpkj
dt

= − ∂V

∂qkj
,

dqkj
dt

=
pkj
mk

.

The formal solution of these system of ordinary differential equation is
Φt(p(0),q(0)), where Φt denotes the flow and (p(0),q(0) the initial con-
ditions. Let R denote the momentum reversion, i.e. R(p,q) = (−p,q).
Show that the flow Φt is R-reversible, i.e.

R ◦ Φ−t ◦R = Φt.

Problem 48. Consider the Hamilton function

H(p1, . . . ,pN ,q1, . . . ,qN ) =
N∑
α=1

3∑
k=1

p2
α,k

2mα
+

N∑
α<β

3∑
k=1

Uαβ (|qαk − qβk|)

where α denotes the particle and k is the component of the vectors pα, qα
with k = 1, 2, 3. N is the number of particles. Show that the Hamilton
function admits the first integrals

Pk =
N∑
α=1

pαk, k = 1, 2, 3 total momentum

Ii =
N∑
α=1

3∑
k,`=1

εik`qαkpα`, i = 1, 2, 3 total angular momentum

Gk =
N∑
α=1

(pαkt−mαqαk), k = 1, 2, 3 centre of mass

and the Hamilton function. Here

εij` :=

 1 even permutation of (1, 2, 3)
−1 odd permutation of (1, 2, 3)
0 otherwise

The total number of first integrals is given by 3 + 3 + 3 + 1 = 10.
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Problem 49. From the previous problem consider the case N = 2 (Kepler
problem). Assume that the potential U depends only on q, where q :=
q1 − q2, q = ‖q‖ and

U(q) = −γm1m2

q
.

with the gravitational constant γ = 6.685 · 10−8cm3gsec−2. Find Newton’s
equation of motion.

Problem 50. Consider the Newton’s equations of motion from the pre-
vious problem. The centre of mass with N mass points with masses mj

(j = 1, 2, . . . , N) and vectors qj is defined as

R :=

∑N
j=1mjqj∑N
j=1mj

.

The centre of mass system is defined as R = 0. Find the equations of
motion for this case.

Problem 51. Consider the equation of motion

m1m2

m1 +m2

d2q
dt2

= m
d2q
dt2

= −∇qU = − δ

q3
q.

Show that the Lenz vector defined by

L :=
p× J
δm

− q
q

is a first integral of this equation, where J := q× p and δ = γm1m2.

Problem 52. Let q = (q1, q2, q3)T , p = (p1, p2, p3)T be the coordinates
and associated momenta of a Hamilton system in a 6-dimensional phase
space with Hamilton function

H(q,p) = T (p) + V (q) ≡ 1
2
pTp + V (q).

A fictive time τ is introduced through the ordinary differential equation

dt

dτ
= g(q,p)

defining a Sundman transformation, where g is a positive scalar monitor
function which is taken to be small if the solution of the Hamilton system is
evolving rapidly and τ is the fictive time which is used for all computation.
Two new conjugate coordinates are introduced

qt := H(q0,p0), pt := t.
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To preserve the Hamiltonian structure of the system after rescaling in
terms of the fictive time τ , one applies a Poincaré transformation. Us-
ing the Poincareé transformation the system (q, qt,p, pt) is Hamiltonian
and evolves in the fictive time, τ , with Hamilton function

K(q, qt,p, pt) = g(q,p)(H(q,p)− qt).

Let
g(q) =

√
q21 + q22 + q23 .

Find the Hamilton function

K(q, qt,p, pt) = g(q,p)(H(q,p)− qt)

and the equations of motion.

Problem 53. Consider the Hamilton function

H(p,q) =
1

2m
(p2

1 + p2
2) +

1
2
k(q1 − q2)2

where k is a positive constant. Find the equations of motion. Solve the
initial value problem

q1(t = 0) = q10, q2(t = 0) = q20, p1(t = 0) = p10, p2(t = 0) = p20.

Draw the phase portrait (q1(t), p1(t)) and (q2(t), p2(t)) for k = m = 1 and
q10 = 1, q20 = 1, p10 = 1, p20 = 2.

Problem 54. Consider the Hamilton function

H(p,q) =
1
2

(p2
1 + p2

2) + Uε(q)

where 0 ≤ ε ≤ 1 and the potential is given by

Uε(q) =
1− ε

12
(q41 + q42) +

1
2
q21q

2
2 .

Show that the potential Uε(q) admits the C4v point group.

Problem 55. The Hamilton function for a linear chain with cyclic bound-
ary condition (N ≡ 0) is given by

H(p,q) =
1

2m

N∑
j=1

p2
j +

k

2

N∑
j=1

(qj − qj−1 − a)2.
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Introducing the transformation qj → qj − ja we obtain the Hamilton func-
tion

H(p,q) =
1

2m

N∑
j=1

p2
j + k

N∑
j=1

(q2j − q1qj−1).

The Hamilton equations of motions are given by

dqj
dt

=
∂H

∂pj
,

dpj
dt

= −∂H
∂qj

, j = 1, 2, . . . , N.

Let N = 3. Then the equations of motion can be written in matrix form
dq1/dt
dq2/dt
dq3/dt
dp1/dt
dp2/dt
dp3/dt

 =


0 0 0 1/m 0 0
0 0 0 0 1/m 0
0 0 0 0 0 1/m
−2k k k 0 0 0
k −2k k 0 0 0
k k −2k 0 0 0




q1
q2
q3
p1

p2

p3

 .

Find the eigenvalues and normalized eigenvectors of the 6 × 6 matrix on
the right-hand side. Use the normalized eigenvectors to rotate this matrix
into diagonal form.

Problem 56. Consider the Hamilton function H : R2 → R

H(p, q) =
p2

2
− q2

2
+
q4

4
.

Show that there is saddle and centers. Show that there are two homoclinic
orbits.

Problem 57. Consider N vortices with the strengths (velocity circula-
tion around the vortex), κj (j = 1, 2, . . . , N). We denote the cartesian
coordinates of the vortices in a flow plane by (xj , yj), (j = 1, 2, . . . , N).
Then the dyanamics of the vortices is given by the system

κj
dxj
dt

=
∂H

∂yj

κj
dyj
dt

=− ∂H
∂xj

with the Hamilton function

H(x,y) = − 1
2π

∑
j<k

κjκk ln(ajk), ajk :=
√

(xk − xj)2 + (yk − yj)2.

Find the first integrals.
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Problem 58. Let u be a solution of the Painlevé equation of the first
kind

d2u

dt2
= 6u2 + t.

Then u(t) is meromorphic on the complex plane C and the function τ(t)
defined by

f(z) = −
(
d2

dt2

)
log τ(t) =

(dτ/dt)2 − τ(t)d2τ/dt2

τ(t)2

is holomorphic on C. Show that the Painlevé equation of first kind is
equivalent to the Hamiltonion system

du

dt
=
∂H

∂v
,

dv

dt
= −∂H

∂u

i.e. find the Hamilton function H(u, v).

Problem 59. (i) Show that the second Painlevé equation PII(α) (α ∈ C)
is the Hamilton system

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q

where the Hamilton function is

H(p, q, t, α) =
p2

2
−
(
q2 +

t

2

)
p− αq.

(ii) Let (p, q) be a solution to PII(α). Show that birational canonical trans-
formations defined by

s(p, q) = (q +
α

p
, p), π(p, q) = (−q,−p+ 2q2 + t)

give solutions to PII(−α) and PII(1− α), respectively.

Problem 60. The equation of motion for a particle of unit mass moving
in a conservative central force field is given by the second order differential
equation

d2r
dt2

= f(r)r

where r :=
√
x2

1 + x2
2 + x2

3.
(i) Show that the angular momentum

L := r× dr
dt



Hamilton Systems 155

is a constant of motion, where × denotes the vector product.
(ii) Show that the total energy given by

H =
1
2
dr
dt
· dr
dt
− 1

2

∫ r

f(ε)dε

is a constant of motion, where · denotes the scalar product.

Problem 61. (i) Show that the second Painlevé equation PII(α) (α ∈ C)
is the Hamilton system

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q

where

H(q, p, t, α) =
p2

2
−
(
q2 +

t

2

)
p− αq.

(ii) Let (q, p) be a solution to PII(α). Show that the birational canonical
transformations defined by

s(q, p) = (q +
α

p
, p), π(q, p) = (−q,−p+ 2q2 + t)

give solutions to PII(−α), PII(1− α), respectively.

Problem 62. Show that the non-relativistic Coulomb Hamilton function

H =
1

2m
p2 +

α

r

possesses the angular momentum L = r× p and the Lenz vector

A =
1

2m
(p× L− L + p) + αr̂

as vector invariants, where r̂ := r/r.

Problem 63. Let g1, g2, g3 be positive constants. Consider the Hamilton
function (Calogero potential)

HC(p1, p2, p3, q1, q2, q3) =

1
2

(p2
1+p2

2+p2
3)+

1
6

((q1−q2)2+(q2−q3)2+(q3−q1)2))+
g1

(q1 − q2)2
+

g2
(q2 − q3)2

+
g3

(q3 − q1)2
.

Transform the Hamilton function to the centre of mass and Jacobi coordi-
nates R, x, y

R(q1, q2, q3) =
1
3

(q1 + q2 + q3)
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x(q1, q2, q3) =
1√
2

(q1 − q2)

y(q1, q2, q3) =
1√
6

(q1 + q2 − 2q3).

Show that the centre of mass only executes free motion, and the (x, y)
dynamics is described by the reduced Hamilton function

H(px, py) =
1
2

(p2
x + p2

y) +
1
2

(x2 + y2) +
g1

2x2
+

2g2
(x−

√
3y)2

+
2g3

(x+
√

3y)2
.

Problem 64. Consider the Hamilton function

H =
1
2

(p2
1+p2

2+p2
3)+

1
6

((q1−q2)2+(q2−q3)2+(q3−q1)2)+
g1

(x1 − x2)2
+

g2
(q2 − q3)2

+
g3

(q3 − q1)2

where g1, g2, g3 are positive constants. Transform the Hamilton function
to the centre of mass and Jacobi coordinates

R(q1, q2, q3) =
1
3

(q1 + q2 + q3)

x(q1, q2, q3) =
1√
2

(q1 − q2)

y(q1, q2, q3) =
1√
6

(q1 + q2 − 2q3).

Problem 65. Consider the symmetry operation

Inversion P : (q1, q2, p1, p2) 7→ (−q1,−q2,−p1,−p2)
Time reversal T : (q1, q2, p1, p2) 7→ (q1, q2,−p1,−p2)
Reflection S1 : (q1, q2, p1, p2) 7→ (−q1, q2,−p1, p2).

Does the Hamilton function

H(q1, q2, p1, p2) =
1
2

(p2
1 + p2

2) +
1
2

(q21 + q22) + c
1
4
q41q

4
2

satisfies these symmetries?

Problem 66. Consider the Hamilton functionH for a three body problem

H(p1,p2,p3,q1,q2,q3) =
1

2M
p2

1+
1

2M
p2

2+
1

2m
p2

3+V (q1−q2,q2−q3,q3−q1).

Show that the Hamilton function and equations of motion can be simplified
by introducing Jacobi variables

R =
M(q1 + q2) +mq3

2M +m
, x = q2−q1, y =

√
m√

2M +m
(2q3−q1−q2).
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Problem 67. Assume that a autonomous system of ordinary differential
equations can be written as

dx
dt

= J(x)∇H(x)

where x = (x1, x2, . . . , xn)T , J , H are differentiable functions and J an
antisymmetric n× n matrix. Show that dH/dt = 0.

Problem 68. Consider the Hamilton function H : R4 → R

H(p,q) =
1
2

(p2
1 + p2

2) +
1
2
ω2(q21 + q22) +

1
2
g2(q1q2)2

with H = H0 +H1, where

H0(p,q) =
1
2

(p2
1 + p2

2) +
1
2
ω2(q21 + q22), H1(p,q) =

1
2
g2(q1q2)2.

(i) Introduce the new variables Ji, ϕi (i = 1, 2)

qi = (2Ji/ω)1/2 sinϕi, pi = (2Jiω)1/2 cosϕi

and write down the Hamilton function.
(ii) Introduce the variables

j1 = J1 + J2, φ1 =
1
2

(ϕ1 + ϕ2)

j2 = J1 − J2, φ2 =
1
2

(ϕ1 − ϕ2)

and write down the Hamilton equations of motion. Find the Hamilton
equations of motion for H0. Discuss.
(iii) Calculate

H1(j, φ2) =
1

2π

∫ 2π

0

H1(j,φ)dφ1.

This means we average the Hamilton function H1(j,φ) over the fast variable
and extracting the secular part of H1. Discuss the Hamilton equations of
motion for the Hamilton function H = H0 +H1.

Problem 69. The equations of motion of a solid in an ideal fluid have
the form

dp1

dt
= p2

∂H

∂`3
− p3

∂H

∂`2
dp2

dt
= p3

∂H

∂`1
− p1

∂H

∂`3
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dp3

dt
= p1

∂H

∂`2
− p2

∂H

∂`1
d`1
dt

= p2
∂H

∂p3
− p3

∂H

∂p2
+ `2

∂H

∂`3
− `3

∂H

∂`2
d`2
dt

= p3
∂H

∂p1
− p1

∂H

∂p3
+ `3

∂H

∂`1
− `1

∂H

∂`3
d`3
dt

= p1
∂H

∂p2
− p2

∂H

∂p1
+ `1

∂H

∂`2
− `2

∂H

∂`1

with the Hamilton function

H(p, `) =
1
2

3∑
j,k=1

(ajk`j`k + 2bjk`jpk + cjkpjpk).

Show that besides H = I1 we have the first integrals

I2(p, `) = p2
1 + p2

2 + p2
3, I3(p, `) = p1`1 + p2`2 + p3`3.

Problem 70. Show that

Gj(t) := tP kinj −MRj , j = 1, 2, 3

where

P kinj :=
N∑
k=1

pkj , M :=
N∑
k=1

mk, Rj :=
1
M

N∑
k=1

mkqkj

are explictly time-dependent first integrals for the Hamilton system

H(p,q) =
N∑
k=1

3∑
j=1

p2
kj

2mk
+

1
2

N∑
k,`=1
k 6=`

3∑
j=1

Vk`(|qk − q`|).

Problem 71. Given a smooth Hamilton function

H(p,q) =
n∑
j=1

p2
j

2
+ U(q)

with n degrees of freedom (p = (p1, . . . , pn), q = (q1, . . . , qn). Let V (E) be
the classical phase space volume at energy E of a smooth Hamilton function
is given by

V (E) =
∫

R2n

Θ(E −H(p,q))dnpdnq



Hamilton Systems 159

where Θ is the step function. Assume that U(εq) = εmU(q).
(i) Consider the transformation

p = E1/2p′, q = E1/nq′

with the inverse transformation

p′ = E−1/2p, q′ = E−1/nq.

Find dnp′dnq′ and H(p′,q′).
(ii) Calculate V (E) with the assumption that E > 0. Find the asymptotic
behaviour.

Problem 72. Consider the three-particle nonrelativistic Schrödinger
eigenvalue equation (MKSA-system)(
− ~2

2M
∇2

R0
− ~2

2m
∇2

R1
− ~2

2m
∇2

R2
− Ze2

4πε0|R0 −R1|
− Ze2

4πε0|R0 −R2|

+
e2

4πε0|R1 −R2|

)
u(R0,R1,R2) = Eu(R0,R1,R2)

where R0 = (R01, R02, R03)T is the position vector of the nucleus of mass
M , and R1 = (R11, R12, R13)T and R2 = (R21, R22, R23)T are the position
vectors of the two electrons of mass m and Z = 2. The Jacobi coordinates
are given by

r = (R1 −R0)/aµ
x = Λ(R2 −R0 − y(R1 −R0))/aµ
X = Λ(R0 + y(R1 + R2 −R0))/aµ

where r = (r1, r2, r3)T , x = (x1, x2, x3)T , X = (X1, X2, X3)T ,

µ =
mM

m+M
, y := µ/M, Λ := 1/(1− y2)

and aµ = (m/µ)a0 is the reduced Bohr radius with a0 = (4πε0~2)/(me2).
Thus r, x, X are dimensionless.
(i) Find the inverse of this transformation.
(ii) Express the Hamilton operator

Ĥ =
(
− ~2

2M
∇2

R0
− ~2

2m
∇2

R1
− ~2

2m
∇2

R2

− Ze2

4πε0|R0 −R1|
− Ze2

4πε0|R0 −R2|
+

e2

4πε0|R1 −R2|

)
in this coordinates.
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Problem 73. Consider a bead of mass m slides frictionless upon a smooth
circular wire of radius r. The wire rotates with constant frequency ω about
a vertical axis parallel to the earth’s gravitational field. Consider the bi-
furcation parameter µ := ω2r/g. Find the value µc of the bifurcation
parameter for which there is a bifurcation. The kinetic energy is

T (θ, θ̇) =
mr2

2

((
dθ

dt

)2

+ ω2 sin2 θ

)
The potential energy is

V (θ) = mgr(1− cos θ)

with the Lagrange function L = T − V .

Problem 74. (i) Consider the Hamilton function

H(θ, p, t) =
1
2I
p2 +mB0 cos(θ) sin(ωt)

which depends explicitly on time and B = B0 sin(ωt) is a time periodic
magnetic field. I is the moment of inertia of the dipole and m the dipole
moment. Find the equation of motion. Does the system show chaotic
behaviour depending on B0?

Problem 75. (i) Show that the second order ordinary differential equa-
tion

1 +
(
du

dt

)2

− ud
2u

dt2
= 0

can be derived from the Lagrange function

L(u, u̇) = u
√

(u̇)2 + 1.

(ii) Setting u(t) = exp(v(t)) show that the differential equation takes the
form

d2v

dt2
= e−2v(t).

Problem 76. (i) Consider the damped anharmonic oscillator

d2x

dt2
+ c1

dx

dt
+ c2x+ x3 = 0

where c1, c2 are constants. Show that the equation of motion can be derived
from the explicitly time-dependent Lagrange function

L(t, x(t), ẋ(t)) =
1
2
ec1tẋ2 − ec1tV (x)
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where
V (x) =

∫ x

0

f(s)ds

where the function f is given by f(x) = c2x+ x3.
(ii) Show that the corresponding Hamilton function is given by

H(t, x(t), p(t)) =
1
2
e−c1tp2 + ec1tV (x).

Problem 77. Consider three masses mA, mB , mC and the Hamilton
function

H =
p2
A

2mA
+

p2
B

2mB
+

p2
C

2mC
+ VA(qB − qC) + VB(qC − qA) + VC(qA − qB).

Let M = mA +mB +mC .
(i) Are the total momentum

P = pA + pB + pC

and the position of the centre of mass

S =
1
M

(mAqA +mBqB +mCqC)

are constants of motions?
(ii) Show that the centre of mass can be separated out.

Problem 78. Consider the Lagrange function

L(φ(t), θ(t), φ̇(t), θ̇(t)) = r

√
(φ̇)2 sin2(θ) + (θ̇)2.

The Euler-Lagrange equation takes the form

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0,

∂L

∂φ
− d

dt

∂L

∂φ̇
= 0.

Write down the Euler-Lagrange equation and solve the initial value prob-
lem.
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Hénon-Heiles model, 137
Halphen-Darboux system, 71
Hamilton equations of motion, 126
Heisenberg spin chain, 78
Hill’s equation, 125
Hodographic transformation, 17
Hopf bifurcation, 113
Hopf bifurcation theorem, 55, 59
Hydrogen atom, 137

Inverse error function, 8
invertible point transformation, 25
Involution, 127

Jacobi coordinates, 156, 159
Jacobi elliptic functions, 121

164



Index 165

Jacobi elliptic integral, 114
Jacobi variables, 156
Jacobian determinant, 3
Jaynes-Cummings model, 77

Kepler problem, 140, 151
Kronecker product, 69
Kuramoto differential equation, 74

Lenz vector, 151
Lie derivative, 54
Lie series, 8
Lie series expansion, 2
Limit cycle, 31
Logarithmic derivative, 26
Logistic equation, 3
Lorenz equations, 75
Lorenz model, 72, 73, 76, 85, 87, 89,

99, 103
Lotka Volterra model, 52
Lotka-Volterra system, 59
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