
9/7/2016

1

Spanning Tree

Design and Analysis of Algorithms

Andrei Bulatov

Let G = (V,E) be a connected undirected graph

A subset T ⊆ E is called a spanning tree of G if (V,T) is a tree

If every edge of G has a weight (positive) then every spanning

tree also has associated weight

The Minimum Spanning Tree Problem

Instance

Graph G with edge weights

Objective

Find a spanning tree of minimum weight

Algorithms – Spanning Tree 3-2

The Minimum Spanning Tree Problem

ec

∑
∈Te

ec

Algorithms – Spanning Tree 3-3

Kruskal’s Algorithm

Input: graph G with weights

Output: a minimum spanning tree of G

Method:

T:=∅

while |T|<|V|-1 do

pick an edge e with minimum weight such that

it is not from T and

T∪{e} does not contain cycles

set T:=T∪{e}

endwhile

ec

Algorithms – Spanning Tree 3-4

Example

a b

c d

e

f

1

2
4

3

2

2

2

5

4

3

Algorithms – Spanning Tree 3-5

Kruskal’s Algorithm: Soundness

Lemma (the Cut Property)

Assume that all edge weights are different. Let S be a nonempty

subset of vertices, S ≠ V, and let e be the minimum weight edge

connecting S and V – S. Then every minimum spanning tree

contains e

Use the exchange argument

Proof

Let T be a spanning tree that does not contain e

We find an edge e’ in T such that replacing e’ with e we obtain

another spanning tree that has smaller weight

Algorithms – Spanning Tree 3-6

Kruskal’s Algorithm: Soundness (cntd)

Let e = (v,w)

There is a (unique) path P in T connecting v and w

Let u be the first vertex on this path not in S, and let e’ = tu be the

edge connecting S and V – S.

q

v

t u

w

s

r

e’

e

f

9/7/2016

2

Algorithms – Spanning Tree 3-7

Kruskal’s Algorithm: Soundness (cntd)

Replace in T edge e’ with e

T’ = (T – {e’}) ∪ {e}

T’ remains a spanning tree

but lighter

QED

Algorithms – Spanning Tree 3-8

Kruskal’s Algorithm: Soundness (cntd)

Proof

T is a spanning tree

It contains no cycle

If (V,T) is not connected then there is an edge e such that T ∪ {e}

contains no cycle.

The algorithm must add the lightest such edge

Theorem

Kruskal’s algorithm produces a minimum spanning tree

Algorithms – Spanning Tree 3-9

Kruskal’s Algorithm: Soundness (cntd)

Proof (cntd)

T has minimum weight

We show that every edge added by Kruskal’s algorithm must belong

to every minimum spanning tree

Consider edge e = (v,w) added by the algorithm at some point, and

let S be the set of vertices reachable from v in (V,T), where T is

the set generated at the moment

Clearly v ∈ S, but w ∉ S

Edge (v,w) is the lightest edge connecting S and V – S

Indeed if there is a lighter one, say, e’, then it is not in T, and

should be added instead

QED

Algorithms – Spanning Tree 3-10

Kruskal’s Algorithm: Running Time

Suppose G has n vertices and m edges

Straightforward:

We need to add n – 1 edges, and every time we have to find the

lightest edge that doesn’t form a cycle

This takes n · m · (m + n), that is

Using a good data structure that stores connected components of the

tree being constructed we can do it in O(m log n) time

)(
2
nmO

Algorithms – Spanning Tree 3-11

Prim’s Algorithm

Input: graph G with weights

Output: a minimum spanning tree of G

Method:

choose a vertex s

set S:={s}, T:=∅

while S≠V do

pick a node v not from S such that the value

is minimal

set S:=S∪{v} and T:=T∪{e}

endwhile

eSuvue c∈=),,(min

ec

Algorithms – Spanning Tree 3-12

Prim’s Algorithm: Soundness (cntd)

Proof: DIY

Theorem

Prim’s algorithm produces a minimum spanning tree

9/7/2016

3

Algorithms – Spanning Tree 3-13

Clustering

The k-Clustering Problem

Instance

A set U of n objects, and a distance function

with natural properties

Objective

Find a partition (clustering) of U into k non-empty subsets such

that the spacing (the minimal distance between points in different

clusters) is maximal

npp ,,1 K

),(ji ppd

Algorithms – Spanning Tree 3-14

Clustering vs. Spanning Tree

Let us run Kruskal’s algorithm on the complete graph with vertices

and weights of edges determined by

Implement the data structure storing connected components of the

growing graph

We terminate the algorithm once the number of connected components

equals k

Theorem

The components constructed by the algorithm above constitute a k-

clustering of maximum spacing

npp ,,1 K),(ji ppd

Algorithms – Spanning Tree 3-15

Optimal Caching

Caching

Memory Hierarchy

Eviction, Cache miss, Cache schedule

The Optimal Caching Problem

Instance

A data stream, and a cache size k

Objective

Find a cache schedule with fewest cache misses

Algorithms – Spanning Tree 3-16

Farthest-in-Future Principle

The following greedy algorithm provides an optimal cache schedule

when d needs to be brought into the cache,

evict the item that is needed the farthest into the
future

Algorithms – Spanning Tree 3-17

Least-Recently-Used Principle

The Farthest-in-future principle is not very practical

The reverse principle is normally used

when d needs to be brought into the cache,

evict the item that referenced longest ago

It is not optimal anymore

For analysis see

Sleator, Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28:2, 1985, 202-208

