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Spanning Tree

Design and Analysis of Algorithms

Andrei Bulatov

Let  G = (V,E)  be a connected undirected graph

A subset  T ⊆ E  is called a  spanning tree of  G  if  (V,T)  is a tree

If every edge of  G  has a weight (positive)          then every spanning

tree also has associated weight

The Minimum Spanning Tree Problem

Instance

Graph   G  with edge weights

Objective

Find a spanning tree of minimum weight
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The Minimum Spanning Tree Problem
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Kruskal’s Algorithm

Input:   graph G with weights   

Output:    a minimum spanning tree of G

Method:

T:=∅

while |T|<|V|-1 do

pick an edge e with minimum weight such that 

it is not from T and

T∪{e} does not contain cycles

set T:=T∪{e} 

endwhile
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Example
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Kruskal’s Algorithm: Soundness

Lemma (the Cut Property)

Assume that all edge weights are different.  Let  S  be a nonempty 

subset of vertices,  S ≠ V,  and let  e  be the minimum weight edge 

connecting  S  and  V – S.   Then every minimum spanning tree 

contains  e

Use the exchange argument

Proof

Let  T  be a spanning tree that does not contain  e

We find an edge  e’  in  T  such that replacing  e’  with  e  we obtain 

another spanning tree that has  smaller weight
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Kruskal’s Algorithm: Soundness (cntd)

Let  e = (v,w)

There is a  (unique) path  P  in  T  connecting  v  and  w

Let  u  be the first  vertex on this path not in  S,  and let  e’ = tu  be the 

edge connecting  S  and  V – S. 
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Kruskal’s Algorithm: Soundness (cntd)

Replace in  T  edge  e’  with  e

T’ = (T – {e’}) ∪ {e}

T’  remains a spanning tree

but lighter

QED
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Kruskal’s Algorithm: Soundness (cntd)

Proof

T  is a spanning tree

It contains no cycle

If  (V,T)  is not connected then there is an edge  e  such that  T ∪ {e} 

contains no cycle.  

The algorithm must add the lightest such edge

Theorem

Kruskal’s algorithm produces a minimum spanning tree
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Kruskal’s Algorithm: Soundness (cntd)

Proof  (cntd)

T  has minimum weight

We show that every edge added by Kruskal’s algorithm  must belong 

to every minimum spanning tree

Consider edge  e = (v,w)  added by the algorithm at some point, and 

let  S  be the set of vertices reachable from  v  in  (V,T),  where  T  is 

the set generated at the moment

Clearly  v ∈ S,  but  w ∉ S  

Edge  (v,w)  is the lightest  edge connecting  S  and  V – S 

Indeed if there is a lighter one, say,  e’,  then it is not in  T,  and 

should be added instead

QED
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Kruskal’s Algorithm: Running Time

Suppose  G  has  n  vertices and  m  edges

Straightforward:

We need to add  n – 1  edges,  and every time we have to find the 

lightest edge  that doesn’t form a cycle

This takes  n · m · (m + n),  that is

Using a good data structure that stores connected components of the 

tree being constructed  we can do it  in  O(m log n)  time  
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Prim’s Algorithm

Input:   graph G with weights   

Output:    a minimum spanning tree of G

Method:

choose a vertex s

set S:={s}, T:=∅

while S≠V do

pick a node v not from S such that the value

is minimal

set S:=S∪{v} and T:=T∪{e} 

endwhile
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Prim’s Algorithm: Soundness (cntd)

Proof:        DIY

Theorem

Prim’s algorithm produces a minimum spanning tree



9/7/2016

3

Algorithms – Spanning Tree 3-13

Clustering

The k-Clustering Problem

Instance

A set  U  of  n  objects,                      and a distance function     

with natural properties

Objective

Find a partition (clustering) of  U  into  k  non-empty subsets such 

that the spacing (the minimal distance between points in different 

clusters) is maximal

npp ,,1 K
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Clustering vs. Spanning Tree

Let us run  Kruskal’s algorithm on the complete graph with vertices

and weights of edges determined by

Implement the data structure storing connected components of the 

growing graph

We terminate the algorithm once the number of connected components 

equals  k

Theorem

The components constructed by the algorithm above constitute a k-

clustering of maximum spacing

npp ,,1 K ),( ji ppd
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Optimal Caching

Caching

Memory Hierarchy

Eviction, Cache miss, Cache schedule

The Optimal Caching Problem

Instance

A data stream, and a cache size  k

Objective

Find a cache schedule with fewest cache misses
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Farthest-in-Future Principle

The following greedy algorithm provides an optimal cache schedule

when d needs to be brought into the cache,

evict the item that is needed the farthest into the 
future

Algorithms – Spanning Tree 3-17

Least-Recently-Used Principle

The Farthest-in-future principle is not very practical

The reverse principle is normally used

when d needs to be brought into the cache,

evict the item that referenced longest ago

It is not optimal anymore

For analysis see

Sleator, Tarjan.  Amortized efficiency of list update and paging rules.

Communications of the  ACM, 28:2, 1985, 202-208


