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Abstract. Bilevel optimization is a powerful tool for modeling hierarchical
decision making processes. However, the resulting problems are challenging to
solve—both in theory and practice. Fortunately, there have been significant
algorithmic advances in the field so that we can solve much larger and also
more complicated problems today compared to what was possible to solve two
decades ago. This results in more and more challenging bilevel problems that
researchers try to solve today. In this article, we give a brief introduction to one
of these more challenging classes of bilevel problems: bilevel optimization under
uncertainty using robust optimization techniques. To this end, we briefly state
different versions of uncertain bilevel problems that result from different levels
of cooperation of the follower as well as on when the uncertainty is revealed.
We highlight these concepts using an academic example and discuss recent
results from the literature concerning complexity as well as solution approaches.
Finally, we discuss that the sources of uncertainty in bilevel optimization are
much richer than in single-level optimization and, to this end, introduce the
concept of decision uncertainty.

1. Introduction

Bilevel optimization has its roots in economics and dates back to the seminal
works by von Stackelberg (1934, 1952). It has been introduced in the field of
mathematical optimization much later in the publications by Bracken and McGill
(1973) as well as Candler and Norton (1977). We use bilevel optimization to model
hierarchical decision making processes, typically with two players, which we refer to
as the leader and the follower. Despite its intrinsic hardness (Hansen et al. 1992;
Jeroslow 1985), several innovative works pushed the boundaries of computational
bilevel optimization so that we can tackle some relevant practical applications
today; see, e.g., Kleinert et al. (2021) for a recent survey on computational bilevel
optimization as well as the annotated bibliography by Dempe (2020).

The main goal of this article is to give a brief introduction to some basic concepts
of bilevel optimization problems under uncertainty. The field is still in its infancy
but, nevertheless, due to its relevance in many practical applications, it is developing
very fast. In classic, i.e., single-level, optimization, there are two major approaches
to address uncertainty: stochastic optimization (Birge and Louveaux 2011; Kall and
Wallace 1994) and robust optimization (Ben-Tal, El Ghaoui, et al. 2009; Ben-Tal
and Nemirovski 1998; Bertsimas, Brown, et al. 2011; Soyster 1973). The same two
paths have been followed as well in bilevel optimization starting from the 1990s
on. However, the sources of uncertainty are much richer in bilevel optimization
compared to single-level optimization. To make this more concrete, let us consider
the linear optimization problem minx{c>x : Ax ≥ b}. It can “only” be subject to
uncertainty due to uncertainties in the problem’s data c, A, and b. Throughout
this article, we will refer to this setting as data uncertainty. Moreover, a bilevel
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optimization problem may also be subject to an additional source of uncertainty,
which is due to its nature that it combines two different decision makers in one
model. Hence, there can be further uncertainty involved either if the leader is not
sure about the reaction of the follower or if the follower is not certain about the
observed leader’s decision. We will denote this additional type of uncertainty as
decision uncertainty. Obviously, decision uncertainty does not play any role in
single-level optimization since only one decision maker is involved.

In this introductory article, we will solely focus on data uncertainty that is tackled
using concepts from robust optimization. For more details regarding stochastic
bilevel optimization, decision uncertainty, etc. we refer to our recent survey (Beck,
Ljubić, et al. 2022a).

2. Problem Statement

We start by considering the deterministic bilevel problem (we explain the quota-
tion marks below)

“ min
x∈X

” F (x, y) (1a)

s.t. G(x, y) ≥ 0, (1b)
y ∈ S(x), (1c)

where S(x) denotes the set of optimal solutions of the x-parameterized problem

min
y∈Y

f(x, y) (2a)

s.t. g(x, y) ≥ 0. (2b)

Problem (1) is referred to as the upper-level (or the leader’s) problem and Prob-
lem (2) is the so-called lower-level (or the follower’s) problem. Moreover, we refer
to x ∈ X and y ∈ Y as the leader’s and the follower’s variables, respectively. The
sets X ⊆ Rnx and Y ⊆ Rny can be used to include possible integrality constraints.
The objective functions are given by F, f : Rnx × Rny → R and the constraint
functions by G : Rnx × Rny → Rm as well as g : Rnx × Rny → R`. In the case that
the lower-level problem does not have a unique solution, the bilevel problem (1)
and (2) is ill-posed. This ambiguity is expressed by the quotation marks in (1a). To
overcome this issue, it is common to pursue either an optimistic or a pessimistic
approach to bilevel optimization; see, e.g., Dempe (2002). In the optimistic setting,
the leader chooses the follower’s response among multiple optimal solutions of the
lower-level problem such that it favors the leader’s objective function value. Hence,
the leader also minimizes her1 objective in the y variables, i.e., we consider the
problem

min
x∈X̄

min
y∈S(x)

F (x, y) (3)

with X̄ := {x ∈ X : G(x) ≥ 0} and G : Rnx → Rm. Here and in what follows, we
focus on the setting without coupling constraints, i.e., without upper-level constraints
that depend on the variables y. In the pessimistic setting, the leader anticipates
that, among multiple optimal solutions of the follower, the worst possible response
w.r.t. the upper-level objective function will be chosen by the follower. Thus, one
studies the problem

min
x∈X̄

max
y∈S(x)

F (x, y).

In this article, we focus on bilevel problems of the above form which are addi-
tionally affected by data uncertainty.

1Throughout this article, we use “her” for the leader and “his” for the follower.
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2.1. Data Uncertainty. Data uncertainty arises when some of the players only
have access to inaccurate or incomplete data. In robust optimization, it is assumed
that these uncertainties take values in a given, and usually compact, uncertainty
set U . The uncertainty sets are typically modeled using boxes, polyhedra, ellipsoids,
or cones; see, e.g., Ben-Tal, El Ghaoui, et al. (2009), Ben-Tal, Goryashko, et al.
(2004), Ben-Tal and Nemirovski (1998), Bertsimas, Brown, et al. (2011), and Soyster
(1973). In the context of single-level robust optimization, there are two possibilities
to hedge against data uncertainty.

First, assuming that the coefficients of the objective function are uncertain, one
searches for a solution that is optimal for the worst-case realization of the uncertain
parameters. The problem can be modeled as

min
x∈X̄

max
u∈U

F (x, u), (4)

where the objective function F : Rnx×Rnu → R is continuous and the sets U ⊆ Rnu

and X̄ are defined as above.
Second, in the case that the uncertainty affects the coefficients of the constraints,

one is interested in a solution that is feasible for all possible realizations of the
uncertainty. This problem can be stated as

min
x∈X

F (x) s.t. G(x, u) ≥ 0 for all u ∈ U , (5)

where both the objective function F : Rnx → R and the constraint func-
tion G : Rnx × Rnu → Rm are continuous. Problem (5) can be reformulated as

min
x∈X

F (x) s.t. min {G(x, u) : u ∈ U} ≥ 0. (6)

In particular, Problem (4) can be restated as an instance of Problem (6) using an
epigraph reformulation, i.e.,

min
x∈X̄,t∈R

t s.t. t ≥ max {F (x, u) : u ∈ U} .

Note that for the two settings discussed so far, a single decision maker has
to take a here-and-now decision before the uncertainty is revealed. In bilevel
optimization, however, there are two different timings that are possible—one in
which the uncertainty realizes after and one in which the uncertainty realizes before
the follower takes his decision.

2.1.1. Here-and-Now Follower. In this case, both the leader and the follower have
to make their decisions before the uncertainty is revealed, i.e., one considers the
timing

leader x y follower y = y(x) y uncertainty u. (7)
This means that the leader anticipates an optimal response of the follower who hedges
against data uncertainty. Hence, the lower-level problem is an x-parameterized
problem in which we can embed any of the concepts known for single-level optimiza-
tion under uncertainty. For instance, if only the lower-level objective function is
uncertain and the follower is assumed to behave in an optimistic way, we are solving
Problem (3) with

S(x) := arg min
y′∈Y

{
max
u∈U

f(x, u, y′) : g(x, y′) ≥ 0

}
.
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2.1.2. Wait-and-See Follower. In this setting, the leader first takes a here-and-now
decision, i.e., without knowing the realization of uncertainty. Then, the uncertainty
is revealed and, finally, the follower decides in a wait-and-see fashion, taking the
leader’s decision as well as the realization of the uncertainty into account. Hence,
one considers the timing

leader x y uncertainty u y follower y = y(x, u). (8)

This means that the leader does not have full knowledge about the lower-level
problem. Thus, she wants to hedge against the worst-case reaction of the follower.
Here, “worst-case” may not only imply the robustness of the leader w.r.t. lower-level
data uncertainty but also her conservatism regarding the cooperation of the follower.
For instance, to protect against the worst-case realization of the uncertainties w.r.t.
the leader’s objective function, we consider the problem

“ min
x∈X̄

max
u∈U

” F (x, y) s.t. y ∈ S(x, u), (9)

where S(x, u) is the set of optimal solutions of the (x, u)-parameterized problem

min
y∈Y

f(x, u, y) s.t. g(x, u, y) ≥ 0.

The quotation marks in (9) express the ill-posedness of the bilevel problem in the
case that the set S(x, u) is not a singleton. Hence, one also needs to distinguish
between the optimistic and the pessimistic case in the robust setting. Indeed, both
situations can be motivated by practical applications. For instance, the pessimistic
robust bilevel problem appears when the leader wants to hedge against the worst-case
both w.r.t. lower-level data uncertainty as well as w.r.t. the potentially unknown
level of cooperation of the follower. On the other hand, there may also be situations
in which the follower still hedges against his uncertainties in a robust way but, in
the case of ambiguous optimal solutions, acts in an optimistic way. This might be
the case in energy markets with sufficiently regulated agents, where a strong level of
regulation might lead to an optimistic robust bilevel problem.

3. An Academic Example

Let us consider the linear bilevel problem taken from Beck, Ljubić, et al. (2022a)
that is given by

“ min
x∈R

” F (x, y) = x + y (10a)

s.t. x− y ≥ −1, (10b)
3x + y ≥ 3, (10c)
y ∈ S(x), (10d)

where S(x) denotes the set of optimal solutions of the x-parameterized lower level

min
y∈R

f(x, y) = −0.1y (11a)

s.t. − 2x + y ≥ −7, (11b)
− 3x− 2y ≥ −14, (11c)
0 ≤ y ≤ 2.5. (11d)

The problem is depicted in Figure 1 (left). The upper- and lower-level constraints are
represented with dashed and solid lines, respectively. The optimal solution (x∗, y∗) =
(1.5, 2.5) is the same for both the optimistic and the pessimistic setting and it is
illustrated by the thick dot. Suppose now that the lower-level objective function
is uncertain. To this end, we consider f̃(x, u, y) = (−0.1 + u)y and assume that u
only takes values in the uncertainty set U = {u ∈ R : |u| ≤ 0.5}. In what follows,



A BRIEF INTRODUCTION TO ROBUST BILEVEL OPTIMIZATION 5

1 2 3 4

1

2

3
F

f

x

y

1 2 3 4

1

2

3
F

f̃

x

y

Figure 1. Both figures show the upper-level constraints (dashed
blue lines), the lower-level constraints (solid black and orange lines),
the shared constraint set (gray area), and the bilevel feasible set
(solid orange lines) of the bilevel problem (10) and (11). The
deterministic variant of the problem is depicted on the left and the
variant with a here-and-now follower is given on the right.

we distinguish between a follower taking a here-and-now or a wait-and-see decision
to illustrate how the considered timing may affect the solution of the problem.

3.1. Here-and-Now Follower. We first consider the timing in (7). The robustified
lower-level problem is thus given by

min
y∈R

max
u∈U

f̃(x, u, y) = (−0.1 + u)y s.t. (11b)–(11d).

Using classic techniques from robust optimization, we obtain a modified gradient
of the lower-level objective function, which is shown in Figure 1 (right). The
optimal solution (x∗, y∗) = (1, 0) of this problem is represented by the thick dot. In
particular, there is a unique lower-level response for every feasible x, which is why
we do not need to distinguish between the optimistic and the pessimistic case.

3.2. Wait-and-See Follower. We now consider the timing in (8), i.e., the overall
robustified bilevel problem reads

“ min
x∈R

max
u∈U

” F (x, y) s.t. (10b)–(10c), y ∈ S(x, u),

where S(x, u) is the set of optimal solutions of the (x, u)-parameterized lower level

min
y∈R

f̃(x, u, y) = (−0.1 + u)y s.t. (11b)–(11d).

To solve this problem, we need to distinguish the following three cases.
(i) −0.5 ≤ u < 0.1: This case corresponds to the setting that is depicted in

Figure 1 (left). The optimal follower’s reaction is thus given by

y(x, u) =

{
2.5, x ≤ 3,

−1.5x + 7, 3 ≤ x ≤ 4.
(12)

Note, however, that the bilevel problem is infeasible for x < 1.5. In
particular, this means that the robust optimal leader’s decision x∗ = 1 for
the case with a here-and-now follower is no longer bilevel feasible if the
follower decides in a wait-and-see fashion.
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(ii) u = 0.1: Any feasible decision of the follower, i.e., any y ∈ R that satis-
fies (11b)–(11d), is optimal for the x-parameterized lower level. Hence, the
distinction between an optimistic and a pessimistic follower is necessary.
In the optimistic setting, the follower would react with

y(x, u) =

{
0, x ≤ 3.5,

2x− 7, 3.5 ≤ x ≤ 4.
(13)

This corresponds to the setting that is depicted in Figure 1 (right). A
pessimistic follower, however, would select (12). Note that the bilevel
problem with an optimistic follower turns out to be infeasible for x < 1
and, again, the problem is infeasible for x < 1.5 if a pessimistic follower is
considered.

(iii) 0.1 < u ≤ 0.5: The optimal follower’s reaction is given by (13). Again, the
overall bilevel problem turns out to be infeasible for x < 1.

To determine an optimal solution of the bilevel problem (10) and (11) with a
wait-and-see follower, we thus consider the worst-case realization of each of the
previous three cases w.r.t. the leader’s decision x. Hence, we need to solve

min
x

F̂ (x) s.t. 1.5 ≤ x ≤ 4 (14)

with the piecewise-linear function

F̂ (x) =

{
x + 2.5, 1.5 ≤ x ≤ 3,

−0.5x + 7, 3 ≤ x ≤ 4.

In particular, the solution x∗ = 1.5 of Problem (14) is an optimal decision of
the leader in both the optimistic and the pessimistic setting. After observing the
realization of the uncertainty, the corresponding response of the follower is then
given by

y∗o(x∗, u) =

{
2.5, −0.5 ≤ u < 0.1,

0, 0.1 ≤ u ≤ 0.5

in the optimistic setting, whereas, for the pessimistic case, we have

y∗p(x∗, u) =

{
2.5, −0.5 ≤ u ≤ 0.1,

0, 0.1 < u ≤ 0.5.

Note that, if u ∈ [−0.5, 0.1) realizes, at the point x∗ = 1.5, the deterministic solution
(x∗, y(x∗)) and the robust bilevel solutions (x∗, y(x∗, u)) coincide. However, the
optimal follower’s response y(x∗, u) in the robust setting may change significantly
for u ≥ 0.1.

4. Selected Results from the Literature

The field of robust bilevel optimization is still in its infancy. For a detailed
discussion of existing modeling and solution approaches, we refer to our recent
survey (Beck, Ljubić, et al. 2022a). In deterministic bilevel optimization, a standard
solution approach is to reformulate the problem as a classic, i.e., single-level, problem.
This can be done, e.g., by replacing the lower level with its Karush–Kuhn–Tucker
(KKT) conditions (Fortuny-Amat and McCarl 1981). The same holds true for
robust bilevel problems whenever the robust counterpart of the lower-level problem
can be reformulated as a deterministic problem for which the KKT conditions are
necessary and sufficient. However, these reformulation techniques cannot be applied
anymore if discrete variables are introduced in the lower level. Due to their intrinsic
hardness, approaches for discrete robust bilevel problems have not been investigated
a lot up to now. In single-level optimization, the knapsack problem is one of the
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most thoroughly studied discrete optimization problem due to its relevance both in
theory and practice; see, e.g., Pisinger and Toth (1998). Bilevel knapsack problems
naturally extend their single-level counterparts such as to capture hierarchical
and, in particular, competitive settings (Caprara et al. 2013; Della Croce and
Scatamacchia 2020; DeNegre 2011; Fischetti, Ljubić, et al. 2019; Fischetti, Monaci,
et al. 2018). Moreover, the bilevel knapsack interdiction problem is commonly
used as a benchmark for testing bilevel optimization solvers; see, e.g., DeNegre
and Ralphs (2009) and Tang et al. (2016). It is thus not surprising that bilevel
knapsack problems are also among the first discrete bilevel problems studied under
uncertainty—both in terms of complexity questions and solution approaches. The
remainder of this section is thus dedicated to a brief overview of recent results from
the literature for robust bilevel knapsack problems.

4.1. Complexity Results for Robust Continuous Bilevel Knapsack Prob-
lems with a Wait-and-See Follower. We start by considering the robust con-
tinuous bilevel knapsack problem with an uncertain lower-level objective, i.e., we
consider the problem

max
x∈[x−,x+]

min
c∈U,y∈Rn

d>y (15a)

s.t. y ∈ arg max
y′

{
c>y′ : a>y′ ≤ x, 0 ≤ y′ ≤ 1

}
(15b)

with x−, x+ ∈ R, x− ≤ x+, a, c, d ∈ Rn
≥0, and an uncertainty set U ⊆ Rn. In this

setting, the leader first decides on the knapsack’s capacity x. Then, the uncertainties
regarding the lower-level objective function coefficients realize. Finally, the follower
solves a knapsack problem according to the realization of his own profits, which may
differ from those of the leader. Hence, the follower decides in a wait-and-see fashion,
i.e., the timing in (8) is considered. The leader’s aim is to choose the capacity of
the knapsack in such a way that her own profit of the items packed by the follower
is maximized. Whenever the follower’s choice of items is not unique, the pessimistic
approach is considered. The deterministic variant of Problem (15) can be solved in
polynomial time, which makes it a good starting point to address the question of
how uncertainties may affect the hardness of the underlying bilevel problem.

Driven by this question, Buchheim and Henke (2020, 2022) show that the com-
plexity of Problem (15) strongly depends on the considered type of the uncertainty
set. For discrete uncertainty sets as well as for interval uncertainty under the
independence assumption, i.e., for the case in which the follower’s objective function
coefficients independently take values in given intervals, Problem (15) remains solv-
able in polynomial time. However, the problem becomes NP-hard if the uncertainty
set is the Cartesian product of discrete sets. In particular, this shows that replacing
the uncertainty set by its convex hull may significantly change the problem, which
is very much in contrast to the situation in single-level robust optimization. NP-
hardness is also shown for the variants of the problem with polytopal uncertainty
sets and uncertainty sets that are defined by a p-norm with p ∈ [1,∞). In particular,
for all NP-hard variants of the problem, even the evaluation of the leader’s objective
function is NP-hard.

As a generalization of the aforementioned works, Buchheim, Henke, and Hom-
melsheim (2021) are concerned with complexity questions for robust bilevel combi-
natorial problems of the form

“ max
x∈X

min
c∈U

” d>y (16a)

s.t. y ∈ arg max
y′∈Rny

{
c>y′ : By′ ≤ Ax + b

}
. (16b)
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with X ⊆ {0, 1}nx , A ∈ Rm×nx , B ∈ Rm×ny , c, d ∈ Rny , and b ∈ Rm. Again, it is
assumed that the lower-level objective function coefficients are uncertain, that the
uncertainties take values in a given uncertainty set U ⊆ Rny , and that the follower
decides in a wait-and-see fashion. As before, the quotation marks in (16a) express
the ambiguity in the case that the lower level does not have a unique solution.
The deterministic variant of Problem (16) is known to be NP-easy.2 However, it is
shown that interval uncertainty renders Problem (16) significantly harder than the
consideration of discrete uncertainty sets. More precisely, the robust counterpart can
be ΣP

2 -hard
3 for interval uncertainty under the independence assumption, whereas

it can be NP-hard for uncertainty sets U with |U| = 2 and strongly NP-hard for
general discrete uncertainty sets. In particular, it is shown that replacing the discrete
uncertainty set by its convex hull may increase the complexity of the problem at
hand, which is in line with the results in Buchheim and Henke (2020, 2022).

4.2. Solution Approaches for the Bilevel Knapsack Interdiction Problem
with a Here-and-Now Follower. Beck, Ljubić, et al. (2022b) study discrete linear
min-max problems with uncertainties regarding the lower-level objective function
coefficients. In contrast to the aforementioned works, which all follow the notion
of strict robustness, the authors consider a Γ-robust approach (Bertsimas and Sim
2003, 2004). The problem under consideration thus reads

min
x

c>x + d>y (17a)

s.t. Ax ≥ a, x ∈ X ⊆ Znx , (17b)

y ∈ arg max
y′∈Y (x)

{
d>y′ − max

{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆diy
′
i

}
, (17c)

where Γ ∈ [ny] := {1, . . . , ny} and Y (x) ⊆ Zny

+ denotes the lower-level feasible
set. Here, the timing in (7) is considered, i.e., both the leader and the follower
decide before the uncertainty realizes. The authors present two approaches to
reformulate Problem (17). The first approach is based on an extended formulation,
whereas the second one exploits the fact that Problem (17) can be interpreted as
a single-leader multi-follower problem with independent followers. Based on these
reformulations, the authors propose generic branch-and-cut frameworks to solve
the problem. Moreover, it is shown that the same techniques can also be used for
the case in which uncertainties only arise in a single packing-type constraint on the
lower level. To assess the applicability of the proposed branch-and-cut methods,
the authors focus on the Γ-robust knapsack interdiction problem (Caprara et al.
2016). In this setting, both players share a common set of items and the leader has
the ability to influence the follower’s decision by prohibiting the usage of certain
items by the follower. The authors derive problem-tailored cuts and perform a
computational study on 200 robustified knapsack interdiction instances with up to
55 items, i.e., with up to 55 variables on both the upper and the lower level.

5. A First Glimpse at Decision Uncertainty

Although being subject to data uncertainty, both decision makers in the bilevel
problem are assumed to take perfectly rational decisions in the sense that they can
perfectly anticipate or observe the other’s decision and that they can solve their
problem to global optimality. In decision making theory, however, it is well known

2A decision problem is NP-easy if it can be polynomially reduced to an NP-complete decision
problem (Buchheim, Henke, and Hommelsheim 2021).

3This class contains those problems that can be solved in nondeterministic polynomial time,
provided that there exists an oracle that solves problems that are in NP in constant time.
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that these assumptions regarding perfect information and rationality are rarely
satisfied in a real-world context. Luckily, bilevel optimization under uncertainty
allows to relax these assumptions in multiple ways. Throughout this article, we
assumed that the major source of uncertainty stems from unknown or noisy input
data. However, bilevel optimization involves (at least) two decision makers and,
hence, other uncertainties in the decision making process are also possible. Another
possible one is decision uncertainty in which, e.g., the leader is not sure about the
reaction of the follower (for instance if the follower does not necessarily choose an
optimal solution) or in which the follower is not sure about the observed leader’s
decision. We are not going into the details here but want to give a few pointers
to the relevant literature that covers such aspects. If the leader is uncertain about
her anticipation of the follower’s optimal reaction and, thus, may want to hedge
against sub-optimal follower reactions, the resulting setup can be modeled using
so-called near-optimal robust bilevel models; see, e.g., Besançon et al. (2019). As an
extreme case of the former aspect it may be the case that the upper-level player
knows that the follower will play against her. This is the setting of a pessimistic
bilevel optimization problem, which is also rather naturally connected to the field
of robust optimization; see, e.g., Wiesemann et al. (2013). However, if the level of
cooperation or confrontation of the follower is not known, this leads to intermediate
cases in between of the optimistic and the pessimistic case; see, e.g., Aboussoror
and Loridan (1995) and Mallozzi and Morgan (1996). Moreover, in many situations
it is not possible for the follower to perfectly observe the optimal decision of the
leader and the follower thus may want to hedge against all possible leader decisions
in some uncertainty set around the observation. Such settings are tackled in, e.g.,
Bagwell (1995), Beck and Schmidt (2021), and van Damme and Hurkens (1997).
Finally, even if all data and the rational reaction of the follower is known and even
if the leader can, in principle, fully anticipate the (globally) optimal reaction of
the follower, it might still be the case that limited intellectual or computational
resources render it impossible for the follower to take a globally optimal decision.
In such situations, a follower might resort to heuristic approaches and the leader
may be uncertain w.r.t. which heuristic is used. For a good primer in this context,
we refer to the recent paper by Zare et al. (2020).

The above list is by far not comprehensive. A much more detailed discussion
of these and other aspects can be found in our recent survey (Beck, Ljubić, et al.
2022a). However, it is hopefully clear now how much more diverse the sources of
uncertainty can be in bilevel optimization as compared to single-level optimization.
Hence, we expect a lot of research in this area in future years.
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