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PREFACE	TO	THE	FIRST	EDITION
This	book	consists	of	a	selection	of	problems,	each	with	a	solution	worked	out	in
detail,	dealing	with	 the	properties	and	applications	of	 the	Gamma	function	and
the	Beta	function,	the	Legendre	polynomials,	and	the	Bessel	functions.	For	those
problems	 which	 involved	 more	 than	 mere	 choice	 of	 a	 suitable	 formula	 and
appropriate	 use	 thereof,	 we	 have	 often	 endeavored	 to	 present	 solutions	 with
emphasis	on	the	considerations	raised	by	the	following	questions:	How	does	one
make	 a	 start	 in	 attacking	 the	 problem?	 What	 theorems	 and	 techniques	 from
algebra,	 trigonometry,	 analytic	 geometry,	 calculus,	 and	 the	 theory	 of	 functions
appear	applicable	so	as	to	be	likely	to	effect	a	solution?	How	and	why	does	one
proceed	from	one	step	to	the	next?	What	clues	present	themselves	either	in	the
statement	of	the	problem	or	in	the	facts	which	develop	as	the	attempt	at	solution
proceeds?	What	aspects	of	the	problem	must	be	carefully	considered	so	that	the
solution	will	meet	the	demands	of	mathematical	rigor?
Such	an	approach	usually	leads	to	solutions	that	are	neither	brief	nor	elegant.

We	 earnestly	 hope,	 however,	 that	 the	 lack	 of	 brevity	 and	 elegance	 is
compensated	by	what	may	be	called	a	naturalness	of	procedure	combined	with	a
heuristic	presentation	that	make	the	solutions	relatively	easy	to	follow.	We	hope
also	 that	 the	 solutions	 presented	will	 be	 found	 stimulating,	 and	 that	 they	will
help	 to	 develop	 skill	 in	 attacking	 and	 solving	 problems	 in	 pure	 and	 applied
mathematics.
Cursory	examination	of	this	book	might	give	the	impression	of	an	occasional

haphazard	 choice	 of	 problem.	 But	 no	 problem	 was	 originated	 or	 chosen	 at
random.	 Selection	 of	 problems	 was	 made	 so	 as	 to	 fulfill	 such	 purposes	 as
exposition	 of	 suitable	 techniques	 of	 procedure	 and	 reasonable	 coverage	 of
relevant	topics.	Often	a	problem	that	seems	out	of	place	in	one	of	the	chapters	on
the	properties	of	the	functions	(Chapters	I,	III	and	V),	and	not	closely	concerned
with	the	development	of	the	outstanding	properties	of	a	function,	will	be	found
to	serve	as	a	useful	lemma	in	one	or	more	later	chapters	on	the	applications	of
the	 functions.	 Indeed,	 a	 goodly	 number	 of	 the	 problems	 and	 exercises	 in
Chapters	I,	III	and	V	are	put	to	use	in	the	chapters	on	applications.
References	 to	 individual	 texts	 or	 treatises	 have	 been	 used	 sparingly	 in	 the

statements	of	the	problems	and	in	the	solutions.	However,	a	modest	bibliography
of	works	typical	of	those	one	would	find	it	profitable	to	consult	is	included	at	the
end	of	the	book.
We	gratefully	make	the	following	acknowledgments:	Table	III-2	is	reproduced



from	 W.	 E.	 Byerly’s	 Fourier’s	 Series	 and	 Spherical	 Harmonics	 with	 the
permission	 of	Ginn	 and	Company;	 Tables	V-2	 through	V-27	 are	 printed,	 with
slight	modifications	and	deletions,	from	N.	W.	McLachlan’s	Bessel	Functions	for
Engineers	with	 the	 permission	 of	 Professor	N.	W.	McLachlan	 and	 the	Oxford
Press;	material	was	used	from	G.	M.	Watson’s	Theory	of	Bessel	Functions	with
the	 permission	 of	The	Cambridge	University	Press;	Tables	V-14	 through	V-21
were	 reprinted	 with	 the	 permission	 of	 The	 Royal	 Society	 and	 the	 American
Institute	of	Electrical	Engineers.
We	appreciate	especially	the	excellent	constructive	criticisms	and	suggestions

made	by	Dr.	Melvin	Hausner	of	New	York	University.



PREFACE	TO	THE	DOVER	EDITION
We	have	been	pleased	at	the	response	to	this	text	from	students	who	are	studying
applied	classical	analysis	for	the	first	 time,	and	by	professors	who	are	not	only
looking	for	ways	to	motivate	but	also	for	ways	to	bring	difficult	subject	matter
down	to	an	understandable	level.	In	this	Dover	edition,	we	have	endeavored	to
correct	 errors	 in	 the	 first	 edition,	 some	 of	 which	 were	 discovered	 by	 our
students.	We	also	appreciate	the	very	careful	reading	given	by	Professor	Yoshio
Matsuoka,	Kagoshimashi.
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I
THE	GAMMA	FUNCTION	AND	THE	BETA

FUNCTION

INTRODUCTION
The	 Gamma	 function	 was	 first	 defined	 in	 1729	 by	 the	 great	 Swiss

mathematician	Euler.	He	defined	the	Gamma	function	by	an	infinite	product:

If	z	be	taken	as	the	complex	variable	x	+	iy,	Euler’s	product	for	Γ(z)	converges	at
every	finite	z	except	z	=	0,	−1,	−2,	−3,	·	·	·.	The	function	defined	by	the	product
is	analytic	at	every	finite	z	except	for	the	singular	points	just	mentioned.	At	each
of	the	singular	points,	Γ(z)	has	a	simple	pole.
The	 notation	 Γ(z)	 and	 the	 name	 “Gamma	 function”	 were	 first	 used	 by

Legendre	in	1814.
From	Euler’s	infinite	product	for	Γ(z)	can	be	derived	the	formula

This	 integral	 formula	 is	 convergent	 only	 when	 the	 real	 part	 of	 z	 is	 positive.
Nevertheless	this	integral	formula	for	Γ(z)	often	is	taken	as	the	starting	point	for
introductory	treatments	of	the	Gamma	function.	Moreover,	the	variable	z	is	often
confined	 to	 real	 values	 x.	 So	 shall	 it	 be	 in	 this	 book:	 unless	 the	 contrary	 is
explicitly	stated,	we	shall	be	concerned	in	our	exercises	and	problems	with	 the
Gamma	function	of	a	 real	variable	only.	For	positive	values	of	x	we	shall	 take
the	following	as	our	basic	definition	of	the	Gamma	function:



As	is	usually	done,	we	shall	extend	the	domain	of	the	definition	of	the	Gamma
function	into	the	realm	of	negative	numbers	(exclusive	of	negative	integers)	by
extrapolation	via	the	characteristic	equation

It	 may	 be	 remarked	 that	 this	 function,	 namely	 xΓ(x),	 provides	 an	 analytic
function	whose	value	at	each	positive	integer	n	is	n!.
The	Gamma	 function	 itself,	 as	 set	 up	by	Euler,	 is	 such	 that	Γ(n)	=	 (n	 −	 1)!

rather	than	n!	when	n	is	a	positive	integer,
Although	 the	Gamma	 function	was	 devised	 by	 Euler	 to	 solve	 a	 problem	 in

pure	 mathematics,	 here,	 as	 elsewhere	 in	 mathematics,	 an	 invention	 in	 pure
mathematics	has	been	found	useful	 in	applications	of	mathematics	 to	problems
in	 engineering	 and	 the	 sciences.	The	Gamma	 function	 is	 particularly	 useful	 in
certain	 problems	 of	 probability,	 especially	 problems	 that	 involve	 factorials	 of
large	integers	or	the	incomplete	Gamma	function

Tables	of	values	of	Γ(x)	are	usually	given	for	the	range	1	 	x	<	2.	There	is	no
need	 to	 tabulate	 outside	 a	 range	 whose	 spread	 is	 unity	 because	 of	 the
fundamental	property	Γ(x	+	1)	=	xΓ(x).	The	range	1	 	x	<	2	is	chosen	because	it
is	 the	 interval	 between	 two	 successive	 integers	 whereon	 Γ(x)	 has	 its	 lowest
values	for	such	an	interval,	making	for	economy	of	tabulation	and	interpolation.
The	Beta	function	is	a	function	of	two	arguments.	As	basic	definition	for	the

Beta	function	B(x,	y)	we	shall	take,	as	is	usually	done,	the	definition

The	Beta	function	is	related	to	the	Gamma	function:

TABLE	I-1



The	 problems	worked	 out	 in	 this	 chapter	 are	mostly	 exercises	 dealing	with
properties	 and	values	of	 the	Gamma	and	Beta	 functions	which	 can	 be	 derived
directly	from	their	definitions	or	which	ensue	from	the	identities

At	the	end	of	the	chapter	is	a	list	of	the	most	frequently	used	formulas.



Figure	I-1
The	Gamma	Function

Problems:	Integral	Expressions	of	Γ(x)

I-1.	Show	that	the	integral	 	which	defines	Γ(x)	is	convergent	for
every	positive	x	but	not	convergent	for	any	other	real	x.
We	write	first	the	integral	as	the	sum	of	two	integrals:

where	m	is	any	positive	number.	Let	us	call	the	two	integrals	on	the	right	A	and
B	respectively.	We	see	that	A	is	proper	when	x	 	1.	On	the	other	hand	when	x	<
1,	the	second	factor	of	the	integrand	becomes	infinite	at	t	=	0,	 thus	making	the



integral	improper.	The	first	factor	e−t	does	not,	of	course,	cause	us	any	concern
in	the	interval	t	=	0	to	t	=	m.	 In	fact,	since	that	factor	is	continuous	throughout
and	becomes	unity	at	t	=	0,	where	the	other	factor	becomes	infinite	for	x	<	1,	we
can	 conclude	 by	 the	 theory	 of	 improper	 integrals	 that	A	 is	 convergent	 or	 not

according	 as	 	 is	 convergent	 or	 not.	But	 this	 last-written	 integral	we
know	to	be	convergent	when	and	only	when	the	exponent	on	t	is	less	than	unity.
Thus	A	is	convergent	when	and	only	when	1	−	x	<	1,	that	is,	when	x	is	positive.
Integral	B	 is	 improper	 for	 all	 x	 simply	 because	 the	 interval	 is	 infinite.	 The

problem,	then,	is	to	determine	the	values	of	x	for	which	it	is	convergent.	In	order
to	do	this	we	first	apply	to	B	the	formula	for	integration	by	parts,	namely,	∫	u	dv
=	uv	−	∫	v	du,	taking	u	=	tx−1	and	dv	=	e−tdt:

Now	we	know	by	the	theory	of	indeterminate	forms	(by	successive	applications
of	L’Hospital’s	Rule)	that	in	the	race	to	infinity	et	will	always	win	out	over	any

constant	power	of	t	to	such	an	extent	that	 	for	every	x.	Thus
convergence	of	B	now	hinges	on	the	convergence	of	our	last-written	integral,	in
which	we	observe	that	the	exponent	on	t	is	less	by	unity	than	what	it	was	in	B.
We	 keep	 applying	 integration	 by	 parts	 to	 the	 remaining	 integral	 until	 the
exponent	 on	 t	 is	 nonpositive.	 (Incidentally,	 we	 would	 not	 have	 to	 do	 any
integrating	by	parts	when	x	 	1.)	In	any	event	we	finally	get	for	B	a	finite	sum
of	numbers	added	to	a	polynomial	in	x	times	an	integral	of	the	form

If	m	be	taken	sufficiently	large,	the	first	factor	1/tp	in	this	last	integral	is	less	than
unity	for	all	t	 	m,	which	makes	the	curve	y	=	1/tpet	lie	under	the	curve	y	=	1/et

for	 t	 	m.	 But	we	 can	 see	 that	 	 is	 convergent	 by	 actual	 integration.
Therefore,	 our	 final	 integral	 is	 convergent	 for	 every	x,	which	 in	 turn	makes	B
convergent	for	every	x.



The	Gamma	integral,	then,	is	convergent	for	those	values	of	x,	and	only	those,
for	which	both	A	and	B	are	convergent,	namely	for	all	positive	x:

I-2.	Show	that

We	start	with	 ,	x	>	0	from	Eq.	(I-1).
Let

For	our	limits	of	integration:	when	t	=	0,	u	=	1;	and	when	t	=	∞,	u	=	0.	Then,

I-3.	Show	that	
It	 is	worth	noting	 that	here,	as	 in	many	other	cases,	our	 starting	point	 is	 the

definition	 ,	x	>	0	in	Eq.	(I-1).	Let	t	=	m2,	then	dt	=	2m	dm.
Our	limits	of	integration	remain	the	same.	So	we	have

Problem:	Properties	of	Γ(x)

I-4.	Establish	the	fundamental	identity	Γ(x	+	1)	=	xΓ(x).	*
Before	proving	the	identity	directly	from	the	Gamma	integral	for	all	positive	x



we	note	that	this	identity	is	used	to	define	the	Gamma	function	first	for	−1	<	x	<
0	by	writing	it	in	the	form	Γ(x)	=	Γ(x	+	1)/x,	thence	for	−2	<	x	<	−1	by	the	same
formula,	and	so	on	for	all	nonintegral	negative	values	of	x.	 It	remains,	 then,	 to
show	that	Γ(x	+	1)	=	xΓ(x)	for	every	positive	x.
Letting	 x	 be	 any	 positive	 number,	 we	 write	 the	 Gamma	 integral	 for	 the

argument	x	+	1:

Next	 we	 apply	 integration	 by	 parts,	 namely	 ∫u	 dv	 =	 uv	 −	 ∫v	 du,	 to	 this	 latter
integral,	taking	dv	=	e−tdt	and	u	=	tx:

The	 limit	 indicated	 in	 the	 first	 term	 on	 the	 right	 we	 know	 to	 be	 zero	 by	 the
treatment	 of	 the	 indeterminate	 form	 ∞/∞	 as	 learned	 in	 introductory	 calculus,
using	L’Hospital’s	Rule	 (once	or	 twice	or	 several	or	many	 times	 in	 succession
according	to	the	size	of	x).	The	second	term	on	the	right	vanishes,	while	the	third
term	is	none	other	than	xΓ(x).	Thus	we	have

REMARK.	It	is	often	found	convenient	to	apply	the	fundamental	identity	in	one
or	other	of	the	following	forms:



Problems:	Specific	Evaluations	of	Γ(x)

I-5.	Evaluate	Γ(.37).	*

We	have	merely	to	increase	the	argument	from	.37	to	1.37	via	the	identity	Γ(x)
=	Γ(x	+	1)/x	so	that	we	can	use	Table	I-1	where	Γ(x)	is	tabulated	for	1	<	x	<	2.

I-6.	Evaluate	Γ(9/4).	*

Here	we	 have	 to	 decrease	 the	 argument	 from	 	 to	 	 using	 the	 fundamental
identity	in	the	form	Γ(x)	=	(x	−	1)Γ(x	−	1):

I-7.	Evaluate	Γ(4.6).	*
This	requires	three	applications	in	succession	of	the	identity	Γ(x)	=	(x	−	l)Γ(x

−	1):

I-8.	Evaluate	Γ(−1.3).
This	 requires	 three	 successive	 increases	 of	 argument	 by	 unity	 via	 the

fundamental	identity	in	the	form	Γ(x)	=	Γ(x	+	1)/x:

I-9.	Show	that	Γ(l)	=	1.	*

Putting	1	for	x	in	 ,	we	have



Problem:	Properties	of	Γ(x)
I-10.	If	n	be	any	positive	integer	 	2,	show	that

We	start	with	the	result	of	Prob.	I-9:	Γ(l)	=	1.	Then	by	Prob.	I-4	we	have	Γ(2)
=	 Γ(l	 +	 1)	 =	 (l)Γ(l)	 =	 1.	 Similarly,	 by	 continuing	 to	 apply	 the	 fundamental
identity	Γ(x	+	1)	=	xΓ(x),	we	get

At	this	point	we	perceive	the	truth	of	the	formula	we	have	to	establish.	To	prove
the	formula	true	we	have	yet	to	apply	the	second	stage	of	the	method	of	proof	by
mathematical	induction.	Assume	the	formula	true	for	an	arbitrary	integer	n	 	2.
Then	for	the	next	integer	m	=	n	+	1	we	have

Thus,	 the	 formula	 also	 holds	 for	n	 +	 1.	 But	we	 already	 know	 from	 our	work
above	that	it	holds	for	n	=	2,	n	=	3,	and	n	=	4.	Consequently,	it	must	hold	for	the
next	integer	n	=	5	and	for	the	next	after	5,	namely	6,	and	so	on	ad	infinitum.

REMARKS	1.	It	is	by	virtue	of	the	formula	just	established	that	the	convention
of	defining	and	accepting	a	value	for	the	factorial	of	zero,	namely	0!	=	1,	came
to	be	adopted.	For,	if	we	apply	the	formula	formally	with	n	=	1,	we	have	Γ(1)	=
(1	−	 1)!	 =	 0!.	 (The	 exclamation	 point	 here	may	 be	 considered,	 if	 you	will,	 as
having	double	significance.)	But	we	know	that	Γ(l)	=	1.	So,	we	agree	that	zero
shall	be	considered	as	having	a	factorial	which	shall	be	taken	as	unity.	With	this
convention	for	0!	we	have



2.	Since	the	Gamma	function	provides	a	smooth	interpolation	function	relative
to	 the	 factorials	 of	 the	 positive	 integers,	 it	 is	 sometimes	 used	 as	 a	 means	 of
defining	x!	when	x	is	nonintegral,	i.e.,	x!	=	Γ(x	+	1).	For	example	(3.6)!	=	Γ(4.6)
≅	13.38	by	Prob.	I-7.

Problem:	Specific	Evaluation	of	Γ(x)

I-11.	Evaluate	 .	*

We	put	 	for	x	in	Eq.	(I-1)	and	get	 .	But	we	do	not	see
any	way	 to	 evaluate	 this	 integral.	 There	 is	 no	 use	 trying	 to	 integrate	 by	 parts
because	the	exponent	on	t	is	not	a	positive	integer.
Let	us	 try	again.	 If	we	change	 the	variable	of	 integration	via	 t	=	u2,	we	get	

.	 This	 looks	 a	 little	 better.	 The	 integrand	 is	 not	 as
complicated	as	before.	But	we	are	still	baffled	when	we	try	to	integrate.	What	to
do?	We	begin	at	this	point	to	suspect	that	we	may	have	to	resort	to	some	indirect
method	 for	 evaluating	 .	 But	 what?	 The	 following	 scheme	 appears	 to	 be
without	 motivation.	 Indeed,	 its	 discoverer	 was	 surely	 a	 person	 of	 great
mathematical	ingenuity.
We	write	our	second	trial	above	for	 	twice:	once	with	x	as	the	variable	of

integration,	 then	 with	 y	 as	 the	 variable	 of	 integration.	 Then	 we	 multiply	 the
results:

Now,	 although	 the	 right	 side	 is	 the	 product	 of	 two	 integrals,	 its	 appearance
suggests	an	iterated	integral.	Indeed,	in	this	instance	we	may	actually	write

because	the	integral	in	y	yields	a	mere	constant	to	carry	over	into	the	integral	in
x.	May	we	now	equate	the	iterated	integral	to	a	double	integral?	Yes,	we	may:



where	 Q	 denotes	 the	 entire	 first	 quadrant	 of	 the	 cartesian	 xy-plane.	 This
improper	double	integral	over	the	entire	first	quadrant	is,	of	course,

where	R	denotes	the	rectangular	region	0	≤	x	≤	M,	0	≤	y	≤	N,	and	 is,	 therefore
equivalent	to

Now,	our	double	integral	may	likewise	be	equated	to	an	iterated	integral	in	polar
coordinates:

which	in	turn	(by	the	same	argument	as	used	before	with	xy-co-ordinates)	may
be	expressed	as	a	product	of	 two	integrals	(since	the	integral	 in	r	yields	only	a
constant	value	independent	of	θ).	We	now	have

making

Motivation	for	the	ingenious	scheme	of	evaluation	is	now	apparent.	It	was	the
presence	of	 the	factor	r	 in	 the	 iterated	polar-coordinates	 integral	 that	made	 the
integration	 possible,	 and	 that	 is	 what	 suggested	 the	 original	 multiplication



whereby	we	got	from	e−x
2
	to	e−(x

2+y2)	=	e−r
2

Problems:	Properties	of	Γ(x)
I-12.	Show	that	if	n	be	a	positive	integer,	then

The	argument	 	 can	be	written	 (2n	+	 l)/2.	 If	we	 recall	 the	property	of
Eq.	(I-4.3),	namely	Γ(x)	=	(x	−	1)Γ(x	−	1)	and	if	we	take	x	=	(2n	+	1)/2,	then	we
have

that	is,

The	process	of	decreasing	the	argument	by	unity	is	repeated	for	Γ[(2n	-	l)/2]:

So	far	we	have

We	 recall	 that	 ;	 consequently,	 we	 want	 to	 repeat	 the	 process	 of
changing	the	argument	until	we	reach	 .	If	we	take	 ,	for	instance,	we	can
write

We	see	that	we	obtained	 	multiplied	by	three	factors;	moreover,	this	number
three	 is	 the	 same	 integer	 as	 occurs	 in	 the	 argument	 of	 	 when	 written	



.	This	3	corresponds	to	the	n	of	 .
Consequently,	we	can	say	that	if	we	start	with	 	we	have	to	continue

decreasing	the	argument	by	unity	n	 times	in	order	 to	reach	 .	We	also	observe
that	 each	 time	 the	 process	 is	 repeated	 there	 is	 another	 2	 in	 the	 denominator.
Since	we	 have	 determined	 that	 the	 process	 is	 to	 be	 repeated	 n	 times,	 we	 can
collect	the	2’s	and	write	2n.	We	then	have

I-13.	Show	that,	if	n	be	a	positive	integer,	then

Applying	Eq.	(I-4.1),	we	have

Thus,	by	Prob.	I-12,	we	have

I-14.	Show	that,	if	n	be	a	positive	integer,

Applying	Eq.	(I-4.1)	to	 ),	we	have



Thus,

Then,	by	Prob.	I-12,	we	can	write

I-15.	If	n	is	a	positive	integer	and	x	−	n	≠	0,	−1,	−2,	·	·	·,	evaluate

We	apply	Eq.	(I-4.1)	to	the	numerator	of	the	given	fraction:

By	repeated	application	of	Eq.	(I-4.1)	to	the	numerator,	we	have

I-16.	Show	that	2	·	4	·	6	·	·	·	2n	=	2nΓ(n	+	1).	*

REMARK.	If	n	−	1	were	substituted	in	place	of	n,	we	would	have

I-17.	Show	that



We	insert	unity	in	the	left	side	of	the	given	equation	in	the	form

We	have	then

The	 numerator	 of	 Eq.	 (1)	 is	 (2n	 −	 1)!,	 which	 is	 Γ(2n)	 by	 Eq.	 (I-4.1).	 The
denominator	of	Eq.	(1)	is	2n−1Γ(n)	by	Prob.	I-16.	Thus	we	have

By	property	(I-4.2)	this	last	equation	may	be	written	alternatively	as

I-18.	 Show	 that	 	 for	 every
positive	integer	n.	*

In	 the	 right	 side	of	 the	given	equation	we	substitute	 the	value	of	
found	in	Prob.	I-12.	Then	we	have	for	the	right	side

Multiplying	 numerator	 and	 denominator	 of	 the	 right	 side	 of	 Eq.	 (I-18.1)	 by
2n(2n	−	2)(2n	−	4)	·	·	·	(4)(2),	we	have



The	numerator	in	the	right	side	of	Eq.	(I-18.2)	is

The	denominator	is	2n	·	2nn!.	If	now	we	write	(2n)!	=	Γ(2n	+	1)	and	n!	=	Γ(n	+
1),	then	we	have	for	the	right	side	of	Eq.	(I-18.2)

When	the	factors	common	to	the	numerator	and	denominator	are	canceled	out
we	 have	 remaining	 the	 left	 side	 of	 the	 given	 equation,	 thus	 demonstrating	 the
identity.
REMARK.	Using	2nΓ(2n)	for	Γ(2n	+	1)	and	nΓ(n)	for	Γ(n	+	1)	we	can	write	the

given	equation	as

This	is	known	as	Legendre’s	duplication	formula.	(See	also	Prob.	II-15b.)
It	is	at	times	convenient	to	use	this	formula	in	the	ratio	form

I-19.	Show	that

Replacing	the	numerator	and	denominator	on	the	left	by	the	expressions	found
for	 them	 in	Prob.	 I-16	 and	 I-17	 and	 then	 replacing	 the	 ratio	Γ(2n)/Γ(n)	 by	 the
equivalent	ratio	from	Eq.	(I-18.5),	we	have	at	once	the	right	side	of	the	equation
to	be	demonstrated.



I-20.	Show	that	Γ(x)	is	differentiable	at	every	real	x	except	x	=	0,	−1,	−2,	−3,	·
·	·.	*
There	is,	of	course,	no	possibility	of	differentiability	at	x	=	0,	−1,	−2,	−3,	·	·	·,

since	the	absolute	value	of	Γ(x)	becomes	infinite	at	each	of	these	values	of	x.
We	consider	first	only	positive	values	of	x	for	which	we	have	T(x)	defined	by

the	 integral	 in	Prob.	 I-1.	May	we	apply	Leibniz’s	 rule	 for	 differentiation	of	 an
integral	 (with	 respect	 to	 a	 parameter	 in	 the	 integrand	 when	 the	 integral	 is
improper,	as	in	Prob.	I-1)?	For	the	problem	at	hand	this	question	means	that	we
are	concerned	with	determining,	if	possible,	an	interval	of	values	of	x	for	which
the	following	equation	is	valid:

Let	us,	first	of	all,	consider	the	question	of	convergence	of	the	integral	in	(1-
20.1).	 An	 examination	 of	 the	 integrand	 indicates	 that,	 for	 x	 >	 1,	 we	 can
demonstrate	 convergence	 of	 this	 integral	 by	 the	 following	 considerations.
Choosing	any	positive	number	b,	we	write

We	have,	for	x	>	1,



Thus,	as	t	→	0,	the	integrand	not	only	remains	finite	for	x	>	1;	it	approaches	the
limit	zero.
On	the	other	hand,	as	t	→	∞,	we	have

But	it	is	well	known	that	the	integral

is	convergent	for	every	x.	And	since,	as	we	have	just	shown,	the	integrand	in	(I-
20.2)	 bears	 ratio	 to	 the	 integrand	 in	 (I-20.5)	 which	 approaches	 a	 finite	 limit,
namely	zero,	as	t	→	∞,	it	follows	that	the	second	integral	on	the	right	in	(I-20.2)
is	convergent.	The	first	integral	on	the	right	in	(I-20.2)	was	found	to	be	a	proper
integral	for	x	>	1	by	virtue	of	(I-20.3).	It	follows	that	the	integral	in	(I-20.1)	 is
convergent	at	least	for	all	x	such	that	x	>	1.
When	0	<	x	 	1,	the	first	integral	on	the	right	in	(I-20.2)	is	no	longer	proper,

since	the	integrand	becomes	negatively	infinite	as	t	→	0.	But	direct	application
of	the	definition	for	convergence	of	such	an	integral	shows,	in	the	usual	manner,



that	 this	 integral	 is	 convergent	 for	 0	 <	 x	 	 1.	 Accordingly,	 we	 find	 that	 the
integral	in	(I-20.1)	is	convergent	for	every	positive	x.	We	will,	however,	content
ourselves	with	the	convergence	of	this	integral	only	for	x	 	1.	This	restriction,
as	we	shall	see,	will	make	it	relatively	easy	to	establish	validity	of	application	of
Leibniz’s	rule	for	such	values	of	x.
Choosing	any	x	>	1	and	taking	Δx	so	that	|Δx|	<	x	−	1	and	tentatively	assuming

existence	of	the	indicated	limits,	we	have

with	 x*	 somewhere	 between	 x	 and	 x+Δx.	 It	 will	 be	 recognized	 that	 the
replacement	 of	 Δx(tx−1e−t)	 by	 the	 derivative	 (with	 respect	 to	 x)	 of	 tx−1e−t

evaluated	at	(x*,	t)	was	made	by	application	of	the	Theorem	of	the	Mean	for	first
derivative.
Evaluating	the	partial	derivative	of	tx−1e−t	at	(x*,	t),	we	have

We	observe	that	x*	→	x	as	Δx	→	0,	since	x*	is	always	between	x	and	x	+	Δx.
If	 now	 a	 positive	 	 be	 arbitrarily	 assigned,	we	 can	 take	 b	 so	 large	 that	 the



second	 integral	 on	 the	 right	 in	 (I-20.6)	 will	 differ	 by	 less	 than	 ,
simultaneously	for	all	x*,	from	the	integral

With	b	so	chosen,	we	find	then	that	the	first	integral	on	the	right	in	(I-20.6)	will
differ,	for	all	Δx	sufficiently	near	zero,	from	the	integral

by	less	than	 ,	since	the	function

is	continuous	and	hence	uniformly	continuous	for

It	follows	that	the	limit	indicated	on	the	right	in	(I-20.6)	does	exist	for	every	x	>
1,	 which	 is	 to	 say	 that	 Γ(x)	 is	 differentiate	 for	 x	 >	 1	 and	 that,	 for	 x	 >	 1,	 the
derivative	dΓ/dx	is	given	by	(I-20.1).
And	now	we	can	readily	show	that	Γ(x)	is	differentiable	also	for	x	 	1	except,

of	course,	at	x	=	0,	−1,	−2,	−3,	·	·	·,	by	making	use	of	the	characteristic	identity
(I-4.2),	namely

Since	we	have	shown	that	Γ(x)	is	differentiable	for	x	>	1,	it	follows	that	Γ(x	+	1)
is	 differentiable	 for	 x	 >	 0.	 And	 1/x	 is	 certainly	 differentiable	 for	 all	 x	 >	 0.
Consequently,	the	product	(1/x)Γ(x	+	1)	is	differentiable	for	all	x	>	0,	which	is	to
say	that	Γ(x)	is	differentiable	for	x	>	0.
For	x	negative	we	recall	 that	Γ(x)	 is	defined	by	successive	extrapolations	by

way	of	the	formula	Γ(x)	=	Γ(x	+	1)/x,	first	to	the	range	−1	<	x	<	0,	thence	to	the
range	 −	 2	 <	 x	 <	 −1,	 and	 so	 on.	 Accordingly,	 we	 find	 by	 repetition	 of	 the
argument	used	in	the	preceding	paragraph	that	Γ(x)	is	also	differentiable	at	every
non-integral	negative	x.



REMARKS.	1.	The	Gamma	function	 is	continuous	at	every	x	 except	0	and	 the
negative	 integers.	This	 is	 an	 immediate	 consequence	 of	 the	 differentiability	 of
Γ(x).
2.	 The	 second	 derivative	 Γ″(x)	 is	 found	 in	 similar	manner	 to	 exist	 for	 all	 x

except	zero	and	the	negative	integers.	For	x	positive	it	is	found	that

We	observe	that	Γ″(x)	is	positive	for	every	x	>	0,	since	the	integrand	is	positive
for	all	t	>	0.	Consequently,	the	curve	y	=	Γ(x)	is	concave	upward	for	all	positive
values	of	x.

I-21.	Prove	that	Γ(x)	→	+	∞	as	x	→	0	through	positive	values	and	as	x	→	+	∞
also	that	Γ(x)	becomes	alternatively	negatively	infinite	and	positively	infinite	(as
shown	in	Fig.	I-1)	at	the	negative	integers.	*
We	know	that	Γ(1)	=	1	from	Prob.	I-9;	also	that	Γ(x)	is	a	continuous	function

for	all	positive	x	by	Prob.	I-20.	From	Prob.	I-4	we	have	Γ(x)	=	Γ(x	+	1)/x.	Now,
letting	 x→0	 through	 positive	 values,	 we	 merely	 have	 to	 observe	 that	 the
numerator	 of	 Γ(x	 +	 1)/x	 approaches	 unity,	 namely	 Γ(1),	 as	 x	→	 ∞	 while	 the
denominator	of	the	fraction	is	approaching	zero	as	limit.	Thus,	Γ(x)	→	+	∞	as	x
→	∞+.
To	prove	that	Γ(x)→	+	∞	as	x→	+	∞	we	note	first	that	the	particular	sequence

Γ(1),	Γ(2),	Γ(3),	Γ(4),	·	·	·,	Γ(n),	·	·	·,	does	have	 the	property	we	are	 trying	 to
establish	because	Γ(n)	=	(n	−	1)!	by	Prob.	 I-10.	Our	 task,	however,	 is	 to	prove
that	Γ(x)	becomes	positively	infinite	for	all	positive	sequences	x1	x2,	x3,	·	·	·,	in
which	xn	→	+	∞	as	n	→	∞.	We	shall	do	 this	by	establishing	a	property	of	 the
Gamma	 function	 indicated	 by	 Fig.	 I-1,	 namely,	 that	 the	 derivative	 of	 Γ(x)	 is
positive	for	all	values	of	x	beyond	a	certain	x.	The	graph	indicates	such	a	place
between	 x	 =	 1	 and	 x	 =	 2.	 We	 find	 it	 convenient	 (as	 well	 as	 sufficient)	 to
demonstrate	the	positiveness	of	the	derivative	for	all	x	>	e	+	1,	where	as	usual	e
denotes	the	natural	base	2.71828	...	for	logarithms.
The	property	to	be	proved	will	follow	at	once	from	the	fact	that	for	x	>	e	+	1

the	Γ-function	always	increases	and	takes	on	successively	the	factorial	values	2!,
3!,	4!,	5!,	·	·	·,	n!,	·	·	·,	as	x	equals	respectively,	the	integers	3,	4,	5,	·	·	·.	From
Prob.	I-20	we	take	the	derivative	of	Γ(x)	and	write	it	as	the	sum	of	two	integrals:



Let	us	call	these	two	integrals	A	and	B	respectively.	We	choose	any	x	>	e	+	1.	In
A	we	let	p	denote	the	positive	exponent	x	−	1.	As	t	→	0	we	find	by	L’Hospital’s
Rule	that	the	indeterminate	form	tp	log	et	approaches	zero.	So,	at	t	=	0	we	assign
the	value	zero	to	our	integrand	in	A.	Since	loge	t	is	negative	for	0	<	t	<	1	while
the	other	two	factors	are	positive,	we	see	that	A	has	a	negative	value.	We	shall
appraise	this	negative	value	and	show	that	it	is	outweighed	by	the	positive	value
of	B.	For	0	<	t	<	1	we	have

because	e−t	<	1	in	that	range	of	values	of	t.	Consequently,

But	 when	 this	 last	 integral	 is	 evaluated,	 using	 integration	 by	 parts	 and
L’Hospital’s	Rule,	we	find	its	value	to	be	−	1/(p	+	1)2.
We	turn	now	to	examination	of	B	 in	which	the	integrand	is	positive	over	the

whole	 range	 1	 	 t	 <	 ∞.	 Thus,	 B	 is	 positive.	 Moreover,	 we	 have	

,	 where,	 as	 before,	 we	 put	 p	 for	 x	 −	 1,
remembering	that	we	fixed	upon	any	x	>	e	+	1.	The	integral	C	is	easily	appraised

as	 follows.	 First	 of	 all,	 	 because	 loge	 t	 >	 1	 for	 all	 t	 >	 e.
Applying	 integration	 by	 parts	 to	 this	 last	 integral	 together	 with	 L’Hospital’s
Rule,	we	have

We	do	not	try	to	evaluate	this	last	integral.	We	merely	note	that	it	has	a	positive
value.	Thus	we	find	that	C	>	ep−e.	If	now	p	>	e,	that	is	if	x	>	e	+	1,	we	have	C
greater	 than	 1	 whereas	 the	 absolute	 of	 integral	 A	 is	 less	 than	 unity.	 So,	 the
derivative	Γ′(x)	is	positive	for	all	x	>	e	+	1.
Do	 you	wonder	 how	we	 knew	 in	 advance	 to	 take	 x	 >	 e	 +	 1	 ?	Well,	 let	 us



confess	it:	we	did	not	know	in	advance.	But	we	felt	from	a	look	at	Fig.	I-1	 that
we	ought	to	be	able	to	prove	Γ′(x)	to	be	positive	for	all	x	greater	than	some	one	x.
So	we	started	on	our	proof	and	as	we	got	along	with	our	analysis	of	integral	B
we	kept	our	eyes	open	and	finally	we	saw	that	the	proof	would	complete	itself
easily	by	taking	that	x	to	be	>	e	+	1.
Finally,	 to	 show	 that	 Γ(x)	 becomes	 alternately	 negatively	 infinite	 and

positively	infinite	at	the	negative	integers,	we	merely	have	to	take	the	result	of
the	first	part	of	the	present	problem,	namely	that	Γ(x)→	+	∞	as	x	→	0+,	together
with	the	Fundamental	Identity	Γ(x)	=	Γ(x	+	1)/x	which	is	used	to	define	Γ(x)	for
x	negative.
REMARK.	Since	Γ(x)	→	+	∞	both	as	x	→	0	and	as	x	→	+	∞	and	since	the	curve

y	=	Γ(x)	is	concave	upward	(as	was	observed	in	Prob.	I-20)	for	all	positive	x,	it
follows	that	Γ(x)	attains	a	single	minimum	as	x	ranges	over	all	positive	numbers.
This	minimum	occurs	between	x	=	1	and	x	=	2,	as	indicated	in	Fig.	I-1.

Problem:	Specific	Evaluations	of	Γ(x)

I-22.	Find	the	value	of	Γ(1.15)	given	only	the	following	data:

Ordinary	linear	interpolation	will	give	the	value	of	Γ(1.15)	equal	to	.9348.	In
Table	 I-1	 it	 is	 seen	 that	 the	 value	 is	 given	 as	 .9330.	Even	 though	 the	 curve	 is
shallow	on	the	range	from	x	=	1	to	2,	linear	interpolation	is	not	as	accurate	as	the
following	 method	 of	 interpolation	 which	 is	 treated	 in	 detail	 in	 the	 branch	 of
mathematics	called	the	Calculus	of	Finite	Differences.
Let	y(x)	be	the	function	to	be	evaluated.

Let	 h	 denote	 the	 equally	 spaced	 difference	 between	 1.1,	 1.2,	 1.3.	 The
following	formula	from	the	Calculus	of	Finite	Differences	is	applicable.



Thus,

This	result	differs	from	the	entry	to	be	found	in	tables	by	.0002.
I-23.	Compute	Γ(1.2)	approximately	by	means	of	the	asymptotic	expansion

which,	 although	 not	 convergent	 for	 any	 x,	 has	 the	 property	 that	 the	 error
committed	in	taking	a	partial	sum	is	numerically	less	than	the	last	term	retained.
*
We	have

whence

REMARKS.	1.	The	four-place	entry	for	Γ(1.2)	in	Table	I-1	is	.9182.
2.	All	the	entries	in	Table	I-1	can	thus	be	computed	by	use	of	the	asymptotic



expansion	given	above.	Retention	of	the	term	−1/1260x5	will	provide	four-place
accuracy.

Problem:	Infinite	Product	Expression	of	Γ(x)

I-24.	A	fundamental	formula,	due	to	Euler,	for	Γ(z)	states	that

The	limit	on	the	right	exists	for	all	real	and	complex	values	of	z	other	than	z	=	0,
−1,	 −2,	 −3,	 ·	 ·	 ·,	 and	 equals	 the	 value	 given	 by	 Eq.	 (I-1)	when	 z	 is	 real	 and
positive.	From	Euler’s	formula	(I-24.1)	derive	Weierstrass’s	formula

where	C	denotes	Euler’s	constant,	namely,

First	we	write	the	fraction	in	(I-24.1)	as

If,	now,	we	put	n	−	1	=	m,	we	can	write	(I-24.1)	as

This	last	equation	is	equivalent	to



In	 order	 to	 get	 from	 (I-24.4)	 to	 (I-24.2)	 we	 use	 a	 rather	 unusual	 way	 of
expressing	unity,	namely,

which	 is	 readily	 seen	 to	 be	 true	 because	 the	 right	 side	 telescopes	 into	 nothing

more	than	 .
Multiplying	the	left	side	and	the	right	side	of	(I-24.4)	each	by	the	corresponding
side	of	(I-24.5),	we	get

If	you	wonder	where	 the	 extra	 two	 limits	here,	namely,	 lim	e−z/(m+1)	 and	 lim
ez/m,	came	from,	look	very	sharply	and	you	will	see	that	an	extra	factor	ez/(m+1)
was	put	in	the	first	limit	and	also	that,	in	combining	the	two	products	we	had	to
put	 in	 an	 additional	 factor	 e−(z/m)	 in	 the	 second	 product.	 These	 two	 had	 to	 be
counterbalanced	by	multiplying	by	e−z/(m+1)	and	ez/m.
The	 first	of	our	 four	 limits	 in	our	 last	equation	we	see	 to	be	eCz	where	C	 is

Euler’s	constant.	The	 second	and	 fourth	 limits	 are	both	unity	 at	 every	 finite	 z.



The	third	limit	does	exist	for	every	finite	z.	So,	we	have	Weierstrass’s	formula

OBSERVATION.	We	were	 careful	 to	 combine	 the	 two	 products	 in	 our	 last	 step
before	using	the	theorem

because	the	product

does	not	converge	in	general	as	m	→	∞.	For	instance,	when	z	is	taken	at	unity,
this	product	diverges	to	infinity	as	m	→	∞.

Problem:	Integral	Expressions	of	B(x,	y)

I-25.	Show	that	the	Beta	integral

defines	a	function	of	x	and	y	as	real	arguments	when	and	only	when	x	and	y	are
both	positive.	*
When	x	 and	y	 are	 both	 greater	 than	 unity,	 the	 integral	 is	 a	 proper	Riemann

integral	because	the	integrand	is	then	a	continuous	function	of	for	0	 	t	 	1.
If	x	<	1	or	 if	y	<	1	or	 if	both	x	and	y	are	 less	 than	unity,	 then	the	 integral	 is

improper	because	at	least	one	of	the	factors	tx−1,	(1	−	t)y−1	becomes	infinite	at	an
endpoint	of	 the	interval	0	 	t	 	1.	Let	us	examine	 the	case	when	x	and	y	are
both	less	than	unity.	The	other	two	cases	are	handled	in	a	similar	manner	and	are
even	a	bit	simpler	to	analyze.	We	write



The	 second	 fraction	 in	 the	 integrand	 of	 the	 first	 integral	 on	 the	 right	 is
continuous	 for	 0	 	 t	 	c	 <	 1.	Consequently,	 the	 first	 integral	 on	 the	 right	 is
convergent	when	and	only	when	the	integral

is	convergent,	namely,	when	and	only	when	1	−	x	<	1,	 that	 is,	when	x	>	0	and
only	when	x	>	0.	In	similar	manner	one	finds	that	the	second	integral	on	the	right
is	 convergent	 when	 and	 only	 when	 y	 >	 0.	 We	 conclude,	 therefore,	 that	 the
integral	on	the	left	is	convergent	when	and	only	when	x	and	y	are	both	positive:

Problem:	Properties	of	B(x,	y)

I-26.	Show	that	B(y,	x)	=	B(x,	y).	*
By	the	definition	(I-25.1)	we	have

Upon	changing	the	variable	of	integration	by	taking	1	−	t	=	s,	we	get

which	 is	 the	 same	 integral	 as	 in	 (I-25.1)	 even	 though	 a	 different	 letter	 now
represents	the	variable	of	integration.	Thus,

Problem:	Integral	Expressions	of	B(x,	y)



I-27.	Show	that	 .	*
We	start	again	with	(I-25.1).	Let	t	=	sin2	θ.	This	makes	dt	=	2	sin	θ	cos	θ	dθ.

As	t	 ranges	over	 the	 interval	of	 integration	from	 t	=	0	 to	 t	=	1	we	may	have	θ
ranging	over	any	interval	on	which	sin	θ	increases	continuously	from	0	to	1,	say
θ	=	0	to	θ	=	π/2.	Then	(I-25.1)	is	transformed	into

I-28.	 Show	 that	B(x,	 y)	 can	 be	 expressed	 as	 an	 integral	 whose	 interval	 of
integration	is	from	zero	to	infinity.	*
The	problem	first	of	all	is	to	seek	a	change	of	the	variable	of	integration,	t	=

f(u),	so	that	as	t,	in	the	integral	B(x,	y)	 	courses	 through
the	 interval	 zero	 to	 unity,	 the	 new	 variable	 u	 will	 vary	 continuously	 and
monotonically	from	zero	to	infinity.	We	also	require	the	relation	t	=	f(u)	to	have
continuous	derivative	for	all	u	 	0.	Since	we	have	to	stretch	the	interval	0	 	t	<
1	out	to	the	interval	0	 	u	<	∞,	we	see	after	a	little	reflection	that	a	fractional
formula	will	do	the	trick:
Let	t	=	u/(u	+	1).	Then

Then	(I-25.1)	becomes

Properties	of	B(x,	y)
I-29.	Show	that



When	 confronted	 with	 this	 problem	 it	 is	 but	 natural	 for	 one	 to	 ask,	 “How
would	 one	 suspect	 a	 relationship	 between	 the	 Beta	 function	 and	 the	 Gamma
function?”	Well,	that	is	why	Prob.	I-28	preceded	this	problem.	Having	learned	in
Prob.	I-28	that	the	Beta	function	can	be	defined	by	an	integral	over	the	interval	0
to	 +	 ∞,	 we	 at	 least	 begin	 to	 suspect	 the	 possibility	 of	 a	 relationship	 to	 the
Gamma	function.	The	very	next	 thought	 that	comes	 to	our	minds	 is	concerned
with	 the	kind	of	 relationship	 that	might	exist	and	with	a	search	for	a	means	of
establishing	a	suspected	relation.	But	it	is	not	easy	to	get	started.	In	fact,	it	seems
to	 us	 that	 the	 relation	 would	 be	 more	 likely	 to	 result	 as	 a	 by-product	 of
experiment	 with	 the	 Gamma	 integral	 somewhat	 along	 the	 following	 line	 of
thought.
In	(I-11)	we	hit	upon	the	idea	of	multiplying	 	by	 	and	changing	the

product	 first	 to	 an	 iterated	 integral,	 thence	 to	 the	 equivalent	 double	 integral	 in
rectangular	coordinates,	thence	to	polar	coordinates,	and	finally	to	a	product	of
integrals.	Let	us	ask	ourselves,	“If	that	scheme	was	successful	in	evaluating	the
product	of	 ,	might	we	not	expect	it	to	yield	something	useful	not	only
for	a	particular	such	product	but	also	for	the	general	product	Γ(x)Γ(y)?”	At	any
rate	it	is	worth	trying	to	see	what	happens.
We	start	with	the	product	Γ(p)Γ(q)	instead	of	Γ(x)Γ(y),	because	we	shall	find	it

convenient	 and	 familiar	 in	 doing	 this	 problem	 to	 use	 the	 letters	 x	 and	 y	 as
variables	 of	 integration	 both	 in	 single	 integrals	 and	 in	 a	 double	 integral	 taken
over	a	quadrant	of	the	cartesian;	xy-plane.	Then	by	Prob.	(I-3)	we	have

whence	by	multiplication

Now	the	right	side	here	is	a	product	of	two	integrals,	except	for	the	factor	4.	But
its	appearance	suggests	the	following	line	of	thought.
The	double	integral



in	which	Q	 denotes	 the	 entire	 first	 quadrant	 of	 the	 cartesian	 xy-plane,	 though
improper,	 is	 seen	 to	be	convergent	by	considering	 it	 as	 the	 limit	of	 the	double
integral	over	a	closed	rectangular	region	R	for	which	0	 	x	 ,	M,	0	 	y	 	N	as
M	and	N	both	→	∞.	The	double	integral	over	R	can	be	evaluated	by	the	iterated
integral

But	the	integral	in	y	here	has	an	integrand	free	of	x	and	the	limits	of	integration
are	free	of	x.	So	 the	 integral	 in	y	will	yield	merely	a	constant	 to	carry	forward
into	the	integral	in	x.	Thus	the	iterated	integral	is	equivalent	to	the	product

whose	limit	as	M	and	N	both	→	∞	is	the	product	of	integrals	on	the	right	side	of
our	equation	above	which	we	set	up	for	Γ(p)Γ(q).	We	conclude,	therefore,	that

The	exponent	on	e	here	suggests	the	use	of	polar	coordinates:	x2	+	y2	=	r2,	x	=	r
cos	θ,	y	=	r	sin	θ.	Then	we	have

Now	by	the	same	argument	that	we	used	with	xy-coordinates	we	can	replace	the
iterated	integral	here	by	a	product	of	integrals:

By	 Prob.	 (I-27)	 and	 Prob.	 (I-3)	 these	 last	 two	 integrals	 are	 recognized



respectively	to	be	B(p,	q)	and	Γ(p	+	q).	Finally,	then

whence,	upon	replacing	p	and	q	respectively	by	x	and	y	and	dividing	both	sides
by	Γ(p	+	q),	we	have

REMARK.	It	can	be	shown	via	(I-29.1)	that

For	we	have

by	Eq.	(I-29.1)	and	Prob.	I-4.	In	similar	manner	we	find	that

Therefore,

The	sum	in	brackets	in	the	last	equation	equals	unity.
I-30.	Evaluate	B(p,	1	−	p)	when	p	is	any	positive	number	less	than	unity.	*

Taking	x	=	p	with	0	<	p	<	1	and	y	=	1	−	p	in	 	of	Eq.	(I-28.1),
we	get

What	 do	we	 do	 now?	 If	 the	 interval	 of	 integration	were	 from	−	∞	 to	+	∞	we
might	be	able	 to	evaluate	 the	resulting	integral	by	the	usual	method	of	contour
integration	on	the	plane	of	the	complex	variable	z	=	x	+	iy,	where	 .



Well	 let	 us	make	 the	 interval	 of	 integration	 stretch	 from	 −	 ∞	 to	 +	 ∞	 by	 the
transformation	u	=	ex,	which	puts	x	at	−	∞	when	u	=	0	and	puts	x	at	+	∞	when	u
is	at	+	∞.	Noting	that	du/dx	=	ex,	we	have

To	evaluate	this	last	integral	we	consider	the	integral

taken	 in	 the	positive	 sense	 around	 the	 rectangle	C	 lying	on	 the	complex	plane
and	having	its	vertices	at	z	=	−R,	z	=	R,	z	=	R	+	2πi,	z	=	−R	+	2πi.	The	integrand
is	 analytic	 everywhere	on	 the	 complex	plane	 except	 at	 z	 =	±πi,	±π3i,	 ·	 ·	 ·.	At
each	of	 these	points	 the	 integrand	has	a	simple	pole.	Our	contour	encloses	 just
one	such	point,	namely	z	=	πi.	To	verify,	 for	 instance,	 that	 the	 integrand	has	 a
simple	pole	at	z	=	πi	we	have	but	to	write	out	the	Taylor	series	expansion	for	the
denominator	in	powers	of	z	−	πi

where	G(z)	is	analytic	at	z	=	πi	with	G(πi)	=	−	1	≠	0.	Thus,	the	denominator	1	+
ez	has	a	simple	zero	at	z	=	πi.	And,	since	the	numerator	epz	does	not	vanish	at	z	=
πi,	 the	 integrand	 has	 a	 simple	 pole	 there.	 Accordingly,	 the	 residue	 of	 the
integrand	at	z	=	πi	is	equal	to	the	value	epπi	of	the	numerator	there	divided	by	the
value	 there	 of	 the	 derivative	 of	 the	 denominator,	 namely	 eπi	 =	 −1.	 Thus,	 the
residue	at	our	 lone	pole	within	 the	contour	 is	−epπi.	Then,	by	Cauchy’s	residue
theorem	we	have

We	now	write	this	contour	integral	as	the	sum	of	four	line	integrals,	one	along
each	side	of	the	rectangle.	Then	we	compute	the	sum	of	the	limits	approached	by
the	 four	 integrals	 as	we	make	R	→	∞.	 Since	we	 are	 holding	 the	width	 of	 the
rectangle	constant	at	2π	all	the	while	that	we	are	stretching	the	length	beyond	all



bounds,	 there	will	always	be	 just	one	pole	of	 the	 integrand	within	 the	contour.
Consequently,	the	sum	of	the	four	limits,	provided	we	show	that	each	of	the	four
limits	exists	individually,	must	be	−2πiepπi.
The	integral	along	the	base	of	the	rectangle,	where	z	=	x,	has	as	 its	 limit	 the

integral	on	the	right	in	Eq.	(I-30.2).
The	integral	going	from	east	to	west	along	the	top	of	the	rectangle,	where	z	=

x	+	2πi,	becomes

Hence,	the	limit	of	the	integral	along	the	top	is	−e2pπi	times	the	integral	in	Eq.	(I-
30.2)
The	integral	taken	upward	along	the	right	side	of	the	rectangle	where	z	=	R	+

iy	from	y	=	0	to	y	=	2π	 is	appraised	as	to	its	absolute	value	by	the	well	known
appraisal	theorem	which	says	that	the	absolute	value	of	an	integral	along	a	curve
C	of	a	continuous	function	of	z	does	not	exceed	the	product	of	the	length	of	C	by
the	maximum	of	the	absolute	value	of	the	integrand	on	C	For	the	integral	along
the	right	side	of	the	rectangle	we	thus	have

Since	the	power	of	e	in	the	denominator	of	the	fraction	on	the	right	side	of	this
appraisal	is	greater	than	the	power	of	e	in	the	numerator	inasmuch	as	0	<	p	<	1,
we	 conclude	 that	 the	 limit	 of	 the	 appraisal	 as	R	→	+	∞	 is	 zero.	Likewise	one
finds	that	the	limit	of	the	integral	along	the	left	side	of	the	rectangle	is	also	zero.
Adding	together	the	four	limits,	two	of	which	vanish,	we	have

whence	by	Eq.	(I-30.2)

Now	we	multiply	numerator	and	denominator	of	this	result	by	−e−pπi/2i	and	we
find	that	the	new	denominator,	which	is	now	under	π,	is	none	other	than	sin	pπ	in
the	Euler	exponential	form.	At	last	we	have	our	evaluation,	namely



Problem:	Properties	of	Γ(x)

I-31.	Apply	the	fundamental	identity	Γ(x	+	1)	=	xΓ(x)	and	its	variant	Γ(−x)	=
Γ(1	−	x)/(−x)	and	the	identity	B(x,	y)	=	Γ(x)Γ(y)/Γ(x	+	y)	together	with	B(p,	1	−
p)	=	π/sin	pπ,	0	<	p	<	1	to	show	that

The	reason	for	the	restriction	that	p	be	nonintegral	is,	of	course,	evident.	An
integral	value	for	p	 could	not	be	used	 in	 the	denominator	of	 the	 formula	 to	be
established,	for	the	denominator	would	then	be	zero.
We	start	with	0	<	p	<	1	and	apply	Eq.	(I-29.1)	together	with	Prob.I-9:

Next,	taking	h	=	p	+	1	and	using	Eq.	(I-4.1)	and	Eq.	(I-4.4)	in	conjunction	with
the	result	just	obtained,	we	have



Similarly	 one	 shows	 that	 the	 formula	 holds	 for	 2	 <	 h	 <	 3	 and	 then	 by
mathematical	induction	for	every	positive	nonintegral	h.
Starting	again	with	0	<	p	<	1	and	taking	now	h	=	p	−	1,	we	get	 in	 the	same

manner	as	before

Again,	as	before,	one	finds	that	the	formula	holds	for	−2	<	h	<	−1	and	then	by
mathematical	induction	for	every	negative	nonintegral	h.
Finally,	we	conclude	that

is	true	for	every	nonintegral	p,	positive	or	negative.

Problem:	Γ′(1)	=	Negative	of	Euler’s	Constant

I-32.	Show	that



and	then	from	Eq.	(I-32.1)	obtain

where	γ	denotes	Euler’s	constant,	namely

The	 denominator	 of	 the	 integral	 in	 Eq.	 (I-32.1)	 vanishes	 at	 t	 =	 0.	 But	 by
L’Hospital’s	Rule	we	find	that	the	integrand	approaches	the	limit	x	−	1	as	t	→	0.
We	 therefore	 assign	 this	 limit	 value	 x	 −	 1	 to	 the	 integrand	 at	 t	 =	 0,	 thereby
making	the	integrand	continuous	for	t	 	0.
Examination	 of	 the	 integral	 in	 Eq.	 (I-32.1)	 for	 convergence	 in	 the	 manner

employed	 in	Prob.	 I-1	 shows	 that	 the	 integral	 is	 convergent	 for	 every	 positive
value	of	x,	 thus	 defining	 a	 function	of	x	 for	x	 >	 0.	But	 how	do	we	 see	 that	 it
defines	the	function	loge	x?	One	way	of	answering	this	question	is	to	show	that
the	derivative	of	the	integral	is	1/x,	which	is	done	by	differentiating	the	integral
with	respect	to	x	by	Leibniz’s	Rule	for	differentiating	under	the	integral	sign	as
in	Prob.	I-20:

So,	 the	 integral	 in	Eq.	 (I-32.1)	equals	 loge	x	+	C,	where	C	 is	 a	 constant.	To
find	C	we	evaluate	the	integral	with	x	=	1,	getting	zero	because	the	integrand	is
then	identically	zero.	Thus	C	=	0,	and	our	integral	in	Eq.	(I-32.1)	does	equal	loge
x.
Another	way	of	establishing	Eq.	(I-32.1)	is	to	start	from	the	equation



which	 is	 apparent	 from	 the	 right	 side	of	Eqs.	 (I-32.5)	 and	 (I-32.7).	 Integrating
both	sides	of	Eq.	(I-32.8)	from	u	=	1	to	u	=	an	arbitrary	positive	x,	we	get

where	R	denotes	 the	 rectangular	plane	 region	comprised	of	all	 the	points	 (u,	 t)
for	which	t>0	and	for	which	1 u x	or	u x 1.
We	may	evaluate	the	double	integral	in	Eq.	(I-32.10)	by	an	iterated	integral	in

which	the	order	of	integration	is	reversed	from	the	order	in	the	iterated	integral
in	Eq.	(I-32.9):

assigning	the	value	x	−	1	to	the	integrand	when	t	=	0,	as	in	the	first	paragraph.
Now	to	the	second	part	of	our	problem:	to	show	that	the	derivative	of	Γ(x)	at	x

=	1	is	the	negative	of	Euler’s	Constant.	Since	we	wish	to	evaluate	the	derivative
of	Γ(x)	for	a	particular	x,	it	seems	that	a	natural	point	of	departure	is	the	integral
formula	for	the	derivative	Γ′(x)	established	in	Prob.	I-20:

The	 next	 step	 is	 perhaps	 not	 so	 apparent	 nor	 so	 easily	 motivated.	 But	 its
exploitation	will	indicate	how	to	proceed	to	our	goal.	It	is	to	replace	loge	t	in	Eq.



(I-32.14)	 by	 the	 integral	 expression	 for	 loge	 t	 as	 established	 in	 Eq.	 (I-32.1),
namely,

Thus,	Eq.	(I-32.14)	becomes

And	now,	as	we	did	in	the	first	part	of	 the	present	problem,	we	may	replace
the	iterated	integral	in	Eq.	(I-32.16)	by	a	double	integral	over	the	first	quadrant
in	 the	 tu-plane	 and	 then	 replace	 the	 double	 integral	 by	 an	 iterated	 integral	 in
which	the	order	of	integration	is	reversed	from	what	it	is	in	Eq.	(I-32.16):

The	 integrals	 within	 the	 brackets	 are	 respectively	 Γ(1)	 and	 Γ(1)/(u	 +	 1)	 by
Prob.	II-3.	But	Γ(1)	=	1	by	Prob.	I-9.	Accordingly,	Eq.	(I-32.18)	becomes

wherein	we	assign	the	value	zero	to	the	integrand	at	u	=	0,	for	 this	 is	 the	 limit
value	which	the	integrand	(by	L’Hospital’s	Rule)	approaches	as	u	→	0.
And	now	we	have

Since	 the	 limit	 on	 the	 right	 in	 Eq.	 (I-32.20)	 exists,	 namely	 Γ′(1),	 and	 is
approached	as	n	and	h	vary	simultaneously	and	independently	with	n	→	∞	and	h
→	0,	we	may	and	we	will	let	n	→	∞	through	the	sequence	of	positive	integers:



We	will	also	take	advantage	of	the	appraisal

established	in	Whittaker	and	Watson’s	Modern	Analysis	(4th	ed.),	page	242.	This
allows	us	to	write

Making	 this	 replacement	 for	 e−u	 in	 the	 second	 integral	 in	 Eq.	 (I-32.20)	 and
evaluating	the	third	integral,	we	get

Each	of	the	three	terms	in	the	braces	in	Eq.	(I-32.22)	approaches	the	limit	zero
as	h	→	0	and	n	→	∞.	Accordingly,	Eq.	(I-32.22)	reduces	to

To	simplify	the	evaluation	of	the	integral	in	Eq.	(I-32.23)	we	let	u/n	=	t.	Then
we	have



The	first	integral	on	the	right	in	Eq.	(I-32.24)	is	readily	evaluated	by	letting	1
−	t	=	w.	Thus,

The	 second	 integral	 on	 the	 right	 in	Eq.	 (I-32.24)	 looks	 as	 if	 its	 value	might
approach	 the	 limit	 zero	 as	h	→	 0	while	 n	→	∞.	Accordingly,	we	 shall	 try	 to
appraise	 this	 integral	 rather	 than	 actually	 evaluate	 it.	 Applying	 the	 binomial
theorem	 to	 (1	 −	 t)n,	 subtracting	 the	 unit	 terms	 and	 then	 replacing	 all	 negative
terms	by	their	absolute	values,	we	get

The	integral	on	the	right	in	this	inequality	equals



which,	for	n	>	1,	is	seen	to	be	less	than

But	 .	It	follows	that

Thus,	Eq.	(I-32.24)	now	becomes

REMARKS.	1.	An	approximate	value	for	Euler’s	constant	λ	is	.5772157.
2.	We	can	generalize	 the	result	of	 this	problem	by	 taking	x	=	n	=	a	 positive

integer	 	2	in	Eq.	 (I-32.13).	Then	paralleling	 the	steps	 taken	 in	Eqs.	 (I-32.14)
through	(I-32.25),	we	find	that

This	ratio	Γ′(n)/Γ(n)	is,	of	course,	the	derivative	of	loge	Γ(x)	at	x	=	n.	Evaluation
of	Γ′(n)/Γ(n)	for	n	=	2,	3,	.	.	.	is	carried	out	in	Prob.	I-33.

Problem:	Logarithmic	Derivative	of	Γ(x)	for	Positive	Integers

I-33.	The	logarithmic	derivative	of	Γ(x)	is	often	denoted	by	ψ(x)



Evaluate	ψ(n)	where	n	denotes	a	positive	integer	 	2.	*
Starting	with	the	formula	for	Γ′(x)	in	Eq.	(I-20.1)	and	carrying	 through	as	 in

Prob.	I-32,	we	get

As	in	Prob.	I-32	we	observe	that	the	first	integral	within	the	brackets	in	Eq.	(I-
33.5)	 is	 Γ(n)	 by	 Eq.	 (I-1)	 and	 that	 the	 second	 integral	 within	 the	 brackets	 is
Γ(n)/(t	+	l)n	by	Prob.	II-3.	Taking	out	the	constant	factor	Γ(nx),	we	find	that	Eq.
(I-33.5)	becomes

assigning	the	value	n	−	1	to	the	integrand	at	t	=	0,	as	in	Prob.	I-32,	inasmuch	as	n
−	1	 is	 the	 limit	which	we	 find	 (by	L’Hospital’s	Rule)	 to	be	approached	by	 the
integrand	as	t	→	0.
Our	integrand,	except	for	the	exponent	n	on	the	binomial	t	+	1,	is	the	same	as

the	integrand	in	Eq.	(I-32.19).	This	suggests	that	we	transform	our	integrand	so
as	to	follow	through	with	the	steps	taken	in	Eqs.	(I-32.20)	through	(I-32.25).	So
we	change	Eq.	(I-33.6)	of	the	present	problem	to



It	 is	 permissible	 to	write	 the	 integral	 in	 Eq.	 (I-33.7)	 as	 the	 sum	 of	 the	 two
integrals	in	Eq.	(I-33.8)	because	in	Prob.	I-32	we	established	convergence	of	the
second	 integral	 in	Eq.	 (I-33.8)	 and	 found	 its	 value	 to	 be	 Γ′(l)	 =	 −γ.	 Since	 the
integral	for	ψ(n)	in	Eq.	(I-33.6)	is	convergent	and	since	the	second	integral	in	Eq.
(I-33.8)	is	also	convergent,	it	follows	that	the	first	integral	in	Eq.	 (I-33.8)	must
be	convergent.	Eq.	(I-33.8)	becomes

The	integrand	in	Eq.	(I-33.9)	is	undefined	at	t	=	0.	But	we	find	by	L’Hospital’s
Rule	 that	 the	 integrand	approaches	 the	 limit	n	−	1	as	 t	→	0.	So	we	assign	 this
value	to	the	integrand	at	t	=	0.	To	simplify	the	evaluation	of	the	integral	in	Eq.	(I-
33.9)	we	let	t	+	1	=	b.	Then

We	have	 thus	 transformed	 the	 integral	 in	Eq.	 (I-33.9)	 into	 a	 form	where	we
can	carry	out	the	integration.	The	result	is	seen	to	be

where	n	denotes	any	integer	 	2,	ψ(n)	denotes	the	logarithmic	derivative	Γ(n)/
Γ(n)	and	γ	denotes	Euler’s	constant:



TABLE	I-2	FORMULAS







2
APPLICATIONS	OF	THE	GAMMA

FUNCTION	&	THE	BETA	FUNCTION

INTRODUCTION
In	 this	 chapter	 we	 present	 a	 modest	 selection	 of	 worked	 out	 problems

involving	applications	of	the	Gamma	and	Beta	Functions	to	(1)	the	evaluation	of
certain	definite	integrals,	(2)	the	development	of	Wallis’s	infinite	product	for	π/2,
(3)	 the	 derivation	 and	 application	 of	 formulas	 for	 certain	 geometrical	 and
physical	magnitudes,	 (4)	 the	derivation	of	Stirling’s	approximation	 formula	 for
n!,	and	(5)	the	application	thereof	to	a	few	problems	in	probability.

Problems:	Evaluation	of	Integrals

II-1.	Show

where	b	and	c	are	positive	constants	and	a	is	a	constant	such	that	a	>	−1.	*
Let	btc	=	x,	from	which	we	can	write	various	powers	of	t:

Also	cbtc−1dt	=	dx.	Then



We	note	 that	 the	 change	 in	variable	did	not	 change	 the	 interval	 of	 integration.
Hence,

By	rearranging	the	integrand	and	taking	the	constants	out	in	front	of	the	integral
sign	we	get

The	integral	on	the	right	hand	side	we	recognize	to	be	Γ[(a	+	l)/c]	by	Eq.	(I-1).

II-2.	If	n	is	a	nonnegative	integer	and	p	is	a	positive	constant,	show	that

We	recall	that	p−t	=	(elogeρ)−t	=	e−(logeρ)t.	Thus

We	can	now	apply	Prob.	II-1,	taking	a	=	n,	b	=	loge	ρ,	c	=	1:

by	Eq.	(I-10.1).

II-3.	Show	that

Let	t	=	(a	+	1)−1y.	Then	dt	=	(a	+	l)−1dy.	Thus	we	have



II-4.	Evaluate	

This	is	the	probability	integral.	Writing	the	integral	as

and	using	the	result	of	Prob.	II-1	with	a	=	0,	b	=	1,	c	=	2,	we	find	that

But	 	by	Prob.	I-11.	Consequently,	the	value	of	the	integral	is	
.
It	is	worth	noting	that	if	the	interval	of	integration	were	−	∞	to	+	∞,	then	the

result	would	be	

II-5.	Evaluate	

Using	 the	 result	 of	 Prob.	 II-1	with	 ,	b	 =	 1,	 ,	 we	 find	 that	 the
value	of	the	integral	to	be	evaluated	is



Then	by	Prob.	I-6	we	can	change	the	argument	to	a	number	between	1	and	2.
Thus	the	value	of	our	integral	is

From	Table	I-1,	Γ(1.5)	≅.8862,	so	that	our	result	reduces	to	the	numerical	result
34.9	to	the	nearest	tenth.	If	we	take	 	by	Prob.	I-6	and	replace	

	 by	 	 by	 Prob.	 I-11,	 we	 find	 the	 exact	 value	 of	 the	 integral	 to	 be	
.

II-6.	Evaluate

Let	log,	(1/x)	=	t.	Then	1/x	=	et,	x	=	e−t	dx	=	e−tdt.	The	interval	of	integration
changes:	when	x	=	0,	t	=	∞	and	when	x	=	1,	t	=	0.	Then	we	have

Applying	Prob.	II-1	with	a	=	3,	b	=	3,	c	=	1,	we	get

as	the	value	of	the	given	integral.

II-7.	Show	that

The	method	of	solving	this	problem	is	the	same	as	in	Prob.	II-6.



Let	loge	(1/x)	=	t.	Then	1/x	=	et,	x	=	e−t,	xm	=	e−mt,	dx	=	−e−tdt.	As	in	Prob.	II-
6,	 the	 interval	 of	 integration	 changes.	 We	 note	 that	 the	 negative	 sign	 in	 the
integrand	is	removed	by	reversing	the	limits	of	integration.	Then	we	have

Evaluating	the	integral	on	the	right	by	Prob.	II-1	with	a	=	n,	b	=	m	+	l,	c	=	1,	we
find	the	value	of	the	given	integral	to	be	Γ(n	+	l)/(m	+	l)n	+	1.

II-8.	Evaluate

We	have	only	to	apply	Eq.	(I-28.1)	with	u	=	t,	x	−	1	=	5,	and	x	+	y	=	9.	This
makes	x	=	6	and	y	=	3.	Accordingly	the	value	of	the	integral	before	us	is	B(6,	3)

which	 by	 Eq.	 (I-29.1)	 equals	 ;	 and	 this	 by	 Eq.	 (I-10.1)	 equals	

.

II-9.	Evaluate	 ,	where	0	<	p	<	1,	in	terms	of	the	Gamma	function.
*

We	can	evaluate	by	Eq.	(I-30.1).	Accordingly,	we	have

by	Probs.	I-29	and	I-9.

II-10.	Show	that



Let	xb	=	m	tan2θ.	Then	m	+	xb	=	m	sec2θ,	(m	+	xb)c	=	mcsec2cθ.	x	=	m1/b	tan2/bθ,

xa	=	ma/b	tan2a/bθ,	 .
Then

Prob.	I-27	applies:

Thus



by	Prob.	I-29.

II-11.	Show	that

where	the	constants	m,	n,	a	are	such	that	a	>	0	and	n	>	m	+	1	>	0.	*

Let	wn	=	a	tan2θ.	Then	w	=	a1/n	tan2/nθ,	from	which	wm	=	am/n	tan2m/nθ	and	dw
=	a1/n(2/n)	tan(2/n)−1θ	sec2θ	d	θ.	When	w	=	0,	θ	=	0	and	when	w	=	∞,	θ	=	π/2.	So
we	have

The	denominator	becomes	a	sec2θ.	The	constants	are	all	collected	except	for
the	number	2	and	are	taken	out	in	front	of	the	integral	sign.	The	other	terms	are
combined	or	are	canceled	out.	Thus,	we	have	for	the	right	side	of	Eq.	(II-11.1)

which	may	be	written	as

We	recognize	this	last	integral	as	the	Beta	integral	in	trigonometric	form,	as	was
established	in	Prob.	I-27.	Letting	2x	−	1	and	2y	−	1	equal	the	exponents	of	sin	θ
and	cos	θ	 respectively,	we	get	x	=	 (m	 +	 1)/n	 and	y	 =	 1	−	 (m	 +	 l)/n.	Thus,	 the
given	integral	equals



by	Probs.	I-29	and	I-9.

Problems:	

II-12.	 Use	 the	 definition	 	 to	 show	

We	let	 .	Then	we	have

But

by	Probs.	I-29	and	1-9.
Then	we	have



II-13.	Apply	the	formula	Γ(x)Γ(l	−	x)	=	π/sin	xπ	to	evaluate	
Let	 .	Then	we	have

REMARK.	 This	 way	 of	 evaluating	 	 is	 indeed	 much	 shorter	 and	 simpler
than	 either	 of	 the	 two	 previous	ways	 used	 in	 Prob.	 I-11	 and	 II-12.	 But	 in	 all
fairness	we	must	admit,	on	the	other	hand,	that	the	derivation	in	Probs.	I-30	and
I-31	of	the	formula	applied	here	in	II-13	was	neither	short	nor	simple.

Problems:	Evaluation	of	Integrals

II-14.	Evaluate	

Inserting	unity	in	the	integrand	in	the	form	of	2/2	and	sin°θ	we	have

We	can	now	apply	Prob.	I-27	with	2x	−	1	=	0	and	2y	−	1	=	1/2.
Thus,



From	Prob.	I-31	we	have

whence

Moreover,	by	Eq.	(I-4.1)

Substitution	in	(II-14.1)	from	(II-14.2)	and	(II-14.3)	yields

REMARKS.	1.	The	integral	to	be	evaluated	in	this	problem	can	also	be	evaluated
as	an	elliptic	integral	as	follows.

Let	θ	=	2t.	Then	cos	θ	=	1	−	2	sin2t.	And	we	have

Now	let	 .	Then

Accordingly,



where	 	denotes	the	value	of	the	complete	elliptic	integral	of	the	second

kind	with	modulus	 	and	 	denotes	 the	value	of	 the	complete	elliptic

integral	of	the	first	kind	with	modulus

2.	

II-15.	Evaluate	

(a)	The	value	of	this	integral	evidently	depends	on	choice	of	x.	In	other	words
the	evaluation	of	 this	 integral	will	yield	us	an	integration	formula	available	for
all	 such	 integrals	 in	 which	 the	 exponent	 appearing	 in	 the	 integrand	 is	 greater
than	−1.	The	given	integral	may	be	written	as

In	this	form	it	looks	like	the	Beta	integral	(I-25.1)	except	for	two	things:	(1)	the
second	exponent	is	not	y	−	1	but	is	the	same,	namely	x	−	1	as	the	first	exponent,
(2)	the	interval	of	integration	extends	only	to	 	instead	of	to	t	=	1.	When	we
ponder	these	two	facts	 in	conjunction	with	each	other	we	become	aware	of	the



consequence	that

because,	as	t	ranges	from	 	to	1,	the	values	taken	by	the	product	of	tx−1	and	(1	−
t)x−1	are	the	very	same	values	as	are	taken	by	the	product	of	(1	−	t)x−1	and	tx−1

when	t	ranges	from	0	to	 .	It	follows	that

In	the	alternative	solution	(b)	another	approach	is	employed.

(b)	Alternative	solution.	Let	t2	−	t	=	−u/4.	By	completing	 the	square	we	get	
.	 We	 take	 .	 Then	

.	When	t	=	0,	u	=	0;	 	u	=	1.	Then

Now	let	u	=	sin2θ.	Then	du	=	2	sin	θ	cos	θ	dθ	and	(1	−	u)−1/2	=	(cos	θ)−1.
When	u	=	0,	θ	=	0;	when	u	=	1,	θ	=	π/2.	And	the	given	integral	becomes



by	Probs.	I-27	and	I-29.
If	we	equate	this	result	to	the	value	obtained	in	solution	(a)	for	the	integral	of

the	present	problem,	namely	Γ(x)Γ(x)/2Γ(2x),	we	find	that

which	 establishes	 Legendre’s	 duplication	 formula	 as	 given	 in	 Eq.	 (I-18.5)	 not
only	when	x	is	any	positive	integer,	as	was	done	in	Prob.	I-18,	but	when	x	is	any
real	positive	number.

II-16.	Evaluate	in	terms	of	the	Gamma	function,	all	arguments	being	between
1	and	2:

	·

Let	x2	=	sin	θ.	Then	x4	=	sin2θ,	dx	=	 (1/2)	sin−1/2θ	cos	θ	dθ.	The	 interval	of
integration	changes:	when	x	=	0,	θ	=	0	and	when	x	=	1,	θ	=	π/2.	Then



This	 integral	 can	 also	 be	 evaluated	 by	 use	 of	 Prob.	 II-17,	 which	 is	 a
generalization	of	the	present	problem.

II-17.	Evaluate	 	where	a,	b,	c,	d	are	constants	witht	a	>
0,	c	>	0,	b	>	−1,	d	>	−	1,	b	+	cd	>	−	1.	*

This	 integral	 certainly	 looks	 like	 the	Beta	 integral	 in	disguise.	We	penetrate
the	disguise	by	letting	xc	=	ac	u,	which	makes	the	given	integral	equivalent	to

The	new	 integral	 is	 just	what	we	expected:	 the	Beta	 integral.	Applying	Eq.	 (I-
25.1)	and	Eq.	(I-29.1),	we	get

II-18.	Evaluate	

We	have	merely	to	apply	(II-17.1)	with	a	=	2,	b	=	2,	c	=	1,	d	=	13.	We	find	at
once	that	the	value	of	the	integral	is



II-19.	Evaluate

This	integral,	like	the	integral	in	the	preceding	problem,	is	quickly	evaluated
by	application	of	the	formula	obtained	in	Prob.	II-17.	We	have	a	=	1,	b	=	5,	c	=
4,	 ,	making	the	value	of	the	integral	to	be

This	is	as	far	as	we	shall	go	here.	To	get	a	numerical	result,	one	would	apply
(I-4.2),	to	replace	 	by	 ,	then	use	Table	I-1.

REMARK.	The	following	integral,	namely

where	n	denotes	an	arbitrary	positive	integer	can	also	be	solved	via	Prob.	II-17,
taking	a	=	1,	b	=	0,	c	=	l/n,	d	=	−1/2.	It	may	be	of	interest,	however,	to	show	how
this	integral	can	be	transformed	into	a	Beta	integral:

Let	x1/n	 =	 sin2θ.	Then	x	 =	 sin2nθ,	dx	 =	 2n	 sin2n−1θ	cosθ	dθ.	 The	 interval	 of
integration	changes.	When	x	=	0,	θ	=	0	and	when	x	=	1,	θ	=	π/2.	We	have,	then,



II-20.	Evaluate	 ,	ab	≠	0.	*

We	differentiate	with	respect	to	b	by	Leibniz’s	Rule:

In	the	problem	at	hand	this	formula	holds	even	with	x2	=	∞.	Then	we	have

If	the	use	of	Leibniz’s	Rule	for	differentiation	of	an	integral	did	not	occur	to
you	in	 trying	 to	solve	 this	problem	do	not	be	dismayed.	Knowing	when	to	use
this	technique	requires	considerable	mathematical	experience.	In	the	solution	of
this	problem	you	should	see	how	and	why	this	technique	works.	Then	you	may
find	yourself	in	a	position	to	try	it	in	similar	situations.

Now	integrate	by	parts:	∫	udv	=	uv	−	∫	v	du.	We	take

Then	we	have



The	expression	marked	(A)	turns	out	to	be	zero;	and	when	we	take	the	constants
out	in	front	of	the	integral	marked	(B),	we	see	we	have	the	very	same	integral	we
started	with.	Thus,

Eq.	(II-20.2)	may	be	written	as	dI/I	=	−b	db/2a2,	whose	solution	is	seen	to	be

Our	problem	will	be	solved	as	soon	as	we	can	determine	the	value	of	k.	This	we
can	do	as	follows.	We	observe	in	Eq.	(II-20.3)	that	if	we	take	b	=	0,	then	I	=	k.
But	when	b	=	0,	then	we	have

Thus	we	have	 ;	and	our	problem	is	solved:

REMARK.	 Justification	 for	application	of	Leibniz’s	Rule	 in	Eq.	 (II-20.1)	may
be	made	by	arguments	quite	similar	as	those	used	in	Prob.	1-20.

II-21.	Evaluate	 ,	m	>	−1,	n	>	−1,	b	>	a.	*

The	 form	 of	 the	 integrand	 suggests	 the	 possibility	 of	 transformation	 to	 the



basic	Beta	integral.	To	effect	such	a	transformation	we	need	a	change	of	variable
x	=	f(t)	which	will	change	the	interval	of	integration	from	a	 	b	to	O	 	t	 	1.
Accordingly,	we	let	x	−	a	=	(b	−	a)t,	which	makes	b	−	x=	(b	−	a)(l	−	t)	and	dx	=
(b	−	a)dt.	Then	we	have

The	transformed	integral	is	the	Beta	integral	as	in	Prob.	I-25	with	x	−	1	=	m
and	 y	 −	 1	 =	 n.	 Its	 value,	 therefore,	 is	B(m	 +	 1,	 n	 +	 1).	 Expressing	 the	 Beta
function	in	terms	of	the	Gamma	function	by	Eq.	(I-29.1),	we	have

II-22.	Evaluate	the	integrals

We	 observe	 that	 the	 restriction	 b	 >	 0	 is	made	 to	 insure	 convergence	 of	 the
integrals,	 for	 if	b	were	 zero	 or	 negative	 the	 exponent	 of	 the	 factor	 tb−1	 of	 the
integrands	would	be	 	−	1	thereby	causing	the	integrands,	as	t	→	0,	to	become
infinite	“like”	1/tb	with	p	 	1,	making	the	integrals	divergent.	The	observation
just	made	does	not,	however,	apply	to	one	exceptional	situation,	namely	when	

.	Then	the	factor	 	in	the	integrand	of	the	first	integral	is	zero
for	all	t,	making	that	integral	convergent	and	worth	zero	for	all	b.
The	restriction	 	is	made	also	to	insure	convergence	of	the

integrals.	 In	 that	 range	 of	 values	 of	 	 the	 cosine	of	 	 is	 positive,	making	 the
exponent	on	e	in	the	integrands	negative.	If	the	exponent	on	e	were	positive,	then
as	t	→	+	∞,	the	absolute	value	of	the	integrands	would	become	infinite	no	matter
what	 the	 exponent	 of	 the	 factor	 tb−1	 would	 be,	 thus	 making	 the	 integrals



divergent.	 Similar	 reasoning	 shows	 convergence	 when	 the	 exponent	 on	 e	 is
negative.
Since	the	value	of	each	of	these	integrals	depends	on	choice	of	b	and	choice	of
	 keeping	 b	 and	 	 restricted	 as	 just	 explained,	we	 shall	 designate	 them	 with

functional	notation	like	this:

Now	 that	we	have	 convinced	ourselves	of	 the	need	 for	 the	 restrictions	on	b
and	 	together	with	realization	of	convergence	of	the	integrals	when	b	and	 	are
so	restricted,	and	have	expressed	 the	 integrals	as	 functions	of	 their	parameters,
we	 cast	 about	 for	 some	means	 of	 evaluating	 the	 integrals	 in	 terms	 of	 known
functions.	Surely	 	and	 	must	be	related	to	each	other	somehow,
for	they	differ	only	in	the	third	factor	of	the	integrand.	And	their	third	factors	are
related,	 being	 sine	 and	 cosine	 of	 the	 same	 argument	 respectively.	 Presuming,
then,	that	there	is	a	relationship	between	G	and	H,	let	us	try	to	squeeze	it	out	of
the	 relationship	between	sine	and	cosine.	We	 think	 first	of	 the	 identity	 sin2x	+
cos2x	 =	 1.	But	 that	 does	 not	 look	 very	 hopeful.	We	 cannot	 see	 how	 to	 use	 its
connection	 with	 the	 two	 integrals.	 On	 the	 other	 hand	 the	 derivative	 relation
between	sine	and	cosine	looks	hopeful	inasmuch	as	we	can	differentiate	G	and	H
with	respect	to	either	parameter,	since	each	integral	is	uniformly	convergent	for
all	 pairs	 	 that	 lie	 on	 any	 closed	 region	 taken	 within	 the	 open	 two-
dimensional	region	 .	We	get

We	suspect	that	 	is	related	to	G.	But	 	has	two	parts	in	its	integrand
added	together.	Now	if	we	can	express	G	with	a	two-part	integrand	we	may	find
out	something.	A	little	reflection	shows	that	this	would	come	about	as	a	result	of



integration	by	parts:

And	 there	we	have	 it!	Comparison	of	 	with	G	 shows	 immediately	 that	
.

In	exactly	 the	same	manner	one	 finds	 that	 .	Out	of	 these	 two
first-order	differential	equations	we	can	get	a	second-order	differential	equation
in	H	alone,	like	this:

So	when	b	is	held	constant	H	must	be	such	a	function	of	 	as	to	satisfy	the	well-
known	equation	for	simple	harmonic	motion.	It	follows	that

where	A	and	B	are	constants	and	 f(b)	 is	a	 function	of	b	 alone.	 In	order	 for	 the
second-order	 differential	 equation	 to	 be	 satisfied	 identically	 in	 b	 and	
[identically,	that	is,	for	value	pairs	(b,	 )	satisfying	b	>	0,	 ],
we	must	have	f(b)	identically	zero:

To	determine	 the	 constant	 coefficients	A	 and	B,	 we	 first	 take	 .	 Then



this	last	equation	becomes

which	 says	 that	 B	 =	 Γ(b)	 by	 Eq.	 (I-1).	 To	 determine	 A,	 we	 use	 the	 relation	
:

which,	when	 ,	gives	us

We	have	now	 .	To	get	G,	we	use	the	relation

whence	 .	Our	problem	is	solved.	Let	us	display	the	solution,
expressing	G	and	H	as	originally	given:

II-23.	Evaluate



Let	us	first	check	the	restriction	in	range	imposed	on	the	parameter	b.	Because
of	the	unceasing	oscillation,	as	t	→	∞,	between	−1	and	1	of	the	factor	cos	t	or	sin
t,	we	evidently	 require	 the	exponent	b	−	1	 to	be	negative	 in	order	 to	make	 the
magnitude	of	oscillation	of	the	integrand	decrease	toward	zero	as	limit	as	t	→	∞.
When	this	is	done,	either	integral	taken	over	an	interval	t	=	h	to	t	=	∞,	with	h	>	0,
is	convergent,	as	may	be	seen	by	considering	the	integral	as	a	sum	of	an	infinite
series	of	alternating	positive	and	negative	terms	(areas	between	the	t-axis	and	the
arches	of	the	curve	y	=	 tb−1cos	 t	or	y	=	 tb−1sin	 t)	such	 that	each	 term	is	 less	 in
magnitude	than	its	immediate	predecessor	and	the	limit	of	the	n	th	term	is	zero
as	n	→	∞.	Then,	for	convergence	of	the	given	integrals	we	must	have	b	−	1	<	0,
that	is,	b	<	1.
We	must	yet	examine	each	integral	 taken	over	an	 interval	 t	=	0	 to	 t	=	h	>	0

when	b	<	1.	The	factor	cos	t	in	the	integrand	of	the	first	integral	becomes	unity	at
t	=	0.	So,	that	integrand	is	“like”	its	first	factor	tb−1	as	t	→	0.	Consequently,	the
cosine	integral	taken	over	an	interval	t	=	0	to	t	=	h	>	0	converges	when	and	only
when	b	−	1	>	−	1,	 that	 is,	when	b	>	0.	Our	conclusion,	 then,	 is	 that	 the	cosine
integral	as	given	from	t	=	0	to	t	=	∞	is	convergent	when	and	only	when	0	<	b	<	1.
The	situation	presented	by	the	sine	integral	taken	over	an	interval	t	=	0	to	t	=	h

>	 0	 is	 a	 little	 different.	We	 let	 b	 −	 1	 =	 −c	 where	 c	 >	 0.	 Then	 we	 write	 the
integrand	like	this:

From	 here	 on	 the	 analysis	 of	 the	 situation	 proceeds	 as	 in	 the	 preceding
paragraph,	 since	 the	 ratio	 sin	 t	 to	 t	 approaches	 the	 limit	 unity	 as	 t	→	 0.	 Our
conclusion	is	 that	 the	sine	integral	 is	convergent	when	and	only	when	we	have
both	b	<	1	and	c	−	1	<	1,	that	is,	when	−	1	<	b	<	1.	However,	we	shall	evaluate
the	sine	integral	only	for	0	<	b	<	1	because	we	want	to	consider	the	two	integrals
together	 in	 the	 light	 of	 Prob.	 II-22	 where	 we	 found	 that	 we	 had	 a	 common
interval	of	convergence	for	the	two	integrals	concerned.
In	Prob.	II-22	we	found	the	integrals	to	be	convergent	for	all	positive	values	of

b	when	 .	In	the	present	problem	we	do	not	have	the	factor	
	(with	 )	to	outweigh	tb−1	as	t	→	∞.	That	is	why	we

now	require	b	<	1.	But	inasmuch	as	the	integrals	of	Prob.	II-22	become	those	of
the	present	problem	when	 ,	we	see	that	the	results	of	Prob.	II-22	hold
not	only	 for	 	when	b	 is	 any	positive	number	but	 also	 for	

	when	0	<	b	<	1.	Accordingly	we	have



II-24.	Evaluate,	
We	have

We	observe	that	each	of	the	arguments	(h	+	1)/2	and	(−	h	+	1)/2	lies	between	0
and	1,	also	that	their	sum	is	unity.	Accordingly	Eq.	(I-30.3)	is	applicable	with	p
=	(h	+	1)/2.	This	gives	us

II-25.	Show	that

We	have



This	is	the	Beta	integral,	as	shown	in	Prob.	I-27.	Letting	2x	−	1	and	2y	−	1	equal
the	exponents	of	sin	θ	and	cos	θ	respectively,	we	get	x	=	n	+	1	and	 .	Thus
we	have

However,

and

Thus	we	have

II-26.	Show	that

We	have



This	is	the	Beta	integral,	as	shown	in	Prob.	I-27.	Letting	2x	−	1	and	2y	−	1	equal
the	exponents	on	sin	θ	and	cos	θ	respectively,	we	get	 	and	 .
Thus,	we	have

From	Prob.	I-19	we	have

Therefore,

II-27.	Show	that

We	have

We	apply	Prob.	I-27.	Letting	2x	−	1	and	2y	−	1	equal	the	exponents	on	sin	θ	and
cos	θ	respectively,	we	get	x	=	n	and	 .	Thus	we	have



From	Prob.	I-12	we	have

From	Prob.	I-16	we	have

Then,	 substituting	 these	 values	 for	 Γ(n)	 and	 	 in	 Eq.	 (II-27.1),	we
obtain	the	equation	that	was	to	be	demonstrated.

Problems:	Infinite	Product	Expression	of	π/2

II-28.	Show	that

This	is	known	as	Wallis’s	product	for	π/2.	We	observe	first	that	the	notation	on
the	 right	side	of	 the	equation	denotes	an	unending	product	 (also	called	 infinite
product)	of	factors	in	which	n	=	1	in	the	first	factor,	n	=	2	in	the	second	factor,
and	so	on	ad	infinitum.	The	infinite	product	in	question	may	also	be	written

If	now	we	write	only	a	part	of	the	whole	product,	namely

we	observe	some	resemblance	of	this	expression	to	the	expressions	involved	in
Probs.	 II-25,	 II-26,	 II-27.	This	 resemblance	gives	 us	 the	 clue	 to	 the	proof.	We
note	first	that,	for	0	<	θ	<	π/2	and	for	every	positive	integer	n,	we	have



It	follows	that	the	integrals	of	such	powers	of	sin	θ	over	the	interval	0	 	0	
π/2	will	be	unequal	in	the	same	order:

Then	by	Probs.	II-25,	II-26,	II-27	we	have

Upon	multiplying	each	term	of	the	threefold	inequality	by	the	reciprocal	of	the
first	term	we	get

Now	as	n	→	∞,	the	fraction	on	the	right	approaches	unity	as	limit.	And	since
the	term	in	 the	middle	 is	always	between	unity	and	the	fraction	on	the	right,	 it
follows	that	the	middle	term	is	forced	by	the	squeeze	play	to	approach	unity	as	a
limit.	 This	 in	 turn	means	 that	 the	 fraction	multiplying	π/2	 in	 the	middle	 term
must	approach	2/π	as	limit,	that	is,	the	reciprocal	of	the	fraction	multiplying	π/2
must	approach	π/2	as	limit	as	n	→	∞:

If,	now,	we	cast	away	the	first	factor	in	the	denominator	and	group	the	remaining
factors	in	pairs,	we	get

which	is	seen	to	be	what	we	set	out	to	prove.

II-29.	Get	an	approximation	for	π	via	the	product	of	the	first	several	terms	of



Let	us	take,	say,	eight	terms.	Then	we	have

Carrying	out	the	multiplication	on	the	slide	rule,	we	get

Not	 so	 good!	We	 must	 admit,	 then,	 that	Wallis’s	 product	 for	 π/2	 is	 a	 slowly
convergent	one,	requiring	many	terms	even	for	accuracy	to	two	decimal	places,
when	a	partial	product	is	taken	as	an	approximation	for	π/2.

Problems:	Evaluation	of	Certain	Geometrical	Magnitudes

II-30.	Express	 in	 terms	of	Gamma	Functions	 the	area	enclosed	by	 the	curve
xb/c	+	yb/c	=	ab/c	where	a	is	a	positive	constant,	c	is	a	positive	odd	integer,	b	is	a
positive,	 even	 integer.	 Apply	 your	 resulting	 formula	 to	 compute	 the	 area
enclosed	by	the	curve	when	the	exponent	b/c	is	2/3.	*
Before	carrying	out	 the	computation,	we	pause	 to	observe	 that	 the	family	of

curves	represented	by	the	given	equation	has	as	one	of	its	members	the	familiar
four-pointed	star	or	asteroid	x2/3	+	y2/3	=	a2/3.	Indeed,	whenever	b	<	c,	we	have
such	a	concave	star	with	four	sharp	points	(cusps).	On	the	other	hand	when	b	>
c,	the	curve	is	convex;	and	when	c	=	1	and	b	is	a	large	even	integer	the	curve	is
almost	a	square.	In	any	case	the	curve	is	symmetric	to	both	coordinate	axes,	so
that	we	shall	compute	only	that	part	of	the	area	which	is	in	the	first	quadrant	and
multiply	the	result	by	4	to	get	the	whole	area	within	the	curve.
Thus	we	have

where	R	denotes	 the	 region	 in	 the	 first	quadrant	bounded	by	 the	curve	and	 the
coordinate	 axes.	 We	 set	 the	 double	 integral	 equal	 to	 an	 equivalent	 iterated
integral:



To	evaluate	the	integral	in	y	we	make	the	change	of	variable

While	we	are	at	it	we	may	as	well	make	the	same	kind	of	change	in	variable	for
x:

These	changes	in	variable	carry	with	them,	of	course,	corresponding	changes	in
limits	of	integration,	so	that	we	get

Carrying	out	the	integration	only	with	respect	to	v,	we	have

Here	we	observe	that	the	resulting	integral	is	none	other	than	the	Beta	integral,
so	that

We	can	obtain	a	neater	form	for	our	formula	upon	replacing

Then



Applying	this	formula	to	the	asteroid	when	b	=	2	and	c	=	3,	we	have

by	Eqs.	(I-4.1),	(I-10.1),	and	(I-11.1).

II-31.	Apply	the	results	of	Prob.	II-30	to	the	curve	x20	+	y20	=	a20.	*
This	is	an	“almost-a-square”	curve	where	the	common	exponent	b/c	is	a	fairly

large	even	integer.	By	Prob.	II-30	we	have

The	quantity	in	brackets	to	four	figures	is	.9961.	Thus,	we	have

II-32.	Show	that	if	the	exponent	b/c	in	Prob.	II-30	be	a	positive	even	integer
2m,	the	enclosed	area	A	approaches	the	limit	4a2	as	m	→	∞.	*

This	 result	 is	what	we	naturally	 expect	 from	consideration	of	 the	 shape	 and



position	of	the	curves	of	the	family	x2m	+	y2m	=	a2m.	We	have	from	(II-30.1)

Applying	(I-4.1),	we	get

Problem:	Evaluation	of	Integrals

II-33.	 Compute	 in	 terms	 of	 the	 Gamma	 function	 the	 value	 of	

	where	A	denotes	the	region	of	the	cartesian	xy-plane	bounded
by	the	coordinate	axes	and	that	portion	of	the	curve	(x/a)p	+	(y/b)q	=	1	which	lies
in	 the	 first	 quadrant,	 each	 of	 the	 letters	m,	 n,	 p,	 q,	 a,	 b	 denoting	 a	 positive
constant.	*
This	 problem,	 except	 for	 the	 restriction	 that	A	 lie	 in	 the	 first	 quadrant,	 is	 a

generalization	of	Prob.	II-30.	When	0	<	m	<	1	or	0	<	n	<	1	or	both,	the	integral	is
improper	in	that	the	integrand	becomes	infinite	along	a	coordinate	axis	(or	along
both).	But	if	neither	exponent	is	as	much	negative	as	minus	one,	the	integral	is
convergent	even	when	improper.	If	we	were	to	allow	one	or	the	other	or	both	of
the	exponents	on	x	and	y	to	be	more	negative	than	minus	one,	the	integral	would
not	be	convergent.	That	is	why	we	require	m	and	n	to	be	positive.	If	we	were	to
allow	p	 or	q	 or	 both	 to	be	negative,	 region	A	would	not	 be	 limited	but	would
extend	infinitely	far	off.
If	a	or	b	or	both	were	negative,	there	might	not	be	any	part	of	the	curve	(x/a)p

+	(y/b)q	=	1	lying	in	the	first	quadrant.	On	the	other	hand	the	constants	m,	n,	p,	q,
a,	b	might	be	 such	 that	 the	 integral	 could	be	 taken	over	an	area	covering	 four



symmetric	portions,	one	in	each	quadrant	as	in	Prob.	II-30.
At	any	rate	we	shall	confine	the	present	problem	to	the	first	quadrant	and	shall

even	omit	most	of	the	details	of	the	solution	since	the	details	will	parallel	closely
those	of	Prob.	II-30.
To	begin	with,	we	have

As	in	Prob.	II-30	we	make	the	following	change	of	variables:

which	results	in

Thus	the	solution	of	our	problem	is

Problem:	Evaluation	of	Certain	Geometrical	Magnitudes



II-34.	 Compute	 the	 area	A	 in	 the	 first	 quadrant	 bounded	 by	 the	 coordinate
axes	and	the	curve	y2	=	(1	−	x)3.	*

Letting	R	denote	the	region	whose	area	we	are	to	compute,	we	have

which	means	that	our	problem	is	a	special	case	of	Prob.	II-33	with	m	=	1,	n	=	1.
In	 order	 to	 ascertain	 the	 values	 to	 be	 taken	 for	 a,	 b,	 p,	 q,	 we	 must	 write	 the
equation	of	the	curve	y2	=	(1	−	x)3	in	the	form	x	+	y2/3	=	1.	Thus	we	have	a	=	1,	b
=	1,	 .	Applying	Eq.	(II-33.1),	we	have

Problem:	Evaluation	of	Integrals

II-35.	 Compute	 in	 terms	 of	 the	 Gamma	 function	 the	 value	 of	 the	 integral	

	where	R	denotes	the	region	of	space	bounded	by
the	coordinate	planes	and	that	portion	of	the	surface	(x/a)p	+	(y/b)q	+	(z/c)k	=	1
which	lies	in	the	first	octant,	each	of	the	letters	h,	m,	n,	p,	q,	k,	a,	b,	c	denoting	a
positive	constant.	*
The	solution	of	this	problem	will	naturally	proceed	along	the	same	lines	as	the

solution	of	Prob.	II-33.	We	have

To	 effect	 this	 formidable-looking	 integration	 we	 change	 the	 variables	 in	 this



manner:

This	simplifies	our	iterated	integral	to

which	immediately	becomes	upon	integrating	with	respect	to	w

Here	we	can	get	a	further	simplification	by	taking	advantage	of	the	fact	that	u
is	held	constant	while	the	integration	with	respect	to	v	is	carried	out.	We	do	so	by
letting	v	=	(1	−	u)t	with	1	−	u	considered	constant	for	the	time	being.	This	makes
dv	 −	 (1	 −	 u)dt.	 Thus	 we	 transform	 our	 iterated	 integral	 into	 another	 iterated
integral	which,	as	in	Prob.	I-11	is	equivalent	to	a.	product	of	integrals:

Problems:	Evaluation	of	Certain	Geometrical	Magnitudes
II-36.	Letting	R	denote	the	region	in	the	first	octant	bounded	by	the	coordinate

planes	x	=	0,	y	=	0,	z	=	0,	and	the	surface	(x/5)1/2	+	(y/6)2/3	+	(z/7)3/4	=	1,	apply



Prob.	II-35	to	compute
(1)			the	volume	V	of	R,

(2)			the	mass	M	of	a	solid	of	density	 	occupying	R,
(3)			the	moment	of	inertia	Iz	of	a	homogeneous	solid	occupying	R,

(4)			The	coordinates	of	the	centroid	 	of	R.	*
The	 constants	a,	 b,	 c,	 p,	 q,	 k	 of	 Prob.	 II-35	 are	 the	 same	 for	 all	 the	 triple

integrals	involved	in	the	four	parts	of	the	present	problem:

For	(1)	we	have

which	means	that	we	take	h	=	1,	m	=	1,	n	=	1.	Thus,	using	Eq.	(II-35.1),	namely

we	get

For	(2)	we	have

Here	h	=	5/2,	m	=	7/2,	n	=	3/2.	So	for	the	mass	we	get



For	(3)	we	have,	with	 ,

We	recall	from	Prob.	II-35:

Hence,

Thus

For	(4)	we	have

The	volume	V	has	already	been	computed	in	part	(1).	For	 	we	have

Here	h	−	1	=	1;	hence,	h	=	2,	m	−	1	=	0,	and	n	−	1	=	0.	Thus	m	=	1,	n	=	1.
Then



Similarly	we	find	 	except	that	in	this	case	h	=	1,	m	=	2,	n	=	1.	For	 ,	h	=	1,	m	=
1,	n	=	2.
Reduction	of	the	results	for	parts	(2),	(3),	and	(4)	to	an	approximate	numerical

value	may	be	carried	out,	as	was	done	in	part	(1),	via	Prob.	I-4	and	Table	I-1.

II-37.	Compute	 the	 area	A	 enclosed	between	 the	x-axis	 and	one	 arch	of	 the
curve	y	=	sin8	x.	*
We	have

II-38.	Compute	the	area	A	enclosed	by	the	oval

We	observe	that	this	curve	is	bounded	by	the	lines	x	=	±	1	because	y2	would
be	 negative	 for	 |x|	 >	 1.	 Similarly,	 by	 solving	 for	x2,	 one	 finds	 the	 curve	 to	 be
bounded	by	the	lines	y	=	±	1.	The	restriction	on	x	suggests	the	following	change



of	variable.

Let	x2	=	sin	 t.	Then	 .	Because	 the	curve	 is	 symmetric	 to
both	coordinate	axes	we	may	compute	the	area	in	the	first	quadrant	and	multiply
by	4.	Then	we	have

In	the	radical	of	the	integrand	we	multiply	the	numerator	and	denominator	by	1
−	sin	t.	Then

The	second	of	these	two	integrals	is	proper,	but	the	first	is	improper.	Now	we
know	that	 the	 improper	 integral	must	be	convergent	because	we	know	that	 the
area	A	is	finite,	since	A	is	entirely	contained	within	a	square	of	side	2.	However,
it	is	not	without	interest	to	demonstrate	here,	on	its	own	merits,	the	convergence
of	the	improper	integral.	We	write

The	ratio	t/sin	t	approaches	the	limit	unity	as	t	→	0.	This	makes	the	integrand	to
be	“like”	1/t1/2	as	t	→	0	with	the	consequence	that	the	question	of	convergence

of	 	hinges	upon	the	convergence	or	divergence	of	 .
But	we	know	 that	 this	 last	 integral	 is	 convergent	because	 the	 exponent	on	 t	 is
less	than	unity.	Therefore,	the	integral	in	question	is	also	convergent.
Now	we	insert	the	factor	cos0	t	which	enables	us	to	recognize	the	integrals	as

Beta	integrals:



II-39.	Find	length	of	lemniscate	ρ2	=	a2	cos	2θ	via	the	Gamma	function.	*

This	curve	is	a	figure-eight	with	the	x-axis	as	its	axis	of	symmetry	and	with	its
double	point	at	the	origin.	Since	this	curve,	by	symmetry,	has	an	equal	length	in
each	of	the	four	quadrants,	we	can	compute	the	length	in	the	first	quadrant	only
and	multiply	the	result	by	4.	The	points	where	the	curve	intersects	the	x-axis	at
the	 origin	 are	 those	 for	 which	 the	 argument	 of	 the	 cosine	 is	 an	 integral,	 odd
multiple	of	π/2.	For	the	portion	in	the	first	quadrant	we	can	take	0	<	θ	≤	π/4.

The	length	of	the	curve	in	polar	coordinates	is

From	ρ2	=	a2	cos	2θ	we	find

Then

By	a	change	in	variable	we	can	transform	this	last	integral	into	a	Beta	integral.



Let	2θ	=	t.	The	interval	of	integration	is	now	from	0	to	π/2;	hence,

The	 length	 in	 the	 first	 quadrant	 is	 then	 	 by	 Prob.	 I-27.	 The
length	of	the	entire	lemniscate	is	4	times	this,	namely,

Problems:	Evaluation	of	Certain	Physical	Quantities

II-40.	A	particle	of	mass	m	on	the	positive	x-axis	is	attracted	toward	the	origin
by	a	variable	 force	 such	 that	 the	product	of	 the	magnitude	of	 the	 force	by	 the
distance	 from	 the	origin	 is	 a	 constant	k.	The	particle	 starts	 from	 rest	 at	x	 =	L.
Determine	the	time	required	for	it	to	reach	the	origin.	*

We	 start	 from	 Newton’s	 Equation	 F	 =	 ma,	 wherein	 the	 force	 F	 and	 the
acceleration	a	are	vectors	having	vanishing	components	in	all	directions	except
along	the	x-axis.	Equating	these	components	along	the	x-axis,	we	have

We	 interchange	 the	 sides	of	 the	equation	and	multiply	both	 sides	by	dx/dt	 and
integrate

We	note	that	the	derivative	of	(dx/dt)2	is	2(dx/dt)	(d2x/dt2).	We	observe	that	the
last	equation	makes	the	velocity	dx/dt	=	0	when	x	=	L	in	accordance	with	one	of



our	boundary	conditions.
We	 solve	 the	 velocity	 equation	 for	 dx/dt,	 taking	 the	 negative	 square	 root

because	the	motion	is	in	the	negative	x-direction.	Then	we	separate	the	variables,
and	integrate:

This	 looks	 bad	 at	 the	moment	 with	 respect	 to	 integration.	 But	 when	we	 look
back	in	Chapter	II	we	find	a	close	resemblance	here	 to	Prob.	 II-7,	so	much	so,
that	all	we	need	is	a	simple	change	of	variable,	namely	x	=	Lu,	to	give	us

whence	by	Probs.	II-7	and	I-11	we	obtain

To	check	dimensionality	we	may	take	t	 in	seconds,	L	 in	 feet,	k	 in	 foot-pounds,

and	

II-41.	Compute	 the	period	T	of	vibration	of	a	 simple	pendulum	swinging	 to
and	fro	in	a	180°	arc.	*

We	take	the	coordinate	axes	as	shown	in	the	diagram	so	that,	as	the	pendulum
P	swings,	the	polar	angle	θ	varies	between	−	π/2	and	π/2.	The	polar	coordinate	r
=	OP	remains	constant.
As	usual	we	 let	g	denote	 the	acceleration	caused	by	 the	earth’s	gravitational

force	 and	 let	W	 denote	 the	 weight	 of	 pendulum	P.	We	 naturally	 consider	 the
potential	 energy	P.E.	of	P	 to	be	 zero	when	P	 is	 at	 its	 lowest	position,	namely,
when	0	=	0.	Then	the	value	of	P.E.



at	any	time	equals	the	product	of	W	by	the	height	h	reached	by	P	at	that	instant:

The	kinetic	energy	K.E.	at	each	instant	is	given	by

As	P	 swings,	 the	 total	 energy	 remains	 constant:	 P.E.	 +	K.E.	 =	C.	 This	 fact
provides	us	with	the	differential	equation	of	the	motion:

To	determine	C	we	 take	 the	 time	 t	=	0	when	θ	=	π/2,	observing	 that	P	 is	 then
momentarily	at	rest,	making	dθ/dt	=	0	when	t	=	0	with	θ	=	π/2.	This	makes	C	=
Wr.	So	our	equation	of	motion	is

Now	 as	 P	 swings	 back	 and	 forth,	 dθ/dt	 is	 at	 times	 negative	 and	 at	 times
positive.	But	we	can	compute	the	period	T	by	computing	the	time	of	the	swing
from	θ	=	0	to	θ	=	π/2,	and	multiplying	the	result	by	4.	This	allows	us	to	use	only
the	positive	square	root	when	we	solve	our	last	equation	for	dθ/dt.	We	get



Then,	from	the	values	in	Table	I-1,	we	find	that

II-42.	Evaluate	the	radiation	density	integral

Let	 us	 do	 more	 here.	 Let	 us	 recall	 whence	 comes	 the	 formula	 we	 are	 to



evaluate.	The	point	of	departure	is	the	number	dz	of	waves	in	a	small	frequency
range	 between	 v	 and	 v	 +	 dv	 which	 are	 contained	 in	 a	 certain	 volume	 V	 as
calculated	by	Rayleigh	and	Jeans:

where	c	is	the	speed	of	light.	We	take	this	in	conjunction	with	Planck’s	quantum
principle	that	radiation	is	emitted	intermittently	in	bundles	of	integral	multiples
of	a	fundamental	amount:

where	k	 is	 the	 gas	 constant	 per	molecule	 (Boltzmann’s	 constant)	 and	T	 is	 the
temperature.	 Planck	 then	 showed	 that	 the	 average	 energy	 of	 an	 oscillator	 in
equilibrium	at	temperature	T	is

Planck	 further	 specified	 that	 the	 energy	 quantum	 	 be	 proportional	 to	 the
frequency	of	the	oscillator	according	to	the	following	equation:

where	h	has	been	found	to	be	a	universal	constant	(Planck’s	constant).	Equation
(II-42.3)	can	now	be	rewritten	using	the	value	of	 	from	(II-42.4).

Now	we	multiply	the	left	side	and	right	side	of	(II-42.1)	by	the	left	and	right	side
of	(II-42.5)	respectively	and	divide	by	the	factor	V.
Then	we	have	as	equation	for	the	energy	(radiation)	density:

For	 convenience	we	 let	 the	 left	 side	 of	 (II-42.6)	 be	 denoted	 by	 .	 Then	 the
radiation	density	 for	 the	 entire	 spectrum	 from	 the	very	 small	 through	 the	very



large	frequencies	may	be	taken	to	be	given	by

Now	how	to	evaluate	this	integral?	Well,	the	fact	that	the	interval	of	integration
is	from	v	=	0	to	v	=	∞	suggests	the	possibility	of	involvement	with	the	Gamma
function.	This	hope	is	strengthened	by	the	fact	that	if	it	were	not	for	the	−	1	in

the	denominator	the	integral	would	be	 	where	m	=	h/kT.
As	 an	 initial	 step,	 then,	 let	 us	 try	 the	 transformation	e−mv	 =	x	 and	 see	what

happens.	We	then	have	−	mv	=	loge	x,	dv	=	−	(1/m)	dx/x.	As	v	runs	from	zero	to
infinity,	x	varies	from	1	to	zero.	We	get

It	 looks	 as	 if	 we	 have	 not	 made	 any	 progress.	 But	 if	 we	 look	 back	 a	 bit	 in
Chapter	 II	 we	 see	 that	 our	 integral	 now	 differs	 from	 the	 integral	

	 in	Prob.	 II-7	only	 in	 that	 the	fraction	1/(1	−	x)	 takes	 the
place	 of	 the	 factor	 xm.	 This	 gives	 us	 the	 clue	 to	 our	 next	 step.	We	 recall	 the
expansion

Denoting	the	constant	before	the	integral	in	II-42-8	by	C,	we	have

We	 are	 confronted	 with	 this	 question:	May	 we	 integrate	 this	 infinite	 series
termwise,	that	is,	term	by	term?	If	we	may,	our	problem	is	solved:	by	Prob.	II-7
with	n	=	3	we	get



The	 series	 here	 is	 indeed	 convergent:	 it	 is	 a	 convergent	 case	 of	 the	 p-series	

,	which	is	convergent	when	and	only	when	p	>	1.

Inasmuch	as	the	p-series	converges	to	a	finite	value	for	every	p	>	1,	its	sum	for	p
>	1	defines	a	function	of	p,	named	after	Riemann	and	called	the	Riemann	Zeta
function:

The	 Riemann	 Zeta	 function,	 like	many	 others	 including	 the	 T-function,	 has
been	extended	into	the	realm	of	complex	arguments	where	p	=	x	+	iy	with	x	and
y	 real	 and	 .	 In	 this	 extended	 realm	 it	 is	 found	 that	 the	p-series	 is
convergent	for	all	complex	p	having	real	part	x	>	1.
Apparently,	 then,	 all	we	 have	 to	 do	 to	 finish	 our	 problem	 is	 to	 look	 up	 the

value	ζ(4)	in	the	tables	of	the	Riemann	Zeta	function.	There	we	find	ζ(4)	=	π4/90,
making

that	is

We	shall	not	be	content,	however,	with	our	solution	of	this	problem	until	we
have	 justified	 that	 step	 where	 we	 integrated	 an	 infinite	 series	 of	 functions
termwise.	As	a	result	of	the	termwise	integration	we	got	a	convergent	series	of
constants.	But	even	 that	did	not	prove	 that	 the	sum	of	 the	series	of	 integrals	 is

the	same	as	 the	 integral	of	 the	function	 	which	 is	 the	 sum	of
the	series	of	functions	that	we	integrated	termwise.	To	prove



we	shall	express	the	function	 	as	a	finite	series	in	powers	of	x
with	a	remainder	term:

and	 then	 demonstrate	 somehow	 that	 the	 integral	 of	 the	 remainder	 term
approaches	the	limit	zero	as	n	→	∞.
Our	task	then	is	to	appraise	the	integral

in	terms	of	n.	Our	first	thought	is	to	compare	this	integral	with	the	integral	of	xn.
But	 this	 does	 not	 seem	 feasible	 because	 the	 function	 enclosed	 by	 the	 brackets
becomes	infinite	as	x	→	0.	To	obviate	that	difficulty	we	write	the	integral	of	the
remainder	term	like	this:

The	situation	appears	now	to	be	favorable,	for	we	find	via	L’Hospital’s	Rule
that	the	function	now	enclosed	by	the	brackets	approaches	zero	as	limit	as	x	→	0
and	as	x	→	1.	Moreover,	the	bracketed	function	is	positive	for	0	<	x	<	1,	and	an
examination	of	its	derivative	shows	that	it	has	a	single	maximum	between	x	=	0
and	x	=	1,	occurring	where	loge	x	=	3(x	−	1).	We	need	not	 try	 to	compute	 this
maximum.	It	suffices	for	 the	argument	we	have	 in	mind	 to	know	that	 it	exists.
Let	us	call	it	M.
We	can	now	make	a	suitable	appraisal	of	the	integral	of	the	remainder	term:



which	 shows	 at	 once	 that	 the	 limit	 zero	 is	 approached	 by	 the	 integral	 of	 the

remainder	term	occurring	when	 	is	expanded	in	a	finite	series
of	powers	of	x,	thus	proving	that	our	termwise	integration	was	valid.

Problems:	Approximation	of	n!	for	Large	Integers

II-43.	 Show	 that,	 when	 n	 is	 a	 large	 positive	 integer,	 the	 magnitude	 of	 the
difference	 between	 loge	 (n!)	 and	 	 is	 given	 with	 a	 good
approximation	(the	larger	the	n,	the	better)	by	loge	(n!en/nn+1/2).	*

This	 exercise	 and	 the	 next	 two,	 taken	 together,	 constitute	 a	 development	 of
Stirling’s	 formula	 for	 the	 factorial	 of	 a	 large	 positive	 integer:	

.
Observing	that	loge	(n!)	=	loge	2	+	loge	3	+	·	·	·	+	loge	n,	where	we	have	left

out	loge	1	which	is	zero,	and	comparing	the	area	under	the	curve	y	=	loge	x	from
x	=	1	to	x	=	n,	n	 integral	and	 	2,	with	 the	set	of	majorant	 rectangles	each	of

base	unity,	we	see	that	 .	Likewise,	by	comparing	the
area	under	y	=	loge	x	from	x	=	2	to	x	=	n	+	1	with	the	set	of	underlying	rectangles
each	of	base	unity,	we	find	that

Evaluating	these	two	integrals	and	combining	the	inequalities,	we	have

We	now	revamp	the	expression	(n	+	1)	loge	(n	+	1):



We	have	in	mind	to	appraise	the	difference	between	loge	(n!)	and	the	arithmetic
average	of	the	two	outside	members	of	our	inequality	(II-43.1).	This	average	is
readily	seen	to	be

Upon	scanning	this	average	we	see	that	there	is	not	much	point,	when	n	is	large,
to	 retaining	all	 the	 terms	 thereof,	because	 the	 term	 	becomes	of	 less	 and	 less

significance	as	n	 is	 taken	 larger	and	 larger,	as	does	 the	 term	 ,
whose	value	is	close	to	zero	when	n	is	large.	Take	a	look	at	the	last	term	in	(II-
43.2)	and	you	will	see	that	it	approaches	 ,	namely	 ,	as	n	→	∞.	So,	we
discard	these	three	terms	in	brackets	as	being	of	less	and	less	significance	as	n	is
taken	larger.	Accordingly,	we	consider	the	difference



II-44.	Show	that

QUESTIONS.	How	 to	 start?	What	 and	where	 is	 the	 connection	 between	π	 and
such	an	expression	as	n!en/nn+1/2?	An	answer:	We	have	already	found	in	Prob.	II-
28	how	to	express	π/2	as	the	limit	of	an	unending	product.	Let	us	see	if	we	can
modify	 that	 product	 into	 a	 form	whose	 limit	 is	 	 and	 then	 show	 that	 the
expression	n!en/nn+1/2	has	the	same	limit	as	n	→	∞.

We	recall	that	the	Wallis	formula

in	Prob.	II-28	can	be	written

It	follows	that

Our	task,	then,	is	to	prove	that	n!en/nn+1/2	has	the	same	limit,	as	n	→	∞,	as	has
the	expression	enclosed	by	the	brackets	in	(II-44.2).	We	proceed	as	follows.
Let	Pn	=	n!en/nn+1/2.	Then	Pn2	=	(n!)2e2n/n2n+1;	and	P2n	=	 (2n)!e2n/(2n)2n+1/2,

whence



Now	we	begin	to	see	the	desired	connection.	The	first	fraction	on	the	right	in	(II-
44.3)	 is	 the	 same	 as	 the	 first	 fraction	 on	 the	 left	 in	 (II-44.2).	 The	 second
fractions,	although	different	from	each	other,	are	readily	seen	to	be	such	that	the
limit	of	their	ratio	as	n	→	∞	is	unity.	It	 follows	at	once,	 therefore,	by	(II-44.2)
and	(II-44.3)	that

We	almost	have	the	desired	result,	namely,	 .	It	only	takes	a
little	 adroit	 maneuvering	 with	 Pn2	 and	 P2n	 as	 follows.	 In	 the	 first	 place	 we
observe	 that	 if	Pn	 has	 a	 limit	 as	 n	→	 ∞,	 then	P2n	 approaches	 the	 same	 limit
because	 P2n	 is	 merely	 a	 later	 value	 of	 Pn	 itself.	 We	 will	 proceed	 on	 the
assumption	 that	Pn	 does	 approach	 a	 limit	 n	 →	 ∞.	 (This	 can	 be	 verified,	 for
instance,	by	 examining	 the	difference	 loge	Pn+1	 −	 loge	Pn	 in	 such	 a	way	 as	 to
show	that	loge	Pn	approaches	a	finite	limit	as	n→	∞,	whence	it	 follows	that	Pn
does	likewise.)	Then	we	have



II-45.	From	Prob.	II-44,	where	the	limit	(as	n→∞)	of	the	fraction	n!en/nn+1/2

was	shown	to	be	 ,	deduce	the	conclusion	that	the	factorial	of	a	large	integer
n	is	well	approximated	by	 .	*

From	the	result	proved	in	Prob.	II-44	we	have	at	once

Since	the	limit	of	the	ratio	within	the	brackets	is	unity,	it	follows	that	when	n	is
large	 the	 value	 of	 the	 ratio	 is	 close	 to	 unity	 (the	 larger,	 the	 closer)	 so	 that
numerator	and	denominator	differ	by	only	a	small	percentage	of	either.	In	other
words,	the	denominator	furnishes	a	good	approximation	for	n!	when	n	is	large:



The	left	side	of	(II-45.1)	is	known	as	Stirling’s	(approximation)	formula	for	n!.

II-46.	Determine	 .	*

This	 problem	 clearly	 does	 not	 lend	 itself	 to	 any	 immediate	 application	 of
L’HospitaFs	Rule.	We	shall	have	to	do	something	with	the	expression	before	us
in	order	to	get	it	in	shape	for	application	of	L’Hospital’s	Rule,	which	says	that,	if
f(n)	and	g(n)	are	two	differentiate	functions	of	real	variable	n	both	of	which	→	∞
as	n	→	∞,	then

Clearly	the	stumbling	block	in	proceeding	lies	in	n!.	What	to	do	with	it?	Answer:
Try	Stirling.	Make	use	of	the	fact	that

By	multiplying	 the	 numerator	 and	 denominator	 of	 the	 expression	 given	 in	 the

problem	by	 	we	have	then



Now	we	can	apply	L’Hospital’s	Rule.	Let	y	=	 (2πn)1/2n.	Then	 loge	y	 =	 (loge
2πn)/2n.	And

Hence,	 .	Consequently,

II-47.	 Appraise	 the	 relative	 error	 committed	 when	 Stirling’s	 formula	



	 is	 taken	 as	 approximation	 to	 10!,	 to	 50!,	 to	 100!.	Also,	 compute
these	factorials	approximately	via	Stirling.	*
We	 apply	 here	 the	 connection	 between	 Stirling’s	 formula	 and	 the	 Gamma

function,	namely	the	asymptotic	expansion

in	which	we	have	used	the	wiggle	sign	∼	instead	of	the	equality	sign	because	the
alternating	series	 indicated	 is	divergent	 for	all	x.	But	 it	does	 have	 the	property
that	any	partial	sum	thereof	for	x	>	0	differs	from	loge	Γ(x)	by	an	amount	which
in	absolute	value	is	less	than	the	last	term	of	the	partial	sum.	So,	for	factorials	of
integers	we	have	the	appraisal

The	error	in	this	last	equation	is	less	than	1/12n.	We	observe	that	the	expression
in	 brackets	 in	 this	 last	 approximate	 equation	 is	 none	 other	 than	 Stirling’s
formula.	Let	us	denote	Stirling’s	formula	by	S:

Thus	we	may	write

Then	it	follows	at	once	that



So,	for	the	relative	error	R	we	have

Replacing	e−E	by	its	Maclaurin	series	in	powers	of	E,	we	get

which	shows	at	once	that	R	<	E.	But	we	already	have	E	<	1/12n.	We	conclude
that,	 when	n!	 is	 approximated	 by	 S,	 the	 relative	 error	 committed	 is	 less	 than
1/12n.
We	 can	 now	 quickly	 appraise	 the	 desired	 approximate	 errors	 as	 well	 as

compute	 approximately	 the	 requested	 factorials.	Here	 are	 the	 results	 in	 tabular
array:

Two	Problems	in	Probability

II-48.	 A	 class	 of	 100	 students	 line	 up	 at	 random	 in	 a	 row.	 Compute
approximately	via	Stirling’s	formula,	the	probability	that	they	will	line	up	from
left	to	right	in	the	order	of	ranking	in	the	class	from	valedictorian	to	the	lowest.	*

The	number	of	different	orders	in	which	it	would	be	possible	for	the	class	to
line	up	from	left	to	right	in	a	row	is	100!.	The	probability	of	falling	into	line	in
order	of	class	standing	from	left	to	right	is	1/(100!).
By	Stirling’s	formula	we	have



so	that

Computing	the	right	side	by	logarithms	or	slide	rule,	we	get

The	probability	requested	is	approximately	 .

To	put	 the	matter	mildly,	we	remark	 that	 their	chances	of	getting	 in	 line	 in	 the
order	described	is	rather	small.	But	it	could	happen!

II-49.	 Compute	 approximately	 the	 probability	 that,	 if	 a	 succession	 of	 1,000
picks	of	one	card	each	be	made	from	a	full	bridge	deck	at	random	(that	 is,	 the
picked	 card	 is	 replaced	 each	 time	 and	 the	 deck	 reshuffled	 between	 picks),	 the
number	of	Jacks	drawn	will	not	be	more	than	100	nor	less	than	50.	*

We	 observe	 first	 that	 this	 problem	 can	 be	 solved	 exactly	 by	 elementary
formulas	 as	 follows.	 If	 the	 probability	 of	 success	 for	 every	 individual
independent	 trial	 be	 p,	 then	 the	 probability	P(x)	 of	 precisely	 x	 successes	 in	 n
trials	is

where	nCx	denotes	the	number	of	combinations	of	n	different	things	taken	x	at	a

time.	 It	 follows	 from	 this	 that	 when	 n	 trials	 are	 made	 the	 probability	 of	
successes	with	 	is	the	sum	of	probabilities	of	mutually	exclusive
events	given	by



In	the	problem	at	hand	we	would	get	the	solution	exactly	by	computing

But	who	would	want	to	do	that	for	the	sake	of	exactness	?	The	next	best	thing	to
do	might	be	 to	use	Stirling’s	approximation	 	 for	m!	 from	Prob.
II-45	for	each	of	the	factorials	involved	in	the	summation.	But	that	still	leaves	us
51	 terms	 to	add	 together	after	computing	each	 term	approximately	by	Stirling.
This	 objection	 causes	 us	 to	 ask:	 If	 Stirling’s	 compact	 formula	 gives	 a	 good
approximation	for	 the	long	product	of	factors	 involved	in	factorial	n	when	n	 is
large,	 might	 there	 also	 be	 obtainable	 a	 compact	 approximate	 formula	 for	 the
summation

such	 that	 the	 ratio	 of	 the	 approximate	 formula	 to	 the	 exact	 formula	
approaches	the	limit	unity	n	→	∞?
This	 question	 has	 been	 answered	 affirmatively	 by	 the	 De	 Moivre-Laplace

theorem	 in	 the	 following	 manner.	 Since	 we	 are	 asking	 that	 the	 number	 of
successes	be	 somewhere	on	 a	 relatively	 small	 spread	of	 numbers	 as	 compared
with	a	rather	large	number	of	trials,	it	is	reasonable	to	think	that	the	probability	

	might	be	given	with	good	approximation	by	the	area	under	an	appropriate
portion	of	the	standard	normal	distribution	curve

as	compared	with	the	area	A	under	the	whole	curve	from	t	=	−	∞	to	t	=	+	∞.	In
fact	we	 can	 even	 omit	 the	 comparison,	 inasmuch	 as	 the	 area	 under	 the	whole
curve	is	unity.	For	we	have	by	Prob.	II-1,	with	a	=	0,	b	=	1/2,	c	=	2,



Thus	the	whole	area	represents	certainty	in	probability	theory,	namely	unity.	We
should	expect,	then,	that	we	might	have

where	t1	and	t2	depend	somehow	on	n,	x1	and	x2.
That	actually	is	the	essence	of	the	content	of	the	De	Moivre-Laplace	theorem

which	 is	 derived	 from	 the	 summation	 formula	 for	 	 I	 by	 replacing	 each
factorial	therein	by	its	Stirling	approximation.
The	De	Moivre-Laplace	theorem:

where

moreover,	with	t1	and	t2	held	fixed,

We	observe	that	the	function	Φ(t)	involved	in	the	De	Moivre-Laplace	theorem
is	an	incomplete	Gamma	function	with	a	coefficient.

If	we	put	t2/2	=	u	we	get



where	 	is	the	incomplete	Gamma	function.	(See	introduction	to	Chap.	I.)
Putting	 x1	 =	 50,	 x2	 =	 100,	 n	 =	 1,000,	 	 in	 the	 for-mulas	 of	 the	 De

Moivre-Laplace	theorem	and	using	the	tabulated	values	of	Φ(t)	we	get

The	 probability	 of	 picking	 between	 50	 and	 100	 Jacks	 in	 1,000	 tries	 is
approximately

The	result,	which	is	close	 to	unity,	 indicates	 that	 the	chance	of	success	 is	an
excellent	one.

REMARK.The	function	Φ(t)	is	related	to	the	error	function

One	finds	that

A	Problem	in	Heat	Flow	in	a	Straight	Wire



II-50.	A	long,	straight	wire	 lies	 in	 the	positive	x-axis	with	one	end	at	x	=	0.
Except	 for	 the	 end	x	 =	0	 the	wire	 is	 kept	 thermally	 isolated	 after	 having	been
given	initially	at	time	t	=	0	a.	continuous,	positive	temperature	distribution	f(x).
The	end	at	x	=	0	is	maintained	at	temperature	zero.	If	the	length	of	the	wire	is	so
long	as	to	be	considered	infinite	for	the	purpose	of	the	problem	and	if	the	initial
temperature	 distribution	 f(x)	 is,	 moreover,	 bounded	 for	 all	 x,	 determine	 the
temperature	distribution	T	as	a	function	of	position	x	and	time	t:	T	=	T(x,	t).
Solve	the	problem	also	for	the	case	where	the	initial	temperature	distribution

for	x	>	0	is	a	positive	constant	C.	*
The	 differential	 equation	 to	 be	 satisfied	 by	 T	 =	 T(x,	 t)	 is	 known	 (see,	 for

example,	Rainville,	Elementary	Differential	Equations,	Macmillan,	1958)	to	be

where	a	is	a	constant,	namely	the	diffusivity.	It	has	been	found	that	in	heat-flow
problems	a	solution	for	the	temperature	T	can	often	be	obtained	as	a	composite
of	particular	 solutions,	each	particular	 solution	being	a	product	 function	 of	 the
form	FG	where	F	 is	a	 function	of	 time	alone	and	G	 is	a	 function	of	 the	space
coordinates	only.	In	our	present	problem	such	a	particular	solution	of	the	product
type	for	Eq.	(1)	is

For	such	a	solution	we	have

Eq.	(II-50.1)	then	becomes

Since	 α	 ≠	 0	 and	 since	 the	 problem	 is	 such	 that	 neither	 G	 nor	 F	 will	 be
identically	zero	we	may	divide	by	each	of	these	three,	obtaining

Since	F′/F	is	independent	of	x	while	G″/G	is	independent	of	t,	 it	follows	that
each	 of	 these	 two	 ratios	 must	 be	 a	 constant.	 Letting	 k	 =	 (1/α)(F′/F)	 and



integrating,	we	get

where	c	is	a	constant.

The	constant	k	cannot	be	zero,	for	this	would	mean	that	the	temperature	T(x,	i)
=	FG	=	cG(x)	would	hold	constant	at	each	point	x	of	 the	wire	with	passage	of
time	contrary	to	the	physical	set-up	of	the	problem	which	is	such	that	heat	will
leave	the	wire	at	the	end	x	=	0	where	the	temperature	is	being	maintained	at	zero.
Nor	can	k	be	positive.	A	positive	k	would	call	for	an	increase	of	temperature	with
increasing	t	at	each	and	every	point	x	on	the	wire.	This	could	happen	only	if	heat
would	come	into	the	wire	at	x	=	0.	This,	too,	is	contrary	to	the	conditions	of	the
problem.	We	conclude,	therefore,	that	k	must	be	taken	negative.
Taking	k	=	−λ2	with	λ	≠	0,	we	find	from	Eq.	(II-50.3)	that

for	which	the	general	solution	is

where	 c1	 and	 c2	 are	 constants.	 Then	 the	 product	 solution	 assumed	 in	 Eq.	 (II-
50.2)	becomes

where	A	=	cc1	and	B	=	cc2.	In	order	to	fulfill	the	boundary	condition	T(0,	t)	=	0
we	require

which	means	that	B	must	be	zero.	We	now	have

The	function	T(x,	t)	defined	in	Eq.	(II-50.4)	will	satisfy	Eq.	 (II-50.1)	 for	any
choice	of	the	constants	A	and	λ.	It	will	also	meet	the	boundary	condition	T(0,	t)	=
0.	But	a	single	such	function	T(x,	t)	will	not	satisfy	the	initial	condition	T(x,	0)	=
f(x)	except	in	the	special	case	where	the	initial	temperature	distribution	for	x	>	0



is	 of	 the	 form	 f(x)	 =	A	 sin	 λ.	 Nor	 can	we	 hope	 to	 compose	 a	 solution	 via	 an
infinite	series	of	particular	solutions	of	the	kind	defined	in	Eq.	(II-50.4)	except	in
the	case	where	f(x)	is	periodic,	since	the	wire	is	taken	as	infinitely	long.
There	 remains	 the	 possibility	 of	 composing	 a	 solution	 via	 an	 integral	 as

follows.	We	consider	a	family	of	solutions

in	which	there	shall	be	a	member	of	the	family	for	each	nonnegative	real	number
λ	 and	 in	 which,	 as	 indicated,	 there	 is	 to	 be	 determined	 a	 value	 for	 A
corresponding	to	each	λ.	We	then	superimpose,	so	to	speak,	all	such	solutions	in
an	integral

and	 see	 if	we	can	 satisfy	 the	 initial	 condition	T(x,	 0)	=	 f(x)	 as	well	 as	Eq.	 (II-
50.1)	with	such	a	composite	function.
Assuming	 for	 the	moment	 that	 the	 function	A(λ)	can	be	so	determined	as	 to

permit	 differentiation	 of	 the	 integral	 in	 Eq.	 (II-50.5)	 with	 respect	 to	 the
parameters	 x	 and	 t,	 we	 find	 by	 Leibniz’s	 Rule	 for	 differentiation	 under	 the
integral	sign	that	T(x,	t)	as	defined	in	Eq.	(II-50.5)	satisfies	Eq.	(II-50.1).	There
remains	to	see	if	we	can	determine	A(λ)	so	that	T(x,	0)	=	f(x).	This	requires	that

We	can	satisfy	the	demand	made	upon	A(λ)	by	Eq.	(II-50.6)	as	follows.	First,

we	restrict	 f(x)	 to	be	such	 that	 the	 integral	 	 is	convergent.	Next,	we
define	 f(x)	 for	 all	 negative	 x	 by	 taking	 f(−	 x)	 =	 −	 f(x).	 Then	 we	 consider	 the
Fourier	integral	of	f(x):

where



(See,	for	example,	Kaplan,	Advanced	Calculus,	Addison-Wesley,	1952.)
Since	we	have	built	f(x)	into	an	odd	function,	it	follows	that	g(λ)	vanishes	and

that

making

Comparing	Eqs.	(II-50.7)	and	(II-50.8)	with	Eq.	(II-50.6),	we	find	that	Eq.	(II-
50.6)	will	hold	if	we	take

Thus,	we	have	obtained	the	solution	for	our	problem:

The	 solution	 as	 presented	 in	Eq.	 (II-50.9)	may	 be	 revamped	 somewhat.	We
may	write

where	Q	denotes	the	entire	first	quadrant	of	the	 -plane,	considering	 	and	λ	as
rectangular	 coordinates,	 and	 where	 dA	 denotes	 element	 of	 area.	 This	 double
integral	over	Q	is	equivalent	to	the	iterated	integral

Moreover,	we	have



Then	by	the	formula	obtained	in	Prob.	II-20,	namely

we	find	that	Eq.	(II-50.10)	becomes

Although	 our	 solution	 as	 given	 by	 Eq.	 (II-50.11)	 was	 obtained	 under	 the

hypothesis	 that	 	 is	 such	 that	 the	 integral	 	 is	 convergent,	 we
observe	that	the	integral	in	Eq.	(II-50.11)	is	convergent	if	 	be	any	function
which	is	continuous	and	bounded	for	all	positive	 .	This	 follows	from	the	fact
that,	as	 ,	 the	exponentials	in	the	integral	decrease	like	 ,	k	>	0.
We	suspect,	therefore,	that	our	solution	in	Eq.	(II-50.11)	holds	when	 f(x)	is	any
function	which	is	continuous	and	bounded	for	all	positive	x.	And	this	is	found	to
be	so:	differentiation	of	T(x,	i)	for	t	>	0	as	defined	in	Eq.	(II-50.11)	partially	with
respect	to	t	and	twice	partially	with	respect	to	x	shows	that	T(x,	 t)	satisfies	Eq.
(II-50.1).
In	particular	then,	we	may	apply	the	solution	presented	in	Eq.	(II-50.11)	to	the

particular	solution	in	which	the	initial	condition	is

where	C	 is	a	constant.	Since	 in	 this	case	 the	factor	 	 in	 theintegrand
may	be	taken	out	in	front	of	the	integral,	it	seems	likelythat	the	solution	may	be
written	in	simple	form	by	transforming	theexponents.	Writing	the	integral	in	Eq.
(II-50.11)	 as	 the	 difference	 oftwo	 integrals,	 we	 transform	 the	 first	 integral	 by
letting	 .	 This	 makes	 .	 and	



.	 Similarly,	 we	 transform	 the	 second	 integral	 by	 letting	
.	Then	for	t	>	0	we	have

Thus,	for	our	solution	of	the	particular	case	we	have

when	C	is	a	positive	constant.
We	 observe	 that	 the	 upper	 right	 side	 of	 Eq.	 (II-50.12)	 can	 be	 expressed	 in

terms	of	either	the	function	Φ(t)	or	the	function	erf(f)	as	defined	in	Prob.	 II-49.
Thus,	for	t	>	0,	we	have

Also,	as	in	Prob.	II-49,	we	may	express	our	solution	of	the	particular	case	in
terms	of	the	incomplete	Gamma	function	by	letting	u2	=	w.	Doing	so,	we	get	for
t	>	0

REMARK.The	 constant	 k	 to	 which	 we	 equated	 each	 side	 of	 Eq.	 (II-50.3)	 is
sometimes	referred	to	in	textbooks	as	the	separation	constant.	Determination	of
the	character	and/or	the	value	of	the	separation	constant	by	appropriate	methods
is	made	also	in	problems	in	Chapters	IV	and	VI,	wherever	product	solutions	of



differential	equations	are	involved.



3
LEGENDRE	POLYNOMIALS

INTRODUCTION
Legendre’s	differential	equation	is

where	y′	and	y′′	denote	the	derivatives	dy/dx	and	d2y/dx2	respectively	and	n	is	a
constant.	It	may	also	be	written	as

Legendre’s	differential	equation	is	a	particular	case	of	the	equation

If	in	this	last	equation	we	take	A	=	−1,	B	=	0,	C	=	−2,	D	=	0,	E	=	n(n	+	1),	and	H
=	2,	we	get	Eq.	(III-0.1).	Other	particular	cases	of	Eq.	(III-0.3)	include	Bessel’s
equation

and	Gauss’s	equation	(the	hypergeometric	equation)

as	well	 as	 equations	having	 as	particular	 solutions	 such	 special	 functions	 (see,
for	 example,	 Rainville,	 Special	 Functions,	 Macmillan,	 1960)	 as	 Hermite
polynomials,	 Tchebicheff	 polynomials,	 Jacobi	 polynomials,	 and	 Laguerre
polynomials.
If	 we	 let	 ,	 then	 Eq.	 (III-0.1)	 becomes	 transformed	 into	 a



trigonometric	form	of	Legendre’s	equation,	namely

where	now	y′	and	yn	denote	 	and	 	respectively.
The	constant	n	in	Legendre’s	equation	we	shall	call	the	index	and	shall	refer	to

Eq.	 (III-0.1)	or	any	equivalent	 form	thereof	as	Legendre’s	differential	equation
of	 index	 n.	 It	 is	 shown	 in	 textbooks	 (see,	 for	 example,	 Franklin,	Methods	 of
Advanced	Calculus,	McGraw-Hill,	1944)	 that	Legendre’s	equation	(III-0.1)	has
solutions	of	a	first	kind

valid	for	|x|	<	1,	C0	and	C1	being	arbitrary	constants.

Equation	 (III-0.1)	 also	 has	 solutions	 of	 a	 second	 kind	 expressible	 in	 infinite
series	(convergent	for	|x|	>	1)	of	negative	powers	of	x.
Legendre’s	equation	(III-0.1)	has	 especial	 importance	when	 the	 index	n	 is	 a

positive	integer	or	zero.	Consider	the	family	of	equations

For	 each	member	 of	 the	 family	 there	 is	 the	 general	 solution	 of	 the	 first	 kind
given	by	Eq.	(III-0.5).	For	each	number	n	of	the	set	0,	1,	2,	3,	·	·	·	one	of	the	two
series	in	brackets	in	Eq.	(III-0.5)	reduces	to	a	polynomial	of	degree	n.	Choosing
the	coefficient	before	the	other	bracket	to	be	zero	and	determining	the	coefficient
before	the	polynomial	so	that	the	polynomial	has	the	value	unity	at	x	=	1,	we	get
the	particular	solution	of	Legendre’s	equation	of	index	n	known	as	the	Legendre
polynomial	Pn(x).
The	process	 just	 indicated	for	obtaining	 the	family	of	Legendre	polynomials

from	Eq.	(III-0.5)	leads	to	the	formula



where	F	denotes	the	final	term.	F	 is	a	constant	when	n	 is	even.	F	 is	a	constant
times	x	when	n	is	odd.	It	is	to	be	observed	that	Pn(x)	contains	only	even	powers
of	x	when	n	is	even,	only	odd	powers	of	x	when	n	is	odd.	A	compact	formulation
of	Eq.	(III-0.7)	is

where	N	=	n/2	or	(n	−	l)/2	according	as	n	is	even	or	odd	and	where,	as	usual,	the
factorial	of	zero	is	taken	as	unity.
A	 formula	 for	Pn(x)	 even	more	 compact	 than	 that	 given	 by	 Eq.	 (III-0.8)	 is

Rodrigues’s	formula

where	the	operator	symbol	Dn	denotes	nth	derivative.
The	 Legendre	 polynomials	 are	 often	 called	 by	 other	 names.	 One	 such

alternative	 designation	 is	 spherical	harmonics	 or	 zonal	 harmonics.	 This	 stems
from	the	fact	that	the	Legendre	polynomials	provide	the	ingredients	for	solutions
of	 Laplace’s	 equation	∇2V	 =	 0	 where	 the	 function	 V	 of	 space	 coordinates	 is
required	 to	 take	 on	 boundary	 values	 of	 restricted	 type	 on	 zones	 of	 a	 spherical
surface	as	well	as	be	harmonic	(have	continuous	second-order	partial	derivatives
and	satisfy	Laplace’s	equation)	interior	to	the	sphere.
Yet	 another	 name	 for	 the	 Legendre	 polynomials	 is	 Legendre	 coefficients,

which	 is	 used	 because	 of	 a	 characteristic	 property	 of	 the	 family−a	 property
which	 brings	 the	whole	 family	 into	 play	 at	 once.	 It	 is	 the	 fact	 that,	 when	 the
function



is	 expanded	 in	Maclaurin’s	 series	 in	 powers	 of	h,	 the	 coefficient	 of	 hn	 is,	 for
every	n,	 the	Legendre	 polynomial	Pn(x).	 The	 establishment	 of	 this	 property	 is
our	problem	No.	1	in	this	chapter.	W(h,	x)	is	called	a	generating	function	for	the
Legendre	polynomials.
The	 family	 of	 Legendre	 polynomials	 enjoys	 a	 number	 of	 characteristic

properties	and	mutual	relationships.	The	establishment	and	exploitation	of	these
properties	 and	 relationships	 constitute	 the	 chief	 concern	 of	 the	 exercises	 and
problems	in	this	chapter.
A	list	of	the	Legendre	polynomials	of	degrees	0	through	10	as	well	as	a	table

of	values	of	Pn(x),	n	=	1,	2,	3,	4,	5,	6,	7,	for	0	 	x	 	1	will	be	found	at	the	end
of	this	chapter.	There	is	also	a	sketch	of	the	curves	y	=	Pn(x),	n	=	0,	1,	2,	3,	4,	for
−1	 	x	 	1.

Problem:	Coefficients	in	Expansion	of	a	Generating	Function
III-1.	Show	that,	when	W(h,	x)	=	(1	–	2xh	+	h2)–(1/2)	is	expanded	in	a	series	of

the	form

the	following	are	true	of	the	coefficients	of	the	powers	of	h:
(a)	yn(x)	is	a	polynomial	of	degree	n,
(b)	yn(l)	=	l,
(c)	y	=	yn(x)	is	a	solution	of	the	Legendre	equation

In	other	words	show	 that	 for	n	=	0,	1,	2,	3,	 ·	 ·	 ·	we	have	yn(x)	=	Pn(x)	where
Pn(x)	 is	 the	Legendre	polynomial	of	degree	n	 as	defined	 in	 the	 introduction	 to
Chapter	III.	*

The	expansion	may	be	obtained	via	the	formal	binomial	expansion:

An	 inspection	 of	 Eq.	 (III-1.1)	 shows	 that	 when	 every	 integral	 power	 of	 the



expression	 2xh	 −	h2	 is	 expanded	 and	 then	 like	 powers	 of	h	 are	 collected,	 the
coefficient	of	hn	will	be	a	polynomial	 in	x	of	degree	n.	This	 is	 seen	 to	be	 true
because	 the	expansion	of	 (2xh	−	h2)m,	where	m	 is	any	positive	 integer,	will	be
such	that	the	power	of	x	in	the	term	(2xh)m	 is	 the	same	of	that	of	h,	namely	m,
while	the	power	of	x	is	less	than	m	in	each	of	the	other	terms	where	the	power	of
h	exceeds	m.	So	we	have

where	y0(x)	=	1,	y1(x)	=	x,	 ,	and	yn(x)	is	a	polynomial	in	x	of
degree	n,	thus	demonstrating	part	(a)	of	our	problem.
We	 should,	 however,	 be	 honest	 here	 and	 admit	 that	 we	 have	 assumed	 the

validity	of	Eqs.	(III-1.1)	and	(III-1.2)	for	some	(as	yet	undetermined)	interval	of
values	of	h	together	with	an	interval	of	values	of	x.	On	the	other	hand,	if	we	do
not	 for	 the	moment	concern	ourselves	with	 the	question	of	convergence	of	 the
series	 in	 these	 equations,	 then	we	 surely	 can	 say	 that,	 when	 the	 series	 on	 the
right	in	Eq.	(III-1.1)	is	rearranged	into	the	series	on	i:he	right	in	Eq.	(III-1.2),	the
coefficient	yn(x)	is	a	polynomial	in	x	of	d	egree	n.
But	in	order	to	effect	a	demonstration	of	part	(b)	we	find	it	advisable	to	show

that	the	series	expansion	of	W(h,	x)	in	Eq.	(III-1.1)	is	valid,	when	x	=	1,	for	an
interval	of	values	of	h.	When	x	=	1	we	have

valid	for	−	1	<	h	<	1.	Each	coefficient	in	the	right	side	of	Eq.	(III-1.3)	 is	unity.
So,	if	we	can	show	that	Eq.	(III-1.2)	holds	for	−	1	<	h	<	1	whenever	x	is	taken	as
any	 number	 having	 |x|	 	 1,	 we	 will	 have	 shown	 that	 every	 polynomial
coefficient	yn(x)	in	Eq.	(III-1.2)	has	the	value	1	when	x	is	1.

First,	we	take	x	=	−	1	and	find	that



which	is	valid	for	−	1	<	h	<	1.	Next,	let	us	take	an	h	such	that	0	<	h	<	1	and	hold
it	fixed	for	the	moment	while	we	examine	the	character	of	W(h,	x)	for	this	fixed
h	as	x	varies	from	−	1	to	1.	We	see	at	once	that	W(h,	x)	varies	from	(1	+	h)−1	to
(1	−	h)−1.	Moreover,	W(h,	x)	varies	monotonically,	always	increasing	from	(1	+
h)−1	to	(1	−	h)−1,	because	the	partial	derivative	∂W/∂x	=	h/(1	−	2xh	+	h2)3/2	has
the	same	sign	as	h.	Consequently,	when	x	is	taken	between	−	1	and	1,	we	have	(1
+	h)−1	<	W(h,	x)	<	(1	−	h)−1,	which	we	may	write	as

Similarly,	we	find	this	appraisal,	Eq.	(III-1.4),	to	be	true	when	−	1	<	h	<	0.	Thus,
for	0	<	|h|	<	1,	−	1	 	x	 	1	we	have

All	in	all,	we	have	found	that	our	Eq.	(II1-1.2)	holds	for	all	pairs	such	that	h	and
x	such	that	−	1	<	h	<	1,	−	1	 	x	 	1.	(We	have	not	actually	considered	the	case
h	=	0	because	when	h	=	0	we	see	at	once	that	Eq.	(III-1.2)	holds,	since	it	reduces
to	1	==	1.)	We	may	conclude,	then,	that	every	polynomial	coefficient	yn(x)	in	Eq.
(2)	has	the	value	1	when	x	=	1.
It	remains	to	demonstrate	part	(c).	This	will	follow	from	the	fact	that	W(h,	x)

satisfies	the	equation

which	can	be	verified	by	direct	substitution	or	can	be	shown	to	hold	by	virtue	of
the	following	considerations.	If	h	be	taken	as	denoting	distance	r	from	the	origin
of	a	point	in	space	and	x	be	taken	as	denoting	cos	 	where	 	is	the	spherical	co-
latitude	coordinate,	then	W(h,	x),	by	the	law	of	cosines,	represents	the	reciprocal
of	the	distance	of	an	arbitrary	point	from	the	point	where	 ,	r	=	1.	Such	a
reciprocal	 distance	 is	 known	 to	 be	 a	 harmonic	 function	 of	 the	 variable
coordinates	involved	and	so	satisfies	Laplace’s	equation,	which	in	terms	of	r	and
x	 (where	 )	 reduces	 to	 Eq.	 (III-1.5).	 (See,	 for	 example,	 Franklin,
Methods	of	Advanced	Calculus,	McGraw-Hill,	1944.)
Let	us	represent	Eq.	(III-1.5)	in	operator	notation:



and	apply	the	operator	shown	in	Eq.	 (III-1.6)	 to	both	sides	of	Eq.	 (III-1.2).	By
virtue	of	 the	convergence	properties	which	we	established	for	 the	series	on	 the
right	in	Eq.	(III-1.2)	we	may	apply	the	operator	shown	in	Eq.	(III-1.6)	termwise
to	the	series	in	Eq.	(III-1.2).	We	observe	that	when	this	operator	is	applied	to	a
term	yn(x)hn,	it	yields	hn	multiplied	by	a	polynomial	in	x,	namely

But	when	the	operator	is	applied	to	both	sides	of	Eq.	(III-1.2),	the	left	side	of	the
resulting	equation	is	identically	zero	by	virtue	of	Eq.	(III-1.6).	Consequently,	the
coefficient	of	each	power	of	h	must	vanish	in	the	resulting	power	series	on	the
right:

that	is,

But	this	last	equation	is	none	other	than	the	Legendre	equation	of	index	n	with	y
=	yn.	Thus	the	polynomial	yn(x)	is	a	solution	of	the	Legendre	equation

Recapitulating,	we	have

Problem:	Recurrence	Relations

III-2.	Show	that	the	Legendre	polynomials	P0(x),	P1(x),	P2(x),	·	·	·,	Pn(x)	·	·	·
are	such	that	for	m	 	2	every	Pm	(x)	is	related	to	its	two	immediate	predecessors
by	the	formula



The	result	we	are	looking	for	can	be	obtained	from	the	expansion	obtained	in
Prob.	III-1,	namely

where

First,	we	observe	that

whence

Next,	we	differentiate	termwise	with	respect	to	h	in	the	series	in	Eq.	(III-2.1),
obtaining	 a	 series	which	 converges	 to	∂W/∂h	 for	 |h|	 <	 1,	 |x|	 	 1	 by	 the	well-
known	 theorem	on	 termwise	differentiation	on	 its	 interval	of	 convergence	of	 a
power	series	in	non-negative	integral	powers	of	h:

Substituting	in	Eq.	(III-2.2)	from	Eqs.	(III-2.1)	and	(III-2.3),	we	get



which	upon	multiplication	 followed	by	collection	of	 terms	 in	 like	powers	of	h
becomes

Since	the	series	in	Eq.	(III-2.4)	converges	everywhere	on	 the	 interval	 |h|	<	1
when	x	 is	 taken	as	 any	number	on	 the	 closed	 interval	 |JC|	 	 1,	 the	 bracketed
coefficients	in	Eq.	(III-2.4)	must	vanish	for	each	x	on	the	interval	|x|	 	1:

If	in	this	last	equation	we	let	n	+	1	=	m,	we	get

Eq.	(III-2.5)	expresses	equality	of	two	polynomials	of	degree	m	for	all	x	on	the
interval	|x|	 	1.	It	follows	that	Eq.	(III-2.5)	must	hold	for	all	x,	since	it	is	a	well
known	 theorem	 of	 algebra	 that,	 if	 two	 polynomials	 of	 degree	m	 are	 equal	 for
more	than	m	distinct	values	of	x,	they	must	be	equal	for	all	values	of	x.

Problem:	Laplace’s	Integral	Expression	of	Pn(x)

III-3.	Verify	Laplace’s	integral	formula	for	the	Legendre	polynomials:



In	 contrast	 to	 the	 transparency	of	Rodrigues’s	nth	 derivative	 formula	 it	 does
not	seem	to	us	immediately	apparent	how	Laplace’s	integral	formula	came	to	be
discovered.	 However,	 if	 we	 grant	 knowledge	 of	 the	 Legendre	 polynomials	 as
coefficients	in	the	expansion	given	in	Eq.	(III-1.7)	then	perhaps	it	does	not	seem
too	farfetched	to	arrive	at	Laplace’s	formula	via	inquisitive	experimentation	with
the	expansion	(III-1.7)	as	follows.
The	expression	1	−	2xh	+	h2	lends	itself	quite	readily	to	being	written	as	sum

or	difference	of	two	squares:

If	we	choose	the	latter,	namely	the	difference	of	two	squares,	we	may	write

But	what	have	we	gained	?	And	why	the	difference	of	 two	squares	rather	 than
the	 sum?	 Well,	 if	 we	 happen	 to	 be	 astute	 enough	 at	 this	 point	 to	 recall	 the
integral	formula

then	we	see	that	we	may	write

In	Prob.	III-1	we	found	that	the	left	side	of	Eq.	(III-3.3)	could	be	expressed	as
a	power	series	of	the	form



where	the	coefficients	bn	are	the	Legendre	polynomials.	We	found	the	series	to
be	uniformly	convergent	for	−	1	 	x	 	1,	 |h|	 	H	<	1;	and	we	made	use	of	a
consequence	 thereof,	 namely	 termwise	 differentiability,	 to	 establish	 recurrence
formulas	for	the	Legendre	polynomials.	But	now	in	the	present	problem	we	seek
an	expansion	valid	for	some	interval	of	values	of	x	having	|x|	>	1	because	of	the
radical	 .	 We	 also	 require	 sufficient	 restriction	 on	 h,	 when	 we	 take
values	 of	 |x|	 >	 1,	 so	 that	 we	 may	 expand	 the	 integrand	

	on	the	right	in	Eq.	(III-3.3)	in	an	infinite
series	 which	 will	 be	 termwise	 integrable	 over	 0	 	 θ	 	 π.	 If,	 then,	 we	 can
validate	our	previous	expansion	Eq.	(III-1.7)	to	meet	these	new	requirements,	it
begins	 to	 look	 as	 if	we	 can	 arrive	 at	 Laplace’s	 formula	 via	 expansion	 of	 both
sides	of	Eq.	(III-3.3)	in	power	series	of	the	form	b0	+	b1h	+	b2h	h2	+	·	·	·,	both
convergent	on	an	interval	|h|	>	h0	when	x	is	taken	to	be	any	number	such	that	1	
	|x|	 	x0.	Let	us	see	if	we	can	establish	such	an	interval	|h|	>	h0	after	making	a

choice	of	x0,	say	x0	=	2.
In	order	to	expand	[1	−	(2xh	−	h2)]−1/2	in	an	infinite	series,	we	require	|2xh	−

h2|	 >	 1,	 which	 will	 be	 the	 case	 if	 |h|	 |2x	 −	 h|	 >	 1.	 This	 latter	 inequality	 will
certainly	be	met	for	all	x	having	|x|	 	2	if

Thus	 we	 may	 say	 that	 the	 expansion	 in	 Eq.	 (III-1.7)	 converges	 for	
	when	|x|	 	2.

So	much	 for	 the	 function	 on	 the	 left	 in	 Eq.	 (III-3.3).	Now	we	 consider	 the
integral	 on	 the	 right	 in	 that	 equation	 and	 observe	 that	 its	 integrand	 may	 be
written	as	 .	Recalling	that

we	see	that	our	integrand	in	Eq.	(III-3.3)	may	be	expanded	in	a	series	as	in	Eq.
(III-3.4)	if	we	have



This	last	inequality	will	be	fulfilled	provided

since	 |cos	θ|	 1	 and	 since	 the	 absolute	 of	 a	 sum	 cannot	 exceed	 the	 sum	 of	 the
absolutes.	 And	 now	 if	 we	 take	 any	 x	 such	 that	 1	 	 |x|	 	 2,	 we	 will	 have	

	for	all	values	of	h	such	that

Thus	the	series	expansion	in	Eq.	(III-3.4)	where	 	cos	θ,
will	converge	uniformly	for	0	 	θ	 	π	when	we	take	any	x	and	h	such	that	1	

|x|	 	2,	 .	It	may,	therefore,	be	integrated	termwise	over	0	 	θ	

	 π.	We	 note	 here	 that	 .	 In	 place	 of	 Eq.	 (III-3.3)	we
may	now	write

or

valid	for	1	 	|x|	 	2,	 .
Since	the	series	on	the	two	sides	of	Eq.	(III-3.5),	regarded	as	Maclaurin	series

in	powers	of	h,	converge	to	the	same	value	(for	each	choice	of	x	such	that	1	 	|x|

	 2)	 on	 the	 common	 interval	 ,	 it	 follows	 that	 coefficients	 of



like	powers	of	h	must	be	equal	to	each	other	for	all	x	such	that	1	 	|x|	 	2:

Inasmuch	as	the	function	of	x,	call	it	hn(x)	defined	by	the	integral	on	the	right	in
Eq.	(III-3.6)	equals	the	Legendre	polynomial	Pn(x)	for	every	x	having	1	 	|x|	
2,	we	may	presume	 that	Hn(x)	 is	 none	 other	 than	Pn(x)	 itself.	However,	 let	 us
give	the	argument	to	validate	this	assumption.	It	is	as	follows.	We	observe	that
when	the	integrand	 	is	expanded:

each	 term	having	an	odd	power	of	 	also	has	an	odd	power	of	cos	θ.
The	integral	of	each	odd	power	term	from	θ	=	0	to	θ	=	π	will	 therefore	vanish.
On	 the	 other	 hand,	 each	 term	 having	 an	 even	 power	 of	 cos	θ,	 whose	 integral
consequently	 does	 not	 vanish,	 is	 multiplied	 by	 a	 polynomial	 in	 x.	 Thus	 the
function

is	a	polynomial	of	degree	n.	And	since	 it	equals	Pn(x)	 for	more	 than	n	distinct
values	of	x,	namely	for	the	infinitely	many	values	of	x	having	1	 	|x|	 	2,	we
conclude	 that	Hn(x)	 is	 Pn(x).	 Laplace’s	 integral	 formula	 Eq.	 (III-3.1)	 is	 thus
established.

Problems:	Determination	of	Specific	Legendre	Polynomials

III-4.	 Obtain	 the	 Legendre	 polynomials	P0(x),	P1(x),	P2(x),	 P3(x)	 from	 the
series	solution	(III-0.5)	of	Legendre’s	equation.	*



To	obtain	P0(x)	we	first	take	n	=	0	in	(III-0.5).	Then	we	choose	C1	=	0.	This
gives	us	a	family	of	constant	solutions,	namely	y	=	C0,	of	Legendre’s	equation	of
index	n	=	0.	Finally,	we	choose	C0	=	1	and	we	have	P0(x)	=	1.
To	get	P1(x)	we	take	n	=	1	and	C0	=	0.	This	gives	us	y	=	C1x.
The	polynomial	of	this	family	which	equals	1	at	x	=	1	is	obtained	by	choosing	C1
=	1.	Thus	P1(x)	=	x.
To	get	P2(x)	we	take	n	=	2	and	C1	=	0	and	then	choose	C0	so	that	y	=	1	at	x	=

1.	We	first	get

Then	to	make	y	=	1	at	x	=	1,	we	require

Then	we	have	P2(x)	=	−	(1/2)(1	−	3x2)	=	3x2/2	−	1/2.
Similarly,	P3(x)	is	found	by	taking	n	=	3	with	C0	=	0:

To	have	y	=	1	at	x	=	1	then	requires	C1	=	−	3/2	with	the	result	that	P3(x)	=	5x3/2
−	3/2.

III-5.	Obtain	the	Legendre	polynomial	P4(x)	from	Rodrigues’s	formula

We	have



III-6.	 Obtain	 the	 Legendre	 polynomial	 P5(x)	 from	 the	 formula	 (III-0.8),
namely

where	N	=	n/2	or	(n	−	l)/2	according	as	n	is	even	or	odd.	*

Since	n	is	odd,	namely	5,	we	take	N	=	2	and	get

Then	taking	k	=	0,	1	and	2	we	have

III-7.	 Obtain	 the	 Legendre	 polynomial	 P4(x)	 directly	 from	 Legendre’s
equation	of	index	4	by	assuming	a	polynomial	solution	of	degree	4.	*

We	assume	a	solution	of	the	form



for	the	equation

This	requires	that

that	is,

The	polynomial	on	the	left	in	Eq.	(III-7.4)	will	vanish	identically	if	and	only	if
every	coefficient	vanishes.	This	 requires	b	=	d	=	0,	c	=	−	6a/7,	g	=	−c/10;	but
leaves	 a	 arbitrary.	We	 thus	 find	 that	 Eq.	 (III-7.1)	 has	 a	 family	 of	 polynomial
solutions	of	degree	4:

We	require	now	that	y	shall	equal	1	at	x	=	1,	which	means	that	we	require	1	=
8a/35,	that	is	a	=	35/8.	This	makes	c	=	−	15/4	and	g	=	3/8.	Thus	we	have

III-8.	Obtain	the	Legendre	polynomial	P6(x)	by	application	of	the	recurrence
formula

assuming	that	P4(x)	and	P5(x)	are	known.	*

We	have



whence

III-9.	Obtain	the	Legendre	polynomial	P2(x)	from	Laplace’s	integral	formula

We	have

Problem:	Rodrigues’s	Expression	for	Pn(x)
III-10.	Verify	Rodrigues’s	formula,	namely

where	Pn(x)	 denotes	 the	 Legend	 re	 polynomial	 of	 degree	 n	 and	Dn[(x2	 −	 l)n]



denotes	 the	nth	 order	 derivative	 dn[(x2	 −	 l)n]/dxn,	 it	 being	 understood	 that	 the
derivative	of	order	zero	D°f(x)	=	f(x)	and	that	0!	is	taken	to	be	unity.	*

The	case	of	n	=	0	is	verified	at	once,	for	we	have

For	n	>	0	we	apply	the	binomial	theorem	and	get

Since	 the	 powers	 in	 the	 summation	 are	 all	 even,	 when	 we	 differentiate	 the
summation	n	times	we	find	that	the	resulting	summation	yields	vanishing	terms
for	k	>	n|2	when	n	is	even	and	for	k	>	(n	−	l)/2	when	n	is	odd.	Thus	we	have

where	N	=	n|2	or	(n	−	l)/2	according	as	n	is	even	or	odd.
The	collection	of	 factors	 in	 the	numerator	of	each	 term	of	 the	summation	 in

Eq.	 (III-10.3)	 suggests	 that	we	multiply	 numerator	 and	 denominator	 of	 the	 kth
term	by	(n	−	2k)!.	Doing	so	to	each	term	of	the	summation,	we	get

This	 formula	 is	 named	 after	 Olinde	 Rodrigues,	 French	 mathematician,	 1791-



1854.

Problem:	Expansion	of	a	Given	Function	in	Legendre	Polynomials
III-11.	Prove	that	any	given	polynomial

can	be	expressed	as

where	the	coefficients	An,	An−,	·	·	·,	A0	are	constants	and	the
functions	Pn(x)	Pn−1(x),	 ·	 ·	 ·,	P0(x)	are	 the	Legendre	polynomials	of	 respective
degrees	n,	n	−	1,	·	·	·,	0.	*

First	we	take	Pn(x)	and	multiply	it	by	such	a	constant	An	so	that	the	coefficient
of	 xn	 in	 the	 resulting	 polynomial	 AnP	Pn(x)	 is	Cn.	 The	 coefficient	 of	 xn−1	 in
AnPn(x)	is	zero,	since	by	Eq.	(III-0.7)	the	powers	of	x	appearing	in	Pn(x)	are	all
even	when	n	is	even,	all	odd	when	n	is	odd.	Next	we	take	Pn−1(x)	and	multiply	it
by	such	a	constant	An−1	so	that	the	coefficient	of	xn−1	in	An−1Pn−1(x)	is	Cn−.	Thus
the	polynomial	Tn(x)	=	AnPn(x)	+	An−1Pn−1(x)	is	such	that	the	coefficients	of	xn

and	xn−1	are	respectively	Cn	and	Cn−1.
Now	 we	 add	 to	 Tn(x)	 such	 a	 multiple	 of	Pn−2(x),	 call	 it	An−2Pn−2,	 that	 the

coefficient	 of	 xn−2	 in	 the	 polynomial	 Tn(x)	 +	 An−2Pn−2(x)	 is	 Cn−2.	 Thus	 the
coefficients	of	xn,	xn−1,	xn−2	in	the	polynomial

are	 respectively	 Cn,	 Cn−1,	 Cn−2.	 Continuing	 in	 this	 manner	 by	 successive
additions	of	appropriately	multiplied	Legendre	polynomials	of	lesser	degrees,	we
finally	 obtain	 a	 polynomial	 of	 degree	 n	 whose	 coefficients	 of	 the	 respective
powers	of	x	are	precisely	those	of	H(x),	thus	obtaining



EXAMPLE.	We	find	that	when	the	steps	set	forth	in	the	foregoing	demonstration
are	carried	out	with	respect	to	the	polynomial

we	obtain

taking	the	Legendre	polynomials	P4(x),	P3(x),	P2(x),	P1(x),	P0(x)	from	the	list	at
the	end	of	this	chapter.

Problem:	|Pn(x)|	 	1	for	−	1	 	x	 	1

III-12.	 Show	 that	 on	 the	 interval	−	1	 	x	 	 1	 the	 absolute	 value	 of	 every
Legendre	polynomial	does	not	exceed	unity:

The	 property	 of	 the	 Legendre	 polynomials	 indicated	 by	 the	 inequality	 (III-
12.1)	is	suggested	by	a	glance	at	Fig.	III-1,	where	the	property	is	seen	to	hold	for
the	first	few	Legendre	polynomials.	In	this	connection	we	remark	also	that,	once
(III-12.1)	 is	established,	 it	will	 follow	 that	max	 [Pn(x),	−	1	 	x	 	1],	namely
unity,	 is	 attained	 by	 every	Pn(x)	 at	 x	 =	 1,	 since	Pn(l)	 =	 1	 for	 every	 n	 by	 the
definition	of	the	Legendre	polynomials	given	in	the	introduction	to	Chapter	III.
The	question	is:	How	to	proceed	with	the	proof?	One	possibility	for	procedure

that	comes	to	mind	is	the	following.	Since	we	hope	to	prove	that,	for	−	1	 	x	
1,	the	values	taken	on	by	Pn(x)	are	never	in	excess	of	unity	nor	less	than	−	1,	this
thought	taken	in	conjunction	with	the	fact	that	Pn(x)	is	an	even	function	when	n
is	even	suggests	that	we	try	taking	x	=	cos	θ	and	find	some	convenient	means	of
expressing	Pn(x)	 in	terms	of	cos	θ	 in	a	way	which	will	 reveal	 the	 truth	of	 (III-
12.1).	Such	an	expression	does	not	seem	easy	to	find.	One	way	of	surmounting
the	 difficulty	 here	 is	 a	way	 that	 is	 often	 fruitful:	 it	 is	 to	 have	 recourse	 to	 the
complex	variable,	even	though	we	are	dealing	with	functions	of	a	real	variable.	It
turns	out	 that	we	can	take	advantage	of	 the	Euler	expression	for	cos	0,	namely
cos	θ	=	(eiθ	+	e−iθ)/2,	where	 .



In	 the	expansion	(III-1.7)	we	 take	x	=	 cos	θ	and	h	 =	 z,	where	 z	 denotes	 the
complex	variable	and	θ	is	real.	We	have

For.	|z|	<	1	each	of	the	factors	on	the	right	may	be	expanded	in	a	series:

For	|z|	<	1	the	formal	product	of	these	two	series	gives	a	series	expansion	for	(1
−	2z	 cos	θ	 +	 z2)−1/2.	 It	 follows	 then	 by	 the	 expansion	 in	 Eq.	 (III-1.7)	 that	 the
coefficient	of	zn	therein	is	Pn(cos	θ):

where	the	final	term	in	the	brackets	is	such	that	b	=	0	when	n	is	even,	b	=	1	when
n	is	odd;	and	the	coefficient	C	is	as	follows.



Since	eiθ	+	e−iθ	=	2	cos	θ,	we	find	that

where	b	 and	C	 are	 the	 same	 constants	 as	 in	 the	 previous	 paragraph.	 Every
cosine	 in	 this	 last	equation	has	a	positive	coefficient.	 It	 follows,	 therefore,	 that
the	maximum	possible	value	for	Pn(cos	θ)	can	occur	when	and	only	when	all	the
cosines	are	unity.	For	the	range	0	 	θ	 	π	which	we	selected	to	correspond	to
the	range	−	1	 	x	 	1,	 the	maximum	of	Pn(cos	θ)	will	occur	at	θ	=	0,	which
means	that	max	[Pn(x),	−	1	x	 	x	 	1]	occurs	at	x	=	1.	Since	Pn(1)	=	1	for	every
Legendre	polynomial,	we	have

The	minimum	possible	value	for	Pn(cos	θ)	can	occur	when	and	only	when	all
the	 cosines	 in	 Eq.	 (III-12.3)	 are	 −1.	 When	 n	 is	 odd,	 every	 cosine	 in	 Eq.	 (3)
equals	−	1	at	θ	=	π	Thus,	we	find	that	min[Pn(X),	−	1	 	x	 	1],	n	odd,	occurs	at
x	=	−	1	and	must	equal	−	1,	because	Pn(−	1)	=	−	Pn(1)	by	Eq.	(III-0.7)	when	n	is



odd.	Since	−	1	is	thus	the	minimum	value	possible	that	can	be	taken	by	any	Pn(x)
on	the	interval	−	1	 	x	 	1,	appraisal	(III-12.1)	is	established.

REMARKS.	1.	WHEN	n	is	even,	a	study	of	the	structure	of	the	right	side	of	Eq.
(III-12.3)	 shows	 that	 not	 all	 the	 cosines	 therein	 can	 equal	 −	 1	 simultaneously.
The	minimum	of	Pn(x)	for	−	1	 	x	 	1	is	therefore	not	−1	when	n	is	even.	The
minimum	 value	 on	 −	 1	 	 x 	 1	 for	P2(x)	 and	 for	P4(x),	 for	 example,	 are	 as
follows.

2.	An	alternative	way	of	writing	Eq.	(III-12.3)	is

where	the	terminating	term	F	is	the	same	as	in	(III-12.3).

Problems:	Recurrence	Relations

III-13.	 For	 the	 Legendre	 polynomials	Pn(x),	 n	 =	 1,	 2,	 3,	 ·	 ·	 ·	 establish	 the
recurrence	relation

We	 follow	 the	method	 of	 procedure	 used	 in	 Prob.	 III-2.	 The	 corresponding
initial	step	in	the	present	problem	is	to	observe	that

which	is	readily	seen	to	be	so;	for	we	have



and

It	is	then	apparent	that	Eq.	(III-13.2)	follows	from	Eqs.	(III-13.3)	and	(III-13.4).
Differentiating	 the	 series	 on	 the	 right	 in	 Eq.	 (III-1.7)	with	 respect	 to	 h	 and

with	respect	to	x,	then	putting	the	resulting	series	in	Eq.	(III-13.2),	we	obtain

We	observe	that	in	Eq.	(III-13.5)	both	summations	may	be	taken	starting	with	n
=	1,	since	the	term	given	by	n	=	0	vanishes	in	both	summations.	This	is	at	once
evident	in	the	first	summation	and	is	so	in	the	second	summation	because	P0(x)
=	1,	which	makes	 .	Thus,	Eq.	(III-13.5)	may	be	written

valid	for	|h|	1,	−	1	 	x	 	1.	An	equivalent	expression	for	Eq.	(III-13.6)is

It	 follows	 as	 in	 Prob.	 III-2	 that	 the	 coefficients	 of	 the	 respective	 powers	 of	h
must	all	vanish	for	−	1	 	x	 	1,	thus	yielding	Eq.	(III-13.1).	Then	by	the	same
argument	as	in	the	last	paragraph	of	Prob.	III-2,	we	realize	that	Eq.	(III-13.1)	 is
valid	for	all	values	of	x.

III-14.	Show	that



where	Pn(x)	and	Pn−1(x)	denote	the	Legendre	polynomials	of	degree	n	and	n	−	1
respectively.	*
Equation	(III-14.1)	can	be	made	to	follow	from	Eqs.	(III-2.5)	and	(III-13.1)	as

follows.	Differentiation	of	Eq.	(III-2.5)	yields

Equation	(III-13.1)	when	written	with	m	−	1	in	place	of	n	becomes

Replacing	 	in	Eq.	(III-14.2)	by	its	equivalent	as	given	by	the	right	side	of
Eq.	(III-14.3)	and	collecting	terms	in	the	resulting	equation,	we	get

Dividing	both	sides	of	Eq.	(III-14.4)	by	m	and	transposing	the	first	term	on	the
right	side,	we	have

Although	Eq.	(III-14.5)	has	thus	been	established	for	m	 	2,	we	can	surmise
that,	since	the	subscript	m	−	2	does	not	appear	therein,	Eq.	(III-14.5)	should	also
hold	for	m	=	1.	And	this	is	seen	at	once	to	be	so,	for	if	we	take	m	=	1	in	Eq.	(III-
14.5)	we	have

which	is	true	because	P1(x)	=	x	and	P0(x)	=	1.	Thus,	writing	n	for	m	in	Eq.	(III-
14.5)	and	changing	the	qualification	n	 	2	to	n	 	1,	we	have	Eq.	(III-14.1).

III-15.	Show	that	the	Legendre	polynomials	Pn(x),	n	=	1,	2,	3,	·	·	·	satisfy	the
recurrence	relation

Since	 the	 relationship	 to	be	 established	 involves	only	one	derivative	 ,



we	 first	 eliminate	 the	 derivative	 	 from	 Eqs.	 (III-13.1)	 and	 (III-14.1).
This	is	done	by	multiplying	both	sides	of	Eqs.	(III-13.1)	by	(−	x)	and	adding	Eq.
(III-14.1).	Thus	we	obtain

Comparing	 this	 result	with	 the	 equation	(III-15.1)	 to	 be	 established,	we	 see
that	 we	 wish	 to	 retain	 Pn−1(x)	 but	 need	 to	 replace	 x	 Pn	 (x)	 by	 something
involving	Pn+1(x).	This	we	can	do	by	appropriate	application	of	Eq.	(III-2.5)	as
follows.	In	Eq.	(III-2.5)	we	let	m	−	1	=	n.	Then	Eq.	(III-2.5)	becomes

Upon	 substituting	 the	 right	 side	 of	 this	 last	 equation	 for	 xPn(x)	 in	 Eq.	 (III-
15.2)	and	collecting	terms	we	get	Eq.	(III-15.1).

Problems:	Orthogonality	Property	and	Related	Property

III-16.	From	the	fact	that	the	Legendre	polynomial	Pn(x)	of	degree	n	satisfies
the	equation	(III-0.2)	namely,

deduce	the	orthogonality	property	of	the	Legendre	polynomials:

How	do	we	make	a	start	toward	solving	this	problem?	We	get	a	clue	from	the
problem	 itself,	 which	 is	 to	 demonstrate	 the	 vanishing	 of	 the	 integral	 of	 the
product	Pm(x)Pn(x).	So,	if	we	transpose	the	second	term	of	Legendre’s	equation
to	the	other	side	of	the	equation,	we	will	have	Pn(x)	there	all	by	itself,	except	for
a	mere	constant	factor,	waiting	to	be	multiplied	by	Pm(x)	so	that	we	can	integrate
the	product	Pm(x)Pn(x).	To	be	sure,	we	shall	have	to	multiply	the	left	side	also	by
Pm(x)	 and	 then	 integrate.	And	 this	 looks	 promising,	 because	 the	 left	 side	will



then	 lend	 itself	 to	 integration	by	parts.	Accordingly,	we	multiply	both	 sides	of
the	equation	by	Pm(x)	and	we	have

Integrating	over	the	interval	−	1	 	x	 	1	and	applying	integration	by	parts	on
the	left,	we	get

which	reduces	to

because	the	factor	1	−	x2	vanishes	at	x	=	1	and	at	x	=	−1.
What	 to	 do	 next?	 There	 is	 one	 thing	 in	 our	 last	 equation	which	 suggests	 a

possibility:	the	equation	would	be	unchanged	if	m	and	n	were	interchanged.	Let
us	make	use	of	this	fact	and	see	what	happens.	We	start	all	over	again,	writing
the	Legendre	equation	for	Pm(x)	instead	of	Pn(x):

Then	we	multiply	both	sides	by	Pn(x)	and	integrate	over	the	interval	−	1	 	x	
1.	Applying	integration	by	parts	to	the	left	side,	we	get

The	integral	on	the	left	in	Eq.	(III-16.3)	is	the	same	as	the	integral	on	the	left
in	 Eq.	 (III-16.2).	 And	 the	 right	 sides	 differ	 only	 in	 the	 coefficients	 of	 the



integrals.	 Thus,	 we	 can	 eliminate	 the	 unwanted	 integrals	 on	 the	 left	 by
subtracting	Eq.	(III-16.3)	from	Eq.	(III-16.2):

Upon	 examination	 of	Eq.	 (III-16.4)	we	 are	 confronted	with	 three	 possibilities:
the	bracketed	 expression	may	 equal	 zero,	 the	 integral	may	 equal	 zero,	 or	 both
may	equal	zero.	If	m	≠	n	the	bracketed	expression	does	not	vanish,	for	we	have

Neither	factor	on	the	right	in	this	last	equation	vanishes	when	m	≠	n	because
both	m	 and	 n	 are	 nonnegative	 inasmuch	 as	 they	 are	 degrees	 of	 two	 Legendre
polynomials.	 Thus,	 since	 the	 bracketed	 expression	 in	 Eq.	 (III-16.4)	 does	 not
vanish,	it	follows	that	the	integral	must	vanish:

REMARKS.Our	demonstration	gives	no	clue	as	to	the	value	of	the	integral	when
m	=	n,	for	when	m	=	n	the	bracketed	expression	in	Eq.	(III-16.4)	does	vanish	and
we	learn	nothing	about	the	integral

But	we	do	 know	 two	 things	 about	 the	 integral	 of	 [Pn(x)]2:(1)	 it	 has	 a	 positive
value,	 (2)	 its	value	 is	a	function	of	 the	degree	n	of	Pn(x).	So	our	next	problem
will	be	to	find	a	formula	for	the	integral	of	[Pn(x)]2.
One	immediate	consequence	of	the	orthogonality	property	is

This	is	readily	seen	to	be	true	because



For	m	=	0	we	have

III-17.	Develop	a	formula	for	the	value	of	the	integral

where	Pn(x)	denotes	an	arbitrary	Legendre	polynomial.	*

Since	the	integrand	is	never	negative	and	is	not	identically	zero	we	see	that	the
value	of	the	integral	must	be	positive	for	every	n.	Moreover,	Fig.	III-1	suggests
that	the	relative	maxima	and	minima	of	Pn(x)	decrease	in	size	with	increasing	n.
This	makes	us	suspect	that	the	value	of	the	integral	of	[Pn(x)]2	will	decrease	as	n
increases,	perhaps	toward	the	limit	zero	as	n	→	∞.	But	these	observations	do	not
give	much	clue	as	to	the	actual	value	of	the	integral.	We	must	search	further	if
we	are	to	deduce	the	desired	formula	for	the	actual	value	of	the	integral.
Looking	through	the	solution	of	Prob.	III-16,	we	notice	that	it	was	integration

by	parts	which	played	an	important	role	in	the	solution	there.	Perhaps	it	can	be
turned	to	account	in	the	present	problem	if	we	can	somehow	write	the	integrand
[Pn(x)]2	 as	a	product	which	 involves	a	derivative.	This	 thought	brings	 to	mind
Rodrigues’s	formula	for	Pn(x)	in	Prob.	III-10,	which	allows	us	to	write



Now	we	can	apply	integration	by	parts	to	the	integral	on	the	right	in	Eq.	(III-
17.1).	This	integral,	apart	from	its	coefficient,	thus	equals

The	integrated	part	 in	brackets	in	the	last	expression	vanishes	because	the	(n	−
l)th	derivative	of	(x2	−	l)n	contains	the	factor	x2	−	1	and	therefore	vanishes	at	x	=
1	and	x	=	−	1.
Applying	integration	by	parts	to	the	remaining	integral,	we	get

Again	the	integrated	part	vanishes.	Continuing	thus	n	times,	we	get

Let	 us	 examine	 the	 second	 factor	 of	 the	 integrand	 on	 the	 right	 in	 Eq.	 (III-
17.2):

where	c1,	c2,	·	·	·,	c2n	are	constant	coefficients.	By	the	time	we	differentiate	the
bracketed	 polynomial	 2n	 times,	 the	 2nth	 derivative	 of	 every	 term	 will	 have



become	zero	except	 that	of	 the	 first	 term,	whose	2nth	 derivative	 is	 (2n)!.	Thus
Eq.	(III-17.2)	becomes

But	(−	1)n(x2	−	1)n	=	(1	−	x2)n.	If	now	we	place	x0	in	the	integrand	we	have

This	last	integral	is	a	Beta	integral,	as	in	Prob.	II-17	with	a	=	1,	b	=	0,	c	=	2,	and
d	=	n.	Then	we	have

For	 (2n)!	 we	 write	 2nΓ(2n)	 by	 Eqs.	 (I-10.1)	 and	 (I-4.1);	 and	 then	 from	 the
Legendre	duplication	formula	in	Prob.	1-18	we	have

Substituting	this	value	of	Γ(2n)	in	Eq.	(III-17.4)	we	have

REMARK.	 We	 may	 normalize	 the	 Legendre	 polynomials	 with	 respect	 to	 the
interval	−	1	 	x	 	1	by	taking

Thus,	 the	 polynomials	Ln(x),	 n	 =	 0,	 1,	 2,	 ·	 ·	 ·	 not	 only	 retain	 the	 orthogonal
property	(III-16.1)	but	are	now	such	that



for	all	n.

Problems:	Expansion	of	a	Given	Function	in	Legendre	Polynomials

III-18.	If	f(x)	is	bounded	on	the	interval	H:	−	1	 	x	 	1,	is	continuous	on	H
except	for	a	finite	number	of	discontinuities,	and	such	that	for	each	subinterval
of	H	on	which	f(x)	is	continuous	the	curve	y	=	f(x)	is	rectifiable,	then	there	exists
(see,	for	example,	Whittaker	and	Watson,	Modern	Analysis,	Cambridge,	1927)	a
series	of	Legendre	polynomials	with	constant	coefficients

(a)	which	converges	everywhere	on	H,
(b)	converges	to	f(x)	at	each	point	of	continuity	of	f(x)	on	H,
(c)	is	such	that	the	series	after	multiplication	by	an	arbitrary	Pk(x)	is	termwise

integrable	on	H	to	the	integral	of	f(x)Pk(x)	on	H.
Show,	then,	that	the	coefficients	in	Eq.	(III-18.1)	are	given	by	the	formula

By	part	(c)	of	the	given	expansion	we	have

By	the	orthogonality	property	established	in	Prob.	III-16	every	term	on	the	right
in	Eq.	(III-18.3)	vanishes	except	the	integral

which	 except	 for	 its	 constant	 factor	 Ak	 equals	 2/(2k	 +	 1)	 by	 Prob.	 111-17.
Formula	(III-18.2)	follows	at	once	by	solving	Eq.	(III-18.3)	for	Ak.



REMARKS.	1.	If	f(x)	is	continuous	and	has	continuous	second	derivative	on	H,
then	the	series

converges	to	f(x)	uniformly	on	H	(see,	for	instance,	Kaplan,	Advanced	Calculus,
Addison-Wesley,	1952).
2.	 By	 the	 theory	 of	 functions	 of	 a	 real	 variable	 a	 consequence	 of	 the

hypothesis	of	the	finiteness	of	the	number	of	discontinuities	of	f(x)	on	H	is	that
the	 discontinuities	 are	 all	 of	 the	 first	 kind	 (simple	 saltus).	 See,	 for	 example,
Hobson,	Functions	of	a	Real	Variable,	Cambridge,	1926
Eq.	(III-18.1)	converges	at	each	point	x0	of	discontinuity	to	the	average	of	the

two	functional	limits	as	x	→	x0.	This	behavior	of	(III-18.1)is	thus	like	that	of	a
Fourier	series	expansion	at	a	point	of	simple	saltus	discontinuity.
3.	When	f(x)	on	−	1	 	x	 	1	 is	such	 that	 it	possesses	a	series	expansion	 in

terms	of	normalized	Legendre	polynomials	defined	in	Eq.	(III-17.6),	namely

satisfying	conditions	(a),	(b)	and	(c)	of	Prob.	III-18,	the	coefficients	Bn	are	given
by

III-19.	 Let	 f(x)	 be	 so	 defined	 on	 the	 interval	H:	 −	 1	 	 x	 	 1	 so	 that	 its
expansion	thereon	in	series	of	normalized	Legendre	polynomials

where	Ln(x)	 is	defined	by	Eq.	 (III-17.6),	converges	uniformly	on	H.	Show	that
the	coefficients	B0,	B1,	B2,·	·	·	are	such	that



It	 is	 immediately	 apparent	 what	 we	 have	 to	 do	 to	 establish	 Eq.	 (III-19.2):
multiply	both	sides	of	Eq.	(III-19.1)	by	f(x)	and	integrate	over	H.	We	get

Termwise	integration	is	valid	here	because	of	the	assumed	uniform	convergence
in	Eq.	(III-19.1).	For	every	n	the	value	of	the	nth	integral	on	the	right	in	Eq.	(III-
19.3)	 is	Bn	 by	 Eq.	 (III-18.6).	 Thus,	 Eq.	 (III-19.3)	 reduces	 at	 once	 to	 Eq.	 (III-
19.2).

Problem:	Evaluation	of	Integrals	Involving	Legendre	Polynomials

III-20.	 Evaluate	 	 where	 Pn(x)	 denotes	 the	 Legendre
polynomial	of	degree	n	and	m	is	a	positive	integer	or	zero.	*

It	would	seem	that,	in	order	to	evaluate	this	integral,	we	should	take	advantage
of	 some	 distinguishing	 characteristic	 feature	 of	 the	 Legendre	 polynomials.
Moreover,	 the	 fact	 that	 the	 integrand	 is	 a	 product	 leads	 us	 to	 think	 of	 the
possibility	of	applying	integration	by	parts.	And	in	this	connection	it	looks	as	if
Rodrigues’s	formula	for	Pn(x)	established	in	Prob.	III-10	might	be	just	the	thing
to	use,	since	it	expresses	Pn(x)	as	a	derivative.	True,	the	derivative	is	of	order	n.
But	successive	integration	by	parts	will	lower	the	order	of	the	derivative	so	that
we	may	be	able	to	reach	a	final	integral	yielding	the	value	we	are	seeking.	Let	us
proceed	and	see	how	it	comes	out.
Using	Rodrigues’s	formula	for	Pn(x)	we	have

where	Dn	is	operator	notation	for	dn/dxn.
Integrating	by	parts,	we	take



We	take	note	of	the	handling	of	the	operator	notation	Dn.	Upon	integ-ating	the
order	 of	 the	 derivative	 becomes	 lower;	 thus	 we	 write	 Dn−1.	 If	 we	 were	 to
differentiate,	 the	 order	 of	 the	 derivative	 would	 become	 higher	 and	 we	 would
write	Dn+1.	We	have	now

The	 first	 expression	 on	 the	 right	 of	 the	 last	 equation	 vanishes	 because	 the
function	(x2	−	1)n	has	the	property	that	any	derivative	thereof	of	order	less	than	n
contains	x2	 −	 1	 as	 a	 factor.	 This	 is	 seen	 by	 observing	 that	 the	 first	 derivative
D[(x2	−	1)n]	contains	the	factor	(x2	−	1)n−1,	whence	the	second	derivative	D2[(x2

−	1)n]	contains	the	factor	(x2	−	1)n−2.	In	general	for	m	<	n	we	see	thus	that	the
mth	derivative	Dm[(x2	−	1)n]	contains	the	factor	(x2	−	1)n−m.
Applying	integration	by	parts	to	the	remaining	integral	and	then	repeating	the

process,	we	 see	 that,	 by	 the	 observation	made	 in	 the	 preceding	 paragraph,	 the
integrated	part	will	vanish	each	time	the	process	is	applied	as	long	as	the	order
of	the	derivative	of	(x2	−	1)n	in	the	integrated	part	is	less	than	n.	This	observation
leads	us	to	distinguish	two	cases	as	follows:

(a)	m	<	n.	Applying	integration	by	parts	m	times,	we	get



because	Dn−m−1[(x2	 −	 1)	 is	 either	 (x2	 −	 1)n	 itself	 (in	 case	m	 =	 n	 −	 1),	 or	 is	 a
derivative	of	(x2	−	1)n	of	order	less	than	n	(in	case	m	<	n	−	1)	and	so	contains	x2
−	1	as	a	factor.
(b)	m	 	n.	In	this	case	we	apply	integration	by	parts	n	times,	obtaining

where

Let	 us	 multiply	 numerator	 and	 denominator	 of	 the	 coefficient	 before	 the
integral	 on	 the	 right	 by	 (m	 −	 n)!.	 In	 case	m	 =	 n	 we	 take	 0!	 to	 be	 unity	 as
remarked	in	Prob.	1-10.	Let	us	also	put	the	factor	(−	1)n	into	the	integrand.	Thus
we	get

Inspection	of	the	integrand	in	the	integral	on	the	right	tells	us	that	when	m	−	n
is	 odd	 (that	 is,	when	m	 is	 even	 and	n	 odd	 or	when	m	 is	 odd	 and	n	 even)	 the
integrand	 is	 a	 polynomial	Q(x)	 consisting	 entirely	 of	 odd	 powers	 of	 x.	 Thus,
Q(−x)	 =	 −Q(x);	 and	 it	 follows	 that	 the	 integral	Q(x)	 from	 x	 =	 −	 1	 to	 x	 =	 1
vanishes.	Accordingly,	we	have

But	if	m	−	n	is	even	(that	is,	when	m	and	n	are	both	odd	or	both	even),	then	the
integrand	 is	 a	 polynomial	 consisting	 entirely	 of	 even	 powers	 of	 x,	 so	 that	 the
integral	from	x	=	−	1	to	x	=	1	is	equal	to	twice	the	integral	of	the	same	integrand
from	x	=	0	to	x	=	1:



The	integral	on	the	right	can	now	be	evaluated	by	Eq.	(II-17.1),	taking	a	=	1,	b
=	m	−	n,	c	=	2,	d	=	n.	We	obtain

It	 is	 interesting	 to	note	 that	when	m	=	n,	 this	 formula	reduces	by	successive
applications	of	Eq.	(I-4.1)	to	a	simpler	expression	as	follows.

Recapitulating,	we	have



Problem:	Character	and	Location	of	Zeros	of	Pn(x)

III-21.	 Prove	 that	 the	 zeros	 of	 each	 Legendre	 polynomial	Pn(x)	 of	 positive
degree	are	(a)	all	real,	(b)	distinct,	(c)	all	between	x	=	−1	and	x	=	1.	*

We	recall	that	a	zero	of	a	function	f(x)	is	a	value	of	x	where	f(x)	=	0.	We	note
that	 the	 phrase	 “of	 positive	 degree”	was	 put	 in	 the	 statement	 of	 this	 problem
because	the	Legendre	polynomial	of	degree	0,	namely,	P0(x)	=	1,	does	not	have
any	zeros.
First	of	all,	let	us	see	how	one	might	be	led	to	surmise	the	properties	(a),	(b),

(c)	 which	 we	 are	 to	 establish.	 This	 surmise	 is	 a	 natural	 one	 to	 make	 upon
observing	the	entries	in	the	last	column	of	this	table:

The	table	shows	that	properties	(a),	(b),	and	(c)	hold	for	n	=	1,	2,	3,	4.
To	 surmise	 properties	 (a),	 (b),	 and	 (c)	 is	 one	 thing;	 to	 establish	 them	 is

another.	How	to	proceed?	Perhaps	we	can	show	that	 the	properties	(a),	(b),	 (c)
follow	 as	 a	 consequence	 of	 properties	 already	 established	 in	 earlier	 problems.



Or,	to	put	it	the	other	way	around,	perhaps	we	can	show	that	assumption	of	the
falsity	of	properties	 (a),	 (b),	 (c)	will	 lead	 to	an	absurd	conclusion,	namely,	 the
contradiction	of	results	already	established.	Let	us	make	an	initial	attempt	with
property	(b).
If	 we	 suppose	 that	Pn(x)	 has	 a	multiple	 zero	 x0,	 then	 both	Pn(x0)	 =	 0	 and	

.	Can	Pn(x)	and	its	derivative	 	both	vanish	at	the	same	x0?	If
that	could	happen,	then	by	Eq.	(III-15.2)	Pn−1(x)	would	vanish	there.	Then,	by
Prob.	 III-2,	Pn−2(x)	would	 also	 vanish	 there.	And	 by	 continuation	 of	 the	 same
argument,	we	could	eventually	conclude	that	P0(x0)	=	0,	contrary	to	the	fact	that
P0(x)	≡	1,	as	found	in	Prob.	III-4.	The	(false)	premise	that	Pn(x)	has	a	multiple
zero	is	to	be	rejected.	Hence,	property	(b)	must	be	true.
Let	us	try	this	same	procedure	of	indirect	logic	with	properties	(a)	and	(c).	Let

us	 assume	 that	 the	zeros	of	Pn(x)	 lying	between	x	=	−	1	 and	x	=	1	are	 less	 in
number	 than	 n.	 If	 this	 assumption	 leads	 to	 an	 absurd	 conclusion,	 namely,	 the
contradiction	of	a	property	already	established,	 then	we	reject	 that	assumption.
First	we	ask	ourselves	what	property	shown	in	earlier	problems	might	be	related
to	the	nature	and	number	of	zeros	of	Pn(x).	Perhaps	the	integral	property	of	Eq.
(III-20.5),	whereby

when	Qh	(x)	is	any	polynomial	of	degree	h	<	n,	will	be	of	help.
Assuming	that	the	zeros	of	Pn	(x)	which	lie	between	x	=	−	1	and	x	=	1	are	r1,

r2,	·	·	·,	rh	where	1	 	h	<	n,	we	can	formulate	a	polynomial	Qh	(x)	of	degree	h
having	its	zeros	at	r1,	r2,	·	·	·,	rh	like	this:

We	see	that	Qh	>	0,	because	each	linear	factor	in	Qh	(x)	is	positive	when	x	=	1.
Moreover,	 Pn(1)	 >	 0	 because	 Pn	 (1)	 =	 1	 by	 the	 definition	 of	 Legendre
polynomials	given	in	the	introduction	to	Chapter	III.	It	follows,	then,	that	Qh	(x)
and	Pn(x)	always	have	the	same	sign	on	the	interval	−	1	 	x	 	1,	because	as	x
varies	from	+	1	to	−	1,	Qh(x)	and	Pn(x)	both	start	out	with	a	positive	value	and
both	cross	the	x-axis	always	at	the	same	x.	Thus	the	product	Pn(x)Qh(x)	is	never
negative	and	is	positive	at	every	x	on	the	interval	−	1	 	x	 	1	except	at	 the	h



points	where	both	vanish.	Consequently,	we	have

in	contradiction	to	the	property	established	in	Eq.	(III-20.5).
We	conclude	that	Pn(x)	must	have	at	least	n	zeros	between	x	=	1	and	x	=	−1.

Since	Pn(x)	cannot	have	more	than	n	zeros,	it	follows	that	all	the	zeros	of	Pn(x)
must	be	real	and	must	lie	on	the	open	interval	−	1	<	x	<	1.
It	will	be	observed	that	we	assumed	Pn(x)	to	have	at	least	one	zero	between	x

=	1	and	x	=	−1.	This	assumption	is	valid	for	every	n	 	1	by	virtue	of	Eq.	 (III-
16.5)	 because	 the	 integral	 of	Pn(x)	 over	 the	 interval	 −	 1	 	 x	 	 1	would	 not
vanish	if	Pn(x)	were	of	constant	sign	on	the	interval.

Problem:	Evaluation	of	Derivatives

III-22.	Letting	Pn	denote	 the	Legendre	polynomial	Pn	 (x)	of	degree	n,	 show
that

and	that

Since	the	derivative	dPn/dx	is	a	polynomial	of	degree	n	−	1,	we	know	by	Prob.
III-11	that	dPn/dx	can	be	expressed	as	a	finite	sum	of	the	form	A0	+	A1P1	+	A2P2
+	·	·	·	+	An−1Pn−,	where	the	coefficients	A0,	A1,	·	·	·,	An−1Pn−1	are	constants.	But
the	demonstration	there	of	the	existence	of	such	an	expansion	A0	+	A1P1	+	·	·	·	+
An−1Pn−1,	 although	 usable	 in	 any	 given	 case	 under	 the	 assumption	 that	 the
polynomials	P0,	P1,	P2,	·	·	·,	Pn−1	are	all	at	hand,	does	not	appear	to	be	feasible



for	 determining	 the	 actual	 coefficients	 in	 a	 general	 formula	 of	 the	 kind	 to	 be
established	 in	 the	 present	 problem.	 However,	 we	 do	 have	 in	 Prob.	 III-18	 a
general	formula	for	determination	of	the	Ak	in	the	expansion	of	a	given	function
(of	properly	restricted	type).	If	we	attempt	to	find	the	Ak	for	the	present	problem
via	Prob.	 III-18	we	 should	 expect	 to	 find	 (by	Prob.	 111-20)	 that	 all	Ak	 having
subscript	 greater	 than	 n	 −	 1	 vanish;	 also	 we	 should	 expect	 to	 be	 able	 to
determine	the	value	for	each	Ak	having	subscript	less	than	or	equal	to	n	−	1.	Let
us	proceed	and	see	if	this	turns	out	to	be	so.
By	Prob.	III-18	we	have

In	the	integral	formula	for	Ak	in	Eq.	(III-22.3)	we	may	replace	dPn/dx	by	the
known-to-exist	(by	Prob.	III-11)	linear	combination

where	 the	coefficients	C0,	C1,	 ·	 ·	 ·,	Cn	 are	 constants.	 Then	 the	 integral	 for	Ak
becomes	a	finite	sum	of	integrals:

(a)	For	k	 	n,	each	of	the	integrals	in	Eq.	(III-22.5)	vanishes	by	Prob.	III-16,
making	Ak	 =	 0.	 When	 k	 <	 n	 we	 return	 to	 Eq.	 (III-22.3)	 and	 distinguish	 two
categories:
(b)	k	<	n,	n	+	k	even.	When	n	+	k	is	even,	then	n	and	k	are	both	odd	or	both

even.	In	either	event	we	see	by	Eq.	(III-0.7)	that	the	integrand	(dPn/dx)Pk	will	be
the	 product	 of	 two	polynomials,	 one	of	which	 is	made	up	of	 odd	powers	 of	x
while	the	other	one	comprises	only	even	powers.	The	resulting	polynomial	Q(x),
therefore,	consists	only	of	odd	powers	of	x.	This	makes	Q(−x)	=	−	Q(x),	so	that
the	integral	Q(x)	from	x	=	−	1	to	x	=	1	is	zero:



making	Ak	=	0.
(c)	k	<	n,	n	+	k	odd.	Now	n	and	k	are	such	that	one	is	even	while	the	other	is

odd.	This	makes	the	product	(dPn/dx)Pk	a	product	of	two	polynomials	such	that
both	 consist	 only	 of	 odd	 powers	 or	 both	 consist	 only	 of	 even	 powers	 of	 x.	 In
either	event	their	product	is	a	polynomial	H(x)	consisting	only	of	even	powers	of
x,	so	that	H(−x)	=	H(x),	and	the	only	conclusion	we	can	draw	at	the	moment	is
that

This	is	true	but	not	revealing.	There	is,	however,	one	clue	as	to	possible	fruitful
procedure	 in	 the	very	nature	of	our	 integrand,	which	suggests	 trying	 the	(often
useful)	technique	of	integration	by	parts.	We	get

Since	n	and	k	are	such	that	one	is	even	while	the	other	is	odd,	we	see	by	Eq.
(III-0.7)	 that	Pk(−	1)Pn(−1)	=	−1.	Moreover,	we	have	Pk(1)Pn(1)	=	 (1)(1)	=	1.
Accordingly,	we	are	left	with

It	looks	like	we	are	not	getting	anywhere.	But	a	careful	look	at	the	right	side	of
this	 last	equation	 restores	our	hope,	because,	 since	 the	subscripts	n	and	k	have
become	interchanged	and	since	we	are	dealing	with	the	case	k	<	n,	 then	by	the
argument	used	in	case	(a)	we	have

Thus,	we	find	that



making	Ak	=	2k	+	1	for	such	k.
Recapitulating,	we	have

When	 these	 values	 for	 the	 coefficients	 are	 placed	 in	Eq.	 (III-22.3)	we	 have	 at
once	 the	 required	 formulas	 Eqs.	 (III-22.1)	 and	 (III-22.2)	 as	 given	 in	 the
statement	of	the	problem.
As	an	example	we	will	expand	dP7(x)/dx	in	a	series	of	Legendre	polynomials.

The	respective	coefficients	turn	out	to	be	as	follows.

A0:	here	k	=	0	and	n	=	7.	0	+	7	is	odd	and	k	is	less	than	n.	Thus,	by	Eq.	(6)	the	coefficient	is	2k	+	1	or	1.
A1:	k	=	1,	n	=	7,	n	+	k	is	even.	Hence	A1	=	0	by	Eq.	(III-22.6).
A2:	k	=	2,	n	=	7.	n	+	k	is	odd.	A2	is	then	2k	+	1	or	5.
A3,	A5,	A7	are	zero	by	the	same	reasoning	as	was	used	for	A1.
A4	and	A6	are	found	to	be	9	and	13.
A8:	here	k	=	8.	Since	k	>	n,	we	see	by	Eq.	(III-22.6)	that	A8	=	0.

Then	we	have

Similarly,	dP8(x)/dx	is	expanded	as	follows.

A0:	here	k	=	0	and	n	=	8.	The	sum	of	k	and	n	is	even.	Therefore,	A0	=	0.
A1:	k	+	n	=	1	+	8,	which	is	odd.	A1	=	2(1)	+	1=3.

All	even	subscripts	yield	coefficients	equal	to	zero.	Then	we	have



Problems:	Recurrence	Relations
III-23.	Show	that	the	Legendre	polynomials	P1(x)	P2(x),	P3(x),	·	·	·	satisfy	the

relation

We	notice	 that	 the	polynomials	whose	derivatives	are	on	 the	 left	side	of	Eq.
(III-23.1)	differ	by	2	 in	degree.	Now	the	polynomials	occurring	on	 the	right	 in
Eqs.	(III-22.1)	and	(III-22.2)	advance	in	degree	by	2.	So	we	can	solve	the	present
problem	via	Prob.	III-22	as	follows.	We	write	Eq.	(III-22.1)	both	for	dPm/dx	and
dPm−2/dx,	where	m	is	any	odd	integer	 	3:

and	subtract,	obtaining

This	same	procedure	applied	to	Eq.	(III-22.2)	shows	that	Eq.	(III-23.3)	of	the
present	problem	as	obtained	for	m	odd	and	 	3	also	holds	when	m	is	any	even
integer	 	2.	Since	Eq.	(III-23.3)	is	thus	true	for	every	integer	m	 	2,	we	may
take	n	=	m	−	1	and	write	Eq.	(III-23.3)	in	the	form

as	required	in	the	statement	of	our	problem.
III-24.	 If	 Pn−1(x),	 Pn(x),	 Pn+1(x)be	 any	 three	 successive	 Legendre

polynomials,	show	that



Since	(III-24.1)	 involves	 three	 successive	 Legendre	 polynomials,	we	 should
be	able	to	obtain	it	from	the	relation	established	in	Prob.	III-23.	Since	Eq.	 (III-
23.1)	is	true	for	all	values	of	x,	 the	integrals	of	its	right	and	left	sides	over	any
chosen	interval	will	be	equal.	Thus,	we	get

because	Pn+1(1)	=	P	n−1(1)	 =	 1	 by	 the	 definition	 of	 Legendre	 polynomials	 as
given	in	the	introduction	to	Chapter	III.

Problem:	Evaluation	of	P2n(0)

III-25.	Evaluate	P2n(0)	and	 ;	also	show	that

To	evaluate	P2n(0)	we	have	only	to	determine	the	constant	term	of	P2n(x).	We
can	use	the	summation	formula	for	Pn(x)	given	 in	Eq.	 (III-0.8)	and	write	 it	 for
P2n(x):

The	constant	term	is	immediately	seen	to	be	the	final	term	of	the	summation
where	k	=	n.	Thus,	we	have



It	will	be	observed	that	we	have	taken	0!	to	be	unity.	This	convention	is	implied
in	Eq.	(III-0.8).
For	every	Legendre	polynomial	of	odd	degree	we	have	P2n+1(0)	=	0	because	a

Legendre	polynomial	 of	 odd	degree	 is	 comprised	 entirely	 of	 odd	powers	 of	x.
But	the	derivative	of	P2n+1(x)	at	x	=	0	does	not	equal	zero,	since	the	derivative
will	 contain	 a	 constant.	 We	 can	 compute	 the	 value	 of	 this	 derivative	 by
differentiating	Eq.	(III-0.8)	written	for	P2n+1(x)	and	evaluating	the	result	at	x	=	0.
By	Eq.	(III-0.8)	we	have

whence

The	value	for	 	 is	 the	constant	 term	of	 this	 last	 summation,	namely,
the	term	for	which	k	=	n:

A	 comparison	 of	 this	 formula	 for	 	 with	 the	 formula	 for	 P2n(0)
suggests	 a	 possibility	 of	 a	 relationship	 between	 the	 two.	 Let	 us	 see	 if	we	 can
show	such	a	relationship.	Starting	with	the	formula	for	 	we	have



Problem:	Evaluation	of	Integrals	Involving	Legendre	Polynomials

III-26.	Evaluate	 	where	Pm(x)	denotes	 the	Legendre	polynomial
of	degree	m,	m	≠	0.	*

Since	no	particular	Legendre	polynomial	is	specified,	our	problem	is	to	obtain
a	formula	for	the	value	of	the	integral	in	terms	of	m.	Recalling	that	Pm(x)	is	made
up	only	of	even	powers	of	x	when	m	is	even	and	only	of	odd	powers	when	m	is
odd	 (see	 Eq.	 (III-0.7)),	 we	 become	 aware	 that	 our	 problem	 divides	 itself
naturally	into	two	cases.
(a)	m	even.	By	Eq.	(III-0.7)	we	have	Pm(−	x)	=	Pm(x),	so	that

But	 the	 integral	 on	 the	 right	 in	 Eq.	 (III-26.1)	 equals	 zero	 by	 Eq.	 (III-16.5).
Consequently,	we	have

(b)	m	 odd.	 It	 appears	 likely	 in	 this	 case	 that	we	can	evaluate	ourintegral	by
taking	 t	 =	 0	 in	 Eq.	 (III-24.1),	 which	 we	 may	 do	 because	 that	 equation	 is	 an
identity	in	t.	We	get

But	when	m	is	odd,	then	m	−	1	and	m	+	1	are	both	even;	and	we	may	apply	Prob.
III-25,	taking	first	n	=	m	−	1	and	then	n	=	m	+	1.	Thus,	Eq.	(III-26.3)	becomes



Finally,	then

REMARK.	

Problem:	Evaluation	of	Derivatives

III-27.	 Determine	 the	 value	 of	 Pn(r)(1)	 where	 Pn(x)	 denotes	 the	 Legendre
polynomial	of	degree	n	and	where	Pn(r)(1)	denotes,	as	usual,	the	value	at	x	=	1	of
the	rth	derivative	Dr[Pn(x)].	*

If	r	>	n	the	problem	is	trivial.	Since	Pn(x)	is	a	polynomial	of	degree	n,	all	its
derivatives	of	order	greater	than	n	vanish	identically.
When	r	 	n	 the	problem	is	not	 trivial	and	we	need	 to	use	some	property	of

the	 Legendre	 polynomials	 by	 which	 we	 can	 obtain	 a	 formula	 for	 the	 rth
derivative	of	an	arbitrary	Pn(x).	One	possibility	that	comes	to	mind	is	to	try	and
exploit	the	characteristic	expansion	established	in	Prob.	III-1,	namely,



If	we	may	differentiate	this	expansion	termwise	r	times	with	respect	to	x	and
find	the	resulting	expansion	valid	at	x	=	1,	then	we	should	be	able	to	determine
Pn(r)(1)	 by	 equating	 coefficients	 of	 like	 powers	 of	 h	 in	 the	 two	 sides	 of	 the
resulting	 expansion.	Let	 us	 proceed	 in	 this	manner	 and	 see	 if	we	 can	 validate
termwise	differentiation	of	the	expansion.
Let	 us	 first	 see	 what	 we	 get	 for	 the	 rth	 derivative	 with	 respect	 to	 x	 of	 the

function	on	 the	 left	of	Eq.	 (III-27.1).	Holding	h	constant,	we	get	 the	following
for	the	first	few	derivatives.

It	is	now	apparent	that	for	the	rth	derivative	we	will	have

by	Prob.	1-17.

Let	us	assume	for	the	moment	that	the	maximum	value	taken	by	Pnr(x)	on	the
interval	−	1	 	x	 	1	is	taken	at	x	=	1.	Then,	if	the	series

converges	for	a	value	of	h,	the	series

will	 converge	uniformly	 for	 −	 1	 	 x	 	 1	 with	 that	 value	 for	 h.	 It	 will	 then
follow	that	we	may	differentiate	Eq.	(III-27.1)	r	times	with	respect	to	x	and	set	x
=	1	in	the	result,	applying	Eq.	(III-27.2)	with	x	=	1:



We	may	now	expand	the	function	on	the	left	in	powers	of	h	valid	for	 |h|	<	1
via	the	Maclaurin	series	for	(1	−	h)−2r−1.	This	is	easily	done	for	it	is	readily	seen
that	the	nth	derivative	of	f(h)	=	(1	−	h)−2r−1	is

so	that	we	have

Accordingly,	Eq.	(III-27.3)	becomes

In	Eq.	(III-27.4)	we	change	the	index	of	 the	right-hand	side	from	n	to	n	+	r.
Since	the	two	power	series	 in	h	are	equal	 in	value	for	every	h	on	 the	common
interval	−	1	<	h	<	1,	the	coefficients	of	like	powers	of	h	must	be	equal:

Letting	n	+	r	=	m,	we	can	rewrite	our	last	equation	as



Eq.	(III-27.5)	together	with	the	fact	that	Pm(r)(1)	=	0	when	r	>	m	is	the	solution
of	our	problem.	An	inspection	of	Eq.	(III-27.5),	however,	 indicates	 that	we	can
give	our	solution	an	alternative	formulation	by	use	of	the	Legendre	duplication
formula	from	Prob.	I-18.	Applying	it	together	with	Eqs.	(I-4.3)	and	(I-10.1)	and
(I-11.1)	we	get,	with	m	replaced	by	n,

In	particular,	when	r	=	n,	we	get

This	checks	with	 the	value	 for	Pn(n)(1)	obtained	by	observing	Pn(n)(x)	 that	 is	a
constant,	 namely,	 the	 constant	 obtained	 by	 taking	 the	 nth	 derivative	 of
Rodrigues’s	formula	in	Prob.	III-10:

We	assumed	that	the	maximum	value	taken	by	Pn(r)(x)	on	the	interval	−	1	 	x	
	 1	 is	 taken	 at	 x	 =	 1.	 This	 assumption	 can	 be	 validated	 by	 appropriate

modification	 of	 the	 arguments	 employed	 in	 Prob.	 III-12	 to	 show	 that	 the
maximum	of	Pn(x)	on	the	interval	−	1	 	x	 	1	is	taken	at	x	=	1.

Problems:	Evaluation	of	Integrals	Involving	Legendre	Polynomials

III-28.	Evaluate	 ,	where	p	 is	a	constant	and	positive,	and	Pn(y)



denotes	the	Legendre	polynomial	of	degree	n.	*

We	 first	 let	yp	=	x,	Then	we	have	dy	 =	 (1/p)x(1/p)−1	dx.	Letting	 I	 denote	 the
integral	to	be	evaluated	and	taking	s	=	1/p,	we	have

We	observe	that	the	new	integral	for	I	in	Eq.	(III-28.1)	will	be	improper	in	case	p
>	1	and	n	is	even.	But	the	improper	integral	is	convergent,	because	every	power
of	 x	 in	 the	 integrand	 is	 greater	 than	 −	 1.	 In	 all	 other	 cases	 the	 transformed
integral	is	proper.
The	transformed	integral	suggests	integration	by	parts:	∫udv	=	uv	−	∫vdu.	The

question	 is:	 How	 shall	 we	 pick	 the	 parts?	 Shall	 we,	 as	 in	 previous	 problems,
replace	Pn(x)	by	Rodrigues’s	formula	and	then	take	dv	=	Pn(x)dx?	Or,	shall	we
take	dv	=	sxs−1dx?	Both	look	promising	at	first	glance.	But	let	us	look	ahead.	If
we	take	u	=	sxs−1	and	dv	=	Pn(x)dx	and	continue	in	this	vein,	the	exponent	on	x
will	decrease	with	each	successive	application	of	integration	by	parts.	When	s	is
an	 integer,	 this	 procedure	would	 lead	 us	 to	 an	 integral	without	 a	 factor	 of	 the
form	xq	and	this	might	be	amenable	to	evaluation.	But	when	s	is	not	an	integer,
such	a	termination	would	not	occur.
If,	on	the	other	hand,	we	take	dv	=	sxs−1dx	with	u	=	Pn(x),	the	exponent	on	x

would	 increase	 with	 each	 successive	 application	 of	 integration	 by	 parts.	 This
looks	unfavorable.	But	 the	order	of	derivative	of	Pn(x)	=	(1/2nn!)Dn[(x2	 −	 1)n]
would	increase,	so	that	after	n	successive	applications	of	integration	by	parts	we
would	have	then	an	integrand	of	the	form

because	D2n[(x2	 −	 1)n]	 is	 a	 constant,	 namely	 (2n)!.	 An	 integral	 with	 such	 an
integrand	 is	 elementary	 and	 readily	 evaluated.	 So,	 we	 take	 u	 =	 Pn(x)	 =
(1/2nn!)Dn[(x2	−	1)n]	with	dv	=	sxs−1dx	and	get

The	integrated	part	equals	unity	because	Pn(1)	=	1	for	every	n	by	the	definition



of	Legendre	polynomials	in	the	introduction	to	Chapter	III.
We	 apply	 integration	 by	 parts	 to	 the	 remaining	 integral,	 taking	

	with	dv	=	xsds.	Then	we	have

Continuing	 in	 this	 manner,	 we	 obtain,	 after	 n	 steps	 of	 the	 procedure,	 the
following:

The	integral	remaining	is	now	easily	evaluated,	for	D2n[(x2	−	1)n]	=	(2n)!.	Thus,
except	for	this	constant	factor	the	value	of	the	integral	remaining	is	1/(s	+	n).
Our	integral	I	is	now	evaluated.	It	seems,	however,	that	we	should	be	able	to

formulate	our	result	directly	in	terms	of	n	and	s.	And	this	we	can	do	by	applying
Eqs.	(III-27.6)	and	(III-27.7),	namely

to	evaluate	the	derivatives	of	Pn(x)	at	x	=	1.	Thus	we	get



It	seems,	further,	that	there	should	be	some	way	of	incorporating	the	lone	term
unity	within	 the	summation.	This	we	can	do.	At	 the	same	time	we	can	put	our
result	in	more	compact	and	more	elegant	form	by	replacing	unity	with	Γ(s	+	1)/
Γ(s	+	1)	and	at	the	same	time	multiplying	each	term	in	the	summation	by	Γ(s	+
1)/Γ(s	+	1).	This	allows	us,	by	Eq.	(I-4.1),	to	replace	[Γ(s	+	1)](s	+	1)(s	+	2)	·	·	·
(s	+	k)	with	Γ(s	+	k	+	1).	Finally,	then,	we	have,	replacing	s	with	1/p,

REMARKS.	1.	If	we	recall	that	formula	(III-28.6)	was	obtained	by	starting	with
the	change	of	variable	yp	=	x,	we	see	that	we	can	formulate	a	corollary	result	as
follows.	We	have,	as	in	Eq.	(III-28.1)

If,	now,	we	let	q	=	(1/p)	−	1,	we	have

Notice	 that	 the	 exponent	 on	 x	 need	 not	 be	 an	 integer.	 Compare	with	 Eq.	 (III-
20.5)	where	the	exponent	on	x	is	required	to	be	an	integer.
2.	The	particular	cases	of	(III-28.7)	in	which	q	=	−	1/2	and	q	=	1/2	yield	quite



simple	results.	For,	if	we	compute	these	two	cases	for	the	first	several	values	of
n,	either	by	(III-28.7)	or	by	actual	integration	(making	use	of	Table	III-1),	we	get
the	results	exhibited	in	the	following	table.

The	results	here	tabulated	lead	us	to	surmise	the	following:

The	surmises	expressed	 in	 (III-28.8a),	 (III-28.8b),	 (III-28.9a),	 (III-28.9b)	 are
correct,	as	we	will	now	demonstrate.	We	carry	out	the	details	of	proof	only	for
(III-28.8a).	 The	 other	 three	 are	 demonstrated	 in	 the	 same	manner	 with	 minor
modifications.
Let	us	 assume	 that	 all	 four	 formulas	hold	 for	 two	Legendre	polynomials	Pn

−2(x)	and	Pn−1(x).	Then,	by	the	recursion	formula	(III-2.5),	namely

we	will	show	that	(III-28.8a)	holds	also	for	Pn(x).	By	(III-28.10)	we	have



Applying	 the	 assumed	 formulas	 (III-28.9b)	 and	 (III-28.8a)	 respectively	 to	 the
first	and	second	integrals	on	the	right	in	(III-28.11),	we	get,	remembering	that	n
and	n	−	2	are	even	while	n	−	1	is	odd,

Thus,	when	(III-28.8a),	 (III-28.8b),	 (III-28.9a),	 (III-28.9b)	all	hold	 for	n	 −	 2
and	n	−	1,	then	(III-28.8a)	holds	also	for	n.	But	all	four	formulas	hold	for	n	=	0,
1,	2,	3,	4,	5,	6.	Therefore,	(III-28.8a)	holds	also	for	n	=	7,	8,	9,	10,	·	·	·.	Thus,
(III-28.8a)	holds	for	every	Legendre	polynomial	Pn(x).
The	 other	 three	 formulas	 are	 established	 in	 similar	manner	with	 appropriate

modifications.	If	we	let	y2	=	x,	then

Thus,	 by	 virtue	 of	 (III-28.12)	 and	 (III-28.13)	 together	 with	 (III-28.8a)	 (III-



28.8b),	(III-28.9a),	(III-28.9b),	we	have

where	N	=	n/2	when	n	is	even	and	N	=	(n	−	1)/2	when	n	is	odd;

where	M	=	(n	+	2)/2	when	n	is	even	and	M	=	(n	+	3)/2	when	n	is	odd.

III-29.	Evaluate	

Let	us	denote	the	integral	to	be	evaluated	by	A,	Since	the	integrand	in	A	is	an
even	function	we	may	take

The	reason	for	changing	the	interval	of	integration	to	the	interval	−	1	 	x	 	1	is
that	we	 hope	 somehow	 to	 take	 advantage	 of	 the	 properties	 established	 for	 the
Legendre	polynomials	on	this	interval	in	Probs.	III-16	and	III-17.	An	initial	step
is	suggested	by	the	integrand.	It	is	that	we	try	making	use	of	Eq.	(III-15.1).	We
get

But	 we	 still	 have	 a	 derivative	 factor	 in	 the	 integrand.	 Do	 we	 have	 any
formulas	 for	 the	 derivative	 	 in	 terms	 of	 the	 Legendre	 polynomials
themselves?	Yes;	we	find	such	formulas	established	in	Prob.	III-22.	So,	when	n
is	even	(n	≠	0)	we	have



And	now	we	 have	 our	 integrand	 in	 a	 form	where	we	 can	 readily	 evaluate	 the
integrals	 via	 Probs.	 III-16	 and	 III-17.	When	we	 form	 all	 possible	 products	 of
pairs	of	Legendre	polynomials	indicated	in	the	integrand	and	then	integrate	the
individual	 products	 over	 −	 1	 	 x	 	 1	 we	 find	 by	 Prob.	 III-16	 that	 all	 such
integrals	vanish	by	the	orthogonality	property	except	one,	namely	the	integral	of
[Pn−1(x)]2	which	by	Prob.	III-17	equals	2/[2(n	−	1)	+	1]	=	2/(2n	−	1).	Thus,	for	n
even	(n	≠	0)	we	get

Similarly,	we	get	the	same	value	for	A	when	n	is	odd.
We	have	had	to	exclude	so	far	 the	case	n	=	0	because	the	formulas	we	used

involved	Pn−1(x).	However,	 it	 is	 evident	 that	 our	 result	A	 =	n(n	 +	 1)/(2n	 +	 1)

holds	also	when	n	=	0	inasmuch	as	 	is	identically	zero	because	P0(x)	≡	1
by	Prob.	 (III-4).	Thus,	 for	every	Legendre	polynomial	Pn(x)	without	 exception
we	have,

III-30.	Evaluate	
This	 integral,	 like	 the	 other	 integrals	 in	 the	 several	 problems	 immediately

preceding,	will	most	likely	be	amenable	to	integration	by	parts.	Moreover,	since
the	integrand	is	an	even	function,	we	have

By	thus	changing	the	interval	of	integration	to	the	interval	−	1	 	x	 	1	we	can,
as	 in	 preceding	 problems,	 take	 advantage	 of	Rodrigues’s	 formula	 for	Pn(x)	 so



that	integration	by	parts	with	dv	=	Pn(x)dx	=	(1/2nn!)Dn[(x2	−	1)n]	dx	will	yield
(as,	for	example,	in	Prob.	III-17)	an	integrated	part	which	vanishes	at	both	x	=	1
and	x	=	−	1.	Taking	dv	as	 just	 indicated	together	with	u	=	x2Pn(x)	and	 letting	 I
denote	the	integral	to	be	evaluated,	we	get

Again	 we	 integrate	 by	 parts,	 this	 time	 taking	 dv	 =	Dn−1	 [(x2	 −	 1)n]dx	 and
continue	thus	in	succession	n	times	in	all.	The	result	is	seen	to	be

At	this	point	scrutiny	of	the	integrand	indicates	that	further	integration	by	parts
would	not	 yield	 anything	making	 for	 progress	 toward	 the	 solution.	 In	 fact	 our
integrand	 looks	more	 complicated	 now	 than	 it	 was	 to	 start	 with.	 But	 a	 closer
look	at	it	reveals	something.	If	we	visualize	the	polynomial	x2Pn(x)	written	out
termwise	via	Eq.	(III-0.7)	as

we	see	at	once	 that	 every	 term	of	 its	nth	derivative	will	vanish	except	 the	 first
two:

So	the	integral	in	Eq.	(III-30.2),	except	for	the	constant	coefficients	involved,
becomes	a	difference	of	two	integrals:



The	 coefficients	A	 and	B	 in	 Eqs.	 (III-30.5)	 and	 (III-30.6)	 are	 to	 be	 picked	 up
from	Eq.	(III-30.4).	 It	 is	clear	 that	Eq.	 (III-30.6)	 follows	at	once	from	Eq.	 (III-
30.5)	 because	 the	 integrands	 are	 even	 functions.	And	now	 the	 integrals	 in	Eq.
(III-30.6)	 can	 be	 calculated	 via	 Prob.	 II-17.	 Moreover,	 their	 values	 can	 be
simplified	by	the	Legendre	duplication	formula.	From	Prob.	II-17	we	have

From	Prob.	I-18	we	have	the	duplication	formula

The	result	turns	out	to	be

which	we	write	finally	as

III-31.	Evaluate	 	where	Pn(x)	denotes	the	Legendre
polynomial	of	degree	n.	*

The	 integral	 to	 be	 evaluated	 is	 improper,	 since	 the	 factor	 (1	 −	 x)−1/2	 in	 the
integrand	becomes	infinite	as	x	→	1.	The	integral	is,	however,	convergent.	This



is	 seen	 to	be	 so	by	comparison	with	 the	 integral	 ,	which	 is
readily	 recognized	 to	 be	 convergent	 because	 the	 exponent	 on	 1	 −	 x	 is	 greater
than	−1.	The	factor	Pn(x)	is	everywhere	continuous;	and	it	equals	unity	at	x	=	1
by	 the	definition	of	Legendre	polynomials.	Consequently,	 the	given	 integral	 is
convergent,	since	the	ratio	of	its	integrand	to	(1	−	x)−1/2	approaches	unity	as	limit
as	x	→	1.
The	technique	to	be	used	in	evaluating	the	given	integral	is	apparently	going

to	 be	 integration	 by	 parts,	 which	 has	 already	 been	 found	 to	 be	 the	 means	 of
evaluating	a	number	of	integrals	in	the	previous	problems	of	the	present	chapter.
The	technique	has	been	seen	to	be	fruitful	of	results	because,	 in	most	cases,	 in
the	succession	of	integration	by	parts	the	integrated	part	vanishes	each	time,	if	dv
has	been	chosen	as	Pn(x)dx,	by	virtue	of	the	Rodrigues	formula	for	Pn(x)	as,	for
example	in	Prob.	III-16	or	III-30.
As	in	the	above	problems	we	replace	Pn(x)	by	its	Rodrigues	formula,	namely

Pn(x)	=	 (1/2nn!)Dn[(x2	 −	 1)n].	Then	 in	 applying	 the	 formula	 for	 integration	by
parts,	 namely	 ∫uv	 =	uv	 −	 ∫vdu,	 we	 first	 take	dv	 =	Pn(x)dx	 with	 corresponding
choice	 of	 dv	 in	 the	 later	 stages.	 Compare	 Prob.	 III-20	 or	 III-30.	After	 n	 such
successive	applications	of	integration	by	parts	we	apply	(to	the	coefficient	of	the
remaining	integral)	Prob.	I-17,	whereby

Then	we	have

In	Chapter	II	we	found	that	an	integral	of	the	kind	appearing	here	on	the	right
in	Eq.	(III-31.1)	could	be	evaluated	in	terms	of	the	Beta	function	and	thence	by
Eq.	(I-29.1)	in	terms	of	the	Gamma	function.	We	let	1	+	x	=	2	cos2	θ.	Then	dx	=



−4	cos	θ	sin	θdθ.	Also	 .	Then	we	find	that

Substituting	 this	 value	 for	 the	 integral	 on	 the	 right	 in	 Eq.	 (III-31.1)	 and
applying	the	Legendre	duplication	formula	established	in	Prob.	I-18,	we	get

III-32.	Show	that

Before	we	 commence	 calculating	we	 note	 that	 the	 integrals	 in	 question	 are
improper	because	the	factor	loge	(1	−	x)	in	the	integrand	causes	the	integrand	to
become	negatively	infinite	as	x	→	1.	The	integrals	in	question	are	all	convergent,
however.	 This	 may	 be	 seen	 as	 follows.	 The	 factor	 Pn(x)	 is	 continuous
throughout;	 and	 Pn(1)	 =	 1	 by	 the	 definition	 of	 Legendre	 polynomials	 as
mentioned	in	the	introduction	to	Chapter	III.	Consequently,	we	can	neglect	this
factor	in	examining	for	convergence.	It	is	then	a	question	of	the	convergence	of	

.	 Now,	 it	 is	 readily	 seen	 that	 	 is
convergent	if	0	<	p	<	1.	But,	by	L’Hospital’s	Rule,	we	find	that



Thus,	the	integral	 	is	also	convergent.
The	actual	calculation	of	the	integral	in	question	is	a	bit	tedious	but	really	not

difficult.	The	procedure	is	quite	the	same	as	in	several	previous	problems	in	this
chapter,	 for	 example,	Prob.	 III-20	or	Prob.	 III-30.	We	 shall,	 therefore,	 indicate
the	 procedure	 but	 omit	 most	 of	 the	 details.	 We	 integrate	 by	 parts	 n	 times	 in
succession,	starting	with	u	=	 loge	 (1	−	x)	and	dv	=	Pn(x)dx,	 replacing	Pn(x)	 by
Rodrigues’s	formula.	Each	time	the	integrated	part	vanishes,	because	Dn−r(x2	−
1)n	 contains	 (x2	 −	 1)r	 as	 a	 factor	 for	 every	 r	 such	 that	 0	 	 r	 <	 n.	 This	 was
pointed	out	in	Prob.	III-20.	We	get	finally

REMARK.	It	will	be	observed	in	the	statement	of	the	problem	that	the	formula
to	 be	 established	 holds	 for	 all	 the	 Legendre	 polynomials	 except	 P0(x).	 The
formula	for	the	value	of	the	integral,	namely	−	2/n(n	+	1),	cannot,	of	course,	hold
for	n	=	0	because	of	the	factor	n	in	the	denominator,	since	the	integral	of	loge	(1
−	x)	 taken	 over	 the	 interval	 −	 1	 	x	 	 1	 is	 convergent	 and	 thus	 has	 a	 finite
value.	 Moreover,	 if	 one	 takes	 Rodrigues’s	 formula	 for	P0(x),	 namely	P0(x)	 =
D0[(x2	 −	 1)0],	 and	 attempts	 to	 carry	 out	 the	 steps	 of	 the	 demonstration	 given
above	where	n	was	 taken	 implicitly	 to	 be	greater	 than	 zero,	 one	 finds	 that	 the
procedure	yields	only	the	indeterminate	form	−	∞	+	∞	for	 the	integral	of	P0(x)



loge	(1	−	x).	By	direct	integration,	however,	one	finds	that

III-33.	 Evaluate	 ,	 |h|	 <	 1,	 where	 n	 is	 a
positive	integer	or	zero	and	P2n(x)	is	a	Legendre	polynomial	of	even	degree.	*
Wondering	how	to	get	started	on	this	problem,	we	said	to	ourselves,	“Now,	if

only	the	coefficient	of	P2n(x)	were	a	positive	integral	power	of	x	itself,	then	we
could	easily	evaluate	the	integral	via	Prob.	III-20.”	And	such	reflection	led	to	the
thought,	“Well,	we	could	get	a	series	of	such	coefficients	for	P2n(x)	by	expansion
of	(1	+	hx2)−n−(3/2)	into	an	infinite	series	via	formal	binomial	expansion.”	Indeed,
this	is	the	very	line	of	attack	we	shall	take.
For	|h|	<	1,	|x|	 	1	we	have

For	 each	h	 on	 the	 interval	 |h|	 <	 1	 the	 expansion	Eq.	 (III-33.1)	 is	 uniformly
convergent	for	|x|	 	1	and	will	 remain	uniformly	convergent	for	 |x|	 	1	when
both	sides	are	multiplied	by	P2n(x),	since	by	Prob.	III-12	we	have	|P2n(x)|	 	1	on
the	closed	 interval	 |x|	 	1.	Because	of	 its	uniform	convergence	on	 |x|	 	1	 the
expansion

may	be	integrated	termwise	over	the	interval	−	1	 	x	 	1:



n	≠	0.	We	have	used	here	 the	fact	 that,	 ,	n	≠	0	by	Eq.	 (III-
16.5).
And	now	we	can	evaluate	each	and	every	integral	on	the	right	in	Eq.	(III-33.3)

via	 the	 results	 obtained	 in	 Prob.	 III-20,	 which	 tell	 us	 first	 of	 all	 that	 every
integral	on	the	right	in	Eq.	(III-33.3)	having	j	<	n	has	the	value	zero.	For	j	 	n
none	 of	 the	 integrals	 vanishes.	 Since	 we	 have	 to	 compute	 the	 sum	 of	 their
individual	values	via	Eq.	(III-20.5),	it	looks	as	if	we	can	make	the	task	a	bit	less
cumbersome	 by	 taking	 as	 index	 of	 summation	 a	 letter	 which	 represents	 the
excess	of	j	over	n	when	j	 	n:	we	let	s	=	j	−	n.	Thus,	in	place	of	Eq.	 (III-33.3)
we	now	have

We	note	that	the	summation	is	now	again	from	zero	to	infinity.	Now	we	replace
each	integral	on	the	right	in	Eq.	(III-33.4)	by	its	value	as	given	by	Eq.	(III-20.5),
observing	that	the	m	of	Eq.	(III-20.5)	is	now	2n	+	2s	while	the	n	is	now	2n.	Thus
for	the	nth	term	of	the	series	on	the	right	in	Eq.	(III-33.4)	we	get



which	by	application	of	Eq.	(I-4.3),	by	multiplying	numerator	and	denominator
by	 ,	 by	 cancelling	 out	 common	 parts	 of	 factorials	 where	 possible,	 by
using	up	the	powers	of	2	from	22n	to	make	such	cancellation	possible,	reduces	to

and	reduces	to

Thus	we	get

The	 integral	 of	 our	 problem	 is	 now	evaluated.	The	 result,	 however,	may	be
simplified	considerably	by	scrutinizing	the	infinite	series	in	brackets	in	Eq.	(III-
33.5),	 which	 is	 none	 other	 than	 the	 Maclaurin	 series	 in	 powers	 of	 h	 for	 the
function	(1	+	h)−n−(1/2).	And	so	finally,	for	n	=	1,	2,	3,	·	·	·	we	have

There	is	yet	a	 loose	thread	to	be	trimmed	off.	It	 is	always	a	good	idea	to	be
thorough.	We	have	established	Eq.	(III-33.6)	for	n	≠	0.	However,	we	can	show



by	simple	integration	that	Eq.	(III-33.6)	holds	also	for	n	=	0.	When	this	is	done
we	can,	in	good	conscience,	write	finis.
When	n	=	0	we	have	P2n(x)	=	P0(x)	=	1	by	Prob.	III-4.	Then	the	integral	to	be

evaluated	 reduces	 simply	 to	 ,	which	 is	 readily	 evaluated
via	the	transformation	 ;	and	we	get

which	is	what	the	right	side	of	Eq.	(III-33.6)	equals	when	n	=	0.	Thus,	we	may
say	 that	 Eq.	 (III-33.6)	 holds	 for	 all	 Legendre	 polynomials	 of	 even	 degree
including	P0(x):

III-34.	Evaluate	 ,	where	Pn(x)	denotes	the
Legendre	polynomial	of	degree	n	and	h	is	a	real	constant	such	that	|h|	<	1.	*

For	each	value	of	h	such	that	|h|	<	1	we	may	regard	the	expansion	(III-1.7)	as
an	 expansion	 of	 the	 function	 (1	 −	 2xh	 +	 h2)−1/2	 in	 a	 series	 of	 functions	 of	 x
uniformly	convergent	on	the	closed	interval	−	1	 	x	 	1,	because	on	that	closed
interval	we	have	|Pn(x)|	 	1	for	all	n	by	Prob.	III-12.	It	follows	that	when	every
term	 of	 the	 expansion	 (III-1.7)	 is	 multiplied	 by	 one	 and	 the	 same	 Pn(x),	 the



resulting	series	will	converge	to	(1	−	2xh	+	h2)−1Pn(x)	uniformly	for	−	1	 	x	
1,	and	may	therefore	be	integrated	termwise	over	that	interval:

Upon	carrying	out	the	termwise	integration	indicated	on	the	right	in	Eq.	(III-
34.1)	we	find	that	every	term	vanishes	by	the	orthogonality	property	established
in	Prob.	III-16	except	the	term	where	m	=	n,	which	by	Eq.	(III-17.5)	yields	[2/(2n
+	1)]hn.	Thus,	we	get

III-35.	Show	that	if	h	is	a	real	constant	such	that	|h|	<	1	and	if	n	is	a	positive
integer	or	zero,	then

We	remark	that,	in	contrast	to	Prob.	III-34,	the	value	of	the	integral	presented
in	 the	 present	 problem	 is	 independent	 of	 h.	 Since,	 however,	 the	 Legendre

polynomial	 	by	Rodrigues’s	 formula,	 it	 looks
as	if	we	may	be	able	to	reduce	the	present	problem	to	an	appropriately	managed
application	of	Rodrigues’s	formula	as	follows.
In	Eq.	(III-34.2)	we	replace	Pn(x)	in	the	integral	by	Rodrigues’s	formula	from

Prob.	 III-10	 and	 integrate	 by	 parts,	 taking	 u	 =	 (1	 −	 2hx	 +	 h2)−1/2	 and	 dv	 =
(1/2nn)Dn[(x2	−	1)n]dx.	As	in	similarly	handled	previous	problems	(such	as	Prob.
III-30,	for	instance)	we	integrate	thus	n	times	in	succession,	arriving	at



We	use	the	factor	(−	1)n	before	the	integral	to	change	the	factor	(x2	−	1)n	in	the
integrand	to	(1	−	x2)n.	And	by	Prob.	1-17	we	replace	the	product	of	the	factors	1
·	3	·	5	·	·	·	(2n	−	1)	by	21−nΓ(2n)/Γ(n).	And	if	h	≠	0,	both	sides	of	Eq.	(III-35.2)
may	 be	 divided	 by	 hn.	 If	 h	 =	 0,	 the	 left	 side	 of	 Eq.	 (III-35.1)	 reduces	 to	

,	whose	value	by	Prob.	11-17	equals	the	right	side	of	Eq.	 (III-
35.1).	Continuing	with	h	≠	0,	we	have	now	reduced	Eq.	(III-35.2)	to

whence	by	Eq.	(I-10.1)	we	obtain	Eq.	(III-35.1).
In	 the	 foregoing	we	 have	 considered	n	 to	 be	 a	 positive	 integer,	 because	we

performed	integration	by	parts	n	times.	When	n	=	0,	we	have	for	h	≠	0

When	n	=	h	=	0	we	have

In	both	cases,	the	result	agrees	with	the	value	given	by	the	right	side	of	Eq.	(III-
35.1)	when	n	=	0,	provided	as	usual	we	take	0!	to	be	unity	as	remarked	in	Prob.
I-10.

III-36.	 Show	 that	 ,	 where	 Pn
denotes	the	Legendre	polynomial	of	degree	n	and	B	denotes	the	Beta	Function.	*

We	take	the	formula	for	Pn(cos	θ)	that	we	obtained	in	Eq.	(III-12.3),	multiply
each	 term	 thereof	by	 cos	nθ,	 then	 integrate	 the	 result	 term	by	 term.	For	 every
integral	except	the	first	one	we	will	have	(except	for	a	constant	factor)



which	by	a	trigonometric	identity	becomes

This	integral	equals	zero,	because	each	of	the	two	terms	integrates	(except	for	a
constant	 factor)	 to	 the	 sine	 of	 an	 integral	multiple	 of	θ	 and	 hence	 vanishes	 at
both	θ	=	π	and	θ	=	0.
For	the	integral	of	the	first	term	we	have

Table	III-1
Legendre	Polynomials





Figure	III-1

TABLE	III-2
Legendre	Polynomials









TABLE	III-3
Derivatives	of	Legendre	Polynomials	at	x	=	1.

(From	Prob.	III-27)



4
APPLICATIONS	OF	LEGENDRE

POLYNOMIALS

INTRODUCTION
As	 mentioned	 in	 the	 introductory	 paragraphs	 in	 Chapter	 III,	 Legendre

polynomials	 have	 applications	 in	 problems	 requiring	 the	 solution	 of	 Laplace’s
equation	∇2V	 =	 0	 where	V	 must	 assume	 prescribed	 values	 of	 certain	 type	 on
zones	 of	 a	 spherical	 surface.	 In	 this	 chapter	 we	 present	 a	 selection	 of	 a	 few
typical	 problems	 in	 temperature	 distribution	 in	 steady-state	 heat	 flow,	 also	 in
gravitational	potential	and	electrostatic	potential.	Preparatory	thereto	are	several
exercises	in	the	expansion	of	functions	(continuous	and	discontinuous)	in	series
of	Legendre	polynomials.
Other	 purely	 mathematical	 applications	 (capable,	 however,	 of	 being	 found

useful	 in	 problems	 arising	 in	 the	 sciences	 and	 engineering)	 are	 to	 be	 found	 in
application	 of	 Gauss’s	 mechanical	 quadrature	 theorem	 which	 shows	 the
advantage	of	evaluating	the	ordinates	at	the	zeros	of	Legendre	polynomials	when
approximating	 a	 definite	 integral.	 A	 pair	 of	 exercises	 in	 the	 application	 of
Gauss’s	 approximation	 method,	 together	 with	 a	 few	 miscellaneous	 purely
mathematical	applications	such	as	the	expression	of	π/2	as	an	infinite	product	of
integrals	 involving	 the	 Legendre	 polynomials,	 concludes	 the	 applications
selected	for	this	chapter.
A	 table	of	 the	zeros	of	Pn(x),	n	 =	 2,	 3,	 4,	 5,	 6,	 together	with	 the	 associated

Gaussian	weight	coefficients	is	given	at	the	end	of	this	chapter.

Problems:	Specific	Series	Expansions
IV-1.	Expand	the	following	function	in	a	series	of	Legendre	polynomials:



By	Prob.	III-20	we	have

Every	An	 for	which	n	 is	even	equals	zero	because	 the	 integrand	of	 the	 integral
which	defines	An	is	an	odd	function,	being	the	product	of	the	given	odd	function
f(x)	 by	 the	 even	 function	Pn(x)	which	 is	 a	polynomial	 comprised	only	of	 even
powers	 of	 x	 by	 Eq.	 (III-0.7).	 By	 similar	 reasoning	 we	 find	 that	 the	 integral
involved	 in	 defining	An	 when	 n	 is	 odd	 equals	 twice	 the	 integral	 of	 the	 same
integrand	taken	over	the	right	half,	namely,	0	 	x	 	1,	of	the	given	interval	of
definition	of	f(x).	Accordingly,	for	every	odd	n	we	have

Applying	Eq.	(III-26.4),	we	have

Working	out	 the	 first	 several	coefficients	by	Eq.	 (IV-1.2)	 and	 substituting	 in
Eq.	(IV-1.1)	we	get



where	every	An	is	defined	by	Eq.	(IV-1.2).
REMARKS.	1.	If	C	be	any	constant,	then	the	series	obtained	by	multiplying	the

series	on	the	left	in	Eq.	(IV-1.3)	will	converge	to	the	function	Cf(x):

where	every	An	is	defined	by	Eq.	(IV-1.2).

2.	Since	only	polynomials	of	odd	degree	occur	in	the	series	on	the	left	in	Eqs.
(IV-1.3)	and	(IV-1.4),	the	series	not	only	converges	to	zero	at	x	=	0	but	is	such
that	every	individual	term	of	the	series	equals	zero	at	x	=	0.	This	may	seem	like	a
trite	remark.	But	it	is	worthwhile	in	certain	applications	(see,	for	example,	Prob.
IV-11).
3.	The	expansion	(IV-1.3)	converges	rather	slowly	at	and	near	the	end	points

of	 the	 interval.	At	x	=	1	 the	partial	 sum	made	up	of	 the	 first	 six	nonvanishing
terms	equals	793/1024,	which	is	not	very	close	to	unity.	But	in	applied	problems
requiring	the	use	of	expansion	(IV-1.3)	or	(IV-1.4)	the	slowness	of	convergence
is	no	drawback	for	computation	with	a	modern	high-speed	computer.
4.	If	C	be	any	constant,	one	finds	in	similar	manner	that	the	expansion	of	the

function



in	Legendre	polynomials	is

where

For	every	even	n	 	2	we	have	Bn	=	0.	Every	Bn	for	which	n	is	odd	is	given	by
half	of	the	upper	right	side	of	Eq.	(IV-1.2).

IV-2.	Expand	the	function

in	a	series	of	Legendre	polynomials.	*

The	 function	 to	be	expanded	 in	 this	problem	has	not	been	defined	at	x	 =	 0.
Moreover,	it	could	not	be	made	continuous	at	x	=	0	no	matter	what	value	would
be	assigned	to	it	there.	In	that	respect	it	is	like	the	function	given	in	Prob.	IV-1.
Since	the	series	expansion	in	Prob.	IV-1	converges	to	zero	at	x	=	0	(as	was	to	be
expected	by	the	second	remark	in	Prob.	III-18)	and	since	we	wanted	the	function
in	that	problem	to	be	zero	at	x	=	0	for	the	sake	of	applications,	we	defined	it	as
zero	when	x	=	0.
In	the	present	problem	we	might	let	f(x)	remain	undefined	at	x	=	0,	observing,

however,	that	the	requested	series	expansion	will	converge	at	x	=	0	to	−	1/2	by
the	second	remark	 in	Prob.	 III-18.	We	used	 the	word	“might”	 in	 the	preceding
sentence	 because	 of	 a	 technicality	 involved.	We	wish	 to	 use	 definite	 integrals



(Riemann	integrals)	over	−	1	 	x	 	1	to	evaluate	the	coefficients	of	the	desired
expansion.	The	definite	integral	(Riemann	integral)	of	a	bounded	function	over	a
finite	 interval	 is	 customarily	defined	 for	 a	 function	which	has	been	 assigned	 a
value	 at	 every	 point	 of	 a	 closed	 interval.	 We	 should,	 therefore,	 consider	 the
function	f(x)	of	this	problem	to	have	been	assigned	a	value	C	at	x	=	0.	The	value
chosen	for	C	will	not,	however,	have	any	effect	upon	the	values	of	the	integrals
to	be	computed.
In	applying	Eq.	 (III-18.2)	 to	obtain	 the	coefficients	of	 the	desired	expansion

we	naturally	find	it	convenient	to	write	the	integral	involved	as	the	sum	of	two
integrals,	one	over	−	1	 	x	 	0	and	the	other	over	0	 	x	 	1.	We	get

Here	we	can	make	use	of	some	of	the	integral	formulas	obtained	in	problems
in	Chapter	III	as	follows.	When	n	is	even,	Pn(x)	is	an	even	function	of	x	and	is	an
odd	function	of	x	when	n	is	odd.	Accordingly,	we	have

Also,

For	 the	 fourth	 type	of	 integral	 to	be	 involved	 in	Eq.	 (IV-2.1),	 namely,	 integral
over	0	 	x	 	1	of	xPn(x)	when	n	is	even,	we	may	take	Pn(x),	n	=	2,	4,	6,	8,	10
from	Table	III-1	and	integrate	xPn(x)	term	by	term.	For	n	even	and	greater	than



10	we	can	get	Pn(x)	from	Eq.	(III-0.7).	Finally,	we	find	by	direct	integration	that
Eq.	(IV-2.1)	yields	 ,	 .
Making	 use	 of	 the	 formulas	 and	 procedures	 developed	 in	 the	 preceding

paragraph	for	evaluating	the	integrals	involved	in	Eq.	(IV-2.1),	we	obtain

where	every	An	is	given	by	Eq.	(III-18.2).	Here	we	have	put	in	 	at	x	=	0	on
the	 right,	 since	 we	 know	 (by	 the	 second	 remark	 in	 Prob.	 III-18)	 that	 the
expansion	on	the	left	converges	at	x	=	0	to	the	arithmetic	mean	of	−	1	and	zero.
At	x	=	0	we	find	the	partial	sum	of	the	series	through	the	term	P6(x)	equals	(by

Table	III-2)	to	approximately	−	.4572.	The	convergence	is	thus	rather	slow.	But
slowness	of	convergence	is	no	essential	disadvantage	when	electronic	computing
machines	are	available.
IV-3.	Obtain	an	approximate	value	for	 	via	 the	 first	 several	 terms	of	a
Legendre	polynomial	series	expansion	for	the	function	f(x)	=	x1/3.	*

This	problem	 is	 seen	 to	be	 simply	an	exercise	 in	 application	of	Prob.	 III-18
and	Eq.	(III-28.7).	In	order	that	we	use	Eq.	(III-28.7)	where	the	integral	is	taken
only	from	x	=	0	to	x	=	1	we	take	the	function	f(x)	to	be	expanded	via	Prob.	III-18
as	follows:

Then	for	this	f(x)	we	have	by	Prob.	III-18



Evaluating	the	first	few	coefficients	in	the	series	expansion	by	way	of	Eq.	(III-
28.7),	taking	 ,	and	making	use	of	Eqs.	(I-4.3)	and	(I-10.1),	we	get

In	similar	manner	we	also	obtain

Taking	x	=	.5	in	Eq.	(IV-3.2)	and	taking	the	values	of	Pn(.5),	n	=	0,	1,	2,	…,	7
from	Table	III-2,	we	find	that

REMARK.	 In	 tables	 of	 cube	 roots	 one	 finds	 that	 .	 Our
approximation	is	in	error	by	about	 	of	1	per	cent.



IV-4.	On	the	closed	interval	L:	−	b	 	x	 	b	let	the	function	f(x)	be	continuous
and	have	continuous	second	derivative.	Show	that	f(x)	can	be	expanded	on	L	in	a
uniformly	convergent	series	of	Legendre	polynomials	of	appropriate	argument.	*

The	expansion	to	be	established	in	this	problem	is	evidently	a	modification	of
the	expansion	considered	in	Prob.	III-18	in	that	the	particular	interval	H:	−	1	 	x
	1	is	now	to	be	replaced	by	the	interval	L:	−	b	 	x	 	b.
We	first	write	the	expansion	considered	in	Prob.	III-18	in	terms	of	the	letter	t

in	place	of	x,	writing	also	g(t)	in	place	of	f(x):

Next,	we	relate	x	to	t	by	the	transformation	x	=	bt.	Taking	g(t)	in	expansion	(IV-
4.1)	 to	be	 f(bt)	and	observing	 that	dt/dx	=	1/b,	we	 find	 that	 the	expansion	 (IV-
4.1)	is	equivalent	to

Since	g(t)	=	f(bt)	has	continuous	derivative	on	H:	−	1	 	x	 	1,	the	curve	y	=
g(t)	has	finite	length	on	H,	so	that	all	parts	of	the	hypothesis	of	Prob.	III-18	are
fulfilled.	It	follows,	then,	that	the	expansion	(IV-4.2)	 is	valid	everywhere	on	L.
Moreover,	 the	convergence	 to	 f(x)	 is	uniform	on	L	by	 the	first	 remark	 in	Prob.
III-18.

IV-5.	Expand	 the	 following	 function	 in	a	 series	of	Legendre	polynomials	of
appropriate	argument:

Indicate	explicitly	the	first	several	coefficients	of	the	expansion.	*
This	problem	is	an	exercise	in	application	of	the	expansion	obtained	in	Prob.

IV-4.	 Since	 f(x)	 =	 0	 on	 the	 left	 half	 of	 the	 interval	 prescribed	 in	 the	 present



problem,	we	have

We	can	simplify	somewhat	the	computation	of	the	coefficients	A0,	A1,	A2,	…	by
taking	x/3	=	u.	This	makes

For	the	first	few	coefficients	we	get

Similarly,	one	finds	 ,	 .	We	have,	then,

where



COMMENT.	Let	us	see	how	well	the	partial	sum	made	up	of	the	first	five	terms
of	our	series	approximates	to	x3	when	x	is,	say,	2	and	to	zero	when	x	is,	say	−	3.
When	x	=	2	the	argument	to	be	taken	in	each	Legendre	polynomial	is	2/3.	From
Table	III-2	we	have	by	linear	interpolation

We	 know,	 of	 course,	 that	 	 and	 .	 Multiplying	 these
values	by	their	respective	coefficients	in	our	expansion	above,	we	get

The	error	is	5/16	of	1	per	cent.

When	x	=	−3	the	argument	x/3	is	−	1;	and	we	get

The	approximation	here	is	not	too	good,	since	the	series	converges	rather	slowly
at	the	end	points.
IV-6.	 Express	 x3	 as	 a	 linear	 combination	 of	 the	 first	 four	 Legendre

polynomials	of	argument	x/3.	*

The	desired	combination	is	readily	and	easily	obtained	by	application	of	Prob.
IV-4,	taking	f(x)	=	x3	and	b	=	3:

As	in	Prob.	IV-5,	we	let	x/3	=	u.	Then	in	the	present	problem	we	have

By	Eq.	(III-20.5)	we	get	zero	for	A0	and	A2,	also	for	every	An	for	which	n	>	3.
It	remains	only	to	compute	A1	and	A3,	which	by	Eq.	(III-20.5)	with	m	=	3,	n	=	1



and	by	Eq.	(III-20.4)	with	n	=	3	we	find	to	be

Thus,	we	have

COMMENT.	 The	 right	 side	 of	 the	 last	 equation,	 according	 to	 our	 method	 of
obtaining	it,	is	to	be	regarded	as	an	infinite	series	expansion	of	x3	on	the	interval
−	3	 	x	 	3,	all	terms	of	the	series	vanishing	except	the	two	shown.	But	since	it
reduces	 to	 a	 polynomial	 of	 degree	 3	which	 equals	 x3	 for	more	 than	 3	 distinct
values	of	x,	the	equation	obtained	holds	for	all	values	of	x.
IV-7.	Let	a	fixed	point	Q	in	space	have	rectangular	coordinates	(x0,	y0,	z0)	and

let	P:	(x,	y,	z)	be	a	variable	point.	Show	that	the	reciprocal	U	of	the	distance

satisfies	Laplace’s	equation

at	every	finite	point	other	than	Q.*

We	have



Since	U	is	unchanged	when	the	differences	are	permuted,	it	follows	that

Addition	of	 these	 last	 three	equations	yields	Eq.	 (IV-7.1),	which	 is	 valid	 at	 all
points	 in	 space	 where	 the	 derivatives	 involved	 exist,	 namely,	 all	 finite	 points
other	than	Q.

REMARKS.	1.	The	function	U	=	1/D	belongs	to	the	class	of	harmonic	functions.
A	function	H	is	said	to	be	harmonic	in	a	region	R	of	space	when	(a)	the	partial
derivatives	∂2H/∂x2,	∂2H/∂y2,	∂2H/∂z2	are	all	continuous	at	every	point	R,	(b)	the
function	H	satisfies	Laplace’s	equation	∇2H	=	0	everywhere	in	R.	The	function
U	is	harmonic	in	the	region	consisting	of	all	finite	points	except	Q.
2.	The	function	U	=	1/D	represents,	except	for	a	constant	factor,	the	potential,

gravitational	or	electric,	at	P	of	a	unit	mass	or	unit	electric	charge	at	Q	because
the	negated	gradient	of	U,	namely	−	∇U,	represents	at	P	 (except	for	a	constant
factor)	the	gravitational	force	vector	 	or	the	electric	force	vector	 due	to	the
unit	mass	or	charge	at	Q.

IV-8.	Let	R	denote	the	distance	from	the	origin	O	of	the	fixed	point	Q	in	Prob.
IV-7.	 Let	 r	 be	 the	 spherical	 coordinate	 denoting	 distance	 from	 origin	 of	 the
variable	point	P.	As	in	Prob.	IV-7	let	U	=	D−	1	=	reciprocal	of	the	distance	QP.
Show	that



where	x	=	cos	θ,	θ	being	the	angle	(0	 	θ	 	π)	of	 intersection	of	 the	vectors	

	and	 ,	and	Pn(x)	is	the	Legendre	polynomial	of	degree	n.*

We	note,	first	of	all,	that	the	letter	x	is	to	be	used	in	this	problem	not	to	denote
the	 usual	 rectangular	 coordinate	 but	 merely	 as	 a	 convenient	 single-letter
designation	for	cos	θ.	Likewise,	the	letter	θ	in	this	problem	does	not	denote	the
usual	 polar	 or	 spherical	 angular	 coordinate	 but	 is	 used	 to	 designate	 the	 angle
between	the	fixed	position	vector	 	and	the	variable	position	vector	 .
The	 expansions	 to	 be	 demonstrated	 in	 this	 problem	 are	 apparently

modifications	of	the	expansion	obtained	in	Prob.	III-1.	And	since	the	distances	r
and	R	 are	 involved	 together	 with	 the	 angle	 θ	 between	 the	 vectors	 r	 and	R,	 it
seems	likely	that	the	Law	of	Cosines	can	be	used	to	obtain	an	expression	in	r,	R,
and	 θ	 to	 which	 we	 can	 apply	 Eq.	 (III-1.7).	 Consider,	 then,	 the	 triangle	OQP
where	R	denotes	the	side	OQ,	r	denotes	the	side	OP,	D	denotes	the	side	QP	and
θ	denotes	the	angle	QOP.	By	the	Law	of	Cosines	we	have

Remembering	that	x	shall	denote	cos	θ	and	U	shall	denote	D−	1,	we	may	write

and

Application	of	Eq.	(III-1.7)	is	now	apparent:	for	r	<	R	we	identify	the	ratio	r/R
with	h	in	Eq.	(III-1.7);	for	r	>	R	we	take	h	=	R/r.	Eqs.	(IV-8.1)	and	(IV-8.2)	hold



by	virtue	of	Prob.	III-1.

Problems:	Steady-State	Heat-Flow	Temperature	Distribution
IV-9.	Determine	the	steady-state	temperature	distribution	T	in	a	homogeneous

spherical	solid	when	one	hemispherical	half	(excluding	boundary)	of	the	surface
is	maintained	at	300°	while	the	other	half	(boundary	not	included)	is	kept	at	75°.
Temperature	on	the	separating	great	circle	may	be	considered	undefined.	*

The	equation	for	heat	conduction	(see,	 for	example,	Eckert	and	Drake,	Heat
and	Mass	Transfer,	McGraw-Hill,	1959)	in	a	solid	is

where	T	is	temperature,	t	is	time,	k	is	the	thermal	conductivity,	ρ	is	the	density,	c
is	specific	heat,	and	Q′	is	rate	of	heat	generation,	∇2T	is	the	Laplacian

In	 the	 present	 problem	Q′	 =	 0	 because	 there	 is	 no	 heat	 generation	 and	 T	 is
independent	of	time	t,	so	that	∂T/∂t	=	0.	Let	us	take	the	solid	with	center	at	the
origin	 and	 use	 spherical	 coordinates	 	 where	 r	 is	 the	 distance	 from
origin,	 	is	colatitude	from	the	positive	z-axis	(cone	angle)	and	θ	is	the	angle	of
sweep	 about	 the	 z-axis.	 Let	 the	 coordinate	 system	 be	 so	 oriented	 that	 the
hemispherical	surface	 	is	the	half	which	is	kept	at	300°.	Then	by
symmetry	 of	 surface	 temperature	 maintenance	 it	 follows	 that	 the	 temperature
distribution	T	within	 the	solid	and	on	 the	surface	 is	 independent	of	θ.	Eq.	 (IV-
9.1)	for	the	present	problem	becomes

with	 .	Laplace’s	Eq.	 (IV-9.2)	when	written	 in	 terms	 of	 spherical
coordinates	with	T	not	dependent	on	θ	becomes

So,	our	problem	is	 to	find	T	as	a	function	of	r	and	 	satisfying	Eq.	 (IV-9.3)



within	 the	spherical	 solid	and	 taking	on	 the	prescribed	boundary	values	on	 the
surface.	As	in	Prob.	II-50	we	shall	seek	to	obtain	a	solution	for	T	as	a	composite
of	particular	solutions	of	Eq.	 (IV-9.3),	 each	particular	 solution	being	a	product
solution	of	the	form	FG	where	F	is	a	function	of	r	only	and	G	is	a	function	of	
only.
Assuming	a	solution	of	Eq.	(IV-9.3)	of	the	form

we	have

where	F′	and	F″	denote	dF/dr	and	d2F/dr2	respectively.
Similarly,	we	have

Then	Eq.	(IV-9.3)	by	virtue	of	Eqs.	(IV-9.5)	and	(IV-9.6)	becomes

Separation	of	variables	in	Eq.	(IV-9.7)	gives

By	 the	 same	 reasoning	 as	 was	 used	 in	 Prob.	 II-50	 we	 conclude	 that	 the
equated	 ratios	 in	Eq.	 (IV-9.8)	must	 both	 equal	 the	 same	 constant,	 since	 one	 is
independent	of	 	while	the	other	is	independent	of	r.	Is	this	constant	value	of	the
ratios	negative	or	zero	or	positive?	Let	us	see	if	we	can	determine	which	it	must
be.	If	we	let	C	denote	this	constant,	then	from	Eq.	(IV-9.8)	we	have

Consider	the	change	in	T	as	we	move	downwards	in	the	upper	half	of	the	solid
along	a	curve	of	which	r	 remains	constant.	Then	 the	change	 in	T	along	such	a
curve	is	due	wholly	to	the	change	in	G.	Now	T	is	certainly	positive	throughout;



and	 if	 we	 assume	 F	 and	 G	 both	 positive,	 then	 G	 decreases	 as	 we	 move
downwards	 along	 the	 curve.	This	 reasoning	maintains	 the	 equality	 of	Eq.	 (IV-
9.4).	Thus	the	derivative	G′	is	negative.	In	the	upper	half	cotan	 	is	positive.	It	is
plausible	 to	 think	 that	 the	 second	 derivative	G″	will	 be	 negative	 in	 the	 upper
half,	indicating	that	the	negative	first	derivative	is	becoming	more	negative.	The
left	side	of	Eq.	(IV-9.9)	will	thus	be	negative	in	the	upper	half.	We	conclude	that
C	 should	 be	 positive.	We	 let	C	 =	 k2,	 k	 ≠	 0.	 Let	 us	 see,	 then,	 if	 we	 can	 find
solutions	for	Eq.	(IV-9.2)	of	the	form	 	where	F	and	G	are
both	positive	and	such	that

Eq.	(IV-9.10)	requires	that

If	we	put	k2	=	n(n	+	1)	we	 recognize	Eq.	 (IV-9.12)	 to	 be	Legendre’s	 equation
(III-0.4)	with	G	playing	the	role	of	y.	Thus	a	particular	solution	of	Eq.	(IV-9.12)
is

where	Cn	is	an	arbitrary	constant.
When	k2	=	n(n	+	1)	the	general	solution	of	Eq.	(IV-9.11)	is

where	Sn	and	Bn	are	arbitrary	constants.	The	second	term	on	the	right	in	Eq.	(IV-
9.13)	becomes	infinite	at	r	=	0	and	is	thus	unsuitable.	Hence	we	let	Bn	=	0.
We	have	 found	 that	 the	product	 solutions	of	Eq.	 (IV-9.2)	may	be	had	 in	 the

form

But	no	such	particular	solution	will	meet	the	boundary	conditions



To	 do	 so	 would	 require	 that	 	 remain	 at	 one	 constant	 value	 for	

	 and	 keep	 another	 constant	 value	 for	 .	 This	 is
impossible:	Legendre	polynomials	are	continuous	functions	of	the	argument.
We	can,	however,	meet	the	boundary	conditions	(IV-9.15)	as	follows.	We	let	

	denote	the	excess	of	the	temperature	T	on	the	upper	half	of	the	surface
over	 that	 of	T	 on	 the	 lower	 half.	 On	 the	 bounding	 great	 circle	 between	 these
halves	we	arbitrarily	define	TE	to	be	225/2.	We	then	have

If	we	let	the	letter	x	denote	cos	 	then	 	becomes	f(x)	defined	by

And	now	f(x)	may	be	expanded	(by	remark	4	in	Prob.	IV-1):

Reverting	to	Eq.	(IV-9.14),	we	choose	constants	SnCn,	n	=	0,	1,	2,	…	so	that



for	each	n	we	take

where	An	 is	 the	coefficient	of	Pn(x)	 in	Eq.	 (IV-9.18)	and	R	 is	 the	 radius	of	 the
solid.	Composing	an	infinite	series	of	such	particular	solutions	of	Eq.	(IV-9.14),
we	take

The	 right	 side	 of	 Eq.	 (IV-9.21)	 converges	 by	 Eq.	 (IV-9.18)	 to	 the	 prescribed
surface	temperature	distribution	when	r	=	R.	The	right	side	of	Eq.	(IV-9.21)	will
also	then	be	convergent	for	r	<	R	by	virtue	of	the	factor	(r/R)n.	Each	term	on	the
right	 in	 Eq.	 (IV-9.21)	 individually	 satisfies	 Laplace’s	 Eq.	 (IV-9.2).	 And	 the
convergence	 is	 such	 that	 the	 series	 of	 Laplacians	 of	 the	 individual	 terms
converges	 to	 zero	 for	 r	 <	R.	 Thus	 Eq.	 (IV-9.21)	 provides	 the	 solution	 to	 our
problem.

REMARK.	As	was	pointed	out	earlier	 the	temperature	function	T	does	the	best
that	 could	 be	 expected	 of	 it	 on	 the	 great	 circle	 separating	 the	 halves	 of	 the
bounding	 surface	 in	 that	 it	 assumes	 there	 the	 average	 of	 the	 two	 different
constant	temperatures.

IV-10.	If	the	temperature	T	on	the	surface	of	a	spherical	solid	having	radius	R

and	center	at	the	origin	is	maintained	at	 	where	T0	is	a	constant
and	 	 is	 the	 cone	 angle	 (co-latitude	 from	 positive	 z-axis)	 of	 spherical
coordinates,	determine	the	steady-state	temperature	distribution	in	the	solid.	*

This	problem	 is	 seen	 to	be	a	variant	of	Prob.	 IV-9.	So,	we	may	appropriate,



without	 repeating	 the	 arguments,	 the	 earlier	 results	 of	 that	 problem.	 In	 the
present	 problem	 we	 may	 conclude,	 as	 in	 Prob.	 IV-9,	 that	 the	 temperature
distribution	T	will	be	independent	of	the	coordinate	θ	and	will	satisfy	Laplace’s
equation	∇2T	=	0	at	all	interior	points.	Then	by	Prob.	IV-9	we	have

where	x	is	not	a	rectangular	coordinate	but	is	(as	indicated)	just	a	designation	for
cos	 ,	 where	 Pn(x)	 is	 the	 Legendre	 polynomial	 of	 degree	 n	 and	 where	 the
coefficients	A0,	A1	A2,	…	are	to	be	determined	so	that	when	r	=	R	 the	series	on
the	 right	 in	 Eq.	 (IV-10.1)	 converges	 to	 the	 given	 surface	 temperature
maintenance.
On	the	surface,	the	temperature	is	prescribed	to	be	T0(1	−	x).	As	 	varies	from

π	to	0,	x	will	vary	from	−	1	to	1.	Accordingly,	we	have	to	determine	by	Eq.	(III-
18.2)	the	coefficients	A0,	A1	A2,	…	of	the	expansion	on	the	interval	−	1	 	x	 	1
of	the	function	T0(1	−	x)	in	a	series	of	Legendre	polynomials.
We	have

The	first	integral	on	the	right	in	Eq.	(IV-10.3)	vanishes,	by	Eq.	(III-16.5),	for	all
n	>	0.	The	second	integral,	by	Eq.	(III-20.5),	vanishes	for	all	n	>1.	Accordingly,
all	 the	 coefficients	 indicated	 by	 Eq.	 (IV-10.2)	 vanish	 except	A0	 and	A1	 Since
P0(x)	=	1	and	P1(x)	=	x,	we	get



Putting	 these	 values	 for	 the	 coefficients	 in	 Eq.	 (IV-10.1),	 we	 have	 for	 the
solution	of	our	problem

IV-11.	 Determine	 the	 steady-state	 temperature	 distribution	 T	 in	 a
homogeneous	hemispherical	solid	of	radius	R	if	the	temperature	on	the	surface	is
maintained	at	20	on	the	hemispherical	part	of	the	surface	(exclusive	of	its	great
circle	boundary)	and	at	100	on	the	flat	base	of	the	solid	(including	the	rim	of	the
base).	*

We	 should	 be	 able	 to	 do	 this	 problem	with	 appropriate	modification	 of	 the
procedure	used	in	Prob.	IV-9.	Accordingly,	we	take	the	center	of	the	base	of	our
hemispherical	 solid	 at	 the	origin	with	 the	hemispherical	 surface	 in	 that	 part	 of
space	where	 .	We	also	use	the	letter	x	to	denote	cos	 .
Since	we	must	have

and	must	have	T(r,	π/2)	=	100,	0	 	r	 	1,	we	see	that	we	can	attain	solution	of
our	problem	by	application	of	Prob.	IV-1	as	follows.	We	take

For	 0	<	 x	 	 1	 this	makes	g(x)	 =	 100	 +	 f(x)	 and	makes	 g(0)	 =	 0.	We	 do	 not



consider	negative	values	of	x	as	far	as	g(x)	is	concerned.	However,	we	did	define
f(x)	for	−	1	 	x	<	0	in	order	that	we	could	make	use	of	the	expansion	of	f(x)	as
given	in	Eq.	(IV-1.4),	taking	C	=	−	80.	Thus,	applying	Eq.	(IV-1.4)	with	C	=	−
80,	we	have	on	the	hemispherical	surface	and	on	the	rim	of	the	base	of	the	solid

where	every	An	is	given	by	Eq.	(IV-1.2).
And	now	all	we	have	to	do	to	obtain	the	solution	of	our	problem	is	to	follow

through	as	 in	Eqs.	 (IV-9.19),	 (IV-9.20),	 (IV-9.21)	 in	Prob.	 IV-9.	Recalling	 that	
	 the	 desired	 steady-state	 temperature	 distribution	 in	 the

hemispherical	solid	we	thus	find	to	be

where	every	An	is	given	by	Eq.	(IV-1.2).
We	observe	that,	by	second	remark	in	Prob.	IV-1,	the	boundary	condition	T(r,

π/2)	=	100	is	met	at	every	point	of	the	base	of	the	solid	by	the	obtained	solution,
since	every	 term	of	 the	 solution	 (except	 the	additive	 constant	100)	 contains	 as
factor	a	polynomial	comprised	only	of	odd	powers	of	 	and	hence	vanishes
at	 	 regardless	 of	 the	 size	 of	 the	 ratio	 r/R.	One	 also	 sees	 immediately
that,	for	 ,	T	=	20	when	r	=	R.

IV-12.	 The	 radius	 of	 the	 inner	 surface	 of	 a	 spherical	 shell	 solid	 is	R1.	 The
radius	of	the	outer	surface	is	R2	>	R1.	The	common	center	of	 the	surfaces	 is	at
the	origin.	Temperature	T	on	each	surface	is	prescribed	as	a	function	of	the	cone
angle	 	(co-latitude	from	positive	z-axis):



where	 	 and	 	 are	 such	 functions	 of	 	 as	 in	 Prob.	 III-18.
Determine	 the	 steady-state	 temperature	 distribution	 T	 at	 all	 points	 of	 space
between	the	two	bounding	surfaces.	*

This	 problem	 is	 like	 Probs.	 IV-9	 and	 IV-10	 in	 that	 T	 satisfies	 Laplace’s
equation	∇2T	=	0	at	all	interior	points	of	the	region	occupied	by	the	solid	and	in
that	T	does	not	vary	with	the	sweep	coordinate	θ.	But	the	present	problem	differs
in	 that	 the	 region	 of	 space	 occupied	 is	 the	 region	 bounded	 by	 two	 spherical
surfaces	 instead	 of	 having	 a	 single	 bounding	 surface.	Moreover	 the	 boundary
values	to	be	taken	by	T	on	the	two	bounding	surfaces	are	different	functions	of	
.	This	will	require	some	modification	of	 the	procedure	used	in	Probs.	IV-9	and
IV-10,	where	T	was	required	to	take	on	only	one	prescribed	boundary	functional
value	on	the	sole	bounding	surface.	If	we	take	R	=	R2	in	Eq.	(IV-10.1)	and	then
determine	 the	 coefficients	An,	n	 =	 0,	 1,	 2,	…	 so	 that	 the	 series	 converges	 to	

	when	r	=	R2,	the	series	will	converge	when	r	=	R1	because	R1	<	R2.	But
the	function	to	which	the	series	converges	on	the	surface	r	=	R1,	is	then	defined
by	 the	 very	 series	 itself	 and	 cannot	 coincide	 with	 an	 arbitrarily	 preassigned
function	 	except	in	the	single	case	of	perchance	having	taken

are	the	coefficients	of	the	Legendre	polynomial	series	for	 .
It	appears,	then,	that	our	problem	is	to	determine	two	sets	of	coefficients:	one

to	make	T	agree	with	 	when	r	=	R2,	one	to	make	 	when	r	=	R1.
Scanning	the	procedure	of	Prob.	IV-9,	we	find	that	there	we	discarded	one	set	of
coefficients,	namely	the	Bn,	n	=	0,	1,	2,	…	in	the	terms	of	the	form	Bn/rn+1	for
the	 reason	 that	 terms	 of	 such	 character	 become	 infinite	 at	 r	 =	 0.	 But	 in	 the
present	problem	we	have	0	<	R1	 	r	 	R2,	so	that	we	do	not	have	r	=	0	at	any
point	of	the	region	occupied.	Let	us	then	start	with	the	series	solution



from	Prob.	IV-9,	writing	En	for	SnCn	and	Fn	for	BnCn.
When	 r	 =	 R2	 we	 require	 this	 series	 to	 converge	 to	 .	 The

coefficients	in	Eq.	(IV-12.1)	must	then,	by	Eq.	(III-18.2),	be	such	that

We	further	require	that	the	series	in	Eq.	(IV-12.1)	shall	converge	to	 	when	r
=	R1.	This,	by	similar	application	of	Eq.	(III-18.2),	means	that	the	coefficients	in
Eq.	(IV-12.1)	must	also	be	such	that

For	each	pair	of	numbers	En	and	Fn,	n	=	0,	1,	2,	…	we	have	by	Eqs.	(IV-12.2)
and	(IV-12.3)	a	pair	of	simultaneous	linear	equations	to	be	satisfied.	En	and	Fn
are	thus	determined	by	this	pair	of	equations.	Accordingly,	we	may	say	that	the
desired	steady-state	temperature	distribution	is	given	by	Eq.	(IV-12.1)	where	the
pairs	of	constants	En	and	Fn,	n	=	0,	1,	2,	…	are	determined	by	Eqs.	(IV-12.2)	and
(IV-12.3).

REMARKS.	1.	The	question	of	convergence	of	the	series	in	Eq.	(IV-12.1)	when	r
is	between	R1	and	R2	can	be	met	as	follows.
Write	the	series	on	the	right	in	Eq.	(IV-12.1)	as	the	sum	of	two	series:

The	 determination	 by	 Eq.	 (IV-12.2)	 of	 the	 coefficients	 to	 make	 the	 series



converge	when	r	=	R2	makes	the	first	series	in	Eq.	(IV-12.4)	convergent	for	all	r
such	that	r	<	R2.	Similarly,	determination	of	 the	coefficients	 to	make	the	series
converge	when	r	=	R1	makes	 the	second	series	 in	Eq.	 (IV-12.4)	convergent	 for
all	r	such	that	r	>	R1.	But	we	determined	the	coefficients	so	as	to	have	the	series
convergent	both	for	r	=	R2	and	r	=	R1.	It	follows	that	both	series	in	Eq.	(IV-12.4)
are	convergent	for	R1	 	r	 	R2,	which	means	that	the	same	is	true	of	the	series
in	Eq.	(IV-12.1).
2.	At	the	risk	of	being	guilty	of	pointing	out	something	that	may	be	considered

obvious,	we	observe	that	no	pair	of	equations	in	the	coefficients	En	and	Fn,	n	=
0,	1,	2,	·	·	·	can	fail	to	have	solution.	The	determinant	of	the	coefficients	in	every
such	pair	is	 	 ,	which	can	vanish	only	when	R1	=	R2.
3.	 When	 	 and	 	 are	 both	 constant,	 say	 	 and	

,	we	should	expect	from	considerations	of	symmetry	to	find
T	to	be	a	function	of	r	alone	increasing	from	C1	to	C2	as	r	varies	from	R1	to	R2.
Indeed,	this	turns	out	to	be	so.	By	application	of	Eq.	(III-18.2)	together	with	Eq.
(III-16.5)	we	find

And	solution	for	both	surface	temperatures	constant	reduces	to

IV-13.	A	homogeneous	spherical	shell	solid	has	inner	radius	R1	=	1	and	outer
radius	R2	=	2.	Center	of	 the	surfaces	 is	at	 the	origin.	Temperature	on	 the	 inner
surface	is	kept	at	80	and	on	the	outer	surface	is	maintained	at	 ,
where	 	 is	 the	cone	angle	 (colatitude	 from	positive	z-axis).	Assuming	 that	 the
temperature	T	within	the	shell	has	reached	steady-state	temperature	distribution,
compute	 the	 value	 T	 at	 a	 point	 midway	 between	 the	 bounding	 surfaces	 and
having	 .	*
This	 problem	 is	 a	 direct	 application	 of	Prob.	 IV-12.	 It	 appears	 that	we	may



also	be	able	to	appropriate	to	some	extent	from	Prob.	IV-10.	Applying	Prob.	IV-
12	with	 	and	 ,	R1	=
1,	R2	=	2,	we	have

where

The	right	side	of	Eq.	(IV-13.2)	vanishes	by	Eq.	(III-16.5)	for	every	n	>	0	and
equals	80	when	n	=	0,	since	P0(x)	=	1.	The	right	side	of	Eq.	(IV-13.3)	vanishes,
as	in	Prob.	IV-10,	for	every	n	>	1.	And	for	n	=	0	and	n	=	1	the	right	side	of	Eq.
(IV-13.3)	equals	700	and	−700	respectively.	We	have,	then,	the	following	pairs
of	simultaneous	equations	to	solve.

Solution	of	Eqs.	(IV-13.4),	(IV-13.5)	and	(IV-13.6)	yields



Putting	these	results	in	Eq.	(IV-13.1),	we	get

Equation	 (IV-13.7)	 gives	 the	 temperature	 distribution	 for	 steady-state
temperature	distribution	at	every	point	of	 the	shell	 including	 the	 two	bounding
surfaces.	A	direct	check	of	Eq.	(IV-13.7),	independent	of	the	preceding	work	of
solution,	 shows	 that	 (a)	 T	 satisfies	 Laplace’s	 equation	 ∇2T	 =	 0	 in	 spherical
coordinates,	namely,

and	(b)	T	=	80	when	r	=	1,	 	when	r	=	2.
Finally,	we	have	to	evaluate	T	at	a	point	where	 	and	 .

We	get	from	Eq.	(IV-13.7)

Problem:	Gravitational	Potential	of	a	Circular	Lamina

IV-14.	 Determine	 the	 gravitational	 potential	 V	 of	 a	 homogeneous	 circular
lamina	of	radius	R.	*

The	 potential	 V	 of	 a	 continuous	 distribution	 of	 matter	 (such	 as	 a	 material
surface	 or	 material	 curve	 or	 solid)	 is	 naturally	 defined	 via	 an	 integral	 as
generalization	from	the	definition	of	potential	M/D	of	a	mass-particle	M	as	in	the
second	remark	in	Prob.	IV-7.	In	the	case	of	a	material	surface	S,	for	example,	we
regard	S	as	 the	sum	of	many	small	portions	ΔSi,	 i	=	1,	2,	 ·	 ·	 ·,	n.	We	multiply
each	element	of	area	ΔSi	by	 the	density	σ	 at	a	point	 thereof	and	we	define	 the
potential	V	of	S	at	a	point	P	in	space	to	be	the	limit	(when	it	exists	uniquely)	of
the	sum	of	terms	σΔSi/Di,	i	=	1,	2,	·	·	·,	n,	where	Di	denotes	the	distance	between
P	and	a	point	of	ΔSi:



Since	the	reciprocated	distance	1/D,	regarded	as	a	function	of	the	coordinates
of	P,	satisfies	Laplace’s	equation	(as	shown	in	Prob.	IV-7)	at	all	points	of	space
except	at	 the	fixed	point	from	which	D	 is	measured,	we	find	by	differentiation
under	 the	 integral	 sign	 (partially	with	 respect	 to	 the	 coordinates	 of	P)	 that	 the
potential	V	as	given	by	Eq.	(IV-14.1)	satisfies	Laplace’s	equation	at	all	points	P
of	space	not	an	S.	For	we	have	at	any	P	not	on	S

In	the	present	problem	we	take	the	circular	laminar	(denoted	now	by	A)	in	the
xy-plane	with	center	at	the	origin.	The	density	of	σ	is	constant:	σ	=	k.	Since	the
distribution	of	mass	is	symmetrical	about	the	z-axis,	it	is	clear	that	(in	terms	of
spherical	coordinates)	the	potential	V	is	a	function	only	of	two	coordinates	r	and	
,	where	r	denotes	distance	of	P	from	origin	and	 	is	the	cone	angle	(colatitude)

coordinate	of	P:

From	 here	 on	 the	 problem	 is	 mathematically	 the	 same	 (with	 appropriate
modifications)	as	Prob.	IV-9,	since	V	satisfies	Laplace’s	equation	at	points	P	not
on	S.	Accordingly,	we	shall	try	to	get	V	as	a	series	of	the	form

If	we	can	determine	coefficients	An	and	Bn,	n	=	1,	2,	 ·	 ·	 ·	 so	 that	V	meets	 the
conditions	of	our	problem,	then	the	series	expansion	(IV-14.2)	will	provide	 the
desired	solution.	The	question	 is:	“What	condition	or	conditions	of	 the	present



problem	will	give	us	a	hold	on	the	coefficients	to	be	used	in	Eq.	(IV-14.2)?”
Perhaps	the	procedure	of	Prob.	IV-9	will	give	us	a	clue.	There	we	found	that

the	 solution	 turned	 out	 to	 be	 like	 Eq.	 (IV-14.2)	 above	 except	 that	 every	 Bn
vanished	while	every	 term	 	was	 of	 the	 form	
where	R	was	the	radius	of	the	solid.	And	we	were	able	to	determine	An	from	a
boundary	 condition	 which	 permitted	 a	 series	 expansion	 when	 r	 =	R.	 But	 the
particular	 situation	 r	 =	R	 does	 not	 seem	 capable	 of	 yielding	 any	 hold	 on	 the
desired	 coefficients	 in	 the	 present	 problem.	 Let	 us,	 then,	 try	 specializing	 the
other	 factor	 in	 each	 term	 of	 the	 expansion,	 namely,	 .	 A	 moment’s
reflection	 indicates	 that	 when	 P	 is	 any	 point	 of	 the	 positive	 z-axis,	 then	

,	making	every	 .	And	 for	 a	 point	P	 in	 the	upper	 z-
axis	we	should	be	able	to	compute	the	potential	in	Eq.	(IV-14.1)	as	a	function	of
the	distance	h	of	P	from	the	origin	0.
For	a	point	P	in	the	positive	z-axis	at	distance	h	from	0	we	have	by	Eq.	 (IV-

14.1),	using	rectangular	coordinates,

This	 integral	 is	 readily	 evaluated	 via	 an	 iterated	 integral	 in	 polar	 coordinates.
The	result,	with	M	denoting	mass	of	lamina,	is

And	now	 if	we	 expand	 the	 right	 side	 of	Eq.	 (IV-14.3)	 in	 powers	 of	h	 we	will
have	 the	 right	 side	 of	 the	 desired	 Eq.	 (IV-14.2)	 for	 the	 case	where	 r	 =	 h	 and
every	 .	Thus,	we	can	identify	the	coefficients	of	the	powers	of	h
in	the	expansion	of	the	right	side	of	Eq.	(IV-14.3)	with	the	coefficients	Cn	and	Bn
desired	in	Eq.	(IV-14.2).
We	may	 expand	 by	 the	 binomial	 formula	 the	 right	 side	 of	 Eq.	 (IV-14.3)	 in

positive	powers	of	h	when	h	 <	R	 and	 in	 negative	powers	 of	h	when	h	 >	R	 as
follows.	For	h	<	R	we	have



Thus,	 in	 Eq.	 (IV-14.2)	 when	 r	 <	 R	 we	 have	 every	 Bn	 =	 0	 because	 negative
powers	of	h	 (identified	as	 r)	 do	not	occur	 in	Eq.	 (IV-14.4),	which	 is	what	Eq.
(IV-14.2)	becomes	(with	r	=	h)	when	 	so	that	every	 .
Identifying	the	Cn	in	Eq.	(IV-14.2)	with	the	corresponding	coefficients	of	powers
of	h	in	Eq.	(IV-14.4),	we	have

Similarly,	when	h	>	R	we	have

so	that	now	every	Cn	=	0	in	Eq.	(IV-14.2),	since	positive	powers	of	h	(identified
as	r)	do	not	occur	in	Eq.	(IV-14.6).	Then	we	get



Equations	(IV-14.5)	and	(IV-14.7)	provide	the	solution	of	our	problem	for	all
points	having	z	>	0	except	those	for	which	r	=	R.	For	a	point	on	the	lower	half	of
the	z-axis,	where	h	 is	negative	 (with	h	≠	R),	 ,	 so	 that	all	 terms	 in
Eqs.	 (IV-14.4)	 and	 (IV-14.6)	 remain	 the	 same	with	 one	 exception:	 the	 second
term	in	the	brackets	in	Eq.	(IV-14.4)	becomes	h	in	place	of	−h.	Accordingly,	we
may	say	that	Eq.	(IV-14.7)	gives	the	potential	V	at	all	points	P	having	r	>	R	with
z	 ≠	 0,	 while	 Eq.	 (IV-14.5)	 with	 the	 term	 	 replaced	 by	

	gives	V	at	all	points	having	r	<	R	when	z	is	negative.
When	h	=	R,	neither	of	 the	expansions	employed	 in	Eqs.	 (IV-14.4)	 and	 (IV-

14.6)	is	possible.	Nor	are	they	available	when	h	=	0.	If	it	is	required	to	know	V	at
a	specified	point	where	z	=	0	or	where	r	=	R,	the	value	of	V	for	such	a	point	may
be	obtained	(by	approximate	integration,	if	need	be)	directly	from	the	integral

Problem:	Potential	of	an	Electric	Charge	Distribution

IV-15.	 Distribution	 of	 electric	 charge	 on	 the	 surface	 T	 of	 an	 insulated
conductor	 which	 lies	 wholly	 interior	 to	 the	 spherical	 surface	 S:	 r	 =	 R	 is
symmetric	 about	 the	 z-axis	 and	 is	 such	 that	on	S	 the	potential	V	 of	 the	charge
distribution	 equals	 	 where	C	 is	 a	 constant	 and	 	 is	 the	 cone
angle	(co-latitude)	spherical	coordinate.	Obtain	formula	for	V	valid	at	all	points
exterior	to	or	on	S.	*

As	 already	 indicated,	 the	 potential	 V	 is	 a	 function	 only	 of	 r	 and	

.	As	in	Eq.	(IV-14.1)	 in	Prob.	 IV-14,	 the	potential	 is	defined
as	 the	 integral	 over	 T	 of	 σ/D,	 where	 σ	 now	 denotes	 density	 (assumed	 to	 be
continuous	on	T)	of	charge	per	unit	area	on	T.	Then	as	in	Prob.	IV-14	one	finds



that	V	 satisfies	 Laplace’s	 equation	 at	 all	 points	 exterior	 to	T.	Accordingly,	we
look	 for	 a	 formula	 for	 V	 of	 the	 form	 given	 in	 Eq.	 (IV-14.2)	 in	 Prob.	 IV-14.
However,	we	must	take	every	Cn	=	0.	In	the	region	consisting	of	the	exterior	of
S,	the	formula	for	V	as	given	by	Eq.	(IV-14.2)	in	Prob.	IV-14	cannot	contain	any
terms	in	positive	powers	of	r.	Any	such	term	or	sum	of	such	terms	would	require

	to	become	infinite	in	magnitude	as	r	→	∞.	For,	if	V	be	expressed	as	an
integral	over	T,	the	maximum	of	the	integrand	σ/D	approaches	the	limit	zero	as	r
→	∞.
So,	we	seek	a	series	solution	of	the	form

uniformly	convergent	for	r	 	R	and	equal	to	 	on	S	where	r	=	R.
Letting	 ,	we	thus	require

By	Prob.	III-18	this	requirement	is	met	by	having

As	 in	Prob.	 IV-10,	 the	 first	 integral	 vanishes	 for	 all	n	 >	 0	 by	Eq.	 (III-16.5)
while	the	second	integral	vanishes	by	Eq.	(III-20.5)	for	all	n	>	4	as	well	as	for	n
=	1	and	n	=	3.	Computing	B0	and	B2	and	B4,	 taking	 the	Legendre	polynomials
involved	from	Table	III-1,	we	find	that

Thus,	the	solution	sought	for	in	Eq.	(IV-15.1)	reduces	to	a	closed	form:



Problems:	Specific	Series	Expansion

IV-16.	Show	that

where	Pn(x)	denotes	the	Legendre	polynomial	of	degree	n.	*

Apparently	 the	 expansion	 to	 be	 established	 will	 follow	 from	 appropriate
manipulation	 of	 the	 characteristic	 expansion	 (III-1.7).	By	 the	 properties	 of	 the
expansion	established	in	Prob.	III-1	we	may	differentiate	Eq.	(III-1.7)	termwise,
obtaining

And	this	Eq.	(IV-16.2)	will	remain	valid	when	both	sides	are	multiplied	by	2h:

Addition	 of	 Eq.	 (IV-16.3)	 to	 Eq.	 (III-1.7)	 yields	 the	 expansion	 to	 be
demonstrated.

IV-17.	Show	that



where	Pn(x)	is	the	Legendre	polynomial	of	degree	n.	*

We	start	with	the	expansion

established	in	Prob.	III-1.	If	we	choose	an	x	such	that	|x|	<	1	and	hold	it	fast,	then
we	may	integrate	termwise	the	series	on	the	left	in	Eq.	(IV-17.2)	from	h	=	0	to	an
arbitrary	h	such	that	|h|	<	1	and	the	series	of	such	integrals	will	converge	to	the
integral	over	 the	 same	 interval	of	 the	 expression	on	 the	 right	 in	Eq.	 (IV-17.2).
Doing	so,	we	get

Equation	(IV-17.3)	holds	for	any	x	such	that	|x|	<	1	and	for	any	h	with	|h|	<	1.
In	particular	Eq.	(IV-17.3)	is	valid	when	h	and	x	are	any	two	numbers	which	are
equal	to	each	other	and	less	in	absolute	value	than	unity.
Thus	when	h	=	x	with	|x|	<	1,	we	have



The	series	on	the	left	in	Eq.	(IV-17.4)	converges	absolutely	and	uniformly	for
|x|	<	1	since	on	this	interval	|Pn(x)|	 	1	by	Prob.	III-12.	Consequently,	this	series
may	be	rearranged	so	as	to	be	exhibited	as	a	power	series

convergent	for	|x|	<	1.	By	Eq.	(IV-17.4)	this	power	series	converges	for	|x|	<	1	to
the	 function	 on	 the	 right	 in	 Eq.	 (IV-17.3)	 and	 therefore	 is	 identical	 with	 the
Maclaurin	 series	 of	 this	 function	 for	 |x|	 <	 1.	 But	 it	 is	 known	 (as	 shown	 in
calculus	 texts)	 that	 the	Maclaurin	 series	 expansion	 of	 this	 function	 converges
thereto	for	|x|	<	1.	It	follows	that	Eq.	(IV-17.4)	is	valid	for	|x|	<	1,	as	was	to	be
shown.

Problem:	Infinite	Product	Expression	for	π/2

IV-18.	 Show	 that	 π/2	 can	 be	 expressed	 as	 an	 infinite	 product	 of	 definite
integrals	involving	the	Legendre	polynomials	as	follows:

where	Pn(x)	denotes	the	Legendre	polynomial	of	degree	n.	*

It	 is	 clear	 that	 the	 value	 of	 each	 integral	 in	 the	 infinite	 product	 will	 be	 a
rational	 number,	 since	 each	 integrand	 is	 a	 polynomial	 in	 x	 with	 rational
coefficients,	 as	 follows	 at	 once	 from	 the	 definition	 of	 Legendre	 polynomials
given	 in	 the	 introduction	 to	 Chapter	 III.	 Thus	 Eq.	 (IV-18.1)	 expresses	 the
irrational	 number	π/2	 in	 terms	 of	 rationals.	We	 should	 not	 be	 surprised	 if	 the



infinite	 product	 in	 Eq.	 (IV-18.1),	 once	 the	 integrals	 are	 evaluated	 as	 rational
numbers,	turns	out	to	be	similar	(perhaps	the	same	as)	Wallis’s	product	for	π/2	in
Prob.	II-28.
Apart	 from	 the	 factor	 2n,	 which	 is	 a	 constant	 as	 far	 as	 the	 integration	 is

concerned,	each	integrand	xPn(x)Pn−1(x)	suggests	 that	perhaps	a	 transformation
of	itself	whereby	the	factor	x	is	eliminated	will	allow	us	to	evaluate	the	resulting
integral	 (or	 integrals).	The	 transformation	we	seek	 is	at	hand	 in	 the	 recurrence
formula	Eq.	(III-2.5)	whereby,	taking	m	−	1	=	n,	we	have

Thus	the	nth	factor	in	the	product	on	the	left	in	Eq.	(IV-18.1)	becomes	the	sum
of	two	integrals:

As	we	had	anticipated,	we	can	readily	evaluate	these	two	integrals:	the	first	one
vanishes	by	the	orthogonality	property	established	in	Prob.	III-16	while	the	value
of	the	second	one	is	2/[2(n	−	1)	+	1]	=	2/(2n	−	1)	by	Prob.	III-17.	Accordingly,
the	infinite	product	in	Eq.	(IV-18.1)	is

This	 is	none	other	 than	Wallis’s	product,	which	we	proved	in	Prob.	 II-28	 to	be
convergent	to	π/2.	Eq.	(IV-18.1)	is	thus	established.

Problems:	 Application	 of	 Gauss’s	 Mechanical	 Quadrature	 Formula	 with
Pertinent	Table

IV-19.	Using	Table	IV-1	and	taking	n	=	6,	compute	approximately	 loge	7	by
Gauss’s	mechanical	quadrature	formula



where	xi	=	the	ith	zero	of	the	Legendre	polynomial	Pn(x)	and

Before	carrying	out	the	computations	involved	in	this	problem	let	us	observe
(see,	for	instance,	Hobson,	The	Theory	of	Spherical	and	Ellipsoidal	Harmonics,
Cambridge,	1931;	see	also	Lowan,	Davids,	and	Levenson,	Table	of	the	Zeros	of
the	Legendre	Polynomials	of	Order	1–16	and	the	Weight	Coefficients	for	Gauss’s
Mechanical	 Quadrature	 Formula,	 Bulletin	 of	 the	 American	 Mathematical
Society,	 Vol.	 48,	 1942)	 that	 Gauss’s	 method	 of	 mechanical	 quadrature	 for
obtaining	an	approximate	value	for	a	definite	integral	is	advantageous	in	that	it
requires	half	the	number	of	ordinate	computations	as	required	by	most	methods
of	 approximate	 integration	 to	 get	 the	 same	 degree	 of	 closeness	 to	 the	 actual
value	of	the	integral.

We	write

Thus	we	have	p	=	1,	q	=	7,	 ,	so	that



REMARK.	Tables	of	natural	 logarithms	give	 loge	 7	 as	1.9459	 to	 four	decimal
places.	Our	approximation	is	in	error	by	a	little	more	than	a	hundredth	of	1	per
cent.
IV-20.	 Compute	 an	 approximate	 value	 for	 π	 by	 application	 of	 Gauss’s

mechanical	quadrature	formula	(see	Prob.	IV-19)	to	the	integral	on	the	right	side
of

Using	Table	IV-1	as	in	Prob.	IV-19,	we	take	n	=	5.	We	have



TABLE	IV-1*

Zeros	of	the	Legendre	polynomials	Pn(x),	n	=	2,	3,	4,	5,	6	and	the	corresponding
weight	coefficients	ai	for	Gauss’s	mechanical	quadrature	formula

The	xi	and	ai	are	numbered	so	that
(1)	when	n	is	even:	xi+n/2	=	−xi	ai+n/2	=	ai;
(2)	when	n	is	odd:	xi+(n−1)/2	=	−	xi,	ai+(n−1)/2	=	ai,	i	>	1.



	

*	Taken	(with	slight	change	in	numbering	of	the	xi	and	ai)	from	Lowan,	Davids,	and	Levenson,	“Table	of
the	Zeros	of	the	Legendre	Polynomials	of	Order	1–16,	and	the	Weight	Coefficients	for	Gauss’s	Mechanical
Quadrature,”	Bulletin,	Amer.	Math.	Soc.,	Vol.	48,	1942;	also	found	reprinted	in	Tables	of	Functions	and
Zeros	of	Functions	National	Bureau	of	Standards,	Applied	Math.	Series	37.



5
BESSEL	FUNCTIONS

INTRODUCTION
Bessel’s	differential	equation	is

where	y′	and	y″	denote	respectively	the	derivatives	dy/dx	and	d2y/dx2	and	where
p	is	a	constant.	Bessel’s	equation	is	a	particular	case	of	the	equation

being	the	case	thereof	in	which

Although	Bessel’s	equation	(V-0.1)	 is	a	differential	equation	of	second	order
as	far	as	derivatives	are	concerned,	it	is	often	referred	to	as	Bessel’s	equation	of
order	p,	the	designation	“order”	referring	to	the	value	of	the	parameter	p,	not	to
the	highest	order	derivative	in	the	equation.	Equation	(V-0.1)	actually	denotes	a
family	 of	 equations,	 there	 being	 an	 individual	member	 of	 the	 family	 for	 each
value,	real	or	complex,	of	the	parameter.	In	this	book	we	shall	not	be	concerned
with	any	Bessel	equation	of	complex	order,	that	is,	a	Bessel	equation	which	p	is
a	complex	number	a	+	bi,	a	and	b	being	real	and	i	denoting	 .	We	observe
that	the	Bessel	equation	of	order	−p	is	the	same	as	the	Bessel	equation	of	order
p.
A	solution	y	=	F1(x)	of	Bessel’s	equation	(V-0.1)	which	 is	continuous	for	all

values	 of	 x	 is	 called	 a	 Bessel	 function	 of	 the	 first	 kind.	 A	 solution	 y	 =	F2(x)
which	is	continuous	for	all	values	of	x	except	x	=	0	and	which	becomes	infinite
in	absolute	value	as	x	→	0	 is	 known	as	 a	Bessel	 function	of	 the	 second	kind.
Since	 a	 Bessel	 function	 of	 the	 first	 kind	 and	 one	 of	 the	 second	 kind	 cannot
satisfy	identically	(for	all	x	except	x	=	0)	a	linear	equation



where	A	and	B	are	constants,	the	general	solution	of	Bessel’s	equation	is

where	F1	is	a	Bessel	function	of	the	first	kind	and	F2	is	a	Bessel	function	of	the
second	kind	and	where	C1	and	C2	are	arbitrary	constants.
Solutions	of	Bessel’s	equation	(V-0.1)	are	usually	expressed	in	terms	of	one	or

two	of	four	standardized	Bessel	functions

The	standardized	function	Jp(x)	is	defined	for	all	real	orders	p	as	follows:

where	Γ(p+	k	+	1)	is	the	Gamma	function	(see	Chap.	I).	Bessel	functions	Jp(x)	of
order	 p	 =	 0,	 1,	 2,	 3,	 ·	 ·	 ·	 are	 of	 considerable	 importance	 in	 applications,
especially	J0(x)	and	J1(x).	From	(V-0.1)	we	have,	by	virtue	of	Prob.	I-10,

The	standardized	function	Yp(x)	is	defined	as	follows:



where	 γ	 denotes	 Euler’s	 constant	 (see	 Prob.	 I-32)	 and	 where	 	 	 and	

.
For	Y0(x)	 the	 finite	 summation	 in	Eq.	 (V-0.7)	 is	omitted.	We	 remark	here	 that	

	 as	 defined	 here	 is	 related	 to	 the	 value,	 for	 positive	 integers,	 of	 the
logarithmic	 derivative	 of	 the	 Gamma	 function,	 namely	 ψ(x)	 =	 Γ′(x)/Γ(x)
considered	 in	 Probs.	 I-32	 and	 I-33.	 The	 relationship	 is	 this:	

.
For	 the	 general	 solution	 of	 Bessel’s	 equation	 (V-0.1)	 we	 will	 take,	 as	 is

customary,

where	C1	and	C2	are	arbitrary	constants.
In	 applied	 mathematics	 there	 are	 problems	 which	 involve	 differential

equations	 having	 solutions	 in	 terms	 of	 Bessel	 functions	 of	 pure	 imaginary
argument.	Real	solutions	are	then	expressed	in	terms	of	modified	functions.	The
standardized	modified	Bessel	functions	are	denoted	by	Ip(x)	and	Kp(x).	They	are
defined	as	follows,	x	being	real	and	i	denoting	 :



When	 the	 solution	 of	 a	 differential	 equation	 can	 be	 expressed	 in	 terms	 of
Bessel	functions	of	pure	imaginary	argument	ix,	we	will	take	as	general	solution

There	are	also	problems	which	involve	differential	equations	having	solutions
in	terms	of	Bessel	functions	of	argument	i3/2x,	where	x	is	real	and	 .
The	standardized	Bessel	functions	of	such	argument	are	Jp(i3/2x)	and	i−pKp(i3/2x).
Since	these	functions	have	complex	values	for	real	x,	they	are	often	indicated	as
follows:

It	 is,	 however,	 customary	 to	 omit	 the	 subscript	 from	 these	 latter	 designations
when	the	order	p	is	zero	and	to	write	simply

The	complex	function	ber	x	+	i	bei	x	is	often	expressed	in	terms	of	its	modulus
and	its	amplitude:

where

Similarly,	one	may	write



where

Another	 class	 of	 complex	 functions	 found	 to	 be	 convenient	 in	 certain
problems	 is	 the	 class	 of	 functions	 known	 as	 the	Hankel	 functions	Hp(1)(x)	and
Hp(2)(x)	defined	as	follows:

Comparison	of	(V-0.19)	with	(V-0.11)	shows	that	the	Bessel	function	Kn(x)	may
be	indicated	alternatively	as

A	 class	 of	 functions	 known	 as	 Struve	 functions	 	 is	 the	 the	 class
defined	by

	is	a	particular	solution	of

whose	general	solution	is



Bessel	 functions	 are	 also	 called	 cylindrical	 harmonics	 because	 they	 furnish
one	ingredient	for	product	solutions	of	problems	in	which	it	is	required	to	find	a
function	 which	 is	 harmonic,	 that	 is,	 satisfies	 Laplace’s	 equation	 and	 has
continuous	second-order	partial	derivatives,	within	a	right	circular	cylinder	and
which	takes	on	assigned	boundary	values	on	the	surface	of	the	cylinder.
The	 problems	 and	 exercises	 in	 this	 chapter	 are	 concerned	with	 some	 of	 the

properties	 and	 the	 mutual	 relations	 of	 the	 Bessel	 functions	 and	 with	 their
relations	 to	 other	 functions,	 in	 particular	 their	 relations	 to	 trigonometric
functions,	exponential	functions	and	Legendre	polynomials.
At	the	end	of	the	chapter	is	a	selection	of	tables.

Problems:	Differentiation	Formulas
V-1.	Show	that

When	p	 is	 such	 that	xp	 is	 not	 real	 for	x	 negative,	we	 shall	 exclude	 negative
values	 of	x	 from	 consideration.	When	p	 is	 such	 that	 negative	 powers	 of	 x	 are
contained	in	any	of	the	series	expansions	involved,	then	x	=	0	will	naturally	be
excluded.
Case	1.	p	is	not	a	negative	integer.	Then	by	Eq.	(V-0.2)	we	have

Also	by	Eq.	(V-0.2)	we	get

Termwise	 differentiation	 is	 valid	 in	 obtaining	 Eq.	 (V-1.3)	 since	 the	 resulting



series	converges	uniformly	on	any	chosen	finite	interval	of	positive	values	of	x
(on	any	chosen	finite	interval	whatsoever	in	case	negative	values	of	x	and	x	=	0
are	admissible).	By	application	of	Eq.	(I-4.1)	to	each	term	on	the	right	in	Eq.	(V-
1.3)	we	get

The	right	side	of	Eq.	(V-1.2)	is	seen	to	be	the	same	as	the	right	side	of	Eq.	(V-
1.4).	Thus	Eq.	(V-1.1)	is	established	for	Case	1.
Case	2.	p	=	−	n,	n	=	1,	2,	3,	·	·	·	.	We	have

REMARK.	 It	 is	 legitimate	 here	 to	 apply	 Prob.	 V-3	 with	 p	 >	 0,	 since	 the
demonstration	of	that	case	of	Prob.	V-3	does	not	depend	on	Prob.	V-1.

V-2.	Show	that	Eq.	(V-1.1)	holds	also	for	Yp	with	Yp−1:

For	p	nonintegral	we	have	by	Eq.	(V-0.6)



Equation	(V-2.1)	may	be	established	when	p	=	n	=	1,	2,	3,	·	·	·	directly	from
Eq.	(V-0.7)	in	the	manner	used	in	Prob.	V-1	to	establish	the	identity	for	Jp,	or	by
taking	into	account	the	fact	that	Yp(x)	is	a	continuous	function	(for	fixed	x	≠	0)	of
the	parameter	p.

REMARK.	 In	 similar	 manner	 the	 identities	 established	 in	 the	 next	 several
problems	for	the	J-functions	can	be	shown	to	hold	also	for	the	Y-functions.
V-3.	Show	that

Equation	(V-3.1)	is	established	in	the	same	manner	as	Eq.	 (V-1.1)	except	 for
one	 item,	which	 arises	 from	 the	 fact	 that	 the	 series	 for	 x−pJp(x)	 begins	with	 a
constant	term	whose	derivative	is	zero.	Consequently,	the	series	for	the	left	side
of	Eq.	(V-3.1)	may	be	written	as	a	summation	beginning	with	k	=	1	instead	of	k	=
0.	But	the	series	for	the	right	side	of	Eq.	(V-3.1)	is	a	summation	beginning	at	k	=
0.	However,	this	latter	summation	becomes	identical	with	the	summation	for	the
left	side	of	Eq.	(V-3.1)	simply	by	using	a	new	index	of	summation	k1	=	k	+	1,
thus	establishing	Eq.	(V-3.1).

V-4.	Show	that

Carrying	out	 the	differentiation	 indicated	on	 the	 left	 in	Eq.	 (V-1.1),	we	 find
that	Eq.	(V-1.1)	becomes



Solving	Eq.	(V-4.2)	for	the	derivative	of	Jp(x),	we	get	Eq.	(V-4.1).

V-5.	Show	that

Carrying	out	 the	differentiation	 indicated	on	 the	 left	 in	Eq.	 (V-3.1)	 and	 then
solving	the	resulting	equation	for	dJp(x)/dx,	as	was	done	in	Prob.	V-4,	we	get	Eq.
(V-5.1).

V-6.	Show	that

Equation	(V-6.1)	 is	obtained	by	simply	adding	 the	 identities	 (V-4.1)	 and	 (V-
5.1).

Problem:	Recursion	Formulas

V-7.	Show	that

Equation	 (V-7.1)	 follows	 at	 once	 from	 the	 identities	 (V-4.1)	 and	 (V-5.1)
simply	by	subtracting	the	latter	from	the	former	and	then	transposing	the	term	in
Jp(x).

REMARK.	 Identity	 (V-7.1)	 is	 the	 analogue	 in	 Bessel	 functions	 Jp(x)	 of	 the
identity	(III-2.5)	in	Legendre	polynomials.
Problems:	Differentiation	Formulas

V-8.	Verify	the	first	formula	in	Table	V-1	for	q	=	J,	namely



The	 identity	 in	 question	 is	 evidently	 a	 slight	 generalization	 of	 the	 identity
established	in	Prob.	V-1.	All	that	needs	to	be	done	is	to	let	u	=	ax	and	apply	Eq.
(V-1.1)	written	in	terms	of	the	letter	u:

REMARK.	 Similar	 verifications	 may	 be	 made	 of	 each	 of	 the	 other	 formulas
involving	the	argument	ax	in	Table	V-1.	We	may	also	write

V-9.	 Develop	 and	 establish	 formula	 for	 the	 nth	 derivative	 dnJp(x)/dxn	 as
generalization	 of	 the	 formula	 for	 the	 first	 derivative	 d	 Jp(x)/dx	 established	 in
Prob.	V-6.	*

Let	us	first	work	out	formula	for	the	second	derivative	d2Jp(x)/dx2	and	also	for
the	 third	 derivative	 d3Jp/dx3.	 That	 will	 probably	 give	 us	 sufficient	 basis	 from
which	 to	surmise	 the	general	 formula	 for	 the	nthderivative	and	upon	which	we
can	construct	demonstration	to	establish	the	general	formula.
Starting	with	Eq.	(V-6.1)	and	differentiating	both	sides	thereof,	we	get



Now	we	apply	Eq.	(V-6.1)	to	each	of	the	two	derivatives	on	the	right	in	Eq.	(V-
9.1):

It	looks	as	if	we	can	surmise	the	general	formula	for	the	nth	derivative	already
from	the	formula	for	second	derivative	in	Eq.	(V-9.2).	But	let	us	strengthen	(we
trust)	our	surmise	by	going	on	to	the	third	derivative.	Differentiating	Eq.	(V-9.2)
and	applying	Eq.	(V-6.1)	to	the	resulting	derivatives	on	the	right	and	collecting
terms,	we	find	that

We	surmise	that

where	C(n,	k)	denotes	the	coefficient	of	the	(k	+	1)th	term	of	the	expansion	of	the
nth	power	of	a	binomial.	C(n,	k)	is	the	number	of	combinations	of	n	things	taken
k	at	a	time:

The	demonstration	of	the	truth	of	Eq.	(V-9.4)	is	essentially	the	same	as	that	of
the	 binomial	 expansion	 theorem	 to	 be	 found	 in	 any	 good	 algebra	 text.	 Let	 us
sketch	it,	however,	adding	the	extra	arguments	pertinent	to	the	present	situation.
We	 have	 Eq.	 (V-9.4)	 now	 established	 for	 n	 =	 1,	 2,	 3.	 Assume	 it	 true	 for	 a

positive	 integer	n	 and	 differentiate	 it.	 It	 is	 at	 once	 apparent	 that,	 where	 every
derivative	dJj/dx	on	the	right	is	replaced	by	 ,	then	the	(n	+	1)th

derivative	dn+1Jp/dxn+1	will	have	the	coefficient	 .	Moreover,	one	sees	(as	in



the	 proof	 of	 the	 binomial	 theorem	 in	 algebra	 texts)	 that	 the	 (k	 +	 1)th	 term	 in
dn+1Jp/dxn+1	comes	from	the	kth	and	the	(k	+	1)th	terms	of	dnJp/dxn.	From	them,
apart	 from	 the	 factor	 ,	 we	 obtain,	 by	 Eq.	 (V-6.1),	 as	 their	 contribution	 to
dn+1Jp/dxn+1,

The	portion	of	this	contribution	which	makes	up	the	(k	+	1)th	term	in	dn+1jp/dxn+1

is

which	combines	by	application	of	Eq.	(V-9.5)	to

This	last	expression	is	the	same	as	that	occurring	for	the	(k	+	1)th	term	in	Eq.
(V-9.4)	with	n	replaced	by	n	+	1.	Thus,	whenever	Eq.	(V-9.5)	holds	for	a	positive
integer	n,	it	holds	for	n	+	1.	This,	combined	with	the	fact	that	it	holds	for	n	=	1,
2,	3	validates	Eq.	(V-9.4)	for	derivatives	of	all	orders.

V-10.	Show	that

where,	as	given	in	the	introduction	to	this	chapter,	ber	x	and	bei	x	are	defined	by

and	the	primes	on	ber	and	on	bei	mean	derivative	with	respect	to	x.	Also	given	is
a	particular	solution	of



namely

If	we	observe	that	Eq.	(V-10.4)	may	be	written	as

then,	by	Eq.	(V-10.5),	we	have

that	is,

And	now	the	equations	to	be	demonstrated,	namely,	Eqs.	(V-10.1)	and	(V-10.2),
follow	at	once	from	Eq.	(V-10.7)	by	separation	of	reals	and	imaginaries.

REMARK.	Equation	(V-10.4)	is	solved	in	Prob.	VI-6.

Problem:	Evaluation	of	Integrals	Involving	Bessel	Functions

V-11.	Evaluate

We	write	this	integral	as	the	sum	of	two	integrals

Each	 of	 these	 two	 integrals	 is	 readily	 evaluated	 via	 integration	 by	 parts,	 the
procedure	 for	 the	 second	 being	 quite	 the	 same	 as	 for	 the	 first.	 So,	 we	 shall
present	 the	 details	 only	 for	 the	 first	 integral,	which	we	will	 denote	 by	R1	We
write



and	integrate	by	parts,	taking	u	=	x	ber′x	and	dv	=	ber′x	dx.	We	get

by	Eq.	(V-10.1).	Thus,

In	exactly	the	very	same	manner	we	find	via	Eq.	(V-10.2)	in	Prob.	V-10	 that
the	second	integral

Addition	of	Eqs.	(V-11.1)	and	(V-11.2)	yields	the	value	requested:

Problem:	Differentiation	Formulas
V-12.	 Show	 that,	 for	 each	 real	 number	x,	 the	modulus	 of	 (d/dx)[J0(i3/2x)]	 is

equal	to	the	modulus	of	J1(i3/2x).	*
By	formula	(C)	in	Table	V-1	we	have

The	 factor	 −	 i3/2	 on	 the	 right	 in	 Eq.	 (V-12.1)	 has	 modulus	 unity.	 Thus,	 the
modulus	 of	 the	 function	 on	 the	 right	 in	 Eq.	 (V-12.1)	 is	 the	 same	 as	 that	 of
J1(i3/2x).	Consequently,



as	was	to	be	demonstrated.
The	equality	expressed	in	Eq.	(V-12.2)	can	be	written	in	another	form,	by	Eqs.

(V-0.13)	and	(V-0.15),	as	follows:

REMARK.	Although	 	and	J1(i3/2x)	have	the	same	modulus	for	each	real
x,	they	do	not	have	the	same	amplitude	by	virtue	of	the	rotating	factor	−	i3/2	on
the	right	in	Eq.	(V-12.1).

Problems:	Specific	Evaluations

V-13.	Evaluate	J1(.1)	correct	to	four	decimal	places	via	Eq.	(V-0.5),	namely

The	terms	in	the	series	in	Eq.	(V-13.1)	alternate	in	sign.	For	any	chosen	x	they
are	such	that	eventually	(from	some	term	on)	each	term	is	less	in	magnitude	than
its	 predecessor.	And	 the	 limit	 of	 the	nth	 term	 is	 zero	 as	n	→	∞.	 So,	 the	 error
committed	by	taking	a	partial	sum	of	the	series	as	approximate	value	for	J1(x)	is
less	 in	 amount	 than	 the	 size	 of	 the	 first	 term	 not	 included	 in	 the	 partial	 sum.
When	 we	 take	 x	 =	 .1,	 the	 third	 term	 of	 the	 series	 is	 less	 in	 size	 than	 10−7.
Consequently,	the	partial	sum	made	up	of	only	the	first	two	terms	will	give	J1(.1)
correct	to	six	decimal	places.	And	we	have

Since	 the	 third	 term	 is	 positive,	 the	 value	 of	 J1(.1)	 is	 slightly	 more	 than	 the
approximate	 value	 just	 indicated.	 Thus,	we	may	 conclude	 that,	 to	 six	 decimal
places,



V-14.	Compute	Y3(.8)	to	four	decimal	places	via	Eq.	(V-0.7).	*
The	term	preceding	the	two	summations	in	the	formula	for	Yn(x)	as	given	by

Eq.	(V-0.7)	can	be	computed	to	as	many	significant	figures	as	are	available	for	γ
and	natural	logarithms	and	Jn(x).	If	we	take	J3(.8)	from	our	four-place	Table	V-3,
our	 accuracy	 in	 the	 computation	 of	 this	 part	 of	 Y3(.8)	 is	 limited	 to	 four
significant	figures.	But,	as	we	shall	see,	only	two	will	be	needed.
On	the	other	hand,	the	coefficients	in	the	finite	summation	in	the	formula	for

Yn(x)	 are	 all	 rational	 numbers,	 so	 that	 the	 contribution	 of	 this	 summation	 to
Y3(.8)	can	be	computed	with	any	desired	degree	of	accuracy	whatsoever.
The	infinite	summation	in	the	formula	for	Yn(x)	is	an	alternating	series.	When

written	 for	Y3(.8)	 the	 terms	 decrease	 in	 size	 immediately	 from	 the	 first	 term.
Consequently,	 the	error	committed	 in	using	a	partial	 sum	of	 this	 series	will	be
less	in	magnitude	than	the	size	of	the	first	term	not	retained.	It	looks	as	if	it	will
suffice	 to	 retain	only	 the	 first	 two	 terms	of	 this	 series.	Let	us	 check	 this	hasty
judgement	 by	 an	 appraisal	 of	 the	 size	 of	 the	 third	 term.	 The	 third	 term	 (term
where	k	=	2)	in	this	series	when	n	=	3	and	x	=	.8	is

which	is	readily	found	by	a	rough	appraisal	to	be	much	less	in	size	than	.00005.
We	are	now	ready	for	our	computation.	We	have

The	middle	number	within	the	braces	is	exact.	The	other	two	are	correct	to	six
decimal	places.	Thus,	we	may	write



which	will	be	found	to	agree	to	four	decimal	places	with	the	entry	for	Y3(.8)	in
published	 tables.	 (See,	 for	 example,	 Watson,	 Theory	 of	 Bessel	 Functions,
Cambridge,	1944.)

Problem:	Differentiation	Formulas

V-15.	Show	that	the	Wronskian

equals	C/x,	where	C	is	a	constant	and	where	(as	indicated)	the	argument	for	each
of	the	involved	functions	is	x.*

We	can	obtain	an	expression	for	Wp	from	the	fact	that	y	=	Jp	and	y	=	Yp	both
satisfy	the	Bessel	equation

We	have

And	we	get	Wp	by	multiplying	Eq.	(V-15.1)	by	YP,	multiplying	Eq.	(V-15.2)	by
Jp,	then	subtracting	and	solving	for	Wp:

Differentiation	of	Wp,	namely	 ,	shows	that	the	expression
in	brackets	on	the	right	in	Eq.	(V-15.3)	is	dWp/dx.	So,	Eq.	(V-15.3)	becomes

Solution	of	Eq.	(V-15.4)	yields	Wp	=	C/x,	where	C	is	a	constant.

REMARKS.	 Evaluation	 of	C	 can	 be	 effected	 by	 determining	 the	 limit	 of	 the
product	xWp	as	x	→	0.	It	is	found	thereby	that	C	=	2/π,	so	that	we	have



Any	two	solutions	y	=	F(x)	and	y	=	G(x)	of	Bessel’s	equation	(V-0.1)	which
satisfy	the	Wronskian	relation

are	said	to	constitute	a	fundamental	system.

Problem:	Recursion	Formulas

V-16.	Show	that

The	identity	to	be	established	follows	from	Eq.	(V-15.5)	by	application	of	Eq.
(V-5.1)	written	for	Yp	instead	of	Jp,	such	replacement	being	valid	by	the	remark
in	Prob.	V-8.	Starting	with	Eq.	(V-15.5),	namely

and	replacing	each	of	the	derivatives	therein	by	its	equivalent	from	Eq.	 (V-5.1)
with	Yp	for	Jp,	we	have

which	simplifies	to	Eq.	(V-16.1).

REMARK.	The	equation	corresponding	to	Eq.	(V-16.1)	which	is	satisfied	by	the
modified	Bessel	functions	is

Problems:	Functions	of	Orders	

V-17.	Show	that



Taking	p	=	−1/2	in	Eq.	(V-0.2)	we	have

Now	we	apply	Eq.	(I-12.2)	to	the	denominator	factor	 .	We	also	observe
as	in	Prob.	I-16,	using	k	for	n,	that

We	get

The	 series	 indicated	 by	 the	 summation	 in	Eq.	 (V-17.3)	 is	 seen	 to	 be	 the	well-
known	Maclaurin	series	for	cos	x.	Thus	Eq.	(V-17.1)	is	established:

V-18.	Show	that	 .	*

Taking	 in	Eq.	(V-0.2)	and	then	multiplying	both	sides	by	 ,	we	get

Replacing	 	by	 /2k+1	from
Prob.	I-13,	we	have



Since	2kk!	=	(2k)(2k	−	2)(2k	−	4)	·	·	·	(4)(2),	we	find,	by	Probs.	I-16	and	I-10,
that	Eq.	(V-18.2)	becomes

The	summation	in	Eq.	(V-18.3)	is	seen	to	be	the	well-known	Maclaurin	series	for
sin	x,	namely

Thus,

REMARK.	In	similar	manner	one	finds	from	Eq.	(V-0.2)	together	with	Eq.	 (V-
0.9)	that

Problem:	Differentiation	Formulas

V-19.	Show	that	the	formula	established	in	Prob.	V-3,	namely	(d/dx)[x−pJp(x)]
=	−x−pJp+1(x),	can	be	generalized	to



We	multiply	both	sides	of	Eq.	(V-3.1)	by	1/x:

Then	we	indicate	the	combined	operations	of	taking	derivative	and	multiplying
by	1/x	as	follows:

We	apply	this	operator	to	both	sides	of	Eq.	(V-19.3)	and	make	use	of	Eq.	(V-3.1)
to	transform	the	resulting	right	side:

Indicating	 the	 iterated	 combined	 operation	 on	 the	 left	 in	 Eq.	 (V-19.4)	 by
(d/xdx)2,	we	may	write	Eq.	(V-19.4)	as

It	 is	 now	 apparent	 that	 by	mathematical	 induction	we	 can	 arrive	 at	 Eq.	 (V-
19.1).

Problem:	Functions	of	Order	

V-20.	 Apply	 the	 formula	 (V-19.1)	 to	 the	 expression	 for	 J1/2(x)	 obtained	 in
Prob.	V-18	to	obtain	J5/2(x)	as	a	closed	expression	in	terms	of	x	and	sin	x	and	cos
x.*

Taking	n	=	2	 in	Eq.	 (V-19.1)	with	 the	sides	 interchanged	and	 then	 replacing



J1/2(x)	by	the	expression	obtained	for	it	in	Prob.	V-18,	we	find	that

REMARK.	Similarly	one	can	obtain	a	closed	expression	for	Jn+1/2(x),	where	n	is

any	positive	integer,	consisting	of	 times	a	 finite	sum	of	 fractions	whose
denominators	 are	 nonnegative	 integral	 powers	 of	 x	 while	 the	 numerators	 are
integral	multiples	of	sin	x	or	cos	x.

Problem:	Alternation	of	Zeros

V-21.	 Figure	 V-1	 suggests	 that	 (a)	 J0(x)	 has	 infinitely	 many	 distinct	 zeros
(values	of	x	where	J0(x)	=	0),	(b)	the	same	is	true	of	J1(x),(c)	the	zeros	of	J0(x)
alternate	with	those	of	J1(x).	Given	(a)	and	(b),	prove	(c).	*

Let	x′	and	x″	denote	any	two	consecutive	zeros	of	J0(x).	By	Eq.	(V-3.1)	with	p
=	0	we	have

Since	 J0(x′)	 =	 J1(x″)	 =	 0	 and	 since	 J0	 is	 differentiable	 at	 all	 x,	 it	 follows	 by
Rolle’s	theorem	(between	two	zeros	of	a	differentiable	function	lies	at	least	one
zero	 of	 its	 derivative)	 that	 the	 derivative	 dJ0/dx	 must	 vanish	 at	 least	 once



between	 x′	 and	 x″,	 say	 at	 x*.	 Then	 by	 Eq.	 (V-21.1)	 we	 have	 J1(x*)	 =	 0.	 By
similar	 argument	 using	 Eq.	 (V-l.l)	 one	 finds	 that	 between	 every	 pair	 of
consecutive	zeros	of	J1(x)	must	 lie	 a	 zero	 of	 J0(x).	Consequently,	 the	 zeros	 of
J1(x)	alternate	with	those	of	J0(x).

REMARKS.	1.	The	existence	of	infinitely	many	distinct	zeros	is	true	not	only	for
J0(x)	and	J1(x)	but	 for	every	Jp(x)	and	every	Yp(x)	whatever	be	 the	order	of	p.
(For	 proof	 see,	 for	 instance,	Watson,	Theory	 of	 Bessel	 Functions,	 Cambridge,
1944.)
2.	If	we	move	away	from	the	origin	to	avoid	such	discontinuities	as	may	come

from	x−h,	the	property	of	alternation	of	zeros	just	established	for	J0(x)	and	J1(x)
holds	by	essentially	the	same	proof	for	every	pair	of	Bessel	functions	Jp(x)	and
Jq(x)	whose	orders	differ	by	unity.
3.	 It	 is	 really	 not	 surprising	 to	 learn	 that	 Jp(x)	 has	 infinitely	 many	 distinct

zeros,	 since	 the	 series	 formula	 for	 JP(x)	 in	 Eq.	 (V-0.2)	 is	 so	 similar	 to	 the
Maclaurin	 series	 for	 sin	 x	 or	 for	 cos	 x.	 Moreover,	 the	 presence	 of	 the	 two
additional	 denominator	 factors	 2p+2k	 and	 Γ(p	 +	 k	 +	 1)	 is	 apparently	 what
accounts	for	the	decrease	in	absolute	value	of	Jp(x)	as	x	→	∞.

Figure	V-1



Bessel	Functions	of	the	First	Kind

Problems:	Generating	Functions

V-22.	Demonstrate:	A	generating	function	for	the	family	of	Bessel	functions

is	the	function

This	 problem	 is	 the	 analogue	of	Prob.	 III-1.	Accordingly,	 our	 problem	 is	 to
express	G(h,	x)	in	an	infinite	series	in	integral	powers	of	h	and	to	show	that	the
coefficient	of	hn	is	Jn(x)	and	of	h−n	is	J−n(x).
To	 expand	G(h,	 x)	 in	 positive	 and	 negative	 powers	 of	 h	 we	 naturally	 try

making	use	of	Maclaurin’s	series	for	eu,	namely

Then,	by	Eq.	(V-22.1),	we	may	write

Since	both	series	in	Eq.	(V-22.2)	converge	by	Eq.	 (V-22.1)	 for	all	x	 together
with	all	h	≠	0	and,	for	each	choice	of	x,	converge	uniformly	on	any	closed	finite
interval	of	values	of	h	not	containing	h	=	0,	we	may	multiply	termwise	the	two
series	and	collect	together	terms	in	like	powers	of	h;	and	the	resulting	series	so
formed	will	converge	to	G(h,	x)	for	all	x	together	with	all	h	≠	0.	For	n	 	0	the
term	in	hn	in	the	multiplied	series	is	made	up	of	the	collection	of	all	those	pairs
of	products	of	terms—one	in	each	of	the	two	series	being	multiplied	together—
such	that	 the	power	of	h	 in	the	first	series	on	the	right	 in	Eq.	(V-22.2)	exceeds
the	absolute	of	the	power	of	h	in	the	second	series	by	n.	Thus,	for	the	coefficient



An	of	hn	when	n	 	0	we	get

For	the	coefficient	A−n	of	h−n	We	find	that	the	only	change	from	the	right	side
of	Eq.	(V-22.3)	is	that	k	changes	places	with	k	+	n	with	the	result	that	we	get	(−
1)n+k	inplaceof(−	1)k.	This	means	that

We	have,	therefore,	shown	that

for	all	x	together	with	all	h	≠	0.

V-23.	It	is	known	that

where	J0	 denotes	 the	Bessel	Function	of	 order	 zero	 and	Pn(x)	 is	 the	Legendre
polynomial	 of	 degree	 n.	 (See,	 for	 example,	 Rainville,	 Special	 Functions,
Macmillan,	1960.)	The	function	on	the	left	 in	Eq.	(V-23.1)	is	 thus	a	generating
function	 for	 the	 set	 of	Legendre	 polynomials	 as	 defined	 in	 the	 introduction	 to



Chapter	 III.	Verify	 that	 the	 coefficients	 of	 the	 first	 several	 powers	 of	h	 in	 the

Maclaurin	 series	 for	 	 considered	 as	 a	 function	of	h	 with	 x
held	constant	are	as	indicated	in	Eq.	(V-23.1).	*

To	work	out	 the	 first	 several	 terms	of	 the	expansion	of	 	via	 the
successive	derivatives	of	 this	product	 function	appears	 to	be	a	 forbidding	 task.
But	there	is	another	way	which	is	not	so	onerous.	It	is	to	multiply	the	Maclaurin
series	for	exh	by	the	series	for	the	J0-function	as	given	in	Eq.	(V-0.4).	We	find,	by

substituting	the	argument	 for	x	in	Eq.	(V-0.4),	that

This	 expansion	 is	 valid	 for	 all	h	 and	 for	 all	 x	 having	 |x|	 	 1.	 (We	 confine
ourselves	to	real	x	and	real	h.)	The	Maclaurin	series	for	exh	is	well	known:

and	 is	valid	 for	 all	x	 and	h.	Since	 the	 series	 expansions	 (V-23.2)	 and	 (V-23.3)
have	the	common	interval	of	convergence	−	∞	<	h	<	+	∞,	no	matter	what	value
be	taken	for	x	in	them	with	|x|	 	1,	the	formal	term-by-term	algebraic	product	of
the	series	in	Eqs.	(V-23.2)	and	(V-23.3)	will	converge	for	all	h,	together	with	any
choice	of	x,	 to	the	product	of	 the	functions	on	the	left	 in	these	equations.	Thus
we	get



Multiplying	and	dividing	the	coefficient	of	hn	by	n!	and	simplifying,	we	have

We	see	that	the	coefficients	in	brackets	are	the	Legendre	polynomials	P0,	P1,	P2,
P3,	P4,	P5	(as	determined	in	Probs.	III-4,	III-5,	III-6).

Problems:	Orthogonality	Property	and	Related	Property

V-24.	Show	that	the	family

is	orthogonal	on	the	interval	B:	0	 	x	 	1,	where	α1,	α2,	α3,	·	·	·	are	the	positive
zeros	of	the	Bessel	function	J0(x).	*

We	have	to	show	that



Comparison	with	the	analogous	problem	in	Legendre	polynomials,	Prob.	III-16,
suggests	the	possibility	of	similar	procedure	here.	We	seek,	then,	to	express	the
integral	above	in	a	form	which	will	be	amenable	to	integration.	And	to	do	so	we
start,	 as	 in	 Prob.	 III-16,	 from	 differential	 equations	 satisfied	 by	 J0(αmx)	 and
J0(αnx).
By	formulas	(A)	and	(C)	in	Table	V-1	we	have

Multiplying	 Eq.	 (V-24.2)	 by	 J0(αnx),	 Eq.	 (V-24.3)	 by	 J0(αmx)	 and	 then
subtracting,	we	have

At	this	point	the	procedure	becomes	simpler	than	in	Prob.	III-16.	For	scrutiny
of	the	left	side	of	Eq.	(V-24.4)	shows	that	we	do	not	need	(as	in	Prob.	III-16)	to
resort	to	integration	by	parts:	the	left	side	of	Eq.	(V-24.4)	as	it	stands	is,	in	fact,
the	derivative	of	a	difference.	Thus,	Eq.	(V-24.4)	reduces	at	once	to

Equation	 (V-24.5)	 can	 be	 still	 further	 reduced	 by	 applying	 Eq.	 (V-3.1)	 to	 the
derivatives	 within	 the	 brackets	 as	 follows.	 Let	 u	 =	 kx	 where	 k	 denotes	 an
arbitrary	constant.	Then	by	Eq.	(V-3.1)	written	in	terms	of	u	with	p	=	0	we	have

Thus,	Eq.	(V-24.5)	becomes



Interchanging	 sides	 in	Eq.	 (V-24.6)	 and	 then	 integrating	 both	 sides	 over	 the
interval	B:	0	 	x	 	1	and	recalling	that	J0(αm)	=	J0(αn)	=	0	and	that	J1(0)	=	0,
we	get

Since	αn	 ≠	 αm	 when	 n	 ≠	m,	 it	 follows	 that	 the	 integral	 in	 Eq.	 (V-24.7)	 must
vanish	when	n	≠	m,	thus	establishing	Eq.	(V-24.1).

REMARK.	 The	 orthogonality	 property	 expressed	 in	 Eq.	 (V-24.1)	 is	 often
described	by	saying	that	the	family	{J0(αnx)}	is	orthogonal	on	the	interval	0	 	x	
	1	with	respect	to	the	weight	function	w(x)	=	x.

V-25.	 Show	 that	 the	 family	 ,	 n	 =	 1,	 2,	 3,	 ·	 ·	 ·	 is	 such	 that	 the
integral	over	 the	 interval	0	 	x	 	 1	 of	 the	 square	 of	 the	nth	member	 is	 (1/2)
[J1(αn)]2:

Apparently	 here	we	 cannot	 parallel	 the	work	 in	 the	 corresponding	 problem,
namely	 Prob.	 III-17,	 in	 the	 Legendre	 polynomials,	 since	 we	 have	 nothing	 to
correspond	to	Rodrigues’s	formula.	However,	a	review	of	Prob.	V-24	shows	that
all	the	steps	carried	out	there	through	Eq.	(V-24.6)	will	hold	when	αm	and	αn	are
replaced	 respectively	 by	 any	 two	 unequal	 constants	 g	 and	 h.	 Making	 such
replacement	and	integrating	both	sides	of	Eq.	(V-24.6)	over	the	interval	0	 	x	
1,	we	get

How	can	we	make	use	of	Eq.	(V-25.2)	to	evaluate	the	integral	of	x[J0(αnx)]2?



We	would	 like	 to	 evaluate	 the	 integral	 in	 Eq.	 (V-25.2)	when	g	 =	h	 =	αn.	 But
when	g	 =	h,	 both	 the	 numerator	 and	 denominator	 on	 the	 right	 in	Eq.	 (V-25.2)
equal	zero.	However,	that	is	the	very	thing	which	provides	the	clue,	as	follows.
The	right	side	of	Eq.	(V-25.2)	is	a	function	of	two	arguments	g	and	h.	If	we	hold
one	of	them	fixed,	say	g,	at	αn,	then	the	right	side	of	Eq.	(V-25.2)	is	a	function	of
h	alone	which	becomes	the	indeterminate	form	0/0	when	h	=	g	=	αn.	Otherwise
the	right	side	of	Eq.	(V-25.2),	regarded	as	a	function	of	h	alone	with	g	=	αn	is	a
continuous	and	differentiate	function	of	h.	So,	we	may	apply	L’Hospital’s	Rule:

Replacing	 J0(αn)	 by	 zero	 and	 applying	 Eq.	 (V-3.1)	 with	 h	 =	 x	 and	 p	 =	 0	 to
replace	the	derivative	J0(h)	by	−	J1(h),	we	get

Problems:	Expansion	of	a	Given	Function	in	Bessel	Functions

V-26.	 If	 on	 the	 interval	 B	 :	 0	 	 x	 	 1	 the	 function	 f(x)	 is	 bounded,	 is
continuous	except	for	a	finite	number	of	simple	discontinuities	and	is	such	that
the	curve	y	=	f(x)	is	rectifiable	(has	finite	length),	then	f(x)	can	be	expanded	in	a
series	of	the	form

valid	at	every	point	of	continuity	of	f(x)	on	the	open	interval	0	<	x	<	1,	where	αn,



n	=	1,	2,	3,	·	·	·	are	the	positive	zeros	of	J0(x).	Assuming	the	series	expansion	in
Eq.	(V-26.1)	is	termwise	integrable	over	B	when	each	term	thereof	is	multiplied
by	an	arbitrary	J0(αkx),	show	that	the	coefficients	An,	n	=	1,	2,	3,	·	·	·	are	given
by

This	problem	is	analogous	to	Prob.	III-18.	Multiplying	both	sides	of	Eq.	 (V-
26.1)	by	xJ0(αkx)	and	integrating	over	B,	we	get

Every	 integral	 on	 the	 right	 in	 Eq.	 (V-26.3)	 vanishes	 by	 the	 orthogonality
property	shown	in	Prob.	V-24	except	the	term	where	n	=	k.	The	value	of	this	lone
nonvanishing	term	by	Prob.	V-25	is	(Ak/2)[J1(αk)]2.	Thus	Eq.	(V-26.3)	yields	the
formula	(V-26.1).

REMARKS.	 The	 convergence	 properties	 of	 the	 expansion	 (V-26.1)	 having
coefficients	given	by	(V-26.2)	are	essentially	the	same	as	those	of	the	expansion
in	 Prob.	 III-18.	 In	 particular,	 the	 series	 in	 Eq.	 (V-26.1)	 converges	 to	 the
arithmetic	mean	of	the	two	functional	limits	at	each	point	x0	of	discontinuity	on
the	 open	 interval	 0	 <	 x	 <	 1.	At	 x	 =	 1,	 however,	 the	 sum	 of	 the	 series	 is	 zero
(because	J0(αn)	=	0	for	n	=	1,	2,	3,	·	·	·)	regardless	of	the	value	of	f(x)	at	x	=	1.	If
f(x)	 is	 bounded	 and	 continuous	 and	 has	 limited	 total	 fluctuation	 on	 the	 open
interval	0	<	x	<	1,	then	at	x	=	0,	the	series	in	Eq.	(V-26.1)	converges	to	f(0+),	that

is,	to	 .	If	f(x)	has	continuous	second	derivative	on	B	and	if	f(1)	=	0,
then	the	series	in	Eq.	(V-26.1)	is	uniformly	convergent	to	f(x)	on	B.
For	 proof	 of	 these	 remarks	 see,	 for	 example,	 Watson,	 Theory	 of	 Bessel

Functions,	 Cambridge,	 1944.	 Compare	 also	 Kaplan,	 Advanced	 Calculus,
Addison-Wesley,	1952.

V-27.	Show	that	for	a	function	f(x)	to	be	expanded	on	the	interval	0	 	x	 	L
the	expansion	formula	of	Prob.	V-26	becomes



where

We	first	write	the	expansion	formula	of	Prob.	V-26	 in	 terms	of	a	 letter	 t	and
with	 f(x)	 replaced	by	g(t).	Then	 the	 linear	 transformation	x	=	Lt	makes	 t	 =	x/L
and	dt	=	dx/L,	so	that	the	expansion	formula	of	Prob.	V-26	becomes	Eq.	(V-27.1)
with	coefficients	given	by	Eq.	(V-27.2).	Compare	with	Prob.	IV-4.

REMARK.	 Expansions	 analogous	 to	 those	 of	 Probs.	 V-26	 and	 V-27	 may	 be
obtained	in	the	form

where	 αpj	 is	 the	 jth	 positive	 zero	 of	 JP(x).	 The	 details	 of	 the	 treatment	 are
essentially	 the	 same	 as	 those	 involved	 in	 Prob.	V-26	 and	 V-27	 and	 problems
preparatory	thereto.	It	turns	out	that	for	a	suitably	restricted	f(x)	we	may	have

where

Problems:	Evaluation	of	Integrals	Involving	Bessel	Functions

V-28.	Evaluate	the	integral	 ,	a	≠	0.	*

This	integral	is	readily	evaluated	by	applying	to	its	integrand	the	formula	(A)
in	Table	V-1,	taking	qp(ax)	=	Jp(ax)	with	p	=	1.	Thus,	we	have



V-29.	 Evaluate	 the	 integral	 	 where	 a	 is	 a	 constant
unequal	to	zero.	*

Letting	ax	=	t,	we	have

Integrating	by	parts,	we	take	u	=	 t	and	dv	=	 tJ0(t)dt,	 so	 that	by	Eq.	 (V-1.1)	we
have	v	=	tJ1(t).	Then,	as	in	Prob.	V-28,

We	integrate	by	parts	once	more,	taking	u	=	t	and	dv	=	J1(t)dt.	Then,	by	Eq.
(V-3.1),	we	have	v	=	−	J0(t).	Thus

The	integral	of	J0(t)	can	be	approximately	evaluated	with	any	desired	degree
of	 accuracy	by	 termwise	 integration	of	 the	 series	 for	J0(t)	 as	given	by	Eq.	 (V-
0.4).	Termwise	integration	is	valid	since	the	series	converges	uniformly	over	any
finite	interval.	It	is	readily	found	that



Thus,	the	value	of	the	integral	x2J0(ax)	over	0	 	x	 	b	is	given	by	the	right	side
of	Eq.	(V-29.1)	where	the	value	of	the	integral	J0(t)	over	0	 	t	 	ab	is	given	by
Eq.	(V-29.2).

V-30.	Evaluate	the	integral	 where	a	is	a	constant	≠	0.	*
We	let	ax	=	t.	Then	we	have

We	integrate	by	parts	taking	u	=	t2	and	dv	=	tJ0(t)dt.	Then

Thus	v	=	tJ1(t)	+	C	where	C	is	a	constant.	It	will	not	matter	what	value	we	take
for	C,	 since	we	 are	 integrating	 between	 limits.	We	 choose	C	 =	 0,	 so	 that	 v	 =
tJ1(t).	Accordingly,

We	apply	Eq.	(V-1.1)	once	more,	this	time	replacing	t2J1(t)	by	(d/dt)[t2J2(t)].
Thus	we	have

REMARK.	 In	 similar	 manner	 one	 can	 evaluate	 any	 integral	 of	 the	 type	

	where	n	is	any	odd	positive	integer.	One	finds,	for	example	that



V-31.	Evaluate	the	integral	 	where	a	is	a	constant	≠	0.	*

The	 initial	 steps	 of	 procedure	 are	 the	 same	 as	 in	Prob.	V-28	 and	V-29.	 The
final	 step,	 however,	will	 be	 seen	 to	 be	 somewhat	 different.	Letting	ax	 =	 t,	we
have

Integrating	by	parts	with	u	=	t3	and	dv	=	tJ0(t)dt,	whereby	we	have	v	=	tJ1(t)	by
Eq.	(V-1.1),	we	get

We	integrate	by	parts	once	more,	this	time	taking	u	=	t	and	dv	=	t2J1(t)dt,	 so
that	by	Eq.	(V-1.1)	we	have	v	=	t2J2	(t).	Accordingly,

The	 integral	 remaining	 to	 be	 evaluated	 can	 be	 transformed	 so	 as	 to	 be
amenable	to	integration	as	follows.	We	express	J2(t)	in	terms	of	J1(t)	and	J0(t)	by
Eq.	(V-7.1),	namely,

taking	p	=	1	and	then	solving	for	J2(t):



Thus	Eq.	(V-31.1)	becomes

Both	 the	 integrals	 remaining	 to	 be	 evaluated	were	 evaluated	 in	 Prob.	V-29.
There	it	was	found	that

Substituting	in	Eq.	(V-31.2)	the	values	of	the	two	remaining	integrals	as	given	by
Eqs.	(V-31.3)	and	(V-31.4),	we	get

where	the	integral	of	J0(t)	over	0	 	t	 	ab	is	given	by	Eq.	(V-29.2).
REMARK.	 Comparison	 of	 Probs.	V-29	 and	V-31	 with	 Probs.	V-28	 and	 V-30

indicates	that	integrals	of	the	form

can	be	evaluated	in	terms	of	closed	forms	when	n	is	an	odd	positive	integer,	but
that	 such	 is	not	 the	case	when	n	 is	 an	 even	positive	 integer.	 In	 the	 latter	 case,
then,	 it	would	seem	advisable	 to	express	 the	 integrand	xnJ0(ax)	immediately	as
an	infinite	series	via	Eq.	(V-0.4)	and	integrate	termwise.



V-32.	Show	that	for	p	 	0,

where	a	is	a	constant.	*
If	we	let	y	=	Jp(ax),	then	it	will	be	seen	that	a	point	of	departure	is	furnished

by	the	differential	equation	satisfied	by	y,	namely	(see	remark	below)

This	 equation	 can	 be	 put	 in	 a	 form	which	will	 permit	 evaluation	 of	 the	 given
integral	as	follows.	If	we	multiply	both	sides	of	Eq.	(V-32.2)	by	2y′	and	then	add
2a2xy2	 to	 both	 sides	 and	 then	 interchange	 sides,	 we	 find	 that	 Eq.	 (V-32.2)
becomes

The	 left	 side	of	Eq.	 (V-32.3),	 except	 for	 the	 factor	2a2,	 is	 the	 integrand	of	 the
given	integral.	And	the	right	side	of	Eq.	(V-32.3)	is	a	derivative.	So,	integrating
over	the	interval	zero	to	x,	we	get

At	x	=	0,	the	first	term	in	brackets	in	Eq.	(V-32.4)	vanishes	for	every	p	 	0.	For
p	positive	 the	second	 term	also	vanishes	at	x	=	0,	because	y	 =	Jp(ax)	vanishes
there	by	Eq.	(V-0.2).	When	p	=	0,	then	a2x2	−	p2	vanishes	at	x	=	0.	So,	for	p	 	0
we	have

There	remains	only	 to	 transform	the	right	side	of	Eq.	 (V-32.5)	 into	 the	 right
side	of	Eq.	(V-32.1).	It	is	evident	that	the	transformation	will	involve	two	of	the
formulas	listed	in	Table	V-1	as	follows.	By	(E)	in	Table	V-1	we	have



And	(L)	in	Table	V-1	when	multiplied	on	both	sides	by	(2ap/x)Jp−1(ax)	gives	us

By	virtue	of	Eqs.	(V-32.6)	and	(V-32.7)	we	find	that	Eq.	(V-32.5)	becomes	Eq.
(V-32.1),	as	was	to	be	shown.

REMARK.	Eq.	(V-32.2)	above	is	solved	in	Prob.	VI-1.
V-33.	Show	that

assuming	 that	 the	 integrals	 	 are	 convergent	 and
given	that

It	is	not	immediately	apparent	how	we	can	use	Eqs.	(V-33.2)	and	(V-33.3)	so
as	to	arrive	at	Eq.	(V-33.1).	However,	since	the	two	integrals	are	to	be	involved
to	 evaluate	 the	 given	 integral,	 it	 turns	 out	 that	 the	 procedure	 is	 to	 set	 up	 an
iterated	integral	involving	the	exponential	function	e−ax	as	follows.
If	a	is	any	constant	 	0,	then	the	integral



will	be	convergent.	And	we	will	have

If,	now,	we	consider	x	and	 	as	rectangular	plane	coordinates	(with	 	playing
the	role	usually	denoted	by	y),	then	by	arguments	like	those	used	in	Prob.	I-11	to
evaluate	 	we	may	consider	the	iterated	integral	in	Eq.	(V-33.4)	equivalent	to
a	double	integral	taken	over	the	strip	region	R	in	the	 -plane	comprised	of	all
points	 	for	which	x	 	0,	0	 	 	 	π.	And	then	the	double	integral	taken
over	R	may	be	set	equal	to	an	interated	integral	in	which	the	order	of	integration
is	reversed	from	that	in	Eq.	(V-33.4).	Thus,	Eq.	(V-33.4)	is	equivalent	to

The	inner	integral	on	the	right	in	Eq.	(V-33.5)	for	a	>	0	has	the	value

Thus,	for	a	>	0,	we	have

which	by	application	of	Eq.	(V-33.2)	becomes

Equation	(V-33.6)	has	been	attained	under	the	qualification	that	a	>	0.	But	the
integral	on	the	left	is	convergent	for	a	 	0,	as	observed	in	the	second	paragraph.



Moreover,	 the	 integral	 in	 Eq.	 (V-33.6),	 when	 regarded	 as	 function	 of	 the
parameter	 a,	 with	 b	 held	 constant,	 is	 a	 continuous	 function	 of	 a	 for	 a	 	 0.
Consequently,	its	value	for	a	=	0	is	given	by	the	right	side	of	Eq.	(V-33.6)	when
a	 =	 0,	 since	 the	 right	 side	 of	 Eq.	 (V-33.6),	 regarded	 as	 function	 of	 a,	 is
continuous	for	all	a.	Taking	a	=	0	and	n	=	0	in	Eq.	(V-33.6),	we	have

and	taking	b	=	1,

REMARK.	1.	An	integral	more	general	than	the	integral	in	Eq.	(V-33.6)	is

It	will	be	observed	 that	when	p	=	0	and	a	=	0	we	have	 the	 integral	 in	Eq.	 (V-
33.7).
2.	 The	 result	 established	 in	Eq.	 (V-33.6)	will	 also	 hold	 true	 in	 the	 complex

domain	when	the	real	constant	a	 is	 replaced	by	 the	pure	 imaginary	ai.	Making
this	replacement	we	find	that	Eq.	(V-33.6)	for	the	case	n	=	0	becomes

If,	now,	we	make	the	replacement

and	then	write	the	integral	on	the	left	in	Eq.	(V-33.9)	as	the	sum	of	two	integrals
(one	multiplied	by	−	i)	and	then	equate	real	and	imaginary	parts	in	Eq.	(V-33.9),
we	obtain



Problems:	Approximations	for	Small	and	Large	Arguments

V-34.	For	p	≠	−	1,	−	2,	−	3,	·	·	·	show	that	for	values	of	x	near	zero	Jp(x)	 is
given	approximately	by	xp/2pΓ(p	+	1);	more	precisely,	show	that

By	Eq.	(V-0.2)	we	have

At	 this	 point	 we	 apply	 Eq.	 (I-4.1),	 namely,	 Γ(x	 +	 1)	 =	 xΓ(x)	 to	 each
denominator	factor	Γ(p	+	k	+	1)	as	follows:



Thus,	every	denominator	in	the	summation	in	Eq.	(V-34.2)	has	the	factor	Γ(p	+
1).	Thus,	Eq.	(V-34.3)	becomes

The	series	indicated	by	the	summation	in	Eq.	(V-34.5)	is	not	only	convergent
for	all	x;	 it	 is,	moreover,	uniformly	convergent	on	any	chosen	finite	 interval	of
values	of	x.	This	means	that	the	function	f(x)	denoted	by	the	series	is	continuous
at	every	x,	in	particular	at	x	=	0.	Therefore,

Eq.	(V-34.1)	is	thus	established.

REMARKS.	1.	If	p	is	a	positive	integer	n,	then	Γ(p	+	1)	=	Γ(n	+	1)	=	n!	by	Prob.
I-10,	and	we	have



2.	By	virtue	of	the	definition	given	in	Eq.	(V-0.9),	namely	Ip(x)	=	i−pJp(ix),	one
finds	that	Eq.	(V-34.1)	holds	for	Ip(x)	as	well	as	Jp(x).

3.	By	procedure	quite	the	same	as	was	used	in	establishing	Eq.	 (V-34.1)	one
finds	by	use	of	the	definition	of	Y0(x),	namely	Eq.	(V-0.7)	with	n	=	0,	that

We	may	indicate	this	property	of	Y0(x)	by	saying	that	Y0(x)	is	“like”	(2/π)logex,
as	x	→	0+.	Or	it	may	be	indicated	in	this	manner:

One	may	indicate	in	similar	manner	the	properties	expressed	in	Eq.	(V-34.1)	and
Remark	1:

in	particular,

4.One	can	similarly	find	what	Yn(x)	is	“like”	as	x	→	0+	for	n	=	1,	2,	3,	·	·	·.
For	convenience	let	us	denote	the	tripartite	formula	(V-0.7)	as

where	A	denotes	the	term	containing	loge	(x/2),	C	is	the	infinite	series,	and	B	is
the	finite	summation.	Then	we	find	that



The	 first	 and	 third	 limits	 on	 the	 right	 are	 readily	 seen	 to	 be	 zero.	 The	 second
limit	is	seen	to	be	equivalent	to	the	limit	of	the	product	of	the	first	term	in	B	with
xn.	Thus	Eq.	(V-34.6)	becomes

Thus,

5.If	p	is	positive	and	nonintegral,	the	determination	of	what	Yp(x)	is	“like”	as	x
→	0+	is	made	by	way	of	Eq.	(V-0.6):

Accordingly,	we	may	say	that

6.	It	can	be	shown	that,	for	large	values	of	x,	the	functions	Jp	and	Yp	are	“like”
elementary	functions	as	follows:



V-35.	Evaluate	the	following	limit:

We	evaluate	this	limit	via	Prob.	V-34	with	p	=	−	1/3:

Problems:	Integral	Expression	of	Jp(x)	and	of	Jn(x)
V-36.	Show	that,	for	 ,

For	convenience	in	demonstration	let	us	write

The	integral	in	Eq.	(V-36.2)	is	readily	seen	to	be	convergent	for	p	>	−	1/2.
A	method	 for	 demonstrating	 Eq.	 (V-36.1)	 which	 naturally	 suggests	 itself	 is

evaluation	of	H	by	means	of	termwise	integration	(if	valid)	of	an	infinite	series



and	then	comparison	of	the	resulting	series	(multiplied	by	the	coefficient	before
the	integral	in	Eq.	(V-36.1))	with	the	series	for	Jp(x)	as	given	by	Eq.	(V-0.2).	We
expand	the	factor	cos	xt	into	its	Maclaurin	series,	namely

where	 0!	 =	 1	 according	 to	 the	 usual	 convention.	 The	 series	 in	 Eq.	 (V-36.3)
converges	 to	 cos	 xt	 for	 any	 fixed	 choice	 of	 x	 uniformly	 on	 any	 chosen	 finite
interval	of	values	of	t.	Consequently,	when	cos	xt	is	replaced	in	Eq.	(V-36.2)	by
the	series	in	Eq.	(V-36.3)	the	series	which	results	by	multiplication	of	each	term
by	(1	−	t2)p−(1/2)	may	be	integrated	termwise	over	the	interval	0	 	t	 	1,	even
when	 the	 individual	 integrals	are	 improper	 (albeit	convergent,	however).	Thus,
we	find	that	Eq.	(V-36.2)	becomes

Each	 of	 the	 integrals	 in	 Eq.	 (V-36.4)	 can	 be	 evaluated	 by	 the	 formula
developed	in	Prob.	II-17.	To	each	integral	in	Eq.	(V-36.4)	we	apply	Eq.	(II-17.1),
identifying	t	with	x	and	taking	a	=	l,	b	=	2k,	c	=	2,	 .	Accordingly,	we
find	that

By	Eq.	(I-4.1)	we	have

And	by	the	Legendre	duplication	formula	established	in	Prob.	I-18	we	have,	by



Eq.	(I-18.4),

Using	Eqs.	(V-36.6)	and	(V-36.7)	in	Eq.	(V-36.5),	we	find	that

Returning	now	to	the	right	side	of	Eq.	(V-36.1),	we	multiply	H,	as	given	by	Eq.
(V-36.8),	 by	 the	 coefficient	 before	 the	 integral	 in	 Eq.	 (V-36.1),	 obtaining	 the
following	for	the	right	side	of	Eq.	(V-36.1):

which	is	seen	to	be	none	other	than	Jp(x)	as	given	by	Eq.	(V-0.2).	Thus,	Eq.	(V-
36.1)	is	established	for	p	>	−	1/2.

REMARK.	If,	in	particular,	we	take	p	=	0	in	Eq.	(V-36.1),	we	have

by	virtue	of	the	fact	that	 ,	as	established	in	Prob.	I-11.

V-37.	If	n	is	zero	or	a	positive	integer,	show	that	the	function



satisfies	BesseFs	equation	of	order	n,	namely,

By	Leibniz’s	rule	for	differentiation	under	the	integral	sign	with	respect	to	the
parameter	x	we	have	from	Eq.	(V-37.1)

Application	of	 integration	by	parts	 to	 the	 integral	 for	y′	 yields	 an	 integrated
part	which	vanishes	both	at	 	and	at	 ,	leaving

Substitution	for	y,	y′,	and	y″	as	given	respectively	by	Eqs.	(V-37.1),	(V-37.5),	and
(V-37.4)	in	the	left	side	of	Eq.	(V-37.2),	with	the	integrand	factor	 	in	(V-
37.4)	replaced	by	 ,	yields	an	expression	for	the	left	side	of	Eq.	 (V-
37.2)	which	is	seen	to	reduce	to

Inspection	of	this	integral	reveals	that	its	integrand	is	of	the	form	cos	u	du,	so
that	the	left	side	of	Eq.	(V-37.2),	when	y	is	the	function	defined	by	Eq.	(V-37.1),
equals

Thus	the	function	y	defined	by	Eq.	(V-37.1)	satisfies	Bessel’s	equation	of	order	n
when	n	is	a	positive	integer	or	zero.

REMARKS.	1.	The	function	y	defined	by	Eq.	(V-37.1)	is	a	continuous	function
of	x	 for	 all	x.	 This	means	 in	 particular	 that	 y	 is	 finite	 at	x	 =	 0	 and	 hence	 is	 a



solution	of	the	first	kind	of	Bessel’s	equation.	Consequently,	y	 is	equal	to	Jn(x)
multiplied	by	a	constant	factor	C.	It	can	be	shown	that	C	=	π,	which	makes

Since	the	cosine	is	an	even	function,	we	may	also	write

In	particular,	when	n	=	0,	we	may	write

Compare	the	closed-form	for	J0(x)	as	given	by	Eq.	(V-37.8)	with	the	closed-form
integral	formula	for	J0(x)	in	Eq.	(V-36.9).

2.	It	was	by	means	of	a	definite	integral	that	Bessel	first	defined	the	functions
that	 have	 come	 to	 be	 associated	 with	 his	 name.	 In	 his	 paper	 (1826),
Untersuchung	 des	 Theils	 der	 planetarischen	 Störungen	 welcher	 aus	 der
Bewegung	der	Sonne	entsteht,	he	took

And	 from	 this	 definition	 he	 derived	 many	 of	 the	 further	 properties	 of	 the
functions	so	defined.

3.	 Functions	 like	 the	 integrand	 in	 (V-37.8),	 namely	 ,	 have
interesting	expansions	in	terms	of	Bessel	functions.	Four	such	expansions	due	to
Jacobi	 are	 as	 follows	 (for	 proof	 see,	 for	 instance,	 Watson,	 Theory	 of	 Bessel
Functions,	1944,	p.	22):



Problems:	Relations	to	Legendre	Polynomials

V-38.	Demonstrate:

where	Pn(t)	denotes	the	Legendre	polynomial	of	degree	n.	*

When	n	is	odd,	the	right	side	of	Eq.	(V-38.1)	vanishes	by	virtue	of	the	cosine
factor.	And	the	left	side	vanishes	because	the	integrand	is	an	odd	function	of	t,
being	the	product	of	 the	even	cosine	function	and	a	polynomial	of	odd	degree.
Thus,	Eq.	(V-38.1)	is	true	for	all	odd	n,	albeit	trivially	so.
When	n	is	even	and	≠	0,	we	take	n	=	2j.	Then,	by	Eq.	(V-0.2),	we	have

For	the	cosine	factor	on	the	right	in	Eq.	(V-38.1)	we	have



Thus,	by	virtue	of	Eq.	(V-38.2)	with	Eq.	(V-38.3),	the	right	side	of	Eq.	(V-38.1)
becomes

Let	us	now	see	 if	we	can	express	 the	 left	 side	of	Eq.	 (V-38.1)	 as	 an	 infinite
series	identical	with	Eq.	(V-38.4).	The	Maclaurin	series	for	cos	xt	in	powers	of	t
converges,	for	any	chosen	value	of	x,	for	all	 t	and	converges	uniformly	on	any
chosen	finite	 interval	of	values	of	 t,	 in	particular	on	 the	 interval	−	1	 	 t	 	1.
Accordingly,	when	each	term	of	 this	series	 is	multiplied	by	Pn(x),	 the	 resulting
series	is	term-wise	integrable	over	−	1	 	t	 	1.	Thus,	for	the	left	side	of	Eq.	(V-
38.1)	we	may	write

Multiplying	 each	 term	 within	 the	 braces	 by	 P2j(t)	 and	 observing	 that	 x	 is	 a
constant	as	far	as	the	integration	is	concerned	and	integrating	termwise,	we	see
that	each	integral	can	be	evaluated	by	the	results	obtained	in	Prob.	III-20.
By	Eq.	(III-20.5)	we	get	the	value	zero	for	each	of	the	integrals	in	which	the

factor	 t2r	 is	 such	 that	 2r	 <	 2j.	 When	 the	 factor	 t2r	 is	 such	 that	 2r	 	 2j,	 we
evaluate	each	of	the	integrals	by	the	third	formula	on	the	right	in	Eq.	(III-20.5).
Thus,	we	find	that	the	left	side	of	Eq.	(V-38.1)	as	given	by	Eq.	(V-38.5)	becomes



We	now	apply	Eq.	(1-12.1)	together	with	Eq.	(I-11.1)	to	the	numerator	factor
Γ([2k	+	l]/2),	at	the	same	time	writing	out	(2k)!	in	expanded	form.	Thus,	for	n	=
2j,	 the	value	of	 the	 integral	equals	 the	 term	of	 the	summation	 for	which	k	 =	 0
plus

Cancelling	common	factors	from	numerator	and	denominator	and	taking	out	the
factor	2	from	each	of	the	denominator	factors	2k,	2k	−	2,	2k	−	4,	·	·	·,	4,	2,	we
find	that	this	last	summation	reduces	to

Comparison	of	Eq.	(V-38.6)	with	Eq.	(V-38.4)	shows	that	Eq.	(V-38.1)	holds	for
n	=	2j,	j	=	1,	2,	3,	·	·	·.
Finally,	we	have	yet	to	demonstrate	that	Eq.	(V-38.1)	is	true	for	n	=	0.	In	this

case	the	equation	to	be	demonstrated	is



because	P0(x)	 =	 1.	 (See	 Prob.	 III-4.)	Upon	 integrating	 the	 left	 side	 of	 Eq.	 (V-
38.7)	we	find	that	Eq.	(V-38.7)	becomes

that	is,

Eq.	(V-38.8)	yields

which	agrees	with	the	expression	for	J1/2(x)	found	in	Prob.	V-18.
Thus,	Eq.	(V-38.1)	holds	also	for	n	=	0.

V-39.	Demonstrate

where	Pn(t)	is	the	Legendre	polynomial	of	degree	n.	*

We	will	express	each	side	of	Eq.	(V-39.1)	as	a	power	series	and	show	that	the
series	are	the	same.
By	Eqs.	(V-0.9)	and	(V-0.2)	the	right	side	of	Eq.	(V-39.1)	is

that	is,



On	 the	 left	 side	 in	 Eq.	 (V-39.1)	 we	 replace	 ext	 by	 its	 Maclaurin	 series	 in
powers	 of	 t.	 Then	we	multiply	 each	 term	 of	 this	 series	 by	Pn(t)	 and	 integrate
termwise.	 Termwise	 integration	 is	 valid	 because	 the	 series	 to	 be	 integrated
converges	uniformly	on	any	chosen	 finite	 interval	of	values	of	 t.	Thus,	 for	 the
left	side	of	Eq.	(V-39.1)	with	n	>	0	we	have

By	Eq.	(III-20.5)	we	get	the	value	zero,	when	we	integrate	term-wise,	for	each
of	 the	 integrals	 in	which	 the	exponent	on	 t	 is	 less	 than	n.	We	also	get	zero	for
each	of	the	integrals	involving	tn+j	in	which	j	is	odd.	There	remains	to	evaluate,
by	the	third	formula	on	the	right	in	Eq.	(III-20.5),	each	integral	involving	tn+j	in
which	j	is	one	of	the	numbers	0,	2,	4,	6,	·	·	·.	Thus,	the	left	side	of	Eq.	(V-39.1),
as	given	by	Eq.	(V-39.3)	with	j	=	2k	and	m	=	n	+	2k	equals

that	is,

By	Eq.	(I-4.1)	the	product	of	the	third	and	fourth	factors	in	the	denominator	of
Eq.	(V-39.4)	may	be	replaced	by	 .	When	this	is	done	and	when
(2k)!	is	replaced	by	(2k)(2k	−	1)(2k	−	2)(2k	−	3)	…	(3)(2)(1)	and	when,	by	Eqs.
(I-11.1)	and	(I-12.1),	we	put



we	find	that	the	left	side	of	Eq.	(V-39.1)	as	given	by	Eq.	(V-39.4)	is	equal	to

which	is	the	same	series	as	we	found	in	Eq.	(V-39.2)	for	the	other	side	of	Eq.	(V-
39.1).	Thus	Eq.	(V-39.1)	is	established	for	n	>	0.
When	n	=	0,	the	equation	to	be	established	is

By	Eq.	(V-18.5)	the	right	side	of	Eq.	(V-39.6)	equals	(2/x)	sinh	x.	The	left	side
of	Eq.	(V-39.6)	equals

which	by	termwise	integration	(valid	as	indicated	above)	becomes

The	series	indicated	by	(7)	may	be	written

The	series	enclosed	by	the	brackets	in	(V-39.8)	is	seen	to	be	the	Maclaurin	series
for	 sinh	x.	 Thus,	 the	 left	 side	 of	Eq.	 (V-39.6)	 as	 given	 by	 (V-39.8)	 equals	 the
right	 side	 of	 Eq.	 (V-39.6)	 as	 given	 by	 Eq.	 (V-18.5),	 namely	 (2/x)	 sinh	 x.
Accordingly,	Eq.	(V-39.1)	holds	also	for	n	=	0.

V-40.	Demonstrate:



where	Pn(u)	denotes	the	Legendre	polynomial	of	degree	n	in	u.	*

Looking	for	a	point	of	departure	for	our	demonstration,	we	find	from	Probs.
III-3	and	V-37	that	Pn(x)	and	Jn(x)	can	each	be	expressed	as	1/π	times	an	integral
of	a	function	of	 	taken	over	the	interval	 .	We	have

We	will	take	the	integral	for	Pn(x)	in	Eq.	(V-40.2)	and	replace	the	parameter	x	by
cos	(x/n)	and	then,	assuming	that	the	integral	approaches	a	limit	value	as	n	→	∞,
see	if	we	can	show	that	the	limit	is	the	integral	for	J0(x)	in	Eq.	(V-40.3).	Thus,

If	 it	 be	 assumed	 that,	 for	 a	 fixed	 value	 of	 x,	 the	 integrand	 in	 Eq.	 (V-40.4)
approaches	a	 limit	as	n	→	∞,	 then	 the	 limit	will	be	approached	uniformly	 for	

,	and	we	will	have

The	integrand	in	Eq.	(V-40.5)	is	seen	to	be	the	indeterminate	form	l∞,	which	we
now	seek	to	evaluate.	To	do	so,	we	find	it	convenient	to	put



If,	 now,	we	 can	 show	 that	 z	 approaches	 a	 limit	 as	u	→	0	 continuously,	 it	will
follow	that	the	same	limit	is	approached	by

as	n	→	∞,	where	n	takes	on	only	integral	values	while	becoming	infinite.
From	Eq.	(V-40.6)	we	have,	by	using	the	logarithmic	form,

The	ratio	in	brackets	on	the	right	in	Eq.	(V-40.7)	is	the	indeterminate	form	0/0.
We	 can,	 therefore,	 apply	 L’Hospital’s	 Rule	 to	 the	 right	 side	 of	 Eq.	 (V-40.7),
obtaining

whence

By	virtue	of	Eqs.	(V-40.8)	and	(V-40.6)	we	find	that	Eq.	(V-40.5)	becomes

Let	us	write	the	first	integral	on	the	right	in	Eq.	(V-40.10)	with	t	as	the	variable
of	integration	and	write	it	as	the	sum	of	two	integrals:



The	transformations	 	make	the	integrals	on	the
right	in	Eq.	(V-40.11)	equivalent	to

Thus,	we	have

The	 result	 expressed	 in	 Eq.	 (V-40.12)	 can	 also	 be	 obtained	 directly	 from	 the
definition	of	definite	integral	as	limit	of	a	sum,	inasmuch	as	the	cosine	function
is	an	odd	 function,	 so	 to	speak,	with	 respect	 to	π/2	but	 is	even	with	 respect	 to
zero.	 In	 similar	manner,	 either	 by	 transformations	of	 variable	of	 integration	or
directly	from	the	definition	of	definite	integral	as	limit	of	a	sum,	one	finds	that
the	second	 integral	on	 the	 right	 in	Eq.	 (V-40.10)	has	 the	value	zero.	Thus,	Eq.
(V-40.10)	becomes

V-41.	 If	 x	 and	 y	 are	 taken	 as	 rectangular	 coordinates	 with	 r	 and	 θ	 as	 the
corresponding	polar	coordinates	(the	pole	at	 the	origin	and	the	ray	θ	=	0	along
the	positive	x-axis),	show	that

We	start	with	the	generating	expansion	given	in	Prob.	V-23,	namely



where	we	have	written	t	in	place	of	x.	And	now	in	Eq.	(V-41.1)	we	replace	t	by
x/r	and	h	by	r,	obtaining

that	is,

REMARKS.	 1.	 Actually	 we	 have	 ,	 not	 just	
.	But	the	function	J0	is	an	even	function	of	its	argument	by	Eq.

(V-0.4),	so	that

2.	It	is,	perhaps,	not	too	trite	to	make	the	observation	that	Eq.	(V-41.1)	reduces
to	the	well-known	Maclaurin	series	for	eh	when	we	take	t	=	1	in	Eq.	(V-41.1)	by
virtue	of	the	fact	that	every
Legendre	polynomial	Pn	(t)	=	1	at	t	=	1	together	with	the	fact	that	Jo(0)	=	1.
3.	The	right	side	of	Eq.	(V-41.3)	can	be	written	alternatively	as

TABLE	V-1

Formulas



TABLE	V-2

J0(x)



When	x	>	15.9,

J1(x)

When	x	>	15.9,



TABLE	V-3

J2(x)

When	0	≤	x	<	1,	 .

J3(x)

When	0	≤	x	<	1,	 .

J4(x)



When	0	≤	x	<	1,	 .

TABLE	V-4

zeros	of	J0(x),	J1(x),	J2(x),	J3(x),	J4(x),	J5(x)

TABLE	V-5

Y0(x)

When	x	>	15.9,



TABLE	V-6

Y1(x)

When	x	>	15.9,

TABLE	V-7

I0(x)



When	x	≥	10,	 .

TABLE	V-8

I1(x)

When	x	≥	10,	 .

TABLE	V-9

Functions	of	equal	order	and	argument



TABLE	V-10

K0(x)

When	x	≥	10,	 .

TABLE	V-11



K1(x)

When	x	≥	10,	 .

TABLE	V-12

Struve	Function
H0(x)

When	x	>	15.9,



TABLE	V-13

Struve	Function
H1(x)

When	x	>	15.9,

TABLE	V-14

Ber	(x)



When	x	>	10,

TABLE	V-15

Bei	(x)

When	x	>	10,

TABLE	V-16

Ber′	x



When	x	>	10,

TABLE	V-17

Bei′	x

When	x	>	10,

TABLE	V-18

Ker	x



When	x	>	10,

TABLE	V-19

Kei	x

When	x	>	10,



TABLE	V-20

Ker′	x

When	x	>	10,

TABLE	V-21

Kei′	x

When	x	>	10,



TABLE	V-22

Bern	x,	bein	x,	 ,	and	 ,	from	n	=	1	to	5

TABLE	V-23

Kern	x,	kein	x,	 ,	and	 ,	from	n	=	1	to	5



TABLE	V-24





When	x	>	45,	M0	 (x)	and	θ0(x)	can	be	 found	 to	4	decimal	places	and	 to	 the
nearest	.001°,	respectively,	from	the	formulae:

TABLE	V-25



When	x	>	50,	M1	 (x)	and	θ1(x)	can	be	 found	 to	4	decimal	places	and	 to	 the
nearest	.001°,	respectively,	from	the	formulae:

TABLE	V-26





TABLE	V-27





6
APPLICATIONS	OF	BESSEL	FUNCTIONS

INTRODUCTION
In	this	chapter	we	present	a	selection	of	problems	(with	solutions)	 involving

applications	of	Bessel	functions.	The	selection	is	a	modest	one.	But	we	trust	that
it	gives	a	fair	indication	of	the	wide	range	of	applications	which	can	be	made	of
the	Bessel	functions.
The	first	ten	problems	are	purely	mathematical	applications	in	solving	certain

differential	equations	and	in	the	expansion	of	simple	functions	in	series	of	Bessel
functions.	 The	 remaining	 two-thirds	 of	 the	 problems	 (in	 which	 several	 of	 the
first	 ten	are	 turned	to	account)	comprise	problems	of	application	in	mechanics,
physics,	hydrodynamics,	heat-transfer,	and	electrical	engineering.	In	the	majority
of	these	problems	we	have	deemed	it	worthwhile	to	begin	at	the	beginning,	that
is,	 to	formulate	the	differential	equations	involved.	These	problems	include	the
problem	 in	which	Bessel	 functions	were	 first	 brought	 to	 light,	 namely,	Daniel
Bernouilli’s	 problem	 (in	 the	 year	 1732)	 concerning	 small	 oscillations	 in	 a
hanging	chain.	They	also	include	a	problem	of	the	modern	era—the	problem	of
flux	distribution	in	a	nuclear	reactor.

Problems:	Solutions	of	Equations	Reducible	to	Besse’s	Equation

VI-1.	Find	the	general	solution	of

where	 the	 D	 and	 p	 are	 constants	 and	 the	 primes	 denote	 first	 and	 second
derivatives	with	respect	to	x.*

Equation	 (VI-1.1)	 differs	 from	 Bessel’s	 equation	 (V-0.1)	 only	 in	 that	D2x2

takes	the	place	of	x2.	Accordingly,	we	should	be	able	to	get	the	general	solution
of	Eq.	(VI-1.1)	by	making	the	change	of	variable	u	=	Dx.	Then	du/dx	=	D	and	x
=	(1/D)u.	So,	for	the	derivatives	in	Eq.	(VI-1.1)	we	have



Thus	Eq.	(VI-1.1)	becomes

that	is,

Equation	(VI-1.4)	is	Bessel’s	equation	whose	general	solution	by	Eq.	(V-0.8)	is	y
=	Zp(u).	This	means	that

is	the	general	solution	of

VI-2.	Show	that	the	general	solution	of

is

.

We	let	u	=	DxE.	By	Eq.	(V-0.8)	the	function	Zp	(u)is	a	linear	combination	of	Jp
(u)	 and	J–p	 (u)	 or	 of	 Jp	 (u)	 and	 Jp	 (u).	 Let	 us	 show	 that	 any	 one	 of	 the	 three
functions

is	a	solution	of	Eq.	(VI-2.1).	Then	it	will	follow	that	Eq.	(VI-2.2)	is	the	general
solution	thereof.
Let	us	take	y	=	xAJp	(u).	For	simplicity	of	notation	we	will	omit	the	argument



u	and	write	Jp	 for	Jp(u).	Primes	on	J	will	denote	derivatives	with	 respect	 to	u.
Primes	on	y	will	denote	derivatives	with	respect	to	x.	Then	we	have

By	differentiating	Eq.	(VI-2.3)	with	respect	to	x	we	get

Substitution	of	the	right	sides	of	Eqs.	(VI-2.3)	and	(VI-2.4)	for	y′	and	yn	in	the
left	side	of	Eq.	(VI-2.1)	makes	the	left	side	thereof	become

Since	DxE	=	u,	we	see	that	the	left	side	of	Eq.	(VI-2.1)	thus	has	become

The	 expression	 in	 brackets	 is	 now	 none	 other	 than	 the	 left	 side	 of	Bessel’s
equation	(V-0.1)	with	u	as	 independent	variable	and	Jp	as	 function	 thereof.	We
conclude	 that	 Eq.	 (VI-2.1)	 is	 satisfied	 by	 y	 =	 xAJp	 (u).	 Moreover,	 Jp	 may	 be
replaced	throughout	by	J–p	and	Yp	in	the	preceding	demonstration.	It	follows	that
Eq.	 (VI-2.1)	 is	 satisfied	 by	 an	 arbitrary	 linear	 combination	 of	 xAJp(DxE)	 and
Yp(DxE)	or	of	xAJp	(DxE)	and	xAJ–p(DxE).	Thus	the	general	solution	of	Eq.	 (VI-
2.1)	is



REMARK.	One	finds	in	similar	manner	that	the	general	solution	of

is

VI-3.	Obtain	the	general	solution	of

in	terms	of	Bessel	Functions.	*

Multiplying	by	x2	and	dividing	by	4,	we	have

We	can	now	identify	with	Eq.	(VI-2.1),	namely

as	follows:

whence

Thus,	by	Eq.	(VI-2.2),	the	general	solution	is



VI-4.	Express	the	general	solution	of

in	terms	of	pertinent	Bessel	functions.	*

As	 in	 Prob.	 VI-3	 we	 make	 identification	 with	 Eq.	 (VI-2.1).	 This	 requires
multiplication	of	the	given	equation	by	x2:

which	is	now	Eq.	(VI-2.1)	with

Thus	we	have

so	that,	by	Eq.	(VI-2.2),	the	general	solution	of	the	given	equation	is

VI-5.	Tell	the	general	solution	of

in	terms	of	appropriate	Bessel	Functions.	*

Since	the	first	derivative	y′	has	the	coefficient	x2,	the	given	equation	requires
application	of	the	more	general	Eq.	(VI-2.5),	so	that	we	have



whence

We	must	still	determine	D,	E	and	p	 from	the	 last	 two	equations.	The	first	of
these,	namely,	E2p2	=	0	is	satisfied	by	either	E	=	0	or	p	=	0.	If	we	try	E	=	0,	then
the	 other	 equation	 	 requires	 x	 to	 be	 identically	 zero,
which	is	unsuitable.	So,	we	must	take	p	=	0	with	E	≠	0.	Then	we	require	that

whence	2E	=	2,	 .	so	that	E	=	1,	 .

Thus	the	general	solution	of	the	given	equation,	by	Eq.	(VI-2.6),	is

VI-6.	Solve

Multiplying	 both	 sides	 of	 Eq.	 (VI-6.1)	 by	 x	 and	 using	 primes	 to	 denote
derivatives	of	y	by	x,	we	get

which	can	now	be	solved	by	Eq.	(VI-2.1).	We	have

whence



Then	by	Eqs.	(VI-2.2)	and	(V-0.8),	the	general	solution	of	Eq.	(VI-6.1)	is

where	C1	and	C2	are	arbitrary	constants.

REMARKS.	In	problems	requiring	solution	of	an	equation	of	type	(VI-6.1),
the	 function	Y0	 is	 often	 found	 to	 be	 unsuitable	 in	 view	 of	 imposed	 boundary
conditions.	The	 solution	 is	 then	 taken	 to	be	C1J0(i3/2x)	 or	 a	 composite	of	 such
functions.	In	particular,	the	function	y	=	J0(i3/2x)	is	a	solution	of	Eq.	(VI-6.1).	As
mentioned	in	the	introduction	to	Chapter	V,	the	complex	function	y	=	J0(i3/2x)	is
often	written

Thus,	we	may	say	that

is	a	particular	solution	of

Problems:	Specific	Expansions	in	Bessel	Functions

VI-7.	Express	the	function	f(x)	=	1	on	the	open	interval	0	<	x	<	L	as	an	infinite
series	of	Bessel	functions	of	order	zero.	*

This	 problem	 is	 clearly	 an	 exercise	 in	 application	 of	 Prob.	 V-27.	 So,	 we
should	have	 f(x)	defined	at	every	point	on	 the	closed	 interval	0	 	x	 	L.	We
take	f(0)	=	C1	and	f(L)	=	C2.	The	choice	of	the	numbers	C1	and	C2	is	immaterial;
for,	by	the	remarks	at	the	end	of	Prob.	V-26	(which	apply	to	Prob.	V-27	as	well),
the	 series	 expansion	 to	 be	 obtained	 via	 Prob.	V-27	 for	 the	 f(x)	 of	 the	 present
problem	will	converge	to	zero	at	x	=	L	and	to	1	at	x	=	0	regardless	of	choice	of
C1	and	C2.

By	Eq.	(V-27.2)	we	have



Thus	the	desired	expansion	is

Using	Table	V-4	to	get	the	zeros	αl	α2,	α3,	and	Table	V-2	to	obtain	the	values	for
J1(αn),	we	have

VI-8.	 Expand	 the	 function	 f(x)	 =	 x2,	 0	 	 x	 	 1	 in	 a	 series	 of	 the	 form
A1J0(α1x)	+	A2J0(α2x)	+	A3J0(α3x)	+	·	·	·	where	αn	denotes	the	nth	positive	zero
of	J0(x).	*

By	Eq.	(V-26.2)	we	have



But,	by	Prob.	V-7	with	p	=	1,

whence

since	J0(αn)	=	0.	Accordingly,

and	the	expression	requested	is

VI-9.	Express	as	a	series	of	the	form

the	function	f(x)	=	J0(Cx),	0	 	x	 	1	where	α1,	α2,	α3,	·	·	·	are	the	positive	zeros
of	J0(x)	and	C	is	any	constant	other	than	one	of	the	numbers	αl,	α2,	α3,	·	·	·.	*
By	Eq.	(V-26.2)	we	have



and	the	desired	expansion	is

VI-10.	Show	that	the	Fourier	series	for	the	ordinate	y	of	the	cycloid

is

Since	 the	 cycloid	given	by	Eq.	 (V-10.1)	 is	 symmetric	with	 respect	 to	 the	y-
axis,	which	makes	 y	 an	 even	 function	 of	 x,	 the	 Fourier	 series	 for	 y	 will	 be	 a
Fourier	 cosine	 series.	Moreover,	 y	 is	 a	 periodic	 function	 of	 x	 of	 period	 2π	 R.
Consequently,	the	Fourier	expansion	will	be	of	the	form

here



To	 determine	 the	 coefficients	 required	 by	 Eq.	 (V-10.4)	we	make	 use	 of	 the
parametric	 representation	Eq.	 (VI-10.1).	 The	 period	 for	 y	 with	 respect	 to	 	 is
now	2π.	Moreover,	when	 	varies	from	0	to	π,	then	x	varies	monotonically	and
continuously	 and	 differentiably	 from	 0	 to	π	 R	 with	 .
Accordingly,	 the	 coefficient	 formulas	 (VI-10.4)	when	 expressed	 in	 terms	 of	
become

The	coefficient	α0	is	readily	found	by	elementary	integration	to	be	3R/12.	The
remaining	 coefficients	 are	 not	 so	 readily	 determined.	However,	 a	 clue	 to	 their
determination	is	furnished	by	Eq.	(V-37.7),	namely

Indeed,	 if	 the	 factor	 	 in	 the	 integrand	 of	 the	 integral	 for	 αn	 be
written	out	as	 	and	then	the
integral	be	written	as	 the	 sum	of	 three	 integrals,	 the	 first	of	 the	 three	 integrals
with	its	coefficient	2R/π	will	be	none	other	than	2RJn(x).	But	what	of	the	other
two	integrals?	Answer:	apply	Leibniz’s	rule	for	differentiation	under	the	integral
sign.	This	 technique	we	have	found	useful	 in	problems	elsewhere	in	 this	book.
See,	for	example,	Prob.	I-20.	Differentiation	of	Eq.	(VI-10.6)	yields

Moreover,



So,	we	have	from	Eq.	(VI-10.5),	wherein	the	x	in	Eq.	(VI-10.6)	is	now	n

Thus	we	find	that	the	Fourier	series	for	the	ordinate	y	of	the	cycloid	(VI-10.1)
is	given	by	Eq.	(VI-10.2).

REMARK.	Equation	(VI-10.2)	 is	of	 interest	 in	 that	 it	exhibits	y	explicitly	as	a
function	of	x.	It	is	worth	noting	here	that,	on	the	other	hand,	determination	of	x
as	 an	 explicit	 function	 of	 y	 is	 readily	 effected	 as	 a	 closed	 form	 in	 terms	 of
elementary	functions.	One	has	only	to	solve	the	second	of	Eqs.	(VI-10.1)	for	
in	terms	of	y,	obtaining	 ,	and	then	to	substitute	this
value	for	 	in	the	first	of	Eqs.	(VI-10.1).	The	result	is	readily	seen	to	be

This	 form	 of	 the	 equation	 of	 the	 cycloid	 is	 encountered,	 for	 instance,	 in	 the
calculus	 of	 variations	 problem	 of	 determining	 the	 equation	 of	 the
brachystochrone.

Problems	in	Dynamics

VI-11.	 A	 coil	 spring	 is	 such	 that	 a	 force	 of	 8	 lbs.	 will	 stretch	 the	 spring	 6
inches.	 If	 the	 spring	 is	 suspended	 in	 a	 vertical	 position	 with	 a	 4-lb.	 weight



attached	to	the	lower	end	(hanging	free),	and	then	the	lower	end	is	pushed	up	to
a	 point	 2	 inches	 above	 the	 point	 of	 equilibrium	 and	 released,	 determine	 the
equation	of	motion.	Use	32	ft./sec2.	for	g.	*

The	differential	equation	is	formulated	as	follows.

Since	W/g	 is	 a	 constant	 in	 this	 problem,	we	 get	 by	 carrying	 out	 the	 indicated
differentiation

This	force	is	equated	to	the	restorative	force,	which	is	the	product	of	the	spring
constant	k	and	the	displacement	y	of	the	lower	end	from	the	point	of	equilibrium.
We	have

whence	k	=	16.	Thus	the	restorative	force	is	−	16y.	So,	upon	equating	these	two
forces,	we	have	the	differential	equation	of	motion	(ignoring	friction):

or

Although	Eq.	(VI-11.1)	is	immediately	recognized	as	the	well	known	equation
of	 simple	 harmonic	 motion	 and	 is	 quickly	 and	 easily	 solved	 in	 terms	 of
trigonometric	functions,	we	will	solve	it	here	via	Bessel	functions	as	an	exercise
in	application	of	Eq.	(VI-2.1).	We	now	identify	Eq.	(VI-11.1)	with	Eq.	 (VI-2.1)
by	multiplying	both	 sides	of	Eq.	 (VI-11.2)	 by	 t2.	 The	 variable	 t	 in	 the	 present



problem	plays	the	role	of	x	in	Eq.	(VI-2.1).	We	have

so	that

whence

Then	by	Eq.	(V-0.8)	we	have

By	Eqs.	(V-18.4	and	17.4)	we	may	write	Eq.	(VI-11.2)	as

where,	 	and	

The	 constants	 A	 and	 B	 in	 Eq.	 (VI-11.3)	 are	 determined	 by	 the	 initial
conditions	taking	positive	y	downward

whence	A	=	0	and	B	=	−1/6.	Thus	the	desired	equation	of	motion	is

VI-12.	 Starting	 at	 rest	 at	 distance	L	 from	 the	 origin	O	 a	 massparticle	P	 of
varying	mass	m	 is	attracted	to	the	origin	by	a	force	directed	always	toward	the
origin	 and	 having	 magnitude	 proportional	 to	 the	 product	my,	 where	 y	 is	 the
distance	 of	 P	 from	 the	 origin.	 The	 mass	 m	 of	 P	 decreases	 with	 the	 time	 t
according	to	the	formula



where	a	and	b	are	constants.	The	problem	is	 to	 find	 the	 time	required	for	P	 to
reach	0.	*

Our	starting	point	is	the	Newtonian	equation

where	 	is	the	vector	momentum	and	 	is	the	acting	force.	For	the	problem	at
hand	Eq.	(VI-12.2)	yields

that	is,

where	k2	is	the	constant	of	proportionality	involved	in	the	magnitude	of	 .
If	we	make	the	change	of	variable

so	that	m	=	l/bx	and	dy/dt	=	dy/dx,	then	Eq.	(VI-12.3)	becomes

that	is,

Identifying	Eq.	(VI-12.5)	with	Eq.	(VI-12.1),	we	have

whence	A	=1,	E	=1,	D	=	k,	p	=	1.
Thus,	by	Eq.	(VI-12.1),	the	general	solution	of	Eq.	(VI-12.5)	is



To	determine	the	constants	C1	and	C2	we	have	two	conditions:

(a)	y	=	L	when	mass	is	at	rest	at	t	=	0,	that	is,	when	x	=	a/b,
(b)	the	velocity	dy/dt	=	dy/dx	=	0	when	x	=	a/b.

If	we	put	q	=	ka/b	and	make	use	of	formula	(A)	in	Table	V-l,	these	equations	of
condition	are

By	Prob.	V-16	the	determinant	of	Eqs.	(VI-12.7),	namely	J1(q)Y0(q)	−	J0(q)Y(q)
has	the	value	of	2/πq	=	2b/πka.

Accordingly,	the	solution	of	Eqs.	(VI-12.7)	is

To	find	the	time	required	for	P	to	reach	O,	we	set	y	=	0	in	Eq.	(VI-12.6)	and
solve	for	x.	This	we	can	do	by	locating	two	successive	entries	in	Tables	V-2,	V-5,
V-6	which	make	the	difference

respectively	positive	and	negative.	Once	x	has	been	found	with	desired	accuracy,
the	corresponding	value	of	the	time	t	is	given	by	Eq.	(VI-12.4).
VI-13.	 A	mass-particle	 of	 varying	mass	m	 is	 repelled	 from	 the	 origin	 by	 a

force	 	 of	 varying	magnitude	 but	 always	 directed	 away	 from	 the	 origin.	 The
mass	of	the	particle	increases	with	the	time	t	as	follows:

where	a	and	b	are	positive	constants.	The	magnitude	of	 	is	proportional	to	the
product	of	the	mass	m	and	the	distance	x	of	the	particle	from	the	origin:



where	k2	≠	0	and	is	the	constant	of	proportionality.	Since	F	=	0	at	x	=	0,	in	order
to	get	 the	particle	going	we	assume	an	initial	speed	V0	greater	 than	zero	at	 the
origin	at	time	t	=	0.	Express	the	distance	x	and	the	speed	V	each	as	function	of
time	t.	It	is	to	be	understood	that	the	motion	is	to	be	stopped	somehow	before	t
becomes	very	large,	so	that	there	will	be	no	conflict	with	the	theory	of	relativity.
*

This	problem	is	clearly	a	variant	of	Prob.	VI-12	where,	a	the	mass	decreases
and	the	force	attracts	to	the	origin.	Accordingly,	we	will	omit	those	details	of	the
solution	which	 are	 essentially	 the	 same	 as	 in	 the	 previous	 problem.	 It	will	 be
seen,	 however,	 that	 the	 present	 problem	 involves	 the	 functions	 I0,	 Il,	K0,	K1
instead	of	their	counterparts	J0,	Jl,	Y0,	Y1.
Instead	of	(d/dt)[m	dy/dt]	=	−k2my	as	in	the	previous	problem,	we	now	have

that	is,

Making	the	same	sort	of	change	of	time	variable	as	in	Prob.	VI-12,	namely	a
+	bt	=	u,	we	find	that	Eq.	(VI-13.4)	becomes

Multiplying	Eq.	(VI-13.5)	through	by	m/b2	and	using	primes	to	denote	first	and
second	derivative	by	u	and	observing	that	now	m	=	u,	we	get

where

Identifying	Eq.	 (VI-13.6)	with	Eq.	 (VI-2.1)	 as	we	 did	 for	 the	 corresponding
equation	in	Prob.	VI-12,	we	find	that	the	general	solution	of	Eq.	(VI-13.6)	is



We	 have	 yet	 to	 determine	 the	 constants	C1	 and	C2	 by	 application	 of	 the	 two
initial	conditions.	At	time	t	=	0,	that	is,	when	u	=	a,	we	have	given	that	x	=	0:

We	also	have	given	that	the	velocity	V	=	V0	at	time	u	=	a.
Now,

Thus,

In	taking	derivatives	with	respect	to	u	we	have	applied	formulas	(D)	and	(C)	in
Table	V-l.
Equations	(VI-13.9)	and	(VI-13.10)	determine	C	and	C2	in	terms	of	the	given

constants	V0,	k,	a,	b.	If	we	write	these	equations	together	as

we	 notice	 that	 the	 determinant	 of	 the	 coefficients,	 namely	 I1(ha)K0(ha)	 +
I0(ha)K1(ha),	is	equal	to	1/ha	by	Eq.	(V-16.2).	Accordingly,	solution	of	Eqs.	(VI-
13.11)	by	Cramer’s	Rule	(by	determinants)	yields



Recalling	 that	u	=	a	+	bt	and	 that	h	=	k/b,	we	 find	by	substitution	 from	Eq.
(VI-13.12)	in	Eq.	(VI-13.8)	that

Differentiation	of	Eq.	(VI-13.13)	 together	with	application	of	formulas	(D)	and
(C)	 in	 Table	 V-l	 will	 provide	 the	 requested	 expression	 for	 the	 speed	 V	 as	 a
function	of	 t.	 In	applying	 the	 formulas	 just	 indicated	we	put	x	=	kt	+	ka/b	and
remember	that

We	find	that

VI-14.	A	simple	pendulum	consisting	of	a	string	(considered	weightless)	with
constant	 mass	m	 attached	 at	 lower	 end	 is	 so	 arranged	 that,	 as	 the	 pendulum
oscillates,	 the	 string	 is	 continuously	 lengthened	 at	 a	 constant	 rate	 from	 the
support	 so	 that	 the	 length	 r	 at	 time	 t	 is	a	 +	bt,	 where	 the	 initial	 length	 a	 and
velocity	b	are	constants.	The	oscillations	are	quite	small,	so	that	θ	may	be	taken
as	sufficient	approximation	for	sin	θ,	where	θ	is	the	angle	which	the	string	makes
with	the	vertical.	θ0	is	the	angle	at	t	=	0.	Determine	θ	as	a	function	of	t.	*

By	Newton’s	 second	 law	of	motion	 applied	 to	 angular	momentum,	 the	 time
rate	 of	 change	 of	 angular	momentum	 (with	 respect	 to	 the	 point	 of	 support)	 is
equal	 in	magnitude	to	 the	moment	(about	 the	point	of	support)	of	 the	restoring
force	of	gravity.
The	angular	momentum	A,	sometimes	called	the	moment	of	momentum,	is	the

product	of	the	rotational	inertia	Ir	about	the	point	of	the	support	and	the	angular
velocity	dθ/dt.	Since	Ir	=	mr2,	we	have	for	the	angular	momentum



whence	it	follows	that	the	time	rate	of	change	of	angular	momentum	is

The	 restoring	 force	 is	 the	 component	 of	 gravity	 normal	 to	 the	 string.	 Its
magnitude	 is,	 therefore,	 mg	 sin	 θ,	 which	 we	 may	 replace	 with	 sufficient
approximation	by	mgθ.	Its	moment	arm	about	the	point	of	support	is	r.	Then	by
Newton’s	second	law	we	have

The	minus	sign	on	the	right	in	Eq.	(VI-14.2)	is	required	because	A	as	defined	by
Eq.	(VI-14.1)	is	a	signed	quantity	and	θ	is	signed	and	because	dA/dt	is	negative
when	 the	 pendulum	 is	 slowing	 down	 on	 an	 upswing	 when	 θ	 is	 positive.
Similarly,	the	other	cases—such	as	speeding	up	on	a	downswing	when	θ	(taken
clockwise)	is	negative—will	be	seen	to	require	the	minus	sign	on	the	right	in	Eq.
(VI-14.2).

Now	we	equate	the	right	side	of	Eq.	(VI-14.la)	with	the	right	side	of	Eq.	(VI-
14.2).	In	carrying	out	the	indicated	differentiation	in	Eq.	 (VI-14.la)	we	observe
that	r	is	a	function	of	t.	So	we	have

Replacing	r	by	a	+	bt,	dr/dt	by	b	and	dividing	out	m	in	Eq.	(VI-14.3),	we	have

For	the	sake	of	simplicity	we	introduce	a	new	time	variable	z	defined	by	a	+	bt	=
bz.	Then	dθ/dt	=	dθ/dz;	and	Eq.	(VI-14.4)	becomes,	upon	multiplying	through	by
z2,



where	 the	primes	denote	 first	and	second	derivative	with	 respect	 to	z	 and	k2	=
g/b.
Equation	(VI-14.5)	can	be	solved	by	application	of	Eq.	(VI-2.1)	by	identifying

z	with	x	and	θ	with	y.	We	have

whence. ,	 ,	D	=	2k,	p	=	1.
Thus,	by	Eqs.	(VI-2.2)	and	(V-0.8),	the	general	solution	of	Eq.	(VI-14.5)	is

It	remains	only	to	determine	the	constants	C1	and	C2.	We	count	time	from	an
instant	 of	maximum	angular	 displacement	θ0,	when	 the	velocity	dθ/dt	 =	 0.	At
that	 instant	 t	=	0	we	have	r	=	a	and	z	=	a/b.	Differentiating	Eq.	 (VI-14.6)	 and
applying	formula	(C)	in	Table	V-l	with	 ,	we	get

At	time	t	=	0,	Eq.	(VI-14.7)	yields

At	time	t	=	0,	Eq.	(VI-14.6)	yields

Solving	Eqs.	(VI-14.8)	and	(VI-14.9),	we	find	by	application	of	Eq.	(V-16.1)	that

Substituting	these	values	for	C1	and	C2	in	Eq.	(VI-14.6)	and	noting	that	z	=	(a	+
bt)/b,	we	have	for	the	solution	to	our	problem



VI-15.Uniform	 radial	 pressure	 P	 is	 applied	 to	 the	 rim	 of	 a	 homogeneous
circular	 disc	 of	 thickness	 2h	 and	 radius	 R.	 The	 pressure	 P	 is	 continuously
increased	from	P	=	0.	Determine	 the	value	of	P	at	which	 the	disc	will	buckle,
that	 is,	 be	 bent	 permanently	 so	 that	 there	 is	 no	 longer	 any	 restorative	 (elastic)
force.	The	rim	of	the	disc	is	not	clamped.	The	following	are	given.
(a)	If	cylindrical	coordinates	(r,	θ,	z)	are	taken	with	origin	at	center	of	the	disc

and	with	z-axis	perpendicular	to	the	plane	faces	of	the	disc	and	if	it	be	assumed
that	displacements	of	points	of	the	disc	are	parallel	to	the	z-axis	and	are	the	same
for	 all	 points	 at	 the	 same	 distance	 from	 the	 z-axis,	 then	 the	 equation	 of
equilibrium	is

where	z	denotes	displacement	of	points	at	distance	r	from	the	z-axis:	z	=	z(r).
(b)	There	is	no	displacement	at	the	rim:

(c)	When	 the	 disc	 buckles	 the	 bending	moment	 at	 the	 rim	vanishes.	This	 is
equivalent	to	the	condition

where	σ	is	a	positive	constant	less	than	unity	and	known	as	Poisson’s	ratio.	(See,
for	instance,	Seely	and	Smith,	Advanced	Mechanics	of	Materials,	Wiley,	1952.)
(d)	The	constant	k	in	Eq.	(VI-15.1)	is	given	by

where	E	is	Young’s	modulus.	*
Since	the	operators	are	permutable	we	can	write



The	first	of	Eqs.	(VI-15.5)	becomes

whose	general	solution	is

where	A	and	B	are	arbitrary	constants.	The	second	of	Eqs.	(VI-15.5)	becomes

that	is,

where	the	primes	denote	first	and	second	derivative	with	respect	to	r.	Equation
(VI-15.9)	is	readily	solved	by	making	identification	with	Eq.	(VI-1.6)	 in	which
we	 take	 r	 =	 x,	 z	 =	 y,	D	 =	 k.	 Thus,	 by	 Eqs.	 (VI-1.5)	 and	 (V-0.8),	 the	 general
solution	of	Eq.	(VI-15.7)	is

The	general	 solution	 for	Eq.	 (VI-15.1)	 is	 the	 sum	 of	 the	 solutions	 given	 by
Eqs.	(VI-15.7)	and	(VI-15.10):

For,	the	four	terms	on	the	right	in	Eq.	(VI-15.11)	are	not	linearly	dependent	and
the	 solution	 (VI-15.11)	 contains	 four	 arbitrary	 constants	 as	 required	 for	 the
general	solution	of	a	differential	equation	of	fourth	order.	[Each	operator	in	(VI-
15.1)	involves	second	order	derivatives;	and	when	the	operations	are	performed
in	tandem,	the	result	involves	derivatives	of	order	four	and	less.]
The	conditions	of	the	problem	prohibit	z	from	becoming	infinite	at	any	point

of	 the	 disc.	 So,	we	must	 take	A	 =	 0	 and	D	 =	 0,	 since	 loge	 r	 and	Y0(kr)	 both



become	infinite	at	r	=	0.	We	have,	then,

The	boundary	condition	(b)	requires	the	additive	constant	B	to	be	related	to	the
multiplicative	constant	C:

This	 leaves	 C	 undetermined,	 unless	 a	 further	 displacement	 condition	 be
empirically	established	for	a	point	of	the	disc	for	which	r	<	R.	However,	we	can
determine	the	pressure	P	with	C	undetermined.
To	 determine	 the	 value	 of	P	 at	 which	 the	 disc	 buckles	 we	 now	 proceed	 as

follows.	We	put	 z,	 as	 given	by	Eq.	 (VI-15.12),	 in	Eq.	 (VI-15.3)	 and	 solve	 the
resulting	equation	(called	the	critical	equation)	for	k.	Then	we	put	this	value	for
k	in	Eq.	(VI-15.4)	and	solve	for	P.

From	Eq.	(VI-15.12)	we	have

and	application	of	formula	(C)	in	Table	V-l	yields

Similarly,	 differentiation	 of	 Eq.	 (VI-15.13)	 with	 application	 of	 formula	 (E)	 in
Table	V-l	yields

Multiplication	of	Eq.	(VI-15.13)	by	σ/r	and	addition	of	the	resulting	equation	to
Eq.	(VI-15.14)	makes	the	condition	for	buckling,	namely	Eq.	(VI-15.3),	to	be

which	means	that



As	the	pressure	P	is	continuously	increased	from	P	=	0,	k	as	given	by	Eq.	(VI-
15.4)	will	be	continuously	increased	from	k	=	0.	Buckling	will,	therefore,	occur
at	the	least	positive	k	for	which	the	critical	Eq.	(VI-15.15)	is	satisfied.	This	value
of	k	will	in	turn	determine	by	Eq.	(VI-15.4)	the	value	of	P	at	which	the	buckling
occurs.

VI-16.	A	homogeneous	straight	steel	wire	having	circular	cross-section	is	in	a
nearly	 vertical	 position	with	 its	 lower	 end	 clamped	 at	 a	 small	 angle	 θ0	 to	 the
vertical	and	with	the	upper	end	free.	The	wire	will	be	stable	in	this	position	if	its
length	will	not	be	too	great	and	if	θ0	is	sufficiently	small.	Determine	the	critical
length,	that	is,	the	upper	limit	of	lengths	for	which	the	wire	will	be	stable	in	the
vertical	 position.	 It	 is	 given	 that,	 if	 x	 denotes	 height	 (above	 the	 level	 of	 the
clamped	end)	of	our	arbitrary	point	P	of	a	wire	in	a	stable	position	for	small	θ0
and	y	denotes	small	horizontal	displacement	of	P	from	the	vertical	line	through
the	clamped	end,	then	y	satisfies	the	equation

where	W	is	the	weight	of	that	portion	of	the	wire	which	is	above	P	and	EI	is	the
flexural	 rigidity	 of	 the	 wire,	E	 denoting	 Young’s	 modulus	 and	 I	 denoting	 the
moment	of	inertia	of	the	cross-sectional	area	A	with	respect	to	a	diameter.	*
We	let	L	denote	the	length	of	the	wire	and	let	w	denote	the	weight	per	unit	of

length.	Then

so	that	Eq.	(VI-16.1)	becomes

In	order	 to	solve	Eq.	 (VI-16.3)	we	will	 let	p	=	dy/dx.	And	for	convenience	we
will	let	k2	=	w/EI;	and	we	will	let	z	=	L	−	x.	Then	in	place	of	Eq.	(VI-16.3)	we
have

that	is,



We	 now	 have	 our	 differential	 equation	 for	 small	 displacements	 in	 a	 form
where	we	can	easily	solve	 it	by	 identification	with	Eq.	 (VI-2.1)	where	p	plays
the	role	of	y	and	z	plays	the	role	of	x.	We	have

whence

Thus,	the	general	solution	of	Eq.	(VI-16.4)	via	Eqs.	(VI-2.2)	and	(V-0.8)	is

where	C1	and	C2	are	arbitrary	constants.	In	order	to	simplify	the	notation	let	us
put	a	=	2k/3	and	r	=	z3/2,	so	that	the	general	solution	of	Eq.	(VI-16.4)	now	reads

Evaluation	 of	 the	 constants	 C	 and	 C2	 is	 determined	 by	 the	 boundary
conditions	at	the	ends	of	the	wire.	At	the	upper	end,	which	is	free,	the	bending
moment	is	zero.	This	is	equivalent	to	requiring

which	in	turn	is	equivalent	to

since	d2y/dx2	=	dp/dx	=	 (dp/dz)(−1).	But	r	 =	 z3/2.	Thus,	Eq.	 (VI-16.6)	 requires
that

Removing	the	nonvanishing	factor	 	and	replacing	z1/2	by	r1/3,	we	find	that	Eq.



(VI-16.7)	requires

Let	us	now	apply	the	left	side	of	Eq.	(VI-16.8)	to	p	as	given	by	Eq.	(VI-16.5).
Then	Eq.	(VI-16.8)	becomes

which,	by	application	of	formulas	(A)	and	(C)	in	Table	V-l,	is	the	same	as

or,	since	a	≠	0,

Since	 the	 leading	 term	in	 the	series	 for	J−2/3(ar)	as	given	 in	Eq.	 (V-0.2)	 is	a
term	 in	 r−2/3,	 it	 follows	 that	 the	 first	 term	 on	 the	 left	 in	 Eq.	 (VI-16.9)	 is	 a
constant	which	does	not	vanish	when	C	≠	0.	On	the	other	hand,	since	the	leading
term	in	the	series	expansion	for	J2/3(ar)	is	a	term	in	r2/3,	the	second	term	on	the
left	in	Eq.	(VI-16.9)	vanishes	at	r	=	0	regardless	of	what	constant	we	take	for	C2.
Consequently,	in	order	for	Eq.	(VI-16.9)	to	hold	we	must	take	C	=	0.	Thus,	Eq.
(VI-16.5)	reduces	to

At	 the	 lower	end,	where	x	=	0	and	r	=	L3/2,	p	=	p0	=	 tan	θ0.	 This	 boundary
condition	requires	by	Eq.	(VI-16.10)	that

which	makes



Since	p	=	dy/dx,	one	might	integrate	Eq.	(VI-16.11),	remembering	that	r	=	(L
−	 x)3/2,	 and	 thus	 obtain	 formula	 for	 vertical	 displacement	 (due	 to	 loading)	 in
terms	of	distance	above	level	of	clamped	end.	But,	happily,	that	is	not	needed	for
the	determination	of	the	critical	length.	Such	determination	can	be	made	at	once
via	Eq.	 (VI-16.11)	as	 follows.	Equation	(VI-16.11)	expresses	 the	slope	of	each
point	of	wire	in	stable	position	at	small	p0.	Every	such	slope	will	be	finite.	This
means	that	Eq.	(VI-16.11)	holds	(for	sufficiently	small	p0)	for	positive	values	of
L	 less	 than	 the	 least	 positive	 L	 such	 that	 the	 denominator	 in	 Eq.	 (VI-16.11)
vanishes,	which	means	the	least	positive	L	such	that

Equation	 (VI-16.12)	 is	 the	 critical	 equation,	 that	 is,	 the	 equation	 which
determines	the	critical	length	Lc,	namely	the	length	beyond	which	the	wire	will
not	be	stable	in	vertical	position.
The	 least	 positive	 zero	 of	 the	 function	 J−1/3	 can	 be	 found	 in	 tables	 to	 be

approximately	1.87.	Since	we	have	not	listed	values	for	J−1/3	in	this	book,	let	us
see	what	we	can	do	on	our	own	 to	get	 an	approximation	 for	 the	 least	positive
zero	of	J−1/3.	Taking	only	 the	first	 three	 terms	of	 the	series	expansion	given	 in

Eq.	(V-0.2)	with	 ,	we	want

that	is,

Now,	by	Eq.	(I-4.1)	we	have	 	and	 .
This	makes	Eq.	(VI-16.13)	become

whose	solutions	are



The	 positive	 values	 of	 x	 given	 by	 Eq.	 (VI-16.14)	 are	 approximate	 values
(probably	not	very	close)	for	the	least	and	next-to-least	positive	zero	of	J−1/3(x).
To	 get	 the	 least	 positive	 zero,	 we	 take	 the	 negative	 sign	 in	 Eq.	 (VI-16.14),
obtaining

as	against	1.87	from	the	tables.	Let	us,	however,	use	1.87.
Returning	to	the	equation	for	critical	 length,	namely	Eq.	(VI-16.12),	we	find

the	critical	length	to	be	given	by

Recalling	 that	 ,	 we	 find	 from	Eq.	 (VI-16.15)	 that
the	critical	length	Lc	is	given	by

VI-17.	Apply	the	result	obtained	in	Eq.	(VI-16.16)	in	Prob.	VI-16	to	find	the
critical	 length	 Lc	 for	 vertical	 stability	 of	 steel	 wire	 having	 the	 following
specifications:
(a)	cross-section	circular,	diameter	.06	inches;
(b)	density	489	pounds	per	cubic	foot;
(c)	E	=	3.20	×	107	pounds	per	square	inch.	*

The	formula	to	be	applied	is

where	E	is	Young’s	modulus	and	I	is	the	moment	of	inertia	of	the	cross-sectional
area	A	about	a	diameter	and	w	is	weight	per	unit	of	length.
One	finds	in	an	appropriate	textbook	that	the	moment	of	inertia	of	a	circular

area	about	a	diameter	is

Since	r	=	.03	by	specification	(a),	we	find	by	Eq.	(VI-17.1)	that



In	Eq.	(VI-17.3)	we	have	implicitly	committed	ourselves	to	taking	the	inch	as
unit	of	 length.	We	must,	 therefore,	compute	 the	 linear	density	w	 in	pounds	per
inch.	Accordingly,	we	have

Taking	 I	 from	 Eq.	 (VI-17.3)	 and	 w	 from	 Eq.	 (VI-17.4)	 and	 E	 from
specification	(c),	we	find	by	Eq.	(VI-17.1)	that	the	critical	length	is

Problem:	Flux	Distribution	in	a	Nuclear	Reactor

VI-18.	Determine	the	radial	flux	distribution	 	in	a	bare	nuclear	reactor	in	the
shape	of	 a	 long	 (compared	 to	 radius)	 right	 circular	 cylinder	of	 radius	R,	being
given	that
(a)	the	flux	 	satisfies	the	equation

where	 	is	the	Laplacian	of	 	and	B2	is	a	positive	constant	to	be	determined
by	boundary	conditions,
(b)	 	 is	 a	 function	 of	 one	 variable	 only,	 namely	 distance	 from	 longitudinal

axis	of	reactor,	that	is,	 	is	symmetric	with	respect	to	this	axis,
(c)	 if	 cylindrical	 coordinates	 (r,	 θ,	 z)	 be	 taken	 with	 the	 z-axis	 in	 the

longitudinal	axis	of	the	reactor,	then	the	flux	 	satisfies	the	conditions

In	terms	of	cylindrical	coordinates	Eq.	(VI-18.1)	is

But,	 the	given	condition	(b)	means	that	 	 is	 independent	of	both	θ	and	z.	This



makes	Eq.	(VI-18.4)	reduce	to

If,	now,	we	multiply	both	sides	of	Eq.	(VI-18.5)	by	r2	and	use	primes	to	denote
first	and	second	derivative	of	 	with	respect	to	r,	then	Eq.	(VI-18.5)	becomes

Solution	of	Eq.	 (VI-18.6)	 is	 immediately	obtained	by	way	of	Eq.	 (VI-1.6)	 if
we	identify	r	with	x	and	take	D	=	B	and	p	=	0.	Thus,	by	Eqs.	 (VI-1.5)	and	(V-
0.8)	the	general	solution	of	Eq.	(VI-18.6)	is

where	C1	and	C2	are	arbitrary	constants.

Now	in	the	use	of	cylindrical	coordinates,	negative	values	are	permissible	for
r	as	well	as	for	θ	and	z.	This	means,	by	condition	(b),	that

Consequently,	we	must	take	C2	=	0	in	Eq.	(VI-18.7),	since	Y0(x)	is	not	an	even
function	while	J0(x)	is	an	even	function.	Thus,	we	have

The	constant	C1	 in	Eq.	 (VI-18.8)	 is	determined	by	 the	power	 level	at	which
the	reactor	is	operating.	C1	is	not	zero.
The	 constant	 B	 is	 determined	 by	 the	 given	 condition	 (c).	 Eq.	 (VI-18.2)

requires	by	Eq.	(VI-18.8)	that

Now,	 the	 function	J0(x)	 has	 infinitely	many	 zeros.	To	which	 of	 them	 shall	we
equate	 BR?	 The	 answer	 to	 this	 question	 is	 found	 by	 consideration	 of	 the
condition	stated	in	Eq.	(VI-18.3),	which	requires	that	 	be	positive	for	0	<	r	<	R.
This	means	that	we	must	take	BR	equal	to	the	least	positive	zero	α1	of	J0(x)	 in
order	that	J0(Br)	will	be	positive	for	0	 	Br	<	α1.	In	Table	V-4	we	find	that	α1	≅



2.4048	whence

So,	we	have

where,	as	mentioned	above,	C1	is	to	be	determined	by	the	power	level.

Problems:	Heat-Flow	Temperature	Distribution
VI-19.	Determine	the	steady-state	temperature	distribution	T	 in	a	cooling	fin

(sometimes	called	spine)	on	an	engine	 if	 the	 fin	 is	a	homogeneous	solid	 in	 the
shape	of	a	right	circular	cone	of	length	L	and	radius	R	at	its	base	where	it	meets
the	body	of	the	engine.	Let	A(x)	denote	the	area	of	the	cross-section	of	the	fin	at
right	 angles	 to	 its	 axis	 at	 distance	 x	 along	 the	 axis	 from	 the	 vertex.	 Let	C(x)
denote	 the	circumference	of	 such	cross-section.	Let	 it	be	assumed	 that,	 for	 the
purposes	of	this	problem,	sufficient	accuracy	will	be	had	by	supposing	that	 the
isothermal	surfaces	in	the	fin	are	the	plane	circular	cross-sections	at	right	angles
to	the	axis.	This	makes	T	to	be	a	function	of	x	alone.	Let	it	be	given	that,	under
this	assumption	(see	Eckert	and	Drake,	Heat	and	Mass	Transfer,	McGraw-Hill,
1959),	the	equation	to	be	satisfied	by	T

where	 Tf	 is	 the	 temperature	 of	 the	 surrounding	 fluid,	 k	 is	 the	 thermal
conductivity	 of	 the	 metal	 of	 which	 the	 fin	 is	 made,	 and	 h	 is	 a	 heat	 transfer
coefficient.	Let	Tb	 denote	 the	 temperature	 (assumed	 constant)	 of	 the	 engine	 at
the	base	of	the	fin.
Determine	 also	 the	 value,	 at	 the	 base	 of	 the	 fin,	 of	 the	 rate	 of	 heat	 flow	Q

given	by

By	simple	geometry	involving	similar	triangles	one	finds	that



Let	us	denote	the	temperature	excess	by	 :

Let	us	also	put

Then,	observing	that	 ,	substituting	for	A(x)	and	for	C(x)	 from
Eq.	 (VI-19.3)	 in	Eq.	 (VI-19.1)	 and	carrying	out	 the	differentiation	 indicated	 in
Eq.	 (VI-19.1),	 we	 find	 that	 Eq.	 (VI-19.1)	 applied	 to	 the	 present	 problem
becomes

where	the	primes	denote	the	first	and	second	derivatives	with	respect	to	x.
We	 obtain	 solution	 for	 Eq.	 (VI-19.6)	 by	 identification	 with	 Eq.	 (VI-2.1)	 in

which	we	take	 .	We	have

whence

where	 .	Thus,	by	Eqs.	(VI-2.2)	and	(V-0.12)	the	general	solution	of
Eq.	(VI-19.6)	is

The	factor	 	in	Eq.	(VI-19.7)	becomes	infinite	at	the	vertex	of	the	cone

where	x	=	0.	But	the	ratio	 	does	not	become	infinite	at	x	=	0.
This	ratio	approaches	 	as	limit	when	x	→	0,	as	may	be	seen	from	Eqs.
(V-0.9)	and	(V-0.2)	whereby



On	the	other	hand	the	ratio	 	does	become	infinite	as	x	→	0
if	C2	is	taken	≠	0,	as	may	be	seen	in	similar	manner	via	Eqs.	 (V-0.11),	 (V-0.7),
(V-0.2).	Accordingly,	we	must	 take	C2	 =	 0,	 since	 no	 infinite	 temperatures	 are
involved	in	our	problem.	So,	we	have

And	we	shall	take	 	at	x	=	0	to	be

It	 remains	 to	 determine	 C1.	 This	 constant	 is	 determined	 by	 the	 boundary
condition	T(L)	=	Tb,	which	by	Eq.	(VI-19.4)	makes	 .	Thus,

and	the	temperature	T	in	the	fin	is

where	m	is	given	by	Eq.	(VI-19.5)	and	C1	is	given	by	Eq.	(VI-19.9).

To	determine	the	rate	Q	of	heat	flow	at	the	base	of	the	fin	as	given	by	Eq.	(VI-
19.2)	we	have	only	to	differentiate	T	as	given	by	Eq.	(VI-19.9)	and	then	set	x	=
L.	Putting	 ,	we	get



We	apply	formula	(D)	in	Table	V-1,	obtaining

Substituting	from	Eq.	(VI-19.11)	in	Eq.	(VI-19.2),	we	get

so	that	the	rate	of	heat	flow	at	the	base	is

where	m	and	C1	are	given	by	Eqs.	(VI-19.5)	and	(VI-19.9)	respectively.

REMARK.	In	the	usual	steady-state	heat-flow	problem,	where	no	presumption	is
taken	 regarding	 isothermal	 surfaces,	 the	 temperature	 T	 must	 satisfy	 Laplace’s
equation	∇2T	 =	 0	 interior	 to	 the	 region	of	 flow.	 In	 the	present	 problem	 it	was
considered	 sufficiently	 accurate	 to	 assume	 the	 isothermal	 surfaces	 to	 be	 those
portions	of	the	surfaces	x	=	a	constant	contained	in	 the	region	occupied	by	the
fin,	 as	 was	 mentioned	 in	 the	 statement	 of	 the	 problem.	 That	 is	 why	 the
differential	equation	to	be	satisfied	by	T	is	different	from	Laplace’s	equation.

VI-20.	 Determine	 the	 temperature	 distribution	 T	 in	 a	 homogeneous	 right
circular	cylinder	solid	of	height	L	and	radius	R,	given	 the	following	conditions



and	 assumptions.	 Heat	 is	 being	 produced	 in	 the	 cylinder.	 The	 rate	Q′	 of	 heat
production	per	unit	volume	per	unit	time	at	each	point	of	the	cylinder	is	a	linear
function	 of	 the	 temperature:	Q′	 =	 a	 +	 bT,	 a	 ≠	 O,	 b	 ≠	 0.	 The	 surface	 of	 the
cylinder	 is	 kept	 at	 a	 uniform	 temperature	Ts.	 Assume	 that	 the	 production	 and
conduction	 of	 the	 heat	 is	 such	 that	 (a)	T	 does	 not	 vary	with	 time,	 (b)	T	 is	 a
function	only	of	distance	r	from	the	axis	of	the	cylinder:	T	=	T(r),(c)	T	decreases
with	increasing	r,	that	is,	heat	flow	is	radially	outward,	(d)	T	is	continuous	for	0	
	r	 	R	and	differentiate	for	0	 	r	<	R.	*

The	amount	of	heat	QH	being	produced	per	unit	 time	at	a	given	 instant	 in	a
coaxial	subcylinder	H	of	radius	r	and	height	L	is	given	by	the	integral	of	the	rate
of	heat	production	Q′	over	the	volume	H:

Since	we	are	assuming	T	 to	be	 that	of	a	 steady-state	heat	conduction	problem,
the	amount	of	heat	being	lost	per	unit	time	through	the	surface	of	the	subcylinder
H	by	conduction	radially	outward	equals	 the	amount	of	heat	produced	per	unit
time	in	H.	Since	the	lateral	surface	area	of	the	subcylinder	H	is	2πrL,	we	have

where	 k	 is	 the	 thermal	 conductivity	 of	 the	material	 comprising	 the	 solid.	 The
minus	sign	is	needed	here	to	make	QH	a	positive	quantity	since	the	temperature
gradient	dT\dr	is	negative.	Equating	the	two	expressions	for	QH,	we	have

Differentiating	both	sides	of	this	equation,	we	find	that



whence

Equation	 (VI-20.3)	 is	 a	 linear	 differential	 equation	 whose	 solution	 will	 be
made	 up	 of	 a	 particular	 solution	 plus	 the	 complementary	 function.	 The
complementary	function	 is	obtained	by	setting	 the	 left	side	of	Eq.	 (VI-20.3)	 to
zero:

whence,	by	multiplying	through	by	r2	we	have

The	general	solution	of	Eq.	(VI-20.4)	by	Eqs.	(VI-1.5)	and	(V-0.8)	is

For	 the	particular	 solution,	we	observe	 that	 the	 right	 side	of	Eq.	 (VI-20.3)	 is	a
constant;	so	we	take	T	=	a	constant:

Thus,	the	general	solution	of	Eq.	(VI-20.3)	is

To	determine	C1	and	C2	we	have	the	conditions



The	first	of	the	conditions	in	Eq.	(VI-20.8)	makes	Y0	unsuitable	in	Eq.	(VI-20.7)
since	Y0	becomes	infinite	at	r	=	0.	So	we	must	take	C2	=	0.	Then	the	second	of
conditions	(VI-20.8)	requires	that

The	solution	to	our	problem	is

REMARKS.	1.	If	there	is	heat	absorption	(instead	of	production)	in	the	cylinder
at	a	linear	rate,	all	other	conditions	being	the	same,	we	have	Q′	=	a	−	bT;	and	the
solution	Eq.	(VI-20.10)	is	replaced	by

by	Eq.	(V-0.12).
2.	The	 solutions	 obtained	 for	T	 in	Eqs.	 (VI-20.10)	 and	 (VI-20.11)	 are	 valid

except	when	 the	 trio	of	constants	b,	k,	and	R	 happen	 to	 be	 such	 that	 	R
equals	a	zero	of	J0.

Problems	in	Dynamics
VI-21.	A	perfectly	flexible	chain	of	length	L	and	constant	linear	density	p	 is

fastened	at	one	end	to	a	fixed	point	from	which	it	hangs	vertically	at	rest	in	the
positive	x-axis	with	the	origin	x	=	0	at	the	lower	end	of	the	chain.	The	chain	is
then	caused	to	oscillate	slightly	in	a	fixed	vertical	plane	by	imparting	to	each	of
its	points	at	time	t	=	0	an	initial	horizontal	velocity	v	given	by	v	=	F(x),	where
F(x)	is	continuous	and	differentiable	for	0	 	x	 	L	and	where,	of	course,	F(L)	=



0.
Determine,	as	function	of	x	and	t,	the	horizontal	displacement	y	of	a	point	of

the	chain,	making	the	following	assumptions:
(a)	the	motion	of	each	point	of	the	chain	is	to	be	considered	as	taking	place	in

a	horizontal	straight	line,

(b)	the	magnitude	of	the	tension	 	at	each	point	P	of	the	chain	is	given	with
sufficient	 approximation	 by	 the	 weight	 of	 that	 portion	 of	 the	 chain	 which	 is
below	P,
(c)	the	oscillations	are	so	small	that,	if	β	denotes	the	acute	angle	made	with	the

vertical	by	the	line	tangent	to	the	chain	at	any	point	thereof,	then	sin	β	may	be
replaced,	with	sufficient	approximation,	by	tan	β,
(d)	in	setting	up	the	differential	equation	of	motion,	an	equation	of	sufficient

approximation	will	 be	 obtained	 by	 neglecting	 positive	 powers	 higher	 than	 the
first	power	of	infinitesimal	quantities.	*

Figure	VI-1.	Short	piece	of	hanging	chain.

Let	 us	 compute	 (approximately)	 first	 the	 net	 instantaneous	 horizontal
component	 of	 tension	 for	 a	 short	 piece	 of	 chain	 from	an	 arbitrary	x	 to	x+	Δx.
Since	the	x-axis	points	upward,	the	tension	at	x	+	Δx	will,	by	assumption	(b),	be
of	greater	magnitude	than	that	of	the	tension	at	x.	We	take	the	y-axis	horizontal
through	the	point	x	=	0	at	the	bottom	of	the	chain.	We	let	Ty(x)	denote	horizontal
component	 of	 tension	 at	x.	We	 take	 our	 short	 piece	 of	 chain	 to	 be	 in	 the	 first
quadrant	and	curving	outward	as	x	decreases.	We	let	a	denote	the	inclination	to



the	 positive	 x-direction	 of	 the	 line	 tangent	 to	 the	 chain.	We	 let	 T	 denote	 the
magnitude	of	the	tension	T.	Then	we	have

But	 tan	 α	 is	 the	 slope	 of	 the	 chain,	 namely	 dy/dx.	 The	 partial	 derivative	 is
required	 here,	 since	 y	 is	 a	 function	 of	 two	 independent	 variables	 x	 and	 t,	 and
since	we	are	holding	t	fixed	while	we	analyze	the	momentary	situation	in	a	short
piece	of	chain.	Thus,	at	a	given	moment,	we	have

The	 horizontal	 component	 of	 tension	 at	 the	 upper	 end	 of	 our	 short	 piece	 is
given	by	Eq.	(VI-21.1)	with	change	of	sign	on	the	right	and	then	evaluated	at	x	+
Δx,	namely

The	change	in	sign	is	required	by	the	fact	that,	for	a	short	piece	of	chain,	Ty(x)
and	Ty(x	+	Δx)	are	in	opposite	directions.	Now,	T	+	ΔT	is	given	by	the	Taylor’s
series	expansion	for	T,	namely

Likewise,	we	have

In	accordance	with	assumption	(d)	we	shall	retain	only	the	first	two	terms	on	the
right	in	Eqs.	(VI-21.3)	and	(VI-21.4),	since	further	terms	involve	powers	of	Δx



higher	than	the	first.	By	virtue	of	these	curtailed	versions	of	Eqs.	(VI-21.3)	and
(VI-21.4)	we	may	write	Eq.	(VI-21.2)	as

Carrying	 out	 the	 multiplication	 indicated	 on	 the	 right	 in	 Eq.	 (VI-21.5),	 we
shall	once	more	make	use	of	assumption	(d)	in	that	we	shall	not	retain	the	term
involving	the	square	of	Δx.	Thus,	in	place	of	Eq.	(VI-21.5)	we	write

that	is,

We	take	the	net	instantaneous	horizontal	component	Y	of	tension	on	the	short
piece	 of	 chain	 to	 be	 the	 algebraic	 sum	 of	 oppositely	 signed	 horizontal	 forces
acting	at	the	ends	of	the	piece,	namely

which,	by	Eqs.	(VI-21.6)	and	(VI-21.1),	is

The	mass	of	m	our	short	piece	of	chain	is	ρΔx.	And	the	magnitude	T	of	tension
at	 x	 is	 gρx,	 where	 g	 is	 gravitational	 acceleration.	 Thus,	 by	 Newton’s	 law	 of

motion	 ,	we	have

In	Eq.	 (VI-21.8)	 the	 acceleration	 factor	 ∂2y/∂t2	 should	 really	 be	 considered	 as
being	evaluated	at	an	appropriate	point	between	x	and	x	+	Δx.	But,	if	we	assume
continuity	 of	 this	 derivative	 and	 let	Δx	→	0,	 then	with	 the	 factor	Δx	 removed
from	both	 sides	 of	Eq.	 (VI-21.8),	we	may	 take	 our	 (approximate)	 equation	 of



motion	at	time	t	and	point	x	to	be

that	is,

It	 is	well-known	 that	 partial	 differential	 equations	 can	 often	 be	 satisfied	 by
product	 functions.	 Let	 us	 see	 if	 Eq.	 (VI-21.9)	 can	 be	 satisfied	 by	 a	 product
function	of	the	form

Using	 primes	 to	 denote	 first	 and	 second	 derivatives	 of	 G	 and	 H,	 each	 with
respect	to	its	own	argument,	we	find	that	Eq.	(VI-21.9)	requires	y	as	taken	in	Eq.
(VI-21.10)	to	be	such	that

that	is,

The	 left	 side	 of	 Eq.	 (VI-21.12)	 is	 independent	 of	 t	 while	 the	 right	 side	 is
independent	of	x.	In	other	words,	Eq.	(VI-21.12)	requires	a	function	of	x	alone	to
be	identically	equal	to	a	function	of	t	alone.	This	can	only	be	so	if	each	function
is	identically	a	constant.	Thus,	Eq.	(VI-21.12)	requires	that

that	is,



where	C	is	a	constant.	Now	the	statement	of	our	problem	implies	that	the	motion
of	each	point	of	the	chain	is	assumed	to	be	a	periodic	function	of	the	time	t.	And
solutions	of	Eq.	 (VI-21.14)	are	periodic	when	Cg	 is	 negative.	So	we	 take	C	=
−λ2.	Then	the	general	solution	of	Eq.	(VI-21.14)	is

where	C1,	C2	and	λ	are	arbitrary	constants.	Since	λ	is	arbitrary,	let	us	put	k2	=
λ2g	as	a	convenience.	This	makes

Reverting	to	Eq.	(VI-21.12),	we	find	that	Eq.	(VI-21.12)	now	requires

that	is,

We	can	solve	Eq.	(VI-21.17)	by	application	of	Eq.	(VI-2.1).	We	have

whence

Thus,	by	Eqs.	(VI-2.2)	and	(V-0.8),	the	general	solution	of	Eq.	(VI-21.17)	is

where	C3	and	C4	are	arbitrary	constants.
Putting	our	 results	 together,	we	find	 that	Eq.	 (VI-21.9)	can	be	 satisfied	by	a

solution	 of	 the	 kind	 indicated	 in	 Eq.	 (VI-21.10),	 where	 G	 and	 H	 are	 given
respectively	by	Eqs.	(VI-21.16)	and	(VI-21.18).
The	 Bessel	 function	 Y0	 is	 unsuitable	 in	 the	 problem	 at	 hand,	 since	 Y0(u)

becomes	infinite	at	u	=	0.	We	must,	therefore,	take	C4	=	0.	Since	the	upper	end
of	the	chain	is	fixed,	we	have	y	=	0	at	x	=	L	for	all	t.	This	requires



Thus,	we	can	satisfy	Eq.	(VI-21.9)	by	any	function	of	the	type

provided	 	is	a	zero	of	the	function	J0	and	provided	 .	We	must,
of	course,	have	C3	≠	0,	for	otherwise	the	chain	would	hang	still	without	motion.
It	 certainly	will	 not	 hang	 still	when	 an	 initial	 velocity	 (not	 identically	 zero)	 is
imparted	to	its	points.
At	time	t	=	0	we	have	y	=	0	at	all	x.	Thus,	Eq.	(VI-21.19)	requires	that

Now,	 	 is	 certainly	 not	 identically	 zero.	 And	 we	 have	 C3	 ≠	 0	 as
remarked	 in	 the	 preceding	 paragraph.	 Consequently,	 we	 must	 take	 C1	 =	 0.
Taking	C1	=	0	in	Eq.	(VI-21.19)	and	putting	A	=	C3C2,	we	can	now	say	that	any
function	of	the	type

where	λ	is	such	that	 	and	 ,	will	satisfy	Eq.	 (VI-21.9)
and	 will	 also	 satisfy	 two	 of	 the	 boundary	 conditions,	 namely	 initial	 zero
displacement	 at	 all	 points	 and	 continued	 zero	 displacement	 for	 all	 t	 at	 the
topmost	point.

So	far,	so	good.	But	now	comes	the	difficulty.	We	have	yet	to	fulfill	the	initial
condition	of	prescribed	imparted	velocities	at	time	t	=	0,	namely,

But	no	single	function	of	the	type	 	equals	a	prescribed	F(x)	at	every
x	on	the	interval	0	 	x	 	L,	unless	perchance	F(x)	itself	happens	to	be	given	as
such	a	function.	How	do	we	finish	the	solution	of	the	problem	when	F(x)	is	not	

	 multiplied	 by	 a	 constant?	 Answer:	 construct	 a	 composite	 solution
comprised	of	an	infinite	series	of	solutions	of	type	Eq.	(VI-21.20),	namely



where	 the	 numbers	 λj,	 are	 the	 positive	 zeros	 of	 the	 function	 J0	 and	where	 the
coefficients	Aj,	are	such	that	(∂y/∂t)t=0	=	F(x),	that	is,

The	 expansion	 called	 for	 in	 Eq.	 (VI-21.22)	 can	 be	 effected	 by	 appropriate

applications	 of	 Prob.	V-27	 as	 follows.	 First	 we	 set	 .	 Then	 Eq.	 (VI-
21.22)	becomes

where	 f(u)	denotes	F(u2).	And	now	Eq.	 (VI-21.23)	 is	an	expansion	of	 the	 type
considered	in	Prob.	V-27	where	the	independent	variable	is	denoted	by	u	instead
of	x	and	where	λj	=	αj	j	=	1,	2,	3,	·	·	·	.	Thus,	the	numbers	Aj	in	Eq.	(VI-21.23)
are	given	by

that	is,

The	solution	of	our	problem	is	given	by	Eq.	(VI-21.21)	in	which	λj	=	αj,	j	=	1,
2,	3,	·	·	·	and	in	which	the	coefficients	Aj	are	given	by	Eq.	(VI-21.25).

REMARK.	 The	 problem	of	 small	 oscillations	 of	 a	 uniform	hanging	 chain	was
first	 studied	 by	Daniel	Bernoulli	 in	 1732	 and	 later	 by	Euler	 in	 1781.	 It	 is	 the
problem	 whereby	 the	 functions	 now	 known	 as	 Bessel	 functions	 were	 first



encountered	 in	 mathematics	 and	 its	 applications.	 The	 practical	 value	 of	 a
formula	 for	 the	 displacements	 of	 points	 on	 an	 oscillating	 chain	 is	most	 likely
limited;	 however,	 the	 techniques	 that	 this	 problem	 caused	 to	 be	 developed
occupy	a	position	of	importance	in	modern	mathematical	physics.

VI-22.	 A	 homogeneous,	 slightly	 tapered	 rod	 of	 length	L	 is	 such	 that	 when
properly	 placed	 with	 respect	 to	 the	 x-axis	 the	 cross-sectional	 area	 A
perpendicular	to	the	x-axis	is	given	by

where	a	and	b	are	positive	constants.	The	larger	end	is	fixed	and	is	in	the	plane	x
=	0.	The	smaller	end	is	free	and	lies	in	the	plane	x	=	a/(b	+	L).	As	result	of	an
axial	blow	at	the	free	end,	the	rod	is	vibrating	longitudinally.	Assuming	that,	for
each	 cross-section,	 all	 the	 points	 in	 the	 cross-section	 undergo	 the	 same
displacement	u	parallel	 to	 the	x-axis,	namely,	u	=	u(x,	 t)	where	 t	 denotes	 time,
determine	the	formula	for	u.	*

As	 is	 customary	 in	 many	 problems	 of	 applied	 mathematics,	 we	 shall	 be
content	 to	 set	 up	 an	 approximate	differential	 equation,	 of.	motion,	 considering
the	physical	and	geometrical	conditions	to	be	such	that	we	may,	with	satisfactory
approximation,	 neglect	 powers	 higher	 than	 the	 first	 of	 infinitesimal	 quantities.
Let	us	compute	(approximately)	the	instantaneous	net	axial	stress	in	a	very	thin
cross-sectional	slice	whose	plane	bases	are	in	planes	cutting	the	x-axis	at	x	and	x
+	Δx.	The	corresponding	areas	of	the	bases	are	A	and	A	+	ΔA.	The	corresponding
displacements	are	u	and	u	+	Δu.
The	stress	at	x	is	EA[∂u/∂x],	where	E	denotes	Young’s	modulus.	The	area	A	+

∂A	is	given	exactly	by	Taylor’s	series:

We	 have	 agreed	 to	 neglect	 powers	 higher	 than	 the	 first	 of	 small	 quantities.
Accordingly,	we	have



Similarly,	one	 finds	via	Taylor’s	Series	expansion	 that	a	 first	 approximation	 to
the	first	derivative	of	u	by	x,	with	t	held	constant,	at	x	+	Δx	is

Thus,	the	stress	at	x	+	Δx	is	approximately

which	in	turn	is	approximated	by

where	we	have	discarded	the	term	involving	the	square	of	Δx.
The	instantaneous	net	axial	stress	in	the	slice	we	take	to	be	the	excess	of	the

stress	at	x	+	Δx	over	the	stress	at	x,	namely

This	is	(approximately)	the	(signed)	magnitude	of	the	force	acting	on	the	slice,
which	 by	Newton’s	 first	 law	of	motion	 equals	 the	 (signed)	 acceleration	 of	 the
slice	multiplied	by	its	(approximate)	mass.
Accordingly,	we	have

where	 ρ	 is	 the	 density	 of	 the	 material.	 Thus	 the	 (approximate)	 equation	 of
motion	is

where



If	the	rod	were	of	constant	cross-sectional	area,	Eq.	(VI-22.4)	would	be

c2	 denoting	 1/k2.	 Equation	 (VI-22.6)	 is	 the	 one-dimensional	 wave	 equation,
whose	general	solution	is	known	to	be

f	and	 	being	arbitrary	functions	of	their	respective	compound	arguments	x	−	ct
and	x	+	ct.	If	we	assume	that	the	longitudinal	vibrations	of	the	rod	(of	constant
cross-section)	are	periodic	in	time,	then	it	is	known	that	Eq.	(VI-22.6)	is	satisfied
by	functions	of	the	form

where	B	and	q	are	arbitrary	constants.	This	is	equivalent	to	saying	that	Eq.	 (VI-
22.6)	is	satisfied	by	functions	of	the	form

or	any	one	of	the	three	other	forms	obtained	by	replacing	either	sine	or	both	by
cosine.	 Indeed,	 one	 may	 even	 include	 a	 lead	 (or	 lag)	 additive	 term	 in	 the
argument	of	the	sine	(or	cosine)	in	either	bracket.	Thus,	Eq.	(VI-22.6)	is	satisfied
by	a	function	of	the	form

where	B,	q,	and	s	are	arbitrary	constants.
The	function	u	in	Eq.	(VI-22.8)	is	a	product	function	of	the	form

Let	us	now	try	a	product	function	of	this	type	as	solution	of	the	equation	of	the
present	problem	of	the	tapered	rod,	namely	Eq.	(VI-22.4).	We	take	h(t)	to	be	of
the	same	character	as	in	Eq.	(VI-22.8),	namely	h	=	sin	(λt	+	μ),	where	λ	and	μ	are
constants	to	be	determined	by	initial	conditions.	But	since	Eq.	(VI-22.4)	differs



from	 its	 particular	 case,	 namely	 Eq.	 (VI-22.6),	 in	 that	 the	 area	 A(x)	 is	 not
constant,	we	shall	not	commit	ourselves	as	to	the	nature	of	the	function	g(x)	 in
Eq.	(VI-22.9),	trusting	that	the	differential	Eq.	(VI-22.4)	will	tell	us	what	kind	of
function	g(x)	shall	be.
We,	therefore,	try

in	Eq.	(VI-22.4).	First	we	write	Eq.	(VI-22.4)	as

Substitution	from	(VI-22.10)	in	(VI-22.11)	yields

The	common	factor	sin	(λt	+	μ)	may	be	removed,	since	it	will	not	be	identically
zero.	From	Eq.	(VI-22.1)	we	have	A	=	a/(b	+	x).	So,	Eq.	(VI-22.12)	becomes

Let	us	put	b	+	x	=	z.	Then	g(x)	=	g(z	−	b)	=	h(z).	And	dg/dx	=	dh/dz,	d2g/dx2	=
d2h/dz2.	Thus,	Eq.	(VI-22.13)	multiplied	through	by	z2	becomes

where	the	primes	denote	first	and	second	derivative	with	respect	to	z.	Equation
(VI-22.14)	is	an	equation	of	the	type	solved	in	Prob.	VI-2.	Identifying	Eq.	 (VI-
22.14)	with	Eq.	(VI-2.1),	with	z	playing	the	role	of	x	therein,	we	have

whence

Thus,	we	find	by	Eqs.	(VI-2.2)	and	(V-0.8)	that	the	function	h(z)	shall	be



We	 have,	 then,	 by	 Eq.	 (VI-22.15)	 and	 Eq.	 (VI-22.10)	 the	 solution	 of	 our
problem:

where	z	=	b	+	x,	 	by	Eq.	(VI-22.5),	and	where	C1,	C2,	λ,	and	μ	are
constants	 to	 be	 determined	 by	 initial	 conditions.	 There	 remains	 only	 the
determination	of	the	four	constants	C1,	C2,	λ,	μ.
At	x	=	0	there	is	no	displacement,	since	the	end	of	the	rod	at	the	origin	is	fixed

and	 immovable.	 Thus,	 the	 displacement	u	 =	 0	when	 z	 =	b	 for	 all	 values	 of	 t.
Consequently,	the	expression	in	brackets	in	Eq.	(VI-22.16)	must	vanish	when	z	=
b,	since	the	other	factor	sin	(λt	+	μ)	does	not	vanish	identically.	Recalling	that	b
≠	0,	we	have

At	the	free	end	of	the	rod	we	assume,	that	once	the	blow	has	been	struck,	there
is	no	stress	there:	∂u/∂x	=	0	at	x	=	L	for	all	t.	To	require	∂u/∂x	=	0	at	x	=	L	for	all
t	is	equivalent	to	requiring	dg/dx	=	0	at	x	=	L,	since	the	other	factor	in	u	does	not
vanish	 identically;	 and	 then	 to	 require	 dg/dx	 =	 0	 at	 x	 =	 L	 is	 equivalent	 to
requiring	dh\dz	=	0	at	z	=	b	+	L.	From	Eq.	(VI-22.15)	we	have

Applying	formula	(E)	 in	Table	V-1	 to	 the	derivatives	called	 for	on	 the	 right	 in
Eq.	(VI-22.18),	setting	z	=	b	+	L	and	collecting	like	terms	we	find	that	Eq.	(VI-
22.18)	requires

In	addition	to	Eqs.	(VI-22.17)	and	(VI-22.19)	we	need	two	more	equations	to
determine	the	four	constants	C1,	C2,	λ,	μ.	If,	for	example,	the	displacement	u(x,	t)
=	h(z)	sin	(λt	+	μ)	where	h(z)	is	given	by	Eq.	(VI-22.15)	and	z	=	b	+	x,	be	known
for	 (x1,	 t1)	 and	 for	 (x2,	 t2),	 then	 Eq.	 (VI-22.16)	 will	 yield	 two	 additional



equations	in	C1,	C2,	λ,	μ.	These	two	equations	together	with	Eq.	(VI-22.17)	and
Eq.	(VI-22.19)	will	determine	C1,	C2,	λ,	μ.

REMARK.	 The	 one-dimensional	wave	 equation	 Eq.	 (VI-22.6)	 is	 an	 important
one	in	mathematical	physics.	It	occurs	also	in	such	problems	as	the	vibrations	of
a	stretched	elastic	string	and	small	oscillations	in	a	thin	tube	of	air	as	in	an	organ
pipe.	 It	 is	 sometimes	 called	 D’Alembert’s	 equation	 in	 honor	 of	 Jean-le-Rond
D’Alembert	who	first	solved	it	in	1747.	Derivation	of	its	solution	Eq.	(VI-22.7)
will	be	found	in	any	good	text	dealing	with	partial	differential	equations.

Problem:	Fluid	Velocity	Imparted	by	Radially	Pulsating	Cylinder
VI-23.	A	circular	cylinder	of	radius	R	and	of	great	length	(taken	as	infinite	for

the	 purposes	 of	 the	 problem)	 is	 surrounded	 laterally	 by	 an	 ideal	 compressible
fluid.	The	cylinder	is	pulsating	radially	with	frequency	a>	in	such	a	manner	that
the	 radial	 velocity	 of	 each	 point	 of	 the	 lateral	 boundary	 of	 the	 cylinder	 is	 a
sinusoidal	 function	 (the	 same	 for	 all	 such	 points)	 of	 the	 time	 t,	 the	minimum
absolute	velocity	being	zero.	Determine	the	velocities	imparted	by	the	pulsation
to	the	points	of	the	surrounding	fluid.	It	is	to	be	assumed	that	such	velocities	will
also	be	sinusoidal	in	character.	And	it	is	given	(from	hydrodynamic	theory)	that

the	 velocity	 vector	 field	 	 of	 the	 imparted	 velocities	 is	 such	 that	 	 is	 the
gradient	of	a	velocity	potential	function	 	satisfying	the	wave	equation

(Here	the	constant	c	is	the	speed	of	sound	in	the	surrounding	fluid.)	*
Cylindrical	coordinates	(r,	θ,	z)	are	certainly	the	most	convenient	to	use	in	this

problem,	with	the	z-axis	taken	in	the	axis	of	the	cylinder.	Since	 	is	always	and
everywhere	radial	with	respect	to	the	z-axis,	it	follows	that	 	 is	a	function	of	r
and	t	only.	Accordingly,	the	Laplacian	 	in	cylindrical	coordinates,	namely

reduces	to	two	terms,	so	that	Eq.	(VI-23.1)	becomes



The	 character	 of	 the	 imparted	 velocities	 is	 such	 as	 to	 suggest	 that	 in	 this
problem	the	use	of	complex	quantities	will	be	found	convenient.	Moreover,	as	in
many	problems	calling	 for	 solution	of	 such	equations	as	Laplace’s	equation	or
the	wave	 equation	 (see,	 for	 instance,	 Prob.	V-22),	 we	 shall	 assume	 a	 product
solution	of	the	form

If	we	can	determine	a	complex	 function	 	which	will	 satisfy	Eq.	 (VI-23.2),	 it
will	follow	by	separation	of	reals	and	pure	imaginaries	that	the	real	part	of	 	will
satisfy	Eq.	(VI-23.2).	So,	we	take

where	
Putting	 	from	Eq.	(VI-23.3)	into	Eq.	(VI-23.2),	we	get

where	 the	 primes	 on	 F	 denote	 first	 and	 second	 derivative	 with	 respect	 to	 r.
Suppressing	 the	 nonvanishing	 factor	 eiωt,	 multiplying	 through	 by	 r2,	 and
transposing	the	term	on	the	right,	we	find	that	Eq.	(VI-23.4)	becomes

By	Prob.	VI-2	together	with	Eq.	(V-0.8)	the	general	solution	is	seen	to	be

Since	we	are	employing	a	complex	 ,	it	seems	that	it	might	be	convenient	even
to	 take	 F	 as	 a	 complex	 function,	 that	 is,	 to	 express	 F	 in	 terms	 of	 Hankel
functions	(see	Eqs.	(V-0.19)	and	(V-0.20)).	So	we	take

We	now	have



Our	 problem	 is	 to	 determine	 .	 Now,	 ,

where	 	 denotes	 the	 real	 part	 of	 .	 But,	 since	 	 is	 everywhere	 directed
radially	with	 respect	 to	 the	 z-axis,	 it	will	 suffice	 to	 determine	 the	 radial	 scalar

component	of	 ,	namely	Vr,	since	all	other	components	vanish.	We	then	have

which	is	seen	to	be	the	same	as

Accordingly,	we	differentiate	 	as	given	by	Eq.	(VI-23.8)	with	respect	to	r	and
take	the	real	part	of	the	result.
Applying	 formula	 (C)	 in	 Table	 V-1	 with	 x	 =	 ωr/c	 and	 remembering	 that

(d/dr)f(x)	=	[(d/dx)f(x)](dx/dr),	we	get	from	Eqs.	(VI-23.8)	and	(VI-23.9)

We	have	not	as	yet	determined	C1	and	C2.	We	must	take	C1	=	0.	For	it	can	be
shown	from	the	relationship	of	the	solution	in	terms	of	Hankel	functions	to	the
general	 time-periodic	 solution	 that	 solutions	 for	 	 of	 the	 form	 eiωtH0

(1)(kr)
represent	 inward	 bound	 waves,	 while	 solutions	 of	 the	 form	 eiωtH0

(2)(kr)
represent	outward	bound	waves.	Thus,	we	could	have	seen	already	 in	Eq.	 (VI-
23.8)	the	need	for	taking	C1	=	O.
To	 determine	C2	 we	 suppose	 the	 pulsating	 motion	 at	 the	 boundary	 of	 the

cylinder	 to	be	known	and	such	 that	 the	 radial	velocity	of	each	point	 thereof	 is
given	by



It	follows	from	Eqs.	(VI-23.9)	and	(VI-23.11)	that

which	is	equivalent	to	requiring	that

Thus,	we	require,	by	virtue	of	Eq.	(VI-23.10)	with	C1	=	0,	that

whence

Putting	 this	 value	 for	 C2	 in	 Eq.	 (VI-23.10)	 with	 C1	 =	 0	 and	 using	 the
definitions	 of	 the	 Hankel	 functions	 from	 Eqs.	 (V-0.19)	 and	 (V-0.20)	 and
separating	out	the	real	part	of	the	result	(remembering	that	eiωt	=	cos	ωt	+	i	sin
ωt),	we	find	that



REMARK.	It	can	be	shown	by	virtue	of	the	remark	in	Prob.	V-34	that,	for	values
of	r	and	R	large	compared	to	the	ratio	c/ω,	the	solution	for	the	radial	velocities	of
the	 particles	 of	 the	 surrounding	 fluid	 as	 given	 by	 Eq.	 (VI-23.13)	 is	 “like”	 an
elementary	functions	as	follows:

Problems:	Heat-Flow	Temperature	Distribution

VI-24.	A	homogeneous	circular	lamina	of	radius	20	and	diffusivity	α	=	.71	is
provided	with	an	initial	temperature	distribution	T0	=	100	+	r2,	where	r	denotes
distance	 from	 center	 of	 the	 lamina.	 Then	 the	 faces	 of	 the	 lamina	 are	 made
thermally	 isolated	while	 the	 temperature	 all	 along	 the	 rim	 is	maintained	 at	 its
initial	value	500.	Determine	the	subsequent	temperature	at	time	t	=	8	at	a	point
10	from	the	center	of	 the	 lamina,	given	 that	 the	equation	 to	be	satisfied	by	 the
temperature	function	T	is

It	 will	 be	 convenient	 to	 use	 an	 adjusted	 temperature	 function	 U	 denoting
excess	of	rim	temperature	over	temperature	at	interior	points,	namely	U	=	500	−
T,	so	that	U	=	0	along	the	rim.	Equation	(VI-24.1)	is	seen	to	hold	for	U	as	well	as
for	T:



We	 naturally	 choose	 polar	 coordinates	 (r,	 θ)	 with	 pole	 at	 center	 of	 lamina.
However,	we	see	by	symmetry	of	conditions	that	U	is	independent	of	θ:	U	=	U(r,
t).	The	Laplacian	of	U	then	is

Let	us	see	if	Eq.	(VI-24.2)	can	be	satisfied	by	a	product	function	of	the	form

Then	Eq.	(VI-24.2)	in	conjunction	with	Eq.	(VI-24.3)	requires	that

Dividing	both	sides	of	Eq.	 (VI-24.5)	by	 the	nonvanishing	factor	e−mt,	 letting
k2	=	m/α2,	and	multiplying	through	by	r2,	we	get

By	Prob.	VI-1	and	Eq.	(V-0.8)	the	general	solution	of	Eq.	(VI-24.6)	is

where	A	and	B	are	constants.	We	cannot	use	Y0(kr)	which	becomes	infinite	as	r
→	0.	So	we	take	B	=	0.

Our	trial	solution	is	now

Since	the	rim	r	=	20	is	to	be	maintained	at	U	=	0	for	all	t,	Eq.	(VI-24.8)	requires
that

Choice	of	A	=	0	is	certainly	unsuitable.	We	may	choose	k	so	that	20k	equals	any



one	of	 the	zeros	of	J0(x).	But	 then	 the	formula	for	U	at	 time	 t	=	0	would	be	a
multiple	 of	 J0(kr)	 which	 certainly	 could	 not	 be	 identical	 with	 the	 initially
prescribed	value	U0	=	500	−	T0	=	400	−	r2.
The	procedure	for	overcoming	this	impasse	is	the	procedure	used	in	Probs.	IV-

9,	VI-21	 and	 others.	We	 express	U0	 =	 f(r)	 =	 400	 −	 r2,	 by	 Prob.	V-27,	 as	 an
infinite	series	of	J0-functions:

where

Since	U	 =	 500	−	T,	 it	 follows	 by	Eq.	 (VI-24.8)	 that	 the	 temperature	 at	 any
point	of	the	lamina	at	time	t	is	given	by

where	the	coefficients	A1,	A2,	·	·	·	are	given	by	Eq.	(VI-24.11)	with	f(r)	=	400	−
r2.	The	integral	for	each	An	in	Eq.	(VI-24.11)	breaks	up	into	two	integrals,	one	of
which	may	be	evaluated	by	Eq.	(V-28.3),	the	other	by	Eq.	(V-30.1).
As	 an	 example	 of	 the	 determination	 of	 the	 values	 of	 the	 coefficients	 let	 us

evaluate	(approximately)	the	first	coefficient	A1	From	Eq.	(VI-24.11)	with	f(r)	=
400	−	r2	we	have

In	Table	V-4	we	find	that	α1	≅	2.4048	≅	2.40.	Thus,



Applying	Eqs.	(V-28.3)	and	(V-30.1),	we	get

From	Tables	V-2	 and	V-3	we	 have	 J1(2.40)	≅	 .52	 and	 J2(2.40)	≅	 .43.	 Putting
these	values	in	Eq.	(VI-24.15)	we	obtain

The	remaining	coefficients	A2,	A3,	A4,	 ·	 ·	 ·	are	computed	 just	as	 in	Eq.	 (VI-
24.13)	 through	 Eq.	 (VI-24.16),	 the	 only	 changes	 being	 that	 α2	 replaces	 α1	 in
computing	A2,	α3	replaces	α1	in	computing	A3,	and	so	on.
Thus,	we	may	indicate	the	solution	of	our	problem	at	t	=	8	and	r	=	10	by

REMARKS.	1.	The	solution	 for	T	 as	given	by	Eq.	 (VI-24.12)	 indicates	 that,	 at
any	chosen	interior	point	of	the	lamina,	the	temperature	T	will	approach	500	as
limit	as	t	→	∞.
2.	Taking	only	 the	first	 two	terms	of	Eq.	 (VI-24.16)	as	 rough	approximation

for	the	solution	of	our	problem	at	r	=	10	with	t	=	8,	we	have

VI-25.	A	homogeneous	solid	occupies	the	region	R	consisting	of	one-half	of	a
right	circular	cylinder	of	radius	10	and	height	20.	Taking	the	axis	of	the	cylinder



in	 the	 z-axis	with	 lower	base	 in	 the	xy-plane,	we	 take	R	 to	 be	 that	 half	 of	 the
cylinder	 for	which	y	 	0.	The	curved	surface	R,	 the	 lower	base	and	 the	plane
face	containing	 the	 z-axis	 shall	 all	 be	maintained	at	 constant	 temperature	T1	 =
40.	This	 temperature	T1	=	40	shall	be	maintained	also	on	 the	 rim	of	 the	upper
base.	On	the	rest	of	the	upper	base	shall	be	maintained	a	temperature	distribution
T2	=	r2θ,	where	r	and	θ	together	with	z	are	cylindrical	space	coordinates	with	θ
confined	 to	 the	 interval	 0	 <	 θ	 <	 π.	 Determine	 the	 steady	 state	 temperature
distribution	T	=	T(r,	θ,	z)	in	R.	*
We	shall	find	it	convenient	here,	as	in	Prob.	VI-24,	to	consider	the	function	U

=	T	−	40,	which	is	such	that	U	=	0	on	the	three	faces	of	R	other	than	the	face	z	=
20.	The	 temperature	T	must	 satisfy	 Laplace’s	 equation	∇2T	 =	 0	 at	 all	 interior
points	of	R;	the	same	must	also	be	true	for	U,	namely,	∇2U	=	0,	since	U	differs
from	T	only	by	an	additive	constant.	Thus,	we	require

at	every	 interior	point	of	R.	And,	 as	 in	other	 similar	problems,	we	 shall	 try	 to
construct	 by	 composition	 of	 particular	 solutions	 a	 solution	 of	 Eq.	 (VI-25.1)
which	will	cause	T	to	take	on	the	prescribed	boundary	temperature	distributions.
Moreover,	 we	 shall	 seek	 to	 obtain	 the	 particular	 solutions	 each	 as	 a	 product
function	of	the	form

It	will	be	convenient	to	remember	that	F	is	a	function	of	r	alone,	G	a	function
of	θ	alone,	and	H	a	 function	of	z	 alone	and	 to	omit	 their	 respective	arguments
and	to	write	simply

Using	primes	and	double	primes	 to	denote	 first	 and	 second	derivatives	of	F
and	G	and	H	each	with	respect	to	its	own	argument,	we	get



Substituting	these	results	in	Eq.	(VI-25.1)	we	get

which	may	be	written

The	 right	 and	 left	 sides	 of	 Eq.	 (VI-25.3)	 must	 both	 equal	 one	 and	 the	 same
constant	 C	 (sometimes	 called	 the	 separation	 constant),	 since	 one	 side	 is
independent	of	θ	while	the	other	side	is	 independent	of	r	and	z.	We	proceed	 to
see	what	sort	of	constant	C	shall	be,	positive	or	negative	or	zero.	Our	procedure
will	be	to	make	some	assumptions	regarding	the	constant	C	If	an	assumption	or
premise	leads	to	an	absurd	conclusion,	we	shall	reject	the	assumption.	First	we
shall	try	C	=	0.
Then	Eq.	(VI-25.3)	requires	that	G″	=	0.	Integrating	we	get	G	=	Aθ	+	B,	where

A	and	B	are	constants.	Now	on	the	plane	lateral	surface	we	need	to	have	U	≡	0.	If
we	want	the	factor	G	to	do	the	vanishing	there	so	that	Eq.	(VI-25.2)	would	be	0
=	F(r)(0)H(z),	then	G(0)	=	G(π)	=	0.	This	would	require	A	and	B	 to	equal	zero,
making	U	vanish	everywhere	 in	R.	This	absurd	conclusion	makes	us	 reject	 the
assumption	that	C	=	0.
Now	we	try	C	negative,	say	−k2	with	k	≠	0.	Then	Eq.	(VI-25.3)	requires	that	G

″	=	k2G.	The	solution	to	this	equation	is

And	if	G	is	to	be	the	vanishing	factor	on	the	plane	lateral	surface,	we	need	A	=	B
=	0,	making	U	identically	zero	in	R.	Let	us	then	reject	the	assumption	that	C	 is
negative.



There	remains	the	possibility	that	C	be	positive:	C	=	k2	with	k	≠	0.	This	time
Eq.	(VI-25.3)	demands	that

And	now	we	can	have	G(0)	=	G(π)	=	0	by	having	A	=	0	and	sin	kπ	=	0.	Thus,	we
can	have	the	factor	G	=	0	everywhere	on	the	plane	lateral	surface	by	taking	for	G
any	function	of	the	family

where	Bn	is	an	arbitrary	constant	≠	0.	So	far	we	have	made	some	progress.	In	the
two	 previous	 assumptions	 on	 the	 constant	C,	 where	 we	 let	 it	 equal	 zero	 or	 a
negative	number,	we	were	able	 to	satisfy	 the	boundary	condition	U	=	0	on	 the
plane	 lateral	 face.	 But	 we	 had	 the	 untenable	 consequence	 that	 U	 =	 0	 at	 all
interior	points	of	R.	However,	when	we	 took	 the	separation	constant	as	greater
than	zero	we	were	able	 to	get	 the	boundary	condition	 satisfied	without	having
zero	temperature	interior	to	R	at	the	same	time.
And	so,	taking	C	=	k2	=	n2	where	n	is	any	positive	integer,	we	go	back	to	Eq.

(VI-25.3)	and	set	its	left	side	equal	to	n2.	The	resulting	equation	may	be	written

By	 the	 same	 argument	 as	 we	 applied	 to	 Eq.	 (VI-25.3)	 we	 conclude	 that	 both
sides	 of	Eq.	 (VI-25.5)	must	 equal	 one	 and	 the	 same	 constant.	 Let	 us	 call	 this
separation	constant	M.	We	proceed	as	before	to	make	assumptions	regarding	M
and	as	before	we	will	reject	those	assumptions	which	lead	to	contradictions.	Let
us	try	M	=	0.
When	M	=	0,	then	Eq.	(VI-25.5)	requires	r2F″	+	rF′	−	n2F	=	0.	The	solution	to

this	equation	is

Since	the	term	B/rn	becomes	unsuitable	when	r	=	0,	we	take	B	=	0.	Now	at	each
point	of	the	lateral	surface	r	=	10	at	least	one	of	the	factors	F,	G,	H	shall	vanish.
The	simplest	way	of	accomplishing	the	vanishing	there	of	U	is	to	have	one	and
the	same	factor	of	U	vanish	everywhere	on	that	surface.	No	member	of	Eq.	(VI-
25.4)	will	vanish	identically	there.	So	it	is	up	to	F	or	H	to	be	the	vanishing	factor



for	the	curved	surface.	If	we	require	F	=	Arn	to	vanish	when	r	=	10,	then	A	=	0
and	 we	 have	 F	 identically	 zero	 with	 the	 impossible	 result	 that	 U	 vanishes
identically.
If	we	try	M	=	−	k2	with	k	≠	0,	then	Eq.	(VI-25.5)	requires	us	to	have	r2F″	+	rF′

−	(k2r2	+	n2)F	=	0,	whose	general	solution	by	Prob.	VI-2	and	Eq.	(V-0.12)	is

Here	again	we	take	B	=	0,	since	the	term	BKn(kr)	becomes	infinite	when	r	=	0.
And	if	F	shall	be	the	vanishing	factor	on	the	curved	surface,	we	require	AIn(10k)
=	0.	So,	with	each	n	we	may	take	any	number	k	such	that	10k:	is	a	zero	of	In.
If	we	 try	M	=	k2	with	k	≠	0,	 then	Eq.	 (VI-25.5)	 demands	 that	 r2F″	+	 rF″	 +

(k2r2	−	n2F)	=	0,	whose	general	solution	by	Prob.	VI-2	and	Eq.	(V-0.8)	is

Again	we	must	 take	B	=	0	because	Yn(kr)	becomes	 infinite	at	r	 =	 0.	And	 if	F
shall	be	the	vanishing	factor	on	the	curved	surface	r	=	10,	we	require	AJn(10k)	=
0.	Thus	with	each	n	we	may	take	any	number	k	such	that	10k	is	a	zero	of	Jn.	We
cannot	 know	 a	 priori	 whether	 to	 follow	 through	 with	M	 =	 −k2	 or	M	 =	 k2.
However,	most	of	the	developments	of	expansions	and	integrals	in	the	theory	of
Bessel	functions	are	with	the	J-functions;	so	we	will	follow	through	with	M	=	k2
in	the	hope	we	can	develop	a	solution.
With	each	function	G	of	the	family	in	Eq.	(VI-25.4)	we	may	take	any	function

F	of	the	family

where

Reverting	to	Eq.	(VI-25.5)	with	 ,	we	require	 ,	whose
general	solution	is

Let	us	call	upon	H	to	do	the	vanishing	on	the	lower	base	of	R,	since	no	member
of	Eq.	(VI-25.4)	vanishes	there	nor	does	any	member	of	Eq.	(VI-25.6)	.	Thus	if



we	require	H(0)	=	0,	we	find	D	=	0,	making

Putting	together	our	results	obtained	thus	far	in	Eqs.	(VI-25.4)	and	(VI-25.6)
and	(VI-25.7),	we	find	that	we	can	meet	all	requirements	of	the	problem	except
the	prescribed	temperature	distribution	to	be	maintained	on	the	upper	base	by	a
function	of	the	form

But	no	single	function	T	of	this	kind	can	equal	the	prescribed	temperature	T2	=
r2θ	on	 the	upper	base.	This	means	 that	here,	as	 in	Prob.	 IV-9	 for	 example,	 the
final	 step	 in	 the	 solution	 of	 our	 problem	 is	 to	 construct	 an	 infinite	 series	 of
solutions	of	the	type	found	in	Eq.	(VI-25.8),	determining	the	coefficients	so	that
the	series	converges	to	T2	=	r2θ	on	the	upper	base	where	z	=	20.	In	the	present
problem	we	shall	have	to	construct	a	doubly	infinite	series,	since	T2	is	a	function
of	two	independent	arguments.	However,	in	Eq.	(VI-25.8)	we	have	two	indices
over	which	we	can	sum,	namely	n	and	j.
Our	task	is	to	determine	a	doubly	infinite	series	such	that	for	0	<	r	<	10,	0	<	θ

<	π

We	can	accomplish	the	desired	expansion	(VI-25.9)	by	making	it	to	be	the	sum
of	 two	 such	 expansions	 as	 follows.	 In	 the	 first	 one	 of	 them	 we	 make	 the
summation	 with	 respect	 to	 j	 equal	 r2	 for	 each	 and	 every	 n.	 We	 make	 the
trigonometric	sum	ΣAn	sin	nθ	by	itself	equal	to	θ.	In	the	second	one	we	make	the
inner	 j-sum	 equal	 to	 unity	 for	 each	 and	 every	 n.	 This	 time	we	make	 the	 sine
series	by	itself	equal	to	unity.	Let	us	denote	the	coefficients	in	the	first	sum	by	

	and	 .	In	the	second	sum	we	denote	the	coefficients	by	 	and	 .	Then
the	solution	to	our	problem	is	given	by



The	right	side	of	Eq.	(VI-25.10)	equals	T1	=	40	on	the	lower	base	of	R	and	on
the	curved	surface	r	=	10	and	on	the	vertical	plane	face	and	along	the	rim	of	the
upper	base.	On	the	rest	of	the	upper	base	the	right	side	of	Eq.	(VI-25.10)	equals
T2	=	r2θ.	At	every	interior	point	of	R	 the	function	T	defined	by	Eq.	 (VI-25.10)
satisfies	Laplace’s	equation	∇2T	=	0,	since	each	series	is	termwise	differentiable
inasmuch	as	each	series	is	uniformly	convergent	for	0	 	r	 	10,	0	 	z	 	20,	0
<	a	 	θ	 	b	<	π.
The	formulas	for	the	coefficients	in	the	respective	series	in	Eq.	(VI-25.10)	are

as	follows.	Since	we	want	to	have

then	 by	 the	well-known	 formula	 for	 coefficients	 in	 a	Fourier	 sine	 series	 of	 an
odd	function	we	have

Similarly,	since	we	require

then,	by	the	Fourier	series	expansion	for	the	odd	function



we	have

Since	we	require

then,	by	Eq.	(VI-25.6a)	together	with	Eq.	(V-27.4),	we	have

Similarly,	since	we	require

we	have

REMARKS.1.	Each	of	the	“duplex”	series	in	the	solution	Eq.	(VI-25.10)	can	be
written	as	a	simple	series	as	 follows.	Let	us	 indicate	symbolically	 the	 terms	 in
either	series	by	their	coefficient	letters	A	and	B	without	the	primes.	Then	we	can



write	out	either	“duplex”	series	as	a	simple	series	as	follows:

The	scheme	just	indicated	is	to	take	first	the	term	for	which	n	+	(n	+	j)	=	3,	then
add	the	one	term	for	which	n	+	(n	+	j)	=	4,	then	add	all	the	terms	(2	in	number)
for	n	+	(n	+	j)	=	5,	and	so	on	ad	infinitum.
Let	us	see	how	the	first	“duplex”	series	in	Eq.	(VI-25.10)	would	look	written

out	to	three	terms	of	such	a	simple	series	in	case	we	wanted	to	evaluate	T	at	the
point	 (5,	π/4,	 10).	We	use	Eqs.	 (VI-25.11)	 and	 (VI-25.13)	 for	 the	 coefficients.
And	we	recall	from	Eq.	(VI-25.6a)	that

We	take	the	first	and	second	positive	zero	of	Jn	from	Table	V-4.	The	 terms	we
choose,	 indicated	 symbolically	 by	 their	 coefficients	 only,	 are	

,	

,	

.	 For	 the	 sum	 of
these	three	terms,	taking	r	=	5,	θ	=	π/4,	and	z	=	10,	we	would	have



The	values	of	the	hyperbolic	sine	and	the	values	of	J1	and	J2	for	the	arguments
indicated	can	be	taken	from	appropriate	tables.
2.	Variations	of	Prob.	VI-25	can	be	solved	by	the	method	of	superposition	by

virtue	 of	 the	 fact	 that	 the	 sum	 of	 a	 finite	 number	 of	 functions	 each	 harmonic
(satisfying	Laplace’s	equation)	in	a	region	R	is	also	harmonic	in	R.	Suppose,	for
example,	that	the	prescribed	boundary	temperature	distributions	to	be	maintained
on	the	face	of	the	solid	in	Prob.	VI-25	shall	be	one	and	the	same	constant,	say
40,	on	only	two	of	the	faces,	namely	on	the	curved	lateral	face	C	and	also	on	the
plane	 lateral	 face	L,	while	 the	 prescribed	 temperature	 to	 be	maintained	 on	 the
bases	shall	be	f(r,	θ)	on	the	upper	base	H	and	g(r,	θ)	on	the	lower	base	B.	In	such
a	case	the	required	steady-state	temperature	T	can	be	obtained	as	a	tripartite	sum
as	 follows.	We	 take	a	 function	U	 as	determined	 in	Prob.	VI-25	 and	 call	 it	U1.
This	 function	U1	 is	 such	 that	∇2U1	 =	 0	 interior	 to	 R	 while	U1	 takes	 on	 the
boundary	values

Then	we	determine	in	the	manner	of	Prob.	VI-25	a	function	U2	such	that	∇2U2	=
0	interior	to	R	and	such	that

Then	the	solution	to	the	new	problem	is



For,	interior	to	R	we	have

And	by	virtue	of	Eqs.	(VI-25.15)	and	(VI-25.16)	we	have

In	similar	manner	one	can	obtain	solution	of	 the	variation	of	Prob.	VI-25	 in
which	the	prescribed	boundary	temperature	distribution	shall	be	constant	on	only
one	face	and	on	each	of	the	other	three	faces	shall	be	a	nonconstant	function	of
the	two	variables	concerned.	Also	solvable	by	the	method	of	superposition	is	the
problem	when	the	prescribed	temperature	to	be	maintained	on	the	boundary	shall
be	 on	 each	 of	 the	 four	 faces	 a	 nonconstant	 function	 of	 the	 two	 variables
concerned.	 In	 this	 latter	 case	we	 first	determine	 four	 functions	U1,	U2,	U3,	U4
each	satisfying	Laplace’s	equation	interior	to	R	and	such	that

Then	the	function

is	such	that	∇2T	=	0	interior	to	R	and	such	that



Problem:	Displacement	of	Vibrating	Annular	Membrane

VI-26.	A	 stretched	 elastic	membrane	 occupies	 the	 plane	 region	 bounded	 by
two	concentric	circles	having	radii	a	and	b,	b	>	a	and	 lying	 in	 the	(r,	θ)-plane,
where	r	and	θ	are	polar	coordinates	with	 the	pole	at	 the	common	center	of	 the
two	circles.	The	membrane	is	clamped	along	each	circle	(as	in	a	drum	head).	It	is
vibrating	as	 result	of	having	been	given	an	 initial	distortion	(and	 then	set	 free)
such	 that	each	point	of	 the	membrane	was	 initially	displaced	at	 right	angles	 to
the	plane	of	the	circles	by	a	signed	amount,	dependent	only	on	distance	from	the
pole,	namely

where	r	 is	 differentiable	 and	 of	 bounded	 variation	 for	a	 	 r	 	b.	 Under	 the
approximating	assumption	that	each	point	of	the	membrane	moves	in	a	straight
line	at	right	angles	to	the	plane	of	the	bounding	circles	(that	is,	parallel	to	the	z-
axis)	the	differential	equation	to	be	satisfied	is

where	x	and	y	 are	 rectangular	coordinates	 in	 the	 (r,	θ)-plane,	 and	where	c	 is	 a

constant,	 namely	 ,	 T	 denoting	 the	 magnitude	 of	 tension	 (assumed
constant)	 and	 m	 denoting	 the	 mass	 per	 unit	 area	 of	 the	 membrane.	 Obtain
solution	 for	 Eq.	 (VI-26.2),	 assuming	 that	 the	 motion	 of	 each	 point	 of	 the
membrane	is	a	sinusoidal	function	of	t.	*

The	statement	of	the	problem	calls	for	the	use	of	cylindrical	coordinates	(r,	θ,
z).	Taking	the	origin	of	xy-coordinates	at	the	pole,	we	have

But,	the	conditions	of	the	problem	are	such	that	z	is	going	to	be	independent	of
θ.	This	makes	the	middle	term	on	the	right	in	Eq.	(VI-26.3)	vanish.	Accordingly,
Eq.	(VI-26.2)	becomes



Since	z	is	then	a	function	of	r	and	t	and	is	assumed	sinusoidal	in	t	for	each	r,
we	may	hope	to	obtain	solution	for	Eq.	(VI-26.4)	in	the	form	of	a	composite	of
particular	 solutions	 of	 Eq.	 (VI-26.4),	 each	 particular	 solution	 being	 a	 product
solution	of	the	form

where	A	 and	ω	 and	 λ	 are	 constants	 to	 be	 determined	 by	 boundary	 and	 initial
conditions.	At	time	t	=	0	we	must	have	by	condition	(VI-26.1)

so	that	we	may	take	A	=	1	and	λ	=	0.	Thus,	we	seek	particular	solutions	for	Eq.
(VI-26.4)	of	the	form

Substitution	for	z	from	Eq.	(VI-26.6)	into	Eq.	(VI-26.4)	yields

where	the	primes	on	G	denote	first	and	second	derivative	with	respect	to	r.	Since
cos	ωt	will	not	be	identically	zero,	satisfaction	of	Eq.	(VI-26.7)	requires	that

or

Solution	 of	 Eq.	 (VI-26.8)	 is	 immediately	 obtained	 by	 way	 of	 Eq.	 (VI-1.6)
taking	r	=	x,	D	=	λ,	p	=	0.	Thus,	by	Eqs.	(VI-1.5)	and	(V-0.8)	the	general	solution
of	Eq.	(VI-26.8)	is

where	C1	 and	 C2	 are	 arbitrary	 constants.	 There	 are,	 however,	 two	 boundary
conditions	to	be	met	by	virtue	of	the	fact	that	the	membrane	is	clamped	along	the



two	circles.	These	require	by	Eqs.	(VI-26.6)	and	(VI-26.9)	that

Equations	 (VI-26.10)	 constitute	 two	 simultaneous	 equations	 in	 three
unknowns,	namely	C1	C2,	and	λ.	We	solve	the	second	of	these	equations	for	C2:

Then	we	substitute	this	for	C2	in	the	first	equation:

Eq.	(VI-26.11)	will	be	satisfied	for	arbitrary	choice	of	C1	if	λ	=	λn	is	a	solution	of
the	equation

Assuming	that	Eq.	(VI-26.12)	has	a	set	of	infinitely	many	distinct	solutions	λ1
λ2,	λ3,	·	·	·,	λn,	·	·	·,	we	see	that	all	the	conditions	of	the	problem	except	one	can
be	met	by	a	function	of	the	form

It	is	condition	(1)	which	cannot	be	satisfied	at	time	t	=	0	by	any	single	function
of	form	(VI-26.13)	or	finite	sum	of	such	functions	except	in	the	special	case	that
f(r)	 is	 itself	 prescribed	 as	 such	 a	 sum.	 It	 is	 possible,	 however,	 by	 appropriate
generalization	of	the	expansion	considered	in	Prob.	V-26	to	express	a	function	of
the	 sort	 described	 in	 connection	with	 condition	 (VI-26.1)	 as	 an	 infinite	 series,
namely



One	 finds	by	 arguments	 similar	 to	 those	used	 in	Probs.	V-24,	V-25,	V-26	 (see
also	 Byerly,	 Fourier’s	 Series	 and	 Spherical	 Harmonics)	 that	 the	 family	 of
functions

is	orthogonal	on	the	interval	a	 	r	 	b	and	that	the	integral	over	this	interval	of
a	squared	member	of	the	family	is	given	by

and	the	coefficients	Cn	in	Eq.	(VI-26.14)	are	given	by

The	solution	of	our	problem	is	thus	found	to	be

where	the	coefficients	Cn,	n	=	1,2,	3,	·	·	·,	are	given	by	Eq.	(VI-26.17).

Problem:	Alternating	Current	Density

VI-27.	 Determine	 the	 current	 density	 in	 a	 straight	 homogeneous	 wire	 of
circular	cross-section	lying	in	the	z-axis	and	carrying	alternating	current,	given
the	following:



(a)	the	current	density	vector	 	is	continuous	and	is	always	parallel	to	the	z-
axis;
(b)	the	scalar	component	i	=	iz	of	 	parallel	to	the	z-axis	is	given	by

where	t	denotes	time,	 ,	ω	is	a	constant,	and	Re[w]	denotes	the	real
part	of	the	complex	number	w	=	u	+	jv;
(c)	the	current	density	i	satisfies	the	equation

where	λ	is	a	constant	and	∇2i	denotes	the	Laplacian	of	i.	*
We	 have	 placed	 the	wire	 in	 the	 z-axis	 in	 order	 that	we	may	 use	 cylindrical

space	 coordinates	 (r,	 θ,	 z).	 Since	 i	 =	 u(r,	 t)	 is	 independent	 of	 θ	 and	 z,	 its
Laplacian	(compare	Prob.	VI-23),	namely

reduces	to	two	terms,	so	that	Eq.	(VI-27.2)	becomes

Now	 if	 we	 can	 find	 a	 function	 g(r),	 real	 or	 complex,	 such	 that	 the	 complex
function

satisfies	the	equation

then	by	separation	of	reals	and	pure	imaginaries,	it	will	follow	that	the	real	part
thereof,	 namely	 i	 =	 u(r,	 t)	 =	 Re[g(r)ejωt],	 will	 satisfy	 Eq.	 (VI-27.3),	 thus
satisfying	Eq.	(VI-27.2);	and	our	problem	will	be	solved.



Substitution	for	w	from	Eq.	(VI-27.4)	in	Eq.	(VI-27.5)	yields

The	nonvanishing	factor	ejωt	may	be	divided	out:

where	 the	 primes	 now	 denote	 first	 and	 second	 derivatives	 with	 respect	 to	 r.
Multiplying	through	by	r2	and	letting	k2	=	−	jwλ,	we	have

Identification	of	Eq.	(VI-27.6)	with	Eq.	(VI-1.6),	with	g	and	r	playing	the	roles
of	y	 and	x	 respectively,	 tells	 us	 by	Eqs.	 (VI-1.5)	 and	 (V-0.8)	 that	 g	 shall	 be	 a
function	of	the	sort

The	requirement	of	continuity	of	 	in	(a)	means	we	shall	take	C2	=	0	in	Eq.
(VI-27.7),	since	Y0(kr)	becomes	infinite	at	r	=	0.	We	have	put	k2	=	−	jωλ.	This

makes	 .	 Let	 us	 put	 .	 Then	 we
have

which	by	Eq.	(V-0.15)	may	be	written

Thus,	the	solution	to	our	problem,	with	C1	yet	to	be	determined,	is

To	determine	C1	let	A	denote	the	amplitude	(maximum	absolute	value	of	i)	at	a



point	in	the	axis	of	the	wire	(A	being	the	same	for	all	such	points)	where	r	=	0.
Now	at	r	=	0	we	have	J0(j3/2mr)	=	J0(0)	=	1	by	Eq.	 (V-0.4).	Thus	by	Eq.	 (VI-
27.10)

If	we	take	C1	real,	then

We	 may	 take	C1	 =	A	 or	C1	 =	 −	 A.	 We	 choose	 the	 former.	 Finally,	 then	 the
solution	of	our	problem	is

that	is,

To	 find	 the	 total	 current	 iT	 in	 a	 wire	 of	 radius	 R	 we	 integrate	 the	 current
density	i	in	Eq.	(VI-27.11)	over	the	circular	cross-section	S	of	the	wire:

An	integral	of	this	type	was	evaluated	in	Prob.	V-28.	Thus,	we	have



Problems:	Eddy	Current	Density	and	Power	Loss

VI-28.	Determine	the	eddy	current	density	 i	 induced	 in	 the	copper	core	of	a
solenoid	under	the	following	conditions.	The	core	is	a	long	solid	copper	circular
cylinder	of	 radius	R.	The	solenoid	wound	around	 the	core	has	N	 turns	per	 cm.
The	solenoid	is	excited	by	a	current	having	magnitude	I	cos	2π	ft	abamp.,	where
I	is	the	amplitude	constant,	f	is	the	number	of	cycles	per	second,	and	t	is	time	in
seconds.	 The	 solenoid	 and	 core	 are	 sufficiently	 long	 (in	 ratio	 to	 R)	 that	 end
effects	may	be	neglected.	The	following	are	given:
(a)	the	magnetic	field	strength	H	=	H(r,	t),	where	r	denotes	distance	from	the

axis	of	the	core,	satisfies	the	equation

where	λ2	=	4π/ρ	and	ρ	is	the	resistivity	of	copper	in	abohms	per	cu.	cm.,
(b)	at	the	surface	of	the	core	the	function	H	takes	on	the	boundary	value

(c)	 the	eddy	current	density	 i	 is	 related	 to	 the	magnetic	 field	strength	by	 the
equation

If	Eq.	(VI-28.1)	be	divided	through	by	r,	the	left	side	is	then	none	other	than
the	first	two	terms	of	the	Laplacian

when	H	is	considered	as	a	function	of	all	three	cylindrical	coordinates	(r,	θ,	z).
Since,	in	the	present	problem,	H	is	a	function	of	only	one	of	the	three	cylindrical
coordinates,	 the	 first	 two	 terms	 on	 the	 right	 in	 Eq.	 (VI-28.4)	may	 actually	 be
regarded	 as	 the	Laplacian	 of	H.	 Now	 it	 is	well-known	 that	 partial	 differential
equations	in	which	the	Laplacian	of	the	desired	function	equals	either	zero	or	a



constant	times	its	partial	derivative	with	respect	to	time	may	often	be	solved	via
a	product	function,	or	a	composite	of	product	functions,	in	which	each	factor	in
the	product	is	a	function	of	just	one	of	the	variables	concerned.	Accordingly,	we
shall	try	to	find	solution	for	Eq.	(VI-28.1)	as	a	function	of	the	form

or	as	a	composite	of	such	functions.
Substitution	for	H	from	Eq.	(VI-28.5)	into	Eq.	(VI-28.1)	yields

where	the	primes	on	F	and	G	denote	first	and	second	derivative	with	respect	to	r
or	to	t,	as	the	case	may	be.
Equation	(VI-28.6)	may	be	written

One	side	of	Eq.	(VI-28.7)	is	a	function	of	r	alone,	the	other	a	function	of	t	alone.
Since	r	and	t	are	independent	variables,	Eq.	(VI-28.7)	can	hold	only	when	both
sides	thereof	are	identically	equal	to	the	same	constant	C.	Our	task	now	is	to	find
out	what	this	separation	constant	will	be.	If	we	take	C	=	0,	then	we	have

which	requires	 that	G(t)	be	a	 constant.	This	 can	 readily	be	 seen	by	 integrating
Eq.	(VI-28.7a).	This	would	make	H	a	constant	as	far	as	time	is	concerned.	But	H
certainly	 varies	 with	 time,	 since	H	 is	 produced	 by	 an	 exciting	 current	 which
varies	with	time.	Thus,	we	cannot	take	C	=	0,	since	it	leads	to	a	contradiction.
If	we	 take	C	 positive,	 say	 b2	 with	 b	 real	 and	 different	 from	 zero,	 then	 the

requirement

calls	for	G	to	be	an	exponential	function	of	t	of	the	form

which	would	increase	beyond	all	bounds	as	t	→	∞	and	would,	therefore,	cause	H



to	do	likewise.	This,	too,	is	out	of	the	question.	So,	we	cannot	take	C	positive.
Choice	 of	 a	 negative	 number	 for	 C	 would	 require	 G	 to	 be	 a	 decreasing

exponential	function	of	time.	This	would	make	H	→	0	as	t	→	∞,	contrary	to	the
nature	of	H	as	produced	by	periodic	exciting	current	of	fixed	amplitude.	Thus,	C
cannot	be	taken	negative.
It	 looks	as	 if	we	are	stumped	in	our	search	for	a	product	function	H	of	 type

(5),	which	will	satisfy	Eq.	(VI-28.1).	In	other	problems	in	this	chapter	we	were
always	 able	 to	 effect	 solution	 by	 way	 of	 pertinent	 selection	 of	 the	 separation
constant	C:	positive,	negative	or	zero.	But,	there	is	yet	another	possibility:	take	C
to	 be	 a	 complex	 constant	a	 +	bj,	 where	 a	 and	b	 are	 real	 and	 .	 A
moment’s	 reflection,	however,	 indicates	 that	 it	will	 suffice	 to	 take	C	 as	 a	 pure
imaginary	number,	since	the	real	part	of	a	complex	constant	would	involve	only
the	untenable	solutions	of	Eq.	(VI-28.1)	obtained	by	taking	C	real.	We,	therefore,
try	C	=	jk,	where	k	is	real	and	 .	This	means	that	we	shall	have

whence

where	A	 is	 an	 arbitrary	 constant.	Now	 the	 given	 boundary	 condition	 Eq.	 (VI-
28.2)	requires	the	period	of	H,	and	thereby	the	period	of	G,	to	be	the	period	of
the	 exciting	 current,	 namely	 2πf.	 Recalling	 that	 we	 put	 λ2	 =	 4π/ρ,	 we	 find,
therefore,	that

Thus,	by	Eqs.	(VI-28.8)	and	(VI-28.9)	we	have

So	much	for	G.	And	now,	when	C	=	jk	with	k	defined	by	Eq.	 (VI-28.9),	 the
left	side	of	Eq.	(VI-28.7)	requires	that



or

We	can	solve	Eq.	(VI-28.11)	by	application	of	Eq.	(VI-2.1),	identifying	r	with	x
and	F	with	y.	We	have

whence

We	express	the	constant	D	in	a	slightly	different	form	as	follows:

Then,	 by	 Eqs.	 (VI-2.2)	 and	 (V-0.8)	 and	 (V-0.15)	 and	 (V-0.17),	 the	 general
solution	of	Eq.	(VI-28.11)	is

Now,	F	as	defined	by	Eq.	 (VI-28.12)	 is	a	complex	function,	which	makes	H	=
FG	 a.	 complex	 function.	But,	 if	 a	 complex	 function	H	 satisfies	 Eq.	 (VI-28.1),
then	it	is	seen	by	separation	of	real	and	imaginary	parts,	that	the	real	part	alone
of	H	will	satisfy	Eq.	(VI-28.1)	as	will	also	the	imaginary	part	(the	coefficient	of
j).	Accordingly,	we	may	take	for	the	magnetic	field	strength	either	of	these	two
parts	 of	 the	 complex	H.	 Let	 us,	 however,	 for	 convenience	 continue	 with	 the
complex	H	defined	by	the	product	FG,	where	F	is	given	by	Eq.	(VI-28.12)	and
G	by	Eq.	(VI-28.10).	We	do	this	with	the	understanding	that,	when	we	come	to
determine	the	eddy	current	density	i,	we	shall	apply	Eq.	(VI-28.3)	to	the	real	part
of	H.	With	this	understanding	we	may	also	determine	the	constant	A	in	Eq.	(VI-
28.10)	 by	 writing	 both	 G	 and	 the	 boundary	 condition	 Eq.	 (VI-28.2)	 in	 the
complex	form.	Thus,	Eq.	(VI-28.2)	requires

that	is,



whence

We	now	have	our	complex	solution	of	Eq.	(VI-28.1)	completely	determined:

with	the	understanding	that	the	actual	magnetic	field	strength	is	the	real	part	of
this	H.	 (We	remark	that	 these	functions	H1	and	H2	are	not	 to	be	confused	with
the	Hankel	 functions	nor	with	 the	Struve	 functions.)	One	can	also	express	 this
complex	H	via	the	M0(z)	function	as	mentioned	in	the	introduction	to	Chapter	V.
We	have

where	 	 and	 	 are	 respectively	 the	 modulus	 and	 the
amplitude	 of	 ,	 that	 is,	 the	 modulus	 and	 the	 amplitude	 of	 ber

	 bei .	 Upon	 separating	 real	 and	 imaginary	 parts,	 we	 find
from	 Eq.	 (VI-28.13)	 that	 the	 actual	 real	 magnetic	 field	 strength	 H1	 which
satisfies	Eqs.	(VI-28.1)	and	(VI-28.2)	is

We	 are	 now	 finally	 in	 a	 position	 to	 determine	 the	 eddy	 current	 density	 i	 as
given	by	Eq.	(VI-28.3).	We	could	do	this	directly	by	partial	differentiation	of	Eq.
(VI-28.14).	 However,	 it	 seems	 it	 will	 be	 more	 convenient	 to	 differentiate	 the
complex	H	defined	by	Eq.	 (VI-28.13)	and	 then	 take	 the	 real	part	of	 the	 result.
Accordingly,	by	Eqs.	(VI-28.3)	and	(VI-28.13),	we	get	(for	the	complex	i)



The	derivative	indicated	within	the	brackets	is	obtained	immediately	via	formula
(C)	in	Table	V-l	by	taking	x	=	r,	p	=	0,	qр	=	Jр,	 :

Thus	the	complex	i	is

or

Separation	of	real	and	imaginary	parts	yields	the	actual	real	eddy	current	density
il	namely

VI-29.	Using	formula	(VI-28.18)	in	Prob.	VI-28	for	the	eddy	current	density	i
in	the	copper	core	of	a	long	(compared	to	radius)	solenoid	excited	by	alternating
current	 of	 constant	 amplitude,	 compute	 the	 power	 loss	P	 (ergs	 per	 second	 per
centimeter	of	 length)	due	to	 the	eddy	currents	produced	in	 the	core.	It	 is	given
that	P	equals	the	integral,	taken	over	the	circular	area	A	of	a	cross-section	of	the
core,	of	the	product	of	the	resistivity	ρ	(abohms	per	cubic	centimeter)	of	copper
and	the	mean	square	of	i.	*

It	will	be	noticed	that	we	have	dropped	the	subscript	1	on	the	i	in	the	formula



(VI-28.18)	of	Prob.	VI-28.	There	is	no	need	to	retain	that	subscript	in	the	present
problem,	since	there	will	be	no	call	to	use	complex	quantities.
Although	 the	 formula	 for	 the	mean	 square	 of	 i	 can	 be	 found	 in	 appropriate

texts,	 let	 us	 compute	 it	 for	 ourselves	 as	 an	 exercise.	 It	 is	 found	 by	 the	 well-
known	formula	for	the	mean	of	the	values	taken	by	an	integrable	function	f(t)	on
an	interval	t	 	t	 	t2,	namely

Now,	in	the	present	problem,	the	value	of	i2	at	any	chosen	fixed	point	of	the	core
is	of	the	form

where

and	does	not	change	with	t	and	where	λ	also	is	a	constant	as	far	as	t	is	concerned.
Now,	since	i2	assumes	on	the	interval	defined	by

all	 the	 values	 it	 can	 possibly	 have,	 the	 mean	 of	 i2	 is	 given	 by	 Eq.	 (VI-29.1)
where	t1	and	t2	are	defined	by	(VI-29.4):



It	 is	 readily	 seen	 that,	 by	 virtue	 of	 (VI-29.4),	 the	 integral	 remaining	 to	 be
evaluated	in	Eq.	(VI-29.5)	will	have	the	value

Thus,	Eq.	(VI-29.5)	yields

Then,	 by	 Eqs.	 (VI-29.6)	 and	 (VI-29.3)	 and	 the	 formula	 for	P	 given	 in	 the
statement	of	the	problem,	we	have

The	 integral	 in	 Eq.	 (VI-29.7)	 suggests	 that	 we	 make	 a	 slight	 change	 of
variable	of	integration,	namely .	Then

Here	we	can	make	use	of	Eq.	(V-12.3)	in	Prob.	V-12,	whereby

It	follows	at	once	from	Eq.	(VI-29.9)	that

Thus,	by	Eqs.	(VI-29.8)	and	(VI-29.10),	we	find	that	Eq.	(VI-29.7)	becomes



Evaluation	 of	 the	 integral	 in	 Eq.	 (VI-29.11)	 now	 requires	 merely	 direct
application	of	Eq.	(V-11.3)	with	 ,	so	that

Problem:	Heat-Flow	Temperature	Distribution

VI-30.	 Determine	 the	 steady-state	 temperature	 distribution	 T	 in	 a
homogeneous	 material	 cylindrical	 shell	 whose	 height	 is	 h	 and	 whose	 lateral
surfaces	 are	 coaxial	 circular	 cylinders	 having	 radii	 a	 and	 b	 with	 b	 >	 a,	 if
temperatures	are	maintained	on	the	four	bounding	faces	as	follows.	If	cylindrical
coordinates	 (r,	 θ,	 z)	 are	 taken	with	 the	 z-axis	 in	 the	 common	 axis	 of	 the	 two
lateral	faces,	with	the	origin	in	the	plane	of	one	base	and	with	the	other	base	in
the	plane	z	=	h,	then	the	prescribed	boundary	temperatures	to	be	maintained	are

where	f(r)	is	continuous	and	differentiable	and	of	bounded	variation	for	a	 	r	
b,	where	f(a)	=	f(b)	=	100	and	f(r)	>	100	for	a	<	r	<b.	*
We	 shall	 find	 it	 convenient	 in	 this	 problem,	 as	 in	 other	 problems	of	 similar

character	(see,	for	example	Probs.	VI-24	and	VI-25),	to	use	an	adjusted	steady-
state	temperature	function

At	every	interior	point	of	 the	region	occupied	by	the	shell	 the	function	U	must
satisfy	Laplace’s	equation	∇2U	=	0,	which	in	cylindrical	coordinates	is

But	 the	 symmetry	 with	 respect	 to	 the	 z-axis	 of	 the	 prescribed	 boundary
temperatures	means	that	U	will	be	independent	of	θ,	so	that	Laplace’s	equation



for	this	problem	reduces	to

We,	 therefore,	 seek	a	 function	U	which	 satisfies	Eq.	 (VI-30.3)	 at	 each	 interior
point	R	and	which	takes	on	boundary	values	as	follows:

It	is	well-known	that,	in	problems	requiring	satisfaction	of	Laplace’s	equation
(or	 a	 similar	 equation)	 in	 a	 region	 and	 also	 requiring	 the	 solution	 to	 take	 on
prescribed	boundary	values,	solution	may	be	effected	via	a	function	which	is	a
composite	(an	infinite	series)	of	particular	solutions	of	the	differential	equation,
each	particular	solution	being	a	product	function	of	the	form

where	u,	v	and	w	denote	the	space	coordinates	of	the	coordinate	system	that	is	to
be	used	in	the	problem.	Let	us,	then,	see	if	we	can	solve	the	present	problem	via
a	 composite	 of	 particular	 solutions	 of	 Eq.	 (VI-30.3),	 each	 particular	 solution
being	of	the	form

Substitution	for	U	from	Eq.	(VI-30.5)	into	Eq.	(VI-30.3)	requires	that

where	the	primes	on	G	and	H	denote	first	and	second	derivative	with	respect	to
argument	r	or	z,	as	the	case	may	be.	Eq.	(VI-30.6)	may	be	written	as

The	left	side	of	Eq.	(VI-30.7)	is	independent	of	r	while	the	right	side	of	Eq.	(VI-
30.7)	is	independent	of	z.	Now,	the	only	way	in	which	a	function	of	z	alone	can
be	equal	identically	(in	a	region)	to	a	function	of	r	alone	is	for	each	of	the	two
functions	to	be	identically	equal	to	the	same	constant.	Thus,	the	requirement	that



a	 product	 function	U	 =	G(r)H(z)	 shall	 satisfy	 Eq.	 (VI-30.3)	 is	 equivalent	 to
requiring	simultaneous	satisfaction	of	two	equations

where	C	is	the	same	constant	in	both	equations.
Let	us	now	determine	which	kind	of	constant	can	be	used	for	C,	positive	or

negative	 or	 zero.	 If	 we	 take	 C	 =	 0,	 then	 the	 second	 equation	 in	 (VI-30.8)
becomes

whose	solution	is

where	A	and	B	are	constants.	And	the	first	equation	in	(VI-30.8)	becomes	H″	=
0,	whose	solution	is

where	D	and	E	are	arbitrary	constants.	We	now	have

On	the	lower	base,	where	z	=	0,	we	must	have

which	 requires	 that	 E	 =	 0,	 since	 the	 function	 A	 loge	 r	 +	 B	 cannot	 vanish
identically	for	a	 	r	 	b,	unless	A	=	0	and	B	=	0.	Thus,

where	A′	=	AD	and	B′	=	BD.
We	must	 also	 have	U	 =	 0	 on	 both	 lateral	 surfaces.	 Since	 z	 does	 not	 vanish

identically	 on	 the	 lateral	 faces,	 the	 requirement	 that	 U	 shall	 vanish	 thereon
means	that



Since	a	≠	b,	the	solution	of	this	pair	of	simultaneous	equations	is	A′	=	0	and	B′	=
0,	 which	 makes	 U(r,	 z)	 vanish	 identically.	 But	 U	 certainly	 does	 not	 vanish
identically	because	 the	prescribed	value	of	U	on	 the	upper	base	 is	greater	 than
zero	 for	 a	 <	 r	 <	 b.	 We	 must,	 then,	 reject	 the	 assumption	 that	 led	 to	 this
contradiction,	namely	the	assumption	that	C	=	0	in	Eq.	(VI-30.8).
If	we	 take	C	 negative	 in	 Eq.	 (VI-30.8),	 then	 the	 first	 equation	 in	 (VI-30.8)

becomes

whose	solution	is

where	A	and	B	are	arbitrary	constants.	This	requires	on	the	lower	base,	where	z	=
0,	that

Now	G(r)	is	certainly	not	identically	zero	for	a	 	r	 	b.	So,	we	must	take	A	=
0.	Then	we	have

Taking	C	=	−	k2,	k	≠	0,	we	find	by	the	second	equation	in	(VI-30.8)	that	G	shall
satisfy	the	equation

whose	general	solution,	by	Eqs.	(VI-1.6),	(VI-1.5),	(V-0.12),	is

so	that	Eq.	(VI-30.10)	becomes

where	 the	 constant	 B	 in	 Eq.	 (VI-30.10)	 has	 been	 absorbed	 into	 the	 arbitrary
constants	C1	and	C2.

Comparison	of	Eq.	(VI-30.11)	with	the	corresponding	stage	of	development	in
Prob.	VI-26	indicates	that	a	solution	of	the	present	problem	could	be	obtained	in



the	form	of	a	series	of	particular	solutions	of	type	(VI-30.11),	namely

where	λ	=	λn	would	be	a	solution	of

and	where	the	coefficients	Cn	would	be	given	by	a	formula	corresponding	to	the
formula	for	the	Cn	in	Prob.	VI-26.	The	constant	factor	l/sin(λnh)	is	needed	in	Eq.
(VI-30.12)	because	the	coefficients	Cn	shall	be	determined	so	that	on	upper	base,
where	z	=	h,	we	can	have

Thus,	once	the	expansion	(VI-30.13)	has	been	obtained,	the	function	U	defined
by	Eq.	 (VI-30.12)	meets	all	 the	 requirements	 imposed	on	U	 by	Eqs.	 (VI-30.3)
and	(VI-30.4),	in	particular	on	the	upper	base.	The	actual	solution	of	the	problem
as	stated	is	T	=	U	+	100,	where	C/is	given	by	Eq.	(VI-30.12).
Let	 us	 see	 if	 a	 solution	 can	 also	 be	 obtained	 when	 we	 take	 the	 separation

constant	C	positive	in	Eq.	(VI-30.8),	say	C	=	k2,	k	≠	0.	Then	H″	=	k2H,	whose
general	solution	is

where	A	and	B	are	arbitrary	constants.	Then,	on	the	lower	base	where	U	=	0	and
z	=	0,	we	must	have

so	that	B	=	−	A.	We	thus	have



Since	A	is	arbitrary,	we	can	let	M	=	A/2	and	write

When	we	take	C	=	k2	≠	0	in	(VI-30.8),	we	must	have

whose	general	solution	by	Eqs.	(VI-1.6),	(VI-1.5),	(V-0.8)	is

Consequently,	 by	 virtue	 of	 Eqs.	 (VI-30.14)	 and	 (VI-30.15),	 we	 can	 have
particular	solutions	of	the	type

And	we	can	meet	all	 the	boundary	conditions	 imposed	on	T	 as	well	 as	have	T
satisfy	Laplace’s	equation	at	all	interior	points	by	a	series	solution	similar	to	the
solution	obtained	in	Prob.	VI-26,	namely

where	λ	=	λn	is	a	solution	of

and	where	the	coefficients	Cn	are	determined	(as	in	Prob.	VI-26)	so	that
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INDEX
A
Areas,	evaluation	of,	by	Gamma	function,	77–80,	82,	87
Asymptotic	series	expansion	for	log10	Γ(x),	26,
series	expansion	for	loge	Γ(x),	105

Attraction,	problems	in,	90,	326

B
Bernoulli,	312
ber	x	and	bei	x,	berp(x)	and	beip(x),
applications	of,	318,	386–97
definition	and	properties	of,	238,	239,	246,	247
tables	of,	302–4,	306,	308,	309

Bessel,	283
Bessel’s	equation,	235
general	solution	of,	236–7
solution	of	equations	related	to,	313–18

Bessel	Functions,
applications	of:
attraction	and	repulsion	of	mass	particle,	326,	328
buckling	disc,	334
coil	spring,	324
critical	length	of	clamped	vertical	wire,	337
eddy	current	density	and	power	loss,	389,	395
electric	current	density,	386
flux	distribution	in	a	reactor,	343
heat	flow,	temperature	distribution,	345,	348,	368,	372,	397
lengthening	pendulum,	331
oscillating	chain,	351
pulsating	cylinder,	364
vibrating	membrane,	382
vibrating	rod,	359

approximate	expression	of,	for	small	or	large	argument,	276
ber	and	bei,	238–9
evaluation	of,	249–50
expansions	in	series	of,	265,	266,	319,320
generating	function	for,	258
graphs	of	some,	of	first	kind,	258
integral	representations	of,	279–83
integrals	involving,	262–72
ker	and	kei,	238
modified,	238
of	first	kind,	236
of	order	n	+	½,	253–6
of	second	kind,	236
orthogonality	of,	262
recursion	formulas	for,	relations	among,	243–9,	251,	252,	255,	262,	294
relation	of,



to	Gamma	function,	236,	273,	276–80
to	Legendre	polynomials,	260,	287–93

series	expression	of,	236,	237
tables	of,	295–311
Wronskian	for,	251
zeros	of,	257,	297

B(x),	see	Beta	function.
Beta	function	B(x),
applications	of,	72–4
definition	and	properties	of,	3,	29–35
formulas	and	identities	for,	48–9
relation	of,
to	Gamma	function,	31
to	Legendre	polynomials,	190

Buckling	disc,	334

C
Centroid,	location	of,	by	Gamma	function,	84
Chain,	oscillating,	motion	of,	351
Coil	spring,	motion	of,	324
Constant,
Euler’s,	39,	45,	237
separation,	112,	117

Critical	length	of	clamped	vertical	wire,	337
Current,	electric,
density	of,	386
eddy,	density	of,	389
power	loss	due	to	eddy,	395

Cycloid,	Fourier	series	for	ordinate	of,	321
Cylindrical	harmonics,	240

D
D’Alembert,	364
D’Alembert’s	equation,	364
De	Moivre-Laplace	theorem,	108,	109
Derivative,
logarithmic,	of	Gamma	function,	45
of	Bessel	functions,	240–8,	251,	255,	294
of	Gamma	function,	18
of	Legendre	polynomials,	141–3,	159,	163,	164,	167,	194

Disc,	buckling	of,	334

E
Eddy	current,	electric,
density	of,	389
power	loss	due	to,	395

Electric	current,
density	of,	386
Electrostatic	potential,	207,	226

Equation,
Bessel’s,	235
D’Alembert’s,	364
Laplace’s,	121,	206,	209,	214,	217,	221,	222,	226,	348,	372,	398



Legendre’s,	118
of	displacement	of	vertical	wire,	337
of	electric	current	density,	386
of	equilibrium	of	circular	disc,	334
of	flux	in	a	reactor,	343
of	heat	flow,	111,	208,	345,	349,	368,	372,	403
of	magnetic	field	strength,	389
of	motion	of,
attracted	mass	particle,	90,	326
coil	spring,	324
oscillating	chain,	351
pendulum,	90,	331
repelled	mass	particle,	328
vibrating	membrane,	382
vibrating	rod,	359

related	to	Bessel’s,	313–19
wave,	361,	364

Error	function,	111,	117
Error,	relative,	of	Stirling’s	formula,	105
Euler,	1
Euler’s	constant,	39,	45,	237
Euler’s	infinite	product	for	Γ(z),	1
Expansion	of	a	function,
in	series	of	Bessel	functions,	265,	266,319,320
in	series	of	Legendre	polynomials,	136,	150,	196–207,	227–229

F
Factorial,
of	a	non-integral	number,	10
of	a	positive	integer,	2,	10
approximated	by	Stirling’s	formula,	98–106

Fluid	velocity,	364
Flux	distribution	in	a	reactor,	343
Function,
Bessel,	236–8,258,	294–311
Beta,	3,	29–35,	48–9
error,	111,	117
Gamma,	2–7,	26,	48–9
generating,	121,	258
Hankel,	239
harmonic,	121,	207
potential,	207
Struve,	240,	301–2
weight,	for	orthogonality	of	Bessel	functions,	263

G
Γ(x),	see	Gamma	function.
Gamma	function	Γ(x),
applications:
evaluation	of	certain	integrals,	50–6,60–70,81–3
evaluation	of	certain	geometrical	and	physical	magnitudes,	77–80,	80–97

asymptotic	expansion	for	logarithm	of,	26,	105
definition	and	properties	of,	2–28,	48



differentiability	of,	18
Euler’s	infinite	product	for,	1,	26
evaluation	of,	9–14,	25,	26
formulas	and	identities	for,	48
fundamental	indentity	for,	8
graph	of,	4
incomplete,	2,	117
logarithmic	derivative	of,	45,	237
of	½,	11,	57,	58
relation	of,	to	Bessel	functions,	237,	276–80
table	of	values	of,	3
Weierstrass’s	infinite	product	for	reciprocal	of,	28

Gauss’s	differential	equation,	119
Gauss’s	mechanical	quadrature,	231
Generating	function,
for	Bessel	functions,	258
for	Legendre	polynomials,	121

Graph,
of	Gamma	function,	4
of	some	Bessel	functions	of	first	kind,	258
of	some	Legendre	polynomials,	191

Gravitational	potential,	207,	221

H
Hankel	functions,
definition	of,	239
an	application	of,	366

Heat,	internal	generation	of,	348
Heat-flow,	temperature	distribution	in	a
circular	lamina,	368
conical	cooling	fin,	345
cylindrical	shell,	397
cylindrical	solid,	348
half-cylinder	solid,	372
hemispherical	solid,	215
spherical	shell,	220
spherical	solid,	208
wire,	111

I
Incomplete	Gamma	function,	2,	117
Integral	representation	of
Bessel	functions,	279–283
Beta	function,	3,	29–31,	48
Gamma	function,	2,	4–7,	48
Legendre	polynomials,	127

Integrals,
evaluation	of,
by	Gamma	and/or	Beta	function,	50–74,	77–89
approximately,	by	Gauss’s	mechanical	quadrature,	231–4

involving	Bessel	functions,	262-	72,	279–87
involving	Legendre	polynomials,	147–56,	166,	171–90,	230,	284–7



Ip(x),
applications	of,	316,	317,	329,	345–8,	401–2
definition	and	properties	of,	238,	253,	255,	287,	294
tables	of;	for	p	=	0,1,	298,	299

J
Jp(x),
applications	of,	319–27,	331–44,	348–403
definitions	and	properties	of,	236–46,	251–94
tables	of;	for	p	=	0,1,2,3,4,	295–6

K
ker	x	and	kei	x,	kerpx	and	keipx,
definition	of,	238
tables	of,	304–7,	310–11

Kp(x),
applications	of,	316,	317,	329,	398
definition	and	properties	of,	236,	238,	294
tables	of;	for	p	=	0,1,	300

Laplace’s	equation,	121,	206,	209,	214,	217,	221,	222,	226,	348,	372,	398
Laplace’s	integral	for	Pn(x),	127
Laplacian,	209,	343,	365,	369,	386,	389
Legendre,	1
Legendre	Coefficients,	121
Legendre’s	duplication	formula,	17,	62
Legendre’s	equation,	118
Legendre	polynomials,
absolute	value	of,	for	−1	 	x	 	1,	138
applications:
approximate	integration,	231,	233
electrostatic	potential,	207,	226
gravitational	potential,	207,	221
heat	flow	temperature	distribution,	208–220

derivatives	of,	141–3,	159,	163,	164,	167,	194
expansion	in	series	of,	136,	150,	152,	196–207,	227,	228
formulas	for,	118,	127–35
generating	function	for,	121,	260
graph	of;	for	n	=	0,	1,2,3,4,	191
integrals	of	or	involving,	147–56,	166,	171–90,	230,	284–7
Laplace’s	integral	for,	127
normalized,	150,	152
orthogonality	of,	144,	150
recursion	relations,	125,	141–3,	164
relation	of,
to	Bessel	functions,	260,	287–93
to	Beta	function,	190

Rodrigues’s	formula	for,	120,	135
tables	of	some,	191–3
zeros	of,	157,	234

Lemniscate,	length	of,	89
Length,



critical,	of	clamped	vertical	wire,	337
of	lemniscate,	89

Lengthening	pendulum,	motion	of,	331
Logarithm	of	Gamma	function,
asymptotic	expansion	to	base	e,	105
asymptotic	expansion	to	base	10,	26

Logarithmic	derivative	of	Gamma	function,	45,	237

M
Magnetic	field	strength,	389
Mass,	evaluation	of,	by	Gamma	function,	84
Mass-particle,
augmented,	motion	of,	under	repulsion,	328
constant,	motion	of,	under	attraction,	90
decreasing,	motion	of,	under	attraction,	326

Mechanical	quadrature,	231–4
Membrane,	vibration	of,	382
Modified	Bessel	functions,
applications	of,	316,	317,	329,	346,	401
definition	of,	238
properties	of,	238,	253,	255,	287,	294

Moment	of	inertia,	evaluation	of,	by	Gamma	function,	84

N
Normalized	Legendre	polynomials,	150,	152

O
Orthogonality,
of	Bessel	functions,	262
of	Legendre	polynomials,	144,	150

Oscillation	of	a	chain,	351
Oval,	area	of,	87

P
Pendulum,
half-swing	period	of,	91
lengthening,	motion	of,	331

Pi	(π),
approximate	value	for,	77,	233
Wallis’s	product	for	half	of,	75,	231

Potential,
electrostatic,	207,	226
gravitational,	207,	221

Probability,
De	Moivre-Laplace	theorem	in,	108–11
integral,	52
two	problems	in,	106,	107

Product	solutions	of,
heat-flow	temperature	distribution	equation,	112,	208–13,	368–81,	399–403
equation	for	magnetic	field	strength,	389
Laplace’s	equation,	208–27,	372–81,	398–403
equation	for	vibrating	membrane,	382
equation	for	longitudinally	vibrating	rod,	359



wave	equation,	364
Pulsating	cylinder,	364

Q
Quadrature,	Gauss’s	mechanical,	231–4

R
Radiation	density	integral,	93
Reactor,	flux	distribution	in,	343
Recursion	formulas,
for	Bessel	functions,	240–249,	251–3,	255,	294
for	Legendre	polynomials,	125,	141–3,	164

Repulsion,	a	problem	in,	328
Riemann	Zeta	function,	96
Rod,	longitudinal	vibration	of,	359
Rodrigues,	136
Rodrigues’s	formula	for	Legendre	polynomials,	120,	135

S
Separation	constant,	117
Series	representation,
of	Bessel	functions,	236,	237
of	solutions	of	Legendre’s	equation,	119
of	Struve	functions,	240

Spherical	harmonics,	120
Stirling’s	formula	for	n!,	103,	107
Struve	functions,
definition	of,	240
tables	of;	for	p	=	0,	1,	301,	302

T
Tables	of,
Bessel	functions,	294–311
Gamma	function,	3
Legendre	polynomials,	191–3
Struve	functions,	301,	302
Weight	coefficients	for	Gauss’s	mechanical	quadrature,	234

Temperature	distribution	for	heat-flow	in	a
circular	lamina,	368
conical	cooling	fin,	345
cylindrical	shell,	397
cylindrical	solid,	348
half-cylinder	solid,	372
hemispherical	solid,	215
spherical	shell,	216–21
spherical	solid,	208–15
wire,	111

V
Vibration,
of	a	membrane,	382
of	a	rod	longitudinally,	359
of	a	coil	spring,	324



Volumes,	evaluation	of,	by	Gamma	function,	84

W
Wave	equation,	361,	364
Wallis’s	product	for	tt/2,	75,	231
Weierstrass’s	product	for	reciprocal	of	Gamma	function,	27–9
Weight	function	for	orthogonality	of	Bessel	functions,	263
Wire,
temperature	distribution	for	heat-flow	in,	111
clamped	vertical,	critical	length	of,	337

Wronskian	for	Bessel	functions,	251

Y
Yp,(x),
applications	of,	327,	333,	359,	382,	403
definition	of,	236,	237
evaluation	of,	250
properties	of,	251,	252,	278,	294
tables	of;	for	p	=	0,1,	297–8

Z
Zeros,
of	Bessel	functions,	257,	297
of	Legendre	polynomials,	157,	234

Zp,(x),
applications	of,	313–18,	325
definition	of,	238

Zonal	harmonics,	120
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