
Deep Learning Architecture Search
by Neuro-Cell-based Evolution

with Function-Preserving Mutations

Martin Wistuba

IBM Research
martin.wistuba@ibm.com

Abstract. The design of convolutional neural network architectures for
a new image data set is a laborious and computational expensive task
which requires expert knowledge. We propose a novel neuro-evolutionary
technique to solve this problem without human interference. Our method
assumes that a convolutional neural network architecture is a sequence
of neuro-cells and keeps mutating them using function-preserving op-
erations. This novel combination of approaches has several advantages.
We define the network architecture by a sequence of repeating neuro-
cells which reduces the search space complexity. Furthermore, these cells
are possibly transferable and can be used in order to arbitrarily extend
the complexity of the network. Mutations based on function-preserving
operations guarantee better parameter initialization than random initial-
ization such that less training time is required per network architecture.
Our proposed method finds within 12 GPU hours neural network ar-
chitectures that can achieve a classification error of about 4% and 24%
with only 5.5 and 6.5 million parameters on CIFAR-10 and CIFAR-100,
respectively. In comparison to competitor approaches, our method pro-
vides similar competitive results but requires orders of magnitudes less
search time and in many cases less network parameters.

Keywords: Automated Machine Learning · Neural Architecture Search
· Evolutionary Algorithms.

1 Introduction

Deep learning techniques have been the key to major improvements in machine
learning in various domains such as image and speech recognition and machine
translation. Besides more affordable computational power, the proposal of new
kinds of architectures such as ResNet [8] and DenseNet [9] helped to increase
the accuracy. However, the selection on which architecture to choose and how to
wire different layers for a particular data set is not trivial and demands domain
expertise and time from the human practitioner.

Within the last one or two years we observed an increase in research efforts
by the machine learning community in order to automate the search for neural
network architectures. Researchers showed that both, reinforcement learning [31]

2 Martin Wistuba

and neuro-evolution [20], are capable of finding network architectures that are
competitive to the state-of-the-art. Since these methods still require GPU years
until this performance is reached, further work has been proposed to significantly
decrease the run time [1, 3, 15,30,32].

In this paper, we want to present a simple evolutionary algorithm which re-
duces the search time to just hours. This is an important step since now, similar
to hyperparameter optimization for other machine learning models, optimizing
the network architecture becomes affordable for everyone. Our presented ap-
proach starts from a very simple network template which contains a sequence of
neuro-cells. These neuro-cells are architecture patterns and the optimal pattern
will be automatically detected by our proposed algorithm. This algorithm as-
sumes that the cell initially contains only a single convolutional layer and then
keeps changing it by function-preserving mutations. These mutations change the
structure of the architecture without changing the network’s predictions. This
can be considered as a special initialization such that the network requires less
computational effort for training.

Our contributions in this paper are three-fold:

1. We are the first to propose an evolutionary algorithm which optimizes neuro-
cells with function-preserving mutations.

2. We expand the set of function-preserving operations proposed by Chen et
al. [4] to depthwise separable convolutions, kernel widening, skip connections
and layers with multiple in- and outputs.

3. We provide empirical evidence that our method is outperforming many com-
petitors within only hours of search time. We analyze our proposed method
and the transferability of neuro-cells in detail.

2 Related Work

Evolutionary algorithms and reinforcement learning are currently the two state-
of-the-art techniques used by neural network architectures search algorithms.
With Neural Architecture Search [31], Zoph et al. demonstrated in an experi-
ment over 28 days and with 800 GPUs that neural network architectures with
performances close to state-of-the-art architectures can be found. In parallel or
inspired by this work, others proposed to use reinforcement learning to detect
sequential architectures [1], reduce the search space to repeating cells [30,32] or
apply function-preserving actions to accelerate the search [3].

Neuro-evolution dates back three decades. In the beginning it focused only on
evolving weights [18] but it turned out to be effective to evolve the architecture
as well [23]. Neuro-evolutionary algorithms gained new momentum due to the
work by Real et al. [20]. In an extraordinary experiment that used 250 GPUs
for almost 11 days, they showed that architectures can be found which provide
similar good results as human-crafted image classification network architectures.
Very recently, the idea of learning cells instead of the full network has also been
adopted for evolutionary algorithms [15]. Miikkulainen et al. even propose to
coevolve a set of cells and their wiring [17].

Deep Learning Architecture Search by Neuro-Cell-based Evolution 3

Other methods that try to optimize neural network architectures or their
hyperparameters are based on model-based optimization [7, 14, 22, 26], random
search [2] and Monte-Carlo Tree Search [19,27].

3 Function-Preserving Knowledge Transfer

Chen et al. [4] proposed a family of function-preserving network manipulations
in order to transfer knowledge from one network to another. Suppose a teacher

network is represented by a function f
(
x | θ(f)

)
where x is the input of the

network and θ(f) are its parameters. Then an operation changing the network
f to a student network g is called function-preserving if and only if the output
for any given model remains unchanged:

∀x : f
(
x | θ(f)

)
= g

(
x | θ(g)

)
. (1)

Note that typically the number of parameters of f and g are different. We will use
this approach in order to initialize our mutated network architectures. Then, the
network is trained for some additional epochs with gradient-based optimization
techniques. Using this initialization, the network requires only few epochs before
it provides decent predictions. We briefly explain the proposed manipulations
and our novel contributions to it. Please note that a fully connected layer is a
special case of a convolutional layer.

3.1 Convolutions in Deep Learning

Convolutional layers are a common layer type used in neural networks for visual
tasks. We denote the convolution operation between the layer input X ∈ Rw×h×i

with a layer with parameters W ∈ Rk1×k2×i×o by X∗W . Here, i is the number of
input channels, w×h the input dimension, k1×k2 the kernel size and o the num-
ber of output feature maps. Depthwise separable convolutions, or for short just
separable convolutions, are a special kind of convolution factored into two oper-
ations. During the depthwise convolution a spatial convolution with parameters
Wd ∈ Rk1×k2×i is applied for each channel separately. We denote this operation
by using ~. This is in contrast to the typical convolution which is applied across
all channels. In the next step the pointwise convolution, i.e. a convolution with
a 1 × 1 kernel, traverses the feature maps which result from the first operation
with parameters Wp ∈ R1×1×i×o. Comparing the normal convolution operation
X ∗W with the separable convolution (X ~Wd) ∗Wp, we immediately notice
that in practice the former requires with k1k2io more parameters than the latter
which only needs k1k2i+ io. Figure 1 provides a graphical representation of the
network. If X(l) is the input for an operation in layer l + 1, e.g. a convolution,

then we represent each channel X
(l)
·,·,i by a circle. Arrows represent a spatial con-

volution which is parameterized by some parameters indicated by a character
(in our example characters a to i). We clearly see that the depthwise convolution
within the depthwise separable convolution separately operates on channels and
normal convolutions operate across channels.

4 Martin Wistuba

aba dc b c

C
o

n
vo

lu
tio

n

e f

In
p

u
t C

h
an

n
el

 1

In
p

u
t C

h
an

ne
l 2

In
p

u
t C

h
a

nn
el

 3

Output Channels ed gf

D
e

pt
h

w
is

e
C

o
n

vo
lu

tio
n

h i

In
p

ut
 C

ha
n

ne
l 1

In
pu

t C
ha

n
ne

l 2

In
p

ut
 C

ha
n

ne
l 3

Output Channels

P
o

in
tw

is
e

C
o

n
vo

lu
tio

n

Convolution
Separable

Convolution

Fig. 1: Comparison of a standard convolution to a separable convolution. The
separable convolution first applies a spatial convolution for each channel sepa-
rately. Afterwards, a convolution with a 1×1 kernel is applied. Circles represent
one channel of the feature map in the network, arrows a spatial convolution.

3.2 Layer Widening

Assume the teacher network f contains a convolutional layer with a k1×k2 kernel
which is represented by a matrix W (l) ∈ Rk1×k2×i×o where i is the number
of input feature maps and o is the number of output feature maps or filters.
Widening this layer means that we increase the number of filters to o′ > o. Chen
et al. [4] proposed to extend W (l) by replicating the parameters along the last
axis at random. This means the widened layer of the student network uses the
parameters

V
(l)
·,·,·,j =

{
W

(l)
·,·,·,j j ≤ o

W
(l)
·,·,·,r r uniformly sampled from {1, . . . , o}

. (2)

In order to achieve the function-preserving property, the replication of some
filters needs to be taken into account for the next layer V (l+1). This is achieved

by dividing the parameters of W
(l+1)
·,·,j,· by the number of times the j-th filter has

been replicated. If nj is the number of times the j-th filter was replicated, the
weights of the next layer for the student network are defined by

V
(l+1)
·,·,j,· =

1

nj
W

(l+1)
·,·,j,· . (3)

We extended this mechanism to depthwise separable convolutional layers. A
depthwise separable convolutional layer at depth l is widened as visualized in
Figure 2a. The pointwise convolution for the student is estimated according to
Equation 2. This results into replicated output feature maps indicated by two
green colored circles in the figure. The depthwise convolution is identical to the
one of the teacher network, i.e. the operations with parameters a and b. Indepen-
dently of whether we used a depthwise separable or normal convolution in layer l,

Deep Learning Architecture Search by Neuro-Cell-based Evolution 5

a b

dc f

g h

e

ji lk

a b

dc f

g h

e

ji
l/2k/2

d
f

S
ep

a
ra

b
le

 C
o

n
vo

lu
tio

n

in
 L

ay
e

r
l

S
ep

a
ra

b
le

 C
o

n
vo

lu
tio

n

in
 L

ay
e

r
l+

1

Teacher Student

k/2
l/2

h

(a) Widening Layer l.

1

Teacher Student

ba dc
e f

ba dc
e f

1 1

1 1 1
0

0

0

0
00

(b) Insert a separable convolution.

Fig. 2: Visualization of different function-preserving operations. Same colored
circles represent identical feature maps. Circles without filling can have any value
and are not important for the visualization. Activation functions are omitted to
avoid clutter.

widening it requires adaptations in a following depthwise separable convolutional
layer as visualized in Figure 2a. The parameters of the depthwise convolution are
replicated according to the replication of parameters in the previous layer similar
to Equation 2. In our example we replicated the operation with parameters f in
the previous layer. Therefore, we have now replicated spatial convolutions with
parameters h. Furthermore, the parameter of the pointwise convolution (in the
example parameterized by i, j, k and l) depend on the replications in the previous
layers analogously to Equation 3. In our example we did not replicate the blue
feature map, so the weights for this channel remain unchanged. However, we du-
plicated the green feature map which is transformed into the purple feature map
depthwise convolution. Taking into account that this channel contributes now
twice to the pointwise convolution, all corresponding weights (in the example k
and l) are divided by two.

Widening the separable layer followed by another separable layer is the most
complicated case. Other cases can be derived by dropping the depthwise convo-
lutions from Figure 2a.

3.3 Layer Deepening

Chen et al. [4] proposed a way to deepen a network by inserting an additional
convolutional or fully connected layer. We complete this definition by extending
it to depthwise separable convolutions.

A layer can be considered to be a function which gets as an input the output
of the previous layer and provides the input for the next layer. A simple function-
preserving operation is to set the weights of a new layer such that the input of

6 Martin Wistuba

the layer is equal to its output. If we assume i incoming channels and an odd
kernel height and weight for the new convolutional layer, we achieve this by
setting the weights of the layer with a k1 × k2 kernel to the identity matrix:

V
(l)
j,h =

{
Ii,i j = k1+1

2 ∧ h = k2+1
2

0 otherwise
. (4)

This operation is function-preserving and the number of filters is equal to the
number of input channels. More filters can be added by layer widening, however,
it is not possible to use less than i filters for the new layer. Another restriction
is that this operation is only possible for activation functions σ with

σ (x) = σ (Iσ (x)) ∀x . (5)

The ReLU activation function ReLU (x) = max {x,0} fulfills this requirement.
We extend this operation to depthwise convolutions and visualize it in Figure

2b. The parameters of the pointwise convolution Vp are initialized analogously
to Equation 4 and the depthwise convolution Vd is set to one:

Vp = Ii,i (6)

Vd = 1 . (7)

As we see in Figure 2b, this initialization ensures that both, the depthwise and
pointwise convolution, just copy the input. New layers can be inserted at arbi-
trary positions with one exception. Under certain conditions an insertion right
after the input layer is not function-preserving. For example if a ReLU activation
is used, there exists no identity function for inputs with negative entries.

3.4 Kernel Widening

Increasing the kernel size in a convolutional layer is achieved by padding the
tensor using zeros until it matches the desired size. The same idea can be applied
to increase the kernel size of depthwise separable convolution by padding the
depthwise convolution with zeros.

3.5 Insert Skip Connections

Many modern neural network architectures rely on skip connections [8]. The idea
is to add the output of the current layer to the output of a previous. One simple
example is

X(l+1) = σ
(
X(l) ∗ V (l+1) +X(l)

)
. (8)

Therefore, we propose a function-preserving operation which allows inserting
skip connection. We propose to add layer(s) and initialize them in a way such
that the output is 0 independent on the input. This allows to add a skip because
now adding the output of the previous layer to zero is an identity operation. We
visualized a simple example in Figure 3a based on Equation 8. A new operation
is added setting its parameters to zero, V (l+1) = 0, achieving a zero output.
Now, adding this output to the input is an identity operation.

Deep Learning Architecture Search by Neuro-Cell-based Evolution 7

ih kj

Teacher Student

ba dc
e f ba dc

e f

0 0

00 00

+ +

ih kj

(a) Insert a skip with a convolution.

Teacher Student

hg ji
k l

ba
dc

e f

hg ji

k

l

1 1
0 0

ba
dc

e f

(b) Branch the colored layer and insert a
convolution into the left branch.

Fig. 3: Visualization of different function-preserving operations. Same colored
circles represent identical feature maps. Circles without filling can have any value
and are not important for the visualization. Activation functions are omitted to
avoid clutter.

3.6 Branch Layers

We also propose to branch layers. Given a convolutional layer X(l) ∗W (l+1) it
can be reformulated as

merge
(
X(l) ∗ V (l+1)

1 , X(l) ∗ V (l+1)
2

)
, (9)

where merge concatenates the resulting output. The student network’s parame-
ters are defined as

V
(l+1)
1 = W

(l+1)
·,·,·,1:bo/2c

V
(l+1)
2 = W

(l+1)
·,·,·,(bo/2c+1):o .

This operation is not only function-preserving, it also does not add any further
parameters and in fact is the very same operation. However, combining this
operation with other function-preserving operations allows to extend networks
by having parallel convolutional operations or add new convolutional layers with
smaller filter sizes. In Figure 3b we demonstrate how to achieve this. The colored
layer is first branched and then a new convolutional layer is added to the left
branch. In contrast to only adding a new layer as described in Section 3.3, the
new layer has only two output channels instead of three.

8 Martin Wistuba

Conv (64, 3, 3)
Cell

Max Pooling
Cell

Max Pooling
Cell

Conv (128, 3, 3) FC (128) Softmax

Fig. 4: Neural network template as used in our experiments.

3.7 Multiple In- or Outputs

All the presented operations are still possible for networks where a layer might
have inputs from different layers or provide output for multiple outputs. In that
case only the affected weights need to be adapted according to the aforemen-
tioned equations.

4 Evolution of Neuro-Cells

The very basic idea of our proposed cell-based neuro-evolution is the follow-
ing. Given is a very simple neural network architecture which contains multiple
neuro-cells (see Figure 4). The cells itself share their structure and the task is
to find a structure that improves the overall neural network architecture for a
given data set and machine learning task. In the beginning, a cell is identical
to a convolutional layer and is changed during the evolutionary optimization
process. Our evolutionary algorithm is using tournament selection to select an
individual from the population: randomly, a fraction k of individuals is selected
from the population. From this set the individual with highest fitness is selected
for mutation. We define the fitness by the accuracy achieved by the individual
on a hold-out data set. The mutation is selected at random which is applied to
all neuro-cells such that they remain identical. The network is trained for some
epochs on the training set and is then added to the population. Finally, the pro-
cess starts all over again. After meeting some stopping criterion, the individual
with highest fitness is returned.

4.1 Mutations

All mutations used are based on the function-preserving operations introduced
in the last section. This means, a mutation does not change the fitness of an
individual, however, it will increase its complexity. The advantage over creating
the same network structure with randomly initialized weights is obviously that
we start with a partially pretrained network. This enables us to train the network
in less epochs. All mutations are applied only to the structure within a neuro-
cell if not otherwise mentioned. Our neuro-evolutional algorithm considers the
following mutations.

Insert Convolution A convolution is added at a random position. Its kernel size
is 3 × 3, the number of filters is equal to its input dimension. It is randomly
decided whether it is a separable convolution instead.

Deep Learning Architecture Search by Neuro-Cell-based Evolution 9

Branch and Insert Convolution A convolution is selected at random and branched
according to Section 3.6. A new convolution is added according to the “Insert
Convolution” mutation in one of the branches. For an example see Figure 3b.

Insert Skip A convolution is selected at random. Its output is added to the
output of a newly added convolution (see “Insert Convolution”) and is the input
for the following layers. For an example see Figure 3a.

Alter Number of Filters A convolution is selected at random and widened by a
factor uniformly at random sampled from [1.2, 2]. This mutation might also be
applied to convolutions outside of a neuro-cell.

Alter Number of Units Similar to the previous one but alters the number of units
of fully connected layers. This mutation is only applied outside the neuro-cells.

Alter Kernel Size Selects a convolution at random and increases its kernel size
by two along each axis.

Branch Convolution Selects a convolution at random and branches it according
to Section 3.6.

The motivation of selecting this set of mutations is to enable the neuro-
evolutionary algorithm to discover similar architectures as proposed by hu-
man experts. Adding convolutions allows to reach popular architectures such
as VGG16 [21], combinations of adding skips and convolutions allow to discover
residual networks [8]. Finally the combination of branching, change of kernel
sizes and addition of (separable) convolutions allows to discover architectures
similar to Inception [25], Xception [5] or FractalNet [13].

The optimization is started with only a single individual. We enrich the pop-
ulation by starting with an initialization step which creates 15 mutated versions
of the first individual. Then, individuals are selected based on the previously
described tournament selection process.

5 Experiments

In the experimental section we will run our proposed method for the task of image
classification on the two data sets CIFAR-10 and CIFAR-100. We conduct the fol-
lowing experiments. First, we analyze the performance of our neuro-evolutional
approach with respect to classification error and compare it to various competi-
tor approaches. We show that we achieve a significant search time improvement
at costs of slightly larger error. Furthermore, we give insights how the evolution
and the neuro-cells progress and develop during the optimization process. Ad-
ditionally, we discuss the possibility of transferring detected cells to novel data
sets. Finally, we compare the performance of two different random approaches
in order to prove our method’s benefit.

10 Martin Wistuba

5.1 Experimental Setup

The network template used in our experiments is sketched in Figure 4. It starts
with a small convolution, followed twice by a neuro-cell and a max pooling
layer. Then, another neuro-cell is added, followed by a larger convolution, a
fully connected layer and the final softmax layer. Each max pooling layer has
a stride of two and is followed by a drop-out layer with drop-out rate 70%.
The fully connected layer is followed by a drop-out layer with rate 50%. In this
section, whenever we sketch or mention a convolutional layer, we actually mean a
convolutional layer followed by batch normalization [11] and a ReLU activation.
The neuro-cell is initialized with a single convolution with 128 filters and a kernel
size of 3× 3. A weight decay of 0.0001 is used.

We evaluate our method and compare it to competitor methods on CIFAR-
10 and CIFAR-100 [12]. We use standard preprocessing and data augmentation.
All images are preprocessed by subtracting from each channel its mean and
dividing it by its standard deviation. The data augmentation involves padding
the image to size 40 × 40 and then cropping it to dimension 32 × 32 as well as
flipping images horizontally at random. We split the official training partitions
into a partition which we use to train the networks and a hold-out partition to
evaluate the fitness of the individuals.

For the neuro-evolutionary algorithm we select a tournament size equal to
15% of the population but at least two. The initial network is trained for 63
epochs, every other network is trained for 15 epochs with Nesterov momentum
and a cosine learning rate schedule with initial learning rate 0.05, T0 = 1 and
Tmul = 2 [16]. We define the fitness of an individual by the accuracy of the
corresponding network on the hold-out partition. After the search budget is
exhausted, the individual with highest fitness is trained on the full training split
until convergence using CutOut [6]. Finally, the error on test is reported.

5.2 Search for Networks

In Table 1 we report the mean and standard deviation of our approach across
five runs and compare it to other approaches.

The first block contains several architectures proposed by human experts.
DenseNet [9] is clearly the best among them, reaching an error of 4.51% with
only 800 thousand parameters. Using about 25 million parameters, the error
decreases to 3.42%.

The second block contains several architecture search methods based on re-
inforcement learning. Most of them are able to find very competitive networks
but at the cost of very high search times. NASNet [32] finds the best-performing
network which is on par with DenseNet but requires less parameters. However,
the authors report that they required about 5.5 GPU years in order to reach this
performance. Efficient Architecture Search [3] still achieves an error of 4.23% but
reduces the search time drastically to ten days.

The third block contains various automated approaches based on evolution-
ary methods. Hierarchical Evolution [15] finds the best performing architecture

Deep Learning Architecture Search by Neuro-Cell-based Evolution 11

Table 1: Classification error on CIFAR-10 and CIFAR-100 including spent search
time in GPU days. The first block presents the performance of state-of-the-art
human-designed architectures. The second block contains results of various au-
tomated architecture search methods based on reinforcement learning. The third
block contains results for automated methods based on evolutionary algorithms.
The final block presents our results. For our method, we report the mean of five
repetitions for the classification error and the number of parameters, the best
run and the run with least network parameters.

Method Duration CIFAR-10 CIFAR-100
Error Params Error Params

ResNet [8] reported by [10] N/A 6.41 1.7M 27.22 1.7M
FractalNet [13] N/A 5.22 38.6M 23.30 38.6M
Wide ResNet (depth = 16) [29] N/A 4.81 11.0M 22.07 11.0M
Wide ResNet (depth = 28) [29] N/A 4.17 36.5M 20.50 36.5M
DenseNet-BC (k = 12) [9] N/A 4.51 0.8M 22.27 0.8M
DenseNet-BC (k = 24) [9] N/A 3.62 15.3M 17.60 15.3M
DenseNet-BC (k = 40) [9] N/A 3.42 25.6M 17.18 25.6M

NAS no stride/pooling [31] 22,400 5.50 4.2M - -
NAS predicting strides [31] 22,400 6.01 2.5M - -
NAS max pooling [31] 22,400 4.47 7.1M - -
NAS max pooling + more filters [31] 22,400 3.65 37.4M - -
NASNet [32] 2,000 3.41 3.3M - -
MetaQNN [1] 100 6.92 11.2M 27.14 11.2M
BlockQNN [30] 96 3.6 ? 18.64 ?
Efficient Architecture Search [3] 10 4.23 23.4M - -

Large-Scale Evolution [20] 2,600 5.4 5.4M 23.0 40.4M
Hierarchical Evolution [15] 300 3.75 15.7M - -
CGP-CNN (ResSet) [24] 27.4 6.05 2.6M - -
CoDeepNEAT [17] ? 7.30 ? - -

Ours (mean) 0.5 4.02 5.6M 23.92 6.5M
Ours (mean) 1 3.89 7.0M 22.32 6.7M
Ours (best) 0.5 3.57 5.8M 22.08 6.8M
Ours (best) 1 3.58 7.2M 21.74 5.3M
Ours (least params) 0.5 4.19 3.8M 28.15 5.0M
Ours (least params) 1 3.77 5.8M 21.74 5.3M

12 Martin Wistuba

●
● ●●

● ●
● ●

●

● ●

● ●

● ●

●

●

●

●

●
● ● ●

● ●
●

● ●
●

●
● ● ●

●
●

●
● ● ● ● ● ●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

0 5 10 15 20

Time in hours

0.825

0.850

0.875

0.900

0.925

Accuracy

Fig. 5: Evolutionary algorithm over time. Each dot represents an individual,
connections represent the ancestry. After the initialization, the algorithm quickly
focuses on ancestors from only one initial individual.

among them in 300 GPU days. Methodologically, our approach also belongs into
this category. We want to highlight in particular the search time required by our
proposed method. Within only 12 and 24 hours, respectively, a network architec-
ture is found which gives better predictions than most competitors and is very
close to the best methods. After 12 hours of search, we report a mean classifica-
tion error over five repetitions of 4.02±0.376 and 23.92±2.493 on CIFAR-10 and
CIFAR-100, respectively. Extending the search by another 12 hours, the error
reduces to 3.89± 0.231 and 22.32± 0.429.

In order to give insights into the optimization process, we visualized one run
on CIFAR-10 in Figure 5 and 6. Figure 5 visualizes the fitness of each individual
but also its ancestry by a phylogenetic tree [28]. The x-axis represents the time,
the y-axis has no meaning. The color indicates the fitness, dots represent indi-
viduals and the ancestry is represented by edges. We notice that within the first
10 hours the fitness is increasing quickly. Afterwards, progress is slow but steady.
Figure 6 provides in parallel insight which stages the final neuro-cell underwent.
Over time the cell develops multiple computation branches, finally adding some
skip connections. Notice, that branching the 7 × 7 convolution as first shown
at Hour 19 has no purpose. However, this might have changed for a longer run
when e.g. another layer was added in one of these branches.

5.3 Neuro-Cell Transferability

An interesting aspect is whether a neuro-cell detected on one data set can be
reused in a different architecture and for a different data set. For this reason, we
expanded the template from Figure 4 by duplicating the number of cells to the
one shown in Figure 7. We used the cells and other hyperparameters detected in
our 12 hours CIFAR-10 experiment and used the resulting networks for image
classification on CIFAR-100. These models achieved an average error of 24.77%
with a standard deviation of 1.61%. This result is not as good as the one achieved

Deep Learning Architecture Search by Neuro-Cell-based Evolution 13

H
o

u
r

1
F

itn
es

s:
 0

.8
81

9

C
on

v
(1

28
,

3,
 3

)

S
ep

 C
on

v
(1

28
,

3,
 3

)

C
on

v
(1

28
,

3,
 3

)

C
on

v
(1

28
,

3,
 3

)

H
o

u
r

2
F

itn
es

s:
 0

.8
8

84

C
on

v
(1

28
,

3,
 3

)

C
on

v
(6

4,
 3

, 3
)H

o
u

r
4

F
itn

es
s:

 0
.9

05
2

C
on

v
(6

4,
 3

, 3
)

S
ep

 C
on

v
(1

28
, 5

,
5)

C
on

v
(1

28
,

3,
 3

)

C
on

v
(9

2,
 3

, 3
)H

o
u

r
7

F
itn

es
s:

 0
.9

24
6

C
on

v
(6

4,
 5

, 5
)

C
on

v
(1

56
,

3,
 3

)

S
ep

 C
on

v
(1

28
,

5,
 5

)

C
on

v
(1

28
, 3

,
3)

C
on

v
(9

2,
 3

,
3)

H
o

u
r

10
F

itn
es

s:
 0

.9
25

1

C
on

v
(3

2,
 7

, 7
)

C
on

v
(1

56
, 3

,
3)

C
on

v
(3

2,
 7

,
7)

C
on

v
(1

28
,

3,
 3

)

S
ep

 C
on

v
(1

28
, 5

,
5)

C
on

v
(1

28
,

3,
 3

)

C
on

v
(9

2,
 3

,
3)

H
o

u
r

13
F

itn
es

s:
 0

.9
34

7

C
on

v
(3

2,
 7

, 7
)

C
on

v
(1

56
,

5,
 5

)

C
on

v
(3

2,
 7

,
7)

C
on

v
(1

28
,

3,
 3

)

+

S
ep

 C
on

v
(1

28
,

3,
 3

)
S

ep
 C

on
v

(1
28

,
5,

 5
)

C
on

v
(1

28
,

3,
 3

)

C
on

v
(9

2,
 3

,
3)

H
o

u
r

19
F

itn
es

s:
 0

.9
32

3

C
on

v
(1

56
,

5,
 5

)

C
on

v
(1

28
,

3,
 3

)

+

S
ep

 C
on

v
(1

28
,

3,
 3

)

S
ep

 C
on

v
(1

28
,

3,
 3

)

+

C
on

v
(1

6,
 7

, 7
)

C
on

v
(1

6,
 7

, 7
)

C
on

v
(3

2,
 7

,
7)

S
ep

 C
on

v
(1

28
, 5

,
5)

C
on

v
(1

28
,

3,
 3

)

C
on

v
(9

2,
 3

, 3
)

H
o

u
r

21
F

itn
es

s:
 0

.9
35

7

C
on

v
(1

56
,

5,
 5

)

C
on

v
(1

28
,

3,
 3

)

+

S
ep

 C
on

v
(1

28
,

3,
 3

)

S
ep

 C
on

v
(1

28
, 3

,
3)

+

C
on

v
(1

6,
 7

,
7)

C
on

v
(1

6,
 7

,
7)

C
on

v
(1

28
,

3,
 3

)

C
on

v
(1

28
,

3,
 3

)

C
on

v
(1

6,
 7

, 7
)

C
on

v
(1

6,
 7

,
7)

F
ig

.6
:

E
vo

lu
ti

on
ar

y
p

ro
ce

ss
of

th
e

b
es

t
n

eu
ro

-c
el

l
fo

u
n
d

d
u

ri
n

g
o
n

e
ru

n
o
n

C
IF

A
R

-1
0
.

S
o
m

e
in

te
rm

ed
ia

te
st

a
te

s
a
re

sk
ip

p
ed

.

14 Martin Wistuba

Conv (64, 3, 3)
Cell Cell

Max Pooling
Cell

Conv (128, 3, 3) FC (128) Softmax
Cell

Max Pooling
Cell Cell

Fig. 7: Expanded template for the neuro-cell transferability experiment.

by searching for the best architecture for CIFAR-100 but therefore no new search
is required for the new data set.

5.4 Random Search

In this section we will discuss the importance of our evolutionary approach by
comparing it to two random network searches.

Comparison to Random Individual Selection Random individual selection
is in fact not really a valid comparison because it is actually a special case of
our proposed method with a tournament size of one. For this experiment, we
select a random individual from the population instead of selecting the best
individual of a random population subset. With this small change, we run our
algorithm five times for twelve hours. We report a mean classification error of
4.55% with standard deviation 0.34%. Note, that the best of these runs achieved
an error of 4.04% which is still worse than the mean error achieved when using
larger tournament sizes. Thus, we can confirm that tournament selection provides
better results than random selection.

Comparison to Random Mutations We conduct another experiment where
we apply k mutations to the initial individual. In practice, k is dependent on the
data set and not known and thus, this method is actually not really applicable.
However, for this experiment, we set k to the number of mutations used for the
best cell in our 12 hours experiment. In comparison to the random individual
selection, this method further increases the error to 4.73% on average over five
repetitions with a standard deviation of 0.63%.

6 Conclusions

We proposed a novel approach which optimizes the neural network architecture
based on an evolutionary algorithm. It requires as an input a simple template
containing neuro-cells, replicated architecture patterns, and automatically keeps
improving this initial architecture. The mutations of our evolutionary algorithm
are based on function-preserving operations which change the network’s archi-
tecture without changing its prediction. This enables shorter training times in
comparison to a random initialization. In comparison to the state-of-the-art, we
report very competitive results and show outstanding results with respect to the

Deep Learning Architecture Search by Neuro-Cell-based Evolution 15

search time. Our approach is up to 50,000 times faster than some of the competi-
tor methods with an error rate at most 0.6% higher than the best competitor
on CIFAR-10.

References

1. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures
using reinforcement learning. In: Proceedings of the International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26 (2017)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13, 281–305 (2012)

3. Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Reinforcement learning for archi-
tecture search by network transformation. CoRR abs/1707.04873 (2017)

4. Chen, T., Goodfellow, I.J., Shlens, J.: Net2Net: Accelerating learning via knowl-
edge transfer. In: Proceedings of the International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4 (2016)

5. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. CoRR
abs/1610.02357 (2016)

6. Devries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. CoRR abs/1708.04552 (2017)

7. Diaz, G.I., Fokoue-Nkoutche, A., Nannicini, G., Samulowitz, H.: An effective al-
gorithm for hyperparameter optimization of neural networks. IBM Journal of Re-
search and Development 61(4), 9 (2017)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 770–778 (2016)

9. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected con-
volutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. pp. 2261–2269
(2017)

10. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with
stochastic depth. In: Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV. pp.
646–661 (2016)

11. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015. pp. 448–456
(2015)

12. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.
(2009)

13. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: Ultra-deep neural networks
without residuals. In: Proceedings of the International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26 (2017)

14. Liu, C., Zoph, B., Shlens, J., Hua, W., Li, L., Fei-Fei, L., Yuille, A.L., Huang,
J., Murphy, K.: Progressive neural architecture search. CoRR abs/1712.00559
(2017)

15. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical
representations for efficient architecture search. In: Proceedings of the International
Conference on Learning Representations, ICLR 2018, Vancouver, Canada (2018)

16 Martin Wistuba

16. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts.
In: Proceedings of the International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26 (2017)

17. Miikkulainen, R., Liang, J.Z., Meyerson, E., Rawal, A., Fink, D., Francon, O.,
Raju, B., Shahrzad, H., Navruzyan, A., Duffy, N., Hodjat, B.: Evolving deep neural
networks. CoRR abs/1703.00548 (2017)

18. Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic
algorithms. In: Proceedings of the 3rd International Conference on Genetic Algo-
rithms, George Mason University, Fairfax, Virginia, USA, June 1989. pp. 379–384
(1989)

19. Negrinho, R., Gordon, G.J.: Deeparchitect: Automatically designing and training
deep architectures. CoRR abs/1704.08792 (2017)

20. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Ku-
rakin, A.: Large-scale evolution of image classifiers. In: Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017. pp. 2902–2911 (2017)

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

22. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing Systems 2012. Proceed-
ings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States.
pp. 2960–2968 (2012)

23. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (Jun 2002)

24. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to de-
signing convolutional neural network architectures. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, July
15-19, 2017. pp. 497–504 (2017)

25. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015. pp. 1–9 (2015)

26. Wistuba, M.: Bayesian optimization combined with successive halving for neu-
ral network architecture optimization. In: Proceedings of AutoML@PKDD/ECML
2017, Skopje, Macedonia, September 22, 2017. pp. 2–11 (2017)

27. Wistuba, M.: Finding competitive network architectures within a day using UCT.
CoRR abs/1712.07420 (2017)

28. Yu, G., Smith, D.K., Zhu, H., Guan, Y., Lam, T.T.Y.: ggtree: an R package for
visualization and annotation of phylogenetic trees with their covariates and other
associated data. Methods Ecol. Evol. 8(1), 28–36 (Jul 2016)

29. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the
British Machine Vision Conference 2016, BMVC 2016, York, UK, September 19-
22, 2016 (2016)

30. Zhong, Z., Yan, J., Liu, C.: Practical network blocks design with q-learning. CoRR
abs/1708.05552 (2017)

31. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
Proceedings of the International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26 (2017)

32. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. CoRR abs/1707.07012 (2017)

