
Using jQuery 
jQuery can be used just like any other JavaScript library i.e., by adding it using the HTML script 
tag prior to writing code that requires jQuery. For example: 

<script src="jsquery.js"> 
<script> 
// Enter code leveraging jQuery here. 
</script> 

CORE 

jQuery Object 

● jQuery() - Returns a collection of matched elements either created by passing an HTML 
string or found in the DOM based on passed argument(s). It has the following variations: 

● jQuery(selector [, 
context])/jQuery(element)/jQuery(elementArray)/jQuery(object)/jQuery(selection)/j
Query() 

● jQuery(html [,ownerDocument])/jQuery(html, attributes) 
● jQuery(callback) 
● jQuery.noConflict([removeAll]) - Returns jQuery’s control of the $ variable back to 

some other JS library. For example: 

<script src="someJSlibrary.js"></script> 
<script src="jquery.js"></script> 
<script> 
jQuery.noConflict(); 
// Enter code leveraging $ of someJSlibrary. 
</script> 

● jQuery.holdReady(hold) - Allows the caller to delay jQuery’s ready event. Typically 
used by dynamic script loaders for loading additional JS, such as jQuery plugins, prior to 
the occurrence of the ready event. 

● jQuery.when(deferred) - Offers a way to execute callback functions based on none, 
one or more Tenable objects. Returns a resolved Promise when no arguments are 
passed. 

Deferred Object 

● jQuery.Deferred([beforeStart]) - Returns/Creates a chainable utility object (deferred 
object) in the pending state. It is a factory function. 

https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Futures_and_promises


● deferred.always(alwaysCallbacks [, alwaysCallbacks]) - Calls handlers when the 
Deferred object is resolved or rejected. Other methods of the Deferred object can be 
chained to this method. Callbacks are executed in the same order as they were added. 

● deferred.done(done callback [, doneCallbacks]) - Calls handlers when the Deferred 
object is resolved. Accepts one or many arguments. These can either be a single 
function or an array of functions. 

● deferred.fail(failCallbacks [, failCallbacks]) - Calls handlers when the Deferred object 
is rejected. Accepts one or many arguments, which can be either a single function or an 
array of functions. Executes callbacks in the same order as they are added. 

● deferred.notify(args) - Calls the progressCallbacks added by deferred.then or 
deferred.progress on a Deferred object with the given arguments. The arguments are 
passed to each progressCallback. 

● deferred.notifyWith(context [, args]) - Calls the progressCallbacks on a Deferred 
object with the given arguments and context. 

● [Deprecated in jQuery 1.8] deferred.pipe([doneFilter][, failFilter]) - Utility method for 
filtering and/or chaining Deferred objects. Returns a new promise that filters the status 
and values of a Deferred object through a function. 

● deferred.progress(progressCallbacks [, progressCallbacks]) - Calls handlers when 
the Deferred object generates progress notifications. Other methods of the Deferred 
object can be chained to this method. 

● deferred.promise([target]) - Allows an asynchronous function to prevent other code 
from interfering with the progress or status of its internal request. When a target is 
provided, it attaches the methods onto it and then returns this object rather than creating 
a new one. 

● deferred.reject([args]) - Rejects a Deferred object and calls any failCallbacks with the 
given arguments. 

● deferred.rejectWith([, args]) - Rejects a Deferred object and calls any failCallbacks 
with the given context and arguments. 

● deferred.resolve([args]) - Resolves a Deferred object and calls any doneCallbacks with 
the given arguments. 

● deferred.resolveWith(context[, args]) - Resolves a Deferred object and calls any 
doneCallbacks with the given arguments and context. 

● deferred.state() - Returns a string that represents the present state of a Deferred object. 
In other words, it determines the current state of a Deferred object. A Deferred object 
can be in one of the following three states: 

● Pending - Not in a completed state. 
● Resolved - Either deferred.resolve() or deferred.resolveWith() has been called, and the 

doneCallbacks have been called or are about to be called. 
● Rejected - Either deferred.reject() or deferred.rejectWith() has been called, and the 

failCallbacks have been called or are about to be called. 
● deferred.then(doneFilter[, failFilter][, progressFilter]) - Calls handlers when the 

Deferred object is resolved, rejected, or pending. Returns a new promise that can filter 
the status and values of the Deferred object through a function. Allows chaining other 
methods of the Promise object to it. 



● .promise([type][, target]) - Returns a dynamically generated Promise object that is 
resolved when all actions of a certain type bound to the collection, queue or not, have 
ended. 

Utilities 

● jQuery.contains(container, contained) - Checks whether a DOM element is a 
descendant of some other DOM element or not. Supports only element nodes. The first 
argument can’t be a jQuery object or plain JS object, it must be a DOM element. For 
example: 

$.contains(document.documentElement, document.Body); // Returns true 
$.contains(document.Body, document.documentElement); // Returns false 

● jQuery.each(array/object, callback) - Seamlessly iterates over both arrays and objects. 
While arrays and array-like objects with a length property are iterated by numeric index, 
beginning from 0 and ending at length - 1, other objects are iterated via their named 
properties. Returns the first argument, i.e., the object that is iterated. 

● jQuery.extend(target, [, object1], [, object2],.…, [, objectN]) - Merge the contents of 
two or more objects together into the target, first object. Ignores null or undefined 
arguments. If only one argument is supplied, i.e., the target argument is omitted, the 
jQuery object is assumed to be the target object. This helps in adding new functions to 
the jQuery namespace. 

● jQuery.globalEval(code[, options]) - Executes the mentioned JS code within the global 
context. Typically used for loading external scripts dynamically. 

● jQuery.grep(array, function, [, invert]) - Finds members of an array that satisfy a filter 
function. The original array remains unaffected. Two arguments are passed to the filter 
function, the current array item and its index. 

● jQuery.inArray(value, array, [, fromIndex]) - Searches and returns the index of a 
specified value in an array. Returns -1 if not found. 

● jQuery.isArray(object) - Checks/Tests whether the object is an array. 
● jQuery.isEmptyObject(object) - Checks/Tests whether the object is empty i.e. contains 

no enumerable properties. For example: 

jQuery.isEmptyObject({}); // Returns true 
jQuery.isEmptyObject({ not: "empty" }); // Returns false 

● [Deprecated in jQuery 3.3] jQuery.isFunction(value) - Returns true if the argument 
passed is a callable function. False otherwise. 

● jQuery.isNumeric(value) - Returns true if the argument passed is of type number or 
string. False otherwise. 

● jQuery.isPlainObject(object) - Checks whether the provided object is a plain object or 
not. 

● [Deprecated in jQuery 3.3] jQuery.isWindow(object) - Returns true if the passed 
argument is a window. 



● jQuery.isXMLDoc(node) - Checks whether a DOM node is an XML document or within 
an XML document. 

● jQuery.makeArray(object) - Converts an array-like object into a true JS array. Post 
conversion, any special features the object had will no longer be available. 

● jQuery.map(array/object, callback) - Applies a function to each element of an array or 
object and maps the processed elements in a new array. 

● jQuery.merge(first, second) - Returns an array containing all elements from the two 
arrays. The order of the elements is preserved and items from the second array are 
appended to the first array. For example, 

jQuery.merge ([0, 1, 2 , 3], [4, 5, 6, 7]) // Returns [0, 1, 2, 3, 4, 5, 6, 7] 

● jQuery.noop() - An empty function that is used when there is a need to pass a function 
that does nothing. Useful for jQuery plugin authors for offering optional callbacks. The 
function executes when no callback is given. 

● jQuery.now() - Returns a number that represents the current time. Similar to the (new 
Date).getTime() expression. 

● jQuery.parseHTML(data[, context][, keepScripts]) - Uses native methods to convert 
(parse) a given string into an array of DOM nodes. 

● [Deprecated in jQuery 3.0] jQuery.parseJSON() - Returns an equivalent JavaScript 
value from a well-formed JSON string. A JS exception is thrown if a malformed JSON 
string is passed. 

● jQuery.parseXML(data) - Parses/Converts a string into an XML document using the 
native parsing function of the browser. The created XML document can then be passed 
to jQuery for creating a typical jQuery object, which can be manipulated and traversed. 

● jQuery.proxy(function, context) - Returns a function that will always have a particular 
context.. Useful for attaching event handlers to an element where the context points 
back to a different object. 

● [Deprecated in jQuery 1.9] jQuery.support - A set of properties representing the 
presence of different browser features or bugs. Intended for internal use in jQuery. 

● jQuery.trim(string) - Removes the whitespace (newlines, spaces, and tabs) from the 
beginning and end of the supplied string. Whitespace characters present in other than 
the start and end of the string are preserved. 

● jQuery.type(object) - Determines the internal JavaScript [[Class]] of the passed object. 
● [Deprecated in jQuery 3.0] jQuery.unique(array) - Searches through an array of DOM 

elements, performs sorting, and removes duplicate elements. Unusable for arrays of 
numbers or strings. 

● jQuery.uniqueSort(array) - Replacement for jQuery.unique() method from jQuery 3.0. 

DOM Element Methods 

● .get(index) - Returns an element/DOM node matched by the index. Returns undefined if 
the value of the index is out of bounds. If no index is supplied, the method returns an 
array of all the elements. 

https://hackr.io/blog/javascript-map


● .index(element/selector) - Takes a DOM node and returns an index. Returns an integer 
value depending on three different cases: 

● When no argument is passed - Returns an integer representing the position of the first 
element within the jQuery object w.r.t. its sibling elements. 

● When the method is called on a collection of elements, and a DOM element or 
jQuery object is passed - Returns an integer representing the position of the passed 
element w.r.t to the original collection. 

● When a selector string is passed - Returns an integer value indicating the position of 
the first element within the jQuery object w.r.t. The elements matched by the selector 
string. Returns -1 when an element is not found. 

● .toArray() - Returns an array of all the elements in the jQuery set. 

Internals 

● .jquery - A string containing the version number of jQuery. The property is assigned to 
the jQuery prototype i.e. $.fn. For example, 

alert ("The jQuery version you’re using is:" + $.fn.jquery); // Returns the version number of 
jQuery you’re running. 

● jQuery.error(message) - Accepts a string and throws an exception containing the 
same. They are primarily used by plugin developers for overriding the method for 
providing a better/more informative display for the error messages. 

● .length - Returns an integer value representing the number of elements in the jQuery 
object. Similar to the .size() method. 

● .pushStack(elements)/.pushStack(elements, name, arguments) - Adds an array of 
DOM elements onto the jQuery stack. 

Callbacks Object 

● jQuery.Callbacks(flags) - Used internally for providing the base functionality to the 
jQuery $.ajax() and $.Deferred() components. It is a multi-purpose method offering a 
powerful way of managing callback lists. Provides support for several methods, such as 
callbacks.add(), callbacks.disable(), and callbacks.remove(). 
The optional flags argument determines the behaviour of the returned callback list. 
Supported flags are: 

● memory - Keeps track of the previous values and calls any callback added after the list 
has been fired straight away with the latest memorized values. 

● once - Ensures that the callback list is fired only once. 
● stopOnFalse - Interrupts callings upon coming across a callback returns false. 
● unique - Ensures that a callback is added only once. 
● callbacks.add(callbacks) - Adds single or multiple callbacks to a callback list. 
● callbacks.disable() - Disables a callback list from performing further. 
● callbacks.disabled() - Checks whether the callback list is disabled. 
● callbacks.empty() - Removes all the callbacks from a callback list. 



● callbacks.fire(arguments) - Calls/Invokes all the callbacks from a callback list with the 
passed arguments. 

● callbacks.fired() - Checks whether the callbacks from a callback list have been called at 
least once. 

● callbacks.fireWith([context][, arguments]) - Fires all callbacks from a callback list with 
the passed arguments and context. 

● callbacks.has([callback]) - Checks if the callback list has any callbacks attached. If a 
callback is passed as an argument, then determines whether it is in the callback list or 
not. 

● callbacks.lock() - Locks a callback list in its current state. Additional functions can be 
added and fired after the callback list is locked, provided the Callbacks object is created 
with the memory flag as its argument. 

● callbacks.locked() - Determines the lock-state of a callback list. 
● callbacks.remove(callbacks) - Removes one or more or all callbacks from a callback 

list. 

EFFECTS 

It is possible to globally turn off all jQuery effects by setting: 

jQuery.fx.off = true 

Basics 

● .hide()/.hide([duration][, complete])/.hide(options)/.hide(duration[, easing][, 
complete]) - Hides the matching element(s). 

● .show()/.show([duration][, complete])/.show(options)/.show(duration[, easing][, 
complete]) - Displays the matching element(s). 

● .toggle()/.toggle([duration][complete])/.toggle(options)/.toggle(duration[, easing][, 
complete])/.toggle(display) - Toggles the visibility of matching elements. 

Custom 

● .animate(properties[, duration][, easing][, complete])/.animate(properties, options) 
- Creates animation effects on any numeric CSS property. 

● .clearQueue(queueName) - Removes all functions pending execution from the passed 
queue. Removes remaining functions from the fx, the standard effects queue, when 
called without specifying a queue, i.e., no argument specified. 

● .delay(duration[, queueName]) - Delays, with a timer, the pending functions in the 
specified queue. 

● .dequeue(queueName) - Removes the next function from the specified queue and then 
executes the same. 

● jQuery.dequeue(element[, queueName]) - Same as that of .dequeue(). 
Note: Low-level method. Using .dequeue() preferred. 



● .finish(queue) - Stops the ongoing (currently-running) animation, removes all queued 
animations, and completes all animations by setting their CSS properties to their target 
values. If a string is passed, then only the animations represented by the same are 
stopped from the queue. 
Note: The .finish() method is the same as that of the .stop(true, true) with the exception 
that the former also results in setting CSS properties of all the queued animations to their 
end values. 

● [Deprecated in jQuery 3.0] jQuery.fx.interval - A property for adjusting the rate, in 
milliseconds, at which animations are fired. The default is 13 ms. 
Note: No effect in browser supporting the requestAnimationFrame method. 

● jQuery.fx.off - When set to true, this property disables all animations, i.e., instead of 
displaying an effect, all animation methods set their elements to their final state. Set the 
property false to turn on animations. 

● jQuery.speed([duration][, settings])/jQuery.speed([duration][, easing][, 
complete])/jQuery.speed(settings) - Allows defining properties usable in a custom 
animation by creating an object containing the same, instantly usable in the definition of 
custom animations. An alternative to implementing logic dealing with default values and 
optional parameters for defining animation effects. 

● .queue([queueName]) - DIsplays the queue of functions pending execution on the 
matched elements. 

● .queue([queueName], newQueue)/.queue([queueName], callback) - Manipulates the 
queue of functions pending execution, once for every matched element. 

● jQuery.queue(element[, queueName]) - Same as that of .queue([queueName]) 
method. 
Note: Low-level method. .queue([queueName]) recommended. 

● jQuery.queue(element, queueName, newQueue)/jQuery.queue(element, 
queueName, callback) - Same as that of .queue() method for manipulating. 
Note: Low-level method. .queue() recommended. 

● .stop([clearQueue][, jumpToEnd])/.stop([queue][, clearQueue][, jumpToEnd]) - 
Stops ongoing animation for the matched elements. 

Fading 

● .fadeIn([duration][, complete])/.fadeIn(options)/.fadeIn([duration][, easing][, 
complete]) - Displays matched element(s) by fading them completely opaque. 

● .fadeOut([duration][, complete])/.fadeOut(options)/.fadeOut([duration][, easing][, 
complete]) - Hides matched element(s) by fading them to transparent. 

● .fadeTo(duration, opacity [, complete])/.fadeTo(duration, opacity [, easing][, 
complete]) - Adjusts opacity of matched element(s). 

● .fadeToggle([duration][, easing][, complete])/.fadeToggle(options) - Displays or 
hides matched elements by animating their opacity. 

Sliding 



● .slideDown([duration][, complete])/.slideDown(options)/.slideDown([duration][, 
easing][, complete]) - Displays the matched elements with a sliding motion. 

● .slideToggle([duration][, complete])/.slideToggle(options)/.slideToggle([duration][, 
easing][, complete]) - Displays or hides the matched elements with a sliding motion. 

● .slideUp([duration][, complete])/.slideUp(options)/.slideUp([duration][, easing][, 
complete]) - Hides the matched elements with a sliding motion. 

EVENTS 

Browser Events 

● .resize(handler)/.resize([eventData], handler)/.resize() - Triggers the resize JS event 
on an element. Can also be used for binding an event handler to the resize event. 

● .scroll(handler)/.scroll([eventData], handler)/.scroll() - Triggers the scroll JS event on 
an element. Also used for binding an event handler to the scroll event. 

Document Loading 

● .ready(handler) - Specifies a function to be executed once the DOM is fully loaded. It 
offers a way to run the JS code as soon as the web page’s DOM becomes safe to 
manipulate. 

Event Handler Attachment 

● [Deprecated in jQuery 3.0] .bind(eventType [, eventData], handler)/.bind(eventType 
[, eventData] [,preventBubble])/.bind(events) - Attaches a handler to one or more 
events for the elements. 

● [Deprecated in jQuery 3.0] .delegate(selector, eventType, 
handler)/.delegat(selector, eventType, eventData, handler)/.delegate(selector, 
events) - Attaches a handler to a single or several events for all matching elements, 
instantly or some time later on the basis of a specific set of root elements. 

● .off()/.off(event)/.off(events [, selector])/.off(events [, selector][handler]) - Removes 
specified event handler(s) attached with .on(). Removes all handlers attached to the 
elements when no arguments are specified. 

● .on(events [, selector][, data], handler)/.on(events [, selector][, data]) - Attaches one 
or more event handlers for a single or several events to the selected elements. 

● .one(events [, data], handler)/.on(events [, selector][, data], handler)/.one(events [, 
selector][, data]) - Almost identical to .on() method with the exception that the handler 
for an element and event type is unbound after the first invocation. 

● .trigger(eventType [, extraParameters])/.trigger(event [, extraParameters]) - 
Executes all event handlers and behaviors attached to matched elements for an event. 
The order of the execution of event handlers is retained, i.e., the event handlers are 
executed in the same order as they were to be executed if triggered naturally by the 
user. 



● .triggerHandler(eventType [, extraParameters])/.triggerHandler(event [, 
extraParameters]) - Executes all event handlers attached to the matching element for 
an event. 

● [Deprecated in jQuery 3.0] .unbind()/.unbind(event)/.unbind(eventType, 
false)/.unbind(eventType, [, handler]) - Removes a event handler(s) from the matched 
elements. 

● [Deprecated in jQuery 3.0] 
.undelegate()/.undelegate(namespace)/.undelegate(selector, 
eventType)/.undelegate(selector, eventType, handler)/.undelegate(selector, 
events) - Removes event handlers bound using .delegate(). 

Form Events 

● .blur()/.blur(handler)/.blur([eventData], handler) - Binds or triggers an event handler to 
the blur JS event on an element. 

● .change()/.change(handler)/.change([eventData], handler) - Binds or triggers an 
event handler to the change JS event on an element. 

● .focus()/.focus(handler)/.focus([eventData], handler) - Binds or triggers an event 
handler to the focus JS event on an element. 

● .focusin()/.focusin(handler)/.focusin([eventData], handler) - Binds or triggers an 
event handler to the focusin JS event on an element. 

● .focusout()/.focusout(handler)/.focusout([eventData], handler) - Binds or triggers an 
event handler to the focusout JS event on an element. 

● .select()/.select(handler)/.select([eventData], handler) - Binds or triggers an event 
handler to the select JS event on an element. 

● .submit()/.submit(handler)/.submit([eventData], handler) - Binds or triggers an event 
to the submit JS event on an element. 

Keyboard Events 

● .keydown()/.keydown(handler)/.keydown([eventData], handler) - Binds or triggers an 
event handler to the keydown JS event on an element. 

● .keypress()/.keypress(handler)/.keypress([eventData], handler) - Binds or triggers an 
event handler to the keypress JS event on an element. 

● .keyup()/.keyup(handler)/.keyup([eventData], handler) - Binds or triggers an event 
handler to the keyup JS event on an element. 

Mouse Events 

● .click()/.click(handler)/.click([eventData], handler) - Binds or triggers an event handler 
to the click JS event on an element. 

● .contextmenu()/.contextmenu(handler)/.contextmenu([eventData], handler) - Binds 
or triggers an event handler to the contextmenu JS event on an element. 

● .dblclick()/.dblclick(handler)/.dblclick([eventData], handler) - Binds or triggers an 
event handler to the dblclick JS event on an element. 



● .hover(handlerIn, handlerOut) - Binds two event handlers to the matched elements that 
execute when the mouse pointer enters and leaves the elements. For binding one event 
handler, use .hover(handlerInOut). 

● .mousedown()/.mousedown(handler)/.mousedown([eventData], handler) - Binds or 
triggers an event handler to the mousedown JS event on an element. 

● .mouseenter()/.mouseenter(handler)/.mouseenter([eventData], handler) - Binds or 
triggers an event handler when the mouse enters an element. 

● .mouseleave()/.mouseleave(handler)/.mouseleave([eventData], handler) - Binds or 
triggers an event handler when the mouse leaves an element. 

● .mousemove()/.mousemove(handler)/.mousemove([eventData], handler) - Binds or 
triggers an event handler to the mousemove JS event on an element. 

● .mouseout()/.mouseout(handler)/.mouseout([eventData], handler) - Binds or triggers 
an event handler to the mouseout JS event on an element. 

● .mouseover()/.mouseover(handler)/.mouseover([eventData], handler) - Binds or 
triggers an event handler to the mouseover JS event on an element. 

● .mouseup()/.mouseup(handler)./mouseup([eventData], handler) - Binds or triggers 
an event handler to the mouseup JS event on an element. 

Event Object 

● event.currentTarget - The present DOM element within the event bubbling phase. 
● event.delegateTarget - The element where the presently-called jQuery event handler 

was attached. 
● event.data - An optional object of data passed to an event method when the present 

executing handler is bound. 
● event.isDefaultPrevented() - Returns a Boolean value representing whether the 

event.preventDefault() method was called or not. 
● event.isImmediatePropagationStopped() - Checks whether the 

event.stopImmediatePropagation() method was called or not. 
● event.isPropagationStopped() - Checks whether the event.stopPropagation() method 

was called or not. 
● event.metakey - Checks whether the META key was fired during the time the event was 

fired. 
 Note: The META key for Windows-based keyboards is the Windows key and Command 
key for Mac-based keyboards. 
 

● event.namespace - Determines the event namespace used when the specified event 
was triggered. Used primarily by jQuery plugin authors requiring handling tasks 
differently on the basis of the event namespace used. 

● event.pageX - Displays the mouse position relative to the left edge of the document. 
● event.pageY - Displays the mouse position relative to the top edge of the document. 
● event.preventDefault() - Prevents the default action of the specified event. 
● event.relatedTarget - Indicates: 

-> The element being entered for mouseout 
-> The element exiting for mouseover. 



● event.result - Returns the last value returned by an event handler that was triggered by 
the specified event. 

● event.stopImmediatePropagation() - Prevents execution of the rest of the event 
handlers and prevents the specified event from bubbling up the DOM tree. 

● event.stopPropagation() - Prevents the specified event from bubbling up the DOM tree 
● event.target - Returns the DOM element that initiated the specified event. 
● event.timeStamp - Returns a number that represents the difference (in milliseconds) 

between the time the browser created the specified event and January 1, 1970. 
● event.type - Describes the nature of the specified event. 
● event.which - Indicates the key or button that was pressed for key or mouse events, 

respectively. 

SELECTORS 

Basics 

● jQuery("*") - Selects all elements. Known as the All or Universal Selector. 
Note: Extremely slow, unless used by itself. 

● jQuery(".class") - Selects all the elements of the specified class. Known as the Class 
Selector. 

● jQuery("element") - Selects all the elements with the specified tag name. Known as the 
Element Selector. 

● jQuery("#id") - Selects an element with the passed id attribute. Known as the ID 
Selector. 

● jQuery("selector1, selector2,...,selectorN) - Selects the combined results of all the 
specified selectors. Known as the Multiple Selector. 

Hierarchy 

● jQuery("parent>child") - Selects all the direct child elements specified by “child” of 
elements specified by “parent”. Known as the Child Selector. 

● jQuery("ancestor-descendant") - Selects all the descendants of the specified ancestor. 
Known as the Descendant Selector. 

● jQuery("prev + next") - Selects all the next elements matching the next selector that 
are immediately preceded by a sibling prev selector. Known as the Next Adjacent 
Selector. 
 Note: Elements on either side of the combinator must have the same parent. 
 

● jQuery("prev ~ siblings") - Selects all sibling elements that follow after the prev 
selector, have the same parent, and match the filtering sibling's selector—known as the 
Next Siblings Selector. 
 Note: Elements on either side of the combinator must have the same parent. 
 

Basic Filters 



● jQuery(": animated") - Selects all the in-progress elements of animation during the time 
the selector is run, known as the Animated Selector. 
 Note: The filter throws an error when used without the effects module. 
 

● [Deprecated in jQuery 3.4] jQuery(":eq(index)")/jQuery(":eq(-index)") - Selects the 
element at specified index within the matching set. 

● [Deprecated in jQuery 3.4] jQuery(":even") - Selects even index elements. 
● [Deprecated in jQuery 3.4] jQuery(":first") - Selects the first matched DOM element. 
● [Deprecated in jQuery 3.4] jQuery(":gt(index)")/jQuery(":gt(-index)") - Selects all the 

elements at an index greater than the specified index within the matching set. 
● jQuery(":header") - Selects all the header elements. 
● jQuery(":lang(language)") - Selects all the elements of the specified language. 
● [Deprecated in jQuery 3.4] jQuery(":last") - Selects the last matching element. 
● [Deprecated in jQuery 3.4] jQuery(":lt(index)")/jQuery(":lt(-index)") - Selects all the 

elements at an index less than the specified index within the matching set. 
● jQuery(":not(selector)") - Selects all the elements that don’t match the specified 

selector. 
● [Deprecated in jQuery 3.4] jQuery(":odd") - Selects odd index elements. 
● jQuery(":root") - Selects the root element of the document. 
● jQuery(":target") - Selects the target element based on the fragment identifier of the 

document’s URI. 

Content Filters 

● jQuery(":contains(text)") - Selects all the elements containing the specified text. 
● jQuery(":empty") - Selects all the elements having no children, including text nodes. 
● jQuery (":has(selector)") - Selects all the elements containing at least one element 

matching the specified selector. 
● jQuery(": parent") - Selects all the elements having a minimum of one child node, which 

can be either an element or text. 

Visibility Filters 

● jQuery(":hidden") - Selects all the hidden elements. 
● jQuery(":visible") - Selects all the visible elements. 

Attribute 

● jQuery("[attribute|=' value']") - Selects all the elements that have the specified attribute 
with a value equal to the specified string or starting with the same followed by a -. 

● jQuery("[attribute*='value']") - Selects all the elements that have the specified attribute 
with a value containing the specified substring. 

● jQuery("[name~='value']") - Selects elements having the specified attribute with a 
value containing the specified word, delimited by spaces. 



● jQuery("[name$='value']") - Selects elements having the specified attribute with a 
value ending exactly with the specified string. Makes case-sensitive comparison. 

● jQuery("[name='value']") - Selects elements having the specified attribute with a value 
exactly equal to the specified value. 

● jQuery("[name!=' value']") - Selects elements that don’t have the specified attribute as 
well as those that have the specified attribute, not the specified value. 

● jQuery("[name^='value']") - Selects elements having the specified attribute with a 
value beginning exactly with the specified string. 

● jQuery("[name]") - Selects elements having the specified attribute, regardless of the 
value they are having. 

● jQuery("[attributeFilter1][attributeFilter2]...[attributeFilterN]") - Selects elements that 
match all the specified attributed filters. Known as Multiple Attribute Selector. 

Child Filters 

● jQuery(":first-child") - Selects all the elements that are the first child of their parent. 
● jQuery(":first-of-type") - Selects all the elements that are the first among all the siblings 

of the same element name. 
● jQuery(":last-child") - Selects all the elements that are the last child of their parent. 
● jQuery(":last-of-type") - Selects all the elements that are the last among all the siblings 

of the same element name. 
● jQuery(":nth-child(index/even/odd/equation)") - Selects all the elements that are the 

nth-child of their parent. 
● jQuery(":nth-last-child(index/even/odd/equation)") - Selects all the elements that are 

the nth-child of their parent, starting from the last element to the first element. 
● jQuery(":nth-of-type(index/even/odd/equation)") -Selects all the elements that are the 

nth-child of their parent with respect to siblings with the same element name. 
● jQuery(":nth-last-of-type(index/even/odd/equation)") - Selects all the elements that 

are the nth-child of their parent with respect to siblings with the same element name. It 
starts counting towards the last element to the first element. 

● jQuery(":only-child") - Selects all the elements that are the only child of their parent 
element. 

● jQuery(":only-of-type") - Selects all the elements that have no siblings with the same 
element name. 
 Note: Matches nothing if the parent has other child elements with the same element 
name. 
 

Forms 

● jQuery(":button") - Selects all the button elements as well as elements of the type 
button. 

● jQuery(":checkbox") - Selects all the elements of the type checkbox. 
● jQuery(":checked") - Selects all the elements that are checked (or selected). 
● jQuery(":disabled") - Selects all the elements that are disabled. 



● jQuery(":enabled") - Selects all the elements that are enabled. 
● jQuery(":focus") - Selects an element if it is currently focused. 
● jQuery(":file") - Selects all the elements of the type file. 
● jQuery(":image") - Selects all the elements of the type image. 
● jQuery(":input") - Selects all the button, input, select, and textarea elements. 
● jQuery(":password") - Selects all the elements of the type password. 
● jQuery(":radio") - Selects all the elements of the type radio. 
● jQuery(":reset") - Selects all the elements of the type reset. 
● jQuery(":selected") - Selects all the elements that are selected. 

That completes part - I of jQuery Cheat Sheet. We explained Core, Effects, Events, and 
Selectors here. In the second part, we’ll focus on AJAX, Attribute/CSS, Manipulation, and 
Traversing in jQuery. 

 


