Operating Systems Cheat Sheet by calkk via cheatography.com/20194/cs/3033/

Comparisons

Forwarding vs Routing

Forwarding: data plane - Directing a data packet to an outgoing link individual router using a forwarding table **Routing**: control plane computing paths the packets will follow - Routers talking amongst themselves - individual router creating a forwarding table.

Link State vs Distance Vector:

- DV error propogates, LS only computes its own table. - DV:

convertence times varies (count-to-infinity problem), LS: $O(n^2)$ algo requires O(nE) messages

Flow control vs Congestion control

Flow control: keeping one fast sender from overwhelming a slow receiver **Congestion control** : keep a set of senders from overloading the network

Definitions

Connectionless: No handshaking between sending and recieving adapter.

Unreliable: receiving adapter doesnt send ACKs or NACKs; Packets passed to network later can have gaps; Gaps will be filled if application using TCP

Carrier sense: wait for	ait for Channel idle: start transmitting; Channel Busy:	
link to be idle	wait until idle	
Collision detection:	No collision: transmission is complete;	
listen while	Collision: abort transmission and send jam	
transmitting	signal	

Path-vector Routing

-Advertise entire path

- -Distance vector: send distance metric per dest d
- -Path vector: send the entire path for each dest d

BGP path selection

Highest Local Preference	Enforce relationships E.g. prefer customer routes over peer routes
Shortest ASPATH Lowest MED i-BGP < e-BGP Lowest IGP cost to BGP egress	traffic engineering
owest router ID	Throw up hands and break ties

BGP uses both policy and shortest path based routing. Route learned from customer preferred over route learned from peer, preferred over route learned fromprovider

Congestion Control

Congestion cntrl is preventing a set of senders from overwhelming the network, flow cntrl is preventing one fast sender from overwhelming a slow receiver.		
Congestion strategy	Drop one flow, buffer and send after one is gone, reschedule on flow, ask both to reduce flow	
Congestion Collapse	Increase in net load results in a decrease of useful work - Causes: False trans, undelivered pckts	
Simple Resource Allocation	is FIFO queue, drop tail (incoming) if buf full.	
TCP Congestion Control	feedback based, hosted based, congestion window. Send at rate of slowest component, window = min(congestion, receiver wndw) Increase linearly, but half if there is a loss. (w <- w + w/1 or <- w/2) never below 1 MSS though. Congestion window is rep in BYTES because of MSS. #packets per window : CWND/MSS Inc per ACK : MSS* (MSS/CWND) Sending rate = Congestion Window size / RRT. Exponential fast start, because linear is too slow to start and wasteful starting @ 1 MSS/RRT and 1MSS cwnd.	
Triple dup ACKs	multiplicative decrease. Timeout – start over @ 1MSS.	
Nagel's Algo	buffer small data if less than 1 MSS while waiting for ACK of outgoing packet. Basically sending 1 small packet per RTT. Batching bytes!	
Delayed ACK/Piggy backing	send ACK as part of a data packet from B->A if data generated within wait time of 200 – 500 msec.	

By calkk cheatography.com/calkk/ Published 12th December, 2014. Last updated 12th December, 2014. Page 1 of 4.

Operating Systems Cheat Sheet by calkk via cheatography.com/20194/cs/3033/

4B/5B

Hamming Distance

Interconnecting LANs		
CSMA/CD	carrier sense multiple access w/ collision detection	
Ethernet	is connectionless and unreliable	
Spanning Trees	no loops in topology.(no cycles) Select switch with smallest ID as root. Initially each switch thinks its root and sends msg (X,0,X). add1 to distance from neighbor node from root. (Root, dist to root, self)	
Cut thru switching	start transmitting as soon as possible. Overlapping transmissions (transmit head of packet while still receiving tail)	
Switch over router	PnP, Fast filtering and fwd, cut thru	

Interior Routing Protocols (IGP)

- RIP uses distance vector; updates sent every 30 seconds; no authentication; not used much anymore
- OSPF Link-state updates sent (using flooding) as ad when required; Every router runs Dijkstra's algorithm; Authenticated updates; widely used

Network Layer

Low to high if 0, High to low if 1.

invert on every 1, do nothing if 0.

Different devices switch different things: physical later: electrical signals (repeaters and hubs) link layer: frames (bridges and switches) network layer: packets (routers)

Link Layer / Error Detection / Correction

Manchester Coding

NRZI

By calkk cheatography.com/calkk/ Published 12th December, 2014. Last updated 12th December, 2014. Page 2 of 4.

	code bits 80%
Sentinels	mark start and end of frames from stream of bits. Use a flag 0x7E
Propogation Delay	distance / speed of light, Transm D = message/rate bps
RTT	2 * one way delay (latency)
Latency	Prop + Trans + Queue = Arrival - Departure
Bandwidth-Delay Product	measures data in flight = Bandwidth * latency
Parallel Transmission	latency=M/R + SUM(Prop_i)
Actual end to end latency	SUM(Transp_i + Prop_i + Q_i)
ARQ	detect and retransmit, typically at higher levels (Network +)
FEC (Forward error checking)	correct codes, good for real-time, less retransmissions.
CRC (cyclic redundancy check)	divide n bits of data by $C(x)$, compare to k bits

more efficient than Manchester, map data bits to

Link Layer / Error Detection / Correction (cont)

Internet Topology and Routing			
PoP	physical location access point to internet. Large dense population, part of backbone		
Multihomin g	>= 2 providers, better performance, extra reliability, financial leverage through competition		
AS Prepending	artificially inflate AS path length seen by others to convince some AS's to send traffic another way (Export policy)		
Incremental Protocol	Learn multiple routes, pick one with policy		

d+1 Detect. 2d+1 correction

tells us how much error can safely be tolerated.

Operating Systems Cheat Sheet by calkk via cheatography.com/20194/cs/3033/

Internet Topology and Routing (cont)		Network Security	
iBGP	distributes BGP info within AS, sessions between routers, maps	Goals:	availability, protection, authenticity, data integrity, privacy
	an egress point to out link. BGP incremental updates, maps dest prefix to egress point	SYN Flooding	Make so many sessions it runs out of memory
Causes of BGP	Topol changes, changes in routing policy, BGP session failure, conflicts in protocols in diff AS's	DoS aplenty	Attacker guesses TCP seq# for an existing connection. Attacker can send rst to close cnnctn.
Software	Defined Networking	Bellovin/M ockapetis attack	make target trust attacker using reverse DNS, take control of DNS server that target talks to and find a trusted connection.
Vertically i open inter	ntegrated Closed, proprietary Slow innovation -> horizontal, face, rapid innovation. OS abst.	DNS rebinding	send short ttl for dns query, target requests IP of your domain, but feed IP of private server.
Network OS	has global view of network to make decisions. Control plane is in one place. Distributed sys. Control program operates on top of network OS.	IP Spoofing	expose trusted connection, predict Seq # from SYN and predict port => guess state. Now Impersonate one end and send packets.
Routing Overlays	IP Tunneling - packet delivery service with new routing strategies	Stateful Packet	only allow traffic initiated by client. Track all conn.
IP multicast	delivering same data to many receivers	Filter	
RON	resilient overlay network. Increase performance and reliability	Queuing N	lechanisms
Overlay Networks	of routing, more than IP. Adapts to congestion A logical network built on top of a physical network. tunnels between host computers. Hosts implement new protocols and	End to End principle	Design principle for the internet that says you should keep functionalities at the end-hosts (Application specific functions
	services. Effective way to build networks on top of the internet. P2P	Random Early	randomly drop packets to signal congestion before it happen as queue fills up. Probability is prop queue size. If below a
lapster	centralized directory, gnutella –query flooding, kazaa-super nodes, bittorrent- distributed downloading/no free loading BitTorrent prevents free riding: Allow the fastest peers to download from you. Occasionally let some free loaders	Detection (RED)	threshold, don't drop anything. Use average queue len to allow short term burstsRED is hard to use, must have the right parameters to workDesynchronizes senders to have stead aggregate flow, not bursty.

By calkk

cheatography.com/calkk/

Published 12th December, 2014. Last updated 12th December, 2014. Page 3 of 4.

Queuing Me	Queuing Mechanisms (cont)	
Explicit Congestion Notification (ECN)	router marks packets with ECN bit, 2 bits 1 for ECN enabled and 1 for congestion in IP TOS. Must be supported by end hosts and router to work. But better since it does not drop packets like RED.	
NAT soft state	if no packets arrive in time window, then delete mapping.	
Firewall	filters packets based on src/dst IP addr, TCP/UDP src/dst port, ICMP type, TCP SYN and ACK bits	
Traffic shaping	rate limiting certain traffic like p2p Inspecting every packet is challenging on high speed links. Place complicated firewall rules on edge low speed, and simple in core high speed.	
Gateway	users must login, only point that accepts telnet. (central, caching) 1-Detailed policies 2-Avoid rogue machines 3-central logging 4-caching	
Middleboxe s	Pros: Fewer IPs, Blocking unwanted traffic, Making fair use of net resources, Improcing web performance. Cons: No longer globally unique, no longer assume simple delivery of packets	

By calkk

Published 12th December, 2014. Last updated 12th December, 2014. cheatography.com/calkk/ Page 4 of 4.