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1 IntroductionA recent debate in the machine-learning community highlighted a fact that appears discouraging at �rstglance: in general, generalization cannot be expected, inductive inference is impossible, and nothing canbe learned. See, e.g., (Dietterich, 1989; Scha�er, 1993; Wolpert, 1993; Schmidhuber, 1994). Paraphrasingfrom a previous argument (Schmidhuber, 1994): let the task be to learn some relation between �nitebitstrings and �nite bitstrings. Somehow, a training set is chosen. In almost all cases, the shortestalgorithm computing a (non-overlapping) test set essentially has the same size as the whole test set.This is because most computable objects are irregular and incompressible (Kolmogorov, 1965; Chaitin,1969). The shortest algorithm computing the test set, given the training set, isn't any shorter. In otherwords, the relative algorithmic complexity of the test set, given the training set, is maximal, and themutual algorithmic information between test set and training set is zero (ignoring an additive constantindependent of the problem | see e.g. Kolmogorov, 1965; Chaitin, 1969; Solomono�, 1964; Li andVit�anyi, 1993). Therefore, in almost all cases, (1) knowledge of the training set does not provide anyclues about the test set, (2) there is no hope for generalization, and (3) inductive inference does notmake any sense.Atypical real world / Previous learning algorithms. Apparently, however, generalization andinductive inference do make sense in the real world! One reason for this may be that the real worldis run by a short algorithm. See (Schmidhuber, 1994). Anyway, problems that humans consider to betypical are atypical when compared to the general set of all well-de�ned problems. Otherwise, things like\learning by analogy", \learning by chunking", \incremental learning", \continual learning", \learningfrom invariances", \learning by knowledge transfer" etc. would not be possible, and experience withprevious problems could not sensibly adjust the prior distribution of solution candidates in the searchspace for a new problem (shift of inductive bias, e.g. Utgo�, 1986). In fact, all previous learning systemsare implicitly or explicitly designed to exploit task-speci�c regularities of some kind or another.No previous learning system, however, is designed to make optimal use of its computational time/spaceresources, by exploiting arbitrary, task-speci�c regularities (if there are any). Such a system would haveto be able (1) to develop arbitrary problem-speci�c representations, (2) to run arbitrary learning al-gorithms, and (3) to �nd the \good", problem-speci�c learning algorithms, as quickly as possible. Inparticular, it would have to be able to �nd algorithms for �nding learning algorithms etc.Self-improvement. Is it possible to build such a system? A system that can tailor its learningbehavior to the requirements of a given environment with arbitrary, initially unknown, problem-speci�cregularities? A system that can learn to improve its own learning strategy in a universal way, with-out any signi�cant theoretical limitations other than those imposed by the �niteness of the hardware?In principle, the answer is yes. The system described in this paper uses the novel \incremental self-improvement paradigm" to exploit \benign" environments in a more general way than previous systems.Some of its properties are: (1) Unlike e.g. hillclimbing/evolutionary/genetic/other algorithms, it po-tentially can evolve its own \smart" search strategies (as opposed to \dumb", non-adaptive strategieslike the ones embodied by random mutation, \crossover" etc.). (2) Unlike with previous, less realisticapproaches, each event in system life is viewed as a singular event | learning is inductive inference fromnon-repeatable experiences. (3) Unlike with previous approaches, the system's objective function takesinto account the computation time required for learning.Outline. Section 2 lists essential ingredients of the incremental self-improvement paradigm. Sec-tion 3 exempli�es the basic principles, by describing and justifying a concrete (working) implementa-tion. Twenty comments on both general and implementation-speci�c properties of incremental self-improvement can be found in section 4. Illustrative applications to toy problems (including a simple\non-Markovian" maze task) will follow in section 5. Section 6 will then briey describe the history ofrelated ideas. 2



2 The Incremental Self-Improvement ParadigmIncremental self-improvement is a machine-learning paradigm designed for a system executing a lifelongsequence of actions in an arbitrary environment. The system's goal is to maximize cumulative payo�(reinforcement, reward) to be obtained throughout its entire span of life. To achieve its goal, the systemcontinually attempts to create action subsequences leading to faster and faster payo� intake. The centralideas are as follows:1. Computing self-modi�cations. The initially highly random actions of the system actuallyare primitive instructions of a Turing machine equivalent programming language, which allowsfor implementing arbitrary learning algorithms. Action subsequences represent either (1) \nor-mal" interactions with the environment, or (2) \self-modi�cation programs". Self-modi�cationprograms can arbitrarily1 modify the probabilities of future action subsequences, including fu-ture self-modi�cation programs: the learning system is able to modify itself in a universal way.There is no explicit di�erence between \learning", \meta-learning", and other kinds of informationprocessing.2. Life is one-way. Each action of the learning system (including probability modifying actionsexecuted by self-modi�cation programs) is viewed as a singular event in the history of system life.Unrealistic concepts such as \exactly repeatable training iterations", \boundaries between trials",\epochs", etc. are thrown overboard. In general, the environment cannot be reset. Life is one-way.Learning is inductive inference from non-repeatable experiences.3. Evaluations of self-modi�cation programs. The system has a time-varying utility value,which is the average payo� per time since system start-up. Each self-modi�cation program alsohas a time-varying utility value. This value is the average amount of payo� per time measuredsince the program began execution. Evaluations of utility take into account all the computationtime required for learning, including the time required for evaluating utility.4. Useful self-modi�cation programs accelerate payo� intake. The system keeps track ofprobability modi�cations computed by self-modi�cation programs that it considers useful. Use-fulness is de�ned recursively. If there are no previous useful self-modi�cation programs (e.g. atsystem start-up), a new self-modi�cation program is considered useful only for as long as its utilityvalue exceeds the system's utility value. More recent self-modi�cation programs are considereduseful for as long as they have higher utility values than all preceding self-modi�cation programscurrently considered useful.Essentially, the system only keeps modi�cations to its probability values that originated from usefulself-modi�cation programs. The result is that payo� intake is constantly accelerated. Over time,the system tends to make better and better use of its computational resources.3 A Concrete, Working ImplementationThis section presents one of many possible implementations of the incremental self-improvement paradigm.The implementation makes use of an integer-based programming language. The language is assembler-like and has primitive instructions designed to exploit what conventional digital machines are good at:fast storage addressing, jumping, basic arithmetic operations, etc. The language is universal (i.e., Tur-ing machine equivalent). It is related to one previously published (Schmidhuber, 1994), but there aresigni�cant di�erences and extensions. In particular, this language is \self-referential" in a manner thatwill be described below.1Throughout this paper, when referring to \arbitrary"modi�cations, functions, etc., there is only one essential require-ment of these modi�cations or functions: they must be computable.3



3.1 OverviewThe system has a �nite amount of addressable storage broken into two groups: work cells and programcells. The system exists in an environment , that occasionally writes inputs into certain work cells. Noassumptions are made about the environment (it may or may not be non-deterministic, for example).There is a �xed set I of integer instruction values and integer argument values. There is also an internalvariable (not stored in an addressable cell) called the Instruction Pointer (IP), which always points toone of the program cells (initially to the �rst one).For each program cell and for every possible instruction and instruction argument, there is a proba-bility value Pij; where i is the index of a program cell, and j 2 I. Pij speci�es for cell i the conditionalprobability that, when pointed to by IP, its contents will be j. If IP = i and the contents of i is inter-preted as an instruction, then the cells that immediately follow i will be interpreted as the instruction'sarguments. If the instruction and its arguments pass a syntax check, the instruction is executed. Thismay result in modi�cations of IP and/or environment and/or storage. If the test is not passed, the IP isreset to the �rst program cell. If the instruction does not itself modify IP (with a \jump" instruction),then IP is incremented to point to the following cell. This instruction cycle is repeated over and overagain and represents the basic operation of the system.Some instructions are special \self-referential" instructions. Two of them can address and modifyarbitrary Pij values (and they are the only instructions that can do this). There is also another self-referential instruction that groups a sequence of probability-modifying instructions and other instructionsinto a self-delimiting self-modi�cation program | so named because the end of such a program is com-puted by itself. Some of the (initially highly random) action subsequences executed during system lifewill indeed be self-delimiting self-modi�cation programs. They can compute arbitrary sequences of mod-i�cations of Pij values, resulting in arbitrary modi�cations of context-dependent probabilities of futureaction subsequences, including future self-modi�cation programs.Occasionally the environment may provide \payo�" | a real number indicating how well the systemhas done. The system's goal is to maximize the sum of all payo�s to be obtained throughout its entire(initially unknown) life span. This is done as follows:The payo�/time ratio is constantly monitored and updated after every instruction. There is anunmodi�able top-level credit assignment strategy . It also executes after each instruction except when aself-modi�cation program is running. The task of the top-level is to countermand the modi�cations tothe Pij values that were made by self-modi�cation programs no longer considered useful (see recursivedescription in section 2). This countermanding is done by restoring \old" probability distributions savedonto a stack before the corresponding self-modi�cation programs modi�ed them. The computation timerequired for top-level management is taken into account when measuring usefulness.It will be seen that this scheme favors sequences of useful self-modi�cation programs leading to fasterand faster payo� intake. In particular, self-modi�cation programs can prove their long term usefulnessby setting the stage for additional, useful self-modi�cation programs, which potentially include programsexecuting known (and not yet known) learning algorithms. This encourages \learning how to learn".3.2 Technical DetailsSpan of system life. For simplicity, we assume discrete time. System life begins at \birth," time stepzero. It ends at \death," time step T . T is not necessarily known in advance.Goal / Payo�. Occasionally, the environment provides \payo�". Payo� is an integer numberdepending on the tasks to be solved. The sum of all payo�s obtained between birth and time t > 0 isdenoted by R(t). Throughout its lifetime, the system's goal is to maximize R(T ), the cumulative payo�at \death". At a given time, the system can only maximize future payo� | the past is already gone.Storage. The system's storage is a single array of cells. Each cell has an integer address in the interval[Min;Max]. Max is a positive integer. Min is a negative integer. ai denotes the cell with address i.The variable contents of ai are denoted by ci 2 [�Maxint;Maxint], and are of type integer as well(Maxint �Max; Maxint � abs(Min)). Special addresses, InputStart, InputEnd, RegisterStart, and4



Primitive SemanticsStop() Halt current runJmp(a1) IP  ca1Jmpleq(a1, a2, a3) If cca1 < cca2 IP  ca3Jmpeq(a1, a2, a3) If cca1 = cca2 IP  ca3Add(a1, a2, a3) cca3  cca1 + cca2Sub(a1, a2, a3) cca3  cca1 � cca2Mul(a1, a2, a3) cca3  cca1 � cca2Div(a1, a2, a3) cca3  cca1=cca2 (integer division)Rem(a1, a2, a3) cca3  remainder(cca1=cca2)Inc(a1) cca1  cca1 + 1Dec(a1) cca1  cca1 � 1Mov(a1, a2) cca2  cca1Init(a1, a2) ca1�ProgramStart�2  a2Outputi(...) i-th problem speci�c primitive for inuencing the environmentInputi(...) i-th primitive for perceiving environmental inputGetP(a1, a2, a3) cca3  round(Maxint � Pca1;ca2)IncP(a1, a2, a3) 8k 6= ca2 : Pca1;k  0:01cca3Pca1;k; Pca1;ca2  1� 0:01cca3(1� Pca1;ca2)DecP(a1, a2, a3) 8k 6= ca2 : Pca1;k  1�0:01cca3Pca1 ;ca21�Pca1;ca2 Pca1;k; Pca1;ca2  0:01cca3Pca1;ca2EndSelfMod() Enable top level strategy for restoring probabilities (see text)Table 1: Semantics of primitives and their parameters. The \normal" primitives are shown in the topblock; the \self-referential" primitives are shown in the bottom block. Note the extensive use of double-indexed indirect addressing. Results of arithmetic operations leading to underow/overow are replacedby �Maxint/Maxint, respectively. The same holds for positive and negative divisions by zero. DecPand IncP have no e�ect if the indirectly addressed cell contents cca3 are not an integer between 1 and 99,or if the corresponding probability modi�cation would lead to at least one P value below MinP. Rulesfor syntactic correctness: IP may point to any program cell ai, i < Max� 3 (enough space has tobe left for arguments). Operations that read cell contents (such as Add, Move, Jumpleq etc.) may readonly from existing addresses in storage. Operations that write cell contents (such as Add, Move, GetPetc.) may write only into work area addresses in [Min; ProgramStart� 1].ProgramStart, are used to further divide storage into segments: Min < InputStart � InputEnd < 0 =RegisterStart < ProgramStart < Max. The input area is the set of input cells fai : InputStart � i �InputEndg. The register area is the set of register cells fai : 0 � i < ProgramStartg. \Registers"are convenient for indirect-addressing purposes. The program area is the set of program cells fai :ProgramStart � i < Maxg. Integer sequences in the program area are interpreted as executable code.The work area is the set of work cells fai : Min � i < ProgramStartg. Instructions executed in theprogram area may read from and write to the work area. Both register area and input area are subsetsof the work area.Environmental inputs. At every time step, new inputs from the environment may be written intothe input cells.Primitives. The number of instructions is nops (nops << Maxint). Each such \primitive" is rep-resented by a unique number in the set f0; 1; : : : ; nops � 1g (due to the code being written in C). Theprimitive with number j is denoted by pj. Primitives may have from zero to three arguments, eachof which has a value in f0; 1; : : :; nops � 1g. The semantics of the primitives and their correspondingarguments are given in Table 1. The non-self-referential (\normal") primitives include actions for com-parisons, and conditional jumps, for copying storage contents, for initializing certain storage cells with5



small integers, and for adding, multiplying, dividing, and halting. They also include output actions formodifying the environment, and input actions for perceiving environmental states. The \self-referential"primitives will be described in detail below.Primitive and argument probabilities. For each cell ai in the program area, there is a discreteprobability distribution Pi over the set of possible cell contents. The variable InstructionPointer (IP)always points to one of the program cells. If IP = i and i < Max� 3, then Pij denotes the probabilityof selecting primitive pj as the next instruction. The restriction i < Max�3 is needed to leave room forthe instruction's possible arguments should it require any. Once pj is selected: ci  j. If pj has a �rstargument, then Pi+1;k is the probability of k being chosen as its actual value, for k 2 f0; 1; : : : ; nops�1g.Once some k is selected: ci+1  k. Analoguously, if pj has a second argument, then Pi+2;l is theprobability of l being chosen as its actual value, for l 2 f0; 1; : : :; nops � 1g. Once some l is selected:ci+2  l. And �nally, if pj has a third argument, then Pi+3;m is the probability of m being chosen asits actual value, for m 2 f0; 1; : : :; nops � 1g. Once some m is selected: ci+3  m.Arguments point to storage addresses. To reduce the number of probability values for each programcell, primitive arguments are restricted to only nops di�erent values. Therefore, to allow all storagecells to be addressed, double indexed indirect addressing is used for most instructions. That is,(for most instructions) the arguments point to cells in the register area, which in turn point to cells instorage. Recall that the range of values available to registers (and other work cells) is far less restricted,which e�ectively allows all storage cells to be addressed.Self-referential primitives. Two special primitives, DecP and IncP, may be used to address andmodify the current probability distribution of any program cell (see Table 1). With the action DecP,the Pij value for a particular cell/value pair (ai; j) can be decreased by some factor in f0:01, 0:02,: : :, 0:99g. The probabilities for that cell are then normalized. Likewise, with the action IncP, thecomplement (1�Pij) of the Pij value for a particular cell ai and value j can be decreased by a factor inf0:01; 0:02; : : : ; 0:99g (and the cell probabilities are again renormalized). DecP and IncP have no e�ectif the indirectly addressed cell contents cca3 (see Table 1) are not an integer between 1 and 99, or if thecorresponding probability modi�cation would lead to at least one P value below MinP (a small positiveconstant).The primitive GetP can be used to write scaled versions of current probability values into work cells.GetP is potentially useful for purposes of introspection.Instruction cycle. A single step of the interpreter works as follows: if IP points to program cell ai,a primitive and the corresponding arguments are chosen randomly according to the current probabilitydistributions, as already described. They are sequentially written onto the program area, starting fromai. Syntax checks are performed. Rules for syntactic correctness are given in the caption of Table 1. Ifsyntactically correct, the instruction gets executed. Otherwise, the current \run" (see next paragraph)is halted. If the program did not halt nor change the value of IP (e.g. by causing a jump), IP is set tothe address of the cell following the last argument of the current instruction.Runs. In the beginning of a \run", IP is set equal to ProgramStart, and the instruction cycle isrepeated until a halt situation (e.g. syntax error) is encountered. Due to MinP being positive, there isalways a non-vanishing halting probability.System life. At time step 0, storage is initialized with zeros. The probability distributions of allprogram cells are initialized with maximum entropy distributions (Shannon, 1948). That is, all Pijvalues are initialized to the same value, so that there is no bias for a particular value in any cell. Afterinitialization, runs are repeated over and over again until time T . Recall that T does not have to beknown in advance.Work area as part of the environment. Neither storage nor environment are re-initializedafter each run. The system might use the environment to store representations of previous events, byexecuting actions that modify the environment2. Likewise, the program area may use the work areato store representations of previous events. Thus, the work area may be viewed as part of the totalenvironment of the program area.2Leslie Kaelbling sometimes refers to this as \writing on the walls" but says that the \real" name is \stigmergy"(personal communication, 1994/1995). 6



Programs. Each subsequence of primitives executed during system life is called a program. Prim-itives can be combined to form programs for performing arbitrary computations. The only limitationsare those imposed by the necessarily �nite hardware.Self-delimiting self-modi�cation programs. Occasionally, the system will modify one of itsprobability distributions, by using IncP orDecP . Occasionally, it will execute the EndSelfMod primitive.The �rst probability modi�cation after an EndSelfMod action or after system \birth" begins a self-modi�cation program. The self-modi�cation program ends itself by executing the EndSelfMod action.Due to the universality of the underlying programming language, self-modi�cation programs may resultin speci�c, arbitrary modi�cations of context-dependent probabilities of future programs. However, duetoMinP being positive, the probability of selecting and executing a particular instruction at a particulartime cannot entirely vanish.The remainder of this section is devoted to basic concepts required to ensure that the system keepsonly probability modi�cations computed by \useful" self-modi�cation programs: essentially those whichbring about more payo� per time than all previous self-modi�cation programs.Payo�/time ratios. Suppose a self-modi�cation program s started execution at time t1 and com-pleted itself at time t2. For t � t2 and t � T , the payo�/time ratio Q(s; t) is de�ned asQ(s; t) = R(t)�R(t1)t� t1 :DEFINITION: useful self-modi�cation programs. The usefulness of a self-modi�cation programis de�ned recursively: at birth, there are no useful self-modi�cation programs. At some later point t insystem life, we consider two cases: a self-modi�cation program s that ended itself at time t2 is considereduseful if(1) (a) there are no previous self-modi�cation programs that are considered useful, and(b) for all tx � t2; tx � t: Q(s; tx) > R(tx)tx (the total payo�/time ratio at time tx). Or(2) (a) there are previous self-modi�cation programs considered useful, and(b) for all tx � t2; tx � t: Q(s; tx) > Q(s0; tx), where s0 is the most recent useful self-modi�cationprogram preceding s.The computation of payo�/time ratios always takes into account all computation time,including time required for learning.FACT 1. At a given time, to decide whether the most recent useful self-modi�cation pro-gram remains useful, one needs to compare its current payo�/time ratio only to the currentpayo�/time ratio of the most recent previous useful self-modi�cation program.FACT 2. A completed self-modi�cation program is considered useful as long as averagepayo� intake since its beginning occurred faster than with all previous self-modi�cationprograms still considered useful.Proof. See de�nition of usefulness above.Keeping track of useful self-modi�cations. In order to evaluate whether life after the beginningof some self-modi�cation program was \better" or \worse" than before, and to be able to countermandprobability modi�cations computed by self-modi�cation programs that seem useless or even harmful,a stack, S, is introduced. The k-th entry of S, k 2 f0; 1; : : :; StackSizeg, is denoted S(k). S(k)consists of the following variables: S(k):t, S(k):R, S(k):address, S(k):first, and S(k):oldP (a vectorof nops variables). The variable sp points to the current topmost stack entry. If sp = 0 (the value atsystem startup), the stack is empty. If the system modi�es some probability distribution Pi at time7



t (by using IncP or DecP ), sp is incremented, and the following values are pushed onto the stack:the current time, the total payo� so far, the address of the modi�ed program cell, its old probabilitydistribution right before the current modi�cation (represented by nops real values), and a pointer to thestack entry corresponding to the �rst probability modi�cation computed by the current self-modi�cationprogram. More formally: S(sp):t  t; S(sp):R R(t); S(sp):address  i; S(sp):oldP  Pi before themodi�cation (represented by nops real values). If t marks the beginning of a self-modi�cation program,then S(sp):first  sp. Otherwise (in the middle of a self-modi�cation program), S(sp):first  S(sp�1):first. The zeroth stack entry, which cannot be popped, is initialized as follows: S(0):t 0; S(0):R 0; S(0):first  0. The remaining values are unde�ned.UNMODIFIABLE TOP-LEVEL CREDIT ASSIGNMENT STRATEGY: inductive infer-ence based on single experiences. It is very simple. If there is no self-modi�cation program running,then after each completed instruction cycle, a decision is made as to whether probability distributionsmodi�ed by previous self-modi�cation programs should be kept or replaced by their old values from thestack. The process works as follows. After each completed instruction cycle, do:(1) If there currently is an incomplete self-modi�cation program (not yet endedby an EndSelfMod action), do nothing.(2) Else successively pop and restore saved probability distributions, until thepayo�/time ratio since the beginning of the most recent self-modi�cation pro-gram that computed modi�cations of probability distributions currently savedon the stack exceeds the payo�/time ratio of the preceding such self-modi�cationprogram (if there is any { otherwise compare with the total payo�/time ratio).More formally (t denotes the current time):While sp 6= 0 andR(t)� S(S(sp):first):Rt� S(S(sp):first):t � R(t)� S(S(S(sp):first � 1):first):Rt � S(S(S(sp):first � 1):first):tdo: PS(sp):i S(sp):oldP ; sp sp� 1.FACT 1 above says that at a given time, the top-level strategy needs to consider only the two mostrecent self-modi�cation programs whose direct e�ects have not yet been countermanded, in order todecide whether to pop the stack. Then why do we need a while loop as above? The reasonis that popping and restoring probability distributions takes time (t increases during execution of thewhile loop), possibly causing utility values to drop. Therefore, in the process of popping and restoringdistributions modi�ed by one program, the payo�/time ratio of the preceding program may fall enoughso that the distributions it modi�ed must be restored, too. The process can potentially continue untilthe stack is completely empty.FACT 3. After each instruction (except during the execution of a self-modi�cation program),the top-level ensures that the beginning of each completed self-modi�cation program thatcomputed valid probability modi�cations has been followed by faster payo� intake than thebeginnings of all previous such self-modi�cation programs. All currently valid probabilitymodi�cations were computed by currently useful self-modi�cation programs. The nature ofthe environment does not matter.Proof. See formal top-level description and FACT 2.8



4 Twenty CommentsThe experiments are described in section 5. If you are in a hurry, you can skip these (mostly ratherobvious) comments.1. Why self-delimiting self-modi�cation programs? The EndSelfMod primitive allows the sys-tem to delay top-level evaluations of probability modi�cations arbitrarily. The expectation of thedelay remains �nite, however, due to MinP being positive. The system's delaying capabilitiesare important, for two reasons: (1) In general, payo� events will be separated by long (unknown)time lags. Hence, novel probability modi�cations are not necessarily bad if they do not lead toimmediate payo�. The system itself should be able to learn how much time to spend on waiting for�rst payo� events. (2) Two successive modi�cations of two particular probability distributions mayturn out to be bene�cial, while each by itself may be harmful. Therefore, the system should be ableto compute arbitrary sequences of probability modi�cations, before facing top-level evaluations.Delaying top-level evaluations does cost time, though, which is taken into account when usefulnessis measured. In the long run, the system is encouraged to create useful self-modi�cation programsof the appropriate size.2. Non-decreasing search space. Due toMinP being positive, there will always be a non-vanishing(possibly tiny) probability of executing any program at any time. Thus, the space of possible actionsubsequences will never really decrease. Only the probability distribution on this space (the bias)can change. But there cannot be total determinism corresponding to total lack of exploration.3. Speeding up payo� intake / Learning how to learn. The top-level takes the entire learninghistory into account: note that at time t, the value t � S(S(sp):first):t stands for all the timesince the beginning of the most recent self-modi�cation program whose e�ects have not yet beencountermanded. The utility value of a self-modi�cation program is based on total elapsed timesince the program began. This includes the computation time required for learning. Over time,the system tends to make better and better use of its limited temporal and spatial resources: dueto FACT 3, self-modi�cations that speed up payo� intake in the long run are preferred. So areself-modi�cations speeding up the search for self-modi�cations speeding up payo� intake. Thisencourages \learning how to learn", and \learning how to learn how to learn"..., and represents anessential di�erence to previous approaches to continual learning, see (Ring, 1994).4. Directed mutations as opposed to random mutations. Unlike evolutionary and geneticalgorithms (Rechenberg, 1971; Schwefel, 1974; Holland, 1975; Ho�meister and B�ack, 1991; Koza,1992), self-modi�cation programs may lead to very speci�c, directed sequences of strategy muta-tions, as opposed to undirected, totally random mutations. The system can arbitrarily modify itsprior distribution on the space of solution candidates. Just as evolution \discovered" that havingthe \genetic crossover operator" was a \good thing", the system is potentially able to discover thatvarious more directed search strategies are \good things".5. Life is one-way. Note that only direct e�ects of self-modi�cation programs on primitive proba-bility distributions can be countermanded by the top-level strategy. In realistic environments, itis not possible to countermand all indirect e�ects and e�ects of the system behavior on the un-known environment | life is one-way. However, the top level may encourage the development ofenvironment-speci�c strategies for countermanding certain indirect e�ects. Such strategies will bekept as long as they appear to be more useful than previous strategies. By focusing on the obser-vation and control of changes of probability distributions (as opposed to general changes involvinginternal state and environment), the top level attempts to control a complex world by controllinga small part of it, namely, the variable probability distributions. The latter, however, may havean arbitrary inuence on themselves and the rest of the world.9



6. \Usefulness" and \true usefulness". Incremental self-improvement keeps useful self-modi�-cations only in the sense that \useful" was de�ned above. However, the system will never have aproof that a particular self-modi�cation program was the \true" reason for more payo�. In fact,what the system actually does is inductive inference based on single experiences: at onepoint in its life it did something, and at some later point it measures apparent overall e�ects onits performance. What appeared to be \useful" up until now is assumed to remain \useful" in thefuture, though it may have been just a uke that might later turn out actually to have harmfulconsequences: \shifts of inductive bias" generated by the system itself may be evaluated as harmfulin the eyes of a \god-like" external observer with additional prior knowledge. But without access tocomplete knowledge of the environment, the system is forced to rely upon its previous experienceto decide what's harmful and what's not. This is what inductive inference is all about3.7. What about self-modi�cations \useful just by chance"? This question is related to thelast comment. For the sake of the argument, suppose a self-modi�cation program is considereduseful by the system, but not by a god-like external observer. This does not at all imply afatal catastrophy: typically, the reason for the apparent usefulness of the actually useless (oreven harmful) self-modi�cation program will be that its long-term e�ects were overcompensated(before the corresponding probability modi�cations were cancelled) by later, \truly" useful self-modi�cation programs. And note that the system will always have a chance to undo previousprobability modi�cations, by executing appropriate additional self-modi�cations.8. Universality / Learning to remember. It is not di�cult to show that the primitives in Table 1form a universal set in the following sense: they can be composed to form programs writing anycomputable integer sequence onto the work area, within the hardwired size and range limitations.Note that the primitives make it easy to create action sequences for handling stacks, recursion, etc.The scheme allows for very general sequential interaction with the environment (given appropriateproblem-speci�c actions that translate storage contents into output actions and environmentalchanges). The self-referential primitives are designed to allow for speci�c changes of probabilitydistributions of all program cells (possibly done very quickly, making things like \one-shot learning"possible).Universality implies that the system is in principle capable of creating programs for storing repre-sentations of environmental events. Unlike with most previous reinforcement-learning algorithms,see e.g. (Barto, 1989; Watkins, 1989; Dayan and Sejnowski, 1994; Williams, 1992; Sutton, 1991),there is no need for a Markovian interface (Schmidhuber, 1991) between the environment and thelearning system. Also, there is no need for a \discount factor" discounting the system's expectationof future payo� in case of potentially in�nite life spans.9. Doesn't the system start with a huge disadvantage? Conventional learning systems havea �xed learning strategy for selecting and testing solution candidates from some \non-universal"search space. Incremental self-improvement, however, does not only search for solutions to somespeci�c task, but also for learning strategies for �nding solutions. Doesn't the system's universalityincrease its search space? In general, it does. With many toy tasks, an external user will be ableto provide a conventional learning algorithm with enough problem-speci�c bias to solve a certaintask more quickly than (initially less informed) search based on incremental self-improvement. Onthe other hand, however, unlike previous learning methods, incremental self-improvement can useexperience to modify its search in a universal way, by exploiting arbitrary task-speci�c regularitiesif there are any, and by creating its own problem-speci�c bias. In the long run, this advantage mayoutweigh initial disadvantages due to universality.3Perhaps, tomorrow you will be punished for scratching your ear 10 years ago | maybe this is in the nature of thealgorithm running the universe. There is no proof that this is not going to happen (though our environment appearsto be somewhat more benign than this). In general, you would not have a chance to discover the \true" reason for thepunishment. 10



10. Inserting prior bias / E�ciency considerations. Primitive instructions need not be low-levelinstructions like those in Table 1. They may correspond to complex submodules reecting theuser's prior knowledge. Informally, there is one general constraint to obey (Schmidhuber, 1994):whatever is computable on the used hardware, should be computable just as e�ciently (up to asmall constant factor) by a program written in the programming language. For instance, on atypical serial digital machine we would like to have instructions exploiting fast storage addressingmechanisms. We would not want to limit ourselves to the simulation of, say, a slow one tapeTuring machine. Likewise, on a machine with many parallel processors we would like to use a setof instructions allowing for processes with maximal parallelism.11. Bias towards short runs. Unlike Levin's universal search algorithm (which is optimal for awide variety of non-incremental search problems based on trials with exactly repeatable initialconditions; see Levin, 1974), the system presented here has no explicit bias towards runs with lowKolmogorov complexity or low Levin complexity (Kolmogorov, 1965; Chaitin, 1969; Solomono�,1964; Levin, 1974) | e.g. runs based on only few instructions repeated over and over again. Inprinciple, however, it may create/strengthen such a bias, and the bias will stick if it appears to beuseful.Of course, a priori bias of this kind can be explicitly introduced by the programmer. One possibilityis to reward low-complexity runs more than others (by providing more external payo�). Anotherpossibility is this: instead of selecting primitives randomly (according to the current probabilitydistributions) at each time step of each run, make random selections only if IP points to a programcell that has not yet been used during the current run. Otherwise use the instruction executedduring the most recent visit of the program cell. This leads to an explicit bias towards lowalgorithmic probability (Solomono�, 1964), and has been done previously in (Schmidhuber, 1994).Occasionally, this will lead to non-halting programs. For such cases, upper runtime bounds needto be introduced. In the spirit of the incremental self-improvement paradigm, such time boundsshould be computed by the system itself (using appropriate special primitives). For an additionalcomment on inserting prior bias, see section 5.3.12. Exploration/exploitation tradeo�. The system itself can decide how much time it wants tospend on exploring e�ects of new action sequences, and how much time it wants to spend onexploiting bene�cial e�ects of action sequences that it tried before. In the long run, the systemwill prefer those strategies that led to the best (environment-speci�c) balance between explorationand exploitation.13. One task, many tasks. An external user may choose a way of translating tasks and systemperformance into payo�. From the user's point of view, there may be many tasks, and the systemitself may choose which to attack �rst. From the system's point of view, there is only one task,namely, to maximize cumulative payo�. Note that every task that requires the maximization ofsome kind of reward may be viewed as being decomposable into many tasks: the �rst task is togenerate actions leading to a little bit of reward. The next task is to generate actions leading tomore reward, etc.14. What if \the task changes?" In the light of what has been said above, this is actually amisleading question. It is tinged by the idea of \exactly repeatable training events" suddenlybeing replaced by di�erent \exactly repeatable training events". But, in this paper there is nounrealistic a priori assumption of exactly repeatable training events. From the system's pointof view, there is only one task, namely, to maximize cumulative payo� (see previous comment).The system always tends to keep the strategy that led to the best overall results so far. Withoutadditional prior knowledge, there are no alternatives: the system cannot know whether payo�changes are due to external \task changes", or whether they are due to long term e�ects of itsown previous actions (as discussed in comments 6 and 7 above). Life is one-way, and changeis in the nature of a dynamic environment. For the sake of the argument, however, suppose a11



particular sequence of probability modi�cations appears justi�ed at a certain point t1, and theexternal observer decides that the \�rst task is solved". At time t2 > t1, however, the systemfails to keep its old payo�/time ratio because the \task has changed" in the eyes of the externalobserver. Then, over time, direct e�ects of previously \useful" self-modi�cation programs willtend to be countermanded in inverse order of their occurrence (unless they don't get protectedby additional useful self-modi�cation programs), until the current probability distributions reectknowledge useful for solving both tasks. All probability modi�cations will be countermanded onlyif the initial strategies developed for solving the �rst task are useless for solving the second task.But without additional prior knowledge, this does make sense from the learning system's point ofview.15. Teacher as part of the environment. (1) Of course, an external teacher may provide task-speci�c inputs conveying information about task changes. But the system has �rst to learn tomake use of these inputs. Analoguously, children �rst have to learn to interprete sound wavesemitted by their parents as teacher signals. They will learn this if it turns out to be useful in thelong run. (2) To achieve his teaching goals, the teacher may directly inuence the way payo� isgenerated, thus inuencing the context sensitivity of the reward. In both cases, it is natural toview the teacher as part of the environment.16. Direct teacher forcing. The teacher may decide that the current strategy of the system (attime t1) is actually a valuable one and should not be countermanded. Instead of inuencing payo�generation (see previous comment), he may decide to inuence the learning process directly, bypreventing the top-level strategy from countermanding probability modi�cations generated by self-modi�cation programs considered useful at time t1. This would be one way to insert additionalprior knowledge.17. Success history in stack. At a given time, the current history of useful self-modi�cations isreected by the current stack entries. Each self-modi�cation program \on the stack" was followedby faster payo� intake than all previous self-modi�cation programs \on the stack". This is truedespite the fact that time for computing and testing later self-modi�cation programs is taken intoaccount.18. Useful self-modi�cation programs are rare. Each self-modi�cation program undergoes a testwhich may last for the entire remaining system life, provided the program is considered useful forsuch a long time. Typically, only few self-modi�cation programs will be followed by faster payo�intake than all previous useful self-modi�cation programs. Therefore, the costs of saving \old"probability distributions in the stack typically will tend to remain comparatively small. This isborne out by the experiments in section 5.19. Limited stacksize | \circular" stack. In practical applications, the stack will be �nite. Acircular stack that overwrites earlier stack entries (starting from the bottom entries) could keeptrack of self-modi�cations after stack overow (circular stack). Only the StackSize most recentprobability modi�cations could then be directly restored by popping. However, every probabilitydistribution can be indirectly restored by additional self-modi�cation programs executed by thesystem itself. In the experiments conducted so far, there never was a danger of stack overow. Seesection 5.It is intended to introduce additional introspective primitives for addressing and examining stackentries (in the style of GetP ). This is not yet implemented, however.20. When to apply incremental self-improvement? It is always possible to construct \cruel"environments, where previous experiences are necessarily useless for future planning. Indeed, ascan be seen from what has been said in the introduction, almost all thinkable environments areof this kind (except those which we generally are most interested in: those with regularities).The incremental self-improvement paradigm won't be of any help in the general case. The same12



Primitive SemanticsWrite(a1, a2) Cca2  cca1Read(a1, a2) cca1  Cca2Table 2: Semantics of problem speci�c primitives and their parameters. Again, double-indexed indirectaddressing is employed. See text for rules for syntactic correctness. Compare with Table 1.holds for any other learning paradigm, though. However, if certain aspects of the environment\repeat themselves", if experiments conducted in the environment do not change it such thatprevious knowledge becomes totally useless, if the tasks to be solved do exhibit \regularities",then the incremental self-improvement paradigm appears to be a very general way of exploitingthis. Incremental self-improvement should be of interest in cases where the user's bias is alreadycaptured by the choice of the initial programming language, and where the user expects additional(yet unknown) problem-speci�c regularities.5 Illustrative ExperimentsThe following brief case studies are not designed to impress but to illustrate basic aspects of the system.The �rst task requires to compute regular integer strings. The second task is a maze task from (Sutton,1991). With both tasks, the system uses low-level problem-speci�c primitives in addition to the generalprimitives from Table 1. The primitives reect the system's initial (weak) bias. Of course, di�erentproblem-speci�c primitives lead to di�erent initial bias and performance. A task that can be solvedwithin a few minutes using one set of primitives may require a day of computation time using a di�erentset of primitives. The purpose of this section, however, is not to perform a statistically signi�cantexperimental evaluation of the system's initial bias, or to study e�ects of introducing di�erent kindsof initial bias, or to compare the system to other learning systems with di�erent initial bias. Instead,this section's purpose is to describe typical aspects of system lives illustrating the system's basic (biasindependent) mode of operation.5.1 Writing Variable SequencesTask. The external environment consists of an array of 30 variables V0; V1; : : : ; V29. The i-th variableis denoted by Vi. Its current contents are denoted by Ci 2 [�Maxint;Maxint]. Time is measured indiscrete time steps. At time step 0, all variables are initialized with zeros. Every 1000 time steps, thenumber of variables whose values equal their addresses is written into a special input cell. Thisnumber is the current payo�. Then, all variables are re-initialized with zeros. The goal is to maximizecumulative payo�.Details. In addition to the 17 general primitives from Table 1 (not counting input/output primi-tives), there are two problem-speci�c primitives. Each has two integer arguments: Write(a1; a2) writesthe contents of the storage cell indirectly addressed by the �rst argument into the variable indirectlyaddressed by the second argument. Read(a1; a2) writes the contents of the variable indirectly addressedby the second argument into the work cell indirectly addressed by the second argument. See Table 2.Write and read operations outside the valid ranges halt the current run.Since nops = 17+2 = 19, all initial probabilities of all possible contents of all program cells are equalto 119 . Parameters for storage size etc. are: Min = �1000, Max = 100, ProgramStart = bottom(nops2 ),MinP = 0:001, StackSize = 10; 000,Maxint = 10; 000. To inform the system about what is going on,the following values are written into special input cells whenever they change: IP, sp, and the remainderof t=Maxint (integer division, where t denotes the current time).13



Measuring time. By de�nition, each computation that requires the consideration of all nops proba-bilities of some program cell (such as selecting an instruction, selecting a parameter, pushing or poppingprobability distributions during top-level management, etc.) costs one time step. Other computationsdo not cost anything. This ensures that measured time is of the order of total cpu-time. The somewhatunelegant way of measuring time was introduced because measuring cpu-time directly turned out to besomewhat unreliable.How di�cult is this task? For a number of reasons, the task is non-trivial | the system does notappear to have much built-in bias towards the task: (1) Only one of the 19 primitives (Write) may a�ectvariable contents at all. But initially, the system does not even have such seemingly trivial knowledge| there is no built-in idea about which actions may lead to payo�. Therefore, it has to �nd out onits own. (2) The values referred to by the two arguments of Write have to be identical and within therequired ranges to lead to a useful result. (3) There are 30 di�erent variables with 30 di�erent values.Only one of them, namely V0, is correctly re-initialized with its own address after each payo� event. (4)There is no explicit a priori bias towards short programs, such as the one in (Schmidhuber, 1994) for arelated task. (5) Finally, recall that the work area is never re-initialized after system birth. Hence, asmentioned above, it may be viewed as part of the environment of the program area. The environmentis changing quite unpredictably, due to actions executed by the system itself.Performance was measured with and without self-modi�cation capabilities. In the latter case, theprimitives IncP and DecP had no e�ect. Both versions were run for 109 time steps, corresponding to106 payo� events, or about half a day of computation time on a SUN SPARC 10. Note that the optimalcumulative payo� is 3:0� 107. This value can be achieved only by a system with \optimal" prior bias |starting at birth, such a system keeps executing optimal actions without having to learn anything.5.1.1 Results Without Self-Modifications.At system death, total payo� equaled about 1:41 � 106. Average payo� per payo� event was about1.41. Most of the total payo� (about 1:0 � 106) could be attributed to the fact that V0 was correctlyre-initialized after each payo� event: the system received a little bit of payo� even in cases where it didnot execute any write operations. As expected, average payo� intake did not signi�cantly increase ordecrease during the lifetime of the system. However, this was not safely predictable in advance, due tothe changing environment.5.1.2 Results With Self-Modifications.At system death, total payo� was about 1:87�107. To �nd out whether the incremental self-improvementparadigm did indeed lead to incremental self-improvement, let us have a look at the learning history.Self-generated reduction of numbers of probability modi�cations. In the beginning, thesystem computed a lot of probability modi�cations but soon preferred to decrease the number of prob-ability modi�cations per time interval. There were 36,729 probability modi�cations during the �rst 106time steps. There were 9,045 probability modi�cations during the second 106 time steps. Almost allprobability changes were countermanded by the top-level strategy; by this time, the stack had only49 entries corresponding to 27 useful self-modi�cation programs. Most of the useful self-modi�cationprograms computed either one or two probability modi�cations. After 107 time steps, there were onlyabout 4,000 probability modi�cations per 106 time steps.Speed-up of payo� intake. By then, the system behaved much more deterministically. Averagepayo� per payo� event had increased from 1.4 to 10.5 (the optimal value being 30.0, of course), andthe stack had 66 entries. These entries corresponded to 66 modi�cations of single cell probabilitydistributions, computed by 40 self-modi�cation programs | each being more \useful" than all theprevious ones. Storage already looked very messy. For instance, almost all cells in the work areawere �lled with (partly big) integers quite di�erent from the initial values. Recall that the work area isnever re-initialized and may be viewed as part of the environment of the program area.First maximal payo�. After 286,918 payo� events, the system correctly had written all 30 variablesfor the �rst time, and received maximal payo� 30.0. Due to remaining non-determinism in the system,14



the current average payo� per payo� event (measured shortly afterwards, at time step 300,000,000) wasabout 18.2.After 400,000 payo� events, current average payo� per payo� event was 19.3. By now, the numberof probability modi�cations per 106 time steps was up to 6600 again. But the stack had only 131 entries(corresponding to 90 \useful" self-modi�cation programs). After 500,000 payo� events, current averagepayo� per payo� event was 20.7 (143 stack entries). After 1,000,000 payo� events (at \system death"),it was about 23.7, with tendency to increase. By then, there were 185 stack entries. They correspondedto 132 self-modi�cation programs, each being more \useful" than all the previous ones.Temporary speed-ups of performance improvement. Performance did not increase smoothlyduring the lifetime of the system. For instance, at time step 109,295,000, the system correctly hadwritten more than 20 variables for the �rst time (namely 21). This record was not broken for a long time| for nearly 108 additional time steps. This time interval is comparable to the entire previous learningtime. Then, an unexpected sequence of rather quick improvements began. At time 207,606,000, the newrecord was 23 correct variables. At time 217,961,000, the new record was 24. At time 225,123,000, thenew record was 25. Nearly immediately afterwards, at time 225,254,000, the new record was 26. Thus,within less than 2 � 107 time steps, the record was broken 4 times. Then progress slowed down again.Such temporary speed-ups of performance improvement indicate useful shifts of inductive bias, whichmay later be replaced by inductive bias created by the next \breakthrough".Automatic �ne-tuning of search space structure. A look at the stack entries revealed thatmany (but far from all) useful probability modi�cations focused on few program cells. Often, self-modi�cation programs directly changing the probabilities of certain additional self-modi�cation programswere considered useful. For instance, 5 of the 167 stack entries at time step 8 � 107 corresponded to\useful" probability modi�cations of the (self-referential) IncP action of the program cell with address14. 8 entries corresponded to \useful" modi�cations of the EndSelfMod probability of various cells. Suchstack entries may be interpreted as results of \adjusting the prior on the space of solution candidates"or \�ne-tuning search space structure" or \learning to create directed mutations" or \learning how tolearn".5.2 A Navigation TaskTask (following Sutton, 1991). The external environment consists of a two-dimensional grid with 9by 6 �elds. Fi;j denotes the �eld in the i-th row and the j-th column. The following �elds are blockedby obstacles: F3;3, F3;4, F3;5, F6;2, F8;4, F8;5, F8;6. In the beginning, an arti�cial agent is placed onF1;4 (the start �eld). In addition to the 17 general primitives from Table 1 (not counting input/outputprimitives), there are four problem-speci�c primitives with obvious meaning: one-step-north(), one-step-south(), one-step-east(), one-step-west(). The system cannot execute actions that would lead outsidethe grid or into an obstacle. Again, the following values are written into special cells in the input areawhenever they change: IP, sp, remainder(t=Maxint). Another input cell is �lled with a 1 wheneverthe agent is on the goal �eld, otherwise it is �lled with a 0. Four additional input cells are rewrittenafter each execution of some problem-speci�c primitive: the �rst (second, third, fourth) cell is �lled withMaxint if the �eld to the north (south, east, west) of the agent is blocked or does not exist, otherwisethe cell is �lled with �Maxint. Whenever the agent reaches F9;6 (the goal �eld), the system receives aconstant payo� (100), and the agent is transferred back to F1;4 (the start �eld). Parameters for storagesize etc. are the same as with the previous task, and time is measured the same way. Clearly, tomaximize cumulative payo�, the system has to �nd short paths from start to goal.How di�cult is this task? Again, the system does not appear to have much built-in bias towardsthe task: (1) Unlike with previous reinforcement learning algorithms, the system does not have a smartinitial strategy for temporal credit assignment | it has to develop its own such strategies. (2) Unlikewith Sutton's original set-up (1991), the system does not see a built-in unique representation of itscurrent position on the grid. From the system's point of view, its interface to the environment is non-Markovian (Schmidhuber, 1991): the current input does not provide all information about the agent'scurrent position. (3) To make use of the few inputs it gets, the system �rst has to discover that certain15



input cells may be relevant for solving its task. (4) The total environment (including the work area) ischanging quite unpredictably, due to actions executed by the system itself.5.2.1 Results without Self-Modifications.As with the previous task, the system was �rst tested with self-referential primitives IncP and DecPbeing switched o�. At system death at time 109, total payo� was about 0:79�108. Average \trial length"(number of time steps required to move from start to goal) was 12,637. The shortest trial ever occurredaround time step 8:5 � 108 and took 168 time steps.5.2.2 Results with Self-Modifications.At system death (at time 109), total payo� was about 9:57�108. By then, average trial length (includingtime required for top-level management, of course) was down to 79.7 time steps (as opposed to morethan 12,000 time steps without self-modi�cations), with ongoing tendency to decrease. As with theprevious task, performance did not improve smoothly. The history of broken records reects the historyof performance improvements:First, there was a rather quick sequence of improvements which lasted until time 2:75� 106. By then(after 1951 payo� events), the shortest trial so far had taken 83 time steps. Then, the \current record"did not improve any more for a comparatively long time interval: 5:28 � 106 time steps | the length ofthis \boring" time interval by far exceeded the entire previous learning time.Sudden improvement speed-up. Then, quite unexpected to the observer, the system started tocreate a new sequence of additional improvements around time step 8 � 106. At time 8:04 � 106, therecord was down to 73. At time 8:84�106, the record was down to 68. At time 9:25�106, the record wasdown to 63. At time 9:57 � 106, the record was down to 57. At time 10:14 � 106, the record was down to50. At time 10:51 � 106, the record was down to 32. Thus, within about 2:4 � 106 time steps, the recordwas broken 6 times, sometimes dramatically. Then, performance improvement slowed down again.Throughout this urry of broken records starting at time 8:04 � 106, the number of stack entriesincreased quite steadily from 25 (corresponding to 17 useful self-modi�cation programs) to 32 (corre-sponding to 22 self-modi�cation programs). Apparently, around time step 8 � 106, the system madea \revolutionary" discovery that permitted a sequence of more \evolutionary" additional directed self-mutations.At system death (time step 109), the record was down to 22. The system's average payo� intakeper time interval still had a tendency to increase. In the end, there were 104 useful self-modi�cationprograms, each leading to \better" results than all previous ones. As with the previous task, many usefulself-modi�cation programs directly modi�ed the probabilities of additional self-modi�cation programs.Compare the paragraph entitled \automatic �ne-tuning search space structure" in section 5.1.2.Experiment 2: corrupted inputs. In another experiment, the system was applied to the sametask, but inputs were corrupted and unreliable. In the beginning, it took the system much longer tocome up with short trials. At time 3:83� 108 , the current record was 51. Then, not much happened fora long time: there was only one minor improvement (50) during the next 5:33 � 108 time steps. Again,the length of this \boring" time interval by far exceeded the entire previous learning time. Then, aroundtime step 9:16 � 108 (corresponding to half a day of computation time), a \revolution" occurred: withinonly about 108 additional time steps, the record was broken 13 times: at time 10:15�108, the record wasdown to 20. Throughout this sudden urry of broken records starting at time 9:16 � 108, the number ofstack entries increased quite steadily from 138 (corresponding to 96 useful self-modi�cation programs)to 189 (corresponding to 137 self-modi�cation programs). Then, performance improvement slowed downagain. System life ended at time step 1:5 � 109. By this time, the record was down to 18. The system'saverage payo� intake per time interval still had a tendency to increase.16



5.3 Three Comments1. Stability of probability modi�cations. With the experiments conducted so far, the top levelhardly ever countermanded probability modi�cations other than those computed by the 10 mostrecent useful self-modi�cation programs. For instance, once there were 120 stack entries, the 100oldest stack entries appeared extremely safe and had a good chance to survive the entire systemlife. This empirically justi�es the method suggested in the comment on limited, circular stacks insection 4.2. Revolutions and evolutions. In the tasks above, unexpected temporary speed-ups of perfor-mance improvements were observed. Even if the system appears to be stuck for a long time, theexternal observer never can be sure that it will not suddenly discover a new, \revolutionary" shiftof bias that builds the basis for additonal, smoother, \evolutionary" performance improvements.This is analoguous to the history of science itself. One nice thing about open-ended incrementalself-improvement is that there is no signi�cant theoretical limit to what the system may learn.This is, of course, due to the universal nature of the underlying programming language.Informally, a \revolution" corresponds to a self-improvement with high \conceptual jump size"(an expression coined by Solomono�, 1990), while \evolution" corresponds to a sequence of self-improvements with low conceptual jump sizes.3. Inserting prior bias. The experiments above certainly are not meant to convince the readerthat from now on, he should combine the incremental self-improvement paradigm with the low-level programming language from section 3 and apply it to real world problems. Instead, theexperiments are meant to illustrate basic principles of the paradigm. Of course, with large scaleproblems, it is desirable to insert prior knowledge into the system (if such knowledge is indeedavailable). With incremental self-improvement, a priori knowledge resides in the programmer'sselection of primitives with problem-speci�c built-in bias (and in the payo� function he chooses).There is no reason why certain primitives should not be complex, time consuming programs bythemselves, such as statistic classi�ers, neural net learning algorithms, logic programs, etc. Forinstance, using di�erent primitives for the navigation task from section 5.2 can greatly reduce thetime required to achieve near-optimal trials. This paper, however, is not a study of the e�ects ofdi�erent kinds of initial bias.6 History of Ideas / Previous WorkIn what follows, I will briey describe earlier work and the train of thought leading to this paper.Meta-evolution. My �rst attempts to come up with schemes for \true"4 self-referential learningbased on universal languages date back to 1986. They were partly inspired by a collaboration withDickmanns and Winklhofer (1986). We used a genetic algorithm (GA) to evolve variable length Prologprograms for solving simple tasks5. Soon there was a desire to improve the trivial mutation and crossoverstrategies used to construct new programs from old ones. This led to an algorithmic scheme (called\meta-evolution") for letting more sophisticated strategies be learned by a potentially in�nite hierarchy4I am not talking about �xed learning algorithms for adjusting the parameters of others. For instance, GAs aresometimes used to adjust learning rates of gradient based neural nets, etc. Or a neural net is used to compute the weightsof another neural net. In the literature, one can �nd quite a few approaches of this kind (too many to cite them all | Isettle by citing none, not even my own). Although such approaches sometimes may have their merits, they do not deservethe attribute \self-referential" | the additional level typically just defers the credit assignment problem.There were a few apparently more general approaches. For instance, Lenat (1983) reports that his Eurisko system wasable to discover certain heuristics for discovering heuristics. However, his approach, as well as all other previous approachesI am aware of, were either quite limited (many essential aspects of system behavior being unmodi�able), and/or lacked aconvincing global credit assignment strategy (as embodied by the top-level strategy of the incremental self-improvementparadigm).5Today, this approach would be classi�ed as \Genetic Programming", e.g. (Koza, 1992).17



of higher level GAs whose domains were to construct construction strategies (Schmidhuber, 1987). Meta-evolution recursively creates a growing hierarchy of pools of programs | higher-level pools containingprogram modifying programs being applied to lower-level programs and being rewarded based on lower-level performance.Collapsing meta-levels. The explicit creation of \meta-levels" and \meta-meta-levels" seemedunnatural, however. For this reason, alternative systems based on \self-referential" languages wereexplored, the goal being to collapse all meta-levels into one (Schmidhuber, 1987). At that time, however,no convincing global credit assignment strategy was provided.Self-referential neural nets. Later work presented a neural network with the potential to runits own weight change algorithm (Schmidhuber 1992, 1993a, 1993b). With this system, top-level creditassignment is performed by gradient descent. This is unsatisfactory, however, due to problems with localminima, and because repeatable training sequences are required. In general, this makes it impossible totake the entire learning history into account.Algorithmic probability / Universal search. Levin's universal search algorithm is theoreti-cally optimal for certain \non-incremental" search tasks with exactly repeatable initial conditions. SeeLevin (1974, 1984); see also Adleman (1979). There were a few attempts to extend universal search toincremental learning situations, where previous \trials" may provide information about how to speedup further learning, see e.g. (Solomono�, 1990; Paul and Solomono�, 1991; Schmidhuber, 1994). Forinstance, to improve future performance, Solomono� (1964, 1990) describes more traditional (as opposedto self-improving) methods for assigning probabilities to successful \subprograms". Alternatively, oneof the actually implemented systems in (Schmidhuber, 1994) simply keeps successful code in its pro-gram area. This system was a conceptual starting point for the one in the current paper. With �rstattempts (in September 1994), the probability distributions underlying the Turing machine equivalentlanguage required for universal search were modi�ed heuristically. One strategy was to slightly increasethe context-dependent probabilities of program cell contents used in successful programs, and then con-tinue universal search based on the new probability distributions. With a number of experiments, thisactually led to good results (at �rst glance, more impressive results than those in the current paper, atleast if one does not take the lack of bias into account, as one should always do). The system, however,was unsatisfactory, precisely because there was no principled way of adjusting probability distributions.This criticism led to the ideas expressed in the current paper.Meta-version of universal search. Without going into details, Solomono� (1990) mentions thatself-improvement may be formulated as a time-limited optimization problem, thus being solvable byuniversal search. However, the straight-forward meta-version of universal search (generating and eval-uating probability distributions in order of their Levin complexities | see Levin, 1974) just defers thecredit assignment problem to the meta-level, and does not necessarily make optimal incremental useof computational resources and previous experience6. Note that incremental self-improvement is nota meta-version of universal search. In fact, incremental self-improvement does not make a di�erencebetween \search" and \meta-search".Ongoing/future work. The concrete implementation described in section 3 represents only oneout of many ways of implementing the incremental self-improvement paradigm. It is intended to applyincremental self-improvement to more complex tasks, including prediction and control tasks, using avariety of universal, \self-referential" sets of primitives, including sets designed to exploit the bene�ts ofparallel, neural net-like hardware.6Solomono� appears to be well aware of problems with the meta-version: at the end of his 1990 paper, he refers toself-improvement as a \more distant goal": \The kind of training needed involves more mathematics and work on variouskinds of optimization problems | ultimately problems of improving computer programs." Another \more distant goal"mentioned by Solomono� is to let the system work \on an unordered batch of problems | deciding itself which are theeasiest, and solving them �rst". Note that the incremental self-improvement paradigm addresses both goals, withoutdepending on a meta-version of universal search. See e.g. comment 13 in section 4.18
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