

In previous chapter, we discussed the four flip-flops, namely SR flip-flop, D flip-flop, JK flip-flop & T flip-flop. We can convert one flip-flop into the remaining three flip-flops by including some additional logic. So, there will be total of twelve **flip-flop conversions**.

Follow these **steps** for converting one flip-flop to the other.

- Consider the **characteristic table** of desired flip-flop.
- Fill the excitation values (inputs) of given flip-flop for each combination of present state and next state. The **excitation table** for all flip-flops is shown below.

Present State	Next State	SR fli inp	p-flop uts	D flip-flop input	JK fli inp	p-flop outs	T flip-flop input
Q(t)	Q(t+1)	S	R	D	J	К	т
0	0	0	х	0	0	x	0
0	1	1	0	1	1	х	1
1	0	0	1	0	х	1	1
1	1	х	0	1	х	0	0

• Get the **simplified expressions** for each excitation input. If necessary, use Kmaps for simplifying.

• Draw the **circuit diagram** of desired flip-flop according to the simplified expressions using given flip-flop and necessary logic gates.

Now, let us convert few flip-flops into other. Follow the same process for remaining flipflop conversions.

SR Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of SR flip-flop to other flip-flops.

- SR flip-flop to D flip-flop
- SR flip-flop to JK flip-flop
- SR flip-flop to T flip-flop

SR flip-flop to D flip-flop conversion

Here, the given flip-flop is SR flip-flop and the desired flip-flop is D flipflop. Therefore, consider the following **characteristic table** of D flipflop.

D flip-flop input	Present State	Next State
D	Q(t)	Q(t + 1)
0	0	0
0	1	0
1	0	1
1	1	1

We know that SR flip-flop has two inputs S & R. So, write down the excitation values of SR flip-flop for each combination of present state and next state values. The following table shows the characteristic table of D flip-flop along with the **excitation inputs** of SR flip-flop.

D flip-flop input	Present State	Next State	SR flip-fl	op inputs
D	Q(t)	Q(t + 1)	S	R

0	0	0	0	х
0	1	0	0	1
1	0	1	1	0
1	1	1	х	0

From the above table, we can write the **Boolean functions** for each input as below.

 $S = m_2 + d_3S = m_2 + d_3$

 $R = m_1 + d_0 R = m_1 + d_0$

We can use 2 variable K-Maps for getting simplified expressions for these inputs. The **k-Maps** for S & R are shown below.

So, we got S = D & R = D' after simplifying. The **circuit diagram** of D flip-flop is shown in the following figure.

This circuit consists of SR flip-flop and an inverter. This inverter produces an output, which is complement of input, D. So, the overall circuit has single input, D and two outputs Q(t) & Q(t)'. Hence, it is a **D flip-flop**. Similarly, you can do other two conversions.

D Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of D flip-flop to other flip-flops.

- D flip-flop to T flip-flop
- D flip-flop to SR flip-flop
- D flip-flop to JK flip-flop

D flip-flop to T flip-flop conversion

Here, the given flip-flop is D flip-flop and the desired flip-flop is T flipflop. Therefore, consider the following **characteristic table** of T flip-flop.

T flip-flop input	Present State	Next State	
т	Q(t)	Q(t + 1)	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

We know that D flip-flop has single input D. So, write down the excitation values of D flip-flop for each combination of present state and next state values. The following table shows the characteristic table of T flip-flop along with the **excitation input** of D flip-flop.

T flip-flop input	Present State	Next State	D flip-flop input
т	Q(t)	Q(t + 1)	D
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

From the above table, we can directly write the **Boolean function** of D as below.

$D=T\bigoplus Q(t)D=T\oplus Q(t)$

So, we require a two input Exclusive-OR gate along with D flip-flop. The **circuit diagram** of T flip-flop is shown in the following figure.

This circuit consists of D flip-flop and an Exclusive-OR gate. This Exclusive-OR gate produces an output, which is Ex-OR of T and Q(t). So, the overall circuit has single input, T and two outputs Q(t) & Q(t)'. Hence, it is a **T flip-flop**. Similarly, you can do other two conversions.

JK Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of JK flip-flop to other flip-flops.

- JK flip-flop to T flip-flop
- JK flip-flop to D flip-flop
- JK flip-flop to SR flip-flop

JK flip-flop to T flip-flop conversion

Here, the given flip-flop is JK flip-flop and the desired flip-flop is T flipflop. Therefore, consider the following **characteristic table** of T flip-flop.

T flip-flop input	Present State	Next State
т	Q(t)	Q(t + 1)
0	0	0
0	1	1
1	0	1
1	1	0

We know that JK flip-flop has two inputs J & K. So, write down the excitation values of JK flip-flop for each combination of present state and next state values. The following table shows the characteristic table of T flip-flop along with the **excitation inputs** of JK flipflop.

T flip-flop input	Present State	Next State	JK flip-fl	op inputs
т	Q(t)	Q(t + 1)	J	К

0	0	0	0	х
0	1	1	х	0
1	0	1	1	х
1	1	0	х	1

From the above table, we can write the **Boolean functions** for each input as below.

 $J = m_2 + d_1 + d_3 J = m_2 + d_1 + d_3$

 $K = m_3 + d_0 + d_2K = m_3 + d_0 + d_2$

We can use 2 variable K-Maps for getting simplified expressions for these two inputs. The **k-Maps** for J & K are shown below.

K-Map for J K-Map for K

$$T \xrightarrow{Q(t)} T \xrightarrow{Q(t)} T \xrightarrow{Q(t)} T \xrightarrow{Q(t)} T \xrightarrow{Q(t)} T$$

0

1

0

1

So, we got, J = T & K = T after simplifying. The **circuit diagram** of T flip-flop is shown in the following figure.

This circuit consists of JK flip-flop only. It doesn't require any other gates. Just connect the same input T to both J & K. So, the overall circuit has single input, T and two outputs Q(t) & Q(t)'. Hence, it is a **T flip-flop**. Similarly, you can do other two conversions.

T Flip-Flop to other Flip-Flop Conversions

Following are the three possible conversions of T flip-flop to other flip-flops.

- T flip-flop to D flip-flop
- T flip-flop to SR flip-flop
- T flip-flop to JK flip-flop

T flip-flop to D flip-flop conversion

Here, the given flip-flop is T flip-flop and the desired flip-flop is D flipflop. Therefore, consider the characteristic table of D flip-flop and write down the excitation values of T flip-flop for each combination of present state and next state values. The following table shows the **characteristic table** of D flip-flop along with the **excitation input** of T flip-flop.

D flip-flop input	Present State	Next State	T flip-flop input
D	Q(t)	Q(t + 1)	Т

0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

From the above table, we can directly write the Boolean function of T as below.

$T=D\bigoplus Q(t)T=D\oplus Q(t)$

So, we require a two input Exclusive-OR gate along with T flip-flop. The **circuit diagram** of D flip-flop is shown in the following figure.

This circuit consists of T flip-flop and an Exclusive-OR gate. This Exclusive-OR gate produces an output, which is Ex-OR of D and Q(t). So, the overall circuit has single input, D and two outputs Q(t) & Q(t)'. Hence, it is a **D flip-flop**. Similarly, you can do other two conversions.