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Abstract

Higher-order languages, such as Haskell, encourage the pro-
grammer to build abstractions by composing functions. A
good compiler must inline many of these calls to recover an
e�ciently executable program.

In principle, inlining is dead simple: just replace the call
of a function by an instance of its body. But any compiler-
writer will tell you that inlining is a black art, full of delicate
compromises that work together to give good performance
without unnecessary code bloat.

The purpose of this paper is, therefore, to articulate the
key lessons we learned from a full-scale \production" inliner,
the one used in the Glasgow Haskell compiler. We focus
mainly on the algorithmic aspects, but we also provide some
indicative measurements to substantiate the importance of
various aspects of the inliner.

1 Introduction

One of the trickiest aspects of a compiler for a functional lan-
guage is the handling of inlining. In a functional-language
compiler, inlining subsumes several other optimisations that
are traditionally treated separately, such as copy propaga-
tion and jump elimination. As a result, e�ective inlining is
particularly crucial in getting good performance.

The Glasgow Haskell Compiler (GHC) is an optimising com-
piler for Haskell that has evolved over a period of about ten
years. We have repeatedly been through a cycle of looking
at the code it produces, identifying what could be improved,
and going back to the compiler to make it produce better
code. It is our experience that the inliner is a lead player in
many of these improvements. No other single aspect of the
compiler has received so much attention.

The purpose of this paper is to report on several algorithmic
aspects of GHC's inliner, focusing on aspects that were not
obvious to us | that is to say, aspects that we got wrong
to begin with. Most papers about inlining focus on how to
choose whether or not to inline a function called from many
places. This is indeed an important question, but we have
found that we had to deal with quite a few other less obvious,
but equally interesting, issues. Speci�cally, we describe the
following:

� A major issue for any compiler, especially for one that
inlines heavily, is name capture. Our initial brute-force
solution involved inconvenient plumbing, and we have
now evolved a simple and e�ective alternative (Sec-
tion 3).

� At �rst we were very conservative about inlining recur-
sive de�nitions; that is, we did not inline them at all.
But we found that this strategy occasionally behaved
very badly. After a series of failed hacks we developed
a simple, obviously-correct algorithm that does the job
beautifully (Section 4).

� Because the compiler does so much inlining, it is im-
portant to get as much as possible done in each pass
over the program. Yet one must steer a careful path
between doing too little work in each pass, requiring
extra passes, and doing too much work, leading to an
exponential-cost algorithm. GHC now identi�es three
distinct moments at which an inlining decision may be
taken for a particular de�nition. We explain why in
Section 6.

� When inlining an expression it is important to retain
the expression's lexical environment, which gives the
bindings of its free variables. But at the inline site, the
compiler might know more about the dynamic state of
some of those free variables; most notably, a free vari-
able might be known to be evaluated at the inline site,
but not at its original occurrence. Some key transfor-
mations make use of this extra information, and lacking
it will cause an extra pass over the code. We describe
how to exploit our name-capture solution to support
accurate tracking of both lexical and dynamic environ-
ments (Section 7).

None of the algorithms we describe is individually very sur-
prising. Perhaps because of this, the literature on the sub-
ject is very sparse, and we are not aware of published de-
scriptions of any of our algorithms. Our contribution is to
abstract some of what we have learned, in the hope that we
may help others avoid the mistakes that we made.

For the sake of concreteness we focus throughout on GHC,
but we stress that the lessons we learned are applicable to
any compiler for a functional language, and indeed perhaps
to compilers for other languages too.



2 Preliminaries

We will assume the use of a pure, non-strict, strongly-typed
intermediate language, called the GHC Core language. GHC
is itself written in Haskell, so we de�ne the Core language
by giving its data type de�nition in Haskell:

type Program = [Bind]

data Bind = NonRec Var Expr
| Rec [(Var, Expr)]

data Expr = Var Var
| App Expr Expr
| Lam Var Expr
| Let Bind Expr
| Const Const [Expr]
| Case Expr Var [Alt]
| Note Note Expr

type Alt -- Case alternative
= (Const, [Var], Expr)

data Const -- Constant
= Literal Literal
| DataCon DataCon
| PrimOp PrimOp
| DEFAULT

The Core language consists of the lambda calculus aug-
mented with let-expressions (both non-recursive and recur-
sive), case expressions, data constructors, literals, and prim-
itive operations. In presenting examples we will use an in-
formal, albeit hopefully clear, concrete syntax. We will feel
free to use in�x operators, and to write several bindings in
a single non-recursive let-expression as shorthand for a se-
quence of let-expressions.

A program (Program) is simply a sequence of bindings, in
dependency order. Each binding (Bind) can be recursive
or non-recursive, and the right hand side of each bind-
ing is an expression (Expr). The constructors for variables
(Var), application (App), lambda abstraction (Lam), and let-
expressions (Let) should be self-explanatory. A constant
application (Const) is used for literals, data constructor ap-
plications, and applications of primitive operators; the num-
ber of arguments must match the arity of the constant, and
and the constant cannot be DEFAULT. (Likewise, the num-
ber of bound variables in a case alternative (Alt) always
matches the arity of the constant; and the latter cannot be
a PrimOp.) The Note form of Expr allows annotations to
be attached to the tree. The only impact on the inliner is
discussed in Section 7.6.

Case expressions (Case) should be self-explanatory, except
for the Var argument to Case. Consider the following Core
expression,

case (reverse xs) of ys {
(a:as) -> ys
[] -> error "urk"

}

The unusual part of this construct is the binding occur-
rence of \ys", immediately after the \of". The semantics

is that ys is bound to the result of evaluating the scrutinee,
reverse xs in this case, which makes it possible to refer to
this value in the alternatives. This detail has no impact on
the rest of this paper | indeed, we omit the extra binder
in our examples | but we have found that it makes several
transformations more simple and uniform, so we include it
here for the sake of completeness.

GHC's actual intermediate language is very slightly more
complicated than that given here. It is an explicitly-typed
language based on System F!, and supports polymorphism
through explicit type abstraction and application. It turns
out that doing so adds only one new constructor to the Expr
type, and adds nothing to the substance of this paper, so we
do not mention it further. The main point is that this paper
omits no aspect essential to a full-scale implementation of
Haskell.

2.1 What is inlining?

Given a de�nition x = E, one can inline x at a particular
occurrence by replacing the occurrence by E. (We use upper
case letters, such as \E", to stand for arbitrary expressions,
and \==>" to indicate a program transformation.) For ex-
ample:

let { f = \x -> x*3 } in f (a + b) - c
==>

(a+b)*3 - c

We have found it useful to identify three distinct transfor-
mations that collectively implement what we informally de-
scribe as \inlining":

� Inlining itself replaces an occurrence of a let-bound
variable by (a copy of) the right-hand side of its de�-
nition. Inlining f in the example above goes like this:

let { f = \x -> x*3 } in f (a + b) - c
==> [inline f]

let { f = \x -> x*3 } in (\x -> x*3) (a + b) - c

Notice that not all the occurrences of f need be inlined,
and hence that the original de�nition of f must, in
general, be retained.

� Dead code elimination discards bindings that are no
longer used; this usually occurs when all occurrences of
a variable have been inlined. Continuing our example
gives:

let { f = \x -> x*3 } in (\x -> x*3) (a + b) - c
==> [dead f]

(\x -> x*3) (a + b) - c

� �-reduction simply rewrites a lambda application
(\x->E) A to let {x = A} in E. Applying �-
reduction to our running example gives:

(\x -> x*3) (a + b) - c
==> [beta]

(let { x = a+b } in x*3) - c

The �rst of these is the tricky one; the latter two are easy.
In particular, beta reduction simply creates a let binding.
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In a lazy, purely functional language, inlining and dead-
code elimination are both unconditionally valid, or meaning-
preserving. (Neither is valid, in general, in a language per-
mitting side e�ects, such as Standard ML or Scheme.) In
particular, notice that inlining is valid, regardless of

� the number of occurrences of x,

� whether or not the binding for x is recursive,

� whether or not E has free variables (that is, inlining of
nested de�nitions is perfectly �ne), and

� the syntactic form of E (notably, whether or not it is a
lambda abstraction).

Concerning the last of these items, notice that we (uncon-
ventionally) use the term \inline" equally for both functions
and non-functions. Continuing the example, x can now be
inlined, and then dropped as dead code, thus:

(let { x = a+b } in x*3) - c
==> [inline x]

(let { x = a+b } in (a+b)*3) - c
==> [dead x]

(a+b)*3 - c

In this case, x is used exactly once, but we sometimes also
inline non-functions that are used several times. Consider:

let x = (a,b)
in
...x...(case x of { (p,q) -> p+1 })...

By inlining x we can then eliminate the case to give

let x = (a,b)
in
...x...(a+1)...

In a similar way (when given bindings such as x=y), inlining
subsumes copy propagation.

2.2 Factors a�ecting inlining

To say that inlining is valid does not mean that it is desirable.
Inlining might increase code size, or duplicate work, so we
need be careful about when to do it. There are three distinct
factors to consider:

� Does any code get duplicated, and if so, how much? For
example, consider

let f = \v -> ...big... in (f 3, f 4)

where \...big..." is a large expression. Then inlin-
ing f would not duplicate any work (f will still be
called twice), but it will duplicate the code for f's body.
Bloated programs are bad (increased compilation time,
lower cache hit rates), but inlining can often reduce
code size by exposing new opportunities for transfor-
mations. GHC uses a number of heuristics to determine
whether an expression is small enough to duplicate.

� Does any work get duplicated, and if so, how much? For
example, consider

let x = foo 1000 in x+x

where foo is expensive to compute. Inlining x would
result in two calls to foo instead of one.

Work can be duplicated even if x only appears once:

let x = foo 1000
f = \y -> x * y

in ...(f 3)..(f 4)...

If we inline x at its (single) occurrence site, foo will be
called every time f is. The general rule is that we must
be careful when inlining inside a lambda.

It is not hard to come up with examples where a single
inlining that duplicates work gives rise to an arbitrar-
ily large increase in run time. GHC is therefore very
conservative about work duplication. In general, GHC
never duplicates work unless it is sure that the dupli-
cation is a small, bounded amount.

� Are any transformations exposed by inlining? For ex-
ample, consider the bindings:

f = \x -> E
g = \ys -> map f ys

Suppose we were to inline f inside g, thus:

g = \ys -> map (\x -> E) ys

No code is duplicated by doing so, but a small bounded
amount of work is duplicated, because the closure for
(\x -> E) would have to be allocated each time g was
called. It is often worth putting up with this work du-
plication, because inlining f exposes new transforma-
tion opportunities at the inlining site. But in this case,
nothing at all would be gained by inlining f, because f
is not applied to anything.

These considerations imply that inlining is not an optimi-
sation \by itself". The direct e�ects of careful inlining are
small: it may duplicate code or a constant amount of work,
and usually saves a call or jump (albeit not invariably |
see the example in the last bullet above). It is the indirect
e�ects that we are really after: the main reason for inlining
is that it often exposes new transformations, by bringing
together two code fragments that were previously separate.
Thus, in general, inlining decisions must be inuenced by
context.

2.3 Work duplication

If x is inlined in more than one place, or inlined inside a
lambda, we have to worry about work duplication. When
will such work duplication be bounded? Answer: at least in
the cases when x's right hand side is:

� A variable.

� A constructor application.

� A lambda abstraction.
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� An expression that is sure to diverge.

Constructor applications require careful treatment. Con-
sider:

x = (f y, g y)
h = \z -> case x of

(a,b) -> ...

It would plainly be a disaster, in general, to inline x inside
the body of h, since that would duplicate the calls to f and g.
Yet we want to inline x so that it can cancel with the case.
GHC therefore maintains the invariant that every construc-
tor application has only arguments that can be duplicated
with no cost: variables, literals, and type applications. We
call such arguments trivial expressions, so the invariant is
called the trivial-constructor-argument invariant. Once es-
tablished, this invariant is easy to maintain (see Section 7.2).

The last case, that of divergent computations, is more sur-
prising, but it is useful in practice. Consider:

sump = \xs ->
let

fail = error ("sump" ++ show xs)
in let rec

go = \xs ->
case xs of

[] -> 0
(x:xs) -> if x<0 then fail

else x + go xs
in
go xs

Here error is the standard Haskell function that prints an
error message and brings execution to a halt. Semantically,
its value is just ?, the divergent value. In this example,
sump adds up the elements of a list, but reports an error if
any element is negative. As it stands, a closure for fail will
be allocated every time sump is called. It is perfectly OK
to inline fail, because if fail is ever called, execution is
going to halt anyway, so there is no work-duplication issue.
If we do that, no closure is allocated; instead, error is called
directly if an element turns out to be less than zero.

GHC has a predicate whnfOrBot that identi�es expressions
that are in WHNF or are certainly divergent:

whnfOrBot :: Expr -> Bool

One could easily imagine extending whnfOrBot to cover cases
where a small amount of work other than allocation is du-
plicated, such as a few machine instructions.

3 Name capture

It is well known that any transformation-based compiler
must be concerned about name capture [Bar85]. Consider,
for example:

let x = a+b in
let a = 7 in

x+a

It is obviously quite wrong to inline x to give:

let a = 7 in

(a+b) + a

because the a that was free in x's right hand side has been
captured by the let binding for a.

3.1 The sledge hammer

Earlier versions of GHC used a sledge-hammer approach
to avoid the name-capture problem: during inlining, GHC
would simply rename, or clone, every single bound variable,
to give:

let s796 = 7
in (a+b) + s796

This renaming made use of a supply of fresh names that,
in this example, has arbitrarily renamed a to s796. This
approach su�ers from two disadvantages:

� It allocates far more fresh names than are actually nec-
essary, and there is sure to be a compile-time perfor-
mance cost to this.

� Plumbing the supply of fresh names to the places those
names are required is sometimes very painful.

Why is there a compile-time performance cost to the sledge-
hammer approach? Because a variable is a structure con-
taining a name; to rename the variable we must copy the
structure, inserting the new name. The substitution map-
ping old names to new names becomes larger. Finally, if the
substitution is empty we can sometimes avoid looking at an
expression or type at all | but if all names are cloned the
substitution is never empty.

If the compiler were written in an impure language, fresh
names could be allocated by side e�ect, but GHC is written
in Haskell, which does not have side e�ects. Using the trees
of [ARS94] is the best solution we know of, but it still in-
volves plumbing a tree of fresh names everywhere theymight
be needed. Worse, the fresh names usually aren't needed,
but the tree is nevertheless built. This is deeply irritat-
ing: loads of allocation for no purpose whatsoever. Finally,
even if we were not worried about performance, it is some-
times extremely painful to get the name supply to where it
is needed. For example, in a typed intermediate language it
should be possible to have a function:

exprType :: Expr -> Type

that �gures out the type of an expression. But suppose the
expression is something like:

filter Int pred xs

The function filter has the polymorphic type

filter :: forall a. (a -> Bool) -> [a] -> [a]

So to �gure out the type of the subexpression (filter Int)
we must instantiate filter's type, substituting Int for a.
Oh no! Substitution! That can, in general, give rise to name
capture. So we need to feed a name supply to exprType:

exprType :: NameSupply -> Expr -> Type

This \solution" is deeply unattractive, and the situation is
only di�erent in its cosmetics if the name supply is hidden
in a monad. Something better is required.
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3.2 The rapier

Suppose we write the call subst M [E=x] to mean the re-
sult of substituting E for x in M . The standard rule for
substitution [Bar85] when M is a lambda abstraction is:

subst (�x:M) [E=x] = �x:M
subst (�x:M) [E=y] = �x:(subst M [E=y])

if x does not occur free in E

If the side condition does not hold, one must rename the
bound variable x to something else. The brute-force solution
does this renaming regardless.

Suppose that we lacked a name supply, but instead knew
the free variables of E. Then we could test the side condi-
tion easily and, in the common case where there is no name
capture, �nd that there was no need to rename x. But what
if x was free in E? Then we need to come up with a fresh
name for x that is not free in E. A simple approach is to
try a variant of x, say \x1". If that, too, is free in E, try
\x2", and so on.

When we �nally discover a name, xn, that is not free in
E, we can augment the substitution to map x to xn and
apply this substitution to M , the body of the lambda. In
general, then, we must simultaneously substitute for several
variables at once.

To make this work at all, though, we need to know the free
variables of E, or, more generally, the free variables of the
range of the substitution. One way to �nd this is simply to
compute the free variables directly from E, but if E is large
this might be costly. However, it su�ces to know any su-
perset of these free variables. One obvious choice is the set
of all variables that are in scope. If we made this choice,
then we would end up renaming any bound variable for
which there was an enclosing binding. We call this the no-
shadowing strategy, for obvious reasons. The no-shadowing
strategy will rename some variables when it is not strictly
necessary to do so, but it has the desirable property of idem-
potence: a complete pass of the simpli�er that happens to
make no transformations will clone no variables. This is a
good thing. Usually, some parts of the program being com-
piled are fully-transformed before others; the no-shadowing
strategy reduces gratuitous \churning" of variable names.

Thus, we are led to a substitution algorithm that has three
parameters, instead of two: the expression to which the sub-
stitution is applied, the substitution itself, �, and the set of
in-scope variables, �:

subst (�x:M) � � = �x:subst M (� n x) (� [ fxg)
if x 62 �

subst (�x:M) � � = �y:subst M (�[x 7! y]) (� [ fyg)
where y 62 �

Notice how conveniently the set of in-scope variables can be
maintained. Almost all the time, it simply travels every-
where with the substitution; we shall see some interesting
exceptions to this general rule in Section 7.1.

There is one other important subtlety in this algorithm: in
the case where x is not in � we must delete x from the
substitution, denoted � n x. How could x be in the domain
of the substitution, but not be in scope? Perhaps because we
are indeed substituting for x as a result of some enclosing

Number of attempts
0 1 2 3� 9 10+

Mean 93:2% 1:3% 0:7% 1:6% 3:2%
Min 0:94% 0% 0% 0% 0%
Max 100% 10% 6:13% 18:2% 94%

Figure 1: Cloning rates

inlining. It certainly happens in practice | we have the
scars to show for it, though only in situations that are too
convoluted to present here.

Occasionally, the set of in-scope variables is not conveniently
to hand when starting a substitution. In that case, it is
easy to �nd the set of free variables of the range of the
substitution, and use that to get the process started.

3.3 Choosing a new name

The other choice that must be made in the algorithm is
to choose a fresh name, in the (hopefully rare) cases where
that proves necessary. We could just try x1, x2, and so on,
but there is a danger that once x1 : : : x20 are in scope, then
any new x will make 20 tries before �nding x21. A simple
way out is to compute some kind of hash value from the set
of in-scope variables, and use that, together perhaps with
the variable to be renamed, to choose a new name. Indeed,
simply using the number of enclosing binders as the new
variable name gives something not unlike de Bruijn numbers
(see Section 3.5). The nice thing is that any old choice will
do; the only issue is how many iterations it takes to �nd an
unused variable.

3.4 Measurements

We made some simple measurements of the e�ectiveness of
our approach. We compiled the entire nofib suite, some 370
Haskell modules, comprising around 50,000 lines of code in
total [Par92]. The size of each module varied from a few
dozen lines to a thousand lines or so.

Figure 1 summarises how many \tries" it took to �nd a
variable name that was not in scope. The columns show
what proportion of binders required zero, one, two, 3-9, and
10 or more attempts, to �nd a variable name that was not
already in scope. We measured these proportions separately
for each module, and then took the arithmetic mean of the
resulting �gures. The \min" (resp \max") rows show the
smallest (resp largest) proportions encountered among the
entire set of modules.

The zero column corresponds to the situation where the
binder is not shadowed; as expected, this is the case for
the vast majority (93%) of binders. Our hash function (we
simply picked an arbitrary member of the in-scope set as
a hash value) is obviously too simple, though: on average
3.2% of all binders required more than ten attempts to �nd
a fresh name, and in one pathological module almost all
binders required more than ten attempts. This pathological
case suggests that there is plenty of room for improvement
in the hash function.
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3.5 Other approaches

Another well-known approach to the name-capture prob-
lem to use de Bruijn numbers [dB80]. Apart from being
entirely unreadable, this approach su�ers from the disad-
vantage that when pushing a substitution inside a lambda,
the entire range of the substitution must have its de Bruijn
numbers adjusted. That operation can be carried out lazily,
to avoid a complexity explosion when pushing a substitution
inside multiple lambdas, but that means yet more adminis-
tration.

It is far from clear that using de Bruijn numbers gains any
e�ciency, and they carry a considerable cost in terms of the
opacity of the resulting program. (Programmers will not
care about this, but compiler writers do.)

There is one fairly compelling reason for using de Bruijn
numbers. Precisely because they do discard the original
variable names, many more common sub-expressions can
arise. These CSEs increase sharing of the compiler's rep-
resentation of the program; they do not in general represent
run-time sharing. However this compile-time sharing can
be particularly important when dealing with types, which
can get large. Shao, for example, reports substantial sav-
ings when using de Bruijn numbers (for types) together with
hash-consing [SLM98]. However, our types are smaller than
his (we are not compiling SML modules) so type sizes only
become an issue for deliberately pathological programs with
exponential-sized types.

Another popular approach to the name-capture problem is
this: establish the invariant that every bound variable is
unique in the whole program. Then, since only inlining can
duplicate an expression, we can maintain the invariant by
cloning all the locally-bound variables of an inlined expres-
sion. There are three di�culties here. First, we found in
practice that (in GHC at least) there were a quite a few
transformations that had to do extra work to maintain the
global-uniqueness invariant. Secondly, this strategy will do
more cloning than is really necessary. Thirdly, cloning the
local binders of an inlined expression implies a whole extra
pass over that expression, prior to simplifying the expres-
sion in its new context. Our approach, of maintaining an
in-scope set, combines the cloning pass with the simpli�ca-
tion pass, and simultaneously reduces the amount of cloning
that has to be done.

3.6 Summary

Our new substitution algorithm is a simple re-working of
the standard algorithm in [Bar85]. What is interesting is
that the resulting algorithm seems quite practical. Even if
the compiler were written in a language where name-supply
plumbing was not an issue, maintaining the set of in-scope
variables makes it easy to reduce the amount of cloning that
is done.

In GHC, a variable's name is actually a pair of a string and
a unique number. The unique is used for comparisons, but
the string is used when printing (optionally augmented with
the unique if there is a danger of ambiguity). When we do
need to clone a name, we invent a new unique, but keep the
same print-name. This makes it possible to print dumps of
intermediate code that still contain names that relate to the

original source program.

4 Ensuring termination

Inlining, together with beta reduction, corresponds closely
to compile-time evaluation of the program, so we must
clearly be concerned about ensuring that the compiler ter-
minates. We start from a secure base: it is a fact that F!
is strongly normalising. This is a complicated way of say-
ing that the process of reducing every reducible expression
(redex) in a F! program will surely terminate. However,
GHC's intermediate language extends F!. These extensions
introduce non-termination in two distinct ways:

Recursive bindings. If a recursively-bound variable is in-
lined at one of its occurrences, that will introduce a
new occurrence of the same variable. Unless restricted
in some way, inlining could go on for ever.

Recursive data types. Consider the following Haskell
de�nition for loop:

data T = C (T -> Int)

g = \y -> case y of
C h -> h y

loop = g (C g)

Here, g is small and non-recursive, so when processing
g (C g), g will be inlined. But the inlined call very
soon rewrites to g (C g), which is just the expression
we started with.

The problem here is that the data type T is recur-
sive, and it appears contravariantly in its own de�nition
[How96].

Of these two forms of divergence, the former is an immediate
and pressing problem, since almost any interesting Haskell
program involves recursion. The rest of this section focuses
entirely on recursive de�nitions.

In contrast, the latter situation is rather rare, and (embar-
rassingly) GHC can still be persuaded to diverge by such ex-
amples. The most straightforward solution is to spot such
contravariant data types, and disable the case-elimination
transformation

case (C g) of { C h -> ...h... }
==>

...g...

The question of spotting contravariant data types is com-
plicated by the fact that Haskell data types can be parame-
terised and mutually recursive. The MLj compiler [BKR98]
restricts data types declarations somewhat, but does per-
form the analysis for exactly this reason.

Before discussing recursive bindings, it is worth noting two
other possible sources of divergence that a Haskell compiler
does not have to deal with. Firstly, in an untyped setting
(such as a Scheme compiler) one can easily construct terms
such as

(\x -> x x) (\x -> x x)
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This expression is not explicitly recursive, but it nevertheless
reduces to itself. However, the strong-normalisation theo-
rem for F! tells us that such terms simply must be ill-typed.

Secondly, side e�ects (which Haskell lacks) can create a re-
cursive structure. For example1:

(let ((foo a-special-value)
(bar a-special-value))

(begin
(set! foo (lambda ..bar..))
(set! bar (lambda ..foo..))
body))

Here, foo and bar are mutable locations, each of which is
updated to refer to the other.

4.1 The problem

From now on we focus our attention on recursive bindings.
We call a group of bindings wrapped in rec a recursive
group. Unrestricted inlining of non-recursive bindings is
safe, but unrestricted inlining of recursive bindings might
lead to non-termination. One obvious thing to do, therefore,
is to ensure that each recursive group really is recursive. To
discover this, we regard each variable in the group as a node,
and we record an edge from f to g if f's right hand side men-
tions g (so f depends on g). The resulting collection of nodes
and edges describes a graph, called the dependency graph,
whose strongly connected components are the smallest pos-
sible recursive groups [Pey87]. To exploit this observation,
GHC constructs the dependency graph for each let rec,
and analyses its strongly-connected components. If there
is more than one component, the let rec is split into a
nest of recursive and non-recursive lets. GHC performs this
analysis regularly; quite often, groups that were mutually-
recursive fall into separate strongly-connected components
as a result of earlier transformations.

So much is well known. But what do we do when we are
faced with a genuinely recursive group? The simplest thing
to do is not to inline any recursively-bound variables at all,
and that is what earlier versions of GHC did. But this con-
servative strategy loses obviously-useful optimisation oppor-
tunities. Consider a recursive group of bindings:

let rec
f = \ x -> ...g...
g = \ y -> ...f...

in
...f...

By convention, other variables of interest, such as g in this
case, are assumed not to be free in ...f.... Since only f is
called outside the rec, we can inline g at its unique call site
to give:

let rec
f = \ x -> ...(...f...)...

in
...f...

Here, the gain is modest. But sometimes inlining in recs is
critically important. Consider this:

1Thanks to Manuel Serrano for pointing this out.

let
eq = ...

in
let rec

d = (eq, neq)
neq = \a b -> case d of

(e,n) -> not (e a b)
in
...

GHC generates code quite like this for an \Eq dictionary". A
\dictionary" is a bundle of related \methods" for operating
on values of a particular type. Here, the Eq dictionary, d,
is a pair of methods (ordinary functions), eq and neq; the
intention is that eq is a function that determines whether
its arguments are equal, and neq determines whether they
are unequal.

In this example, the neq method is speci�ed by selecting the
eq method from the dictionary d, calling it, and negating its
result. You might think that it would be more straight-
forward to call eq directly, but this code is generated by
the compiler from class and instance declarations in the
Haskell source code. We found that it was very hard, in gen-
eral, to call the appropriate method directly; it was much
easier to allow the front end to generate naive code, and let
the simpli�er take care of the rest.

In this particular example, d and neq are genuinely mutually
recursive. Yet, if d were inlined in the body of neq, the
case would cancel with the pair constructor, leading to the
following:

let
eq = ...
neq = \a b -> not (eq a b)
d = (eq, neq)

in
...

Now everything is non-recursive, the de�nition of neq is im-
proved, and inlining opportunities in the rest of the program
are improved.

This is not an isolated or arti�cial example. Compiling
Haskell's type-class-based overloading, using the dictionary-
passing encoding sketched above, gives rise to pervasive re-
cursion through these dictionaries. Failing to unravel the
recursion has a devastating e�ect on performance, because
overloaded functions include equality, ordering, and all nu-
meric operations, some of which show up in almost any inner
loop. We originally went to great lengths in the front end
to avoid generating unnecessary dictionary recursion but,
no matter how hard we tried, some unnecessary recs still
showed up. Our new approach uses a much simpler transla-
tion scheme, along with an inliner that does a good job of
inlining rec-bound variables. This approach has the merit
that it works equally well for complex recursions written
by the programmer, though admittedly these are much less
common.

4.2 The solution

The real problem with recursive bindings is that they can
make the inliner fall into an in�nite loop. The key insight is
this:
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� The inliner cannot loop if every cycle in the dependency
graph is broken by a variable that is never inlined.

The conservative scheme works by never inlining any
recursively-bound variable, but that is over-kill, as we saw
in the example in Section 4.1:

rec
d = (eq, neq)
neq = \a b -> case d of

(e,n) -> not (e a b)

we obtained much better results by inlining d (but not neq)
than by inlining neither. The dependency graph for this
group forms a circle, thus:

d neq

To prevent the inliner diverging, it su�ces to choose either
of d or neq, and refrain from inlining it. In a more com-
plicated situation, however, it might not be at all obvious
which variable(s) su�ce to break all the loops. For example,
consider this more complex dependency graph:

f

h

g q

p

In this graph, we can break all the loops by picking g alone,
or f and q, or h and p, or a variety of other pairs. To exploit
this idea, we enhance the standard rec-breaking dependency
analysis described above, in the following way. For each rec
group, we construct its dependency graph, and then execute
the following algorithm:

1. Perform a strongly-connected component analysis of
the dependency graph.

2. For each strongly-connected component of the graph,
perform the following steps, treating the components
in topologically-sorted order; that is, deal �rst with
the component that does not refer to any of the other
components, and so on.

(a) If the component is a singleton that does not de-
pend on itself, do nothing.

(b) Otherwise, choose a single variable, the loop-
breaker, that will not be inlined. This choice is
made using a heuristic we discuss shortly (Sec-
tion 4.3).

(c) Take the dependency graph of the component (a
subset of the original graph), and delete all the
edges in this graph that terminate at the loop-
breaker.

(d) Repeat the entire algorithm for this new depen-
dency graph, starting with Step 1.

The result of the algorithm is an ordered list of bindings
with the following property: the only forward references are
to loop-breakers. The bindings are still, of course, mutu-
ally recursive, but all the non-loop-breakers can be treated
exactly like non-recursive lets so far as the inliner is con-
cerned: their de�nition occurs before any of their uses, and
inlining them cannot cause non-termination. For example,
consider the �ve-node dependency graph given above. It
forms a single strongly-connected component. Suppose we
pick q as a loop breaker; we delete arcs leading to it and
perform the strongly-connected component analysis again.
The reduced dependency graph has three strongly-connected
components, namely fpg, ff; g; hg, and fqg

fh

g

qp

(We use dashed arcs for the arcs that are deleted in step
(c).) Suppose now that we choose f as the loop breaker.
Now we have no strongly connected components left in the
reduced graph:

fh

g

qp

Notice that the only forward arcs are the dashed arcs lead-
ing to loop breakers. Reconstructing the recursive group
in topologically sorted order (left to right in the diagrams)
gives:

rec
p = ...q...
h = ...f...
g = ...h...
f* = ...g...
q* = ...g...

The \*" indicates the loop breakers. Only the loop breakers
are referred to in the group earlier than they are de�ned,
considering the de�nitions top to bottom. This is a won-
derful property. As we shall see later (Section 6), inlining
even non-recursive let-bound variables is far from straight-
forward, and having to worry about recursion would only
make it worse. The beauty of the loop-breaking algorithm
means that recursive lets can be treated essentially iden-
tically to non-recursive lets, thereby factoring the problem
into two independent pieces: �rst cut the loops, and then
treat recursive and non-recursive bindings uniformly.
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4.3 Selecting the loop breaker

There are two criteria that one might use to select a loop
breaker:

� Try not to select a variable that it would be very ben-
e�cial to inline.

� Try to select a variable that will break many loops.

GHC currently uses only the �rst of these criteria. The sec-
ond is a bit tricky to predict, and we have not explored using
it. To evaluate the �rst criterion, GHC crudely \scores" each
variable by how keen GHC is to inline it. Speci�cally, we
pick the �rst of the following criterion that applies to the
binding in question:

Score = 3, if the right hand side is just a constant or vari-
able. In this case the binding will certainly be inlined.

Score = 3, if the variable occurs just once (counting both
the right hand sides of the rec itself and the body of
the let). The variable is likely to be inlined if it occurs
only once.

Score = 2, if the right hand side is a constructor applica-
tion. Thus, we avoid selecting \d" in the example in
Section 4.1, because its right hand side is a pair.

Score = 1, if the variable has rewrite rules or specialisa-
tions attached to it. Details of this are beyond the
scope of this paper.

Score = 0, otherwise.

Then we pick a loop breaker by arbitrarily choosing one of
the variables with lowest score. While this scoring mech-
anism is very crude, it seems adequate. In practice, we
have never come across a rec in which a di�erent choice
of loop breaker would have made a signi�cant di�erence.
This amounts to anecdotal evidence only; we have not tried
systematically to measure the e�ectiveness of loop-breaker
choice.

4.4 Other approaches

A much more common approach to termination, taken by
both [Ser97] and [WD97], is to bound both the e�ort that
the inliner is prepared to invest, and the size of the expres-
sion it is prepared to build, when inlining a particular call. If
either limit is exceeded, the inliner abandons the attempt to
inline the call. Bounding e�ort deals with expressions, such
as (\x->x x)(\x->x x), that do not grow, but do not ter-
minate either. The e�ort bound is typically set quite high,
to allow for cascading transformations, so an e�ort bound
alone might produce very large residual programs; that is
why the size bound is necessary as well.

A variant of the approach retains a stack of inlinings that
have been begun but not completed. When examining a
call, the function is not inlined if an inlining of that same
function is already in progress, or \pending". In e�ect, that
function becomes the loop breaker, but it is chosen dynam-
ically rather than statically.

This approach has the very great merit that it deals readily
with all forms of non-termination: recursive functions, re-
cursive data types, untyped languages and side e�ects, for
example, all cause no problems. The di�culty with this ap-
proach in our setting is that the simpli�er is applied repeat-
edly, a dozen times or more, between applying other trans-
formations (strictness analysis, let-oating, etc). If each it-
eration accepts a given amount of code growth, or e�ort ap-
plied, then each iteration might unroll a recursive function
further. The e�ort/size bound mechanism uses an auxiliary
parameter (the e�ort/size budget) that is not recorded in
the tree between successive iterations of the simpli�er; it
records the state of the inliner itself.

Our approach does not have this problem | successive ap-
plications of the simpli�er will eventually terminate. How-
ever, our more static analysis required that recursive func-
tions and recursive data types be handled di�erently, which
is undesirable. And yet more would be needed in an untyped
or impure setting.

A quite separate, complementary, approach to inlin-
ing recursive functions is variously described by [App94]
(\loop headers"), [Ser97] (\labels-inline"), [DS97] (\lambda-
dropping"), and [San95] (\the static argument transforma-
tion"). The common idea is to turn a recursive function
de�nition into a non-recursive function containing a local,
recursive de�nition. Thus we can, for example, transform
the standard recursive de�nition of map:

map = \f xs -> case xs of
[] -> []
(x:xs) -> f x : map f xs

into the following non-recursive de�nition:

map = \f xs ->
let mp = \xs -> case xs of

[] -> []
(x:xs) -> f x : mp xs

in mp xs

With the original de�nition, inlining would simply unroll a
�nite number of iterations of map. With the new de�nition,
inlining map creates a new, specialised function de�nition for
mp into which the particular f used at the call site can be
inlined, perhaps resulting in better code | claimed bene�ts
range from 1% to 10%. The overall e�ect is much better than
that achieved by simply unrolling the original de�nition of
map; unrolling a loop reduces the overheads of the loop itself,
whereas creating a specialised function, mp, reduces the cost
the computation in each iteration of the loop.

The static argument transformation may indeed be useful,
but it is orthogonal to the main thrust of this paper. It is
best considered as a separate transformation, performed on
map before inlining is begun, that enhances the e�ectiveness
of inlining.

4.5 Results

It is hard to o�er convincing measurements for the e�ec-
tiveness of the loop-breaker algorithm, because GHC is now
built in the expectation that recs that can be broken will
be. Nevertheless, Figure 2 gives some indicative results. It
shows the the e�ect of switching the loop-breaker algorithm
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Allocations No libs Libs too
Mean +23% +78%
Min �15% 0%
Max +200% +1125%

Figure 2: E�ect on total allocation of switching o� the loop-
breaker algorithm

o�, by marking every rec-bound variable as a loop breaker.
The \Mean" row shows the geometric mean of the ratio be-
tween the switched-o� version and the baseline version |
we use a geometric mean because we are averaging ratios
[FW86]. The \Min" and \Max" rows show the most ex-
treme ratios we found.

The e�ects are dramatic. The column headed \No libs"
has the loop-breaking algorithm switched o� when compil-
ing the application, but not when compiling the standard
libraries. The column \Libs too" shows the e�ect of switch-
ing o� the loop-breaking algorithm when compiling the stan-
dard libraries as well. The importance of the libraries is that
they contain implementations of arithmetic over basic types;
if that is compiled badly then performance su�ers horribly.
(We are investigating the strange �15% �gure, which sug-
gests that switching o� loop breakers improved at least one
program.)

4.6 Summary

In retrospect, the algorithm is entirely obvious, yet we spent
ages trying half-baked hacks, none of which quite worked,
before �nally biting the bullet and �nding it quite tasty. It is
more likely to be important for compilers for lazy languages
than for strict ones, because only non-strict languages allow
recursive data structures, and it is there that the most im-
portant performance implications show up. However, as our
�rst example demonstrated, even where no data structures
are involved, useful improvements can be had.

All of this is entirely orthogonal to the question of loop un-
rolling. A loop breaker could be inlined a �xed number of
times to gain the e�ect of loop unrolling.

5 Overall architecture

The GHC inliner tries to do as much inlining as possible in
a single pass. Since inlining often reveals new opportunities
for further transformations, the inliner is actually part of
GHC's simpli�er, which performs a large number of local
transformations [PJS98]. In this section we give an overview
of the simpli�er to set the scene for the rest of the paper.

5.1 The simpli�er

The simpli�er takes a substitution, a set of in-scope vari-
ables, an expression, and a \context", and delivers a simpli-
�ed expression:

simplExpr :: Subst -> InScopeSet
-> InExpr -> Context
-> OutExpr

The real simpli�er's type is a bit more complicated than
this: it takes an argument that enables or disables individ-
ual transformations; it gathers statistics about how many
transformations are performed; and it takes a name supply,
to use when it has to conjure up a fresh name not based on
an existing name2. However, we will not need to consider
these aspects here.

The substitution and in-scope set perform precisely the roles
described in Section 3, but, as we shall see, they both have
further uses. The context tells the simpli�er something
about the context in which the expression appears (e.g. it is
applied to some arguments, or it is the scrutinee of a case
expression). This context information is important when
making inlining decisions (Section 7.5).

We refer to an un-processed expression as an \in-
expression", and an expression that has already been pro-
cessed as an \out-expression", and similarly for variables.
The reasons for making these distinctions will become ap-
parent (Section 6.2).

type InVar = Var
type InExpr = Expr
type InAlt = Alt

type OutVar = Var
type OutExpr = Expr
type OutAlt = Alt

As indicated in Section 2, the simpli�er treats an entire
Haskell module (which GHC treats as a compilation unit)
as a sequence of bindings, some recursive and some not. It
deals each of these bindings in turn, just as if they were in
a nested sequence of lets.

5.2 The occurrence analyser

It is clear that whether to inline x depends a great deal on
how often x occurs in E. Before each run of the simpli�er,
GHC runs an occurrence analyser, a bottom-up pass that
annotates each binder with an indication of how it occurs,
chosen from the following list:

LoopBreaker. The occurrence analyser executes the
dependency-graph algorithm we discussed in Sec-
tion 4.1, marking loop breakers, and sorting the
bindings in each rec so that only loop breakers are
referred by an earlier de�nition in the sequence.
Building the dependency graph uses precisely the
information that the occurrence analyser is gathering
anyway, namely information about where the bound
variables of the rec occur.

Dead. The binder does not occur at all. For a let binder
(whether recursive or not), the binding can be dis-
carded, and the occurrence analyser does so immedi-
ately, so that it does not need to analyse the right hand
side(s).

OnceSafe. The binder occurs exactly once, and that occur-
rence is not inside a lambda, nor is a constructor ar-

2We could certainly do without this name supply, by conjuring
up names based on an arbitrary base name, but it turns out that it
can conveniently piggy-back on the (monadic) plumbing for the other
administrative arguments.
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gument. Inlining is unconditionally safe; it duplicates
neither code nor work. Section 2.2 explained why we
must not inline an arbitrary expression inside a lambda,
and also described the trivial-constructor-argument in-
variant.

MultiSafe. The binder occurs at most once in each of sev-
eral distinct case branches; none of these occurrences
is inside a lambda. For example:

case xs of
[] -> y+1
(x:xs) -> y+2

In this expression, y occurs only once in each case
branch. Inlining y may duplicate code, but it will not
duplicate work.

OnceUnsafe. The binder occurs exactly once, but inside a
lambda. Inlining will not duplicate code, but it might
duplicate work (Section 2.2).

MultiUnsafe. The binder may occur many times, including
inside lambdas. Variables exported from the module
being compiled are also marked MultiUnsafe, since the
compiler cannot predict how often they are used.

Notice that we have three variants of \occurs once"
(OnceSafe, MultiSafe, and OnceUnsafe). We have found
all three to be important.

Some lambdas are certain to be called at most once. Con-
sider:

let x = foo 1000
f = \y -> x+y

in case a of
[] -> f 3
(b:bs) -> f 4

Here f cannot be called more than once, so no work will be
duplicated by inlining x, even though its occurrence is inside
a lambda. Hence, it would be better to give x an occurrence
annotation of OnceSafe, rather than OnceUnsafe.

We call such lambdas one-shot lambdas, and mark them
specially. They certainly occur in practice | for example,
they are constructed as join points by the case-of-case trans-
formation (for details see [PJS98]). We are (still) working
on a type-based analysis for identifying one-shot lambdas
[WP99]. Details of this analysis are beyond the scope of
this paper, but our point here is that they are beautifully
easy to exploit: the occurrence analyser simply ignores them
when it is computing its \inside-lambda" information.

5.3 Summary

The overall plan for GHC's simpli�er is therefore as follows:

while something-happened && iterations < 4
do

perform occurrence analysis
simplify the result

end

The simpli�er alternates between occurrence analysis and
simpli�cation, until the latter indicates that no transforma-
tions occurred, or until some arbitrary number (currently 4)
of iterations has occurred. This entire algorithm is applied
between other major passes, such as specialisation, strict-
ness analysis [PP93], or let-oating [PPS96].

GHC is capable of wholesale inlining across module bound-
aries. Whenever GHC compiles a module M it writes an
\interface �le", M.hi, that contains GHC-speci�c informa-
tion about M, including the full Core-language de�nitions for
any top-level de�nitions in M that are smaller than a �xed
threshold. (This threshold is chosen so that few, if any,
larger functions could possibly be inlined, regardless of the
calling context.) When compiling any module, A, that im-
ports M, GHC slurps in M.hi, and is thereby equipped to
inline calls in A to M's exports. Since the de�nition of func-
tion exported from Mmight refer to values not exported from
M, GHC dumps into M.hi the transitive closure of all (su�-
ciently small) functions reachable from M's exports. Values
that are not exported from M may not be mentioned directly
by the programmer, but may nevertheless be inlined by the
inliner.

The consequence of all this is that A may need to be re-
compiled if M changes. There is no avoiding this, except by
disabling cross-module inlining (via a command-line ag).
GHC goes to some trouble to add version stamps to every
inlining in M.hi so that it can deduce whether or not A really
needs to be recompiled.

6 The three-phase inlining strategy

After considerable experimentation, GHC now makes an in-
lining decision about a particular let bound variable at no
fewer than three distinct moments. In this section we ex-
plain why. Consider again the expression:

let x = E in B

PreInlineUnconditionally. When the simpli�er meets
the expression for the �rst time, it considers whether
to inline x unconditionally in B. It does so if and only
if x is marked OnceSafe (see Section 5.2). In this case,
the simpli�er does not touch E at all; it simply binds
x to E in its current substitution, discards the binding
completely, and simpli�es B using this extended substi-
tution. This is the main use of the substitution beyond
dealing with name capture, but it needs a little care,
as we discuss in Section 6.2.

Notice, crucially, that the right hand side of the de�ni-
tion is processed only once, namely at the occurrence
site. It turns out that this is very important. If the
right hand side is processed when the let is encoun-
tered, and then again at the occurrence of the variable,
the complexity of the simpli�er becomes exponential
in program size. Why? Because the right hand side is
processed twice; and it might have a let whose right
hand side is then processed twice each time; and so on.
In retrospect this is obvious, but it was very puzzling
at the time!

PostInlineUnconditionally. If the pre-inline test fails,
the simpli�er next simpli�es the right hand side, E, to
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produce E'. It then again considers whether to inline
x unconditionally in B. It decides to do so if and only
if

� x is not exported from this module (exported def-
initions must not be discarded), and

� x is not a loop breaker, and

� E' is trivial { that is, a literal or variable3. Nei-
ther work nor code is is duplicated if a trivial
expression is inlined.

If so, then again the binding is dropped, and x is
mapped to E' in the substitution.

This case is quite common; it corresponds to copy prop-
agation in a conventional compiler. It often arises as a
result of �-reduction. For example, consider the de�ni-
tions:

f = \x -> E
t = f a

If f is inlined, we get a � redex, and thence

f = \x -> E
t = let x = a in E

The interesting question is why we do not make this
test at the PreInlineUnconditionally stage, something
we discuss below.

CallSiteInline. If neither of the above holds, GHC retains
the let binding, adds x to the in-scope set. While
processing B, at every occurrence of x, GHC considers
whether to inline x. This decision is based on a fairly
complex heuristic, that we discuss in Section 7. If the
decision is \Yes", then GHC needs to have access to x's
de�nition; this can be achieved quite elegantly, as we
discuss in Section 6.3.

6.1 Why three-phase?

An obvious question is this: why not combine PostInlineUn-
conditionally with PreInlineUnconditionally? That is, be-
fore processing E, why not look to see if it is trivial (e.g. a
variable), and if so inline it unconditionally? Doing so is a
huge, but rather subtle, mistake.

The mistake is to do with the correctness of the pre-
computed occurrence information. Suppose we have:

let
a = ...big...
b = a

in
...b...b...b...

a will be marked OnceSafe, and hence will be inlined uncon-
ditionally. But if PreInlineUnconditionally now sees that b's
right-hand side is just a, and inlines b everywhere, a now ef-
fectively occurs in many places. This is a disaster, because
a is now inlined unconditionally in many places.

The cause of this disaster is that a's occurrence information
was rendered invalid by our decision to inline b. Several

3Or, in the real compiler, a type application.

solutions suggest themselves | for example, provide some
mechanism for �xing a's occurrence information; or get the
occurrence analyser to propagate b's occurrences to a| and
we tried some of them. They are all complicated, and the
result was a bug farm.

We �nally discovered the three-phase inline mechanism we
have described. It is simple, and obviously correct. The
PreInlineUnconditionally phase only inlines a variable x if
x occurs once, not inside a lambda. That means that the
occurrence information for any variable, y, free in x's right
hand side is una�ected by the inlining.

On the other hand, once the right hand side has been pro-
cessed, if y is going to be inlined unconditionally, then that
will have happened already. In our example, PreInlineUn-
conditionally will decide to inline a. Now the simpli�er
moves on to the binding for b. PreInlineUnconditionally de-
clines to inline, so the right hand side of b is processed; a is
inlined, and (a processed version of) ...big... is produced.
This is not trivial, so PostInlineUnconditionally declines too.

Another obvious question is whether PostInlineUncondition-
ally could be omitted altogether, leaving CallSiteInline to do
its work. Here the answer is clearly \yes"; PostInlineUncon-
ditionally is just an optimisation that allows trivial bindings
to be dropped a little earlier than would otherwise be the
case. To summarise, the key feature of our three-phase inlin-
ing strategy is that it allows the use of simple, pre-computed
occurrence information, while still avoiding the exponential
blowup that can occur if PreInlineUnconditionally is omit-
ted.

6.2 The substitution

As we mentioned at the start of Section 6, the simpli�er
carries along (a) the current substitution, and (b) the set
of variables in scope. But since the simpli�er is busy trans-
forming the expression and cloning variables, we have to be
more precise:

� The domain of the substitution is in-variables.

� The in-scope set consists of out-variables.

(We discussed in-variables and out-variables in Section 5.)
But what is the range of the substitution? When used for
cloning or PostInlineUnconditionally the range was an out-
expression, but when used in PreInlineUnconditionally the
range was an in-expression. But watch out! Since we are,
in e�ect, deferring the simpli�cation of the in-expression, we
must also record the substitution appropriate to the original
site of the expression. Thus we are led to the following
de�nition for the substitution:

type Subst = FiniteMap InVar SubstRng
data SubstRng = DoneEx OutExpr

| SuspEx InExpr Subst

A DoneEx is straightforward, and is used both by the name-
cloning mechanism, and by PostInlineUnconditionally. A
SuspEx (Susp for \suspended") is used by PreInlineUncon-
ditionally, and pairs an in-expression with the substitution
appropriate to its let binding; you can think of it as a sus-
pended application of simplExpr. Notice that we do not
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capture the in-scope set as well. Why not? Because we
must use the in-scope set appropriate to the occurrence site
| Section 7.1 ampli�es this point.

6.3 The in-scope set

We mentioned earlier (Section 6) that the simpli�er needs
access to a let-bound variable's right-hand side at its oc-
currence site(s). All we need is to turn the in-scope set into
a �nite mapping:

type InScopeSet = FiniteMap OutVar Definition
data Definition = Unknown

| BoundTo OutExpr OccInfo
| NotAmong [DataCon]

Whether or not a variable is in scope can be answered by
looking in the domain of the in-scope set (we still call it a
\set" for old times sake). But the range of the mapping
records what value the variable is bound to:

Unknown is used for variables bound in lambda and case
patterns. We don't know what value such a variable is
bound to.

BoundTo is used for let bound variables (both recursive
and non-recursive), and records the right-hand side of
the de�nition and the occurrence information left with
the binding by the occurrence analyser. The latter is
needed when making the inlining decision at occurrence
sites.

NotAmong is described shortly.

The in-scope set is also a convenient place to record informa-
tion that is valid in only part of a variable's scope. Consider:

\x -> ...(case x of (a,b) -> E)...

When processing E, but not in the \..." parts, x is known to
be bound to (a,b). So, when processing the alternative of a
case expression whose scrutinee is a variable, it is easy for
the simpli�er to modify the in-scope set to record x's bind-
ing. Why is this useful? Because E might contain another
case expression scrutinising x:

...(case x of (p,q) -> F)...

By inlining (a,b) for x, we can eliminate this case alto-
gether. This turns out to be a big win [PJS98].

The NotAmong variant of the Definition type allows the
simpli�er to record negative information:

case x of
Red -> ...
Blue -> ...
Green -> ...
DEFAULT -> E

The DEFAULT alternative matches any constructors other
than Red, Blue, and Green. GHC supports such DEFAULT
alternatives directly, rather than requiring case expressions
to be exhaustive, which is dreadful for large data types. In-
side E, what is known about x? What we know is that it
is not bound to Red, Blue, or Green. This can be useful;
if E contains a case expression that scrutinises x, we can

Pre Post CallSite
Mean 47:4% 17:4% 35:2%
Min 0:25% 0:92% 0:72%
Max 80% 95% 98%

Figure 3: Relative frequency of inlining

eliminate any alternatives that cannot possibly match. Sim-
ilarly, the expression x `seq` F inside E can be transformed
to just F, since NotAmong implies that x is evaluated4. Even
the value NotAmong [] is useful: it signals that the variable
is evaluated, without specifying anything about its value.

The in-scope set, extended to be an in-scope mapping, plays
the role of a dynamic environment. It records knowledge of
the value of each in-scope variable, including knowledge that
may be true for only part of that variable's scope. The nice
thing is that this dynamic knowledge can elegantly be car-
ried by the in-scope set, which we need anyway. The details
of the transformations that exploit that dynamic knowledge
are beyond the scope of this paper.

Almost all the time, the substitution and in-scope set travel
together. But that is not always the case, as we discuss in
Section 7.1.

6.4 Measurements

Figure 3 gives some simple measurements of the relative
frequency of each form of inlining. We used the same set of
benchmark programs in in Section 3.4, gathered statistics
on how often each sort of inlining was used, and averaged
these separately-calculated proportions. We took arithmetic
means of the percentages, because here we are averaging
\slices of the pie", so the \Mean" line should still sum to
100%.

The �gures indicate that on average, each sort of inlining is
actually used in practice, and that each dominates in some
programs.

6.5 Summary

We can summarise the binding-site e�ects on the substitu-
tion and in-scope set as follows. Suppose that we encounter
the binding x = E with a substitution subst, and an in-
scope set in-scope.

PreInlineUnconditionally. The substitution is extended
by binding x to SuspEx E subst. The in-scope set is
not changed.

PostInlineUnconditionally. The substitution is ex-
tended by binding x to DoneEx E', where E' is the
simpli�ed version of E. The in-scope set is not changed.

Otherwise. If x is not already in scope, the substitution is
not changed, but the in-scope set is extended by bind-
ing x to E'. If x is already in scope, then a new variable
name x' is invented (Section 3.3); the substitution is

4The expression E1 `seq` E2 evaluates E1, discards the result, and
then evaluates and returns E2.
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extended by binding x to DoneEx x', and the in-scope
set is extended by binding x' to E'.

This concludes the discussion of what happens at the bind-
ing site of a variable. Now we consider what happens at its
occurrence(s).

7 Occurrences

When the simpli�er �nds an occurrence of a variable, it �rst
looks up the variable in the substitution (Section 7.1), and
then decides whether to inline it (Section 7.2).

7.1 Looking up in the substitution

When the simpli�er encounters the occurrence of a variable,
the latter (being an InVar) must be looked up in the sub-
stitution:

simplExpr sub ins (Var v) cont
= case lookup sub v of

Nothing -> considerInline ins v cont
Just (SuspEx e s) -> simplExpr s ins e cont
Just (DoneEx e) -> simplExpr empty ins e cont

The variable might not be in the substitution at all { for
example, it might be a variable that did not need to be
renamed. In that case, the next thing to do is to consider
inlining it. The substitution can be discarded at this point,
because the inlining (if any) is already an out-expression.
Incidentally, notice that the variable we previously thought
of as an InVar is now an OutVar. This is one reason that
InVar and OutVar are simply synonyms for Var, rather than
being truly distinct types.

If the substitution maps the variable to a SuspEx, then the
simpli�er is (tail) called again, passing the captured substi-
tution, and the current in-scope set. The substitution and
the in-scope set usually travel together, but here they do
not. We must use the in-scope set from the occurrence site
(because that describes what variables are in scope there),
and the substitution from the de�nition site.

The third case is when the variable maps to DoneEx e. In
this case you might think we were done. But suppose e was
a variable. Then we should consider inlining it, given the
current context cont, which di�ers from that at the vari-
able's de�nition site. What if e was a partial application
of a function? Again, the context might now indicate that
the function should be inlined. So the simple thing to do
is simply to pass e to simplExpr again. But notice that we
give it the empty substitution! Consider this example:

\x -> let
f = x

in
\x -> ...f..f...

When the binding for f is encountered, PostInlineUncondi-
tionally will extend the substitution, binding f to DoneEx x.
When the \x is encountered, the substitution will again be
extended to bind x to DoneEx x1, because x is already in
scope. Now, when we replace the occurrence of f by x, we
must not apply the same substitution again, which would

replace x by x1! The right thing to do is to continue with
the empty substitution.

The code is simple enough, but it took us a long time before
the interplay between the substitution and the in-scope set
became as simple and elegant as it now is.

7.2 Inlining at an occurrence site

Once the simpli�er has found a variable that is not in the
substitution (and hence is an OutVar), we need to decide
whether to inline it (CallSiteInline from Section 6). The
�rst thing to do is to look up the variable in the in-scope
set:

considerInline ins v cont
= case lookup ins v of

Nothing -> error "Not in scope"

Just (BoundTo rhs occ) | inline rhs occ cont
-> simplExpr empty ins rhs cont

Just other -> rebuild (Var v) cont

If the dynamic information is BoundTo, and the predicate
inline says \yes, go ahead", we simply tail-call the simpli-
�er, passing the in-scope set and the empty substitution (as
in the DoneEx case of the substitution). In all other cases
we give up on inlining. The function rebuild, which we do
not discuss further here, simply combines the variable with
its context.

The inline predicate is the interesting bit. It looks �rst at
the variable's occurrence information:

inline :: OutExpr -> OccInfo -> Context -> Bool
inline rhs LoopBreaker cont = False
inline rhs OnceSafe cont = error "inline: OnceSafe"
inline rhs MultiSafe cont = inlineMulti rhs cont

inline rhs OnceUnsafe cont = whnfOrBot rhs &&
not (veryBoring cont)

inline rhs MultiUnsafe con = whnfOrBot rhs &&
inlineMulti rhs cont

The LoopBreaker case is obvious. The OnceSafe case should
never happen, because PreInlineUnconditionally will have
already inlined the binding.

The OnceUnsafe case uses the whnfOrBot predicate (Sec-
tion 2.2), to ensure that inlining will not happen if there
is any work duplication. However, as noted in Section 2.2,
even if the variable occurs just once, it is not always a good
idea to inline it. The veryBoring predicate has type

veryBoring :: Context -> Bool

It examines the context, returning False if there is anything
at all interesting about it, namely if and only if:

� The variable is applied to one or more arguments.

� The variable is the scrutinee of a case.

Notice that if a variable is the argument of a constructor,
it is in a veryBoring context, and so it will not be inlined,
thus maintaining the trivial-constructor-argument invariant
(Section 2.2).
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The MultiSafe and MultiUnsafe cases deal with the situa-
tion where there is more than one occurrence of the variable.
Both make use of inlineMulti to do the bulk of the work;
in addition, MultiUnsafe uses whnfOrBot to avoid work du-
plication.

Incidentally, since whnfOrBot rhs depends only on rhs, it
is actually (lazily) cached in the BoundTo constructor rather
than being re-calculated at each occurrence site.

7.3 Inlining multiple-occurrence variables

Now we are left with the case of inlining a variable that
occurs many times.

inlineMulti :: OutExpr -> Context -> Bool
inlineMulti rhs cont
| noSizeIncrease rhs cont = True
| boring rhs cont = False
| otherwise = smallEnough rhs cont

The third case of inlineMulti is the function that every
inliner has: is the function small enough to inline? The �rst
two cases are less obvious. The second case deals with the
situations like this:

let
f = \x -> E

in
... (let g = \y z -> (f y, f z) in ...) ...

There is very little point in inlining f at these two sites,
because we can guarantee that no new transformations (be-
yond those already performed on f itself) will be enabled by
doing so; the only saving is the call to f, and there is a code
duplication cost to pay. How do we know that no transfor-
mations will be enabled? Because: (a) the arguments y and
z are lambda-bound and hence uninformative; and (b) the
result of both calls are simply stored in a data structure.

The predicate boring takes an expression (the one we are
considering inlining) and a context (in which it would be
inlined).

boring :: Expr -> Context -> Bool

Corresponding to our example above, boring returns True
if both

(a) All the arguments to which the function is applied are
types, or variables that have dynamic information of
Unknown; and

(b) After consuming enough arguments from the context
to satisfy the lambdas at the top of the function, the
remaining context is veryBoring.

Even if the context is boring, however, it is still worth
while inlining the function if the result of doing so is no
bigger than the call [App92]. That is what the predicate
noSizeIncrease tests. Again, one might expect this case
to be rare, but it isn't. For example, Haskell data con-
structors are curried functions, but in GHC's intermediate
language constructor applications are saturated (Section 2).
We bridge this gap by producing a function de�nition for
each constructor such as:

cons = \x xs -> Cons {x,xs}

where the Cons {x,xs} is the saturated constructor appli-
cation. (In reality there are a few type abstractions and ap-
plications too, but the idea is the same.) These de�nitions
also make a convenient place to perform argument evalua-
tion (and perhaps unboxing) for strict constructors. For the
simple de�nitions, such as cons, it is clearly better to inline
the de�nition, even if the context is boring.

Notice that the �rst case is required even though
smallEnough is sure to return True if noSizeIncrease does.
Why? Because otherwise the second case might decide that
the context is boring and decline to inline.

7.4 Size matters

We have now �nally arrived at the smallEnough predicate,
the main aspect of this paper for which there is a reasonable
(albeit small) literature. We do not claim any new contri-
bution here, though (unlike some proposals) smallEnough is
context-sensitive:

smallEnough :: Expr -> Context -> Bool

For the record, however, the algorithm is as follows. We
compute the size of the function body (having �rst split
o� its formal parameters, namely the lambdas at the top).
From this size we subtract:

� The size of the call.

� An argument discount for each argument (extracted
from the context) that (a) has dynamic information
other than Unknown, and (b) is scrutinised by a case,
or applied to an argument, in the function body.

� A result discount if the context is not boring and
the function body returns an explicit constructor or
lambda.

If the result of this computation is smaller than the inline
threshold then we inline the function. The argument dis-
count, result discount, and inline threshold are all settable
from the command line. Santos gives more details of GHC's
heuristics [San95, Section 6.3].

7.5 The context

It should by now be clear that the context of an expression
plays a key role in inlining decisions. For a long time we
passed in a variety of ad hoc ags indicating various things
about the context, but we have now evolved a much more
satisfactory story. The context is a little like a continuation,
in that it indicates how the result of the expression is con-
sumed. But this continuation must not be represented as a
function because we must be able to ask questions of it, as
the earlier sub-sections indicate.

So GHC's contexts are de�ned by the following data type:

data Context
= Stop
| AppCxt InExpr Subst Context
| CaseCxt InVar [InAlt] Subst Context
| ArgCxt (OutExpr -> OutExpr)
| InlineCxt Context
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The Stop context is used when beginning simpli�cation of
a lazy function argument, or the right hand side of a let
binding. The AppCxt context indicates that the expression
under consideration is to be applied to an argument. The
argument is as yet un-simpli�ed, and must be paired with
its substitution. Similarly, the CaseCxt context is used when
simplifying the scrutinee of a case expression.

simplExpr simply recurses into the expression, building a
context \stack" as it goes. Here, for example, is what
simplExpr does for App and Case nodes:

simplExpr sub ins (App f a) cont
= simplExpr sub ins f (AppCxt a sub cont)

simplExpr sub ins (Case e b alts) cont
= simplExpr sub ins e (CaseCxt b alts sub cont)

We have already seen how useful it is to know the context
of a variable occurrence. The context also makes it easy to
perform other transformations, such as the case-of-known-
constructor transformation:

case (a,b) of { (p,q) -> E }
==>

let {p=a; q=b} in E

simplExpr just matches a constructor application with a
CaseCxt continuation.

The next case, ArgCxt, is used when simplifying the argu-
ment of a strict function or primitive operator. Here, a
genuine, functional continuation is used, because no more
needs to be known about the continuation.

The InlineCxt context is discussed in the next subsection.
In practice, GHC's simpli�er has another couple of construc-
tors in the Context data type, but they are more peripheral
so we do not discuss them here.

7.6 INLINE pragmas

Like some other languages, GHC allows the programmer to
specify that a function should be inlined at all its occur-
rences, as a pragma in the Haskell source language:

{-# INLINE f #-}
f x = ...

GHC also allows the Haskell programmer to ask the compiler
to inline a function at a particular call site, thus:

...(inline f a b)...

The function inline has type 8�:� -> �, and is semantically
the identity function. Operationally, though, it asks that
f be inlined at this call site. Such per-occurrence inline
pragmas are less commonly o�ered by compilers [Bak92].

Both these pragmas are translated to constructors in the
Note data type, which itself can be attached to an expression
(Section 2):

data Note = ...
| InlineMe -- {-# INLINE #-}
| InlinePlease -- inline

If they are so similar in the Core language, why do they
appear so di�erent in Haskell? Haskell allows functions to
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be de�ned by pattern-matching, using multiple equations,
so there is no convenient syntactic place to ask for f to be
inlined everywhere. At an occurrence site, however, it is
natural just to use a pseudo-function.

The e�ects of InlineMe and InlinePlease are as follows:

� The e�ect of InlineMe is to make the enclosed ex-
pression look very small, which in turn makes the
smallEnough predicate reply True. When simplExpr
�nds an InlineMe in a non-boring context, it drops
the InlineMe, because its work is done.

� The e�ect of InlinePlease is to push an InlineCxt
onto the context stack. The smallEnough predicate
returns True if it �nds such a context, regardless of the
size of the expression.

There is an important subtlety, however. Consider

g = \a b -> ...big...
{-# INLINE f #-}
f = \x -> g x y

and suppose that this is the only occurrence of g. Should we
inline g in f's right hand side? By no means! The program-
mer is asking that f be replicated, but not g! The right thing
to do is to switch o� all inlining when processing the body
of an InlineMe; when f is inlined, then (and only then) g
will get its chance.

7.7 Measurements

As mentioned in Section 7.4, our implementation makes use
of an \inline threshold" to determine whether a given ex-
pression is small enough to inline. Figure 4 shows the e�ect
of varying this threshold on (the geometric mean of) binary
size and allocation. We use allocation instead of run-time
because allocation is easy to measure repeatably, and is a
somewhat reliable proxy for run-time, with the notable ex-
ception of some very small programs.

The actual values for the threshold are fairly arbitrary, and
are a�ected by some of the other parameters: discounts for
evaluated arguments and so on. What is more interesting
is the shape of the graph. As expected, beyond a certain
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point, binary sizes increase without having any dramatic ef-
fect on the e�ciency of the program. The graph also shows
that setting the threshold too low (i.e. less than 2) has a
dramatic e�ect on both binary size and run-time. Essen-
tially very little call-site inlining is being performed below
this threshold, and even less inter-module inlining is hap-
pening (because this is covered by call-site inlining only; we
can't see the binding).

The jump between threshold values 1 and 2 is caused by
the fact that even functions marked {-# INLINE #-} are
not inlined at a threshold of 1. The \wrapper" functions
generated by strictness analysis are of this form, and if these
wrappers are not inlined performance drops dramatically.
Making measurements is very instructive: we were surprised
by the rather small performance increases as the threshold
is increased beyond 2, and plan to investigate this further.

8 Related work

There is a modest literature on inlining applied to imper-
ative programming languages, such as C and FORTRAN
| some recent examples are [DH92, CMCH92, CHT91,
CHT92]. In these works the focus is exclusively on pro-
cedures de�ned at the top level. The bene�ts are found to
be fairly modest (in the 10-20% range), but the cost in terms
of code bloat is also very modest. Considerable attention is
paid to the e�ect on register allocation of larger basic blocks,
which we do not consider at all.

It seems self-evident that the bene�ts of inlining are strongly
related to both language and programming style. Functional
languages encourage the use of abstractions, so the bene�ts
of inlining are likely to be greater. Indeed, Appel reports
bene�ts in the range 15-25% for the Standard ML of New
Jersey compiler [App92], while Santos reports average bene-
�ts of around 40% for Haskell programs [San95]. Chambers
reports truly dramatic factors of 4 to 55 for his SELF com-
piler [Cha92]; SELF takes abstraction very seriously indeed!

The most detailed and immediately-relevant work we have
found is for two Scheme compilers. Waddell and Dyb-
vig reports performance improvements of 10-100% in the
Chez Scheme compiler [WD97], while Serrano found a
more modest 15% bene�t for the Bigloo Scheme compiler
[Ser95, Ser97]. Both use a dynamic, e�ort/size budget
scheme to control termination. The Chez Scheme inliner
uses an explicitly-encoded context parameter that plays ex-
actly the role of our Context (Section 7.5).

A completely di�erent approach to the inlining problem is
discussed by [AJ97]. In this paper the focus is on inlining
functions that are called precisely once, something that we
have been very concerned with. Appel and Jim show that
this transformation, along with a handful of others (includ-
ing dead-code elimination), are normalising and conuent,
a very desirable property. Their focus is then on �nding
an e�cient algorithm for applying the transformations ex-
haustively. Their solution involves adjusting the results of
the occurrence analysis phase as transformations proceed.
Their initial algorithm has worst-case quadratic complexity,
but they also propose a more subtle (and unimplemented)
linear-time variant. We too are concerned about e�cient
application of transformation rules, but our set of trans-
formations is much larger, and includes general inlining, so

their results are not directly applicable to our setting. Nev-
ertheless, it is a unique and inspiring approach.

Copious measurements of many transformations in GHC
(not only inlining) can be found in Santos's thesis [San95];
although these measurements are now several years old, we
believe that the general outlines are unlikely to have changed
dramatically. [PJS98] contains briefer, but more up-to-date,
measurements.

9 Conclusion

This paper has told a long story. Inlining seems a relatively
simple idea, but in practice it is complicated to do a good
job. The main contribution of the paper is to set down, in
sometimes-gory detail, the lessons that we have learned over
nearly a decade of tuning our inliner. Everyone who tries to
build a transformation-based compiler has to grapple with
these issues but, because they are not crisp or sexy, there is
almost no literature on the subject. This paper is a modest
attempt to address that lack.
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