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ABSTRACT 

 

 Deep learning widely applies to solve various problems in healthcare, 

robotics, and computer vision. Presently, an emerging deep learning application called 

"deepfake" has raised concerns about the multiple types of security threats that may 

pose severe harm to personal privacy and public safety. Deep convolutional neural 

networks like VGGNet and InceptionNet have recently set a proposal for detecting 

deepfake. The main challenge of these CNN-based algorithms is that they require 

extensive training datasets and high-end GPU resources. Furthermore, these studies 

mainly focus on identifying patterns in facial expressions in deepfake, and there are only 

very few studies on detecting audio fakeness.   

In this thesis, we propose a novel method for uni -modal or multi-modal deepfake 

detection with minimum resources. The proposed solution was designed with a Siamese 

network-based deepfake model with invariant of constructive loss and triplet loss. 

Contrastive loss uses the trained network's output for a positive example and calculates 

its distance to an instance of the same class and contrasts it with the range to negative 

samples. The triplet loss was computed by positioning the baseline that minimizes the 

distance to positive samples but maximizes the distance to negative samples. To test 

and validate our proposed model, we report our metrics like similarity score, loss, and 
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accuracy on large-scale DFDC, Faceforensic++, and CelebDF datasets. We compared our 

method with state-of-the-art algorithms and confirmed that our overall accuracy is 

improved by 2-3% for deepfake detection. 

 

  



v 
 

APPROVAL PAGE 
 

The faculty listed below, appointed by the Dean of the School of Computing and 

Engineering, have examined a thesis titled "Siamese Network-Based Multi-Modal 

Deepfake Detection" presented by Raju Nekadi, candidate for the Master of Science 

degree, and hereby certify that in their opinion, it is worthy of acceptance.  

 

  

Supervisory Committee 

 
Yugyung Lee, Ph.D. (Committee Chair) 

Department of Computer Science Electrical Engineering 

 
 Farid Nait-Abesselem, Ph.D. 

Department of Computer Science Electrical Engineering 

 
Md Yusuf Sarwar Uddin, Ph.D.  

Department of Computer Science Electrical Engineering 

 
 

  



vi 
 

Contents 

ABSTRACT .................................................................................................................. iii 

LIST OF ILLUSTRATIONS ...............................................................................................ix 

LIST OF TABLES............................................................................................................xi 

ACKNOWLEDGMENTS ................................................................................................xii 

CHAPTER 1.  INTRODUCTION ........................................................................................1 

1.1 Problem Statement................................................................................................... 2 

1.2 Proposed Solution .................................................................................................... 3 

CHAPTER 2.  BACKGROUND AND RELATED WORK..........................................................4 

2.1 Background ............................................................................................................. 4 

2.1.1 Deepfake .............................................................................................................4 

2.1.2 Deepfake Techniques ...........................................................................................4 

2.1.3 Siamese Network .................................................................................................8 

2.1.4 Mel-Frequency Cepstrum Coefficients (MFCCs) .....................................................9 

2.2 Related Work ....................................................................................................... 10 

2.2.1 DeepFake Detection........................................................................................... 11 

2.2.2 Capsule Network................................................................................................ 11 

2.2.3 MesoNet ........................................................................................................... 13 

2.2.3.1 MesoNet-4 ..................................................................................................... 13 

2.2.3.2 MesoInception-4............................................................................................. 14 



vii 
 

CHAPTER 3.  PROPOSED FRAMEWORK ........................................................................ 17 

3.1 Framework Architecture .......................................................................................... 17 

3.2 Facial Feature Extraction ........................................................................................ 18 

3.2.1 Detecting Face..................................................................................................... 19 

3.2.2 Transforming Extracted Features............................................................................ 21 

3.3 Audio Feature Extraction....................................................................................... 22 

3.3.1 Convolution Component .................................................................................... 22 

3.3.2 Recurrent Component........................................................................................ 22 

3.3.3 Temporal Attention Layer Component ................................................................ 23 

3.3.4 Autoregressive Component ................................................................................ 23 

3.4 Visual and Audio Learning Network ........................................................................... 24 

3.5 Constructive Loss .................................................................................................. 25 

3.6 Triplet Loss........................................................................................................... 25 

3.7 Video and Audio Modality Embedding ....................................................................... 27 

3.8 Training Pipeline..................................................................................................... 27 

3.9 Testing Pipeline .................................................................................................... 29 

CHAPTER 4.  RESULTS AND EVALUATIONS ................................................................... 30 

4.1 Introduction........................................................................................................... 30 

4.2 Dataset ................................................................................................................. 30 

4.2.1 DFDC.................................................................................................................. 31 

4.2.2 CelebDF .............................................................................................................. 32 

4.2.3 Face Forensic++ ................................................................................................... 33 



viii 
 

4.3 Results .................................................................................................................. 34 

4.3.1 Unimodal Video Result ......................................................................................... 34 

4.3.2 Unimodal Audio Result ......................................................................................... 36 

4.3.3 Multi-modal Audio as Anchor ................................................................................ 37 

4.3.3 Multi-modal Video as Anchor................................................................................. 39 

4.3.4 Interpreting the correlation of Visual and Audio Modality  .......................................... 41 

CHAPTER 5.  CONCLUSION, LIMITATION AND FUTURE WORK ....................................... 42 

5.1 Conclusion............................................................................................................. 42 

5.2. Limitation ............................................................................................................. 42 

5.3 Future Work .......................................................................................................... 42 

BIBLIOGRAPHY ........................................................................................................... 43 

VITA........................................................................................................................... 47 

 

 

 
 

 

 

  



ix 
 

LIST OF ILLUSTRATIONS 

 

Figure Page 

 1: Auto Encoder Decoder ...................................................................................................6 

 2: Generative Adversarial Network .....................................................................................7 

 3: Siamese Network Architecture .......................................................................................8 

4: Mel-frequency Cepstrum Coefficients..............................................................................9 

5: Mel-frequency Cepstrum Coefficients Wave .................................................................. 10 

6: Capsule Network........................................................................................................... 12 

 7: Meso-4 ........................................................................................................................ 14 

8: MesoInception-4........................................................................................................... 15 

9: Face Wrapping Artifacts ................................................................................................ 16 

 10: Multi-modal Deepfake Detection ................................................................................ 18 

11: Facial feature Extraction.............................................................................................. 19 

12: LSTNet Architecture .................................................................................................... 23 

13: Visual-Audio Learning.................................................................................................. 23 

14: Triplet Loss ................................................................................................................. 27 

15: Training Pipeline ......................................................................................................... 29 

16: Testing Pipeline........................................................................................................... 30 

17: DFDC Face Swap Example ............................................................................................ 32 

18: CelebDF Example ........................................................................................................ 33 

19: Face Forensic++ Example............................................................................................. 34 



x 
 

 20: Visual Dissimilarity Score ............................................................................................ 35 

21: Visual Constructive Loss .............................................................................................. 36 

22: Audio Dissimilarity Score ............................................................................................. 37 

23: Audio Constructive Loss .............................................................................................. 37 

24: Audio Anchor Dissimilarity Score ................................................................................. 39 

25: Audio Anchor Triplet Loss ............................................................................................ 39 

26: Video Anchor Dissimilarity Score ................................................................................. 41 

27: Video Anchor Triplet Loss ............................................................................................ 41 

28: Modality Embedding Distance ..................................................................................... 42 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



xi 
 

 
 

 

LIST OF TABLES 

Table Page 
 

1: Deepfake Tools ...............................................................................................................6 

 2: Deepfake Detection Methods ....................................................................................... 29 

 3: Benchmark Dataset For DeepFake Video Detection....................................................... 29 

4: UniModal Audio Visual  Accuracy................................................................................... 36 

 5: Multi-Modal Audio Anchor Accuracy  ............................................................................ 38 

6: Multi-Modal Video Anchor Accuracy ............................................................................. 40 

 

 

 

 

 

 

 

 
 
 

 
 
 

 
 
 

 
 
 



xii 
 

 
 

 

ACKNOWLEDGMENTS 

 

I feel very fortunate to work under the supervision of Dr. Yugyung Lee. I would like to 

thank her for the valuable guidance and immense support throughout the research work as 

my advisor. Her vast experience, unparalleled knowledge, agile and prompt feedback coupled 

with smart ideas have helped me immensely in putting up the whole job. She is very patient 

in listening to all the new ideas, being pragmatic in giving suggestions, and always helping me 

with a reality check. Her fantastic energy and enthusiasm always motivate me to go the extra 

mile. It has been an honor to work with her on many projects besides the thesis. 

I would like to thank the thesis committee Dr. Yusuf Sarwar Uddin and Dr. Farid Nait-

Abesselem, for providing valuable feedback. 

I would also like to thank the University of Missouri-Kansas City for providing me the 

perfect environment to research. It provided me with many opportunities to support myself 

and world-class facilities to research with the most exceptional machines available without 

which the thesis work could not have accomplished. 

Finally, I would like to thank my family and friends who always encourage me, gave 

me valuable suggestions throughout the research, and made sure that I pursue my dream 

without any problems. 

 



1 

CHAPTER 1.  INTRODUCTION 

 
The increasing popularity of social media (YouTube, Vimeo, Facebook, Snapchat, 

Twitter, and Instagram) and the full availability of high-end camera cell phones have 

made creation, editing, and distribution of digital media more accessible than ever in 

history. Every day, millions of videos/images/audio are shared through social media 

sites. A lot of fake video and sound generated by the digital manipulation method called 

"DeepFake" [1] and shared on this social media have become significant public privacy 

concerns recently [2], [3]. 

                              The popular term "DeepFake" is a deep learning-based technique that 

can create fake images/video/audio of the target person from the source person doing 

or saying. The first deepfake video emerged in 2017 after a Reddit user claimed to have 

developed a machine-learning algorithm that helped him to transpose celebrity faces 

into porn videos [4]. It is menacing to world security when deepfake algorithms can be 

employed to create videos of w leaders with fake speeches for falsification purposes [5, 

6]. Deepfakes, therefore, can be misused to create chaos in financial markets by 

creating fake news. 

                                There are also positive cases of deepfake usages, such as creating 

voices who have lost theirs or updating episodes of movies without reshooting those 

[7]. However, the number of misuse of deepfakes largely dominates that of the positive 

ones. Minimal effort is needed to produce a stunningly convincing manipulated media. 

A recent high-end algorithm can even create a deepfake with just a still image [8]. 

Deepfakes, therefore, can be a threat affect not only to politicians or celebrities but also 
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to the common man. For example, recently, an audio deepfake was used to scam a CEO 

out of $243,000 [9]. 

                  A recent release of Deep Nude software shows more disturbing threats as it 

can transform a person into non-consensual porn [10]. As a result, the area of research 

conventional devoted to the general image and fake video detection [11] is being 

invigorated and is now dedicating growing efforts for detecting facial manipulation in 

image and video [12], [13]. These revived efforts in fake face detection are developed 

around past research in biometric anti-spoofing [14]–[16] and modern data-driven deep 

learning [17]. The growing interest in fake face and audio detection is demonstrated 

through the increasing number of workshops in top conferences [18]–[20] and 

competitions such as the recent DFDC2 [21] and  ASVSpoof2019 [22] by Facebook and 

Google respectively. 

 

 

1.1 Problem Statement 

To detect deepfake at first glance, it looks like a straightforward classification problem. 

Still, when we dive into it, we will find out that many challenging factors are involved in 

identifying the manipulation. A lot of research and work has been done to find the 

manipulation in the video, such as those produced by prevailing state -of-the-art face and 

audio algorithms, including Deepfakes [1], Fac2Face [24], FaceSwap [23] and NeuralTextures 

[25]. However, all this work is focused on finding the manipulation in the visual frame in the 

video; no importance has been given to the audio aspect of the video. Face and Audio forgery 
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detection is a challenging problem in the real world. We need to detect the forgery without 

knowing the underlying manipulation methods. Most existing works [28, 29, 30] recognize the 

face and audio manipulation in a supervised fashion, and their methods are trained for now 

manipulation techniques. For such manipulation, these detection methods work quite well 

and achieve 98% accuracy. However, these detection methods tend to exploit only a single 

modality that is the facial clue from these videos either by employing temporal feature or by 

exploring visual artifacts within frames. 

1.2 Proposed Solution 

  In this thesis, we proposed a multi-modal deepfake detection using siamese network-based 

architecture. The main idea used for deepfake detection is to exploit the relationship 

between visual and audio modalities from the same video.  Earlier studies in both psychology 

literature and Multi-modal machine learning feature have shown a robust correlation 

between different modalities of the same subject [11,43].In our work, we introduce a new 

Siamese based network architecture for detecting deepfake videos. In the training phase, we 

feed the real and fake video through our network and obtain the modality embedding vector 

for face and audio of the same subject. We use these embedding vectors to calculate the 

constructive loss, triplet loss, and euclidean distance function to minimize the modality from 

fake video and maximize the similarity between real video. 
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CHAPTER 2.  BACKGROUND AND RELATED WORK 

 

This chapter gives background information on the various components used in the 

thesis and provides an overview of related work that will help understand this work better.  

2.1 Background                                                  

 2.1.1 Deepfake  

            Deepfakes are artificial media in which a source image or video is replaced with 

another person's data. While the act of pseudo content is not new, deepfakes leverage 

powerful and impactful techniques from machine learning and artificial intell igence to 

operate or generate visual and audio content with a high potential to defraud. Machine 

learning for deepfakes is based on autoencoder or generative adversarial networks (GANs).  

These methods have been adapted by deepfake algorithms to examine facial expressions and 

gestures of a person as well as synthesize facial images of another person making similar or 

parallel expressions and gestures. Deepfake algorithms typically require a massive amount of 

image and video data to train models to create photo-realistic images and videos. 

 

2.1.2 Deepfake Techniques 

Deepfakes have become well-liked due to the quality of tampered videos and also the easy-

to-use capability of its applications to a broad set of users with diverse computer skills from 

professionals to the neophyte. These applications are mainly developed based on deep 

learning techniques. Deep learning is well known for its capacity to represent complex and 

high-dimensional data. Deep autoencoders, which have been widely applied for image 

compression and dimensionality reduction. The initial attempt of deepfake creation was 
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FakeApp, which was created by a Reddit user using an auto encoder-decoder pairing 

structure [23, 24]. In that algorithm, the autoencoder extracts latent features of face images, 

and the decoder is used to reconstruct the face images. In order to switch faces between 

target images and source images, there are required pairs of two encoder-decoder where 

each pair is used to train the encoder's parameters are shared between two network pairs 

and an image set. Hence, two pairs have the same encoder network. This plan enables the 

standard encoder to learn the similarity between two sets of face images.  These are relatively 

unchallenging because faces usually have similar features such as eyes, nose, mouth positions 

and find the same Figure. One shows a deepfake development where the feature set of face 

A is connected with the decoder B to rebuild face B from the original face A. This approach is 

applicable in several works like DeepFaceLab [25], DFaker [26], DeepFake -tf[27]. 

 

 

 

                                                        Figure. 1:  Auto Encoder-Decoder  
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                                                    Table 1: Details Of Deepfake Tools 

Tools Key Features 

Faceswap - Parameters of the encoder are shared. 
- Using two encoder-decoder pair. 
 

Faceswap-GAN  -Adversarial loss and perceptual loss (VGGFace Deepfake 
detection is typically deemed a binary classification problem 

where classifiers are used to classify) are added to the auto-
encoder architecture. 

DeepFaceLab Expand from the faceswap model with a new model 

DFaker - Implemented based on Keras library. 

DeepFake-tf Similar to DFaker but implemented based on tensor flow. 
 

                                               

 

                         Using perceptual loss and adversarial loss and used in VGGFace [28] to the 

encoder-decoder architecture, and refined version of deepfakes based on the generative 

adversarial network (GAN) [29] figure 2, i.e., faceswap-GAN, proposed in [30]. The VGGFace 

perceptual loss was added to make eye shift to be more consistent and realistic with input 

faces and help to flatten out artifacts in a segmentation mask, leading to higher quality output 

videos. This model creates outputs with 64x64, 128x128, and 256x256 resolutions. FaceNet 

[31] multi-task convolution network helps make face detection more stable and face 

alignment more reliable. The CycleGAN [32] is used for generative network implementation. 

In summary, important deepfake tools and their features are presented in Table 1.  



7 

 

 

                                           Figure 2: Generative Adversarial Network  
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2.1.3 Siamese Network 

The Siamese network [14] shown in Figure 3, the architecture comprises of two 

neural networks that share the same weights and are trained in conjunction. Each network 

typically takes in an unlike pattern (e.g., two views of an image(s), two tones of a speech), 

and the final output is a value representing the resemblance between those two models. 

The overall network is trained using different forms of the triplet loss or the contrastive 

loss. These are formulated to maximize the distance between features learned from 

differing patterns and minimize the distance between features learned from non-differing 

patterns. With this training target, Siamese network-based architectures have been 

extensively used in applications such as face recognition [16], face verification [44], and 

speaker identification [15]. In our work, we proposed a Siamese network -based 

architecture and an alternative of the triplet loss to maximally unrelated features learned 

from real and fake videos. 

 

Figure 3:  Siamese Network Architecture 
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2.1.4 Mel-Frequency Cepstrum Coefficients (MFCCs) 

 

Speech signals can be represented digitally as an array of numbers with the same 

number of elements per second as the sampling rate. However, this representation does 

not contain information useful for speech recognition. In order to address this problem, 

the raw audio signal can be converted to the frequency domain using a fast Fourier 

transform (FFT) on a small audio window. While the FFT contains energy information at 

each frequency band in the audio window, it does not emphasize the band that is 

important for human hearing, which is below roughly 1000 Hz. To overcome this problem, 

Stevens et al. [53] suggested a scale, as shown in (1), to improve the emphasis on the 

frequency important to human hearing. 

M( f )  = 1125 In(1 + f/700)                                        (1) 

The Mel-frequency cepstrum coefficient (MFCC) is a speech signal feature 

commonly used in ASR research as well as music classification research. Figure 2 shows 

the process of extracting MFCCs for a speech signal. 

 

Figure 4 Mel-Frequency Cepstrum Coefficients  
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Since the characteristic of speech changes throughout an utterance, spectral 

features obtained over the entire statement would not convey useful information. 

Instead, features are typically extracted over a small window, typically 25 ms, stridden by 

10 ms each window is then passed through the pipeline shown in Figure 5. The pre-

emphasis step in Figure 4 aims to boost the signal's energy at high frequency. The high 

frequency of human speech typically has lower energy than low frequency but is also 

relevant to the speech recognition task. After the pre-emphasis step, the windowing step 

involves multiplying the signal with a predefined window. While a rectangular window 

(Figure 5a) is the most straightforward window to use, it causes the signal to be abruptly 

cut off at the edge. The cutoff causes problems when the discrete Fourier transform of 

the signal is obtained. A Hamming window approaches 0 at its edges, which shrinks the 

input signal value toward 0 at the boundaries [36]. 

 

           Figure 5: Mel-frequency Cepstrum Coefficients Wave 

 

2.2 Related Work 
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2.2.1 DeepFake Detection             

                                    

Deepfakes are increasingly harmful to privacy, society, and democracy. Methods for 

identifying deepfakes have been proposed as soon as this threat was introduced. Early work 

was based on handcrafted features obtained from inconsistencies and artifacts of the fake 

video synthesis process. On the other hand, the latest methods apply deep learning to extract 

salient and discriminative features to detect deepfakes automatically. Deepfake detection is 

typically deemed a classification problem where classifiers are used to classify between 

authentic videos and tampered ones. This kind of method requires a massive database of fake 

and real videos to train classification models. The number of manipulated videos is 

increasingly available online, but it is still limited in setting a benchmark for validating various 

detection methods. 

2.2.2 Capsule Network  

 Nguyen et al. [26] proposed using capsule networks to identify manipulated 

videos and images. The capsule network was first introduced to address the drawbacks 

of CNNs when applied to reverse graphics tasks, which intent to find physical processes 

used to produce images of the world. The latest development of a capsule network based 

on a dynamic routing algorithm demonstrates its capability to describe the hierarchical 

pose relationships amid object parts. This creation is employed as a component in a 

pipeline for detecting fabricated images and videos, as illustrated in Figure. 6. A dynamic 

routing mechanism is used to route the outputs of all three capsules network through 

several iterations to distinguish between fake and real images. The proposed mechanism 

gave the best performance compared to its competing methods in all of these data sets. 
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This shows the effectiveness of the capsule network in building a comprehensive 

detection system that can work appropriately for various forged images and video 

attacks. 

 

 

                                          Figure 6: Capsule Network Architecture  
 

In order to identify fake images or videos from the real ones, the capsule network 

takes features obtained from the VGG-19 network. In the pre-processing step, the face is 

detected and scaled to the size of 128x128 this detected face is given input to  VGG-19 to 

extract latent features for the capsule network, which consists of three primary capsules 

and two output capsules, one for fake and one for real images. The analytical pooling 

plays an essential part in the capsule network that deals with forgery detection. 
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   2.2.3 MesoNet  

In MesoNet architecture [43] author presented an algorithm to automatically and 

efficiently detect face manipulation in videos and mainly focuses on two latest techniques 

used to generate hyper-realistic forged videos: Deepfake and Face2Face. Conventional 

image forensics techniques are usually not well suited to videos due to the compression 

that strongly tampers the data. Thus, this method follows a deep learning perspective and 

presents two networks, which are dual with fewer layers to aim at the mesoscopic 

attributes of images. They check for those fast networks on both an existing dataset and 

a dataset we have constituted from online videos. The tests signify a very successful 

detection rate with more than 98% for Deepfake and 95% for Face2Face.  There is two 

network architecture proposed in this Meso-4 and MesoInception-4. 

 

   2.2.3.1 MesoNet-4 

       This network starts with a sequence of four layers of successive convolutions and pooling 

and is succeeded by a dense network with one hidden layer. In order to improve, the 

convolutional layers use ReLU activation functions that establish non-linearity and Batch 

Normalization [10] to standardize their output, avoid the vanishing gradient effect, and 

improve their robustness and regularize the fully-connected layers uses Dropout [24]. 

 In general, there are 27,977 trainable parameters in this proposed model for details in Figure 

7. 
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                                             Figure 7.   Meso-4 Network Architecture 
 

 

   2.2.3.2 MesoInception-4 

Another method involves replacing the first two convolutional layers of Meso4 by a variant of 

the inception module. The goal of this module is to club the output of function space to 

optimize the model. In this model, 3 × 3 dilated convolutions [30] was used in order to avoid 

high semantic. This usage of the inception module, along with dilated convolution, can be 

found in [22] as a means to deal with multi-scale information. Still, we have added 1×1 

convolutions before dilated convolutions for dimension reduction and an extra 1×1 

convolution in parallel that acts as skip-connection between successive modules. Further 

details can be found in Figure 8.  
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Figure 8. MesoInception-4 Network Architecture 

                                             

                                                       2.2.4 Face Wrapping Artifacts 

 

This method introduced by Yuezn Li [27] detects synthesized videos by exploiting 

the face warping artifacts resulted from the DeepFake production pipeline. For an 

adequate running time, the current DeepFake algorithms create synthesized face images 

of fixed sizes. These faces are then undergone an affine transform (i.e.,) scaling, rotation, 

and shearing) to match the poses of the target faces that they will replace (see Figure 9(a) 

– (d)). 

                    As such, the facial region and surrounding regions in the original image/video 

frame will present artifacts. The resolution is inconsistent due to such transforms after 

the subsequent compression step to generate the final image or video frames. Therefore, 

we propose using a Convolutional Neural Network (CNN) model to detect artifacts from 

the detected face regions and surrounding areas. 
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First, detect faces in the original images and extract the face region using software 

package dlib. Second, we align faces into multiple scales and randomly pick one scale, 

which is then smoothed by a Gaussian blur with kernel size (5 × 5). This process aims to 

create more resolution cases in affine warped faces, which can better simulate different 

kinds of resolution inconsistency introduced in affine face warping.  

The smoothed face undergoes an affine warp back to the same sizes of original faces to 

simulate the artifacts the same dimensions of original faces to reproduce the artifacts.  In 

summary, popular deepfake detection and their features are presented in Table 2.  

 

                          Figure 9 Face Wrapping Artifacts 

                       Table 2: Deepfake Detection Methods 

Methods Key Features 

Capsule Network            -  VGG-19 Facial Feature Extraction 
           -  3 Parallel CONV2D Network along with dynamic routing 

 

MesoNet - Meso-4 consists of 5x5 convolution, MesoIncpetion-4 3x3 
convolution along with Inception layers 

- Faster training and good accuracy. 

FaceWrapping 
Artifacts 

- VGG-16 Facial Feature Extraction  
- Use the Gaussian Blur to detect face manipulation. 
- Require a large dataset. 
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CHAPTER 3.  PROPOSED FRAMEWORK 

 

The multi-modal deepfake detection is based on Siamese network-based architecture. 

In the proposed solution, we make use of visual and audio modality embeddings to identify 

given input video real or fake.   

3.1 Framework Architecture 

The architecture diagram shown in Figure 10 portrays how the entire multi-modal 

framework works. The framework is divided into two areas. First, of all, we take the real and 

fake videos of the same subject and extract the visual and audio features. Once the real and 

fake features are extracted successfully, they are passed on to the siamese convolution 

network for visual and audio learning. The visual and audio learning layer is made of four 

convolutional layers proceeded by ReLU function, maxpool, fully connected, and unit 

normalization layer. Once the visual and audio learning completes, it creates the 128 unit 

vector as output. The unit vector is then used to calculate the distance between the visual 

and audio modalities. The distance in the next step is used to calculate the triplet loss, which 

helps s identifying the video as real or fake. 
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Figure 10:Multi-Modal DeepFake Detection   

 

3.2 Facial Feature Extraction 

The facial feature is extracted using the dlib and OpenCV library architecture, 

shown in Figure 11. The facial feature extraction involves multiple steps like face detect, 

landmark detection, transforming face for neural network, and crop the image. We see 

each step one by one below.  

 

Figure 11: Facial Feature Extraction Steps 
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3.2.1 Detecting Face 

The face is detected from the input image using OpenCV, which has inbuilt 

functionality based on Haar Cascade. Haar Cascade is an artificial intelligence object 

detection algorithm used to detect objects in a video or image based on the concept of 

 features. The cascade function is trained using negative and positive images algorithm 

have four steps: 

a. Haar Feature Selection: In Haar feature step adjacent rectangular regions at a specific 

location is considered in a detection window, then sums up the pixel intensities in each 

area and calculates the difference between these sums. 

b. Creating Integral Images: An integral image enables you to calculate summations over 

image sub-regions rapidly. Sub-region summations can be calculated in constant time 

as a linear combination of only four pixels in the integral image, irrespective of the size 

of the sub-region. But most of these computed features are irrelevant.  

c. Adaboost Training: The Adaboost training has two essential functions first to select 

the best features and train the classifiers that use them. Adaboost develops a "strong" 

classifier as a linear combination of weighted simple "weak" classifiers. 

d. Cascade Classifier: The cascade classifier comprises a collection of steps, where each 

step is a collection of weak learners. They are simple classifiers, also called decision 

stumps. Each level is trained using a method called boosting. Boosting takes a 

weighted average of the weak learners' decisions and gives the ability to train the 

classifier with accuracy. 
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           Every step of the classifier labels the region defined by the sliding window's 

current location as either negative or positive.  Negative indicates no objects were 

found positive suggests that an object was found. For positive labels, the classifier 

passes the region to the next stage. For the negative label, the classification of this 

region is complete, and the detector slides the window to the following location. The 

detector informs about an object found at the current window location when the final 

steps classify the region as positive. 

The steps are designed to reject negative samples as quickly as possible. The 

expectation is that the majority of windows do not contain the object of interest.  

 A true positive appears when a positive sample is correctly classified. 

 A false positive appears when a negative sample is mistakenly classified as 

positive. 

 A false negative appears when a positive sample is mistakenly classified as 

negative. 

To perform well, each step in the cascade must have a low false-negative rate. If 

a step incorrectly labels an object as negative, the classification stops, and you cannot 

correct the mistake. However, each step can have a high false-positive rate. Even if the 

detector incorrectly labels a no object as positive, you can fix it in subsequent 

steps.  Adding more steps reduces the overall false-positive rate, but it also reduces the 

overall true positive rate. 

Cascade classifier training needs a set of negative samples and a set of positive 

images. We must provide a collection of positive images with regions of interest specified 

to be used as positive samples. Image Labeler is used to label objects of interest with 
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bounding boxes. The output of the image labeler is a table to use for positive samples. 

We also must provide a set of negative images from which the function produces negative 

samples automatically. To achieve detector accuracy, set the number of steps, feature 

type, and other functional parameters. 

 

 

3.2.2 Transforming Extracted Features 

The transformation of the detected face is done using the affine transformation. 

It is any transformation performed using the matrix multiplication (linear transformation) 

followed by a vector addition (translation). Affine transformation is a relation between 

two images. The knowledge about this relation can come, in two ways: 

 

a. Both X and T, and we also know that they are related. Then our job is to find 

M. 

b. M and X. To obtain T, we only need to apply T = M. X Our information may be 

explicit (i.e., have the 2-by-3 matrix), or it can come as a geometric relation between 

points. 
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3.3 Audio Feature Extraction 

The audio features are extracted from the wav file using the library based on 

LSTNet architecture. LSTNet architecture show below in Figure 12. Various components 

of LSTNet are described one by one below. 

 

3.3.1 Convolution Component 

 LSTNet first layer is a convolutional network without pooling, whose goal is to 

extract short-term patterns in the audio wave as well as local dependencies between 

variables. The convolution layer consists of multiple filters of width w and height h, where 

the number of variables is the same. The k-th filter slides through the input matrix X and 

produces  

                                         hk   = RELU(Wk * X + bk)                                                         ()                        

The input is dynamically padded, depending on the height of the kernel. It helps 

each input slides over the input data. The convolution layer's output is of size d x T, where 

d denotes the number of filters.  

 

3.3.2 Recurrent Component 

The output of the convolution component is fed to the recurrent component in 

parallel. The recurrent component is the recurrent layer with RELU function hidden and 

with Gated recurrent unit. Each gates unit in the input of shape =  (batch size, the total 

number of filters). The hidden state of each recurrent unit and any time t is calculated as  

rt = σ(xtWx r + ht−1Whr + br ) 

 
ut = σ(xtWxu + ht−1Whu + bu ) 

 
ct = RELU (xtWxc + rt ⊙ (ht−1Whc ) + bc )                                                                    () 

 
ht = (1 − ut ) ⊙ ht−1 + ut ⊙ ct                                                                                                                    
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Here ⊙ is an element-wise product, σ is a sigmoid function, and Xt is the input 

layer at time t.  

3.3.3 Temporal Attention Layer Component 

The Recurrent-skip layer needed a predefined hyperparameter p, which is 

unfavorable for audio wave frequency series, or whose period length is dynamic over time. 

To resolve such an issue, we consider an alternative approach, attention method, which 

learns the weighted combination of the hidden input matrix. The attention weight at current 

time t is calculated as  

                           at    = AttnScore(Ht , ht-1 ) 

Ht is a matrix hidden representation of recurrent network column-wise, and attnScore 

is a similarity function. 

 

3.3.4 Autoregressive Component 

The convolution and recurrent neural network can handle the constant change in real audio 

wave inputs in a non-periodic manner. In order to address this situation, the autoregressive 

model as a linear component was introduced in LSTNet. The autoregressive component 

primarily focused on scaling issues and adopted as a linear component.  

 
 

 
                           

   Figure 12: LSTNet Architecture  
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3.4 Visual and Audio Learning Network 

The proposed architecture consists of a convolution network for audio and video 

learning. It is shown in Figure 13. The network is kept at the same weight as a model 

need to find the similarity rather than classifying. The input size to the network is of 

size 224 x 224. 

There are four convolution network layers in proposed architecture with RELU to 

extract the meaning full feature from the input image. The architecture also contains 

maxpool layers, fully connected layers along with sigmoid function, and unit 

normalization layer. The convolution layer consists of multiple fil ters of width w and 

height h. The Filter sweeps through input matrix X and produce  

                                                    h = RELU (W * x + b) 

Where * denotes convolution operation h would be the vector and RLEU function is                                                

RELU(x) = max (0, x) 

The unit vector produced by unit normalization layer used calculated the  dissimilarity 

distance using distance function like euclidean or absolute distance.  

 

                               Figure 13: Visual-Audio Learning Network Architecture 
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3.5 Constructive Loss 

 

The main goal of the siamese architecture is not to classify input images, but 

to find dissimilarity between them. So, a classification loss function (such as cross-

entropy) would not be suitable for such a condition. Instead, siamese architecture is best 

suited to make use of a contrastive function. Intuitively, this function just evaluates how 

well the network is distinguishing a given pair of images. 

The contrastive loss function: 

  

                         (2) 

 

 

 Dw is denoted as the euclidean distance between the outputs of the  sister 

siamese networks. 

                                     (3)         

3.6 Triplet Loss 

Triplet loss is a loss function for a convolution neural network where baseline anchor 

input is compared to the truth(positive) and false(negative). The main aim of triplet loss 

is to minimize the distance between baseline(anchor) input to the positive (truth) input 

and to maximize the distance from the baseline(anchor) input to the negative (false) input 



26 

It often used for learning similarity for learning embeddings, like word embedding and 

even though vectors and metric learning. 

Triplet Loss function can be described using Euclidean distance as follows. 

L = max(d(a,p) – d(a,n) + margin,0)                                                                                     (4) 

The variable "a" represents the anchor image, "p" represents a positive image, and "n" 

represents a negative image. Another variable is called margin, which hyperparameter 

added to triplet loss. Margin defines how far dissimilarity should be i.e if margin = 0.3 and 

d(a,p) = 0.6 then d(a,n) should at least be equal to 0.9. Margin helps us distinguish the 

two images better. 

As shown in Figure 14 input image of Obama is acting as the anchor(a), and again the 

image of Obama is acting as positive(p), and Emmanuel is acting as negative(n).        

 

 

Figure 14 Triplet Loss 
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3.7 Video and Audio Modality Embedding  

V1 and A1 are neural networks that we use to learn the unit-normalized 

embeddings for the face and speech modalities, respectively. In Figure 13, we depict V 1 

and A1 in both training and testing routines. They are composed of 2D convolutional 

layers, max-pooling layers, and fully connected layers. ReLU activation function is used 

between all layers. The last layer is a unit-normalization layer. For both face and speech 

modalities, V1 and A1 return 250-dimensional unit-normalized embedding. 

Training: mvreal = V1 (freal), mvfake = V1 (ffake), mareal = A1 (areal), mafake= A1 (afake) 

 Testing: mf = V1 (f), ms=A1 (a)                                                                                   (5) 

 

3.8 Training Pipeline 

In the training phase, we used a real and a fake video of the same subject as the 

input. After passing extracted visual and audio features from raw videos  (freal, ffake, areal, 

afake) through V1 and A1, we obtain the unit-normalized modality as described in Eq. 6. 

Considering an input fake and real video, we first compare freal with ffake and areal with a 

fake to understand what modality was manipulated more in the fake video.   We recognize 

the face modality to be manipulated more in the fake video, inferring from these 

embeddings we can calculate the first similarity between the fake and real speech and 

face embeddings as follows: 

Similarity Score:       SS = d (mvreal, mareal) - d (mafake, mvfake)                                               (6) 

     Where d denotes the Euclidean distance. 
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SS is computing the distance between two pairs d (mvreal, mareal) and d(mafake, 

mvfake). We expect mvreal, mareal to be closer to each other than mvreal, mafake as it contains a 

fake face modality. The triplet loss notation for training our model is given in equation 7. 

 

Similarity Loss: L= max (SS + m, 0)                                                                                            (7) 

     where m is training convergence margin. 

 

Figure 15: Training Pipleine 
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3.9 Testing Pipeline 

In the testing phase, we only have a single input video that is to be labeled real or fake. 

After extracting the features, f, and a from the raw videos, we perform a forward pass 

through V1 and A1, as depicted in Figure 16 to obtain modality embedding. 

To conclude about real and fake, we compute the following two distance values:  

d = d (mf, ms)                                                                                                                                 (8) 

 

To differentiate between real and fake, we compare d with a threshold, that is, τ 

empirically learned during training as follows: 

d > τ 

 

 
 

       Figure 16: Testing Pipeline 
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CHAPTER 4.  RESULTS AND EVALUATIONS 

 

4.1 Introduction 

In this section, we discuss the results and evaluation of the proposed framework.  

First, we describe the results of Unimodal Video and Audio in terms of accuracy. Second, we 

show the accuracy of the multi-modal invariant of video and audio as the anchor in terms of 

triplet loss and compare it with the start of the art deep fake detection methods. 

 

4.2 Dataset 

With the popularity of deepfake detection has increased considerable attention, and 

this research has been stimulated with many datasets. We summarize and analyze 

three benchmark deepfake video detection datasets in Table 2.  

 

Table 3: Benchmark Dataset for DeepFake Video Detection 

Dataset Released Videos Modes 

Real Fake Total Visual Audio 

DFDC[22] Oct 2019 19,154 99,992 119,146 Yes Yes 

CelebDF[17] Nov 2019 408 795 1,203 Yes No 

Face 

Forensic++[13] 

Jan 2019 1,000 4,000 5,000 Yes No 
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4.2.1 DFDC  

DFDC consists of videos from two facial modification algorithm. Also, DFDC does 

not disclose details of the AI model used to synthesize the fake videos from the real 

videos. Only the DFDC dataset contains a mix of videos with manipulated audio, faces, or 

both. All the other benchmark datasets contain only manipulated faces. Also, only DFDC 

includes both audio and video, allowing us to analyze both modalities. Show in Figure 17  

 

 

 

 

                                Figure 17   DFDC Face Swap Example 
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4.2.2 CelebDF 

The celeb-DF dataset consists of real and DeepFake synthesized videos. The 

primary technique used for the creation of these videos is Face masking, Color mismatch, 

and low-resolution synthesis.  To date, Celeb-DF includes 408 original videos collected 

from YouTube with subjects of different ages, ethnic groups, and genders, and 795 

corresponding DeepFake videos. Shown in Figure 18 

 

 

Figure 18 CelebDF Example 
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4.2.3 Face Forensic++  

In Face Forensic++[18] author published the dataset consists of forged images 

from various techniques like FaceSwap, Face2Face Deepfake, and Neural Texture. The 

data has been gathered from 977 YouTube videos, and all videos contain a trackable 

mostly frontal face without occlusions, which enables automated tampering methods to 

generate realistic forgeries. They provide binary masks; the data can be used for image 

and video classification as well as segmentation. Also, they offer 1000 Deepfakes models 

to generate and augment new data. Shown in Figure 19 

 

 
 
 
 

                  
 

Figure 19 Face Forensic++ example. 

 
 
 



34 

 
 

4.3 Results 

 

4.3.1 Unimodal Video Result  

For Unimodal Visual modality, we received the accuracy of 90.4% in Table 1. As 

shown in Figure 20, the dissimilarity score for two real faces from the subject is 0.28, 

which results in a lower constructive loss of 0.0014. When the real and fake face of the 

same subject compared dissimilarity score increases, 2.37 and higher constructive loss 

vale are retrieved. 

 

Figure 20: Visual Dissimilarity Score  
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Table 4:  UniModal Audio and Visual Accuracy 

Methods  Accuracy  

Audio Modality 91.3 

Visual Modality 90.4 

 

                    

 

As shown in Figure 21, it can be inferred that visual constructive loss during 

training decreases with an increase in the training epoch cycle.  

 

Figure 21: Visual Constructive Loss 

  

 



36 

4.3.2 Unimodal Audio Result  

For Unimodal Visual modality, we received the accuracy of 91.3% in Table 1. As 

shown in Figure 22, when real and fake MFCC spectrograms of the same subject 

compared dissimilarity score increases, 2.62 and higher constructive loss vale are 

experienced. 

 

 

                             Figure 22: Audio Dissimilarity Score  

 

                             Figure 23: Audio Constructive Loss  
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4.3.3 Multi-modal Audio as Anchor 

We report and compare per-video the accuracy of our method against three prior 

deepfake video detection methods on DFDC. We have summarized these results in Table 

4. The following are the previous state-of-the-art methods used to compare the 

performance of our approach on the benchmark datasets. 

 

Table 5: Multi-Modal Audio Anchor Accuracy 

Methods  Accuracy  

Meso4 87.8 

Capsule 78.9 

FWA 88.2 

Our Method Audio Anchor 91.3 

 

                                    

 

As shown in Figure 24, with audio being the anchor, the dissimilarity score of the 

real(positive) face is 0.34 and helps in achieving lower triplet loss. While on the other hand, 

the fake(negative) face has a dissimilarity score of 0.78 and results in substantial triplet loss 

value. 
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                                       Figure 24: Audio Anchor Dissimilarity Score  

 

As shown in Figure 25, the training and validation triplet loss value decreases 

with an increase in the epoch cycle. 

 

                              Figure 25: Audio Anchor Triplet Loss 
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4.3.3 Multi-modal Video as Anchor 

We report and compare per-video the accuracy of our method against three prior 

deepfake video detection methods on DFDC. We have summarized these results in Table 

5. The following are the former state-of-the-art methods used to compare the 

performance of our approach to the same datasets. 

                        Table 6: Multi-Modal Video  Anchor Accuracy   

Methods  Accuracy  

Meso4 87.8 

Capsule 78.9 

FWA 88.2 

Our Method Video Anchor 90.2 

 

                                    

As shown in Figure 24, with visual being the anchor, the dissimilarity score of real(positive) 

audio is 0.27 and helps in achieving lower triplet loss. While on the other hand, 

fake(negative) audio has a dissimilarity score of 0.62 and results in substantial triplet loss 

value. 
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                           Figure 26: Video Anchor Dissimilarity Score 

 

                              Figure 27: Video Anchor Triplet Loss 
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4.3.4 Interpreting the correlation of Visual and Audio Modality 

We plot the distance between the speech embeddings and unit-normalized face learned 

from V1 and A1 1, 000 randomly chosen points from the benchmark train set.  We plot 

d(mvreal, mareal ) in blue and d(mvreal, mafake) in orange. The bulk of the subjects from real 

videos have a smaller distance, 0.2 between their embeddings as compared to the fake 

videos (0.5).  

We plotted the percentage of subject videos versus the distance between the speech and 

face modality embeddings. Figure 28 shows that the fake videos (orange curve) are 

distributed around a higher distance center (0.5). In contrast, the distribution of real 

videos (blue curve) is centered around a lower modality embedding distance (0.2)          

 

 

Figure 28: Modality Embedding Distance  

 

We show that visual-audio modalities are more similar in real videos as compared 

to fake videos. 
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CHAPTER 5.  CONCLUSION, LIMITATION AND FUTURE WORK  

5.1 Conclusion   

In this thesis, we present a siamese-based method for identifying fake videos. We use 

the likeliness between audio-visual modalities and the similarity between the useful clues of 

the two modalities to conclude whether a video is "real" or "fake ." We evaluated our method 

on benchmark audio-visual deepfake datasets, called DFDC, CelebDF, and Face Forensic++. 

5.2. Limitation 

Our approach has some drawbacks. First, our approach could infer in misclassifications 

on both the datasets, as compared to the one in the real video. Furthermore, many of the 

deepfake datasets mainly contain one or more person per video. We may have to extend our 

approach to take into consideration the emotional state of one or more pe ople in the video 

and come with a possible scheme for deepfake detection. 

5.3 Future Work 

In the future scope of this subject, we would like to focus on incorporating more 

modalities that are evenly contexted to conclude whether a video is a deepfake or not. 

We would like to amalgamate our approach with the existing ideas of detecting visual 

artifacts crossed over frames for better execution and performance. Additionally, we 

would like to approach more elegant methods for using audio cues.   
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