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Abstract

In the Deep Learning Era it is possible to misuse machine learning tech-

niques to produce audios and videos that can easily deceive humans and

machines. This work deals with identifying deep-fake reviews by means of

a Variational Autoencoder based on the Attention mechanism. The Vari-

ational Autoencoder is trained, validated and tested on three partitions of

the Amazon Product Data dataset, then it is compared against the state-of-

the-art architecture, the Transformer, on natural language modelling tasks.

The Encoder of the Variational Autoencoder produces review embeddings

that help disentangle deep-fake reviews from legit ones.
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Sommario

Nell’Era del Deep Learning è possibile fare un uso malevolo delle tecniche

di Machine Learning per produrre audio e video tali da ingannare sia mac-

chine che umani. Questo lavoro si focalizza sull’identificazione di recen-

sioni deep-fake tramite un Autoencoder Variazionale basato sul meccanismo

dell’Attenzione. L’Autoencoder Variazionale è allenato, validato e testato su

tree partizioni dell’Amazon Product Dataset ed è paragonato all’architettura

dello stato dell’arte Transformer, su moderazione di linguaggio naturale.

L’Encoder dell’Autoencoder Variazionale rende possibile separare recensioni

deep-fake da recensioni reali.
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Chapter 1

Introduction

1.1 General overview

Generative Deep Neural Networks (DNNs) can produce humanlike artifacts

starting from big chunks of data. These artifacts take the name of deep-

fakes. Deep-fakes can follow many different forms, depending on the data

the DNN is trained on: they can produce not only images but also video and

audio of high-quality. Once the DNN is trained and validated, it is possible

to mass-produce deep-fakes which can deceive both humans and machines.

This is problematic for many reasons: for instance, recommender systems

have a major role in personalizing the user experience and, to achieve the

best results, sentiment analyses can really boost the performances; in this

case, deep fakes can possibly sabotage any unprotected recommender sys-

tem by overflowing it with biased reviews, hijacking its recommendations

towards some arbitrarily chosen product. Deep fakes have been gathering

also the media attention due to their nasty applications over porn, politics

and generally misinformation: there are already many deep-learning-based

editing softwares that can generate arbitrarily-directed video/audio of any

famous public figures, given that enough images/videos of that person are

retrievable online. Since deep-fake mass production can’t be countered using

only human inspection, it is necessary to automate deep-fake detection.

This work deals with identifying deep-fake reviews by means of a Varia-

tional Autoencoder (VAE) based on the Attention mechanism. The

VAE is trained on a corpus of reviews and it is compared to the state-of-the-

art architecture for Language Modelling: the Transformer Decoder as a

way to test its competitiveness. The VAE is less perplexed than the Trans-



former in modelling language, therefore it can generate more humanlike

reviews using its Decoder. Instead, the VAE Encoder is employed to detect

deep-fake reviews: the Encoder produces review embeddings that help disen-

tangle deep-fake reviews from legit ones in the embedding (or latent) space.

Since the embeddings of the two types of reviews lay on different parts of

the embedding space, a non-parametric clustering algorithm like DBSCAN

is enough to label the embeddings as deep-fake or legit. The stronger the

VAE, the better the disentanglement.

1.2 Short work description

Considering that the Variational Autoencoder is used as a language model,

it is mandatory to compare it to the state-of-the-art in Language Modelling,

which is the Transformer. In its original form the Transformer is a sequence

to sequence (seq2seq) model composed of an Encoder and a Decoder primar-

ily based on the Attention mechanism. The architecture is employed mostly

for natural language translation, however, the Transformer Decoder by itself

can deal with language modelling tasks. When talking about language mod-

elling, the Transformer is actually a Transformer Decoder. The Transformer-

based state-of-the-art architectures for language modelling, that arose lately,

are multi-billion parameters models that are impossible to train without sev-

eral powerful GPUs or TPUs. Of these powerful language models there are

only a few instances, such as GPT-2 (Radford, 2018), which can be con-

sidered as the first of them. For this reason there hasn’t been as much

work on unsupervised deep-fake detection on text as in more traditional

machine learning tasks. The only attempts involve Autoencoders, such as

in (Nguyen, Nguyen, Tien Nguyen, Thanh Nguyen, & Nahavandi, 2019).

The Transformer-based architectures suffer from the exposure bias issue,

which degrades the performances during inference. On the other hand, gen-

erative models such as Variational Autoencoders don’t suffer from this issue,

thus they can perform better. Even so, VAEs haven’t got much attention

lately due to the Transformer success and up to now there is no study on

attention-based VAEs. This work dives deep into this matter, providing

a competitive architecture for Variational Attention-based Autoencoders,

showing the language modelling performances that can be gained using lim-

ited resources.

The VAE is trained, validated and tested on three different partitions of the

Amazon Product Data (ADP) dataset (He & McAuley, 2016). The three

partitions are sampled randomly from the full ADP using for train, devel-
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opment and test sets respectively the percentages 90 − 5 − 5. The VAE is

hyperparameter tuned on the dev-set. The tuning stage consists of trying

out different hyperparameter values using a variant of the grid search: first,

a grid of values is chosen considering the limited computational resources;

second, one hyperparameter at the time, the model is validated on the grid

values associated to that hyperparameter (while the others are kept fixed)

and the value that gives the best score (Perplexity) on the development set

is considered as best; once this process is performed on all the hyperparam-

eters, the process is performed once again on the grid values that are just

before or after the chosen ones. If there is 3% or more improvement in the

development test scores, the process is repeated again. Finally, the VAE is

trained on the train-set using the Adam optimizer. Next, the Transformer

is hyperparameter tuned on the dev-set and it is trained using the Adam

optimizer. The two architectures are compared on language modelling tasks

using Perplexity on the test-set as metric. In order to perform deep-fake re-

view detection, the VAE Encoder produces review embeddings, which help

disentangle deep-fake reviews from legit reviews in the embedding (or la-

tent) space. The embeddings of the legit reviews help train a Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) algorithm. The

training consists of computing the core-points. To detect deep-fakes, the

Encoder embeddings of the deep-fake reviews are fed to the DBSCAN al-

gorithm that marks them as outliers (fake samples) if they have a distance

which is bigger than ε from every core-point, otherwise they are considered

as inliers (legit samples). The performances of this deep-fake detection algo-

rithm are tested using Accuracy, Precision, Recall and F1 on three different

datasets made of 1024 legit reviews drawn from the test-set and 1024 adver-

sarial reviews generated from: the VAE, the Transformer using temperature

annealing, the Transformer using top-k ranking, all of them trained on 10%

of the train-set. To provide a better understanding of the several parts that

compose the VAE, the latter is subject of an Ablation Study, which helps

provide reliable knowledge. The study gives an insight on the benefits that

each piece of the VAE has on the training convergence and on the dev-set

performances.

For this work there are several interesting future perspectives which consist

of: weakening either Encoder or Decoder to boost the performances, incor-

porating the Transformer-XL mechanism to remove the fixed-context issue,

incorporating the BERT objective function to boost the performances.
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1.3 Thesis structure

This work is divided into 7 Chapters:

• Chapter 2 presents the state-of-the-art for Language Modelling and

Anomaly Detection. This part explains the successful mechanisms and

point out the underlying issues.

• Chapter 3 summarizes the main contributions of this work and delivers

the basic concepts needed to proceed.

• Chapter 4 explains the motivations under the main idea and the logical

process behind the implementation of the idea itself.

• Chapter 5 dives deep into the implementation details for both the VAE

and the deep-fake detection algorithm.

• Chapter 6 clarifies the experimental set-ups and shows the results ob-

tained, providing some interpretation on why they occurred.

• Chapter 7 wraps up everything exposing the conclusions and offering

some future perspectives.

18



Chapter 2

State of the art

This section illustrates the state-of-the art techniques up-to-date for both

Language Modelling and Anomaly Detection (AD) algorithms.

2.1 Language Modelling

Statistical language modelling refers to drawing a probability distribution

over sequences of words, given a certain vocabulary. Considering a sequence

s = [w1 . . . wn], a language model can output the probability of that se-

quence belonging to the language L taken into consideration: PL(s) =

PL(w1 . . . wn).

2.1.1 Recurrent Neural Networks

Prior to 2017, Language Modelling hasn’t been that successful compared

to traditional machine learning tasks (e.g. image classification). Recurrent

Neural Networks (RNN) based on Long Short Term Memories (LSTM) or

Gated Recurrent Units (GRU) have been the state of the art for most of

the time, however, it has been empirically demonstrated that LSTM aren’t

capable of modelling very long sequences and are rather hard to train due

to vanishing/exploding gradient issues (Pascanu, Mikolov, & Bengio, 2013).

2.1.2 Transformer

In the past few years, text generation has been partially achieved thanks

to the introduction of a new mechanism named Attention. The revolu-

tionary paper in (Vaswani et al., 2017) shows how self-attention can model

long-range dependencies on text. The new architecture revolving around the



attention mechanism is named Transformer and it is the up-to-date state-

of-the-art in Language Modelling. The original architecture of the Trans-

former is a sequence to sequence (Seq2Seq) model (Sutskever, Vinyals, & Le,

2014) based on attention. More precisely, the Transformer is an Encoder-

Decoder model that transforms a sequence into another. The encoder maps

an input sequence to a hidden vector which absorbs the relevant informa-

tion. The decoder maps the hidden vector to an output sequence. This

architecture is extremely flexible since input and output sequences can be

different: considering machine translation, the sequences can have different

lengths; considering image-text matching, the input sequence is a sequence

of pixels and the output sequence is a sequence of words. The Transformer

employs self-attention in the encoder and both self and normal attention in

the decoder. Figure 2.1 shows the in-depth architecture.

Transformer Variants

Considering its success, even though the original Transformer is designed

to perform machine language translation, it doesn’t take much to redirect

it for Language Modelling. In facts, its Decoder is enough to perform this

task, given the right objective function. The most successful architectures

are GPT-2 (Radford et al., 2018), Megatron-LM (Shoeybi et al., 2019) and

Transformer-XL (Dai et al., 2019); all of them are based on the Trans-

former Decoder. GPT-2 is a (slightly altered) large Transformer Decoder

that models language non-recurrently, meaning it can model sentences of

fixed-length only. It has 1.5 billion parameters and is trained over 40 GB

of text. Megatron-LM is just a stronger GPT with 4.3 times more pa-

rameters; Transformer-XL (a.k.a. XLNet) is an autoregressive version of a

Transformer Decoder on segment level (a segment is a slice of a sentence)

therefore it eliminates the fixed sentence length issue. Since Transformer-XL

is slightly worst than Megatron-LM, besides having 32.3 times less parame-

ters, and being better than the GPT-2 full implementation, besides having

5.8 times less parameters, Transformer-XL can be considered a breakthrough

in the field. BERT (Devlin, Chang, Lee, & Toutanova, 2018) must be men-

tioned as well since it is has a peculiar objective function and excellent

performances: the LM is trained by guessing randomly hidden words in a

sentence (thus not just sequential guessing). This peculiar objective func-

tion, however, makes generating text harder than usual since sentences are

produced sequentially from left to right.
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Figure 2.1: Transformer Architecture
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2.1.3 Generative Models

Deep Generative Models adapted for modelling language can produce text

as well as alter existing content as believably as possible.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) are neural-network-based tech-

niques that have been successful in the recent years (Goodfellow et al.,

2014). GANs contain a generative neural net (Generator) and a discrim-

inative neural net (Discriminator): the two nets take part in the adversarial

framework, which consists of the Generator generating fake samples and the

Discriminator discriminating the fake samples from the real ones. The more

fake samples the discriminator believes as legit, the better it is for the gen-

erator. Ideally, at convergence time, the generator should be able to output

realistic samples and the discriminator should be confident enough to dis-

criminate the suspicious fake samples from the real ones. Even though GANs

have had most of their success for computer vision tasks, the recent years

have seen some work in the Natural Language Processing area too: (Fedus,

Goodfellow, & Dai, 2018), (Press, Bar, Bogin, Berant, & Wolf, 2017).

Variational Autoencoders

Variational Autoencoders (VAEs) embody another powerful class of gen-

erative models. They consist of an encoding neural net (Encoder), which

embeds the input samples into latent embeddings, and a decoding neural

net (Decoder), which reconstructs the latent embeddings and brings them

back into the data space. The state of the art for language modelling VAEs

employs RNNs for either Decoder or Encoder or both. VAEs are trained us-

ing a combined objective function that involves a reconstruction loss and a

regularization loss. There are several successful VAEs architectures that can

model language, from more traditional RNN-based VAEs as in (Bowman et

al., 2015), to hybrid VAEs consisting of RNN encoder and CNN decoder as

in (Semeniuta, Severyn, & Barth, 2017).

2.1.4 Issues

Still, these language models do not solve some fundamental issues.
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Transformer

Non-generative Language Modelling techniques, such as the Transformer,

suffer from exposure bias. It refers to the train-test discrepancy that seem-

ingly arises when an autoregressive generative model uses only ground-truth

contexts at training time and uses generated contexts at test time (Schmidt,

2019). Generally, exposure bias appears when autoregressive models are

trained with the Teacher forcing technique, which consists of passing the

target word as the next input to the model. This way, at inference time,

when the model needs to rely on its own generations, if an error occurs, it

is likely to cause an error cascade making errors stack on top of each other.

Non-generative Language Modelling have a second problem, it is more of a

pre-condition for high-quality text generation and is the need for context.

All these language models produce more robust generations when fed with a

high amount of high-quality context: the better the context, the better the

generation, since the less exposure bias is to occur. This becomes an issue

when providing enough context is problematic and polarizing the text on a

certain argument and/or sentiment is necessary.

GAN

GANs have theoretically no issues, but in practise they are extremely hard

to train. The main issues can be summarized as:

• Non convergence arises when the parameters of generator and discrim-

inator oscillate and/or destabilize ending up never converging.

• Mode collapse happens in the generator when its limited latent space

”pushes” out the modes that are harder to reproduce, ending up repro-

ducing only few of them.

• Diminished gradient happens in the discriminator when it gets too

successful, making the generator gradient vanish.

Even though there is plenty of techniques that help contrast these issues,

when dealing with text, GANs are still hard to train, hence they haven’t yet

had much success compared to the Transformer achievements.

VAE

Despite VAE performant results, the state of the art architectures suffer

from a major problem that makes training harder: the regularization

overpowering effect. Essentially, the regularization loss is the easiest
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term to minimize in the objective function, but, such minimization comes

at the price of an increment in the reconstruction loss. As training goes

on, the model parameters get stuck in a region of the parameter space that

causes the regularization loss to anneal to zero and the reconstruction loss

to get bigger. The only way to lessen this hurdle is to either start with small

weight of the regularization term (nearly zero) and anneal it to 1; otherwise

it is possible to impose a minimum value of the regularization term, so that

having a smaller value of the term doesn’t affect the overall loss (because the

minimum is reached). Both these techniques come at a cost since both the

regularization term weight annealing curve and the minimum regularization

term value become hyperparameters that need to be tuned. The second

technique, which involves imposing a minimum value, is definitely the worst

of the two since it still allows the model to go down the parameter region

where the reconstruction loss is high and it just doesn’t allow the model to

go further. However, the first technique, involving annealing, requires much

more tuning since it is harder to pick the right annealing curve with the

right start and ending values.

2.2 Anomaly Detection

By definition, Anomaly Detection (AD) is the mechanism by which an intel-

ligent entity is able to identify an incoming sensory pattern as being hitherto

unknown (E. N. Sokholov, 2020). Basically, AD copes with identifying items

that differ significantly from the population and that are problematic (e.g.

Fraud Detection). These items are distributed in patterns that don’t adhere

to the statistical properties of the normal population. There are three main

AD categories:

• Supervised: the items are labelled (Kawachi, Koizumi, & Harada, 2018).

• Unsupervised: the items are not labelled and the outliers are usually

absent from the training set (Chen, Sathe, Aggarwal, & Turaga, 2017).

• Semi-supervised: the dataset is not fully labelled, thus the problem is

mainly unsupervised but the performances benefit from labelled items

(Ergen, Hassan Mirza, & Kozat, 2017).

2.2.1 Supervised

Supervised AD is a simpler but rarer task since usually most of the outliers

are different from one-another and don’t belong to a single class: thus having
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a dataset that contains all the outlying classes is unusual. This problem is

tackled with a standard multi-class classifier.

2.2.2 Unsupervised

Unsupervised AD is much more common: without knowing the outlying

classes, it is better to white-list than it is to black-list items. For this

reason it is prime to learn the behavior of the normal items to discriminate

the abnormal ones as outliers. One-class classifiers are the popular way-to-

go. One-Class Support Vector Machines (OC-SVMs) are popular for this

task (“Robust outlier detection using SVM regression”, 2004), as well as

One-Class Neural Networks (OC-NNs). Both of them use similar objective

functions (Chalapathy, Menon, & Chawla, 2018). These techniques can

be applied directly on the data space but, this way, the task gets harder.

Typically, it is easier to train an Autoencoder and then perform the one-

class techniques on the Encoder embedding (or latent) space. The task gets

easier if the AE Encoder produces meaningful embeddings that encapsulate

the useful information. This way, the embedding space can also provide

data separation, therefore, easy clustering.

2.2.3 Issues

Even though OC-SVMs are the state-of-the-art for many problems, they are

not faultless: in this work SVMs have random-like performances. OC-NNs

represent a powerful technique but they require an increasing amount of pa-

rameters and training as the distribution of the data becomes more complex.

This becomes problematic when only limited resources are available.
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Chapter 3

Research problem setting

The following chapter defines the contributions of this work and defines the

basic concepts needed to understand the techniques employed lately.

3.1 Contributions

This work is meant to provide a novel VAE architecture that solves the

preexisting issues and provides powerful review embeddings that help dis-

entangle deep-fake reviews from legit ones. The actual contributions are:

1. Introduction of a novel competitive architecture for Language Modelling:

Variational Autoencoder based on self-attention. It is the first language

modelling AE architecture that doesn’t employ RNNs in both encoder

and decoder. Furthermore, the architecture is much less affected by the

regularization term overpowering effect that affects the previous archi-

tectures.

2. Unsupervised Anomaly Detection on deep-fake reviews, generated by ad-

versarial models by means of a non-parameter-intensive technique: DB-

SCAN applied on the VAE Encoder embeddings.

3.2 Basic concepts

This section provides the basic concepts needed to understand the core con-

cepts of this work that are presented later.



Figure 3.1: Autoencoder Architecture

3.2.1 Autoencoder

The Autoencoder (AE) is a fundamental deep learning architecture: it is

made of an Encoder attached to a Decoder and, in between the two, there

is a bottleneck. The bottleneck layer generates a multidimensional space

(lower dimensional w.r.t. the data space) where the embeddings (or latent

codes) lay on. Figure 3.1 shows the general scheme.

The flow is straightforward: the Encoder maps the input data into a (low-

dimensional) latent space, then the Decoder maps the latent items back to

the (high-dimensional) data space. Basically, the input samples are encoded

and then decoded/reconstructed. The better the reconstruction, the lower

the loss. The objective function can be any appropriate reconstruction loss

(e.g. Mean Squared Error for images and Negative Log Likelihood for text).

The AE Decoder can be conceived as a sort of Generator that generates

new samples starting from a random input vector. Still, AEs by themselves

cannot generate new meaningful samples: usually, the hidden prior has an

unusual distribution, due to efficiency reasons, that makes it hard to sample

from. To generate properly, AEs need to be regularized. There are two

main approaches to AE regularization that fork into two different AE sub-

categories:

• Variational Autoencoder (VAE): Imposes a well-known distribution as

prior (e.g. Normal Standard, Mixture of Gaussians) (Kingma, Mohamed,

Jimenez Rezende, & Welling, 2014).

• Adversarial Autoencoder (AAE): Uses a Discriminator to regularize the

prior (Makhzani, Shlens, Jaitly, Goodfellow, & Frey, 2015).
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Variational Autoencoder

As already mentioned, the VAE forces the latent distribution to be a well

known distribution, usually a Gaussian with zero mean and unit variance.

This constrain can be imposed by making the Encoder output a distribution

instead of a single point. Yet, sampling can’t just disrupt the differentiability

of the system (since back-propagation is needed) and simply sampling from

a distribution is a non-differentiable operation. Fortunately, by using the

re-parametrization trick in Equation 3.1, it is possible to sample from a

Gaussian distribution keeping the differentiability intact:

X = µ+ ε× σ (3.1)

σ = elogvar/2 (3.2)

ε ∈ N(0, 1) (3.3)

The Encoder is trained to generate both bias µ and logarithmic variance

logvar = log(σ2). Then the VAE computes the sample X using these values

as in Equation3.1. Yielding a distribution instead of a single point is not

enough: the VAE can just anneal the variance of the distribution to zero,

reducing the distribution to a mere point. For this reason, the regularization

term in Equation 3.4 is mandatory.

LV AE = Lreconstruct(X|Z) + Lregularize(Z|X) (3.4)

Here, Z represents samples coming from the latent space distributions. Hav-

ing a dense convex latent space helps sampling latent points that are associ-

ated to well-formed sentences. In few words, given two points in the latent

space, which correspond to two different real sentences, each point of the

linear interpolation between those two should be decoded into a meaningful

sentence.

Usually, the imposed prior is a Normal Standard distribution, however it

is not the only well-known distribution that can be imposed as prior. In

facts, the Mixture of Gaussians (MoG) is employed in many works as well

(Semeniuta et al., 2017). It requires a few tweaks to the architecture of the

VAE, but it helps clustering the Encoder embeddings into different parts

of the latent space, hence its popularity. For this work the MoG is not

employed since it doesn’t perform well: the MoG collapses to a Gaussian
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with zero mean and unit variance, meaning that the Normal Standard is a

better fit to the underlying latent distribution.

Adversarial Autoencoder

The Adversarial Autoencoder (AAE) is a probabilistic AE that resorts to

the same adversarial framework of GANs to perform variational inference by

matching the aggregated posterior of the latent code vector of the AE with

an arbitrary prior distribution. This framework ensures that generating from

any part of the prior results in meaningful samples. Additionally, the AAE

Discriminator can output a confidence level Dis(z) ∈ [0, 1] that indicates the

fakeness of input x. It can be easily employed for Anomaly Detection. The

AAE is made of an Encoder, a Decoder and a Discriminator, distributed as

in Figure 3.2. The AAE training workflow requires the forward propagation

first, then the following steps are performed sequentially:

1. Encoder and Decoder are updated using the backward propagation com-

puted using the reconstruction loss in Equation 3.5.

2. Encoder and Discriminator are updated using the backward propagation

computes using the adversarial loss in Equation 3.6.

Lrec = −Ex∼Px

[
log
(
Dec(Enc(x))

)]
(3.5)

Ladv = min
Enc

max
Dis

Ez∼Pz

[
logDis(z)

]
+Ex∼Px

[
log
(
1−Dis(Enc(x))

)]
(3.6)

The AAE is a powerful technique, but it requires more parameters and more

training than the VAE: 1 forward propagation and 2 backward propagations

are needed. This gets even more problematic since empirically Autoencoder

and Discriminator need m and n straining steps respectively. Generally

m 6= n and n > 1 or m > 1 and they are considered as hyperparameters.

For this work, the adversarial framework introduces high-significance hyper-

parameters, extends the training time needed and doesn’t provide a robust

performance enhancement. For these reasons, it is not the right architecture

choice.

3.2.2 Attention

As already mentioned, the VAE is based on the Attention mechanism. This

mechanism is deemed to be one of the most powerful in Deep Learning and
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Figure 3.2: Adversarial Autoencoder Architecture

it is currently holder of the state of the art for many Natural Language Pro-

cessing (NLP) and Computer Vision (CV) tasks. Generalizing, the attention

function can be described as mapping a query and a set of key-value pairs

to an output, where the query, keys, values and output are all vectors. The

output is then computed as a weighted sum of the values, where the weight

assigns to each value is computed by a compatibility function of the query

with the corresponding key (Vaswani et al., 2017). Equation 3.7 summarizes

the above.

attention(x, yt) =

n∑
i=1

αt,ivi(x) (3.7)

αt,i = align(xi, yt) = softmax
(
score

(
k(xi), q(yt)

))
(3.8)

Queries and keys have dimension dk, while values have dimension dv. Con-

sidering a source sequence x = [x1...xn] and a target sequence y = [y1...ym],

the source sequence forms both keys and values, thus x is projected onto

those dimensions, as in Equations 3.9, 3.10, instead, the target sequence y

is projected onto the query space as in Equation 3.11.

v(x) = v = W T
v · x (3.9)

k(x) = k = W T
k · x (3.10)

q(y) = q = W T
q · y (3.11)
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Name Score Function

Content Based score(k, q) = cos (k, q)

Additive score(k, q) = M∗A tanh (W T∗
A · [k; q])

Location-Based align(xi, yt) = softmax(W ∗A · k(yt))

General score(k, q) = kT ·W ∗A · q

Dot-Product score(k, q) = kT · q

Scaled Dot-Product score(k, q) = (kT · q)/
√
dk

Table 3.1: Attention types

Attention Variants

Since its conception, have been developed several sub-types of attention that

differ mainly on how to compute the score function. Table 3.1 presents all

the attention types, where (∗) means: matrices to be learned. The attention

types come from:

• Content Based: (Graves, Wayne, & Danihelka, 2014)

• Additive: (Bahdanau, Cho, & Bengio, 2014)

• Location-Based: (Chorowski, Bahdanau, Serdyuk, Cho, & Bengio, 2015)

• General: (Luong, Pham, & Manning, 2015)

• Dot-Product: (Luong et al., 2015)

• Scaled Dot-Product: (Vaswani et al., 2017)

The Scaled Dot-Product attention is what is used in this work, due to its

positive results in the state of the art, and from now on it is considered as

the default one.

Packing together queries, keys and values into matrices Q, K and V re-

spectively, attention can be expressed in matricial form as in Equation 3.12.

attention(Q,K, V ) = softmax
(Q ·KT

√
dk

)
· V (3.12)
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Figure 3.3: Scaled Dot Product Attention

The overall workflow is visually represented in Figure 3.3.

Self-Attention

Self-attention can be defined as in Equation 3.13. It is the fundamental

building block of the VAE architecture and models the dependencies between

the sequence of words.

self attention(yt|y) = attention(y, yt); yt ∈ y (3.13)

Self-attention can be either global or local: considering sentences, it can

either be applied to the whole sentence (global) or at segment level (local),

meaning every segment length words. For the sake of clearness, considering

an input sentence s = [w1 . . . wn], self-attention models how each word wk

is related to the other words wk̃, using real numbers. The higher the value,

the higher the correlation. Figure 3.4 offers the visualization of an example

from (Vaswani et al., 2017).
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Figure 3.4: Self-Attention Visualization

Mechanism Layer Complexity Operations Max Path Length

Self-Attention O(n2 · d) O(1) O(1)

Recurrent O(n · d2) O(n) O(n)

Convolution O(k · n · d2) O(1) O(logk(n))

Table 3.2: Complexity Comparison

From a complexity point of view, self-attention is more attractive than the

older mechanisms: RNNs and convolutions. Table 3.2 offers the complexity

comparison.

Multi-Head-Attention

Instead of using a single attention function with dk, dv, dk dimensional

keys, values and queries respectively, it is beneficial to linearly project the

queries, keys and values h times with different, learned linear projections of

dimensions dk, dv, dk respectively. On each of these projected versions of

queries, keys and values we then perform the attention function in parallel,

yielding dv-dimensional output values. These are concatenated and once

again projected, resulting in the final values as in Equation 3.14 (Vaswani

et al., 2017). This is interpretable as some sort of ensembling between

multiple attentions models. Basically, Multi-Head-Attention (MHA) allows

the model to jointly attend to information from different representation sub-

spaces at different positions. With a single attention head, averaging inhibits
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Figure 3.5: Multi Head Attention

this.

MHA(Q,K, V ) = Concat(head1 . . . headh) ·WO (3.14)

headi = attention(Q ·WQ
i ,K ·W

K
i , V ·W V

i ) (3.15)

The matrices in Equation 3.15 have dimensions: WQ
i ∈ Remb×dk , WK

i ∈
Remb×dk , W V

i ∈ Remb×dv , since they need to map the words from the (emb-

dimensional) embedding space to either query, key or value space. Moreover,

WO ∈ Rdvh×emb. The above is visually represented in Figure 3.5.

3.2.3 Optimizations

The VAE architecture employs two important architectural enhancements:

residual connections and normalization on the layers. These techniques

boost the convergence of the model by helping with the vanishing/exploding

gradient issue and stabilizing the gradients, respectively.
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Residual Connections

Deep neural networks are powerful mathematical models but known to be

harder to optimize as the parameter count and/or depth of the model grows.

Lately, neural nets got deeper and deeper, therefore, harder to optimize. To

cope with these issues, Residual Connection are introduced in (He, Zhang,

Ren, & Sun, 2015) as way of making training easier. Neural nets based on

Residual Connections are named ResNets. Residual connections are identity

connections that are added to the output of a certain layer. If the connec-

tions are weighted (instead of simple identities) they are named Highway

connections. The connections must be weighted if the dimension of the out-

put of the previously-skipped layer are different from the dimension of the

input of the downstream layer. During training, the weights adapt to mute

the upstream layer, and amplify the previously-skipped layer. Learning this

might take some iterations.

Residual connections speed up the convergence by reducing the impact

of vanishing/exploding gradients, as there are fewer layers to propagate

through. The network then gradually restores the skipped layers as it learns

the feature space. A neural network without residual connections explores

more of the feature space, which makes it more vulnerable to perturbations

and necessitates extra training data to recover (ResNet, 2020).

Layer Normalization

As already mentioned, neural nets are hard to optimize, however there are

several techniques that make things easier. Normalization is one of them: it

makes the model invariant to dataset re-scaling. There are several types of

Normalization, as shown in Figure 3.6 for images.

• Batch Normalization: normalization along the batch dimension.

• Group Normalization: normalization separately for each group of chan-

nels.

– Layer Normalization: normalization over all the channels (maximum

group possible).

– Instance Normalization: normalization over each single channel (min-

imum group possible).

Batch Normalization is the first normalization technique to be developed

and it is introduced in (Ioffe & Szegedy, 2015). Given a mini-batch of M

samples, it normalizes the mini-batch by computing its mean and variance.
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Figure 3.6: Normalization Variants

It is supposed to reduce the covariate-shift problem. Batch normalization

has an issue though: when the batch size is not a good approximation

of the full dataset, mean and variance get too inaccurate. This usually

happens when the mini-batch is too small and it causes the performances to

deteriorate.

Layer Normalization (Ba, Kiros, & Hinton, 2016) is an sub-type of Group

Normalization (Wu & He, 2018) where the group contains all the channels.

It is meant to substitute Batch Normalization. It computes the mean and

variance (used for normalization) from all the summed inputs to the neurons

in a layer on a single training case. This way the normalization is indepen-

dent on the batch size and makes the model invariant to weight rescaling

and shifting. The idea comes from the fact that changes in the output of

a certain layer can cause correlated changes in the summed inputs of the

next layer. This type of covariate shift can be dealt with by fixing mean and

variance of the summed inputs within each layer: that is why the statistics

are computed on all the (H) hidden units in that layer (l) as in Equations

3.16, 3.17.

µl =
1

H

H∑
i=1

ali (3.16)

σl =

√√√√ 1

H

H∑
i=1

(ali − µl)2 (3.17)

Applying layer normalization is easy and it has been demonstrated to work

well with generative models. For these reasons it is the normalization tech-

nique employed for this work.

3.2.4 Nonlinearity

Activation functions φ determine what and when neurons burst out out =

φ(in), given an input in. Mathematically, they are (mostly) needed to intro-
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duce non-linearity in the network, however, their influence on the training

is much more than just that: they can better/worsen gradient vanishing/-

exploding, they can help regularize the model and, in general, unexpectedly

change the convergence of the model. Early neural networks are designed to

work with binary threshold units smoothed as sigmoids due to their prob-

abilistic interpretation, however the past decade has seen the rise of Rec-

tified Linear Units (ReLU) that depend on the sign of the input (Agarap,

2018). Its formulation is in Equation 3.18. Loosing the interpretation is

rather unimportant compared to the performance boost that they offer,

however, ReLUs can fit the data so well that usually stochastic regular-

ization techniques are needed (e.g. dropout or adding noise in the hidden

layers). Recently in (Hendrycks & Gimpel, 2016) is introduced a new type

of nonlinearity: GELUs. GELUs are designed to combine the stochastic-

ity of dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,

2014) and zoneout (Krueger et al., 2016) whilst keeping the performances of

ReLUs. By multiplying the neuron input x by m ∼ Bernoulli(Φ(x)), having

X ∼ N (0, 1), it is possible to impose stochasticity: Equation 3.19. It is

possible to approximate GELU with Equation 3.20.

ReLU(x) = max(0, x) (3.18)

GELU(x) = x P (X ≤ x) = x Φ(x) (3.19)

GELU(x) ' 0.5 x

(
1 + tanh

(√
2/π(x+ 0.044715 x3)

))
(3.20)
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Chapter 4

Logical project of the

solution of the problem

4.1 Overview

4.1.1 Motivation

Deep-fake detection consists of identifying reviews generated by deep neural

networks in a population of reviews. The reviews are not labelled and there

is no way to produce a complete labelled dataset since there are infinite ways

of modelling language with neural networks. Even a slight hyperparameter

variation could lead to significantly different neural language models. Since

supervised methods cannot be applied successfully, deep-fake review detec-

tion must be dealt unsupervisedly.

Unsupervised deep-fake detection can be tackled with anomaly detection

algorithms. These algorithms usually employ Autoencoder-generated fea-

tures, which are fed to a second algorithm designed for detecting outliers in

a population of items. These techniques are usually one-class SVMs or one-

class NNs. Both of them are parametric-intensive algorithms, hence they

require a non-trivial amount of training, therefore, higher computing power.

Moreover, the better the AE features, the better the performances. The AE

features are ”better” if they encapsulate useful information. Of course, the

features possess these properties if the AE is ”strong” enough to generalize

on them by means of its Encoder. For this reason, having a well-performing

AE is prime for solving this task successfully.



4.1.2 Idea

Following the success that the attention mechanism had in the state of the

art, this work studies attention-based variational autoencoders: these mod-

els can produce powerful enough embeddings to disentangle legit reviews

from deep-fake ones in the embedding space. This way, it is enough to em-

ploy a non-parametric outlier-detection algorithm, such as a slight variation

of DBSCAN, to separate legit reviews from deep-fake ones with good per-

formances. As a disclaimer, these techniques are supposed to work under

the hypotheses that deep-fake reviews are non-perfect, meaning that they

are either syntactically or semantically incorrect, hence they have slight (or

severe) grammatical errors (e.g. this coffee has good) or they are incoherent

(e.g. this coffee is bad but it is good).

4.2 Design

4.2.1 Dataset

Language models learn from a large corpus of text. Depending on the

dataset, the language model can learn sub-types of language. More specifi-

cally, if the dataset contains only reviews, the language model will be able to

generate reviews but it won’t be able to generate poems and vice-versa. This

means that, in general, a dataset containing reviews of a certain language

will have a different word-distribution w.r.t. the general word-distribution

of that spoken language. It is possible to demonstrate this property using

the Zipf’s law (Zipf, 2020), by estimating the Zipf exponent on the corpus

and comparing it to the empirical Zipf exponent known for that language.

Knowing this is mandatory if two language models have to be compared: it

would not be fair to compare a language model (e.g. the VAE) tested on

a certain corpus and another language model tested (e.g. the Transformer)

on another corpus. For this reason, we cannot compare the performances of

the Transformer claimed on some papers with the performances of the VAE

on the Amazon Product Dataset.

The corpus must be preprocessed before being fed to the neural network: a

maximum length max len of sentences is selected; the length of a sentence

is given by the sum of the number of words and punctuation inside it).

Next, to each sentence is attached a Start of String (SOS) token to its

start and an End of String (EOS) token to its end. Next, for each sentence

that is smaller than max len + 2, a list of padding (PAD) tokens is added

to match that length. The data is almost ready to be encoded, however,
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when dealing with Natural Language Processing tasks, the practice is to

trim the vocabulary to a reasonable number of words, so as to grant a

high word-coverage for the corpus and then encode the sentences using 1-

hot encoding (One-hot, 2020). This is mandatory since a vocabulary that

is too big would lead to high-dimensional 1-hot encodings that cannot be

processed by standard GPUs. The dataset is partitioned into three different

parts using random sampling: train-set with 90%, dev-set with 5% and

test set with 5%. Random sampling is considered a good-enough way of

partitioning considering the number of reviews of the full dataset (roughly

2 millions). The dataset is split only into three parts because even a 5-folds

cross validation would be too computationally expensive.

4.2.2 Architecture

Given the idea of a neural network, the in-depth design must go through

some standard passages. First, as mentioned above, the input has to be

encoded in such a way that the neural network can process it and perform

computation efficiently. The number of input neurons must match the num-

ber of dimensions of the 1-hot encodings, that is the number of words in the

vocabulary. Next, is needed an appropriate number of output neurons for

the task considered. In this case, since the task is to reconstruct sentences,

the number of output neurons is the same as the number of input neurons.

Moreover, in order to carry out the training successfully, an appropriate

loss function is required. For this work the loss function is the weighted

sum of two terms, a reconstruction term and a regularization term. Given

a more defined structure of the net, it is time to select the optimizer and

the learning rate associated with it. Picking the right optimizer with the

right learning rate is vital for the success of the work since the convergence

of the network depends mainly on those two. Since deep neural networks

are hard to train, the next step is to deal with vanishing/exploding gradi-

ent. This issue can be tackled in multiple ways, some better than others:

it is a matter of trying out what we think will work and see the effects the

adjustments have on the training and overall performances (on the develop-

ment set). Gradient clipping can cope with this issue, however it introduces

high-relevance hyperparameters. Another way of dealing with this is to add

residual connections: they can shorten the path between input and output,

lessening the gradient vanishing. Activation functions have a major effect

on vanishing gradient as well, so they have to be picked carefully. Further-

more, to speed-up the convergence of the model, a suitable normalization

technique has to be chosen. As final step, the hyperparameters of the net-
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work have to be tuned on the development set: the number of hidden layers

and hidden neurons, the batch size, the number of epochs (using early stop-

ping). Scheduling the learning rate can also help reach better performances:

lowering the learning rate it is possible to get nearer to a local minimum,

however there is the possibility to overdo it, causing overfitting.

4.3 Experimentation

In order to understand whether the new architecture is competitive or not

with the state-of-the-art, both quantitative and qualitative experiments are

needed. The quantitative experiments help compare the VAE with the

Transformer and they provide a number that measures how well one is do-

ing w.r.t. the other. The qualitative experiments don’t provide a number

but they provide higher-level evidence, such as visualizations, that can be

enjoyed by humans. Qualitative experiments are necessary to validate or

negate hypotheses that can’t be assessed with a mere number.

4.3.1 Tuning

Tuning the hyper-parameters is a long but necessary step for developing a

successful model. In few words, this phase consists of trying out several

values for the hyperparameters, following a certain strategy, then selecting

the best value accordingly to the dev-set performances. The strategy that

is employed to pick the hyperparameters value to be tried is a modification

of grid search. First, a grid of values is chosen considering the limited com-

putational resources. Second, one hyperparameter at the time, the model is

validated on the grid values associated to that hyperparameter (while the

others are kept fixed) and the value that gives the best scores on the devel-

opment set is considered as best; once this first step is completed on all the

hyperparameters, the process is performed once again: this time the values

to be tried out are those ones that are just before or just after the ones

currently considered as best. If there is 3% or more improvement in the de-

velopment test scores, the process is repeated again until convergence. This

technique is sub-optimal, but it helps lowering the computational efforts

that would go into trying out all the possible grid-search combinations. The

right hyperparameter tunes are chosen by looking at the development-set

performances for each differently tuned model.
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4.3.2 Language Modelling

Metrics

Natural Language Processing models are known to be hard to evaluate, since

it is hard to tell when one model has learnt the language properly. In par-

ticular, when dealing with language modelling, it is not enough to consider

just the number of words that are mispredicted by the model since there are

multiple ways to tell the same concept. Perplexity fulfills exactly such task:

it provides a continuous value that measures how ”wrong” the model is be-

ing at predicting words in a sentence. Even though alone it is not enough,

it can be used as loss function, therefore it enables back-propagation in the

network. Perplexity is usually paired with human evaluation, therefore this

section must provide language modelling example as well.

Generation

Even though quantitative results are important, they are still not enough.

There have to be qualitative experiments on generation, that can be in-

spected by humans directly. The two qualitative experiments on generations

that are done in this work are:

• Random generation

• Interpolation generation

Both experiments deal with generating sentences given some points in the

latent space, but there is one key difference: how to get the latent points.

As the name suggests, random generation generates sentences given latent

points randomly sampled from a Gaussian distribution (the imposed prior)

having same bias and variance as the latent code distribution (such distribu-

tion is computed by encoding true sentences from the dataset). Instead, the

interpolation generation consists of sampling randomly two (real) sentences

from the dataset, encoding them to get their latent representation, interpo-

lating the latent representations and finally decoding points sampled from

that interpolation. More precisely, given two sentences s1 and s2, the inter-

polation of their latent representation l1 = Encoder(s1), l2 = Encoder(s2)

can be computed as in Equation 4.1. By choosing the α value, it is possible

to navigate the interpolation.

lintp(α) = l1 ∗ α+ l2 ∗ (1− α) (4.1)

Once the interpolation is computed, the associated sentence is derived by

decoding the interpolation through the Decoder: sintp = Decoder(lintp).
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By interpolating two reviews in the latent space, it is possible to observe

how the review shifts. This is important evidence for understanding whether

the model is overfitting or underfitting. Having correct representation of the

extremes of the interpolation (the original sentences) along with weird jumps

in the sentence meaning and/or grammatical correctness on the interpolation

would mean overfitting the dataset (memorizing the seen reviews without

generalizing on the dataset). Having incorrect representation of the extremes

and few changes of the sentence on the interpolation segment can mean

underfitting.

Embedding Visualization

The VAE performances can be evaluated by looking at the Encoder em-

bedding space as well: studying the latent code properties is important to

understand the prowess of the VAE in representing sentences. Since the em-

bedding space can’t be witnessed on 2D graphs, it has to be projected onto

a visualizable lower-dimensional sub-space. Principal Component Analy-

sis (PCA) can be used for this task: it extracts the Principal Components

(PCi), that are the ”directions” of the embedding space that explain most

variance. PCA is a statistical procedure that uses an orthogonal transforma-

tion to convert a set of observations of possibly correlated variables (entities

each of which takes on various numerical values) into a set of values of

linearly uncorrelated variables called principal components (Karl Pearson,

2020). There are several properties that can be witnessed in the latent space,

such as: review length, review sentiment and review topic. In order to select

which topics to consider, Latent Dirichlet Analysis (LDA) is performed on

the full dataset for topic extraction.

Attention Visualization

As already mentioned, the VAE is based on attention. The attention mech-

anism is well known for being interpretable. The way the model is built, it

is possible to visualize the relationship between high-level features as well

as low-level ones before and after each down-sampling blocks (in the En-

coder) or up-sampling blocks (in the Decoder). This visualization can tell

us whether the model is giving high relevance to non-grammatical relation-

ships, thus possibly overfitting, or it is generalizing, thus learning the gram-

matical patterns of the language. Moreover, if there is a substantial number

of heads that are too similar, the number of heads can be decreased. Alter-

natively, if the heads capture different interesting relationships, the number

can be increased. Given the attention matrix, which models the correlation

44



between concepts, it is possible to project it onto a discrete two-dimensional

color-map.

4.3.3 Anomaly Detection

In order to evaluate properly the performances of the AD algorithm, it

would be better to have deep-fake reviews generated by multiple deep-

neural-networks since, as already said, we want a robust detection algorithm

that can generalize on all the deep-fake reviews: it would be useless to have a

detector that detects deep-fake reviews generated by only one type of deep-

neural-net. Consequently, the AD is tested on three different datasets, half

of which is made of legit reviews sampled from the test-set and half of which

is made of deep-fake reviews generated by: one attentive VAE, one Trans-

former using top-k sampling, one Transformer using temperature sampling,

all of them trained on a sub-portion of the train-set. Once the three datasets

are completed, assessing the performances of the AD can be done comput-

ing Accuracy, Precision, Recall and F1, on unseen data. In addition, the

reader is going to be provided with a visualization of the latent space pro-

jected onto the 2-dimensional spaces described by its principal components.

This visualization helps understanding whether every principal components

is useful or not. If there are principal components that aren’t useful, then it

could be a good idea to project the latent space onto the lower-dimensional

space described by the useful principal components, which would lessen the

computational resources needed by the AD.

4.3.4 Ablation Study

The ablation study is a crucial step for any deep learning research. It helps

to figure out causality into the model, which is the most straightforward

way to generate reliable knowledge. In facts, considering the stochasticity

of the parameter initialization and of the optimization routines in artificial

neural networks, chances are that removing a few modules (or replacing

some trained features with random ones) there is no loss in performance. By

dissecting the net (removing each component one by one) and by observing

the results, it is possible to understand the role that each component takes

and their relationship between each other. For these reasons, the VAE is

dissected of its main parts and its broken down variants are trained on a

sub-part of the train-set for few epochs (due to computational power issues)

and checked on the dev-set. The ablation study provides also visualizations

of the comparison between training curves of the full VAE and of its broken

down versions to show how the convergence of the model improves.
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Chapter 5

System architecture

This section provides an in-depth description of the attentive Variational Au-

toencoder (attnVAE) and Anomaly Detection (AD) algorithm foe detecting

deep-fakes. For the VAE, the architecture comes first, then the training and

optimization technique are explained. For the AD, multiple techniques are

explained in general and the best one is explained in depth.

5.1 Attentive Variational Autoencoder

The overall VAE architecture is depicted in Figure 5.1. The VAE is made

of two main modules: the Encoder and the Decoder. The Encoder encodes

the reviews into the latent space, turning them into embeddings, which are

lower-dimensional w.r.t. the original data space. The Decoder decodes the

embeddings back into the data space. Encoder and Decoder are almost

specular and both of them contain two types of secondary modules: Self-

Attentive Blocks (SABs) and Point-Wise Feed Forward nets (PWFFs).

5.1.1 Encoder

The Encoder is represented in Figure 5.1 in the VAE context. It is composed

of three main parts:

1. Embedding: embeds words using an unbiased linear projection.

2. Core: outputs a continuous dense vector after down-sampling the input

word-embeddings.

3. Gaussian: generates the bias vector and logarithmic variance vector

needed to produce the latent codes, starting from a continuous dense



Figure 5.1: Variational Autoencoder Architecture
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vector.

Core

The Encoder Core module involves two main mechanisms: self-attention (in

the SABs) and down-sampling (in the PWFFs). The two mechanisms are

alternated n blocks times, starting with self-attention: the (word-embedded)

input sequence goes through the self-attention first and then is down-sampled.

The process is repeated n blocks times and each time the input sequence is

reduced in length, until it reaches the right length (which is an hyperpa-

rameter). The sequence length reduction can be linear or exponential, but

in general it can be any non-increasing function. For the sake of simplicity,

this work is realized with linear reduction, therefore, for each repetition,

the sequence length is reduced of k units. For example, given k = 4 the

input sequence is reduced as: 16 → 12 → 8 → 4. Applying self-attention

at different sequence lengths helps the network correlate not only words,

but higher-level features too, which take the name: concepts. In addition,

down-sampling alleviates the Gaussian module from having to produce the

bias and logvar vectors starting from a full-length sequence, which would

be harder and would require many more parameters.

Workflow

The Encoder Embedding module takes as input a mini-batch of 1-hot en-

coded sentences (dimension := batch size×seq len×vocab size), then it lin-

early projects the sequence onto the emb-dimensional space where the words

embeddings lay on (dimension := batch size × seq len × emb dim). Next,

the Encoder core is fed with the word-embedded full sequence. The Self-

Attentive Block (SAB) computes the attention of the sequence and passes

its output to the Down-Sampling Block (DSB), which consists of a Point-

Wise Feed Forward (PWFF) network followed by a one-dimensional con-

volution with kernel size of 1. The SAB-DSB process is repeated n blocks

times until the sequence has seq final len length (dimension := batch size×
seq final len× vocab size). Afterwards, the tensor is flattened (dimension

:= batch size ·seq final len×vocab size) and passed to the Gaussian mod-

ule. The Gaussian module is made of two separate Linear Feed Forward

networks that compute both bias and logarithmic variance. Those are then

mixed as in Equation 3.1 to produce the latent embeddings (dimension :=

batch size × code dim) which are ready to be fed to the Decoder.
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5.1.2 Decoder

The Decoder is represented in Figure 5.1 in the VAE context. Its architecture

is mostly specular to the Encoder one, having three modules:

1. Linear: projects the latent embeddings back to the word-embedded se-

quences.

2. Core: up-samples starting from a small-length sequence, arriving to a

full-length sequence.

3. Embedding: maps the input sequence from an embedding-dimensional

space to a 1-hot word-dimensional space using an unbiased linear projec-

tion.

Core

Similarly to the Encoder, the Decoder Core module involves self-attention

(in the SABs) and up-sampling (in the PWFFs). The two mechanisms

are alternated n blocks times, starting with self-attention. The sequence

length increment can be linear or exponential, but in general it can be any

non-decreasing function. For the sake of simplicity, this work is realized

with linear increment, therefore, for each repetition, the sequence length is

incremented of k units.

Workflow

The latent embeddings are fed to a the linear layer that turns them back into

a word-embedded sequence (dimension := batch size × seqlen × emb dim).

This is then fed to the Core, which starts with a new SAB and subsequently

with an Up-Sampling Block (USB) which up-samples to increase the length

of the sequence. The USB consists of a PWFF followed by a one-dimensional

convolution with kernel size of 1,needed to up-sample. The SAB-USB pro-

cess is repeated n block times until the sequence is full-length. Finally, the

full-length sequence is projected back to the 1-hot word space by means of a

linear projection (tensor dimension := batch size × seq len × vocab size).

5.1.3 Self-Attentive Block

The Self-Attentive Block (SAB) performs MHA as explained in Equation

3.14, which is an ensemble of self-attentions that model the relationships be-

tween words in a sentence. However, considering that sentences are created

sequentially from left to right, modelling the relationship wk to wk+C , C > 0
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Figure 5.2: SAB architecture.

would mean ”looking at the future”. The only relationships allowed are

those between wk+C and wk, ”looking at the past”. Breaking these rules,

just like in (Devlin, Chang, Lee, & Toutanova, 2018), is problematic during

the generation phase, again, because sentences are formed left to right. To

avoid computing self-attention on every pair of words, the input sentence

is sub-sequentially masked: given a sequence s = [s1 . . . sn], sub-sequential

masking generates n sequences masked sequentially, as in Listing 5.1.

Listing 5.1: Masking example

SOS MASK MASK MASK MASK MASK MASK

SOS this MASK MASK MASK MASK MASK

SOS this is MASK MASK MASK MASK

SOS this is an MASK MASK MASK

SOS this is an example MASK MASK

SOS this is an example . MASK

SOS this is an example . EOS

The masking value (MASK) is as close as possible to −∞ so that, by com-

puting the attention between an actual word and a masked word, the result

is as low as it can get, hence, any possible correlation is neglected by the

model. The SAB presents residual connections (He, Zhang, Ren, & Sun,

2016) that connect the input to the output. Residual connections help the

optimization process by reducing the impact of vanishing/exploding gradi-

ent. For the sake of optimization Layer Normalization (Lei Ba, Kiros, &

Hinton, 2016) is applied to the output too. Since layer normalization stabi-

lizes the output of the layer it is applied to, convergence accelerates. The

SAB is depicted in Figure 5.2.
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5.1.4 Point-Wise Feed Forward Net

The PWFF is a type of Network in Network (NIN) (Lin, Chen, & Yan,

2013) which generalizes Convolutional Neural Networks (CNN). Convolu-

tional layers apply a linear filter on the receptive field, as in Figure 5.3. A

linear filter is a Generalized Linear Model (GLM) for the underlying data

patch. NINs replace the GLM with a micro Neural Network, as in Figure

5.4.

Figure 5.3: Convolutional net Figure 5.4: Network in network

The PWFF is a NIN that implements the micro net as a Linear Feed For-

ward net and has filter-size of 1. This means that it is applied to each

position of the input separately and identically, just like a one-dimensional

convolutional layer with filter size of 1, therefore, it saves parameters w.r.t.

a standard linear projection on all the parameters at once. Mathematically

speaking, the micro-net takes as input x, which is the receptive field, and

computes the function in Equation 5.1 which describes two linear transfor-

mations with a ReLU activation in between. That being said, the PWFF is

easier to implement with two convolutions with kernel size 1, as depicted in

Figure 5.5.

micro(x) = max(0, x ·W1 + b1) ·W2 + b2 (5.1)

5.1.5 Positional Embeddings

Since the VAE itself contains no recurrence and the Attention mechanism

is shift-invariant hence, in order for the model to make use of the order of

the sequence, the information about the relative or absolute position of the

tokens in the sequence must be added explicitly. There are several types of

positional encodings which depend on the type of attention considered.
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Figure 5.5: PWFF architecture

• Fixed: designed to work with fixed-context attention. The attention is

operated over the full sentence.

• Relative: designed to work with segmented-context attention. The atten-

tion is operated over segments of the full sentence.

• Frozen: the encodings stay the way they are initialized, they can’t change.

• Learnable: the encodings are initialized in a certain way, but the back-

propagation of the neural network can still affect them, thus, they act as

parameters of the model.

Independently from the type of embedding that is used, positional encodings

(P ) are summed to the word embeddings (E) before each SAB: input =

P +E. Of course, positional encodings have the same emb dimension as the

word embeddings, so the two can be summed.

Following the success of the positional encodings in (Vaswani et al., 2017),

sine and cosine embeddings are employed. These are fixed, frozen embed-

dings. Their formulation is expressed in Equations 5.2, 5.3.

PE(pos, 2i) = sin (pos/100002i/emb) (5.2)

PE(pos, 2i+ 1) = cos (pos/100002i/emb) (5.3)

Here, pos is the position of the token in the sentence and i is the dimension.

That is, each dimension of the positional encoding corresponds to a sinusoid.

The wavelengths form a geometric progression from 2π to 10000 · 2π. This

function should help the model learn how to attend by relative positions,

since for any fixed offset k, PEpos+k can be represented as a linear function

of PEpos. The positional embeddings are fixed from the start since learned

positional embeddings produce nearly identical results but they introduce

more learnable parameters in the model.
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5.2 Training

Training the VAE is not straightforward: both the objective function and

the optimization algorithm have a big impact on the convergence of the

model, therefore they must be picked consciously. As already mentioned,

the VAE objective function LV AE in Equation 3.4 involves a reconstruction

term and a regularization term. The actual loss equation, however, is a

weighted loss if the two terms: Equation 5.4.

LV AE = Lreconstruct + α Lregularize (5.4)

The α value is initialized to 0.1 and is set to 1 after the first 8 epochs. This

is enough to avoid the reconstruction term overpowering the other term,

explained in Paragraph 2.1.4:

1. no continuous annealing is needed.

2. no minimum value of the reconstruction term has to be found.

This is an important improvement from the previous architectures since

the former techniques employed need high-influence hyperparameters to be

tuned.

The reconstruction term is supposed to indicate the model how similar the

reconstruction is to the input, while, the regularization term tells how similar

is the latent space distribution to the chosen prior. For Language Modelling,

two appropriate losses are:

• Reconstruction Loss: Negative Log Likelihood (NLL)

• Regularization Loss: Kullback Liebler Divergence (KLD)

5.2.1 Reconstruction Loss

The log-likelihood function is a logarithmic transformation of the likelihood

function. Since concavity plays a key role in the maximization and, as the

most common probability distributions in particular the exponential fam-

ily—are only logarithmically concave, it is usually more convenient to work

with the log-likelihood function. Moreover, the log-likelihood is particularly

convenient for maximum likelihood estimation since logarithms are strictly

increasing functions, hence, maximizing the likelihood is equivalent to max-

imizing the log-likelihood (Log-likelihood, 2020). Still, since it is better

to work with minimization and maximizing the log-likelihood is equivalent

to minimizing its negative, negative log-likelihood (NLL) is better suited.
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When dealing with text, it is possible to compute the likelihood of a sequence

of words s = [w1 . . . wn], as in Equation 5.5.

likelihood(s) =

n∏
i=1

P (wi|w1 . . . wi−1) (5.5)

Finally, NLL can be computed as in Equation 5.6.

NLL(s) = − 1

n

n∑
i=1

log
(
P (wi|w1 . . . wi−1)

)
(5.6)

Furthermore, NLL is always used in most NLP problems because of its

correlation with Perplexity (PP). In information theory, Perplexity is a

measure of how well a probability distribution or probability model pre-

dicts a sample, thus it may be used to compare probability models. A low

PP indicates the probability distribution is good at predicting the sample

(Perplexity, 2020). In NLP, PP is a way of evaluating language models

since language models are probability distributions of words over sentences

(or texts). In few words, the (likely) best model is the less perplexed one,

thus, the one that minimizes Equation 5.7.

PP (s) = n

√√√√ n∏
i=1

1

P (wi|w1 . . . wi−1)
(5.7)

It is rather simple to demonstrate that: PP (s) = eNLL(s).

5.2.2 Regularization Loss

The Kullback–Leibler divergence, also known as relative entropy, is a mea-

sure of how one probability distribution D1 is different from a second, refer-

ence probability distribution D2 (Kullback–Leibler divergence, 2020). The

KLD equals zero when the two distributions in question are identical. The

formulation is in Equation 5.8.

KLD (D1||D2) =
∑
x∈X

D1(x) log

(
D1(x)

D2(x)

)
(5.8)

Considering prior P and latent code distribution L, the regularization loss

KLD(P||L) forces L to be shaped similarly to P. There are several al-

ternatives for P and, ideally, any distribution should work given a ”strong

enough” encoder, but usually it is either a Normal Gaussian (as in this work)

or a Mixture of Gaussians for unsupervised or semi-supervised clustering.

Normal Gaussians have many useful properties:
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• they make the optimization tractable.

• they have an analytical evaluation of the KLD.

• they enable systematic gradient computation (backward pass) thanks to

the reparametrization trick in Equation 3.1.

Additionally, since Normal Gaussians are easy to reproduce, it is more likely

that, by sampling random points from the latent space, their decoded images

are meaningful. For these reasons, this work employs a Gaussian prior P
with zero mean and unit variance.

5.2.3 Optimizer

Optimizers are optimization algorithms that update the learnable parame-

ters of the model (e.g. all the parameters that are affected by the backward

pass) to get to the lowest possible loss value. Adam is an optimizer that

employs first-order gradient-based optimization of stochastic objective func-

tions and is based on adaptive estimates of two lower-order moments (e.g.

first and second moment). The method is computationally efficient, has lit-

tle memory requirements, is invariant to diagonal re-scaling of the gradients,

and is well suited for problems that are large in terms of data and/or pa-

rameters. The method is also appropriate for non-stationary objectives and

problems with very noisy and/or sparse gradients. The hyper-parameters

have intuitive interpretations and typically require little tuning (Kingma &

Ba, 2015). Adam keeps the advantages of two well-known optimization al-

gorithms: Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square

Propagation (RMSProp).

5.2.4 Scheduling

Deep learning optimizer such as Adam have few hyperparameters: the learn-

ing rate is the value that mostly controls how much to jump towards the

direction of minimum gradient in the parameter space during gradient de-

scent. By decaying the learning rate it is possible to reach far better per-

formances rather than keeping it fixed. This way, it is possible to simulate

annealing in the model. However, (Smith, Kindermans, Ying, & Le, 2017)

shows how it is possible to simulate annealing by increasing the batch size

instead. This speeds up training not only due to the bigger batch size, but

because is possible to increase the learning rate ε and scaling the batch size

B accordingly (B ∝ ε) and reach pretty much the same results (under the

assumption B � N , having N as the number of samples in the dataset:
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e.g. B < N/10). This comes from the equation g = ε(N/B − 1) that is

empirically demonstrated in several studies. In fact, recently it is increas-

ingly accepted that small batches help the model generalize better due to

the difference in stats between the whole dataset and a mini-batch. More

interestingly, in (Keskar, Mudigere, Nocedal, Smelyanskiy, & Tang, 2016)

and (Smith & Le, 2017) is argued how the optimal batch size is Bopt = εN .

Following the studies the batch size is initialized to 256 and is doubled every

8 epochs, following an exponential trend, up to 2048. By increasing the batch

size (along with the learning rate) the training really does speed up however,

it makes it more unstable. Most of the times, the training reaches similar

results but it suffers from bigger fluctuations (for bigger batch sizes).

5.3 Anomaly Detection

Detecting neural-generated reviews is not a trivial task: this task clearly

can’t be supervised at all since there is no clear definition of what a com-

plete neural-generated dataset could be. This being due to the infinite ways

to neurally produce text. The only way to overcome this is unsupervis-

edly: modelling the natural language (in consideration) as better as pos-

sible should help the model tell the difference between natural and neural

language.

This idea holds up if two main hypotheses are satisfied:

1. The dataset used to train the model is free enough from neurally-generated

reviews (e.g. infinitesimal values like less than 0.1%).

2. The natural language is different enough from the neural language (e.g.

in grammar and/or coherence).

The first hypothesis is likely to hold since the review dataset employed has

been extrapolated from Amazon in 2018 and the first strong LMs started

being released in 2019 (e.g. GPT-Full). The second hypothesis is more

problematic since it is exactly the ascent of these powerful LMs that makes

it harder to hold. Yet, this works doesn’t aspire to solve the deep fakes

problem completely, it is meant to provide a cheap and efficient first barrier.

If both both hypotheses hold and the model is powerful enough, it should be

able to either have an high reconstruction error for the outliers (the deep-

fakes) or should provide some separation hyperplane in the latent space. For

this reason, there are two main approaches that are based on:

1. Reconstruction Error
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2. Latent Space

5.3.1 Reconstruction Error

Approach number one consists of computing the reconstruction error ERR

on the train set samples si, i ∈ [1 . . . N ], cutting the tail, keeping a high

percentage of the samples (e.g.95−99%) and imposing the threshold: thr =

maxi∈[1...N ]

(
ERR(si)

)
. If a test sample sT has reconstruction error ERR(sT ) >

thr then sT is considered as an outlier (deep-fake), alternatively it is an inlier

(legit).

Theoretically, this approach is the most robust one since it uses the whole

model (both Encoder and Decoder) to compute the rejection score and it

doesn’t depend on any external hyperparameter.

5.3.2 Encoder Embeddings

Approach number two uses the Encoder: it generates the latent represen-

tations (the embeddings) of the inputs and hopefully it can provide a clear

separation between legit and adversarial generations, so that they can be

predicted as inliers (legit) or outliers (deep-fake) respectively. Of course, the

Encoder alone can’t do this: an additional algorithm is needed to perform

outlier detection on the Encoder embeddings. Usually one-class Support

Vector Machines (OC-SVM) are employed to fulfill this task: SVMs have

bees the state of the art before Artificial Neural Nets started being trainable,

moreover, since their objective function enforces finding a hyperplane that

separates points belonging to different classes, it should make finding out-

liers (points not belonging to the one-class) rather easy. Even though SVM

are popular, they are not faultless: SVMs are based on the kernel used to

project the input space to the higher-dimensional kernel space where the

hyperplane can be effective, but such kernel is not easy to find. Another

helpful technique is clustering, which consists of partitioning the dataset

into sets containing similar points. Clustering the train-set, which contains

the real reviews, helps computing a per-cluster confidence level CLk that

indicates to which cluster k a certain point pi belongs. In order to perform

outlier detection using clustering, it is enough to set a threshold thr: given

pi, thr is compared to the max confidence level between all clusters (C) for

pi so that:

• thr ≥ maxk∈C CLk(pi)⇒ pi is inlier

• thr < maxk∈C CLk(pi)⇒ pi is outlier
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There are several kinds of clustering techniques as Gaussian Mixture Models

(GMM), K-Nearest Neighbors (KNN) and many more, but these approaches

don’t model noise and outliers explicitly as Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) does. In facts, both GMM and KNN

have random-like performances for this work.

DBSCAN models the clusters depending only on the hyperparameter ε:

the density-based algorithm clusters the points that aren’t more distant

than ε and marks as outliers points that lie alone in low-density regions.

More specifically, a set of points is considered as cluster if it contains at

least min pts points. Hence, DBSCAN is a non-parametric algorithm that

requires tuning just two hyperparameters. For these reasons, DBSCAN is

an appropriate algorithm for outlier detection. Still, this technique doesn’t

explicitly take into consideration how to predict new samples: clustering

every time that a new point is added can be too expensive. DBSCAN can

be slightly modified to make online predictions: given a new point pi it is

possible to run through all the core-points cpk belonging to the real reviews

cluster, determining each time whether pi is within distance ε from cpk. If

this hypothesis is satisfied, then the point is considered as an inlier (real),

alternatively it is considered as an outlier (deep-fake). In order to work

properly, the DBSCAN algorithm must be tuned on the train-set in such a

way to have one big cluster of points and few outliers. This big cluster of

points represents the family of real reviews; each review that is not associated

to that cluster is considered as deep-fake.
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Chapter 6

Experimental results and

evaluation

This chapter provides and explains all the results about the novel attention-

based VAE and some characteristic of the APD dataset.

6.1 Dataset

The Amazon Product Data (APD) comes from (He & McAuley, 2016). It

contains million of reviews from the popular e-commerce website Amazon.

The reviews are aggregated in multiple categories, ranging from electron-

ics to books to food supplies. Picking only reviews belonging to a single

category simplifies the language modelling task since it makes the word vo-

cabulary significantly smaller, therefore the model is trained and tested on

reviews regarding ”Grocery and Gourmet Food” only. The APD Grocery

and Gourmet Food dataset contains 5, 074, 160 reviews for 287, 209 products

and 2, 695, 974 reviewers, amounting to roughly 2GB of data. Each review

has on average 17.89 reviews, with a minimum of 1 review and a maximum of

11526 reviews. By aggressively de-duplicating the data and keeping only the

reviews with max length of 14 (sum of number of words and punctuation),

the dataset shrinks to 1, 908, 771 reviews with 1, 178, 441 reviewers. Each

review now has on average 10.33 reviews, with a minimum of 1 review and

a maximum of 5415 reviews. Since the dataset contains reviews in English,

the Zipfian approximation must have empirical exponent expzipf = 1.07,

however, the best fit has an Zipf exponent of expzipf = 1.50, indicating the

natural language expressed by these reviews is a sub-type of English.



Variant # Parameters # n blocks

V AE4 1159064 4

V AE8 1110076 8

V AE16 1086142 16

V AE32 1075295 32

Table 6.1: VAE variants per depth

6.2 Tuning

6.2.1 Experimental Setup

The VAE versions are trained on a sub-part of the the train-set, which con-

sists of 10% of the train-set, and it is developed on the dev-set. The quantita-

tive performances are evaluated using the Negative Logarithmic Likelihood

to assess the reconstruction loss and Kullback Liebler Divergence to assess

the regularization loss. Each experiment provides a visualization of the

training, since it helps choosing the parameters that make the convergence

faster, and provides a table of the performances computed on the dev-set,

which helps check that overfitting is not occurring. The first experiment

deals with picking the right depth of the model; here, the model has already

been hyper-parameter tuned and uses only GELU as activation function.

Next, the second experiment copes with picking the right activation func-

tion: both GELU and ReLU are tried out.

6.2.2 Model Depth

The VAE implemented for this work has a peculiar property: independently

of how many layers are employed to encode and decode the sentence, the

parameter count remains roughly the same, actually, decreasing slightly as

the depth increases, as depicted in Table 6.1. The variants are named V AEk

after k which is the total number of attention-blocks in the architecture,

which is the total number of layers minus 4.

As empirically demonstrated in several works, the deeper the nets, the more

complex the functions that they can properly approximate. Having an in-

creased depth doesn’t come for free though: the training time increases

substantially since the signal must traverse more layers, moreover, having

more layers increases vanishing gradient issues, which is still not-completely

solvable even using multiple residual connections. Regarding optimization,

Figure 6.1 shows the convergence of the different models on the train-set. It
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shows how the NLL term seems to be lower for the less deep models, while

the KLD behaves oppositely. This means that the deeper models find easier

to minimize the KLD instead of the NLL, which is not a good sign, since it

represents an increment of the regularization overpowering effect. The only

model that seems to optimize the NLL as well as the KLD at the same rate

is the V AE8: it reaches the same performances as the V AE4 on reconstruct-

ing sentences and reaches the same performances as V AE32 on regularizing.

These realizations are confirmed on the dev-set in Table 6.2. Considering

the success of this version w.r.t. its shallower and deeper peers on both

train-set and dev-set, from now on, the VAE taken into consideration is the

V AE8 version.

Figure 6.1: Depth Variants Convergence

Version PP NLL KLD

V AE4 9.034 2.201 0.542

V AE8 9.234 2.223 0.5148

V AE16 9.7376 2.276 0.5251

V AE32 12.1581 2.498 0.5192

Table 6.2: Depth Dev-Set Performances
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6.2.3 Nonlinearity

Figure 6.2 shows how ReLU is clearly a game-changer, fitting the train-

set much better than GELU. Nonetheless, choosing this nonlinearity comes

with the burden of paying more attention to avoid overfitting, which is more

likely to happen. Still, Table 6.3 shows in the dev-set how overfitting hasn’t

happened. For this reason, from now on, the ReLU activation is substituted

to the GELU.

Figure 6.2: GELU vs ReLU Variant Convergence

Version PP NLL KLD

V AE8−GELU 9.2349 2.223 0.5148

V AE8−RELU 7.5157 2.017 0.4337

Table 6.3: Activation Dev-Set Performances

6.3 Language Modelling

This section explores the capabilities of the VAE in modelling reviews.

64



6.3.1 Experimental Setup

In these experiment, the VAE performances are compared quantitatively

to the Transformer performances as a way of understanding whether it is

a competitive language model or not. Perplexity (PP) is used as metric

for the comparison but Negative Logarithmic Likelihood (NLL) is shown as

well. Each model now is trained on train-set: 90% of the full data-set; it

is tested on the test-set: 5% of the full data-set. Both models have been

trained for 32 epochs with the Adam optimizer, doubling the batch size

every 8 epochs starting from a batch size of 256. Both models have been

hyperparameter-tuned considering limited computational resources. The

hyperparameter-related information is in Appendix A.

Next, the VAE is qualitatively tested as two types of generations are as-

sessed. The first, random generation, consists of sampling random latent

points using a Normal Standard and decoding them in the review space.

The second, interpolation generation, consists of interpolating the latent

points associated to two real reviews and decoding the selected interpo-

lations in the review space. Additionally, the latent space properties are

inspected looking at review length, sentiment and topic. Since the dataset

doesn’t include sentiments, the reviews are fed to a robust sentiment anal-

ysis neural classifier that outputs a continuous value between 0 (negative

sentiment) and 1 (positive sentiment) which is clustered in 10 uniformly

distributed values. More information regarding the classifier are provided

in Appendix B. The dataset doesn’t include topics either, therefore, Latent

Dirichlet Analysis (LDA) is used to extract the top-5 food-related topics.

Additionally, all the attention heads are visualized for each layer of both

Encoder and Decoder using color-mapped matrices.

6.3.2 Quantitative Performances

Table 6.4 offers the comparison of the main hyperparameters for each model.

Version hid dim emb dim key dim heads depth # parameters

Transformer 1024 256 32 3 8 1149728

V AE8 512 64 32 3 8 1110076

Table 6.4: Transformer vs VAE Hyperparameters

The result of training both models with the Adam routine with lr = 1e− 4

and betas β1 = 0.9, β2 = 0.999 for the first 16 epochs is shown in Figure 6.3.

The training is cut to the first 16 epochs to visualize better the start of the
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curve and the mid, which is where the weight of the reconstruction loss is

increased from 0.1 to 1. Clearly, the VAE fits the data much better from the

start, reaching a significant gain by the end of the experiment. The VAE

confirms its dominance on the test set as well, as shown in Table 6.5. The

table shows the test-performances of both models at the end of the training.

Figure 6.3: Transformer vs VAE training

Version PP NLL

Transformer 1.8505 0.6155

V AE8 1.099 0.0944

Table 6.5: Test-Set Performances

6.3.3 Qualitative Performances

Generation

For the sake of readability, the auxiliary tokens are substituted as:

• SOS → ’>>’

• EOS → ’<<’

• PAD → ’ ’

Listing 6.1 shows 10 random generations. The attentive VAE can generate

reviews of different length and different topics. It is clear how the generations

are not perfect and exhibit errors: reviews (4) and (5) are missing the EOS

token, while review (7) is presenting more than one EOS, however the model

can capture diversity and review coherence.

Listing 6.1: Random Generation

0) >> best of energy ! <<
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1) >> this is my chocolate cup ! <<

2) >> great unk <<

3) >> good and fast shipping <<

4) >> i loved these product so much , i just unk .

pleased ! !

5) >> great snack , as expected

6) >> best coffee coffee gift ! <<

7) >> nice sweet . amazon << unk << <<

8) >> my unk coffee bag ! <<

9) >> refreshing sweet . clean almonds . great on pieces

. good ... flavor . <<

Listing 6.2 shows just 10 interpolations for 10 values of α. The starting

and ending reviews are presented at the top of the example. This visual-

ization provides us with a deeper understanding of the model behavior: it

is capable of keeping the positive tone of both reviews over the whole in-

terpolation while handling the length change pretty well too. The reviews

are not flawless here too, as interpolation (3) is missing an EOS token. It is

interesting to notice how the first two interpolations have the same structure

but different subject, hinting that the word-embeddings for ’oatmeal’ and

’butter’ must be very similar; this behavior is common in other analogous

cases (e.g. great in review (4) and good in review (5)). We can also notice

how there are replicated reviews, which suggests that those reviews might

have more relevance than others (it might be due to their high frequency in

the dataset) thus taking up more latent space than others.

Listing 6.2: Interpolation Generation

START) SOS best oatmeal on the UNK . EOS PAD PAD PAD PAD

PAD PAD PAD PAD

END) SOS good EOS PAD PAD PAD PAD PAD PAD PAD PAD PAD

PAD PAD PAD PAD

0) >> best oatmeal on the unk . <<

1) >> best butter on the unk .

2) >> best chai shake unk <<

3) >> great chai ! unk

4) >> great honey ! <<

5) >> good honey ! <<

6) >> excellent <<

7) >> excellent <<

8) >> good <<

9) >> good <<
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Latent Embeddings

The review properties that are inspected are:

• Sentence Length: Figure 6.4

• Sentence Sentiment: Figure 6.5

• Sentence Topic: Figure 6.6, Figure 6.7.

Figure 6.4 shows how, the VAE can model the review length pretty well,

presenting a continuous partitioning in almost all the graphs. This means

that it is possible to change the sentence length by just moving along those

directions of the latent space. Still, the sub-space described by the first

two principal components describes the length better than the other two

sub-spaces, as there is more displacement of colors, meaning that the first

principal can explain better the lengths of the reviews.

Figure 6.5 displays how the latent space is much shyer in distinguishing

positive (max positive: 9) from negative (max negative: 0) reviews. Still, it

is possible to notice a slight polarization in the graphs delineated by principal

components PC0 which can be definitely considered an important asset for

modelling the review sentiment. Oppositely, the sub-space described by

the second PC1 and third PC2 principal components presents sentiment

randomness.

The top 5 food-related key-words returned by the LDA are: coffee, tea,

chocolate, candy, sugar (in order of occurrence from highest to lowest). The

latent representation of the reviews containing these topics are depicted in

Figure 6.6. We can notice that there is no clear separation between topics,

especially considering them all together, however, Figure 6.7 illustrates how

by plotting only reviews containing the ’coffee’ topic, it is possible to see

how it follows some cluster-pattern. The latter is a positive behavior since

it means that the attentive VAE is powerful enough to group the reviews

that contain the same topic. Once again, the sub-spaces described by the

PC0 show this behavior better than the others, meaning that PC0 is the

most important principal component for this aspect.

Attention

Figure 6.8 illustrates the Encoder attentive modelling, while Figure 6.13

shows the Decoder attentive modelling. The visualizations include actual

words only for the first layer of the Encoder and the last layer of the De-

coder since those deal with word-embeddings, while the other visualizations
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Figure 6.4: Latent Space: Review

Length

Figure 6.5: Latent Space: Review

Sentiment

don’t since they deal with concepts (high-level features). For each layer, the

attention heads are plotted from left to right: the first attention head is on

the left, the second attention head is in the middle and the third is on the

right.

For the word-level attention we can notice how the model can capture non-

trivial relationships as sentence constructs: for instance in Figure 6.16 in

all the attention heads, the model understands that ’what’ and ’I’ have
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Figure 6.6: Latent Space: Review

top-5 Topics

Figure 6.7: Latent Space: Review

Topic

high correlation in the ’what I wanted’ sequence of words. Moreover, in

Figure 6.8, all the attention heads learn that after the first padding (PAD) it

is useless to model the attention for the other ones, since they are inevitably

going to repeat, therefore the attention correlation shrinks down as the

paddings follow. The model, however, captures trivial properties too: in

Figure 6.8 the third head gives high correlation to the matches between the

SOS token and every other word. This is a trivial relationship since if there
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is an SOS token, there will inevitably be other words, except in the case of

empty review (empty review: SOS EOS PAD PAD ...).

Looking at the higher level-features, we can notice how, for most attention

heads, we have non-null correlation between concepts, neither the correlation

is random, meaning that the attention correlation is useful to the model. In

the case there would be an attention head showing just a diagonal attention

matrix, we could cut off that head, since it would add nothing to the sentence

understanding: a diagonal attention matrix would mean that each element

of the sequence is important to itself only.

6.4 Anomaly Detection

6.4.1 Experimental Setup

The Anomaly Detection algorithms are trained on the train-set and tested

on three different datasets made of 1024 legit reviews from the test-set and

1024 adversarial-generated reviews. The adversarial models used to generate

the deep-fake reviews are:

• Attentive VAE, random sampling: adversarial vae.jsonl

• Transformer, top-10 sampling: adversarial k10.jsonl

• Transformer, temperature sampling: adversarial temp4.jsonl

Each model is trained on 10% of the train-set.

The performances of the AD are assessed computing Accuracy, Precision,

Recall and F1. In addition, the reader is provided with a visualization of

the latent space projected onto the 2-dimensional spaces described by its

first three principal components.

6.4.2 Reconstruction Error

The performances of the Reconstruction Error based AD are in Table 6.6.

The performances are definitely bad, which suggests that this is not the right

algorithm to use. This might be because for VAE it is easier to reconstruct

smaller sentences than longer ones, thus the error grows as the sentence

length does too, ending up with having a reconstruction error that gets as

noisier as the review length grows. The performances are rather good only

for the adversarial temp4.jsonl dataset, suggesting it might be the most

grammatically incorrect one.
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Figure 6.8: Encoder self-attention

Figure 6.9: First attention block

Figure 6.10: Second attention block

Figure 6.11: Third attention block

Figure 6.12: Fourth attention block
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Figure 6.13: Decoder self-attention

Figure 6.14: First attention block

Figure 6.15: Second attention block

Figure 6.16: Third attention block

Figure 6.17: Fourth attention block
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Dataset Accuracy Precision Recall F1

adversarial vae.jsonl 0.5309 0.5163 0.5959 0.5595

adversarial temp4.jsonl 0.7290 0.6486 0.9960 0.7861

adversarial k10.jsonl 0.5561 0.5307 0.6425 0.5914

Table 6.6: Reconstruction Error Performances

6.4.3 Encoder Embeddings

Figure 6.18, 6.20 and 6.19 show the predictions on the latent embeddings

of the reviews of the three adversarial datasets, projected on the first 3

principal components and Table 6.7 presents the performances on the three

datasets. It is clear how the first principal component can disentangle the

legit reviews from the deep-fake ones. Of course, this is possible thanks to

the VAE Encoder that can capture grammatical correctness and coherence in

the reviews. Popular clustering algorithms as GMM or KNN have random-

like performances. This means that having explicit handling of outliers in

the clustering algorithm (as DBSCAN) is mandatory.

Dataset Accuracy Precision Recall F1

adversarial vae.jsonl 0.7607 0.7074 0.7021 0.7459

adversarial temp4.jsonl 0.7422 0.6973 0.627 0.7086

adversarial k10.jsonl 0.8565 0.7827 0.9609 0.8696

Table 6.7: DBSCAN Performances

6.5 Ablation Study

6.5.1 Experimental Setup

The VAE broken-down versions are trained on a sub-part of the the train-set,

which consists of 10% of the train-set, and they are validated on the dev-set.

The quantitative performances are evaluated using the Negative Logarithmic

Likelihood to assess the reconstruction loss and Kullback Liebler Divergence

to assess the regularization loss. Each experiment provides a visualization

of the training curves, since it helps checking if the convergence gets faster,

and provides a table of the performances computed on the dev-set, which

helps check that the model variant hasn’t overfitted.
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6.5.2 Residual Connections

Figure 6.21 displays the training of the V AE8 version with and without

residual connections. It is easy to recognize how the non-residual version

struggles optimizing the NLL term (the reconstruction term), which means

it has an hard time modelling correctly the sentences, instead it just keeps

lowering the KLD error, which is easier to do: this behavior brings to the

overpowering of the regularization term, which is not desirable. On the

other hand, the residual version is able to gain a solid reduction in NLL

after a while, which means it is succeeding at giving the right importance to

both reconstruction and regularization terms at the same time. Of course,

a sudden drop in NLL provokes a sudden rise in the KLD but still, the

absolute value of the NLL drop is about 10 times more than the absolute

value of the KLD rise. This probably happens because the network has to

learn when to use the residual connections and when to ignore them, thus

it takes some time to properly use this optimization. Table 6.8 shows how

the performances translate into the dev-set as well, confirming the residual

connection are helpful.

Version PP NLL KLD

V AE8−NO RES 16.8272 2.8236 0.1304

V AE8−RES 7.7679 2.0581 0.4288

Table 6.8: Residual Dev-Set Performances

6.5.3 Layer Normalization

Figure 6.22 shows the influence of normalization. This technique makes both

training curves more stable during training: less steep in the beginning and

makes strong fluctuations less common especially for the KLD term. It

takes some iteration to show the importance of layer normalization, which

is due to the fact that, when normalized, layers can’t change their output too

quickly. Table 6.10 shows that the performances on the dev-set are similar

to the ones in the test-set, meaning no overfitting has occurred.

Version PP NLL KLD

V AE8−NO NORM 8.8463 2.18 0.7142

V AE8−NORM 7.2572 1.982 0.4542

Table 6.9: Normalization Dev-Set Performances
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6.5.4 Positional Encodings

For this work are employed fixed-frozen parameters since there is no re-

currence in the model (the attention is applied over the full sentence) and

learning the embeddings doesn’t add much performance compared to the

number of parameters that needs to be learned. Figure 6.23 shows the train-

ing curve of the VAE with and without adding positional embeddings to the

word-embeddings. The regularization error is the most affected term here:

imposing a Gaussian N (0, 1) prior over the latent space is much simpler

on the positional VAE, rather than the positional embedding-free version.

Also, the NLL loss remains pretty much unaltered, validating the adop-

tion of these embeddings. The performances on the dev-set confirm that

applying the embeddings doesn’t hurt the model.

Version PP NLL KLD

V AE8−NO POS 13.3965 2.595 0.5517

V AE8−POS 9.2349 2.223 0.5148

Table 6.10: Positional Embeddings Dev-Set Performances
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Figure 6.18: adversarial vae.jsonl

77



Figure 6.19: adversarial temp4.jsonl
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Figure 6.20: adversarial k10.jsonl
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Figure 6.21: Residuality Ablation
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Figure 6.22: Normalization Ablation
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Figure 6.23: Positional Embeddings Ablation
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Chapter 7

Conclusions and future

perspectives

This work has demonstrated that it is possible to unsupervisedly detect

deep-fake reviews with reasonable performances using unsupervised Anomaly

Detection algorithms on Variational Autoencoder generated features. The

AD solution is parameter-cheap compared to algorithm based on SVMs or

NNs, is faster and delivers better performances. The Variational Autoen-

coder that is employed has a novel architecture and is the first VAE to

employ the attention mechanism successfully.

There are several interesting future perspectives:

• Weakening either Encoder or Decoder could lead to better overall perfor-

mances as in (Yang, Hu, Salakhutdinov, & Berg-Kirkpatrick, 2017).

• Incorporating the Transformer-XL mechanism would remove the fixed-

context issue without any significant performance loss, as explained in

(Dai et al., 2019).

• Incorporating the BERT objective function could increase the perfor-

mances, as in (Devlin et al., 2018).
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Appendix A

Hyperparameter Tuning

Hyperparameter tuning values that have been tried out for the Transformer

in Table A.1 and Variational Autoencoder in Table A.2. The table values

represent:

• - → not tried

• o → tried

• x → best

2 3 4 8 16 32 64 128 256 512 1024 2048 4096

hid dim - - - - - - o o o o x o o

emb dim - - - - - o o o x o o - -

key dim - - - - o o x o o - - - -

# heads o x o o o - - - - - - - -

Table A.1: Transformer Hyperparameter Grid

2 3 4 8 16 32 64 128 256 512 1024 2048 4096

hid dim - - - - - - o o o x o o -

emb dim - - - - o o x o o o - - -

key dim - - - o o x o o o - - - -

# heads o x o o o - - - - - - - -

Table A.2: VAE Hyperparameter Grid
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Appendix B

Sentiment Analysis

The neural classifier that is used to predict the sentiment of the reviews is

trained on the IMDB train-set. Even though the IMDB contains movie re-

views, the classifier is tested on the APD dataset (the one employed for train-

ing the VAE) using human inspection, holding high-enough performances.

Its architecture presents a word-embedding layer, connected to a two-layered

bidirectional LSTM with dropout in-between layers. The LSTM layers are

connected to a linear feed forward layer which ends up in a dropout layer.

The training is carried on using the Adam optimizer for 50 epochs, holding

than 94.83% balanced accuracy on the IMDB test-set.

Table B.1 presents the hyperparameters of the Neural Sentiment Analyzer.

Model hid dim emb dim LSTM depth dropout

Analyzer 256 100 2 0.5

Table B.1: Neural Sentiment Analyzer Hyperparameters
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Appendix C

Implementation

The code for most of the implementation can be found at: https://colab

.research.google.com/drive/178l7oXOQR-W-yYmuS7M79LTm9aPJ5i6X.

The main computational resource used for this work is the free GPU pro-

vided by Google Colab at: https://colab.research.google.com.

https://colab.research.google.com/drive/178l7oXOQR-W-yYmuS7M79LTm9aPJ5i6X
https://colab.research.google.com/drive/178l7oXOQR-W-yYmuS7M79LTm9aPJ5i6X
https://colab.research.google.com
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