
 
 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE

 

 

 

Web-Based Programming 

For Engineers - Part 3  
 

by 

 

Kwabena Ofosu, Ph.D., P.E., PTOE 

 
 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE ii 
 

 
Abstract 

 
The objective of this course series is to present web-based computer programming to engineers. 
Engineers generally learn a conventional computer programming language such as FORTRAN, 
Pascal, C++, etc. Since the advent of the internet and the World Wide Web, web browsers such 
as Internet Explorer, Mozilla Firefox, Google Chrome, etc. have built-in capabilities to interpret 
and implement programmed instructions written in a class of programming languages called 
scripting languages. Web-based programming involves writing codes, called scripts, in a 
scripting language. The scripts are embedded in the structure of web pages. Unlike conventional 
general purpose programming languages, web-based programming does not require any special 
software to be installed. The scripts are interpreted and implemented directly by the web 
browser. Web-based programming is an increasingly relevant and advantageous tool for 
engineers competing in the global marketplace in the age of the internet and the World Wide 
Web. Once uploaded to the World Wide Web, web-based applications are immediately exposed 
to a global audience.  
 
This course is the final part of a series on web-based programming. This course presents topics 
on the JavaScript scripting language. This course uses screenshots and an easily readable click-
by-click narrative that engages participants as they proceed through the topics. This course starts 
with an overview of the branching and looping structures in JavaScript, followed by an in-depth 
presentation of JavaScript objects. Techniques to manipulate the web browser as well as 
handling of errors are also presented. Examples from various fields are presented to illustrate the 
application of the fundamental concepts in real world situations.  On completion of this course, 
participants will be able to create fully functional interactive web pages and web applications 
that can be used to input and output data, as well as run complex algorithms.  On completion of 
this course participants will be able to identify professional situations in which applying web-
based programming will be of great benefit to them in their fields of specialty and to their 
organizations.  
 
There are no required pre-requisites for this course. However, it will be helpful to understand the 
basics of creating web pages as well the fundamentals of scripting languages as presented in the 

earlier parts of this course series.   
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE iii 
 

 

TABLE OF CONTENTS 
 
Abstract ........................................................................................................................................... ii 

List of Tables .................................................................................................................................. v 

1. CONDITIONAL STATEMENTS .............................................................................................. 1 

1.1 Definition .............................................................................................................................. 1 

1.2 If Statement ........................................................................................................................... 1 

1.3 Logical Operators.................................................................................................................. 2 

1.4 Composite Conditional Expressions ..................................................................................... 4 

1.5 Nested Conditional Statements ............................................................................................. 5 

1.6 Conditional Operator ............................................................................................................ 6 

1.7 Switch Statement .................................................................................................................. 6 

2. MESSAGE BOXES .................................................................................................................... 8 

2.1 Alert Box ............................................................................................................................... 8 

2.2 Confirm Box ......................................................................................................................... 9 

2.3 Prompt Box ......................................................................................................................... 11 

2.4 Practicum #3 ....................................................................................................................... 14 

3. LOOPING ................................................................................................................................. 20 

3.1 The For Loop ...................................................................................................................... 20 

3.2 The For In Loop .................................................................................................................. 22 

3.3 The While Loop .................................................................................................................. 23 

3.4 The Do While Loop ............................................................................................................ 25 

3.5 Nested Loops ...................................................................................................................... 26 

3.6 Exiting Loops ...................................................................................................................... 26 

4. OBJECTS .................................................................................................................................. 31 

4.1 Objects in JavaScript .......................................................................................................... 31 

4.2 Date ..................................................................................................................................... 33 

4.3 Strings ................................................................................................................................. 36 

4.4 Arrays .................................................................................................................................. 40 

4.5 Practicum #4 ....................................................................................................................... 44 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE iv 
 

5. MANIPULATING THE BROWSER ....................................................................................... 53 

5.1 The Window Object ............................................................................................................ 53 

5.2 The Screen Object ............................................................................................................... 53 

5.3 The Location Object ........................................................................................................... 54 

5.4 The History Object .............................................................................................................. 55 

5.5 Timing of Events................................................................................................................. 56 

5.6 Cookies ............................................................................................................................... 61 

6. ERROR HANDLING ............................................................................................................... 64 

6.1 Errors................................................................................................................................... 64 

6.2 Types of Errors ................................................................................................................... 64 

6.3 Handling Errors ................................................................................................................... 65 

6.4 Try and Catch Statements ................................................................................................... 65 

6.5 Throw Statement ................................................................................................................. 67 

6.6 Debugging JavaScript ......................................................................................................... 71 

6.7 Web Browser Compatibility ............................................................................................... 72 

6.8 Getting Help ........................................................................................................................ 72 

7. CONCLUSION ......................................................................................................................... 73 

REFERENCES ............................................................................................................................. 74 

 
 
 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE v 
 

List of Tables 
 

Table 1: Logical operators .............................................................................................................. 3 
 
Table 2: Composite conditional operators ...................................................................................... 4 
 
Table 3: Date methods .................................................................................................................. 36 
 
Table 4: Special characters ........................................................................................................... 40 
 

 
 
  

192.pdf



 
 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 1 of 74
 

1. CONDITIONAL STATEMENTS 
 
1.1 Definition 
 
A conditional statement is a feature of a scripting language that executes different instructions 
(lines of code) based on whether some condition is met. Conditional statements enable the 
programmer to control the way an application interacts with the user. Conditional statements are 
often referred to as branching as they provide a means for a program to branch off in some 
direction or the other as some condition(s) is checked for and met, and the program then 
proceeds in the relevant direction(s). 
 
1.2 If Statement 
 
The simplest conditional statement is the if statement. If a specified condition is met, a block of 
code will be executed. The if statement is of the structure: 
 
 
if (condition)  
{ 
 Run this code 
} 
 
 
The if…else statement is used to specify a block of code to run if the condition is met, and 
another block of code to run if the condition is not met. The syntax is as follows 
 
 
if (condition)   
{ 
 Run this code 
} 
else 
{ 
 Run that code 
} 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 2 of 74 
 

 
For more than two conditions, the if…else if statement is used as follows:  
 
 
if (condition 1) 
{ 
 Run code 1 
} 
else if (condition 2) 
{ 
 Run code 2 
} 
else if (condition 3) 
{ 
 Run code 3 
} 
: 
: 
else if (condition n-1) 
{ 
 Run code n-1 
} 
else  
{ 
 If none of the above apply, Run code n 
} 
 
 
1.3 Logical Operators 
 
The condition in the condition statement is a logical expression where a logical operator (also 
called a Boolean operator) is applied to compare, evaluate, or check that the inputs (called 
operands) meet the specified condition and give a result of “true”, based upon which the 
relevant block of code will execute. Examples of logical operators supported in JavaScript are 
shown in Table 1.1. 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 3 of 74 
 

Table 1: Logical operators 

Operator Description Example 

= = 
Checks if the values of two operands are equal or 
not. If true, then the condition is “true”, otherwise 
it is “false”. 

if (X = = Y)  
{… 
}  

!= 
Checks if the values of two operands are not equal. 
If the values are not equal, then the condition is 
“true”, otherwise it is “false”. 

else if  (p != q)  
{ … 
}  

> 
Checks if the value of the left operand is greater 
than the value of the right operand. If true, then the 
condition is “true”, otherwise it is “false”. 

if (m > n)  
{… 
}  

< 
Checks if the value of the left operand is less than 
the value of the right operand. If true, then the 
condition is “true”, otherwise it is “false”. 

else if (x < y)  
{… 
}  

> = 

Checks if the value of the left operand is greater 
than or equal to the value of the right operand. If 
true, then the condition is “true”, otherwise it is 
“false”. 

if (a >= b) 
{… 
}  

<= 
Checks if the value of the left operand is less than 
or equal to the value of the right operand. If true, 
then the condition is “true”, otherwise it is “false”. 

else if (q <= r)  
{… 
}  

= = = 
Checks if the two operands are of equal value and 
equal type, or not. If true, then the condition is 
“true”, otherwise it is “false”. 

if (x === y) 
{… 
} 

! = = 
Checks if the two operands are not of equal value 
and of different type, or not. If true, then the 
condition is “true”, otherwise it is “false”. 

if (x !== y) 
{… 
} 

  
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 4 of 74 
 

 
1.4 Composite Conditional Expressions 
 
Conditional expressions may be combined using the “and” (&&) and/ or “or” (||) operators to 
form a composite conditional expression.  
 
The operators for composite conditions in JavaScript are presented in Table 2.  
 
 
Table 2: Composite conditional operators 

Operator Description Example 

&& “And” 
if (X > 50 &&  Y <20)  
{… 
}  

|| “Or” 
else if  (p >20 || q>=15)  
{ … 
}  

! “Not” 
if !(m = = n)  
{… 
}  

 
 
For example, consider a bank account that has been overdrawn. If another charge comes in and 
the bank pays it, the account goes further into the negative and is charged an overdraft penalty 
for that transaction. However, if a deposit comes in that partially clears the deficit, even though 
the account is still in the negative, the account is not charged an overdraft fee for that transaction. 
Therefore, using the negative sign for a charge transaction and positive sign for a deposit, the 
overdraft penalty fee is applied as follows: 
 
 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 5 of 74 
 

 
if (balance < 0 && transaction < 0) 
{ 
 newbalance = balance + transaction - fee ; 
} 
else if (balance < 0 && transaction > 0 ) 
{ 
 newbalance = balance + transaction ; 
} 
 
 
1.5 Nested Conditional Statements 
 
A nested conditional statement is a conditional statement placed within another conditional 
statement. The bank account example can alternately be implemented using nested conditions as 
follows: 
 
 
if (transaction < 0) 
{ 

if (balance < 0) 
{ 

  newbalance = balance + transaction – fee ;  
} 
else 
{ 
 // no fee applicable 
} 

} 
 
else  
{ 

// no applicable fee 
 newbalance = balance + transaction ; 
} 
 
 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 6 of 74 
 

 
The if …else and/or if …else if syntax for each conditional statement must be complete on their 
own regardless of whether they are nested or not. For instance, in the above example, if the else 
or a bracket of the nested if … else was omitted, the syntax would be incomplete and incorrect, 
and an error would occur. A common strategy to keep track of this, as demonstrated in the above 
example, is by typing the code such that the if … else and brackets for a specific if statement are 
aligned vertically and that of any nested statements are offset laterally from the main statement 
in which they are nested. This is called indenting the code.  
 
The choice, relevance, or advantage of nesting versus composite conditions must be determined 
by the programmer based on the specific objectives and requirements of the application.  
 
1.6 Conditional Operator 
 
The JavaScript conditional operator may be used to assign a value to a variable based on some 
condition.  The syntax is as follows: 
 
 
variable = (condition)? value1 : value2 ; 
 
 
For example, a concrete specimen in a compression test must yield a result of 30 psi or more to 
“pass”, otherwise it will “fail” and the contractor will not be paid.  
 
 
testresult = (compstrength >= 30)?”Pass” : “Fail” ; 
 
  
Using the conditional operator to implement this, if the variable compstrength has a value equal 
to or greater than 30, then the variable testresult will be assigned the value “Pass”, otherwise it 
will be assigned the value “Fail”. 
 
1.7 Switch Statement 
 
This is an alternate method to the if statement. It is advantageous to use when there is an 
excessive number of conditions and the if statement becomes cumbersome and difficult to follow 
and keep track of. The syntax is as follows: 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 7 of 74 
 

switch(variablebeingchecked) 
{ 
case value1: 
 Run code 1 if variablebeingchecked = value1 
 break ; 
case value2: 
 Run code 2 if variablebeingchecked = value2 
 break ; 
: 
: 
default: 
 Run this code if none of the above cases applies 
} 
 
 
Each case value may consist of a value, or variable or logical expression, or composite logical 
expression, or any combination thereof. Starting from the top, if the value of the 
variablebeingchecked meets the condition of a case, then the relevant code will be run. Once the 
relevant code has run, the break will “kick us out” of the switch statement. Without the break, 
the browser will continue checking the next case in the switch statement and so on and so forth. 
The default case and its associated code applies if none of the above cases are met. For example, 
 
 
switch(reading) 
{ 
case  1: 
 document.write(“ON”); 
 break ; 
case  -1: 
 document.write(“OFF”); 
 break ; 
default: 
 document.write(“Device malfunction”) 
} 
 
In other words if the reading value equals 1, the device is “ON”.  If the reading value is -1, the 
device is off. Any other reading implies we have a malfunction of the device.  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 8 of 74 
 

2. MESSAGE BOXES  
 
A message box, commonly called a popup box acts like a dialog box where a user can interact 
with the computer. Message boxes are used to alert or prompt the user. Message boxes are able 
to perform actions in response to what the user selects. Message boxes are often incorporated 
into conditional statements to control the flow of the code based on user’s selection(s).  There are 
three forms of the message box in JavaScript, namely, the alert box, the confirm box, and the 
prompt box. 
 
2.1 Alert Box 
 
In its simplest form, the general structure of the code for a message box uses the alert( ) function 
as follows: 
 
alert (some message for the user) ; 
 
A message box created in this manner, referred to as an alert box, has an OK button only, which 
the user must click on to dismiss it and enable the rest of the code for the script to run.  
 
For example, 
 
 
alert(“Hello, welcome to JavaScript”); 
 
 
Which yields,  
 
 

 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 9 of 74 
 

 
2.2 Confirm Box 
 
The confirm box is used when the user is required to make a decision and select some option to 
proceed. The user must select “OK” or “Cancel” to continue.  The syntax is 
 
 

confirm(“relevant text here”) ; 
 
 
which will yield: 
 
 

 
 
 
Code must be written to determine events that will “fire” based on which button the user clicks 
on.  Therefore confirm boxes are typically used in conjunction with if statements.  
 
Consider the following example, 
 
 
<script> 
 
//the following line brings up the confirm box 
var r=confirm("Click OK to order pizza, or Cancel to order a sandwich."); 
 
if (r==true) //so if the user clicked on OK this block of code will execute 
  { 
   alert("You ordered a pizza!"); 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 10 of 74 
 

  } 
else  //if the user clicked on Cancel then this block of code will execute 
  { 
   alert("You ordered a sandwich!"); 
  } 
 
</script> 
 
 
The confirm box appears as follows, 
 
 

 
 
 
Clicking on OK yields: 
 
 

 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 11 of 74 
 

 
Whereas clicking on Cancel yields: 
 
 

 
 
 
2.3 Prompt Box 
 
The prompt box is a popup box that enables the web page to retrieve input from the user. Prompt 
boxes are used to ask users questions, provide information, or communicate feedback to or from 
the user. The user clicks on the OK button to return input data to the web page, or the Cancel 
button to return a null value to the web page. 
 
The syntax for the prompt box is: 
 
 

prompt(“relevant text here”, “default text”) ; 
 
 
For example: 
 
 

prompt(“Enter your full name: ”, “”) ; 
 
 
which yields 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 12 of 74 
 

 

 
 
 
Or add your name as the default text in the text box, as follows: 
 
 

prompt(“Enter your full name: ”, “Kwabena Ofosu”) ; 
 
 
This yields: 
 
  

 
 
 
Code must be written to determine events that will execute once the input data has been supplied 
(or otherwise) and the OK button is clicked on. Prompt boxes are typically used in conjunction 
with if statements. Consider the following script, 
 
 
<script> 
var x; 
//the following line brings up the prompt box and assigns its value to a variable 
var r=prompt("Enter your full name : ", "Type your name here"); 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 13 of 74 
 

 
if (r!=null) //this is where we write the code for the OK button 
                  //on clicking OK, this block of code will execute 
                 //note the line break characters in the text 
  { 
         x = "Hello " + r  + ".\nThanks for visiting our website today.\nHave fun." ; 
   alert(x); 
  }  
            // on clicking Cancel the prompt box dismisses and a null value is 
            // assigned to the variable, and nothing else happens 
 
</script> 
 
 
which yields: 
 
 

 
 
 
Entering a name, 
 
 

 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 14 of 74 
 

Click on OK. 
 
 

 
 
 
Click OK to dismiss the alert box. The prompt box also dismisses as it has completed its code 
execution. 
 
Repeat the process, but this time after entering a name (or without entering a name, or after 
clearing the text box), click on Cancel.  
 
 

 
 
 
The prompt dismisses as expected. 
 
 
2.4 Practicum #3 
 
In this practicum we shall further develop the yellow time calculation application for the County 
Traffic Operations program that we designed in Practicum #1 and gave functionality in 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 15 of 74 
 

Practicum #2 of this course series. Particularly, we shall add conditional statements and alert 
boxes to enforce the entry of admissible data for our calculations.   
Solution 
Open the application in your web browser. 
Enter a non-numeric value in any one of the input boxes. 
 
 

  
 
 
Click on Calculate. This yields NaN (not-a-number).  
In other words we have entered inadmissible data for a valid numerical result to be calculated. 
 
 

  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 16 of 74 
 

We can use the built-in function isNaN( ) to determine whether an input value is NaN or not. If 
the test evaluates to “true” we shall throw an alert to the user to enter admissible data, and then 
terminate the calculation procedure.  
 
Open your web page with Notepad (or your preferred text editor). 
Scroll to the code for the function that calculates the yellow time, fnYellowCalc( ).  
Add the conditional statement for the reaction time variable reacTime such that if the value 
assigned from the reaction time text box txtReacTime is not a number, the user is thrown an alert 
box telling them to enter a valid numeric value.  
The function return call is then used to terminate the function after the user dismisses the text 
box. 
If the user enters a valid numeric value then the reacTime variable is reassigned its value from 
the parseFloat function. 
 
 

 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 17 of 74 
 

 
Repeat the conditional set up for the other input variables, deceleration, and gradient.  
The user is restricted to selecting a speed from the combo box; therefore, checking and validating 
the speed entries may be omitted. This is a specific advantage of using combo boxes, list boxes, 
etc., when they are applicable. 
 
 

 
 
 
After the validation checks, the yellow time calculation follows and stores a valid numerical 
result to the variable yellowtime. The return call ends the function, fnYellowCalc( ). 
Save your file. 
Open your file in your web browser to test it.  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 18 of 74 
 

 
Enter an inadmissible value in the reaction time, deceleration, or gradient text boxes. 
 
 

 
 
 
Press Calculate. 
 
 

 
 
 
Dismiss the alert box. 
Test the other text boxes. 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 19 of 74 
 

 
Enter all valid inputs and press Calculate. 
 
 

 
 
 
All inputs are checked and validated, and a valid result is calculated. 
The test is a success.  
For further practice, add relevant validation checks to the All-Red Clearance calculator. 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 20 of 74 
 

 
3. LOOPING 

 
Looping is a procedure in a scripting language that performs repetitive (iterative) tasks. 
The loop is a sequence of instructions that is executed repeatedly while or until some condition is 
met or satisfied. Looping is fundamental to all scripting languages. JavaScript, like most 
scripting languages, has numerous looping constructs. 
  
3.1 The For Loop 
 
This is the most commonly used loop and is applicable when the number of iterations of the loop 
is known ahead of time. The syntax is:  
 
 
for (start; condition; continuation expression ) 
{ 
 Code that is to be repeated a certain number of times 
} 
 
 
The start is where the variable that controls the loop, the looping variable (or loop variable), is 
declared and/or initialized. The condition is an expression that establishes the condition(s) for 
which the loop will continue to run or shall be terminated. At the end of an iteration, the looping 
variable will be updated (increased or decreased) based on the contents of the continuation 
expression. The current value of the looping variable will now be checked against the condition 
expression; and if still in compliance, the next iteration will be executed, otherwise the loop will 
terminate. 
 
Consider a loop driven by a looping variable lpvar with the continuation and condition 
expressions as follows: 
 
 
for (var lpvar = initialvalue; lpvar < terminalvalue; lpvar++ ) 
{ 
 Code that is to be repeated until condition statement returns value of false 
} 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 21 of 74 
 

In this case lpvar is declared and assigned an initial value. It is an integer value. The code will 
then run for the first iteration. The looping variable will then be incremented to the next integer 
value. This current value of the looping variable will be checked for compliance with the 
condition expression. If in compliance, the next iteration will be executed, otherwise the for loop 
then terminates, and the browser continues executing the code on the next line after the loop’s 
closing curly bracket.    
 
It is pertinent to note that the declaration of the looping variable may be implemented before and 
outside of the looping structure. The increment/decrement of the looping variable does not have 
to be in steps of unity (1). If necessary, any integer value increment/decrement may be 
implemented by modifying the increment/decrement operation accordingly (e.g. k++2 will give 
an increment of 2, etc.). Also, the loop may be run “backwards”, i.e., a higher initial value is 
assigned, and the continuation expression decrements the looping variable down towards the 
limit set in the condition expression. For example: 
 
 
//create your looping variable to control the loop 
var lpvar ; 
 
for (lpvar = initialvalue; lpvar >= terminalvalue; lpvar- - ) 
{ 
 Code that is to be repeated until condition statement returns value of false 
} 
 
 
In the following example, use a for loop to create an array of ten elements such that the value of 
each element is its index value multiplied by 5. 
 
 
//create the array  
 var  myArray[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ; 
//declare your looping variable 
var i  ; 
//loop through the array to calculate and assign array element values 
 for(i  = 0;  i = < 9; i++) 
{ 
         mrArray[i] = i * 5 ;}  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 22 of 74 
 

 
This will result in the array [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]. 
 
3.2 The For In Loop 
 
The for in loop is used to loop through the properties of an object. In some cases the number of 
iterations may not be known beforehand, which is not an issue because the browser will loop 
through all the attributes of the object anyway. 
 
Consider an object Equipment, 
 
 
var txt = ""; 
var Equipment = {description:"Backhoe", make:"Kubota", model:"BHL25"};  
 
for (var x in Equipment) 
{ 
       txt = txt + Equipment[x] + " "; 
} 
 
alert(txt); 
 
 
So, after looping through the object’s attributes and “welding” them on successively, the final 
result is:   
 
 

 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 23 of 74 
 

 
3.3 The While Loop 
 
If the number of iterations needed is not known a piori, the for loop cannot be used. In that case 
a while loop structure may be used. In the while loop, you set the conditions upon which the loop 
will terminate but will not know ahead of time how many iterations will actually run until 
termination occurs.  
 
The syntax is as follows: 
 
 
 while (condition) 
{ 
 Code to be executed repeatedly while condition holds true 
} 
 
 
The termination condition is generally some logical expression. The loop variable will be 
checked against the condition. If the condition holds true then the first iteration of the code 
enclosed in the brackets will execute. The loop variable will then be updated to a new current 
value. The current value of the loop variable will be checked against the condition and if it is in 
compliance, the next iteration proceeds. This procedure will repeat over and over as long as the 
loop variable meets the condition. If at some point the loop variable does not meet the condition, 
the loop will terminate and the cursor moves to the line after the closing curly bracket.  
 
Consider the following script; 
 
 
//declare and initialize the loop variable 
 var i = 0 ; 
 
//loop through values up to 99 
while (i < 100) 
{ 
 //write out the value on the web page on a new line each time 
 document.write(i +"<br>") ; 
          

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 24 of 74 
 

 
 //go to the next i value 
 i++ ; 
 
}  
 
 //alert the user that the task is complete. 

alert("You have completed " + i + " iterations."); 
 
 
This yields (partial screen capture shown): 
 
 

   
  

 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 25 of 74 
 

When using the while loop, the termination condition must be chosen carefully and studied 
closely otherwise the script may fall into an infinite loop. An infinite loop is a loop that lacks a 
functioning exit routine . As a result, the loop cannot stop, and repeats continuously until the 
operating system senses the issue and terminates the script, or until some event occurs, for 
instance having the script terminate automatically after a certain duration or number of iterations. 
Typically, an infinite loop will cause your web browser to crash. Likewise, if you forget to 
increment (or decrement) the loop variable, the loop cannot end, and your web browser, web 
page(s), and potentially your operating system, will crash. While loops must be used with 
caution. 
 
3.4 The Do While Loop 
 
The do while loop is a variation of the while loop. In the while loop the condition is checked at 
the beginning of the iteration. In the do while loop, the condition is checked at the end of the 
iteration, and if the condition fails, the next iteration does not happen and the loop is terminated. 
The syntax is as follows: 
 
 
 do  
{ 
 Code to be executed repeatedly while condition holds true 
} 
while(condition) ; 
 
 
The while loop example we did in the previous section can be set up as a do while loop as 
follows: 
 
 
//declare and initialize the loop variable 
 var i = 0 ; 
 
//loop through values up to 99 
do 
{ 
 //write out the value on the web page on a new line each time 
 document.write(i +"<br>") ; 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 26 of 74 
 

 
 //go to the next i value 
 i++ ; 
 
}  
while(i < 100) ; 
 
//alert the user that the task is complete. 

alert("You have completed " + i + " iterations."); 
 
 
3.5 Nested Loops 
 
A nested loop is a loop inside of another loop. Loops of all types discussed so far may be 
embedded (nested) within each other as needed to achieve the desired functionality. All types of 
loops may be nested within all types of conditional statements (if statements) and vice versa, 
without limit. The same applies for composite conditional statements. It is the responsibility of 
the web programmer to devise and design the appropriate branching and looping structures to 
meet the objectives of the project.   
 
3.6 Exiting Loops 
 
In some cases it may be necessary to abruptly or prematurely exit a loop based on the progress of 
the script. In JavaScript, the break statement is used to “jump out” of a loop and continue 
execution from the line of code after the loop, if any. The syntax is:  
 
 
break ; 
 
 
Consider the following script: 
 
 
<script> 
 
 //declare loop variable and a variable to hold the result of a calculation 

var x=0.1,i=0; 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 27 of 74 
 

 
//loop from 20 down to zero and perform the calculation each time 
for (i=20;i>0;i- -) 
  { 
 
//the calculation 
   x = (i/2) - 4; 
 
//but we don’t want negative values in our results 
//if that happens stop the script 
//so we shall nest an if statement in our loop 

   if (x < 0) 
    { 
 
    //if we get a negative result, display the values 
    //of i and x 
 
    document.write("i is " + i + "<br>"); 
    document.write("x is " + x); 
 
    //alert the user that the program is about to shut off 
    alert("Your are in the negative. \nProgram has to stop."); 
 
    //terminate the loop with a break call 
    break; 
    } 

   
  } 
 

</script> 
 
 
The following shows when a negative result (x) was encountered, and the value of the loop 
variable (i) that caused it. 
 
 
 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 28 of 74 
 

 
 

                      

 
 
 
A code block can be labeled. A code block can be prematurely exited by calling the break 
statement and the name of the label. The previous example may be modified as follows. 
 
 
<script> 
 
 //declare loop variable and a variable to hold the result of a calculation 

var x=0.1,i=0; 
 

stopcondition: //this is the label for the for loop with if statement code block 
                      //the entire block of labeled code must be wrapped in curly brackets 

 
{ 

 
//loop from 20 down to zero and perform the calculation 
for (i=20;i>0;i- -) 
  { 
 
//the calculation 
   x = (i/2) - 4; 
 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 29 of 74 
 

 
 
//but we don’t want negative values for the calculation result 
//if that happens stop the script 
//so we shall nest an if statement in our loop 

   if (x < 0) 
    { 
 
    //if we get a negative result, display the values 
    //of i and x 
  //post on web page that loop was stopped 
    document.write("Premature termination !"<br>"); 
    document.write("i is " + i + "<br>"); 
    document.write("x is " + x); 

 
    //terminate the code block with break call with label 
    break stopcondition; 
    }//close of if-statement 

   
  }//close of for-loop 
 

 //alert the user that the program has run successfully to completion 
//this will happen only if the termination condition in the code block 
//is never met. We can expect this to never happen as we already know  
//that the calculation will yield a result that will trigger the termination condition  
 alert("Successful Completion!"); 
 
 
}//close of labeled code block 
 
</script> 
 
 
The script yields the following: 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 30 of 74 
 

 
 

 
 
Note that in this case the alert for successful completion never pops up because the condition for 
termination occurs in the labeled code block, and the labeled code block is then called to 
terminate with the break statement once the condition for termination (in the if statement) is met. 
Once “kicked out”, the cursor resumes execution on the line after the line with the closing curly 
bracket of the labelled code block. 
 
A variation of the break statement is the continue statement. The continue statement can be used 
within a loop to “jump over” one iteration based on some condition. The continue statement may 
be used in conjunction with a label, but the entire construct (label, code block, and continue 
statement with label) must all be within the structure of the loop.   
 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 31 of 74 
 

4. OBJECTS 
 
4.1 Objects in JavaScript 
 
An object is data that has properties and methods stored with it. The properties are values that 
describe the object whereas the methods are actions associated with the object. A JavaScript 
object is essentially a collection of properties with values assigned them that altogether describe 
some data. 
 
Consider a house as an object. The properties of the house would include, for example, stories, 
structure, bedrooms, bathrooms, roof, flooring, exterior, etc. The methods would include, for 
example, paint, clean, fix, cut grass, renovate, etc. 
 
There are a number of ways to create an object in JavaScript. One way is to use the keyword new 
to create the object and assign it to a variable followed by a list of property-value assignments. 
For our house example, for instance,  
 
 
  var xyHouse = new Object( ) ; 
 
 xyHouse.storeys = 2 ; 
 xyHouse.structure = “concrete block” ; 
 xyHouse.bedrooms = 4 ; 
 xyHouse.bathrooms= 3.5 ; 
 xyHouse.roof =”sheet metal”4 ; 
 xyHouse.flooring = “ceramic tile” ; 
 xyHouse.exterior = “brick” ; 
 
 
Object methods are functions we can develop that will manipulate some property or the other of 
our object. For example xyHouse.Paint( ), or xyHouse.ChangeRoof( ), etc. 
 
An object property may be accessed as follows, 
 
 
 z = xyHouse.exterior ; 
document.write(z) ;  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 32 of 74 
 

 
which will return “brick”. 
 
Another way of creating an object is by using the object literal, as follows, 
 
 
var xyHouse {storeys: 2, structure: ”concrete block”, bedrooms:5,  bathrooms: 3.5} 
 
 
or 
 
 
var xyHouse { 
 storeys: 2,  
 structure: ”concrete block”,  
 bedrooms:5,  
 bathrooms: 3.5 
 } 
 
 
Another way of creating an object is by using an object constructer function (or constructor), 
as follows, 
 
 
function xyHouse(a, b, c, d) 
{ 
this.storeys = a; 
this.structure = b; 
this.bedrooms = c; 
this.bathrooms = d; 
} 
 
 
The this keyword sets the properties of the constructor. The advantage of using the constructer is 
that the object (xyHouse) now becomes a custom object type. We can now quickly create new 
instances of the xyHouse object. For example, 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 33 of 74 
 

var dadsHouse = new xyHouse( 1, “wood frame”, 3, 2.5) ; 
var johnnyHouse = new xyHouse(2, “steel frame”, 5, 4.5) ; 
 
 
JavaScript has many built- in objects, each with its constructor, built-in properties and methods.  
In fact, all of the data types we have learned thus far can in one way or the other be modelled as 
objects. In the remainder of this chapter we shall review a selection of JavaScript built-in 
objects. A comprehensive review of JavaScript objects can be found elsewhere. (w3schools.com, 
2014a) 
 
4.2 Date 
 
The date object is used for the storage, retrieval and manipulation of dates and times. A date may 
be created with the date constructor in any of the following ways. 
 
 
i. dateobjectvariable = new Date( ) ; 
 
 
This will create the current date and assign it to the variable. So if today is May 2, 2014, 4:45 pm 
on the east coast of the United States, 
 
 
 var dteVar  = new dDate( ) ; 
document.write(dteVar) ; 
 
 
Which returns “Fri May 2 16:45:17 EDT 2014” (the date and time this code was executed). 
 
ii. A date may be created by passing the number of milliseconds in Universal Coordinated Time 
(UTC) that have passed since midnight January 1, 1970, to the date constructor. Noting that a 
day consists of 86,400,000 milliseconds, 
 
 
var dteVar  = new Date(1135296000000 ) ; 
 
document.write(dteVar) ;  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 34 of 74 
 

 
This returns “Thu Dec 22 19:00:00 EDT 2005”. 
 
iii. Passing a date string to the date constructor will create a date object 
 
 
var dteVar  = new Date( “May 2, 2014 14:20:00”) ; 
 
document.write(dteVar) ; 
 
 
This returns “Friday May 2 14:20:00 EDT 2014”. 
 
Note that as the time zone was not specified, the local time zone is applied, in this case EDT for 
the east coast of the United States. 
 
iv. Passing any number of the date parameters to the date constructor will create the date object. 
 
 
new Date(year , month, day, hours, minutes, seconds, milliseconds); 
 
 
where January is month zero, and December is month 11. For example, 
 
 
var dteVar  = new Date( 79, 2, 18, 10,20,00) ; 
 
document.write(dteVar) ; 
 
 
which yields “Sun Mar 18 10:20:00 EDT 1979”. 
 
Dates can be compared. For example the following code checks if the user has inconsistent start 
and end dates for a project. 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 35 of 74 
 

<script> 
 
var startdate = new Date( ); 
document.write(startdate + "<br>"); 
 
var enddate = new Date("April 15, 2014"); 
document.write(enddate + "<br>"); 
 
if (enddate < startdate) 
{ 
          alert("Your end date cannot be before the start date!"); 
} 
 
</script> 
 
 
Resulting in, 
 
 

  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 36 of 74 
 

 
Some of the commonly used date methods are presented in Table 4.1 
 
 
Table 3: Date methods 

 
Method 

 
Description Example Result 

getDay( ) 
Extracts weekday of a 
date and converts it to a 
number 

var dte = “May 2, 2014” 
document.write(dte.getDay( )) 

5 

toUTCString( ) 
Converts a date string to 
the UTC date format 

var dte = “Fri, 2 May 2014 
23:44:02 EDT” 

document.write(toUTCString( )) 

Sat, 3 May 
2014 03:44:02 

UTC 

getTime( ) 
Returns the number of 
milliseconds elapsed since 
Midnight January 1, 1970 

var dte = “Fri, 2 May 2014 
23:46:02 EDT” 

1399088802978

getFullYear( ) 
Returns the full year of a 
date string 

var dte = “May 2, 2014” 
document.write(dte.getFullYear( )) 

2014 

 
 
 
4.3 Strings 
 
A string is a series of characters. Strings are used to store and manipulate text.  A string is 
assigned to a variable by placing it within double or single quotation marks. For example, 
 
 
var strFirstName = “Cameron” ; 
 
var strLastName = ‘Milner’ ; 
 
 
Each character has an address or position within the string called its index.  The first character is 
of index zero [0], the next character index [1], and so on and so forth. For example, 
 
Each character in the string can be accessed by calling it index. For example,  
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 37 of 74 
 

 
var strLetter = strFirstName[4] ; 
 
document.write(strLetter); 
 
 
Which returns a value of “r”. 
 
To incorporate quotation marks in the string, the “\”  is put in front of the quotes sign, as follows: 
 
 
var strGreeting = “Say \”HELLO\” to all of your customers.” ; 
document.write(strGreeting); 
 
 
Which returns “Say “HELLO” to all of your customers. Alternately, you may use one style of 
quotes (single or double quotes) within another style to obtain the same effect. For example, 
 
 
var strGreeting = ‘Say ”HELLO” to all your customers.’ ; 
document.write(strGreeting); 
 
 
Which returns “Say “HELLO” to all of your customers.” 
 
The length property of the string gives the number of characters in the string. For example, 
 
 
var txtName = “Eyjafjallajökull” ; 
document.write(txtName.length) ; 
 
 
Which yields a value of 16. 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 38 of 74 
 

 
Case Conversion 
The built-in functions toUpperCase( ) and toLowerCase( ) will convert a string to upper case or 
lower case respectively. For example, 
 
 
var strNameEntry = ‘john henry’ ; 
var UCaseName = strNameEntry .toUpperCase() ; 
document.write(strUCaseName); 
 
 
This returns “JOHN HENRY”. 
 
Sub Strings 
The indexOf( ) method will return the starting position (index) of a sub string within a larger 
string (keep in mind that indices in JavaScript start from zero). The lastIndexOf( ) method will 
locate the sub string’s starting position within a larger string, but will start the search from the 
end of the string. In either case, if the sub string is not found, the respective function will return a 
value of -1. For example, 
 
 
var strSalutation = ‘Transylvania’ ; 
var indexLeft = strSalutation.indexOf(“sylvan”) ; 
var indexRight = strSalutation.lastIndexOf(“sylvan”) ; 
 
alert(indexLeft) ; 
alert(indexRight); 
 
 
This yields: 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 39 of 74 
 

 

 
 
 
for either case. 
 
The match( ) method will search for the matching content in a string. The replace( ) method will 
search for a specific content in a string and replace it with specified string. For example, 
 
 
var strSalutation = 'Transylvanian' ; 
var indexNew = strSalutation.replace("Tran", "Pan") ; 
 
alert(indexNew); 
 
Which yields, 
 
 

 
 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 40 of 74 
 

Special Characters 
The back slash (\), in conjunction with other characters, creates special characters in JavaScript. 
Table 4.2 presents some special characters in JavaScript.  
 
 
Table 4: Special characters 

Special Character 
Output/ Keyboard 

Equivalent 
\b backspace 

\n new line 

\r carriage return 

\t tab 

\\ backslash 

\' single quote 

\" double quote 

 
 
Comprehensive lists of special characters as well as other properties and methods for strings can 
be found at various sources. (ECMA International, 2011), (Microsoft, 2014b). 
 
Objects 
Strings can also be created as objects. For example, the following creates a custom string type. 
 
 
var ks = new String(“Hector”) ; 
 
 
4.4 Arrays 
 
An array is a variable that holds multiple values. The individual values are called the elements of 
the array. Each element is identified by its unique address in the array called its index. In 
JavaScript, the first element is of index zero [0]. The elements of an array may be of different 
data types. In large and complex applications, arrays drastically reduce the number of variables 
needed. An array is created as follows: 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 41 of 74 
 

 
  var NameOfArray = [firstelement, secondelement,   , nthelement ] ; 
 
 
or, 
 
 
  var NameOfArray = [ 
   firstelement,  
   secondelement, 
   : 
   : 
    nthelement ] ; 
 
 
An element of an array is accessed by referring to its index number. For example, 
 
 
 ProjectTeam[0] = “Paul Andrews, P.E.” ; 
 ProjectTeam[1] = “Marta Gomes, P.E.” ; 
 ProjectTeam[2] = “Donald Keino” ; 
 ProjectTeam[3] = “Paula Generale” ; 
 
 
Alternately, an array may be created as an object using a constructor, as follows, 
 
 
  var NameOfArray = new Array( ) ; 
 
 NameOfArray[0] = firstelement ; 
 NameOfArray[1] = secondelement ; 
 NameOfArray[2] = thirdelement ; 
  : 
  : 
  : 
 NameOfArray[n] = nthelement ; 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 42 of 74 
 

or,  
 
 
  var NameOfArray = new Array(firstelement, secondelement,   , nthelement ) ; 
 
 
For example, 
 
 
var ProjectTeam = new Array( ) ; 
 ProjectTeam[0] = “Project Manager” ; 
 ProjectTeam[1] = “Design Engineer” ; 
 ProjectTeam[2] = “Engineering Assistant” ; 
 ProjectTeam[3] = “Drafter” ; 
 
 
This yields the array: 
 
 

൦

ݎ݁݃ܽ݊ܽܯ ݐ݆ܿ݁ݎܲ
ݎ݁݁݊݅݃݊ܧ ݊݃݅ݏ݁ܦ

ݐ݊ܽݐݏ݅ݏݏܣ ݃݊݅ݎ݁݁݊݅݃݊ܧ
ݎ݁ݐ݂ܽݎܦ

൪ 

 
 
Array objects have predefined properties and methods. A comprehensive presentation of the 
built-in properties and methods of arrays in JavaScript can be found at other sources. (Mozilla, 
2014). In the remainder of this section we shall review a selection of built-in JavaScript array 
properties and methods. 
 
Length 
The length of an array is the number of elements it has. From our project team array above, 
 
 
var numStaff = ProjectTeam.length ; 
document.write(numStaff) ; 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 43 of 74 
 

 
This will return a value of 4. 
 
Sort 
The elements of an array can be rearranged in order, alphabetically or numerically using a sort 
method. For example, 
 
 
ProjectTeam.sort( ); 
 
 
will rearrange the elements alphabetically as [“Design Engineer”, “Drafter”, “Engineering 
Assistant”, “Project Manager”] 
 
Consider the array with elements as follows, 
 
 
var arrWage = [24.5, 16.98, 24.98,19.35] ; 
 
 
To arrange the elements in ascending order, use: 
 
 
arrWage.sort( ) ; 
 
 
or,  
 
 
arrWage.sort(function(a,b)[return a-b]) ; 
 
 
To arrange the elements in descending order, use: 
 
 
arrWage.sort(function(a,b)[return b-a]) ; 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 44 of 74 
 

 
Concatenation 
This is the method of “welding” two arrays together. For example, 
 
 
var arCivilProjects = [“Pinewood Subdivision”, “KO Gas Station”, “Placido Plaza”] ; 
var arRoadProjects = [“Dunwoody Parkway”, “Nejame Avenue”] ; 
 
var arAllProjects = arCivilProjects.concat(arRoadProjects) ; 
 
 
The array arAllProjects will have the elements [“Pinewood Subdivision”, “KO Gas Station”, 
“Placido Plaza”, “Dunwoody Parkway”, “Nejame Avenue”]  
 
Convert to string 
The toString( ) method converts an array to a text string. For example, 
 
 
arRoadProjects.toString( ) ; 
 
 
This yields the text string “Dunwoody Parkway, Nejame Avenue”.  
 
Shift( ) 
The shift( ) method will remove the first element from the array. For example, 
 
 
arCivilProjects.shift( );  
 
 
This yields the array [“KO Gas Station”, “Placido Plaza”] 
 
4.5 Practicum #4 
 
In this practicum we shall add further functionality to our yellow time calculator. We shall add a 
“Batch” calculation button. On clicking the batch calculation button, the yellow time will be 
calculated for speed scenarios starting at 15 mph in increments of 1 mph up to 80 mph. 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 45 of 74 
 

For each speed, a yellow time will be calculated based on the other inputs. A transcript in the 
form of a table will be generated at the end of the procedure and displayed on the web page.  
 
Solution 
Save a copy of your Practicum #3 file and rename it Practicum #4. 
Open Practicum #4 with your favorite text editor. In this practicum, the text editor Notepad++ 
shall be used. This is one of many downloadable, free, open source software that support code 
writing and editing in several programming, as well as scripting languages. (Ho, 2011). 
 
After the entry validation checks, add a loop that will calculate the yellow time from speed =14 
through speed = 80 in increments of 1. A partial screenshot of the loop is as follows. 
 
 

 
 
 
Each time a calculation is performed we want to compile the results somewhere such that at the 
end of the procedure we shall display the compiled results. Create a variable to store this 
information. We shall use a string for this purpose. Declare it before your for loop. 
 
 

 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 46 of 74 
 

 
We actually want to compile results from speed of 15 mph. We are using the start value of “14” 
as a dummy value to enable us to set up a header for our output table. So if the speed is 14 mph, 
set up and append a header to the string variable compiling our results, otherwise display the 
speed and the calculated yellow time. We can implement this with an if statement as follows: 
 
 

 
 
 
Once all calculations have executed and been compiled in our output string, we want to display 
the results. We can use document.write, etc. We may also use the innerHTML property of an 
element. In this case we shall create a paragraph towards the bottom of our web page and give it 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 47 of 74 
 

 
a name (or id) attribute. We shall use the innerHTML property to send our output text string to 
that paragraph to be displayed on the web page.   
 
Scroll towards the bottom of your web page source code and add a paragraph called batchrun. 
 
 

 
 
 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 48 of 74 
 

 
Back in our batch function procedure, after the for loop, we shall add code to assign our output 
string to the element (the paragraph) called batchrun, by accessing its innerHTML property as 
follows: 
 
 

 
 
 
 
An alert message was added to inform the user that the calculations have run to completion and 
the user may scroll down the web page to review the results. 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 49 of 74 
 

Finally, we shall embed our entire batch code within a confirm box structure so that the user can 
be cautioned on what is about to happen and choose whether to continue with the batch 
execution or cancel out of it. A partial screenshot is as follows (the else condition and closing 
curly brackets towards the bottom are not shown): 
 
 

 
 
 
Review your codes and check for common errors, omissions, typos, etc. For example, confirm 
that all if statements, loops, etc., have all their corresponding opening and closing curly brackets 
in place. Check quotation marks and confirm that all pairs are correctly in place. Check for 
missing “;” wherever they are required. 
 
Save your file.  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 50 of 74 
 

 
Test your file. 
Open your file in your web browser. 
Enter reaction time, deceleration, and grade inputs. 
Click on Batch. 
 
 

 
 
 
The confirm box pops up to confirm whether the user would like to continue or cancel. 
Press OK to continue. 
 
 

 
 
 
The inputs will be checked and validated, and then the iterative calculations will proceed. 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 51 of 74 
 

The user is alerted that the procedure has run to completion. 
 
 

 
 
 
Dismiss the alert to review the results which are displayed in the paragraph towards the bottom 
of the web page. A partial screenshot is as follows: 
 
 

  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 52 of 74 
 

 
The test is a success.  
You have created a fully functional interactive web page that gives the user the opportunity to 
play “traffic engineer” and conduct sample yellow time calculations regarding the Red Light 
Camera program.   
 
For further independent study, consider the following alternatives/ improvements: 
 

 Use an array to compile and display the batch results. 

 Apply break statements with labels to implement the validations, etc. 

 Implement a consistent number formatting for all calculated results. 

 Center your results output on the web page. 

 Make the headers bold, underlined, and distinct from the output data. 

 Add code that will also save the output of the batch run to an external file such as a text 
file, pdf, Word document, Excel spreadsheet, etc., etc.  

 
 
   

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 53 of 74 
 

5. MANIPULATING THE BROWSER 
 
5.1 The Window Object 
 
The Browser Object Model (BOM) enables JavaScript to communicate directly with the web 
browser.  The window object represents the web browser window. 
 
Examples of window properties include the window height and the window width as follows: 
 
 
var w = window.innerHeight //the inner height of the browser window is saved to a variable 
 var h = window.innerWidth //the inner width of the browser is saved to a variable 
 
 
Examples of windows methods include: 
 
 
window.open( ) //opens a new browser window 
window.close( ) // closes the current window 
window.moveTo( ) //moves the current window 
window.resizeTo( ) //will resize the current window 
  
 
5.2 The Screen Object 
 
The screen object holds information about the user’s screen. Some properties include: 
 
 
screen.availWidth //the available width of the user’s screen 
screen.availHeight //the available height of the user’s screen 
screen.pixelDepth //the color resolution of your screen 
 
 
For example: 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 54 of 74 
 

 
<script> 
 

alert("Available Width: " + screen.availWidth); 
 
</script> 
 
 
This yields the following on the author’s laptop (your result may vary): 
 
 

   
 
 
You are encouraged to test this on your equipment and see what value you obtain. 
 
5.3 The Location Object 
 
The location object is used to extract the URL of the current web page. Some example properties 
include: 
 
 
location.href  //will return the url of the current web page 
location.hostname  //will return the domain name of the web host 
location.pathname  // will return the path and filename of the current web page 
location.port returns  //the port of the web host (80 or 443) 
location.protocol  //will return the web protocol used (http:// or https://) 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 55 of 74 
 

 
Test the following code on your equipment. 
 
 
<script> 
 

alert("Current URL: " + location.href); 
 
</script> 
 
 
An example of a location method is: 
 
 
location.assign( ) //this method will load a new document 
 
 
For example:  
 
 
location.assign(“http://www.suncam.com”) //note that the full url is required 
 
 
5.4 The History Object 
 
The history object contains your browsers history. Due to privacy considerations JavaScript has 
limitations on how it accesses this object. Examples of methods include: 
 
history.back( ) //this loads .the previous URL in the history list stored in the history object. 

//this is the same as clicking on the back button of your browser 
 
history.forward( )   //this is the same as clicking on the forward button of your browser 
 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 56 of 74 
 

 
5.5 Timing of Events 
 
It is possible to execute certain codes at specific time intervals. This is referred to as timing 
events.  
 
The setInterval( ) method will wait for the specified number of milliseconds and then run a 
specified function. It will then wait for the specified time interval and run the function again. 
This cycle will repeat continuously. The clearInterval( ) method is used to terminate further 
execution of the function specified by your setInterval( ) method. The following example will be 
used to demonstrate the setInterval( ) and clearInterval( ) methods. 
 
Example: Create a “live” clock for a website. The clock starts ticking once the web page opens. 
The clock shall display the local time in hours, minutes and seconds. The code to set up the clock 
is as follows: 
 
 
<!DOCTYPE html> 
<html> 
<body> 
 
<p>This is our live timer </p><br><br> 
 
<!-->paragraph where the time will be displayed by accessing  
the innerHTML of the paragraph, using its id attribute <--> 
<p id = “display”></p> 
 
<script> 
 

// the setInterval method syntax is as follows 
 
//setInterval(function( ){nameoffunction ( )}, repeatinterval) ; 
//you may write the code for the function within the curly brackets or as we shall do 
//in this example, quote the function name and write the code for it elsewhere  
//in the script 

  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 57 of 74 
 

 
//in this case we repeat the function every 1000 milliseconds (which is 1 second) 
 
//we shall save the output to a variable which we shall  
//later call to display its contents on the web page 
var myTimer=setInterval(function( ){myClock( )},1000) ; 

 
 //now we set up the function myClock which we shall repeat at the stated interval 

function myClock( ) 
{ 
 
//first give us the current date and save it to a variable 
var ctime=new Date( ) ; 
 
//convert the date given to local time as a regular string using the  
//built-in function toLocaleTimeString( )  
var localTime=ctime.toLocaleTimeString( ) ; 
 
//now display the time on the web page in the  
//paragraph called “display” towards  the top 
document.getElementById(“display”).innerHTML = localTime ; 
 
 
}//end of function 

 
</script> 
 
 
 
</body> 
 
</html> 
 
 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 58 of 74 
 

 
Test the code in your browser. 
The function to call the time, convert it to local time, and display it on the web page, is re-
executed every 1000 milliseconds. The user sees a “live, ticking” clock. 
 
 

 
 
 
We shall now add a button which when clicked on stops the clock. 
 
 
<!DOCTYPE html> 
<html> 
<body> 
 
<p>This is our live timer </p><br><br> 
 
<p><!—add a stop button to the web page><--> 
<button onclick="stopTimer()">Stop Button</button> 
</p> 
 
<br> 
<br> 
 
<p id = "display"></p> 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 59 of 74 
 

 
<script> 
 
var myTimer=setInterval(function(){myClock( )},1000) ; 
 
function myClock() 
{ 
 
var ctime=new Date( ); 
 
var localTime=ctime.toLocaleTimeString(); 
 
document.getElementById("display").innerHTML = localTime; 
 
} 
 
//add function that executes when the stop button is pushed 
 
function stopTimer() 
{ 
 
 //use clearInterval method to stop the timer, we use syntax 
 //clearInterval(name of timer variable); 
 
 clearInterval(myTimer); 
 
} 
 
</script> 
 
</body> 
</html> 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 60 of 74 
 

Test your code.  
Load the web page. The live clock displays the new time every second. 
Push the button to stop the clock. 
 
 

 
 
 

 
 
 

The test is a success. You have successfully created an interactive clock for a website.  
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 61 of 74 
 

 
Another JavaScript timing event is the setTimeout( ) method. The setTimeout( ) method will 
wait for a specified number of milliseconds and then execute the specified function. The function 
will run once and will not repeat as we saw with the setInterval( )  method. The syntax is, 
 
 
variable = setInterval(function( ){nameoffunction( )},milliseconds) ; 
 
 
The setTimeout( ) can be stopped by calling the clearTimeout( ) method, and passing to it the 
variable that was assigned to the setTimeout( ) method. The syntax is as follows, 
 
 
clearTimeout(variable) ; 
 
 
5.6 Cookies 
 
A cookie is a text file that contains some data, put on your computer by a web page when you 
visit it for the first time. The cookie enables the web page to “remember” who you are. When 
you log back onto that web page, the cookie, stored in your web browser, tells that web page 
who you are, how many times you have visited that web page, your log in rights and status, the 
information you look at often, etc., etc. Cookies can store your user name(s), preferences, 
settings, etc., for specific web sites. While cookies may be abused in terms of gathering personal 
data of the users, they are not by themselves malicious. 
 
A cookie has a name parameter which is assigned a value. A cookie has an expiry parameter 
which is the expiry date of the cookie. The expiry date should be given in the UTC (Greenwich) 
time format. Once the expiry date passes the cookie is deleted permanently from your computer. 
If the expiry parameter is not set, the cookie will be deleted when you close your web browser.  
 
A cookie has domain and path parameters. The domain is the website (or sever, etc.) the cookie 
originated from. A cookie set by a particular domain can only be subsequently read by and from 
that domain and its sub domains. For example, a cookie set on my computer by microsoft.com 
cannot be subsequently read by yahoo.com and so on. If the domain is not explicitly set, then the 
current domain (web site) becomes the domain by default.   
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 62 of 74 
 

 
The path parameter is used to set a specific directory of the domain from which the cookie can 
be read. So for example, if the path parameter is set to espn.com/football, it cannot be read by a 
web page “sitting” in espn.com/hockey. It is common practice to set the path to “/”, which means 
that the cookie can be read from throughout the entire domain of the website (or server) from 
which it originated. Also, you cannot make a domain you are currently not in your cookie 
domain. For example, while in the espn.com domain (in other words with an espn.com web page 
currently active), I can make espn.com or any of its sub directories my cookie domain, but I 
cannot make say discoverychannel.com domain my cookie domain.   
 
The JavaScript property document.cookie can create, read, and delete cookies. For example, we 
can create a cookie called mytestcookie which expires at 8:30 pm on August 1, 2014, and can be 
read from the current domain and all of its sub domains, as follows:  
 
 
document.cookie =  
“cookiename = mytestcookie ; expires = Mon, 1 Aug 2014 20:30:00 UTC; path = /” ; 
 
 
Note the usage of the quotation marks and the semicolon separator for the parameters. 
 
The contents of a cookie can be read as follows: 
 
 
var x = document.cookie ; 
 
 
The result will be a string listing the name-value pairs only of all the cookies from the current 
domain that have been stored in your web browser. In the above example, the result will be: 
 
 
cookiename=mytestcookie ; 
 
 
A cookie can be changed by re-creating it with the updated information. The old cookie will be 
overwritten. For example, to change the expiry date of our cookie to October 31, 2014, we 
simply re-create it and modify the expiry parameter as follows;  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 63 of 74 
 

 
document.cookie =  
“cookiename = mytestcookie ; expires = Wed, 31 Oct 2014 20:30:00 UTC; path = /” ; 
 
 
To delete a cookie, simply change the date value to a date that has already passed. For example, 
 
 
document.cookie =  
“cookiename = mytestcookie ; expires = Wed, 31 Oct 2010 20:30:00 UTC; path = /” ; 
 
 
Numerous websites run scripts that use a prompt popup to ask the user for their name which is 
used to set a cookie. On revisiting the web page (or refreshing the web page) another script 
checks if the cookie exists. If the cookie exists the user may recieve an alert box with their name 
on it welcoming them back to the website. If the cookie does not exist, the prompt popup appears 
and asks the user to enter their name or sign up to that website.  (quirksmode.org, 
2014;w3schools.com, 2014) 
 
 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 64 of 74 
 

6. ERROR HANDLING 
 
6.1 Errors 
 
It is common, even among seasoned programmers, that due to some error(s) in the code, the 
script may not work as expected, or it may run partially and prematurely terminate, or not run at 
all. Identifying errors and addressing them is called debugging. In scripting, error handling 
refers to techniques and practices used to test scripts and isolate errors. When an error occurs, the 
browser will stop executing the script and throw an error message.  
 
 
6.2 Types of Errors 
 
Errors have several causes. Syntax errors are the result of misspelled or omitted keywords, 
typos, incomplete branching or looping structures, inadmissible use of mathematical operators 
and functions, among others.  
 
A run-time error occurs when some value is processed or some resource is accessed in a 
manner that is inadmissible to the scripting language. This will cause the script execution to 
terminate. For example, dividing some value or variable by zero will cause an error as the value 
is mathematically indeterminate. 
 
Logic errors, commonly called bugs, occur when the script runs “normally” but produces 
unexpected or undesirable results. In other words, upon review, the programmer knows that the 
results are incorrect, but from the point of view of the browser, the script is “fine”. Logic errors 
also exist if the script behaves erratically; for example, results are displayed to say a text box that 
was not the intent of the programmer. Due to the fact that the script will be running “normally”, 
there will be no error messages thrown at the user. This makes logic errors difficult to identify. 
The programmer must have some domain knowledge of the underlying theories and 
mathematical models being implemented in the script. The script must be tested repeatedly and 
the results thoroughly scrutinized, and verified and validated.  
 
Some common causes of logic errors include: 
 

 omission of relevant code 

 incorrect sequence of instructions 

 calling the wrong variables or functions 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 65 of 74 
 

 incorrect choice of branching and looping structures 

 incorrect variables and/ or logic in conditional statements 

 incorrect (loop) variables in loops 

 incorrect referencing to array indices 
 
6.3 Handling Errors 
 
During script execution, if an error occurs while a script is being executed, the applicable built-in 
error popup box will be thrown at the user. Ordinarily, a non-expert end-user will not know what 
the error message means or what steps should be taken to address it. As a result, it is considered 
unacceptable scripting practice for built-in error messages to be thrown at an end user. It is 
therefore the programmer’s responsibility to anticipate potential errors that may occur and add 
code that will address them in such a manner that the built-in error messages do not open to an 
end user.  This is the basis of error handling. Errors that are anticipated and addressed such that 
the relevant built-in error message box does not appear to the user, are referred to as handled 
errors, otherwise they are referred to as unhandled errors. 
 
6.4 Try and Catch Statements 
 
The JavaScript try statement defines a block of code to be tested while it is being executed. The 
catch statement defines a block of code to be executed if the try block picks up an error.  The try 
and catch statements are used together as a pair as follows: 
 
 
try 
   { 

//Block of code to be tested for errors 
   }  
catch(err) 
   { 
 //Run this block of code to handle errors 
   } 
 
 
 where err is a variable representing the (built-in) error object (the popup error box) that will be 
thrown. 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 66 of 74 
 

Properties of the error object include: 

 description property: This is the descriptive string on the error popup. 

 message property: This is a string that contains an error message associated with the 
error. 

 name property: This is the name of the error. It describes the type of error that has 
occurred. 

 number property: This is an “official reference number” of the error message that has 
been thrown. 

 
The error object also has methods. For example, the toString method will return a string 
representation of the error popup. 
 
Consider the following code example of a try and catch pair. The code within the try block has 
intentionally been typed incorrectly, axlert instead of alert. 
 
 
<script> 
 
//create text string to hold error information that will be displayed on the error popup  
var txtVar=""; 
 
//insert the code to be tested in a try block 
try 
  { 
   axlert("Welcome to my website!"); 
  } 
 
catch(err) 
  { 
      //if an error occurs, extract the following properties of the error object 
      //and append to our text variable for subsequent display 
   txtVar="There is a problem with your code!\n\n"; 
   txtVar+="Error message property: " + err.message + "\n\n"; 
   txtVar+="Error name property: " + err.name + "\n\n"; 
   txtVar+="Error description property: " + err.description + "\n\n"; 
   txtVar+="Error number property: " + err.number + "\n\n"; 
    

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 67 of 74 
 

 
       //display the text string with the captured 
      //error object properties on an alert box 
   alert(txtVar); 
  } 
 
</script> 
 
 
Our “custom built” error message/ alert box that will be thrown is as follows: 
 
 

 
 
 
Further information on error object methods as well as error object properties and their values 
can be found at other sources. (Microsoft, 2014a) 
 
6.5 Throw Statement 
 
The throw statement enables you to create and throw a custom error. This is described as to 
throw an exception. Throw statements used in conjunction with try and catch, as well as 
branching and looping can be used to control the flow of complex programs. 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 68 of 74 
 

The syntax is:  
 
 
throw exception 
 
 
where the exception can be a string, number, object, etc. 
 
Consider the following data entry application. 
 
 

 
 
 
Upon entering an age and clicking on Enter, the application will confirm the adult status of the 
user, or otherwise. If an inadmissible age is entered, e.g., a negative value, a relevant exception 
shall be thrown. The exception shall be assigned to a variable which shall be written to the web 
page and displayed. 
 
The code for the web page is as follows: 
 
 
<!DOCTYPE html> 
<html> 
<body> 
 
<script> 
 
//this function fires when the Enter button is clicked on 
function myFunction() 
{ 
//declare the variable to hold the exception 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 69 of 74 
 

//this variable will hold the exception and display it on the web page as part of a string 
var y=document.getElementById("txt"); 
 
//initialize the variable 
y.innerHTML=""; 
 
try 
     {  
 

//the exception will be thrown based on the following age conditions 
//that are implemented using if statements 
var x=document.getElementById("age").value; 
 
if(x=="")    throw "You did not enter an age"; 
if(isNaN(x)) throw "You did not enter a valid a number"; 
if(x>=18)     throw "Adult status confirmed"; 
if(x>0 && x<18) throw "Not an adult"; 
if(x<0)      throw "You entered a negative value"; 

     } 
 
//if an exception is thrown from the try block, do the following that is specified in the catch block 
//note that the error object from the try will be assigned the relevant throw value 
catch(err) 

{ 
     //assign the exception plus other string elements  
     //to the variable for display on the web page  
     y.innerHTML="Error: " + err + "."; 
} 

}//this is the close of function 
 
</script> 
 
//web page set up 
<p>Enter your age:</p> 
 
//the text box 
<input id="age" type="text"> 

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 70 of 74 
 

 
//the click button 
<button type="button" onclick="myFunction()">Enter</button> 
 
//the text to display in the paragraph from the y variable 
<p id="txt"></p> 
 
</body> 
</html> 
 
 
Results are as follows: 
 
 

 
 
 

 
 
 

 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 71 of 74 
 

 

 
 
 

 
 
 
 
6.6 Debugging JavaScript  
 
HTML and JavaScript scripts should be reviewed and thoroughly tested frequently as they are 
being developed. Web browsers do not throw error messages in a similar fashion and extent as a 
typical programming language, e.g., Visual Basic. It is the web developer’s responsibility to 
frequently test the code and address problems as they arise. Verify or otherwise that the browser 
displays the web page content correctly and executes the scripts as intended. Test your codes and 
scripts frequently, block by block, line by line, tag by tag, rather than writing the entire code 
before testing it. In the latter scenario, it will be much more difficult to identify and isolate any 
problems.   
 
After uploading your files to a web host it is important that the web pages and scripts be tested. 
For example, images should be checked for proper display. Forms and controls such as buttons, 
check boxes, and combo boxes should be clicked on to verify that the relevant scripts associated 
with them are executed and produce valid results.  Links should be clicked on to verify that they 
open, and open to the correct location(s). Links and scripts that were set up to reference files in 
other folders will typically need to be reconfigured to reflect the path(s) to the file(s) and 
folder(s) as it now exists on the web hosting server.  
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 72 of 74 
 

 
6.7 Web Browser Compatibility  
 
It is pertinent to note that different web browsers (and versions thereof), have some slight 
differences in the way they interpret and execute some commands. This must be kept in mind in 
the development and testing of your applications. In this course series, all codes were developed 
and tested with the Internet Explorer (version 10) web browser by Microsoft. It is the 
programmer’s responsibility to test that the codes will work as intended on other web browsers.  
 
6.8 Getting Help  
 
There is currently an abundance of help information on JavaScript, web page design, and 
HTML, particularly on the web. These include official (peer-reviewed) and unofficial sources, 
websites, academic work, professional presentations, tutorial videos (YouTube, etc.), user 
groups, online forums, downloadable code snippets, etc., etc. Typing a JavaScript topic in a 
search engine will typically yield hundreds if not thousands of results. It is strongly 
recommended that all codes developed be tested thoroughly before deployment.  
 
 
 
  

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 73 of 74 
 

 
7. CONCLUSION 

 
This course has presented a broad overview of fundamental concepts and principles of the 
JavaScript scripting language used for the development of web-based applications. The topics 
were presented with practical examples from situations encountered by practicing engineers and 
scientists.  
 
In this course the topics, conditional statements, message boxes and alerts, looping structures, 
JavaScript objects, and error handling were covered in detail. Examples from engineering and 
other fields were used to illustrate and demonstrate the concepts and methods learned in this 
class. Two mini-projects were used to demonstrate these programming concepts and methods in 
a real-life web application. 
 
This course has enabled participants to identify situations where web-based programming is 
relevant and will be of advantage to the practicing professional. Practitioners are strongly 
encouraged to look out for situations in their domains of expertise where web-based 
programming solutions are applicable and will be of benefit to their work and their organization.  
 
Web development as well as web-based programming require a careful and meticulous approach 
and can only be mastered and retained by practice and repetition.  
 
Good Luck and Happy Programming.  
   

192.pdf



 
Web-Based Programming For Engineers – Part 3 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2012 Kwabena Ofosu, Ph.D., P.E., PTOE Page 74 of 74 
 

REFERENCES 
 
ECMA International. (2011, June). Standard ECMA-262 ECMAScript Language Specification 

Edition 5.1. Retrieved March 26, 2014, from ECMA International: http://www.ecma-
international.org/publications/standards/Ecma-262.htm 

 
FunctionX Inc. (2011a). Hypertext Markup Language. Retrieved December 21, 2013, from 

FunctionX Tutorials: http://www.functionx.com/html/index.htm 
 
FunctionX Inc. (2011b). JavaScript Tutorial. Retrieved March 21, 2014, from FunctionX 

Tutorials: http://www.functionx.com/javascript/index.htm 
 
Microsoft. (2014a). Error Object (JavaScript). Retrieved May 5, 2014, from Microsoft 

Developer Network: http://msdn.microsoft.com/en-us/library/ie/dww52sbt(v=vs.94).aspx 
 
Microsoft. (2014b). JavaScript Functions. Retrieved April 1, 2014, from Microsoft Developer 

Network: http://msdn.microsoft.com/en-us/library/6fw3zxcx(v=vs.94).aspx 
 
Microsoft. (2014c). Special Charachters (JavaScript). Retrieved April 5, 2014, from Microsoft 

Developer Network: http://msdn.microsoft.com/en-us/library/2yfce773(v=vs.94).aspx 
 
Mozilla. (2014). Array-JavaScript. Retrieved May 1, 2014, from Mozilla Developer Network: 

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array 

 
quirksmode.org. (2014). JavaScript - Cookies. Retrieved May 1, 2014, from quirksmode.org: 

http://www.quirksmode.org/js/cookies.html 
 
w3schools.com. (2014a). JavaScript and HTML DOM Reference. Retrieved 5 5, 2014, from 

w3schools.com: http://www.w3schools.com/jsref/default.asp 
 
w3schools.com. (2014b). JavaScript Cookies. Retrieved May 1, 2014, from w3schools.com: 

http://www.w3schools.com/js/js_cookies.asp 
 
World Wide Web Consortium. (2014). HTML5. Retrieved Aprl 9, 2014, from World Wide Web 

Consotium (W3C): http://www.w3.org/TR/2014/CR-html5-20140204/ 
 
Images were all drawn/ prepared by K. Ofosu 

 

 

192.pdf


