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Contention Resolution in a Distributed System

Contention resolution  

Instance

Given  n  processes                 , each competing for access to a 
shared database. If two or more processes access the database 
simultaneously, all processes are locked out. 

Objective:

Devise a protocol to ensure all processes get through on a regular 
basis.

Restriction:  Processes cannot communicate.

Challenge.  Need symmetry-breaking paradigm.
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Contention Resolution:  Randomized Protocol

Protocol:  

Each process requests access to the database at time  t  with 
probability  p = 1/n.

Claim 

Let  S[i, t]  denote the event that process  i  succeeds in accessing 
the database at time  t.   Then 

Proof  

By independence,   

Setting  p = 1/n,  we have  
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value that maximizes Pr[S(i, t)]
between 1/e and 1/2
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Contention Resolution:  Randomized Protocol

Useful facts from calculus.  

As n increases from 2, the function:

– converges monotonically from 1/4 up to 1/e

– converges monotonically from 1/2 down to 1/e.

Claim

The probability that process  i  fails to access the database in
e⋅n  rounds is at most 1/e.    After e⋅n⋅(c ln n) rounds, the probability is 
at most     
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Contention Resolution:  Randomized Protocol

Proof  

Let  F[i, t]  be the event that process  i  fails to access database in 
rounds  1  through  t. By independence and previous claim, we have

– Choose  t = e ⋅ n:

– Choose  t = e ⋅ n c ln n:
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Contention Resolution:  Randomized Protocol

Claim 

The probability that  all processes succeed within  2e⋅n⋅ln n  rounds is 
at least  1 – 1/n.

Proof  

Let  F[t]   be the event that at least one of the  n  processes fails to 
access database in any of the rounds  1  through  t.

Union bound:   Given events  E1, …, En,

[ ] ( )t
en

n

i

n

i

ntiFtiFtF 1

11

1  ]],[Pr[  ],[Pr   ][Pr −≤≤







= ∑

==

U

union bound previous slide

∑
==

≤






 n

i

i

n

i

i EE

11

]Pr[  Pr U



10/24/2016

2

Algorithms – Randomization 21-7

Contention Resolution:  Randomized Protocol

Choosing  t = 2 en ln n yields  Pr[F[t]] ≤ n·n-2 = 1/n

QED
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Global Minimum Cut

Global min cut

Instance   

A connected, undirected graph G = (V, E) 

Objective   

Find a cut (A, B) of minimum cardinality.

Applications.  

Partitioning items in a database, identify clusters of related 
documents, network reliability, network design, circuit design, TSP 
solvers.
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Global Minimum Cut

Network flow solution: 

- Replace every edge  (u, v)  with two antiparallel edges  (u, v)  and  
(v, u).

- Pick some vertex  s  and compute min  s-v cut separating  s  from 
each other vertex  v ∈ V.

False intuition:  Global min-cut is harder than min s-t cut.
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Contraction Algorithm

Contraction algorithm ([Karger 1995]):
- Pick an edge  e = (u,v)  uniformly at random.
- Contract edge  e.

- replace  u and  v by single new super-node  w
- preserve edges, updating endpoints of  u  and  v  to  w
- keep parallel edges, but delete self-loops

- Repeat until graph has just two nodes      and 
- Return the cut  (all nodes that were contracted to form     ).
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Contraction Algorithm

Claim  

The contraction algorithm returns a min cut with probability 

Proof 

Consider a global min-cut  (A*, B*)  of  G. 

Let F* be edges with one endpoint in A* 

and the other in B*. Let k = |F*| = size of 

min cut.

In first step, algorithm contracts an edge in  F*  with probability  k/|E|.

Every node has degree  ≥ k  since otherwise  (A*, B*)  would not be 
min-cut.   ⇒ |E| ≥ ½kn.

Thus, algorithm contracts an edge in  F*  with probability  ≤ 2/n.
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Contraction Algorithm

Let  Ej be the event that an edge in  F*  is not contracted in iteration  j.
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Contraction Algorithm: Amplification

Amplification:  

To amplify the probability of success, run the contraction algorithm 
many times.

Claim.  

If we repeat the contraction algorithm  n2 ln n  times with independent 
random choices, the probability of failing to find the global min-cut is 
at most  1/n2.

Proof 

By independence, the probability of failure is at most
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Contraction Algorithm: The context

Remark:  

Overall running time is slow since we perform Θ(n2 log n) iterations 
and each takes Ω(m) time.

Improvement:  (Karger-Stein 1996)   O(n2 log3n).

– Early iterations are less risky than later ones: probability of 
contracting an edge in min cut hits 50% when  n / √2  nodes 
remain.

– Run contraction algorithm until  n / √2  nodes remain.

– Run contraction algorithm twice on resulting graph, and return 
best of two cuts. 

Extensions:    Naturally generalizes to handle positive weights.

Best known:    [Karger 2000]  O(m log3n)      
faster than best known max flow algorithm or
deterministic global min cut algorithm
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Expectation

Expectation.  

Given a discrete random variables X, its expectation E[X] is defined by:

Example

Waiting for a first success.  Coin turns up heads with probability  p  and 
tails with probability  1 – p .  How many independent flips  X  are 
needed until first heads?
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Expectation:  Two Properties

Lemma

If X is a 0/1 random variable,  E[X] = Pr[X = 1].

Proof

Linearity of expectation.  

Given two random variables X and Y defined over the same sample 
space, E[X + Y] = E[X] + E[Y]
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Guessing Cards

Game: Shuffle a deck of n cards; turn them over one at a time; try to 
guess each card.

Memoryless guessing:   No psychic abilities; cannot even remember 
what has been turned over already.  Guess a card from full deck 
uniformly at random.

Claim.  

The expected number of correct guesses is 1.

Proof

Let  Xi = 1  if  ith prediction is correct and  0  otherwise.

Let  X  be the number of correct guesses, i.e.  X1 + … + Xn.

E[Xi] =  Pr[Xi = 1]  =  1/n.

E[X]  =  E[X1]  +  …  +  E[Xn]  =  1/n + … + 1/n  =  1.

Algorithms – More Randomization 22-18

Guessing Cards (cntd)

Game: Shuffle a deck of n cards; turn them over one at a time; try to 
guess each card.

Guessing with memory: Guess a card uniformly at random from 
cards not yet seen.

Claim

The expected number of correct guesses is Θ(log n).

Proof

Let  Xi = 1  if  ith prediction is correct and  0  otherwise.

Let  X  be the number of correct guesses, i.e.   X1 + … + Xn.

E[Xi] = Pr[Xi = 1]  = 1 / (n - i - 1).

E[X]  = E[X1]  +  …  +  E[Xn]  =  1/n + … + 1/2 + 1/1 = H(n).  

ln(n+1) < H(n)  < 1 + ln n


