
10/24/2016

1

Algorithms – More Randomization 22-1

More Randomization

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms – Randomization 21-2

Contention Resolution in a Distributed System

Contention resolution

Instance

Given n processes , each competing for access to a
shared database. If two or more processes access the database
simultaneously, all processes are locked out.

Objective:

Devise a protocol to ensure all processes get through on a regular
basis.

Restriction: Processes cannot communicate.

Challenge. Need symmetry-breaking paradigm.

nPP ,,1 K

P1

P2

Pn

.

.

.

Algorithms – Randomization 21-3

Contention Resolution: Randomized Protocol

Protocol:

Each process requests access to the database at time t with
probability p = 1/n.

Claim

Let S[i, t] denote the event that process i succeeds in accessing
the database at time t. Then

Proof

By independence,

Setting p = 1/n, we have

n
tiS

ne 2

1
)],(Pr[

1
≤≤

⋅

1
)1()],(Pr[

−
−=

n
pptiS

111)1()],(Pr[−
−=

n

nn
tiS

process i requests access none of remaining n-1 processes request access

value that maximizes Pr[S(i, t)]
between 1/e and 1/2

Algorithms – Randomization 21-4

Contention Resolution: Randomized Protocol

Useful facts from calculus.

As n increases from 2, the function:

– converges monotonically from 1/4 up to 1/e

– converges monotonically from 1/2 down to 1/e.

Claim

The probability that process i fails to access the database in
e⋅n rounds is at most 1/e. After e⋅n⋅(c ln n) rounds, the probability is
at most

()n
n
11−

() 111
−

−
n

n

c
n

−

Algorithms – Randomization 21-5

Contention Resolution: Randomized Protocol

Proof

Let F[i, t] be the event that process i fails to access database in
rounds 1 through t. By independence and previous claim, we have

– Choose t = e ⋅ n:

– Choose t = e ⋅ n c ln n:

()t
en

tiF 11)],(Pr[−≤

()  ()
e

en

en

en

en
tiF 111 1 1)],(Pr[≤−≤−≤

() cnc

e
ntiF

−
=≤)],(Pr[

ln1

Algorithms – Randomization 21-6

Contention Resolution: Randomized Protocol

Claim

The probability that all processes succeed within 2e⋅n⋅ln n rounds is
at least 1 – 1/n.

Proof

Let F[t] be the event that at least one of the n processes fails to
access database in any of the rounds 1 through t.

Union bound: Given events E1, …, En,

[] ()t
en

n

i

n

i

ntiFtiFtF 1

11

1]],[Pr[],[Pr][Pr −≤≤







= ∑

==

U

union bound previous slide

∑
==

≤






 n

i

i

n

i

i EE

11

]Pr[Pr U

10/24/2016

2

Algorithms – Randomization 21-7

Contention Resolution: Randomized Protocol

Choosing t = 2 en ln n yields Pr[F[t]] ≤ n·n-2 = 1/n

QED

Algorithms – Randomization 21-8

Global Minimum Cut

Global min cut

Instance

A connected, undirected graph G = (V, E)

Objective

Find a cut (A, B) of minimum cardinality.

Applications.

Partitioning items in a database, identify clusters of related
documents, network reliability, network design, circuit design, TSP
solvers.

Algorithms – Randomization 21-9

Global Minimum Cut

Network flow solution:

- Replace every edge (u, v) with two antiparallel edges (u, v) and
(v, u).

- Pick some vertex s and compute min s-v cut separating s from
each other vertex v ∈ V.

False intuition: Global min-cut is harder than min s-t cut.

Algorithms – Randomization 21-10

Contraction Algorithm

Contraction algorithm ([Karger 1995]):
- Pick an edge e = (u,v) uniformly at random.
- Contract edge e.

- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops

- Repeat until graph has just two nodes and
- Return the cut (all nodes that were contracted to form).

1v

1v
2v

⇒contract u-v w

ca b

f

u v

a b c

e
f

d

Algorithms – Randomization 21-11

Contraction Algorithm

Claim

The contraction algorithm returns a min cut with probability

Proof

Consider a global min-cut (A*, B*) of G.

Let F* be edges with one endpoint in A*

and the other in B*. Let k = |F*| = size of

min cut.

In first step, algorithm contracts an edge in F* with probability k/|E|.

Every node has degree ≥ k since otherwise (A*, B*) would not be
min-cut. ⇒ |E| ≥ ½kn.

Thus, algorithm contracts an edge in F* with probability ≤ 2/n.

A* B*

F*

2
2

n
≥

Algorithms – Randomization 21-12

Contraction Algorithm

Let Ej be the event that an edge in F* is not contracted in iteration j.

()() ()()

()() ()()

2
2

)1(
2

3
1

4
2

1

32

3
2

4
2

1
22

321 21 21

 22 1

1111

]|[Pr]|[Pr][Pr

][Pr

n

nn

n

n

n

n

nn

nn

n

EEEEEEE

EEE

≥

=

=

−−−−≥

∩∩×××=

∩∩

−

−

−−

−

−−

−

L

L

LL

L

10/24/2016

3

Algorithms – Randomization 21-13

Contraction Algorithm: Amplification

Amplification:

To amplify the probability of success, run the contraction algorithm
many times.

Claim.

If we repeat the contraction algorithm n2 ln n times with independent
random choices, the probability of failing to find the global min-cut is
at most 1/n2.

Proof

By independence, the probability of failure is at most

()
2

ln21

ln2

2

ln

2

1

2
1

2
1

2

2
12

n
e

nn

n

n
nnn

=≤





















−=








−

−

(1 - 1/x)x ≤ 1/e

Algorithms – Randomization 21-14

Contraction Algorithm: The context

Remark:

Overall running time is slow since we perform Θ(n2 log n) iterations
and each takes Ω(m) time.

Improvement: (Karger-Stein 1996) O(n2 log3n).

– Early iterations are less risky than later ones: probability of
contracting an edge in min cut hits 50% when n / √2 nodes
remain.

– Run contraction algorithm until n / √2 nodes remain.

– Run contraction algorithm twice on resulting graph, and return
best of two cuts.

Extensions: Naturally generalizes to handle positive weights.

Best known: [Karger 2000] O(m log3n)
faster than best known max flow algorithm or
deterministic global min cut algorithm

Algorithms – More Randomization 22-15

Expectation

Expectation.

Given a discrete random variables X, its expectation E[X] is defined by:

Example

Waiting for a first success. Coin turns up heads with probability p and
tails with probability 1 – p . How many independent flips X are
needed until first heads?

∑
=

=⋅=
n

j

jj vXvXE

0

]Pr[][

pp

p

p

p

pj
p

p
ppjjXjXE

j

j

j

j

j

11

1

)1(
1

)1(]Pr[][

2

00

1

0

=
−

⋅
−

=

−
−

=−==⋅= ∑∑∑
∞

=

∞

=

−
∞

=

j-1 tails 1 head

Algorithms – More Randomization 22-16

Expectation: Two Properties

Lemma

If X is a 0/1 random variable, E[X] = Pr[X = 1].

Proof

Linearity of expectation.

Given two random variables X and Y defined over the same sample
space, E[X + Y] = E[X] + E[Y]

]1Pr[]Pr[]Pr[][
1

00

===⋅==⋅= ∑∑
==

XjXjvXvXE

j

n

j

jj

Algorithms – More Randomization 22-17

Guessing Cards

Game: Shuffle a deck of n cards; turn them over one at a time; try to
guess each card.

Memoryless guessing: No psychic abilities; cannot even remember
what has been turned over already. Guess a card from full deck
uniformly at random.

Claim.

The expected number of correct guesses is 1.

Proof

Let Xi = 1 if ith prediction is correct and 0 otherwise.

Let X be the number of correct guesses, i.e. X1 + … + Xn.

E[Xi] = Pr[Xi = 1] = 1/n.

E[X] = E[X1] + … + E[Xn] = 1/n + … + 1/n = 1.

Algorithms – More Randomization 22-18

Guessing Cards (cntd)

Game: Shuffle a deck of n cards; turn them over one at a time; try to
guess each card.

Guessing with memory: Guess a card uniformly at random from
cards not yet seen.

Claim

The expected number of correct guesses is Θ(log n).

Proof

Let Xi = 1 if ith prediction is correct and 0 otherwise.

Let X be the number of correct guesses, i.e. X1 + … + Xn.

E[Xi] = Pr[Xi = 1] = 1 / (n - i - 1).

E[X] = E[X1] + … + E[Xn] = 1/n + … + 1/2 + 1/1 = H(n).

ln(n+1) < H(n) < 1 + ln n

