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Contention Resolution in a Distributed System

Contention resolution
Instance

Given n processes B,...,F,, each competing for access to a
shared database. If two or more processes access the database
simultaneously, all processes are locked out.

Objective:

Devise a protocol to ensure all processes get through on a regular
basis.

Restriction: Processes cannot communicate. P,

\
Challenge. Need symmetry-breaking paradigm. /
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Contention Resolution: Randomized Protocol

Protocol:
Each process requests access to the database at time t with
probability p = 1/n.

Claim

Let SJi, t] denote the event that process i succeeds in accessing
the database at time t. Then

L <Pr[S(,0)] Si
e-n 2n

Proof process i requests access none of remaining n-1 processes request access
By independence, Pr[S(i,1)]=p(1— p)"
Setting p=1/n, we have Pr[SGi,1)]=L(1-1)""

.

—

value that maximizes Pr[S(i, t)] between 1le and 112
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Contention Resolution: Randomized Protocol

Useful facts from calculus.
As n increases from 2, the function:
- (1—%)" converges monotonically from 1/4 up to 1/e
- (I—TI,TH converges monotonically from 1/2 down to 1/e.

Claim
The probability that process i fails to access the database in
en rounds is at most 1/e.  After e:n-(c In n) rounds, the probability is
atmost n~¢
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Contention Resolution: Randomized Protocol

Proof

Let F[i, t] be the event that process i fails to access database in
rounds 1 through t. By independence and previous claim, we have

P[F (0] (1-Lf
- Choose t=[e-nl: Pr[F(,‘,t)Jg(1_71n)reﬂ3(1_%")"” <

1
e

- Choose t=le-nIlchnl  PrF(nI<()™ =n~
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Contention Resolution: Randomized Protocol

Claim

The probability that all processes succeed within 2e-n-In n rounds is
atleast 1-1/n.

Proof

Let F[t] be the event that at least one of the n processes fails to
access database in any of the rounds 1 through t.

PiFI1]] = P{O F{i,t]} < iPr[F[i,t I<nll-L)

i=1 i=1

union bound previous slide

n n
Union bound: Given events E,, ..., E,, P{U El <> PrlE]
=l il
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Contention Resolution: Randomized Protocol

Choosing t=2[enl[InnT yields PrF[] <n-n2=1/n
QED
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Global Minimum Cut
Global min cut
Instance
A connected, undirected graph G = (V, E)
Objective

Find a cut (A, B) of minimum cardinality.

Applications.
Partitioning items in a database, identify clusters of related
documents, network reliability, network design, circuit design, TSP
solvers.
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Global Minimum Cut

Network flow solution:
- Replace every edge (u, v) with two antiparallel edges (u, v) and
(v, u).
- Pick some vertex s and compute min s-v cut separating s from
each other vertex ve V.

False intuition: Global min-cut is harder than min s-t cut.
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Contraction Algorithm

Contraction algorithm ([Karger 1995]):

- Pick an edge e =(u,v) uniformly at random.

- Contract edge e.
- replace uand v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops

- Repeat until graph has just two nodes v, and v,

- Return the cut (all nodes that were contracted to form v, ).

O W
e = s
© 1
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Contraction Algorithm

Claim
The contraction algorithm returns a min cut with probability > 2
n

Proof
Consider a global min-cut (A*, B*) of G. A e
Let F* be edges with one endpoint in A* ><
and the other in B*. Let k = |F*| = size of
min cut. F

In first step, algorithm contracts an edge in F* with probability k/|E|.
Every node has degree >k since otherwise (A*, B¥) would not be
min-cut. = |E|> "kn.

Thus, algorithm contracts an edge in F* with probability < 2/n.

Algorithms — Randomization 2112

Contraction Algorithm

Let E; be the event that an edge in F* is not contracted in iteration j.

PH{E, NEy-NE,; ]
=PHE||XPHE, IE|] X---XPHE,_, | EENEy-NE,_3]
2(1=20-2)-0-301-3)
=006
)

2
n’

v
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Contraction Algorithm: Amplification

Amplification:

To amplify the probability of success, run the contraction algorithm
many times.

Claim.

If we repeat the contraction algorithm n2Inn times with independent
random choices, the probability of failing to find the global min-cut is
atmost 1/n2

Proof
By independence, the probability of failure is at most

2nzlnn 2%712 2Inn I 1
1-= =||1-= <)==
3 e T

(1- 1 < 1le
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Contraction Algorithm: The context
Remark:
Overall running time is slow since we perform ®(n?log n) iterations
and each takes Q(m) time.
Improvement: (Karger-Stein 1996) O(n? log®n).
- Early iterations are less risky than later ones: probability of

contracting an edge in min cut hits 50% when n/~2 nodes
remain.

— Run contraction algorithm until n/~2 nodes remain.
- Run contraction algorithm twice on resulting graph, and return
best of two cuts.
Extensions: Naturally generalizes to handle positive weights.
Best known:  [Karger 2000] O(m log®n)

faster than best known max flow algorithm or
deterministic global min cut algorithm
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Expectation

Expectation.
Given a discrete random variables X, its expectation E[X] is defined by:

n
E[X]=) v; PrX =v;]
j=0
Example
Waiting for a first success. Coin turns up heads with probability p and
tails with probability 1-p . How many independent flips X are
needed until first heads?

EIX[=). jPrX = j1=Y j1-p) ™ p =L 3 ja-p)
=0 =0 I-p3
P 1=p

1-p p2

— j-1tails 1 head

S =
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Expectation: Two Properties

Lemma
If Xis a 0/1 random variable, E[X] = Pr[X =1].
Proof

n 1
E[X]=)v;Pr[X =v;]=) jPr[X = jl=Pr[X =1]
Jj=0 Jj=0

Linearity of expectation.

Given two random variables X and Y defined over the same sample
space, E[X + Y] = E[X] + E[Y]
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Guessing Cards

Game:  Shuffle a deck of n cards; turn them over one at a time; try to
guess each card.

Memoryless guessing:  No psychic abilities; cannot even remember
what has been turned over already. Guess a card from full deck
uniformly at random.

Claim.
The expected number of correct guesses is 1.
Proof
Let X;=1 if i" prediction is correctand 0 otherwise.
Let X be the number of correct guesses, i.e. X;+...+X,.
E[X]= Pr[X;=1] = 1/n.
E[X] = E[X;] + ... + E[X]] = 1n+ ... +1n =1
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Guessing Cards (cntd)

Game:  Shuffle a deck of n cards; turn them over one at a time; try to
guess each card.

Guessing with memory:  Guess a card uniformly at random from
cards not yet seen.
Claim
The expected number of correct guesses is ®(log n).
Proof
Let X, =1 if i prediction is correctand 0 otherwise.
Let X be the number of correct guesses, i.e. X;+...+X.
E[X]=PriX;=1] =1/(n-i-1).
E[X] =E[X,] + ... + E[X,] = 1n+...+12+1/1=H(n).

In(n+1) <H(n) <1+Inn




