Algorithms - More Randomization

More Randomization

Design and Analysis of Algorithms Andrei Bulatov Algorithms - Randomization

Contention Resolution in a Distributed System

Contention resolution

Instance

Given n processes P_1,\ldots,P_n , each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out.

Devise a protocol to ensure all processes get through on a regular

Restriction: Processes cannot communicate. Challenge. Need symmetry-breaking paradigm.

Algorithms - Randomization

Contention Resolution: Randomized Protocol

Each process requests access to the database at time t with probability p = 1/n.

Let S[i, t] denote the event that process i succeeds in accessing the database at time t. Then

$$\frac{1}{e \cdot n} \le \Pr[S(i,t)] \le \frac{1}{2n}$$

Proof

By independence, $Pr[S(i,t)] = p(1-p)^{n-1}$

Setting p = 1/n, we have $Pr[S(i,t)] = \frac{1}{n}(1-\frac{1}{n})^{n-1}$

value that maximizes Pr[S(i, t)]

Algorithms - Randomization

Contention Resolution: Randomized Protocol

Useful facts from calculus.

As n increases from 2, the function:

 $-\left(1-\frac{1}{n}\right)^n \text{ converges monotonically from 1/4 up to 1/e} \\ -\left(1-\frac{1}{n}\right)^{n-1} \text{ converges monotonically from 1/2 down to 1/e}.$

Claim

The probability that process i fails to access the database in e-n rounds is at most 1/e. After e-n-(c ln n) rounds, the probability is at most $n^{-\epsilon}$

Algorithms - Randomization

Contention Resolution: Randomized Protocol

Let F[i, t] be the event that process i fails to access database in rounds 1 through t. By independence and previous claim, we have $\Pr[F(i,t)] \leq \left(1 - \frac{1}{an}\right)^t$

- Choose $t = [e \cdot n]$: $\Pr[F(i,t)] \le (1 \frac{1}{en})^{[en]} \le (1 \frac{1}{en})^{[en]} \le \frac{1}{e}$
- Choose $t = \lceil e \cdot n \rceil \lceil c \ln n \rceil$: $\Pr[F(i,t)] \le \left(\frac{1}{a}\right)^{c \ln n} = n^{-c}$

Algorithms - Randomization

Contention Resolution: Randomized Protocol

The probability that all processes succeed within 2e·n·ln n rounds is at least 1 – 1/n.

Let F[t] be the event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i,t]\right] \le \sum_{i=1}^{n} \Pr[F[i,t]] \le n\left(1 - \frac{1}{en}\right)^{n}$$

Union bound: Given events $E_1, ..., E_n$, $Pr\left[\sum_{i=1}^n E_i\right] \le \sum_{j=1}^n Pr[E_i]$

Algorithms - Randomization

21-7

Contention Resolution: Randomized Protocol

Choosing $t = 2 \lceil en \rceil \lceil \ln n \rceil$ yields $Pr[F[t]] \le n \cdot n^{-2} = 1/n$

QED

Algorithms - Randomization

Global Minimum Cut

Global min cut

Instance

A connected, undirected graph G = (V, E)

Objective

Find a cut (A, B) of minimum cardinality.

Applications.

Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Algorithms - Randomization

s - Randomization

Global Minimum Cut

Network flow solution:

- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min s-v cut separating s from each other vertex $v \in V$.

False intuition: Global min-cut is harder than min s-t cut.

Algorithms - Randomization

Contraction Algorithm

Contraction algorithm ([Karger 1995]):

- Pick an edge e = (u,v) uniformly at random.
- Contract edge e.
 - replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_2
- Return the cut (all nodes that were contracted to form v_1).

Algorithms - Randomization

in.

Contraction Algorithm

Claim

The contraction algorithm returns a min cut with probability $\geq \frac{2}{2}$

Proof

Consider a global min-cut (A^*, B^*) of G. Let F^* be edges with one endpoint in A^* and the other in B^* . Let $k = |F^*| = \text{size}$ of min cut

In first step, algorithm contracts an edge in F^* with probability k/|E|. Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be min-cut. $\Rightarrow |E| \geq \frac{1}{2}kn$.

Thus, algorithm contracts an edge in F^* with probability $\leq 2/n$.

Algorithms - Randomization

Contraction Algorithm

Let E_i be the event that an edge in F^* is not contracted in iteration j.

$$\begin{split} & \Pr[E_1 \cap E_2 \cdots \cap E_{n-2} \] \\ & = \Pr[E_1] \times \Pr[E_2 \ | E_1] \times \cdots \times \Pr[E_{n-2} \ | E_1 \cap E_2 \cdots \cap E_{n-3}] \\ & \geq \left(1 - \frac{2}{n} \left| 1 - \frac{2}{n-1} \right| \cdot \cdot \left(1 - \frac{2}{4} \right) \left| 1 - \frac{2}{3} \right) \\ & = \left(\frac{n-2}{n} \left| \frac{n-3}{n-1} \right| \cdot \cdot \cdot \left(\frac{2}{4} \right) \left| \frac{1}{3} \right) \\ & = \frac{2}{n(n-1)} \\ & \geq \frac{2}{n^2} \end{split}$$

Algorithms - Randomization

To amplify the probability of success, run the contraction algorithm

If we repeat the contraction algorithm n2 ln n times with independent

random choices, the probability of failing to find the global min-cut is

Contraction Algorithm: The context

Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Algorithms - Randomization

Improvement: (Karger-Stein 1996) O(n² log³n).

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $\ n\,/\,\sqrt{2}\ nodes$
- Run contraction algorithm until n / √2 nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts

Extensions: Naturally generalizes to handle positive weights.

Best known: [Karger 2000] O(m log3n)

faster than best known max flow algorithm or deterministic global min cut algorithm

Contraction Algorithm: Amplification

Claim.

many times.

By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2}n^2}\right]^{2 \ln n} \le \left(e^{-1}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$(1 - 1/x)^x \le 1/e$$

Algorithms - More Randomization

Expectation

Expectation.

Given a discrete random variables X, its expectation E[X] is defined by:

$$E[X] = \sum_{i=0}^{n} v_j \cdot \Pr[X = v_j]$$

Example

Waiting for a first success. Coin turns up heads with probability p and tails with probability 1-p. How many independent flips $\, X \,$ are needed until first heads?

$$\begin{split} E[X] = & \sum_{j=0}^{\infty} j \cdot \Pr[X=j] = \sum_{j=0}^{\infty} j (1-p)^{j-1} p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^{j} \\ = & \frac{p}{1-p} \cdot \frac{1-p}{p^2} = \frac{1}{p} \end{split} \quad \text{j-1 tails 1 head}$$

Algorithms - More Randomization

Expectation: Two Properties

If X is a 0/1 random variable, E[X] = Pr[X = 1].

Proof

$$E[X] = \sum_{j=0}^{n} v_j \cdot \Pr[X = v_j] = \sum_{j=0}^{1} j \cdot \Pr[X = j] = \Pr[X = 1]$$

Linearity of expectation.

Given two random variables X and Y defined over the same sample space, E[X + Y] = E[X] + E[Y]

Algorithms - More Randomization

Guessing Cards

Game: Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing: No psychic abilities; cannot even remember what has been turned over already. Guess a card from full deck uniformly at random.

Claim.

The expected number of correct guesses is 1.

Proof

Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.

Let X be the number of correct guesses, i.e. $X_1 + ... + X_n$.

$$E[X_i] = Pr[X_i = 1] = 1/n.$$

$$\mathsf{E}[\mathsf{X}] \; = \; \mathsf{E}[\mathsf{X}_1] \; + \; \dots \; + \; \mathsf{E}[\mathsf{X}_n] \; = \; 1/n + \dots + 1/n \; = \; 1.$$

Algorithms - More Randomization

Guessing Cards (cntd)

Game: Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory: Guess a card uniformly at random from cards not yet seen.

Claim

The expected number of correct guesses is $\Theta(\log n)$.

Proof

Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.

Let X be the number of correct guesses, i.e. $X_1 + ... + X_n$.

$$E[X_i] = Pr[X_i = 1] = 1 / (n - i - 1).$$

$$E[X] = E[X_1] + ... + E[X_n] = 1/n + ... + 1/2 + 1/1 = H(n).$$

ln(n+1) < H(n) < 1 + ln n