Airline Scheduling

Design and Analysis of Algorithms

Andrei Bulatov

An airline carrier wants to serve certain set of flights Example:

```
Boston (6 am) - Washington DC (7 am), San Francisco (2:15pm) - Seattle (3:15pm) Philadelphia (7 am) - Pittsburg (8 am), Las Vegas (5 pm) - Seattle (6 pm) Washington DC (8 am) – Los Angeles (11 am) Philadelphia (11 am) - San Francisco (2 pm)
```

The same plane can be used for flight i and for flight j if

- the destination of i is the same as origin of j and there is enough time for maintenance (say, 1 hour)
- a flight can be added in between that gets the plane from the destination of i to the origin of j with adequate time in between

Formalism

Boston (6 am) - Washington DC (7 am), Philadelphia (7 am) - Pittsburg (8 am), Washington DC (8 am) – Los Angeles (11 am),

Philadelphia (11 am) - San Francisco (2 pm) San Francisco (2:15pm) - Seattle (3:15pm) Las Vegas (5 pm) - Seattle (6 pm)

Flight j is reachable from flight i if it is possible to use the same plane for flight i, and then later for flight j as well.

(or we can use a different set of rules, it does not matter)

The Airline Scheduling Problem

Instance:

A set of flights to serve, and a set of pairs of reachable flights, the allowed number k of planes

Objective:

Is it possible to serve the required flights with k planes

The Idea

Each airplane is represented by a unit of flow

The required flights (arcs) have lower bound 1, and capacity 1

If (u_i, v_i) and (u_j, v_j) are arcs representing required flights i and j, and j is reachable from i, then there is an arc connecting v_i to u_j ; we assign this arc capacity 1

Extend the network by adding an external source and sink

Construction

- For each required flight i, the graph G has two nodes u_i and v_i
- G also has a distinct source s and a sink t
- For each i, there is an arc (u_i, v_i) with a lower bound 1 and capacity 1
- For each i and j such that flight j is reachable from flight i, there is an arc (v_i, u_j) with a lower bound 0 and a capacity 1
- For each i there is an arc (s, u_i) with a lower bound 0 and a capacity 1
- For each i there is an arc (v_i,t) with a lower bound 0 and a capacity 1
- There is an arc (s,t) with lower bound 0 and capacity k
- The node s has demand -k, and node t has demand k

Theorem

There is a way to perform all flights using at most k planes if and only if there is a feasible circulation in the network G.

Proof

DIY

Image Segmentation

Design and Analysis of Algorithms

Andrei Bulatov

Image Segmentation

The general problem is to separate objects on a digital image We have pixels and have to decide, which object each pixel belongs to The problem we solve:

decide whether a pixel belongs to the background or foreground The decision, where a given pixel belongs to is made taking into account its neighbors

Usually, pixels are arranged in a grid
But our model will allow any other configuration

Image Segmentation: Framework

We construct an undirected graph G = (V,E) where V is the set of pixels, and E is the neighborhood relation

For every pixel i there are associated likelihood a_i that it belongs to the foreground, and likelihood b_i that it belongs to the background

The likelihoods can be any non-negative numbers

For a pixel i we tend to label it as a foreground pixel if $a_i > b_i$ and as a background pixel otherwise

However, the label also depends on labels of its neighbors

It is regulated by a separation penalty $p_{ij} \ge 0$ for one of i and j in the foreground, and the other in the background

The Image Segmentation Problem

Instance:

A set of pixels with likelihoods and separation penalties Objective:

Find an optimal labeling, that is, a partition of the set of pixels into sets A and B (foreground and background) so as to maximize

$$q(A,B) = \sum_{i \in A} a_i + \sum_{i \in B} b_i - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

Algorithm Ideas

Observe that the problem is similar to finding a minimal cut Difficulties:

- (1) Need to maximize, rather than minimize
- (2) No source and sink
- (3) Have to deal with values assigned to vertices
- (4) The graph is undirected

Algorithm Ideas (cntd)

(1) Need to maximize, rather than minimize

Let
$$Q = \sum_{i} (a_i + b_i)$$

Then
$$\sum_{i \in A} a_i + \sum_{i \in B} b_i = Q - \sum_{i \in A} b_i - \sum_{i \in B} a_i$$

So
$$q(A,B) = Q - \sum_{i \in A} b_i - \sum_{i \in B} a_i - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

Thus instead of maximizing q(A,B) we can minimize

$$q'(A,B) = \sum_{i \in A} b_i + \sum_{i \in B} a_i + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

Algorithm Ideas (cntd)

(2) No source and sink

Add an external source, s, and sink, t

(3) Have to deal with values assigned to vertices

We use the external source and sink Assign capacity a_i to edges (s,i), and capacity b_i to edges (i,t)

Algorithm Ideas (cntd)

(4) The graph is undirected

Replace each undirected edge with two directed arcs and assign capacity p_{ij} to both

Cuts vs. Segmentation

A cut $(A \cup \{s\}, B \cup \{t\})$ corresponds to partition (A,B) of the original graph

The capacity c(A,B) is contributed by

- edges (s,j), where $j \in B$; this edge contributes a_i
- edges (i,t), where $i \in A$; this edge contributes b_i
- edges (i,j), where $i \in A$ and $j \in B$; this edge contributes p_{ij}

The Result

Theorem

The solution to the Segmentation Problem can be obtained by a minimum-cut algorithm in the graph G' constructed above. For a minimum cut (A',B'), the partition (A,B) obtained by deleting s and t maximizes the segmentation value q(A,B)