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Abstract

Recent use of Electronic Medical Records in the hospitals has raised many

privacy concerns regarding confidential patient information which can be

accessed by various users in the hospital’s complex and dynamic environment.

There has been considerable success in developing strategies to detect insider

threats in healthcare information systems based on what one might call the

random object access model or ROA. This approach models illegitimate users

who randomly access records. The goal is to use statistics, machine learning,

knowledge of hospital workflows and other techniques to support an anomaly

detection framework that finds such users.

In this work we introduce and study a random topic access model, RTA,

aimed at the users whose access may well be illegitimate but is not fully ran-

dom because it is focused on common hospital themes. We argue that this

model is appropriate for a meaningful range of attacks and develop a system

based on topic summarization that is able to formalize the model and provide

anomalous user detection for it. We also propose a framework for evaluating

the ability to recognize various types of random users called random topic

access detection, or RTAD. The proposed RTAD framework is an unsuper-

vised detection model which is a combination of Latent Dirichlet Allocation

(LDA), for feature extraction, and a k-nearest neighbor (k-NN) algorithm

for outlier detection. The analysis is done on the dataset from Northwestern

Memorial Hospital which consists of over 5 million accesses made by 8000

users to 14,000 patients in a four month time period. Our results show vary-

ing degrees of success based on user roles and the anticipated characteristics

of attackers and evaluate the ability to identify different adversarial types

relevant to the hospital ecosystem.

ii



To my parents, for their love and support.

iii



Acknowledgments

I would like to thank many people who have helped me through the comple-

tion of this thesis. First and foremost, my advisor Professor Carl A. Gunter

whose patience and kindness, as well as his academic experience, have been

invaluable to me. Only under his guidance, I was introduced to the current

challenges in HIT which further motivated me to work in this field. I am also

extremely grateful to Professor Bradley Malin from Vanderbilt University,

David M. Liebovitz from NMH, Casey Hanson from UIUC and Mario Frank

from UC Berkeley for being wonderful collaborators. I cherish the oppor-

tunity to learn from them and gain important insights during our weekly

discussions and project meetings.

I wish to thank my parents for their unconditional love, concern, support

and strength throughout my life. It would have been impossible for me to

have successfully made so far without their blessings. In addition, I have also

been lucky to have the love of my relatives and cousins all this time. Special

thanks to my aunt Achla Marathe for always being my closest guide and a

well-wisher. Also, the love of my grandparents has inspired me to push my

boundaries and make them proud.

I have enjoyed working with my teammates and also made great friends

along the way. I am lucky to have Casey as a friend, colleague and co-

author, Ting Wu for providing me strength and company during my times of

stress. Fardin Abdi, Mariyam Khalid, Nikita Spirin and Siavash Bolourani

for inspiring and guiding me to the right path in the time of ambiguities. Last

but not the least, special thanks to my best friends Rajat Singhal, Shivin

Kinra, Deepali Singh and Somya Aggarwal for being my companions in this

journey.

This research was supported by grant HHS-90TR0003/01 from the ONC.

iv



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction and Overview . . . . . . . . . . . . . . . . . . 1
1.1 Overview of Electronic Medical Record . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Approach to the Problem . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure of This Thesis . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Background and Related Work . . . . . . . . . . . . . . . . 9
2.1 Clinical Terminologies . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Random Object Access Model . . . . . . . . . . . . . . . . . . 11
2.3 Masquerading User Model . . . . . . . . . . . . . . . . . . . . 13
2.4 Process Mining Model . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 3 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Data Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 4 Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Latent Dirichilet Allocation . . . . . . . . . . . . . . . . . . . 23
4.2 Perplexity Measure . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 User Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Topic Summarization . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Multidimensional Scaling . . . . . . . . . . . . . . . . . . . . . 31

Chapter 5 Anomaly Detection Model . . . . . . . . . . . . . . . . . . 35
5.1 k-Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Random Topic Access Model . . . . . . . . . . . . . . . . . . . 36

v



Chapter 6 Experimental Results and Evaluation . . . . . . . . . . . . 41
6.1 Role Description . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Simulating Directed or Masquerading User . . . . . . . . . . . 43
6.3 Simulating Pure Random User . . . . . . . . . . . . . . . . . . 44
6.4 Simulating Indirect User . . . . . . . . . . . . . . . . . . . . . 47
6.5 Summary of the Analysis . . . . . . . . . . . . . . . . . . . . . 47

Chapter 7 Conclusions and Future Scope . . . . . . . . . . . . . . . . 50

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vi



List of Tables

3.1 Summarized NMH Audit Log Statistics . . . . . . . . . . . . . 18
3.2 Summarized NMH User-Patient Statistics . . . . . . . . . . . 19
3.3 NMH summarized EMR: Top 10 for each Dimension . . . . . . 20

4.1 Topic Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



List of Figures

1.1 Mock EMR of a Patient . . . . . . . . . . . . . . . . . . . . . 2

3.1 Mock Log Table of User Accesses for Service and Location . . 17
3.2 Mock EMR Table of Patients for Diagnosis and Procedure . . 17
3.3 NMH Audit Log Access Summarization . . . . . . . . . . . . . 21

4.1 Graphical Model for Latent Dirichlet Allocation (LDA) [1]. . . 25
4.2 Perplexity Measure for Procedure . . . . . . . . . . . . . . . . 27
4.3 Summarized Topics for Diagnosis . . . . . . . . . . . . . . . . 31
4.4 Summarized Topics for Procedures . . . . . . . . . . . . . . . 31
4.5 Summarized Topics for Medications . . . . . . . . . . . . . . . 32
4.6 Summarized Topics for Service/Locations . . . . . . . . . . . . 33
4.7 User Typing Visualization for Diagnosis . . . . . . . . . . . . . 34

5.1 Density Plots for Dirichlet Distribution α > 1, α < 1, α = 1 . 38
5.2 Injected Directed Users for α < 1 . . . . . . . . . . . . . . . . 39
5.3 Injected Completely Random Users for α = 1 . . . . . . . . . 40
5.4 Injected Indirect Users for α > 1 . . . . . . . . . . . . . . . . . 40

6.1 NMH Resident Fellow CPOE (mixed topics) . . . . . . . . . . 42
6.2 Directed User (α=0.01) . . . . . . . . . . . . . . . . . . . . . . 44
6.3 AUC Across all Users for α = 0.01 . . . . . . . . . . . . . . . 45
6.4 Pure Random User (α=1) . . . . . . . . . . . . . . . . . . . . 46
6.5 AUC across all users for α=1 and α=100 . . . . . . . . . . . 46
6.6 Indirect User (α=100) . . . . . . . . . . . . . . . . . . . . . . 46
6.7 The best AUC across all evaluated dimensions is plotted

for each role performing badly for α > 1. . . . . . . . . . . . . 48
6.8 The best AUC across all evaluated dimensions is plotted

for each role performing well or near average for α > 1. . . . . 49

viii



List of Abbreviations

CDC Centers for Disease Control and Prevention

EHR Electronic Health Record

EMR Electronic Medical Record

HHS Health and Human Services

HIPAA Health Insurance Portability and Accountability Act

HIT Health Information Technology

ICD-9 International Classification of Diseases, Ninth Revision

ICD-9-CM International Classification of Diseases, Ninth Revision,
Clinical Modification

KNN K-Nearest Neighbor

LDA Latent Dirichlet Allocation

MDS Multi Dimensional Scaling

NIH National Institutes of Health

NLM National Library of Medicine

NMH Northwestern Memorial Hospital

NSF National Science Foundation

ONC Office of the National Coordinator

ROA Random Object Access

RTAD Random Topic Access Model

UMLS Unified Medical Language System

ix



Chapter 1

Introduction and Overview

Healthcare Information Technology is suffering because of lack of relevant

data mining and information retrieval techniques to assist patient care. While

many factors have been implicated in causing this issue, a lack of proper

security measures looms largest. Despite the recent legislative efforts such

as the HIPAA privacy rule [2] to legally mandate the protection of private

healthcare information, issues still persist regarding patient privacy. These

problems do not stem from the lack of awareness, but rather a lack of effective

practical solutions. This paper aims to address one of the distinct challenges

in implementing effective healthcare security measures: detecting anomalous

activity. This central challenge, as well as some of the other mitigating

problems plaguing the industry, is discussed in further detail in 1.2. However,

to first provide a solid contextual understanding of the problem statement, an

introduction into the basics of healthcare workflow dynamics and information

architecture is provided in section 1.1. The section 1.2 refines the initial

motivation and focuses the analysis on a specific component of the issues

in healthcare security. A novel solution to this specific issue is described in

section 1.3 and section 1.4 outlines the organization of this logic. 1

1.1 Overview of Electronic Medical Record

The authors in [4] define EMR as an application environment composed of the

clinical data repository, clinical decision support, controlled medical vocabu-

lary, order entry, computerized provider order entry, pharmacy, and clinical

documentation applications. This environment is used by many healthcare

practitioners to document and monitor patient’s electronic medical record

1The key contribution of this thesis will appear in “Proceedings of IEEE International
Conference on Intelligence and Security Informatics, 2013” [3].
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Electronic Medical Record 

 

 

 

 

 

 

Patient Name :  Anonymous                                                       CURRENT  DRUG  HISTPORT 

I.D. No.          :  442.0998728                                                   

 

Recent Diagnosis :   Hypertension,  Type II  

Diabetes , Unspecified Hypothyroidism                                                                              

 

Recent Procedures performed: manually  

assisted delivery , Medical induction of labor 

 

Drugs Available for Diagnostic  Profile :                                

Aspirin, Oxytocin, Cefazolin                                                 

 

Patient Location : Prentice 13 

 

Patient Service: Obstetrics 

                                                                              

 

Consultant : Anonymous 

Role : NMH Physician-CPOE 

 

Last prescribed drugs: 

 

DRUG                                     DOSE 

Becotide 250                         2/day 

Ampicillin                              1/day 

 

Drug Allergies :  None 

 

Patient Notes: [04/20/2013] 

This patient was admitted on 04/10/2013 in the 

emergency department because of severe labor 

pain. She has been diagnosed with hypertension 

and was operated for manually assisted delivery 

on 04/15/2013. She is more stable and healthy 

now. Her recent prescription of drugs has been 

changed because she is recovering fast. I 

recommend taking her X rays and radiology test 

by today evening.  

 

   

 

 

 

 

 

 

 

 

Figure 1.1: Mock EMR of a Patient

which may consist of diagnosis of the patient in an encounter, procedures

operated on him, medication history, his location and services during the

hospital stay etc. One main advantage of such a system is an ease of commu-

nication between the clinicians in different departments (i.e., nurses, physical

therapists, and respiratory therapists) in the hospital for managing effective

patient care. However, [4] further differentiates EHR from EMR. An EHR on

the other hand is a subset of each care delivery organizations EMR, presently

assumed to be summaries like ASTM’s Continuity of Care Record (CCR) or

HL7’s Continuity of Care Document (CCD), is owned by the patient and has

patient input and access that spans episodes of care across multiple CDOs

within a community, region, or state (or in some countries, the entire coun-

try). An EMR is also used to provide documentation that a patient was seen

or a test was performed so that the clinician can obtain reimbursement by

an insurance company or government agency [5].

Figure 1.1 shows a sample EMR of a patient in any hospital. The Figure

shows the medical record of an anonymous patient in the hospital and her

health history. The record shows the patient was admitted on 04/10/2013
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under severe labor pain. She was diagnosed with hypertension and later went

through manually assisted delivery. The contents of the notes are taken by

different clinicians accessing the EMR for patient care. This medical record

may store very confidential information about a patient. There are several

clinicians constantly accessing these EMR systems which give rise to many

privacy concerns related to patient data being compromised. The authors

in [6] discuss similar privacy and security considerations of medical records

from being exploited by external harmful entities.

1.2 Problem Statement

Though many systems claim to implement role based access control but be-

cause of the dynamic nature of healthcare environment, it is more likely that

these roles will break their access privileges in the case of emergency situa-

tions. In such cases, there is a potential threat to the patient information

if the access is made because of some prior hidden motive. The lack of ex-

perience based access control [7] is one of the major security drawbacks in

such systems. The condition is going to be worse when we have genomic

data available in each patient’s EMR. Imagine some curious users trying to

access an EMR of a celebrity, an employer accessing EMR of an employee

he wants to hire to assess his personality or even a girl seeking an EMR of

the boy to approve marriage. Just by looking at the EMR anyone will be

able to confirm the patient’s health prospects, intelligence and family health

history. Lack of publicly available data constraints the researchers to carry

out any consequential research in the field of healthcare. In the hospital envi-

ronment, access control is almost completely dominated by usability. Under

no circumstances should an employee be denied access to resources that are

critical to patient health. Also, the work load and the employment costs of

health specialists are so large that it is economically inefficient to install time-

consuming security measures. Therefore, the enforcement of access control

policies is often very weak. To achieve compliance, all accesses to resources

are logged in audit logs such that i) fraud can be detected in the future and

ii) knowing that access is being tracked, employees comply in the presence.

The main problem with this approach is that the sheer amount of data that

is being saved exceeds what a human can manually overlook. This situation
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demands for automatic or semi-automatic approaches to analyze audit logs.

1.2.1 Summary of the Main Challenges

Let us summarize our discussion in 1.1 and 1.2 pertaining to the existing

limitations of the security measures in the current EMR systems and lack of

relevant mining techniques for automated patient care. Some of the major

challenges in the present systems are as follows:

1. The current systems are based on Role Based Access Control where

access is granted based on the roles of the clinicians accessing the med-

ical record. But, healthcare is a dynamic and collaborative environ-

ment where the role privileges might need to be changed in the case of

emergency situations. These systems are unable to detect unexplained

accesses made by the clinicians in such an environment.

2. There are millions of access logs which get generated by the clinicians

accessing patient medical records in short amount of time. There is a

need to build high end auditing tools to analyze these huge access log

dataset to learn and infer the characteristics of the clinicians based on

their accesses to the patients.

3. There is no inference on the patient and clinician relationship based

on the accesses made by these entities to the patients throughout the

encounter. There is lack of data mining in place to mine such informa-

tion and use it for patient care and security.

4. Current research in the field of EMR security does not focus on de-

tection methods pertaining to flag clinicians having non-random but

suspicious behavior in their access patterns. For instance, clinicians

who are not accessing random patients, but have prior knowledge of

the hospital workflow and interested in particular type of patients.
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1.3 Approach to the Problem

Our approach to this problem is an anomaly detection framework that takes

a history of audit logs as an input and builds a semantic relationship between

the user-patient accesses by typing the user based on different kind of patients

accessed by him. Then we can detect different types of anomalous users in

the system. At the heart of the method (and at the heart of the problem

really) lies the notion of typicality that must be established based on the

input.

Much of the current work on anomaly detection in hospitals has focused

on what one might call the Random Object Access (ROA) where the object

in question is a patient electronic medical record. In this model, illegitimate

users are modeled as ones who access patient records randomly. This is

a plausible model since illegitimate accesses may look random as they are

often based on features that lie outside the medical system (like accessing

the record of a famous actor with an ordinary disease). However, the model

may not apply well to the open terminal case since the users are not making

random accesses; they are making accesses that are appropriate to their

roles while ascribing these to a user for whom the action is not appropriate.

Consider also a related problem, where a user is doing tasks that should

be done by another user. This behavior may be inappropriate, but it will

probably not look like accessing random patient records.

A key contribution of this thesis (to appear in [3]) is the following: This

thesis proposes a new approach to anomaly detection based on the Random

Topic Access (RTA) model. RTA models illegitimate user behavior as ran-

dom accesses to “topics” rather than objects. In this case a topic is an idea

derived from the field of natural language processing, where, for instance, an

algorithm is used on a corpus of articles to derive groups of words that often

occur together and represent key topics of the articles. In our case we apply

these techniques to patients, who play a role similar to articles, whereas the

data in the patient medical records plays the role of words. The idea is to

derive a model of the topics in the hospital (common groups of properties

of patients) and to use these to characterize the interests of users, who can

be viewed as “readers” of these topics. An RTA user is one who accesses a

collection of topics at random. This is subtly different from an ROA user,

whose access to patients is random. The RTA is useful for detecting anoma-
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lous users who are systematic in using hospital topics but are potentially

unusual in the combination of topics they access. Think of a group of nurses

who work in the stroke unit and commonly access patient records with neu-

rological diagnoses, but among whom there is one nurse that also accesses

obstetrics records. This may not be illegitimate but it might be appropriately

flagged as anomalous.

Random Topic Access Detection (RTAD) is based on using Latent Dirichlet

Allocation (LDA) to define topics and a k-nearest neighbor (k-NN) algorithm

to detect RTA. The principle novelty of the work is not the use of these

specific techniques for anomaly detection (since similar techniques have been

used in other contexts); it is the idea that detection should target RTA

users rather than ROA users. A particular insight is that RTA users can be

characterized along a spectrum based on the likely features of their behavior,

ranging from the tendency to select few topics to the tendency to select many

topics. This approach has advantages of generality over trying to simulate

open terminals, masquerading, or other attack modes directly. LDA was

ran on four months of patient records and created a list of hospital topics

that enable each patient to be described as a mixture of topics. From this

topics were derived that characterize users that access these patients and the

hospital-assigned roles of these users. This work focuses on five roles and

three different kinds of users, allocated between the two extreme cases where

users favor a few topics strongly to users who favor many topics weakly. For

each of these cases we computed the Area Under Curve (AUC) from Reciever

Operating Curves (ROCs) for detecting RTA users. These studies have led

to variety of findings. For instance, the effectiveness of RTAD varies based

on the class of topics used (for instance, diagnoses or medications or both).

Given the best approach topic model for each of the five roles, we find that

RTAD works better for each role than it works on the collection of all users

if they are described by a few topics, but performance declines for users that

are more topic-agnostic in four of the five roles. More results of these kinds

appear in the analysis section.
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1.3.1 Summary of the Main Contributions

Now, let us summarize our discussion in section 1.3 to provide potential

solutions to the challenges mentioned in section 1.2 and focus on the main

contributions of this work. Some of the major contributions are as follows:

1. This work introduces and studies the random topic access model, RTA,

aimed at the users whose access may well be illegitimate but is not fully

random because it is focused on common hospital themes. For instance,

gynecologist who suddenly is interested in the medical records of male

patients diagnosed with erectile anxiety and depression.

2. We also propose RTAD framework for evaluating the ability to recog-

nize various types of random users i.e. (Directed user, Random User,

Indirect User). More information about these user types can be seen

in the section 5.2.

3. Another important aspect of this work is the notion of User Typing

to mine the given EMR information and audit log data to find useful

patterns of clinicians accesses to the patient’s EMR. This enables to

characterize the given clinician and build a semantic relationship with

the patient attributes such as diagnosis, procedures, medications, loca-

tion.

4. We also use multidimensional scaling to visualize the clinicians and

their probability distribution over patient attributes (derived from User

Typing) on a 3D scale. This helps us to understand the distribution of

users within the same role based on their actions. The users within a

same role are expected to behave in a similar way.

5. Our method also provides a way to dynamically combine roles based on

the similarity of the user distribution and the distance among different

roles. We can cluster roles together based on the type of patients they

access according to each attribute of the patient or their combination.
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1.4 Structure of This Thesis

Chapter 2 describes in more detail the current research in Health Informa-

tion Technology and gives thorough background information on the insider

threat detection models for hospitals. Section 2.1 explains various clinical

terminologies used in the EMR dataset such as ICD-9 Diagnosis, ICD-9-CM

Procedures and RxNorm for medications. This helps us understand the dif-

ferent features in the given dataset. Sections 2.2, 2.3 and 2.4 explain various

threat detection models.

Chapter 3 aims at providing insight into the Northwestern Memorial Hospi-

tal EMR and Audit log dataset. The data description in section 3.1 explains

the architecture of the EMR and Audit log dataset respectively. Also, the

relationship between both the dataset can be understood with respect to the

diagnosis, procedures, medication, locations and services of the patient. Ta-

ble 3.3 shows the 10 most frequent occurring features in the dataset.

Chapter 4 is the highlight of this thesis work and lays a strong foundation

for the RTAD model discussed in Chapter 5. Section 4.1 introduces LDA

Topic Model and explains it in the context to our problem. The section 4.3

formalizes the User Typing approach to derive user attributes from the pa-

tients and characterize the users in terms of patients. The topics derived in

the section 4.1 are summarized in the section 4.3.

Chapter 5 formalizes the Random Topic Access model (RTAD) to detect

various types of intruders in the system namely (direct, completely random

and indirect users) in section 5.2, whereas section 5.1 explains the mathe-

matical model behind k-nearest neighbor to detect outliers in the system.

Chapter 6 discussed the experiment and analysis of RTAD model discussed

in Chapter 5, for anomaly detection for five major hospital roles. We com-

pare AUC’s across all roles and all values of alphas.

Chapter 7 concludes the thesis with summarization of results and potential

future scope of this work.
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Chapter 2

Background and Related Work

This chapter highlights the main contributions in the literature for insider

threat detection for hospitals. The section 2.1 introduces various standard

clinical terminologies used in most of the EMR systems to denote patients

diseases, surgeries and medications. Section 2.2, 2.3 and 2.4 we highlight the

main differences between our approach and the existing models.

2.1 Clinical Terminologies

Medicines complex language is represented in clinical terminology and vocab-

ulary systems. Clinical terminologies represent terms related to the medical

field while vocabularies are collections of terms. Both clinical terminologies

and vocabularies provide a way to capture detailed data in an electronic

health record (EHR). They support the transformation of paper-based to

electronic records by providing a machine-readable data structure. Clinical

terminologies are considered the input format while classification systems are

the output format. Three main terminologies used in the analysis are ICD-9

Diagnosis [8], ICD-9-CM [9] Procedures and RxNorm [10].

2.1.1 ICD-9 Diagnosis

The International Classification of Diseases, Ninth Revision, (ICD-9) [8] is

based on the World Health Organizations Ninth Revision, International Clas-

sification of Diseases (ICD-9). ICD-9 is the official system of assigning codes

to diagnoses and procedures associated with hospital utilization in the United

States. ICD-9 is used to code and classify mortality data from death cer-

tificates. ICD-9 consists of a numerical list of the disease code numbers in

tabular form; An alphabetical index to the disease entries, and A classifi-
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cation system for surgical, diagnostic, and therapeutic procedures . ICD-9

diagnosis codes can be categorized into three levels. The lowest level consists

of thousands of diagnosis chapters, where each chapter is a particular diag-

nosis code. The middle level has about 1000 diagnosis chapters where each

diagnosis chapter might contain group of codes based on similarity of diag-

nosis. The highest level consists of 19 Diagnosis chapters binded together as

a high level concept of different diagnosis. The structure of these chapters

are represented as trees. For example a diagnosis 500 can be divided further

but can be mapped directly to 500(Highest level) or 501(Middle Level) or

501.2(Lowest Level). The values are in the range [0, 1000], E[0-999], V[0-99].

For instance: ICD-9 Diagnosis codes for “complications of pregnancy,

childbirth, and the puerperium” are in the range [630-679]. Hence all dif-

ferent categories of related diagnosis are listed in the same range. They can

be further divided into seven different categories i.e. [630-633], [634-639],

[640-649], [650-659], [660-669], [670-676] and [678-679]. For example, range

[660-669] is classified as “Complications occurring mainly in the course of la-

bor and delivery” where 660 is ’Obstructed labor’ and can be further divided

into four subcategories- i) [660.01]: Obstruction, malposition, delivered ii)

[660.11]: Obstruction, bony pelvis, delivered iii) [660.41]: Shoulder dystocia,

delivered iv) [660.61]: Trial of labor, failed, delivered.

2.1.2 ICD-9-CM Procedures

ICD-9-CM procedure codes [9] are based on the official version of the World

Health Organizations Ninth Revision, International Classification of Dis-

eases, Clinical Modification (ICD-9-CM) contains codes for operations and

procedures performed on an inpatient basis. The range varies from [0,100].

The highest level consists of 18 Procedure chapters binded together as a

high level concept of different procedure. The structure of these chapters are

represented as trees.

For instance: ICD-9-CM Procedure codes for “Obstetrical Procedures” are

in the range [72-75]. Hence all different categories of related procedures are

listed in the same range. They can be further divided into four different

categories i.e. [72.0-72.9], [73.01-73.99], [74.0-74.99] and [75.0-75.99]. For

example, range [74.0-74.99] is classified as “Cesarean section and removal of
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fetus”, which can be further divided into six subcategories- i) [74.0]: Classical

cesarean section ii) [74.1]: Low cervical cesarean section iii) [74.2]: Extraperi-

toneal cesarean section iv) [74.3]: Removal of extratubal ectopic pregnancy

v) [74.4]: Cesarean section of other specified type vi) [74.91-74.99]: Cesarean

section of unspecified type.

2.1.3 RxNorm

RxNorm [10] is two things: a normalized naming system for generic and

branded drugs; and a tool for supporting semantic interoperation between

drug terminologies and pharmacy knowledge base systems. The National

Library of Medicine (NLM) produces RxNorm. Hospitals, pharmacies, and

other organizations use computer systems to record and process drug infor-

mation. Because these systems use many different sets of drug names, it

can be difficult for one system to communicate with another. To address

this challenge, RxNorm provides normalized names and unique identifiers

for medicines and drugs. The goal of RxNorm is to allow computer systems

to communicate drug-related information efficiently and unambiguously.

For instance: RxNorm group source data into collections of synonyms

(called concepts). The drug Naproxen can be referred as Naproxen Tab

250 MG, Naproxen 250mg tablet (product), NAPROXEN @250 mg@ORAL

@TABLET, Naproxen 250 MILLIGRAM In 1 TABLET ORAL TABLET,

NAPROXEN 250MG TAB,UD [VA Product]. Although the drug names in

this Naproxen example appear different, they all have the same meaning at

a certain level of abstraction. RxNorm groups these as synonyms into one

concept by various relationships like - “ingredient of”, “isa”, “has dose form”

or “has ingredient”.

2.2 Random Object Access Model

The ideal way to evaluate the effectiveness of an intrusion detection system is

with actual intruders. This is quite difficult for studies in the area of hospital

information systems since there is very little real data of this kind available

for study. The notable exception is a study of supervised learning [11] where

real intrusion data and accesses deemed suspicious by administrators were
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used to train a classifier that achieved reasonable results. Getting this type

of data and access to these sorts of experts is very difficult. Moreover, the

ability of “expert” analysts is somewhat questionable, since most hospital

personnel are not trained at detecting security violations.

For these reasons, most work is validated by detecting anomalous users

and anomalous access patterns specifically for ROA type models where the

evaluation is conducted by synthetic users accessing random patients. For

instance, MetaCADS [12] does anomaly detection based on Singular Value

Decompositions (SVD) of user-patient access and patient-feature matrices.

Their evaluation centers on the recovery of users generated via ROA using k-

NN with eigenvectors weighted by their eigenvalues. This approach obtains

good AUC values for ROA. Our analysis with RTAD considers subpopu-

lations of users by role based on RTA. Additionally, although MetaCADS

utilizes SVD for dimensionality reduction, the resulting features only group

dimensions together according to their contribution to the variance to the

system, not their semantic coherence.

It might be useful to note that MetaCADS was designed to find anomalous

users whereas SNAD [13] was designed to find specific anomalous accesses

of the users. EBAS [14] determines reasons for the access to patients by the

users based on the assumption that for each department the employees are

responsible for specific diagnosis. The anomaly detection framework works

on the level of hospital-designated departments rather than individual user

probability for the given diagnosis. The assumption is that departments are

groups of employees with similar responsibilities who behave similarly. The

effectiveness of this technique is validated by an ROA model where users

who randomly access patient records are added to the hospital and used to

measure accuracy.

There is some literature about detecting anomalous records in more gener-

alized dataset. For instance, [15] uses association rule mining and Bayesian

approaches to discover outliers in categorical dataset. This work does not

account for heterogeneous dataset such as electronic medical record (EMR)

systems and the associated user-level access logs. It also assumes no prior in-

formation regarding the interaction of attribute sets, something which could

be a valuable resource for healthcare professionals.
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2.3 Masquerading User Model

There is also a good body of work [16, 17, 18, 19] on threat detection models

for masquerading users. Masquerading corresponds to people who actively

try to portray themselves as legitimate users. They often mimic the behavior

of trusted users and then deviate to perform activities that are a deviation

from expected activities. These techniques provide an interesting contrast

with the ones we present below. Authors in [19] have tried to create threat

detection models for masquerading users in GUI based systems by extract-

ing relevant features through SVD and using supervised learning to classify

anomalous behavior. Our study differs from their approach in two respects:

the first is in the size of the dataset. While [19] only includes the activity of

three different users, we have annotated information for thousands of users

and patients collected over a four year span. The second is with respect to

the feature space. We argue, once again, that the latent topic space pro-

vides more semantically coherent and intuitive features than those obtained

through SVD. With respect to [18], they use a Markov Model trained on

real user commands and then show that if they generate commands using

the Markov Model and inject these commands into classifier, they are not

detected. Even though the commands were not generated by a user. It is

not anomaly detection but a way of circumventing anomaly detection. The

authors in [16] and [17] extend research in masquerade detection using UNIX

commands issued by the users and applied supervised learning mechanism

to predict the anomalous users but these approaches generally do not scale

well for large access logs in a dynamic environment such as healthcare.

2.4 Process Mining Model

Process mining is useful for at least two reasons. First of all, it could be

used as a tool to understand how people and/or procedures really work.

Process mining could be used to gain insight into the actual process, e.g.,

the flow of patients in a hospital. In such an environment, all activities are

logged, but information about the underlying process is typically missing.

Secondly, process mining could be used for comparing the actual process

with some predefined process model. Such a model specifies how people
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and organizations are expected to work. By comparing the descriptive or

prescriptive process model with the discovered model, discrepancies between

both can be detected and used to improve the process and identify deviations

and anomalies. [20] and [21] illustrates the use of heuristic mining and fuzzy

mining to understand the hospital workflows. In general, heuristic mining

is suitable for accounting the errors, deviations, and random activities in

real world events. Fuzzy mining provides a way to handle complex and

unstructured process by focusing on important activities and relations.
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Chapter 3

Dataset Analysis

Dataset analysis is an important step in heading towards formalizing our

RTAD model. The dataset from Northwestern Memorial Hospital are central

to the thesis study and have been collected by Cerner Systems over a period

of four months. It consists of over 5 million accesses made by 8000 clinicians

to 14,000 patients and has two main parts i) Electronic Medical Record

data ii) Audit Log data. The EMR dataset contains patient’s health history

including diagnosis, procedures and medications in an encounter, whereas

the audit log data contains the information about the user and his accesses

to the patients at a given time and patient - location and service. Section

3.1 describes the entire dataset in detail. In section 3.2 we analyze some

important statistics about the dataset, which will help us understand the

data.

3.1 Data Description

Our dataset consists of all user accesses, or audit logs, made over a four

month period, in addition to Electronic Medical Record (EMR) data for pa-

tients admitted in this time frame. Patient and user IDs were anonamized for

security purposes. As a noise reduction measure, we filtered all out-patient

entries, focusing only on patients who stayed a significant amount of time at

the hospital (more than 24 hours). We further removed all younger than 17

years old (about 9.1% of the records) from the dataset, as patients from this

age group tended to have sparsely populated records. After preprocessing,

our dataset consisted of 4.9 million accesses made by 7932 users to 14606 pa-

tients. EMR data was accumulated with respect to given hospital visits for

patients at the hospital, referred to as an encounter; however this data does

not attribute specific information in the record of a patient to the authorita-
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tive user, only permitting the association of a group of users to a patient. To

prevent associating certain patient features to non-relevant users, we consider

every new encounter to be a new patient. In terms of the information char-

acterizing users, audit logs provide details regarding the service and location

of a given user accesses; EMR data, on the other hand, provides information

regarding the diagnosis, medication, and procedures ordered for a particular

patient. Service, location, diagnosis, medication, service/location, and pro-

cedure are referred to as dimensions in our analysis. The following subsection

aims to elucidate the key differences between these two distinct datasets.

3.1.1 Audit Log Data

Audit logs consist of user accesses to specific patients, logging the service

the user provided and the location of the access. Service can assume one

of 30 different values while location can assume one of 49 different values.

Table 3.1 provides basic statistics summarizing this dataset. In our analysis,

we typically combine service and location into a single combined dimension

called service/location, due to the relative small size of these dimensions

compared to those in the EMR data set.

Figure 3.1 consists of 4.9 million accesses where each access is represented

in the form of an access. An access consists of a unique patient P and user

U having role R, the encounter information signifies the period of stay of the

patient in the hospital. Each access has multiple attributes for the patient

and the user. For instance, patient was accessed when he was at location L

and for service S. In the table we can see that patient Smith has been accessed

multiple times by different users at different locations and services. The same

user also accesses other patients. We can imagine this as a bipartite graph

where all the edges are from user and patient. Each user has a unique role

in the given dataset and a role can have multiple users.

3.1.2 EMR Data

EMR data in Figure 3.2 consist of different patient records, with each record

corresponding to various diagnosis, procedures, and medications. A given

dimension is a binary vector, with each bit in the vector representing the
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Figure 3.1: Mock Log Table of User Accesses for Service and Location

Figure 3.2: Mock EMR Table of Patients for Diagnosis and Procedure

presence or absence of a particular feature. A feature in this case is dependent

upon the dimension. Diagnosis, for instance, is characterized by the lowest

level of the ICD-9 code hierarchy, with 4543 unique codes [8]. Procedure

is similarly defined with respect to ICD-9-CM, albeit with less code words

(1237). Medication features is defined with respect to RxNorm, a normalized

naming system for generic and branded drugs [10]; in total, there are 642

codes. Table 3.2 provides basic statistics on the various dimensions.

It is important to note the lack of precise patient-user information in the

EMR data. Utilizing the audit logs, it is possible to associate particular

users with certain patient-encounters. However, since many users may access

a given patient-encounter, it is impossible to know exactly what diagnosis,

medication, and/or procedure a specific user contributed. This is the actual

medical record of the patient which is accessed by the users. The main

difference between the access log and EMR is that the access log is the

summary of accesses to the EMR. The data in the patients medical record
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Table 3.1: Summarized NMH Audit Log Statistics

Attribute Value

Duration of Audit Logs 4 months

Distinct Accesses 4,979,465

Distinct Patients 12,488

Distinct Patient-Encounters 14,606

Distinct Users 7,932

Average Patients Accessed per User 115

Average Accesses of Patient 340

consists of his personal information (address, name, and identity) as well as

health information which indicates the history of his procedures, medications

and diagnosis throughout the stay of the hospital. A patient can visit hospital

multiple times. If a patient visits a hospital and is not admitted, then is

considered as outpatient. If a patient is admitted for more than 24 hours, he

is considered as inpatient. For instance, in the table 3.2 we can see that the

patient P during the stay in the hospital has been diagnosed with cancer and

HIV and gone through multiple procedures i.e transplant and dialysis. In

the access log table, the data consists of the number of times user1, user50,

user6909 accesses patient P1 record in the given encounter period.

3.2 Data Statistics

The NMH dataset is rich with different type of patient and user information

and needs to be summarized in order to understand it. Table 3.1 and 3.2

summarize the basic data statistics from the NMH Audit Logs and EMR.

Also, table 3.3 shows the 10 most frequent diagnosis, procedures, medica-

tions, service and locations in the patient population. The statistics show

that 27% of the patient population has been diagnosed with hypertension,

74.8% have been given aspirin in some form, 27.5% have gone through fetal

monitoring procedure, 26.6% of the patients are on obstetrics service and

28.7% have been through the location Prentice 8 Labor & Delivery. These

statistics shows a very high degree of confidence that the dataset is skewed

towards the obstetrics population. On further analysis we find that 66.7%
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Table 3.2: Summarized NMH User-Patient Statistics

Attribute Value

Distinct User Roles 156

Distinct Patient locations 49

Distinct Patient services 30

Distinct Patient diagnoses 4,543

Distinct Patient procedures 1,237

Distinct patient medications 996

of the patients are female and most of them are in the age between 20 and

40. Figure 3.3 summarizes the access frequency patterns of the users and

roles in the NMH access log dataset. We observe that the access pattern

of the users are highly skewed. The highest accesses made by any user is

17,054 out of 4.9 million accesses. 21.3% of the users have more than 1,000

accesses in total in the audit logs. Figure 3.3 also shows the distribution of

role accesses in the NMH access log dataset. We find that most of the roles

have very high access frequency while others have very few accesses made in

the four month time period. Patient Care staff nurse made the maximum

number of accesses which amounts to 37.5% of the total accesses, followed

by NMH Resident/Fellow-CPOE, Patient Care Assistive Staff, Patient Care

Staff Nurse (Pilot), NMH Physician-CPOE etc. 50.6% of the roles have less

than 1,000 accesses which shows the sparsity in the access of atleast 80 roles

and the users within those roles. Figure 3.3 also shows the diversity of access

patterns for users to patients. The maximum unique patients accesses by a

particular user is 20.1% of the total patient population. 0.7% of the users

access more than 1,000 patients and 6.3% of the users access only 1 patient.

Finally, in Figure 3.3 we analyze the number of users within each role. This

graph analyzes the sparsity between the roles with respect to the number

of users within each role. One unique property of the dataset is that each

user has only one role and each role can have multiple users. Our analysis

show that 18% of the users have the role Patient Care Staff Nurse, 8.9%

of the users are NMH Resident/Fellow-CPOE, 8.3% of the users are NMH

Physician-CPOE, 5.9% of the users are Med Student-CPOE, 5.5% of the

users are Physician Office. We also observe that 14.5% of the roles have only

one user. These statistics help us to gain an insight into the data distribution
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Table 3.3: NMH summarized EMR: Top 10 for each Dimension

Dimension Top 10
Diagnosis Hypertension, Outcome of delivery, Other and unspec-

ified hyperlipidemia, Unspecified anemia, Type II or
unspecified type diabetes mellitus without mention of
complication, Second-degree perineal laceration, with
delivery, Esophageal reflux, Coronary atherosclerosis of
native coronary artery, Other current maternal condi-
tions classifiable elsewhere with delivery, Unspecified hy-
pothyroidism

Procedure Other fetal monitoring, Manually assisted delivery, Re-
pair of other current obstetric laceration, Other artificial
rupture of membranes, Low cervical cesarean section,
Medical induction of labor, Puncture of vessel, Transfu-
sion of packed cells, Hemodialysis

Medication Aspirin, Docusate, Bupivacaine, Potassiumchloride,
Glucose, Esomeprazole, Lactated Ringers Injection in-
travenous solution, Dalteparin, Ondansetron, Cefazolin

Service Obstetrics, Hospital Medicine, General Medicine,
Orthopedics, Gynecology, Neurosurgury, Cardiology,
Transplant Surgury, Hematology, Urology

Location Prentice 8 Labor & Delivery, ASU Recovery 65, Emer-
gency Department 1, Prentice 1 OB Triage, Prentice 11,
Prentice 13, Prentice 12, Fienberg 15 E, Fienberg 16 W,
Fienberg 10 W

across all users and roles. Now we will highlight the most frequent attributes

in the dataset.

Table 3.3 shows 10 most frequent occurring patient dimensions in the sum-

marized NMH EMR dataset. The dataset is mostly skewed towards obstetrics

patients, which is also evident from table 3.3. Almost all the dimensions and

their top features concur with obstetrics. Majority of the patients have been

diagnosed with Hypertension and delivery which are also highly correlated

in the EMR dataset. The intuition is that the majority of the females in

the hospital who are diagnosed with both these problems go through cor-

related procedures, service and location in the hospital. Other patients are

diagnosed with cardiovascular, diabetics etc, which also explains another cat-

egory of patients having heart problems. Similarly, most of these patients
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who have been diagnosed with delivery, go through obstetrics procedure such

as manually assisted delivery, fetal monitoring, repair of the current obstetric

laceration, Low cervical cesarean section etc. The highly correlated patient

location in the hospital with such diagnosis and procedure is Prentice 8 Labor

& Delivery, Prentice 13, Prentice 11 and Prentice 12. The hospital location

ASU Recovery is a place where patients go after a surgery. Hence, majority

of the patients who go through a procedure, also go through ASU Recovery.

Other locations include emergency department and Fienberg which handle

all kind of patients. Majority of the patients are given aspirin to relieve minor

aches and pains. Others are on different types of drugs such as Esomeprazole,

Dalteparin, Cefazolin etc.
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Chapter 4

Topic Modeling

The dataset described in Chapter 3 is high dimensional data for all attributes

of patients which makes it essential to uncover the underlying semantic struc-

ture of the features. Latent Dirichilet Allocation (LDA) [1] is the most

promising approach of dimensionality reduction which is a class of proba-

bilistic topic models. The intuition behind LDA is that a document contains

mixture of different topics/themes. In our case it is analogous to the fact that

patient can be represented over distribution of topic/themes for each high

dimensional attribute (say diagnosis, procedure or medication). For instance,

in case of diagnosis, the patient can be described as a probability distribu-

tion over topics of diagnosis. Each topic of diagnosis consists of probability

distribution over different ICD-9 diagnosis codes, which makes the semantic

structure of the topic intuitive and can be analyzed manually or peer review.

For example, consider using themes to explore the complete history of the

patients with mental diseases in the hospital. At a broad level some of the

themes in the hospital might correspond to the neuro, cardio, obstetrics etc.

We could zoom in on a theme of interest, such as mental illness, to reveal

various aspects of it such as alzhimer, brain tumour etc. We could then

navigate through time to reveal how these specific themes have changed.

And, in all of this exploration, we would be pointed to the original patients

relevant to the themes. This chapter is organized as follows: In section

4.1 and 4.2, we will discuss the mathematical model behind LDA algorithm

and how it can be used to reduce dimensions of the patients in our dataset.

Section 4.3 formalizes the User Typing, which is one of the main contributions

of this thesis. We define the user and patient relationship based on the topic

derived in section 4.1 and use it to characterize the user based on the given

dataset. In section 4.4, we summarize the topics derived in section 4.1 and

give an intuition of the general themes in the hospital related to different

dimension of the patient. In section 4.5 we use Multi Dimensional Scaling
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to visualize the users derived in section 4.3 to gain more intuition into the

distribution of users within same role.

4.1 Latent Dirichilet Allocation

In this section we explain how we extract different features from the access

logs and how to represent user actions such that different actions can be

reliably discriminated from each other.

At the heart of our anomaly detection method is a semantic representation

of the access log data given as an input. In order to detect illicit access to

resources we must represent the data at hand in a way that (1) enables

a numerical comparison between observations and (2) preserves semantic

information about the medical aspects of what has been done in atomic user

actions. Imagine how a domain expert would manually analyze a given audit

log. Clearly, the main approach would be to relate the user actions with

what makes sense from a medical perspective and from the processes that

are typical in the respective hospital. Similarly, we pre-process the given data

such that observed user actions are expressive with respect to the medical

aspects and processes.

In an attempt to quantitatively represent the given audit logs and to fulfill

the requirements given above, we employ Latent Dirichlet Allocation (LDA)

[1]. LDA provides a set of topics, each represented as a bag of words that

typically arise. For each patient, we will get an allocation in the topic simplex.

We can then substitute the patient ID in each event with this vector. We

then derive the topic distribution of the users accessing the patients by user

typing in section 4.3 The dataset described above is high dimensional data for

all attributes of patients which makes it essential to uncover the underlying

semantic structure of the features. LDA is the most promising approach of

dimensionality reduction which is a class of probabilistic topic models. The

intuition behind LDA is that documents exhibit various topics. In our case it

is analogous to the fact that patient can be represented over distribution of

topics for each high dimensional attribute. For instance, in case of diagnosis,

the patient can be described over topics of diagnosis. Each topic of diagnosis

consists of probability distribution over diagnosis for that topic which makes

the semantic structure of the topic intuitive and can be analyzed manually
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or peer reviewed.

From the perspective of our problem (we use diagnosis data as an example,

but the same scheme holds for diagnosis and other features as well), LDA

assumes the following generative process of patient data.

1. Choose N ∼ Poisson(ξ)

2. Choose θ ∼ Dir(α)

3. For each symptom wn, n ∈ {1, . . . , N}:

(a) Choose a disease zn ∼ Multinomial(θ)

(b) Choose a symptom wn ∼ p(wn
∣∣zn, β).

Here, p(wn
∣∣zn, β) is a multinomial symptom distribution conditioned on dis-

ease zn. In a more generic setting, we will refer to topics rather than diseases

and words instead of symptoms. The graphical model of LDA is described

in Figure 4.1. Filled circles represent observed random variables. Empty

circles are latent random variables. Arrows indicate statistical dependencies.

Entities on a plate with integer N exist in N different versions. In the case

of diagnoses, θ indicates the probabilities for diseases, zn indicates presence

or absence of a disease for a patient out of M patients, and w indicates

symptoms of a patient.

RTA entails modeling users as probability distributions over topics. These

topics are defined with respect to the patient dimensions introduced in Chap-

ter 3, supersets, or concatenations of these dimensions. We utilize a latent

topic framework because modeling users as distributions over topics permits

two important operations; the first is for users to be summarized in a se-

mantically coherent way with respect to the entire user population. User

characterization in terms of the dimensions in EMR and audit log data is

independent of the characterization of other users in the system. While this

can be informative, it is of limited power, as knowledge of the user does not

convey any knowledge about how that user behaves in the context of the

system. Topic modeling, however, gives a concise description of not only

how a user behaves in the context of his peers, but what the meaning of that

behavior is. The second is it provides a mechanism for user generation. By

modeling users as samples from a Dirichlet distribution over topic multinomi-

als, a larger space is afforded of realizable users than the dataset may provide.
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Figure 4.1: Graphical Model for Latent Dirichlet Allocation (LDA) [1].

This also has implications with respect to controlling the types of adversaries

in different threat models, which will be elaborated on in Chapter 5.

Nevertheless, topic modeling provides a lot of power and flexibility in terms

of characterizing and modeling users. While many algorithms exist for this

purpose, the standard algorithm to use is Latent Dirichlet Allocation (LDA),

which we use for our implementation RTAD. LDA is a generative model that

attempts to model documents in a corpus as multinomials over a set of latent

topics [1]; in turn, these latent topics are modeled as multinomials over the

words in a corpus. In this manner, topics act as summaries of the differ-

ent themes pervasive in the corpus, while documents are characterized with

respect to these summaries. A d dimensional multinomial is sampled from

a d dimensional Dirichlet distribution to get a particular topic distribution.

This can be thought of as sampling from a d− 1 simplex (probability space)

controlled by a parameter to the Dirichlet: α. Typically denoted the concen-

tration parameter, α controls where on the simplex multinomials are likely

to be sampled. As α→ 0+, probability density is pushed towards the edges

of the simplex, favoring multinomials heavily biased towards few topics. As

α→ 1, probability density becomes more evenly distributed around the sim-
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plex, making any multinomial equally probable of being selected. Finally,

as α → +∞, probability density is pushed towards the center of the sim-

plex, favoring multinomials equally biased towards all topics. The number of

topics, k, and the concentration parameter, α, are defined apriori. We used

α as a control parameter to generate users at five different levels of topic-

concentration reaching from users whose actions are described by almost all

equally contributing topics to users described by a single topic only.

In modeling users, we decided to generate topics for diagnosis, medica-

tion, procedure, and service/location. Additionally, we generated topics over

the superset of all these dimensions, denoted mixed, and the concatenation

of the topic vectors of these different dimensions, denoted combined. The

logic behind modeling users in terms of mixed was to see whether or not

heterogeneous combinations of dimensions are more informative than con-

sidering them in isolation. Likewise, we looked at combined to see if a naive

concatenation of these different information types is comparable to or fa-

vorable to mixed. Section 4.4 provides a summarization for topic coherency

across these different dimensions. Coherent topics are chosen for the ser-

vice/location, procedure, diagnosis, and medication dimensions; the top 10

most probable words are displayed over 8 topics for each dimension. There

is a strong bias in these distributions towards women’s health, specifically

child birth, demonstrating the efficacy and power of LDA to capture relevant

semantic summarizations. It should be noted that with respect EMR derived

dimensions, LDA was performed on patients. We will use the section 4.3 to

reveal how these patient probabilities are translated in terms of users.

4.2 Perplexity Measure

Since the number of topics need to be chosen apriori, we utilized the perplex-

ity measure, designed to assess the effectiveness of different topic numbers.

The perplexity measure is an estimation of the expected number of equally

likely words in the population; minimizing perplexity corresponds to max-

imizing the topic variance captured by the system [1]. We performed this

analysis for each topic distribution, the number of topics corresponding to

the minimum perplexity is shown in Table 4.1. Figure 4.2 shows the various

perplexity values at different values of k (no. of topics) for procedure. To
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select the number of topics, we use the perplexity measure proposed in [1]:

perplexity(Dtest) = exp

{
−
∑M

d=1 log p(wd)∑M
d=1Nd

}
(4.1)

Here, Dtest is a collection of patient data such as a collection of M diagnosis,

wd are the symptoms of the patients. Perplexity measures the data likelihood.

High likelihood leads to a low perplexity measure. It is seen as a good measure

of performance for LDA. We keep a holdout sample, train LDA on the rest

of the data, and then calculate the perplexity of the holdout.
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Figure 4.2: Perplexity Measure for Procedure

4.3 User Typing

User typing involves characterizing user behavior according to a particular

dimension and data source. User typing with respect to Access Log data

entails accumulating all accesses of a user and performing LDA, where each

user is treated as a separate document. Typing with respect to Electronic

Health Record data is much different. Because EHR data is aggregated over

all users with respect to patients, no information exists regarding which set of

records a particular user contributes to the patient. As such, in this dataset,

users are characterized according to the types of patients they access, though
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Table 4.1: Topic Summary

Dimension # Of Topics

diagnosis 25

procedure 25

medication 25

service/location 20

mixed 40

combined 95

no assumptions are made regarding the extent to which a user contributes

to the description of an accessed patient.

In the following sections, we aim to provide a more concrete mathematical

notation for these definitions. In each section, suppose the dimensions in

Access Log data is given by DAL = Service, Location and EHR data is given

by DEHR = Diagnosis, Medication, Procedure. Furthermore, let U indicate

the set of all users, Pu denote the set of all patients a user accesses, and Au,

the set of all access made by a user. The purpose of the following sections is

to develop feature vectors for each user according to the two data sources.

4.3.1 User Typing With Access Log Data

For audit log data, users are summarized by LDA through the aggregation

of their accesses and performing LDA on those aggregates. However, with

respect to EHR data, dimensions are provided with respect to patients, not

users. Patients can be associated with certain users through cross referencing

users from the audit logs to the patients they access in the EHR dataset.

Suppose each user accesses according to some dimension d ∈ DAL described

by a vector ~au,d(i) where i indicates the i’th access of the user u. The raw

feature vector, ~fu,d for user u is simply the sum of all of u’s accesses, Au,

shown in the following:

~fu,d =
∑
i∈Au

~au,d(i) (4.2)

The topic probability vector, φu,d, is derived from transforming ~fu,d via
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LDA. Essentially, φu,d is a categorical probability distribution where for each

di ∈ d, φu,di = P (di|u).

φu,d = LDA( ~fu,d) (4.3)

4.3.2 User Typing with EHR Data

As mentioned before, typing users with EHR data is slightly more compli-

cated, due to the relatively limited amount of information about users in the

EHR dataset. There are two possible approaches to typing in this manner.

The first involves performing LDA on each patient individually and aggre-

gating the topic probabilities, referred to as post-aggregation. The second

involves aggregating raw patient vectors for each user and then performing

LDA on the user, referred to as pre-aggregation. Pre-aggregation is very

similar to user typing with Access Log data. Additionally, post-aggregation

was used in the experimental procedure. Therefore, we will proceed with a

discussion of the more complicated post-aggregation.

Suppose a patient p of user u has a record according to some dimension

d ∈ DEHR described by a vector ~fp,d. The topic probability vector, φp,d, much

like in typing Access Log data, is simply the LDA transformation of ~fp,d. To

derive the topic probability vector of the user, φu,d, the topic probabilities of

each of the patients u accesses calculated through a weighted averaged. In

particular, let Nu = |A(u)| denote the total number of accesses made by user

u and nu(p) = |Ap(u)| refer to the number of times u has accessed p. The

probability u selects p is simply nu(p)/Nu. The weighted average of each

of the patients topic probabilities is simply the expected topic probability

distribution with respect to the probability of being selected.

φu,d = E[φp,d] =
∑
p∈P (u)

nu(p)

Nu

φp,d (4.4)

This is permissible because the average of two categorical distributions is

still a categorical distribution.
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4.4 Topic Summarization

This section is based on the analysis done on the EMR dataset in the sections

4.1 and 4.2. In summary, LDA was run on the set of documents where each

patient is treated as a document and the words in the documents are the

features of the patient for a particular dimension (say diagnosis) collected

from his/her electronic medical record. The input is also the number of top-

ics, which is derived using perplexity measure in 4.2. The topics below can

be seen as themes in the hospitals for given dimension of the patient. For

instance, patient will have probability distribution of these topics/themes

which will give us the bias of this patient towards a certain theme and to

which he/she belongs. We picked 8 random topic distributions from each

dimension and give an intuition behind the derived topics and their thematic

structure for diagnosis, procedure, medications and service/location in Fig-

ures 4.3, 4.4, 4.5 and 4.6 respectively.

Summarization of Diagnosis Topics: In Figure 4.3, we observe that the

topic 04 and topic 21 are highly related to women diagnosed with either ma-

ternal conditions or delivery. Patients having high probability of topic 04 and

topic 21 are most likely women, diagnosed with obstetrics related problems.

The topic 01 is highly related to the patients diagnosed with irregularities in

their blood (i.e. lack of white/red blood cells). Most of the words with high

probability in this topic are related to blood problem. Topic 17 on the other

hand seems to be a mixture of different kind of diagnosis, mostly related to

hypertension, also related to topic 24. Topic 18 is clearly related to different

types of neoplasms (abnormal mass in the tissue). Finally, topic 20 and topic

15 are related to kidney disease and liver disease respectively.

Summarization of Service/Location Topics: In Figure 4.6, We observe that

topic 00, topic 13 and topic 19 are highly related to women who have been

diagnosed with maternal conditions or delivery. The main reason is that

they are at a very highly correlated location in the hospital i.e. prentice 12,

prentice 8 Labor & Delivery. Also, they are either on obstetrics or gynecology

service in the hospital. Topic 03 and topic 18 forms the thematic structure

for orthopedics and neurology respectively. Topic 02 and topic 10 are highly

biased towards locations treating patients with cardio problems.
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Diagnosis
topic 04 prob

delivery 0.19
cesarean 0.12
elderly multi 0.06
other maternal 0.06
sterilization 0.03
thyroid dysfunc 0.03
preech present 0.03
hypothyroidism 0.03
cord entanglement 0.02
group B strept. 0.02

topic 21 prob
delivery 0.17
abnormal heart rate 0.05
amniotic cavity 0.03
uterine inertia 0.03
hemorrhage 0.03
early delivery 0.03
fetal head 0.03
perineal laceration 0.02
cord entanglement 0.02
postterm pregnancy 0.02

Diagnosis
topic 01 prob

pancytopenia 0.04
neutropenia 0.03
thrombocytopenia 0.03
stem replacement 0.03
diarrhea 0.02
fever 0.02
anemia 0.02
multiple myeloma 0.01
myeloid leukemia 0.01
candidiasis mouth 0.01

topic 17 prob
hypertension 0.12
hyperlipidemia 0.08
hypothyroidism 0.04
esophageal reflux 0.03
atrial fibrillation 0.03
type II diabetes 0.02
ischemic attack 0.02
osteoporosis 0.01
prostate 0.01
mental disorder 0.01

Diagnosis
topic 18 prob

neoplasm of bone 0.04
neoplasm of liver 0.04
neoplasm of lung 0.03
pressure ulcer 0.03
constipation 0.03
neoplasm of brain 0.03
paraplegia 0.02
urinary infection 0.02
neoplasm of lung 0.01
palliative care 0.01

topic 24 prob
unspecified fall 0.03
occurrence, home 0.02
fall, slipping 0.02
collapse 0.02
other fall 0.01
hypertension 0.01
occurrence, other 0.01
unconscious 0.01
occurrence, street 0.01
open wound 0.01

Diagnosis
topic 20 prob

kidney disease 0.11
chronic kidney S II .11
kidney failure .08
dehydration 0.05
type II diabetes 0.02
hyperlipidemia 0.02
hyperpotassemia 0.02
urinary infection 0.02
gout, unspecified 0.01
chronic kidney S III 0.01

topic 15 prob
cirrhosis of liver 0.06
other ascites 0.05
viral hepatitis C 0.03
alcoholic liver 0.02
liver transplant 0.02
diabetes mellitus 0.02
thrombocytopenia 0.02
kidney failure 0.01
encephalopathy 0.01
portal hypertension 0.01

Figure 4.3: Summarized Topics for Diagnosis

Procedure
topic 02 prob

insert Endotracheal 0.14
venous Catheter 0.11
arterial Cath 0.10
cont Mech Vnt 0.09
cnt Mech Vnt 2 0.07
ext Infus Conc 0.03
temporary Trach 0.03
percutaneous Gast 0.03
endoscopy 0.02
trach Lavage 0.02

topic 03 prob
knee Replace 0.29
replace-Methacry 0.27
cell Tranfusion 0.10
anesth Injec 0.04
hip Bearing Surface 0.02
oth assisted 0.02
radiotherapeut 0.02
lap Appendectomy 0.01
transfusion Blood 0.01
aspiration Of Breast 0.01

Procedure
topic 09 prob

fetus/Amnion 0.24
fetal Monitor 0.22
cervical c-section 0.21
induction Labor 0.13
artf. Membrane 0.10
fetal EKG 0.03
amnioinfusion 0.00
repair OB Uteri 0.00
influenza Vaccine 0.00
instr. Delived 0.00

topic 11 prob
manual Delivery 0.33
fetal Momitor 0.30
repair Laceration 0.25
artf. Membrane 0.11
breech Extraction 0.00
peritoneal Tiss 0.00
ob Vulva 0.00
skin Biopsy 0.00
rotate Fetal Head 0.00
alveolar Incision 0.00

Procedure
topic 14 prob

cystoscopy 0.09
ureteral Cath 0.08
pyelogramy 0.05
breast Tissue 0.05
excise node 0.03
urine Incontion 0.03
vaginal Hyste 0.02
nephrostomy 0.02
mammoplasty 0.01
indwelling cath 0.01

topic 17 prob
extracorporeal 0.17
valv-Tissue 0.07
ultrasound-Heart 0.04
thor Ves Respect 0.03
valvuloplasty 0.03
cell Transfusion 0.03
venous Catheter 0.03
art Bypass 0.03
coronory Bypass 0.02
intercoastal Cath 0.02

Procedure
topic 22 prob

cervical c section 0.39
fetal Monitor 0.36
artf. Membrane 0.07
bilat Tubal 0.05
therapeutic Aphere 0.02
vacuum Extract 0.01
tubal Destruct 0.00
indcut Labor 0.00
tamponade Uterus 0.00
Adhesiolysis 0.00

topic 23 prob
prostatectomy 0.10
cervical Node 0.07
robotic Procedure 0.06
lymph Node Exc 0.05
total Abdomin 0.04
nephroureterc 0.04
remove Tubes 0.04
laparoscopy 0.03
peritonial Tiss 0.03
remove Ovar 0.02

Figure 4.4: Summarized Topics for Procedures

4.5 Multidimensional Scaling

We employed a number of visualization techniques in order to see how the

data was distributed in three dimensional space. With topic attributes of

various dimensions, we reduced the dimensionality of the data to three di-
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Medication
topic 00 prob

clindamycin 0.32
gentamicin 0.18
ampicillin 0.11
aspirin 0.10
bupivacaine 0.06
docusate 0.06
ibuprofen 0.06
lactated injec 0.04
ondansetron 0.03
ferroussulfate 0.01

topic 03 prob
multivitamins 0.10
ascorbicacid 0.08
levetiracetam 0.07
docusate 0.06
aspirin 0.05
zincsulfate 0.04
esomeprazole 0.04
potassiumchloride 0.04
dexamethasone 0.04
oxacillin 0.04

Medication
topic 04 prob

vancomycin 0.08
multivitamins 0.08
warfarin 0.07
docusate 0.07
cefazolin 0.07
bupivacaine 0.06
esomeprazole 0.06
aspirin 0.05
ferrousgluconate 0.05
celecoxib 0.04

topic 10 prob
ketorolac 0.14
cefazolin 0.12
lactated ringers inj 0.11
aspirin 0.10
ibuprofen 0.10
docusate 0.10
simethicone 0.08
tripedia 0.05
bupivacaine 0.04
ondansetron 0.02

Medication
topic 17 prob

trimethoprim 0.08
tacrolimus 0.08
mycophenolatem 0.06
prednisone 0.06
methylprednis 0.04
famotidine 0.03
valganciclovir 0.03
aspirin 0.03
insulin 0.03
bupivacaine 0.02

topic 14 prob
magnesiumsulfate 0.05
morphine 0.05
furosemide 0.05
metoprolol 0.04
glucose 0.04
heparin 0.04
insulin 0.04
potassiumchl 0.03
vancomycin 0.03
docusate 0.03

Medication
topic 18 prob

polyethylene 0.11
docusate 0.10
bisacodyl 0.08
simethicone 0.06
bupivacaine 0.05
diazepam 0.04
aspirin 0.04
magnesiumcitrate 0.03
vancomycin 0.03
lactulose 0.02

topic 09 prob
ibuprofen 0.15
oxytocin 0.15
docusate 0.14
lactated inject 0.14
tripedia 0.10
aspirin 0.10
bupivacaine 0.05
penicillin 0.05
influenza vac. 0.02
rhodimmuneglob 0.02

Figure 4.5: Summarized Topics for Medications

mensions, such that distances between points in the higher dimensional topic

space were preserved. The easiest method for doing this was to find the 3

principle components of the data, via principle component analysis (PCA)

[22], and plot points along these vectors. While easy to implement, this only

de-correlated dimensions. Another, more advanced approach we considered

was Multi-Dimensional Scaling (MDS) [23] [24]. MDS consists of a suite of

dimensionality reduction and scaling techniques for preserving inter point

distances as much as possible; it comes in two general forms, metric and

non-metric. An MDS algorithm starts with a matrix of item - item simi-

larities, then assigns a location to each item in N-dimensional space, where

N is specified a priori. [23] For sufficiently small N, the resulting locations

may be displayed in a graph or 2D visualization techniques such as scatter

plots. However, not all dataset were capable of being transformed using this

method; in such instances, we used PCA to transform the data. It should

be noted that the data operated on was already transformed at the time of

visualization via LDA; thus, dimensions were already fairly independent.

MDS has now become a general data analysis technique used in a wide va-

riety of fields [24]. MDS pictures the structure of a set of objects from data

that approximates the distances between pairs of the objects. Each object

or event is represented by a point in a multidimensional space. The points

are arranged in this space so that the distances between pairs of points have

the strongest possible relation to the similarities among the pairs of objects.
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Service/Location
topic 00 prob

prentice 12 0.30
prentice 8 l&d 0.28
obstetrics 0.27
prentice triage 0.12
nst triage 0.00
fienberg 8e sicu 0.00
communicable 0.00
pediatrics 0.00
gynecology 0.00
outp 0.00

topic 02 prob
general medicine 0.18
fienberg 15e 0.18
cardiology 0.18
fienberg 14e 0.16
ccu 0.10
emergency dept 1 0.07
fienberg 15w 0.03
micu 0.03
nicu 0.03
csu 0.00

Service/Location
topic 03 prob

orthopedics 0.33
fienberg 14w 0.27
asu recovery 65 0.27
fienberg 10 se 0.08
padm 0.01
fienberg 8e sicu 0.00
plastic surgery 0.00
oa surg 0.00
nicu 0.00
fienberg 13 w 0.00

topic 08 prob
fienberg 12w 0.21
general surgery 0.19
emergency dept 1 0.16
fienberg 12e 0.07
fienberg 8e sicu 0.07
surgery endocrine 0.07
edm 0.06
fienberg 11e 0.02
nicu 0.02
surgical oncology 0.01

Service/Location
topic 10 prob

fienberg 11w 0.3
cardio thoracicsurg 0.18
fienberg 7e cticu 0.18
asu recovery 65 0.18
vascular surgery 0.18
fienberg 8e sicu 0.09
padm 0.04
fienberg 15e 0.01
ccu 0.00
fienberg 10se 0.00

topic 13 prob
prentice 14 0.36
prentice asu 0.25
gynecology 0.15
gyneoncology 0.11
plastic surgery 0.05
surgical oncology 0.02
fienberg 8e sicu 0.00
emergency dept 1 0.00
radiology 0.00
edm 0.00

Service/Location
topic 18 prob

fienberg 10w 0.25
neurosurgery 0.19
nicu 0.15
neurology 0.12
fienberg 10se 0.10
asu recovery 65 0.09
emergency dept 1 0.04
padm 0.01
fienberg 10 necrc 0.00
et 0.00

topic 19 prob
gynecology 0.36
prentice 8 l&d 0.29
prentice triage 0.13
prentice 13 0.10
prentice 11 0.10
nst triage 0.01
ccu 0.00
pediatrics 0.00
icr 0.00
prentice 12 0.00

Figure 4.6: Summarized Topics for Service/Locations

That is, two similar objects are represented by two points that are close to-

gether, and two dissimilar objects are represented by two points that are far

apart. The space is usually a two- or three-dimensional Euclidean space, but

may be non-Euclidean and may have more dimensions [25]. We have imple-

mented two types of MDS methods i) Metric Classical MDS ii) Non-Metric

Classical MDS [25] defined as follows:

i) Metric multidimensional scaling : A superset of classical MDS that gen-

eralizes the optimization procedure to a variety of loss functions and input

matrices of known distances with weights and so on. A useful loss function

in this context is called stress, which is often minimized using a procedure

called stress majorization.

ii) Non-metric multidimensional scaling : In contrast to metric MDS, non-

metric MDS finds both a non-parametric monotonic relationship between the

dissimilarities in the item-item matrix and the Euclidean distances between

items, and the location of each item in the low-dimensional space. The rela-

tionship is typically found using isotonic regression.

Figure 4.7 illustrates the results of MDS on the user typing in section 4.3.

The first Figure shows the distribution of all the users in 3D space based

on their access to particular diagnosis topic (derived from LDA). The green

33



 

Figure 4.7: User Typing Visualization for Diagnosis

dots are the users within same role, whereas the blue dots are all the users

irrespective of the role. For instance, the users who access patients having

diagnosis neurological disorders will be at less distance than another user

accessing patients of type obstetrics. In 4.7 we can see that the green dots

represent clusters of users having role respiratory, but some users of the same

role are at a far distance from the original cluster, which may be an outlier.

In Chapter 5, we develop a framework to detect such outliers in the system.

The figure also shows the roles cluster together whose users behave in a

similar way. Hence, we can find RAD cluster, Psychiatry cluster, Obstetrics

cluster etc. which also give us an insight into combining different similar

roles dynamically based on the access of the users.
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Chapter 5

Anomaly Detection Model

Anomaly Detection is the process of finding outliers from a given data set.

According to the anomaly detection survey [26] the techniques can be grouped

into following categories: classification based, nearest-neighbor based, clus-

tering based and statistics based. Classification based algorithms are mainly

supervised algorithms that assume distinction between anomalous and nor-

mal instances can be modeled for a particular feature space. For instance,

given a user and label (normal or anomalous), we can learn a binary classifier

to predict if the new user is anomalous or not based on the feature space.

Whereas, nearest-neighbor based algorithms assume that anomalies lie in

sparse neighborhoods and that they are distant from their nearest neighbors.

They are mainly unsupervised algorithms. One example of such algorithm

is k-nearest neighbor algorithm which is explained in section 5.1. Clustering

based algorithms work by grouping similar objects into clusters and assume

that anomalies either do not belong to any cluster, or that they are distant

from their cluster centers or they belong to small and sparse clusters. At last,

the statistical techniques such as chi-square analysis can be done to compare

the expected distribution over observed distribution and if they differ signif-

icantly then we can detect outliers. The intuition is that if the confidence

level of any attribute in the observed distribution is significantly lower than

in the expected distribution, then it is termed as anomalous. The chapter

is organized as follows: section 5.1 discusses the mathematical model behind

the k-nearest neighbor technique and how we can use it in our RTAD frame-

work. In section 5.2 we formalize our model by defining various anomalous

users for detection based on k-nearest neighbor and LDA, discussed in section

4.1.
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5.1 k-Nearest Neighbor

An anomalous user is a user whose distance from its nearest neighbors is

sufficiently large with respect to the average distance between the neighbors.

Distance in our definition is defined as the Euclidean distance between dif-

ferent user points in space. Users with the same role are plotted according

to their conditional attribute values or topic distributions: P (DP | U). The

topic probability distribution has been derived in section 4.3 where we de-

rived the user topics from the patients based on the accesses of the user. For

the purposes of determining anomalous users, we use the k nearest neighbor’s

algorithm, which tags outliers with the same definition we gave to anomalous

users. To formulate this, suppose the set of nearest neighbors for user U is

N(U). Let the average distance between nearest neighbors be defined as the

following:1

dNN =
∑

n,m∈N(U),n 6=m

dist(n,m)
K(K−1)

2

=
2

K2 −K
∑

n,m∈N(U),n 6=m

dist(n,m) (5.1)

Similarly, let the average distance between the user and each neighbor be

defined as the following:

dNU =
1

K

K∑
i=1

dist(u, ni) (5.2)

Given this, a user is recorded as anomalous according to the following

piecewise equation, where β is the chosen threshold.

f(U,K) =

anomalous dNN

dNU
> β

regular otherwise

5.2 Random Topic Access Model

The Random Topic Access (RTA) model is a framework for describing anoma-

lous users in terms of random topics, as opposed to random access patterns.

1There are K(K−1)
2 pairs of K nearest neighbors
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Randomness in this sense can take on many subtle definitions. Within this

framework, we argue that certain types of attackers can be elegantly and ac-

curately synthetically generated. We will proceed with a discussion of these

types of anomalous users followed by a review of our implementation of this

framework, RTAD. Considering the Dirichlet distribution is the conjugate

prior of the multinomial, we felt it appropriate to convey our argument with

respect to the concentration parameter, α. Figures 5.2, 5.3, 5.4 use MDS

to project all the users in the system based on their diagnosis information

(derived in user typing). We then sample 5% of the directed users from

the Dirichlet distribution and insert into the system to visualize the overall

distribution of normal users with respect to directed users.

5.2.1 Dirichlet Distribution

Let us first get an insight into the Dirichlet distribution and its concentra-

tion parameter α. The Dirichlet distribution [27] is a family of continuous

multivariate probability distributions parametrized by a vector α of positive

reals. It is the multivariate generalization of the beta distribution. Dirichlet

distributions are very often used as prior distributions in Bayesian statistics,

and in fact the Dirichlet distribution is the conjugate prior of the categorical

distribution and multinomial distribution. The space of all m-dimensional

multinomials is an (m− 1)-simplex by definition, and so the Dirichlet distri-

bution can also be thought of as a distribution over a simplex.

Algebraically, the distribution is given by

Dir(p|α1, . . . , αm) =
1

Z

∏
k

pαk−1
k

where Z =
∏m

k=1 Γ(αk)

Γ(
∑m

k=1 αk)
is a normalization factor. 2

There are m parameters αk which are assumed to be positive. Figure 5.1

in [28] shows the density plots (blue=low, red=high) for the Dirichlet distri-

bution over the probability simplex in 3D for various values of the parameter

α. The author in [29] further explains that when α = [k, k, k] for some k > 0,

the density is symmetric about the uniform pmf (which occurs in the middle

2Γ(x) denotes the Gamma function and is defined to be:
∫∞
0
tx−1e−tdt.
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of the simplex), and the special case α = [1, 1, 1] shown in Figure 5.1 part

3 and has the uniform distribution over the simplex. In our RTAD model,

this is analogous to selecting topics (say 3 topics) from the simplex such that

the probability of selecting each topic is completely random and unbiased

towards any part of the simplex. When 0 < k < 1, there are sharp peaks of

density almost at the vertices of the simplex and the density is concentrated

at the corners of the simplex, as seen in 5.1 part 2. Hence, the probability

of selecting each topic in this case is not completely random and is biased

towards the corners of the simplex having high density points. When k > 1,

the density becomes concentrated in the center of the simplex, as shown in

the Figure 5.1 part 1.

 

Figure 5.1: Density Plots for Dirichlet Distribution α > 1, α < 1, α = 1

5.2.2 Directed or Masquerading User: α < 1

The first type of user the RTA model is capable of capturing is the directed

or masquerading user. In this scenario, an anomalous user of some specialty

gains sole access to the terminal of another user in the hospital. In this sense,

the anomalous user is masquerading as the real user, making accesses related

to his specialty while logged in as another user. Differentiating the anomalous

user from the real user are the topics ascribed to the anomalous user’s access

patterns. While these topics may be ordinary with respect to the hospital

population, it could be deviant with respect to the population of users similar

to the real user. The anomalous user in this case could be sampled from a

Dirichlet with α < 1, since real users are assumed to be strongly biased
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towards a set of few topics. Given a real user with an typical type of topic

distribution, it is highly probable that generating random anomalous users

will result in anomalous users not biased towards the same topic as the real

user.

 

Figure 5.2: Injected Directed Users for α < 1

5.2.3 Purely Random User: α = 1

The second type of user the RTA model can handle is the purely random

user. This type of user is characterized by completely random behavior, with

little semantic congruence to the hospital setting. This is the ideal form of

randomization that ROA models aspire to capture. However, because RAO

models preferentially sample randomly from the data, it would be expected

that not all random behaviors would be realized. By generating random users

from a Dirichlet with α = 1, any type of random user can be generated. This

has the nice property of allowing the system to be tested against input that

has not even been seen in the data yet.

5.2.4 Indirect User: α > 1

The third type of user modeled by RTA is the indirect user. This user type

resembles an even blend of the topics of many specialized users. The best

analogy in the hospital setting is the open terminal problem. In this scenario,

a user leaves the access to his terminal open for everyone to use; out of sheer
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Figure 5.3: Injected Completely Random Users for α = 1

convenience, users of many different specializations log in and make accesses

under this user’s account. Because the resulting accesses are made by many

different kinds of users, the logged in user resembles a sort of average of

these different extreme values. This anomalous user can best be modeled

with α > 1 in the Dirichlet distribution. This would result in sampling

preferentially from the middle of the simplex, where topic probabilities are

seemingly unbiased to every topic.

 

Figure 5.4: Injected Indirect Users for α > 1

With these different types of random users modeled in our system, we

move to our implementation of the RTA model.
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Chapter 6

Experimental Results and Evaluation

Our RTA framework, RTAD, consists of running LDA on the entire pop-

ulation of users, typing users with respect to their accesses and patients,

identifying the 5 most populated user roles, and injecting anomalous users

into each role at a 5% mix rate for various α settings: 0.01, 0.1, 1, 10, 100.

Utilizing a simple k-NN algorithm, for each of the 5 most populated users

and each α, we generated AUCs from the corresponding ROC curves gen-

erated by a simple linear classifier, utilizing the distance ratio in k-NN for

each point as a moving threshold. The k in k-NN varied from 2 to 20 and for

each role, all feature topics were evaluated. For the purposes of comparison,

we performed the same analysis for each of the individual α values on the

whole user population. A visualization of the effect of these different α values

on one of these roles is given in Figure 6.1. Utilizing classical multidimen-

sional scaling for dimensionality reduction, we graphed the projections of the

high dimensional topic space for NMH Resident Fellow CPOE and different

α such that the pairwise distance between users was preserved. Real users

are shown in blue while anomalous users are shown in red. As can be seen

comparing the top plots to the bottom plots, α values less than 1 result in

a greater amount of dispersion with respect to real users than α >= 1. As

α increases, the random users become more and more clustered, making the

anomaly detection more difficult. This chapter is organized as follows: sec-

tion 6.1 describes the basic statistics about the roles in the experiment and

the distribution of users within the roles. Sections 6.2, 6.3 and 6.4 analyze

anomaly detection experiments for all five roles, for different values of α.

Section 6.5 summarizes the analysis and discusses the intuition behind the

results.
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α = 0.1α = 0.01

α = 1 α = 100

Figure 6.1: NMH Resident Fellow CPOE (mixed topics)

6.1 Role Description

In Chapter 3 we observed the sparse nature of the dataset where very few

roles have very large number of accesses and most of the roles have few

accesses and users with the role. For the same reason, we decided to do the

analysis on five most populated roles with respect to number of users within

that role in the NMH dataset. Note that it does not change any aspect of the

analysis as the experiments are independent of the role chosen and can be

done on any given role. Basic description of the roles selected in our analysis

is as follows:

1. Med Student CPOE : All the users in this role made 149,683 accesses in

total of four month time period and the total number of users within

this role is 475. The mix rate of 5% random users gives 23 random

users.

2. NMH Resident Fellow CPOE : All the users in this role made 722,137

accesses in total of four month time period and the total number of
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users within this role is 710. The mix rate of 5% random users gives

35 random users.

3. NMH Physician Office CPOE : All the users in this role made 48,305

accesses in total of four month time period and the total number of

users within this role is 250. The mix rate of 5% random users gives

12 random users.

4. Physician Office : All the users in this role made 68,111 accesses in

total of four month time period and the total number of users within

this role is 422. The mix rate of 5% random users gives 22 random

users.

5. Patient Care Staff Nurse : All the users in this role made 1,841,851

accesses in total of four month time period and the total number of

users within this role is 1429. The mix rate of 5% random users gives

71 random users.

6.2 Simulating Directed or Masquerading User

RTAD aims at detecting three type of anomalous users and the first kind

is defined as a directed user, discussed in 5.2. In this scenario, an anoma-

lous user of a particular speciality gains sole access to the terminal of another

user in the hospital. In this sense, the anomalous user is masquerading as the

real user, making accesses related to his specialty while logged in as another

user. In Figure 6.3 we plot the AUC curves to detect the number of directed

users captured by RTAD. In 6.3 all the users are taken into consideration

without any role information. We repeat the k-NN experiments on the users

having topic distributions from diagnosis, medications, service/location, pro-

cedures, mixed and combined. We observe that the model performs well for

the values of k > 8 in the case of service/location and for others it increases

exponentially. The best dimension observed is the mixed dimension to cap-

ture directed users in the system which is ignorant of role information. As

we see that the combined and mixed dimension performs equally well in the

case of all users, we picked these two dimensions to do the k-NN experiments

for each of the five roles shown in Figure 6.2(a) and in Figure 6.2(b). The
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Figure 6.2: Directed User (α=0.01)

analysis shows that for the same dimension and the values of k the AUC is

different in each role. We observe that for k > 8 the AUC value for both

mixed and combined dimension, in the case of NMH Resident Fellow CPOE

is the best among all the roles. One reason for this might be that the role

NMH Resident Fellow CPOE is tightly clustered with respect to other users,

making the anomaly detection easier. In summary, to detect directed users,

RTAD performs the best in case of mixed dimension for all users and NMH

Resident Fellow CPOE, given the role information about the users. On com-

parison, mixed dimension is the best as compared to combined dimension for

directed RTAD model.

6.3 Simulating Pure Random User

Another type of user RTA model can handle is a pure random user. We have

already discussed this type of user in 5.2. This type of user is characterized by

completely random behavior, with little semantic congruence to the hospital

setting. By generating random users from a Dirichlet with α = 1, any type

of random user can be generated. In Figure 6.5(a) we perform the k-NN

experiments with respect to all the users in the system and in the absence

of role information. We repeat the experiment for all given dimensions of

the patient with respect to the user. In this case, we observe that the mixed

dimension performs the best as compared to other dimensions to detect a
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Figure 6.3: AUC Across all Users for α = 0.01

purely random user. The reason seems to be the tightly clustered users in

the case of mixed topics and hence, easier to detect anomalous users. Now, we

perform the same analysis taking combined and mixed dimensions and also

informing the system about the role of the users. In Figures 6.4(a) and 6.4(b),

we observe that in case of mixed dimension, Med-student CPOE performs

the worst and NMH Resident Fellow CPOE performs the best. One reason

for bad performance of a medical student might be the non-clustering of the

medical students based on their access to the patients. As medical students

are responsible for accessing different themes in the hospital, they seem like

random user which makes them difficult to differentiate from the anomalous

user. On the other hand, in the case of NMH Resident Fellow CPOE it is the

opposite. But, in the case of combined dimensions, NMH Physician Office

CPOE performs the best for values of k > 12, anomalous users appearing

more clustered with respect to real users. In summary, mixed dimension

performs the best when the system has no information about the roles, while

combined seem to perform better in the case of NMH Physician Office CPOE,

but otherwise it is consistently good in the case of mixed dimension.
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(b) Mixed Dimension

Figure 6.4: Pure Random User (α=1)
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(b) α = 100

Figure 6.5: AUC across all users for α=1 and α=100
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Figure 6.6: Indirect User (α=100)
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6.4 Simulating Indirect User

The third type of user modeled by RTA is the indirect user. The definition

of this user is also given in 5.2. This user type resembles an even blend of

the topics of many specialized users. The best analogy in the hospital setting

is the open terminal problem. In this scenario, a user leaves access to his

terminal open for everyone to use; out of sheer convenience, users of many

different specializations log in and make accesses under this users account.

This anomalous user can best be modeled with α > 1 in the Dirichlet dis-

tribution. In Figure 6.5(b), we perform the k-NN experiments with respect

to all the users in the system and in the absence of role information. We

repeat the experiment for all given dimensions of the patient with respect

to the user. We observe that the system performs very poor in detecting

indirect user. The reason is that the random users injected in the system

are clustered together and hard to detect as an outlier. Service/Location

performs as the best dimension among others to best differentiate indirect

RTA user from the other users. In Figures 6.6(a) and 6.6(b), we observe

that in the case of mixed dimension, almost all the roles perform bad except

NMH Physician Office CPOE and the performance increases for the values

of k > 12. NMH Physician Office CPOE shows similar results in the case of

combined dimension. We will explore the reason for this inversion in the next

section. In general medical student CPOE seems to be performing the worst

among all the roles. Though in the case of indirect users, both combined and

mixed dimension perform equally bad.

6.5 Summary of the Analysis

In summary, we compared the best AUC for each role and α. Figure 6.7

and Figure 6.8 show the best AUC’s for each role-α combination, with the

whole user population used as a control. For masquerading users α < 1, the

resulting AUC’s are extremely strong, especially for highly specialized users

(α = 0.01). This is expected; since the synthetic users are driven to the edge

of the simplex, it is highly probable they will not be biased towards the same

topic as the majority of the users in a role. As a result, they will approach

the maximum distance that can be achieved on the simplex and will appear
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Figure 6.7: The best AUC across all evaluated dimensions is plotted for
each role performing badly for α > 1.

more varied with respect to the users in the role. As the system transitions to

more random users, the resulting AUC’s suffer somewhat for all roles, except

for NMH Physician Office CPOE. In analyzing the results of NMH Physi-

cian Office CPOE, the system actually inverts itself, with anomalous users

appearing more clustered with respect to real users. This trend continues as

the system is evaluated against undirected users, which is also expected, as

the anomalous users will become more and more clustered. With respect to

the baseline, utilizing semantic role information is a huge boost to the system

for directed users and generally performs as well or better for purely random

users. Performance suffers for some roles tested against undirected users com-

pared to the baseline; this discrepancy is intuitive in the context of k-NN as

the simplex is more populated in the baseline case, meaning that there is a

higher likelihood of local clusters of users across different roles. With respect

to the Med-Student CPOE role, our findings regarding the response of this

role to the RTA framework make intuitive sense. Medical students typically

undergo rotations where they specialize in a particular area of medicine for a

fixed amount of time. As a result, over the 4 month sampling interval, they

will have accummulated many different kinds of accesses into their history.

As a result, it would be expected that this role would suffer the most when

tested against the purely random user, as this is what the average medical

student could be modeled as. Additionally, it is no surprise that the results
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Figure 6.8: The best AUC across all evaluated dimensions is plotted for
each role performing well or near average for α > 1.

recover somewhat as the anomalous users become more tightly clustered, but

less random.

Regarding our inquiry of which dimension outperforms others with respect

to AUC, there is not any clear advantage from utilizing mixed information

versus concatenated vectors or mixed topics versus single dimension topics.

The best topic dimensions selected for each role - α varied considerably. So

much so, that no discernible trend could be reached from this small dataset.
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Chapter 7

Conclusions and Future Scope

Overall, we were able to demonstrate a lack of coverage in the existing

methodology for evaluating security models utilizing random users. The

classical technique, modeling atypical access by completely random behavior

(ROA), is constrained by the particular dataset and can not necessarily imag-

ine all types of conceivable attackers. Utilizing latent topics models such as

LDA, the RTA model provides more robust coverage of the different type of

attackers by generating synthetic users directly from a topic simplex, as op-

posed to data. In this manner, you can think of the dataset as being a sample

from a larger, unseen population distribution. Transformation to the topic

domain may not allow us to realize new types of real users, but it enables the

system to be evaluated against potentially unseen adversaries. Additionally,

we posited some plausible adversarial archetypes with respect to the α pa-

rameter, controlling the distribution on the simplex. Future work along these

lines includes carefully controlled experimental validation of these different

types of adversaries in hospital settings as well as investigating the efficacy of

integrating labeled role information for users into the LDA component of the

RTAD framework. We also plan to extend the RTAD framework by using

Labeled LDA (supervised learning algorithm), which learns the model by the

information given in the form of patient labels. The intuition is that the clus-

ter of users formed in this case will be more compact than in unsupervised

LDA and hence it will be easier to detect anomalies in such a framework.

50



References

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[2] [Online]. Available: http://www.hhs.gov/ocr/privacy/

[3] S. Gupta, C. Hanson, C. A. Gunter, F. Mario, D. Liebovitz, and B. Ma-
lin, “Modeling and detecting anomalous topic access,” IEEE Interna-
tional Conference on Intelligence and Security Informatics, 2013, 2013.

[4] D. Garets and M. Davis, “Electronic medical records vs. electronic
health records: Yes, there is a difference,” HIMSS Analytics White Pa-
per, pp. 772–776, 2006.

[5] W. R. Herrsh, “The electronic medical record: Promises and problems,”
Journal of the American Society for Information Science, 1995.

[6] [Online]. Available: hhttp://www.whitehouse.gov/sites/default/files/
microsites/ostp/pcast-health-it-report.pdf

[7] G. Carl, D. M. Liebovitz, and B. Malin, “Experienced based access
management,” IEEE Computer and Reliability Societies, vol. 3, pp. 48–
55, 2011.

[8] [Online]. Available: http://www.cdc.gov/nchs/icd.htm

[9] [Online]. Available: http://www.cdc.gov/nchs/icd.htm

[10] [Online]. Available: https://www.nlm.nih.gov/research/umls/rxnorm/

[11] A. Boxwala, J. Kim, J. Grillo, and L. Ohno-Machado, “Using statistical
and machine learning to help institutions detect suspicious access to
electronic health records,” Journal of the American Medical Informatics
Association, vol. 18, no. 4, pp. 498–505, 2011.

[12] Y. Chen and B. Malin, “Detecting anomalous insiders in collaborative
information systems,” IEEE Transactions on Dependable and Secure
Computing, vol. 9, no. 3, pp. 332–344, May 2012.

51

http://www.hhs.gov/ocr/privacy/
hhttp://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-health-it-report.pdf
hhttp://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-health-it-report.pdf
http://www.cdc.gov/nchs/icd.htm
http://www.cdc.gov/nchs/icd.htm
https://www.nlm.nih.gov/research/umls/rxnorm/


[13] Y. Chen, S. Nyemba, W. Zhang, and B. Malin, “Leveraging social
networks to detect anomalous insider actions in collaborative environ-
ments,” IEEE International Conference on Intelligence and Security In-
formatics, pp. 119–124, 2011.

[14] D. Fabbri and K. LeFevre, “Explaining accesses to electronic medical
records using diagnosis information,” Journal of the American Medical
Informatics Association, vol. 20, no. 1, pp. 52–60, 2013.

[15] K. Das, J. Schneider, and N. D., “Anomaly pattern detection in cate-
gorical datasets,” KDD, pp. 169–176, 2008.

[16] K. Wang and S. J. Stolfo, “One-class training for masquerade detec-
tion,” 3rd IEEE Conference Data Mining Workshop on Data Mining
for Computer Security, 2003.

[17] R. A. Maxion, “Masquerade detection using enriched command lines,”
International Conference on Dependable Systems and Networks, pp. 5–
14, 2003.

[18] R. Chinchani, A. Muthukrishnan, and S. Upadhyaya, “Racoon: Rapidly
generating user command data for anomaly detection from customizable
templates,” 20th Annual Computer Security Applications Conference,
2004.

[19] A. Garg and R. Rahalkar, “Profiling users in gui based systems for mas-
querade detection,” IEEE Workshop on Information Assurance United
States Military Academy, pp. 48–54, 2006.

[20] W. Van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: dis-
covering process models from event logs,” IEEE Transactions on Knowl-
edge and Data Engineering, 2004.

[21] B. van Dongen, A. de Medeiros, H. Verbeek, A. Weijters, , and
W. van der Aalst, “The prom framework: a new era in process mining
tool support,” ICATPN’05 Proceedings of the 26th international confer-
ence on Applications and Theory of Petri Nets, pp. 444–454, 2005.

[22] [Online]. Available: https://en.wikipedia.org/wiki/Principal
component analysis

[23] [Online]. Available: http://en.wikipedia.org/wiki/Multidimensional
scaling

[24] M. L. Schiffman. S. S Reynolds and Y. F. W., “The prom framework:
a new era in process mining tool support,” Introduction to Multidimen-
sional Scaling. Academic Press, New York, 1981.

52

https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Multidimensional_scaling
http://en.wikipedia.org/wiki/Multidimensional_scaling


[25] [Online]. Available: http://forrest.psych.unc.edu/teaching/p208a/mds/
mds.html

[26] V. Chandola, A. Banerjee, , and V. Kumar, “Anomaly detection: A
survey. technical report,” 2007.

[27] [Online]. Available: http://en.wikipedia.org/wiki/Dirichlet distribution

[28] J. Huang, “Maximum likelihood estimation of dirichlet distribution pa-
rameters.”

[29] B. A. Frigyik, A. Kapila, and M. R. Gupta, “Introduction to the dirichlet
distribution and related processes,” UWEE Technical Report Number
UWEETR-2010-0006, 2006.

53

http://forrest.psych.unc.edu/teaching/p208a/mds/mds.html
http://forrest.psych.unc.edu/teaching/p208a/mds/mds.html
http://en.wikipedia.org/wiki/Dirichlet_distribution

	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1 Introduction and Overview
	Overview of Electronic Medical Record
	Problem Statement
	Summary of the Main Challenges

	Approach to the Problem
	Summary of the Main Contributions

	Structure of This Thesis

	Chapter 2 Background and Related Work
	Clinical Terminologies
	ICD-9 Diagnosis
	ICD-9-CM Procedures
	RxNorm

	Random Object Access Model
	Masquerading User Model
	Process Mining Model

	Chapter 3 Dataset Analysis
	Data Description
	Audit Log Data
	EMR Data

	Data Statistics

	Chapter 4 Topic Modeling
	Latent Dirichilet Allocation
	Perplexity Measure
	User Typing
	User Typing With Access Log Data
	User Typing with EHR Data

	Topic Summarization
	Multidimensional Scaling

	Chapter 5 Anomaly Detection Model
	k-Nearest Neighbor
	Random Topic Access Model
	Dirichlet Distribution
	Directed or Masquerading User: < 1
	Purely Random User: = 1
	Indirect User: > 1


	Chapter 6 Experimental Results and Evaluation
	Role Description
	Simulating Directed or Masquerading User
	Simulating Pure Random User
	Simulating Indirect User
	Summary of the Analysis

	Chapter 7 Conclusions and Future Scope
	References

