
1

Fundamentals of
Programming Languages

Evan Chang

Meeting 1: Welcome

CSCI 5535, Spring 2010

http://www.cs.colorado.edu/~bec/courses/csci5535-s10/

Introductions

• Who am I?

• About you?
– What do you want to get out of this class?

2

3

Administrivia

• Website
http://www.cs.colorado.edu/~bec/courses/csci5535-s10/

– readings, slides, assignments, etc.

• Moodle
– discussion forums, assignment submission

• Office hours
– T 1-2, R 4:45-5:45?

– and by appointment

– ECOT 621 and on Gchat/Skype (see moodle)

Today

• Some historical context

• Goals for this course

• Requirements and grading

• Course summary

• Convince you that PL is useful

4

Meta-Level Information

• Please interrupt at any time!

• It’s completely ok to say:
– I don’t understand. Please say it another way.

– Slow down! Wait, I want to read that!

• Discussion, not lecture

5

“Isn’t PL a solved problem?”

• PL is an old field within Computer Science

• 1920’s: “computer” = “person”

• 1936: Church’s Lambda Calculus (= PL!)

• 1937: Shannon’s digital circuit design

• 1940’s: first digital computers

• 1950’s: FORTRAN (= PL!)

• 1958: LISP (= PL!)
• 1960’s: Unix

• 1972: C Programming Language

• 1981: TCP/IP

• 1985: Microsoft Windows
6

2

New and Better Compilers?

7

A Dismal View of PL Research

8

C++

Java

Programming Languages

• Touches most other areas of CS
– Theory: DFAs, TMs, language theory (e.g., LALR)

– Systems: system calls, memory management

– Arch: compiler targets, optimizations, stack frames

– Numerics: FORTRAN, IEEE FP, Matlab

– AI: theorem proving, search

– DB: SQL, transactions

– Networking: packet filters, protocols

– Graphics: OpenGL, LaTeX, PostScript

– Security: buffer overruns, .NET, bytecode, PCC, …

– Computational Biology: pathway models

– Software Engineering: software quality, development tools

– Human Computer Interaction: development tools

• Both theory (math) and practice (engineering) 9

Overarching Theme

• I assert (and shall convince you) that

• PL is one of the most vibrant and active
areas of CS research today
– It is both theoretical and practical

– It intersects most other CS areas

• You will be able to use PL techniques in
your own projects

10

Goals

Goal 1

Learn to use advanced PL
techniques

12

3

No Useless Memorization

• I will not waste your time with useless
memorization

• This course will cover complex subjects

• I will teach their details to help you
understand them the first time

• But you will never have to memorize
anything low-level

• Rather, learn to apply broad concepts

13

Goal 2

When (not if) you design a
language, it will avoid the
mistakes of the past, and you
will be able to describe it
formally

14

15

Discussion: Language Design

• Languages are adopted to fill a void
– Enable a previously difficult/impossible application

– Orthogonal to language design quality (almost)

• Training is the dominant adoption cost
– Languages with many users are replaced rarely

– But easy to start in a new niche. Examples:

16

Why so many languages?

17

Why so many languages?

• Many languages were created for specific applications

• Application domains have distinctive (and conflicting)
needs
– which leads to a proliferation of languages.

• Examples:
– Artificial intelligence: symbolic computation (Lisp, Prolog)

– Scientific Computing: high performance (Fortran)

– Business: report generation (COBOL)

– Systems programming: low-level access (C)

– Scripting (Perl, ML, Javascript, TCL)

– Distributed systems: mobile computation (Java)

– Special purpose languages: …

18

Why so many languages?

• Examples:
– AI: symbolic computation (Lisp, Prolog)

– Scientific Computing: high performance (Fortran)

– Business: report generation (COBOL)

– Systems Programming: low-level access (C)

– Scripting (Perl, Python, TCL)

– Distributed Systems: mobile computation (Java)

– Web (PHP)

– Special purpose languages: …

4

19

Language Paradigms

Loose classification of languages.
• Imperative (Examples? Notion of Computation?)

20

Language Paradigms

Loose classification of languages.
• Other paradigms with which you have experience?

21

Language Paradigms

• Imperative
– Fortran, Algol, Cobol, C, Pascal

• Functional
– Lisp, Scheme, ML, Haskell

• Object oriented
– Smalltalk, Eiffel, Self, C++, Java, C#, Javascript

• Logic
– Prolog

• Concurrent
– CSP, dialects of the above languages

• Special purpose
– TEX, Postscript, TrueType, sh, HTML, make

22

What makes a good language?

• No universally accepted metrics for
design

• “A good language is one people use” ?

23

What are good language features?

24

What are good language features?

• Simplicity (syntax and semantics)

• Readability

• Safety

• Support for programming large systems

• Efficiency (of execution and compilation)

5

25

Designing good languages is hard

• Goals almost always conflict.

• Examples:
– Safety checks cost something in either
compilation or execution time.

– Type systems restrict programming style in
exchange for strong guarantees.

26

Story: The Clash of Two Features

• Real story about bad programming
language design

• Cast includes famous scientists

• ML (’82) functional language with
polymorphism and monomorphic
references (i.e., pointers)

• Standard ML (’85) innovates by adding
polymorphic references

• It took 10 years to fix the “innovation”

27

Polymorphism (Informal)

• Code that works uniformly on various types of data

• Examples of function signatures:
length : α list → int (takes an argument of type “list of α”,

returns an integer, for any type α)

head : α list → α

• Type inference:
– generalize all elements of the input type that are not used by

the computation

28

References in Standard ML

• Like “updatable pointers” in C

• Type constructor: τ ref
x : int ref “x is a pointer to an integer”

• Expressions:
ref : τ → τ ref

(allocate a cell to store a τ, like malloc)

!e : τ when e : τ ref

(read through a pointer, like *e)

e := e’ with e : τ ref and e’ : τ

(write through a pointer, like *e = e’)

• Works just as you might expect

29

Polymorphic References: A Major Pain

Consider the following program fragment:

Code Type inference
fun id(x) = x id : α → α (for any α)

val c = ref id c : (α → α) ref (for any α)

fun inc(x) = x + 1 inc : int → int

c := inc Ok, since c : (int → int) ref

(!c) (true) Ok, since c : (bool → bool) ref

30

Reconciling Polymorphism and
References

• Type system fails to prevent a type error!

• Commonly accepted solution today:
– value restriction: generalize only the type of
values!
• easy to use, simple proof of soundness

– many “failed fixes”

• To see what went wrong we need to
understand semantics, type systems,
polymorphism and references

6

31

Story: Java Bytecode Subroutines

• Java bytecode programs contain subroutines
(jsr) that run in the caller’s stack frame (why?)

• jsr complicates the formal semantics of
bytecodes
– Several verifier bugs were in code implementing jsr

– 30% of typing rules, 50% of soundness proof due to jsr

• It is not worth it:
– In 650K lines of Java code, 230 subroutines, saving
2427 bytes, or 0.02%

– 13 times more space could be saved by renaming the
language back to Oak

Recall Goal 2

When (not if) you design a
language, it will avoid the
mistakes of the past, and you
will be able to describe it
formally

32

Goal 3

Understand current PL
research (POPL, PLDI,
OOPSLA, TOPLAS, …)

33

Most Important Goal

Have Lots of Fun!

34

Requirements

36

Prerequisites

• “Programming experience”
– exposure to various language constructs and their
meaning (e.g., CSCI 3155)

– ideal: undergraduate compilers (e.g., CSCI 4555)

• “Mathematical maturity”
– we’ll use formal notation to describe the meaning of
programs

• If you are an undergraduate or from another
department, please see me.

7

Assignments

• Reading and participation (each meeting)

• Weekly homework (for half semester)

• Take-home midterm exam

• Final project

37

Reading and Participation

• ~2 papers/book chapter, each meeting
– Spark class discussion, post/bring questions

• Online discussion forum
– Post ≥1 substantive comment, question, or
answer for each lecture

– On moodle.cs.colorado.edu

– Due before the next meeting

– Distance students participate more online!

38

What is “substantive”?

• May be less than a blog post but more than a
tweet.

• Some examples:
– Questions

– Thoughtful answers

– Clarification of some point

– What you think is the main point in the reading set.

– An idea of how some work could be improved

– Comments on a related web resource related

• Intent: take a moment to reflect on the day’s
reading/discussion (not to go scour the web)

39

Homework and Exam

• Homework/Problem Sets
– You have one week to do each one

– First half of the semester only

– Some material will be “mathy”

– Collaborate with peers (but acknowledge!)

• Take-Home Midterm Exam
– Like a longer homework

40

Final Project

• Options:
– Research project

– Literature survey

– Implementation project

• Write a ~5-8 page paper (conference-like)

• Give a ~15-20 minute presentation

• On a topic of your choice
– Ideal: integrate PL with your research

• Pair projects (indiv/3-person possible)
41

Course Summary

8

Course At-A-Glance

• Part I: Language Specification
– Semantics = Describing programs

– Evaluation strategies, imperative languages

– Textbook: Glynn Winskel. The Formal
Semantics of Programming Languages.

• Part II: Language Design
– Types = Classifying programs

– Typed λ-calculus, functional languages

• Part III: Applications

43

Core Topics

• Semantics
– Operational semantics

• rules for execution on an abstract machine

• useful for implementing a compiler or interpreter

– Axiomatic semantics
• logical rules for reasoning about the behavior of a program

• useful for proving program correctness

– Abstract interpretation
• application: program analysis

• Types
– λ-calculus

• tiny language to study core issues in isolation
44

Possible Special Topics

• Software model checking

• Object-oriented languages

• Types for low-level languages

• Types for resource management

• Shape analysis

• What do you want to hear about?

45

First Topic: Model Checking

• Verify properties or find bugs in software

• Take an important program (e.g., a device driver)
• Merge it with a property (e.g., no deadlocks)
• Transform the result into a boolean program
• Use a model checker to exhaustively explore the

resulting state space
– Result 1: program provably satisfies property
– Result 2: program violates property “right here on line

92,376”!

46

For Next Time

• Join the course moodle and introduce
yourself (forum discussion for today)
– Write a few sentences on why you are
taking this course

• Read the two articles on SLAM
– see the website under “Schedule”

47

