Cheatsheet of Sagemath in Linear Algebra

Cheatsheet of Sagemath in Linear Algebra

1. Matrix and vectors

solve system of linear equations

Reduced row echelon form

Three Row Operations

Vector operations

2. Eigenvalues and Eigenvectors

Eigenvalues

Characteristic_polynomial

Eigenvectors_right()

Last updates: 2020/05/04

1. Matrix and vectors

There are three ways to define a matrix.

```
A = matrix([[1,5],[2,6]])
A
```

```
[1 5]
[2 6]
```

```
B = matrix(QQ, [[1,-2,1],[0,2,-8],[5,0,-5]])
B
```

```
[ 1 -2 1]
[ 0 2 -8]
[ 5 0 -5]
```

```
C = matrix(3, 3, [[4, -1, 6], [2, 1, 6], [2,-1,8]])
C
```

```
[ 4 -1 6]
[ 2 1 6]
[ 2 -1 8]
```

Sometimes, the following matrix is used very often.

```
D = identity_matrix(QQ, 5)
D
```

```
[1 0 0 0 0]

[0 1 0 0 0]

[0 0 1 0 0]

[0 0 0 1 0]

[0 0 0 0 1]
```

Vector can be defined as

```
v = vector([0,8,10])
u = vector([1,-3,5])
```

solve system of linear equations

 $B \mathbb{x}=v$

```
B\v
```

```
(1, 0, -1)
```

If you would like to get the augmented matrix of the linear system Bx=v

```
M=B.augment(v)
M
```

```
[ 1 -2 1 0]
[ 0 2 -8 8]
[ 5 0 -5 10]
```

Reduced row echelon form

To get the reduced row echelon form, use the commend M.rref()

```
M.rref()
```

```
[ 1 0 0 1]
[ 0 1 0 0]
[ 0 0 1 -1]
```

Three Row Operations

There are three commands for the elementary operations

- 1.(Replacement) add k times row i to row j: M.with_added_multiple_of_row(j,i,k)
- 2.(Interchange) swap the row i and row j: M.with_swapped_rows(i,j)
- 3.(Scaling) k times row i: M.with_rescaled_row(i,k)

It is not necessary to memorize the commands, you first type: M.with_, then press Tab. You will be able to select the commands.

```
M0 = M.with_swapped_rows(1,2)
M0
```

```
M1 = M0.with_added_multiple_of_row(1,0,-5)
M1
```

```
[ 1 -2 1 0]
[ 0 10 -10 10]
[ 0 2 -8 8]
```

```
M2 = M1.with_rescaled_row(1, 1/10)
M2
```

```
[ 1 -2 1 0]
[ 0 1 -1 1]
[ 0 2 -8 8]
```

Vector operations

```
u+v, -2*v
```

```
((1, 5, 15), (0, -16, -20))
```

2. Eigenvalues and Eigenvectors

Eigenvalues

```
C.eigenvalues()
```

Characteristic_polynomial

```
cp = C.characteristic_polynomial()
cp
```

```
x^3 - 13*x^2 + 40*x - 36
```

```
cp.factor()
```

```
(x - 9) * (x - 2)^2
```

Eigenvectors_right()

```
C.eigenvectors_right()
```

```
[(9, [
(1, 1, 1)
], 1), (2, [
(1, 0, -1/3),
(0, 1, 1/6)
], 2)]
```

Last updates: 2020/05/04