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Abstract. We discuss the proportionally fair allocation of a set of in-
divisible items to k agents. We assume that each agent specifies only
a ranking of the items from best to worst. Agents do not specify their
valuations of the items. An allocation is proportionally fair if all agents
believe that they have received their fair share of the value according to
how they value the items.

We give simple conditions (and a fast algorithm) for determining
whether the agents rankings give sufficient information to determine a
proportionally fair allocation. An important special case is a divorce
situation with two agents. For such a divorce situation, we provide a
particularly simple allocation rule that should have applications in the
real world.
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1 Introduction

Let us consider the purely fictional situation where after twenty years of mar-
riage, the purely fictional characters Ivana and Donald decide to divorce. Which
of them will get the purely fictional family estate in Connecticut? Who will
get the purely fictional family home in Palm Beach? The purely fictional hotel
in Honolulu? The purely fictional hotel in Chicago? The one in Toronto? And
the ones in Tampa, Fort Lauderdale, and Atlanta? Well, they clearly will have
to agree on a good way of dividing their property. The division is very easy
to implement, if one of the partners gets nothing whereas the other one gets
everything, that is, if the division is implemented according to the well-known
“Don’t get mad, get everything” rule. The division becomes substantially more
difficult, if they both are entitled to 50 percent of their common property; and
the analysis of such situations is the topic of this paper.
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Let us start with a highly simplified situation (essentially taken from the sec-
ond chapter of Brams & Taylor, 1999) where the property of the divorcing couple
Ivana and Donald only consists of the following four items: a four-bedroom house,
a retirement account (pension), a portfolio of investments, and the custody of
their three children. Ivana and Donald rank these four items in the following
way:

Rank Ivana Donald

1 Pension House

2 House Investments

3 Investments Custody

4 Custody Pension

Brams & Taylor suggest several allocation protocols that are based on alter-
nately choosing items, and they point out some of the trouble that can arise
from strategic, irrational, or revengeful behavior. (And of course we do expect
Ivana and Donald to behave strategically, irrationally, and revengefully!) But let
us note that this particular example with four items actually allows a straight-
forward allocation that is proportionally fair, which in this setting means that
both parties believe that they have received at least half of the aggregate value
of the items according to how they value the items: Ivana could get the pen-
sion and the investments, and Donald could get the house and custody. Ivana
believes that this allocation gives her at least half of the value since she prefers
the pension to the house and the investments to the custody. Similarly Donald
believes that this allocation gives him at least half of the value since he prefers
the house to the investments and custody to the pension. This is independent
of the exact financial or emotional values that are responsible for their rankings.
Hence in this particular example, Ivana and Donald can settle peacefully.

Here is a second, more troublesome scenario for Ivana and Donald:

Rank Ivana Donald

1 Custody Custody

2 House House

3 Investments Investments

4 Pension Pension

Without querying more information on the precise values that Ivana and
Donald respectively assign to their items, it is not possible to find an allocation
that is guaranteed to be proportionally fair. For instance in case both partners
value custody strictly higher than house plus investments plus pension together,
whichever partner doesn’t get the custody would view the allocation as unfair.
Intuitively the first divorce scenario allows a simple solution because Ivana and
Donald disagree on their rankings; the second divorce scenario does not allow a
simple solution because Ivana and Donald perfectly agree on their rankings.
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Ivana and Donald’s problem deals with the fair allocation of indivisible items.
Fair divisions of continuously divisible items fall into the closely related area of
cake cutting; see for instance Brams & Taylor (1996) and Robertson & Webb
(1998). A recurrent theme in cake cutting is that the right management of dis-
agreement will make all involved parties happier. Steinhaus (1948) attributes this
crucial observation on cake division to Bronis�law Knaster: “It may be stated inci-
dentally that if there are two (or more) partners with different estimations, there
exists a division giving to everybody more than his due part. This fact disproves
the common opinion that differences in estimations make fair division difficult.”
Dubins & Spanier (1961) gave a non-constructive existence proof for Knaster’s
observation, whereas Woodall (1986) later provided a constructive algorithmic
proof for this result.

Consider one final scenario for Ivana and Donald:

Rank Ivana Donald

1 Custody House

2 House Custody

3 Investments Investments

4 Pension Pension

In this scenario, there is disagreement on the rankings. But in this case the
disagreement is insufficient to determine an allocation that is guaranteed to be
proportionally fair. If Ivana for instance is allocated custody and the investments,
then Donald might be unhappy since he assigns equally high values to custody,
house and investments, but no value to the pension. And if Ivana for instance
gets custody and the pension, then she herself might be unhappy for similar
reasons.

Contributions of This Paper. In this paper we consider the proportionally fair
allocation of a set of indivisible items to k agents. We assume that each agent
specifies only an ordinal ranking of the items from best to worst. Agents do not
specify their valuations of the items. An allocation is proportionally fair if all
agents believe that they have received their fair share of the value according to
how they personally value the items. We give a more precise formulation of the
problem in Section 2. In Section 3 we give simple conditions for determining
whether there is sufficient disagreement in the agents rankings to determine a
proportionally fair allocation; in Section 4 we translate our insights into a fast
recognition algorithm.

An important special case is a divorce situation with two agents (as in the
purely fictional example with Ivana and Donald). Our main result in Section 5
is an extremely simple allocation rule that solves the classical common-property
divorce situation in which each spouse is entitled to at least half of the joint
assets. This rule could serve as a first step in real-world divorce settlement nego-
tiations. If our rule detects an allocation, then in principle both parties should
be satisfied with this allocation. If our rule fails to detect an allocation, then one
would have to resort to other (more elaborate) division mechanisms as discussed
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by Brams & Taylor (1999); and if everything else fails, there always remains the
possibility of lengthy court battles.

We stress that our approach only asks every agent to provide their personal
ordinal ranking of the items, but does not require to have precise cardinal in-
formation on how much they value every particular item. Of course, ordinal
information is much easier to provide than cardinal information.

2 Formal Definition of the Allocation Problem

Consider a set I of n indivisible items 1, . . . , n that are to be allocated to k
agents 1, . . . , k. Every agent j is entitled to a proportion aj of these items; we
assume that 0 < aj < 1 and that all these proportions add up to 1, that is,

that
∑k

j=1 aj = 1 holds. The most interesting special case is certainly when

the proportions are equal, that is when each aj = 1
k . We write i1 ≺j i2 (or

equivalently i2 �j i1) to denote that agent j values item i2 strictly higher than
item i1. The preferences of agent j are summarized in his ordinal ranking πj of
the n items with

πj(1) �j πj(2) �j · · · · · · �j πj(n).

Agent j lexicographically prefers an item set I1 ⊆ I to another item set I2 ⊆ I,
if I1 − I2 contains an item that he ranks better than all the items in I2 − I1.

Next consider a valuation v : I → R that assigns non-negative real values
v(1), . . . , v(n) to the items 1, . . . , n (these values could for instance be measured
in dollars, or they could be based on emotions). We assume that valuations are
additive on the subsets of I; hence the value of a subset J ⊆ I is defined as
v(J) =

∑
i∈J v(i). An allocation is a partition of the item set I into disjoint

subsets I1, . . . , Ik where subset Ij is given to agent j. If v(J) ≥ ajv(I), then
subset J ⊆ I is proportionally fair for agent j under valuation v. A proportionally
fair allocation is an allocation that is proportionally fair to all k agents. A
valuation v is compatible with the ordinal ranking of agent j, if i1 ≺j i2 implies
v(i1) ≤ v(i2) for all items i1 and i2. Here is the first central definition of this
paper.

Definition 1. A subset J ⊆ I of items is ordinally acceptable for agent j, if
it is proportionally fair for every valuation v that is compatible with j’s ordinal
ranking.

If there are three items 1, 2, 3 that an agent with proportional entitlement 1
2

ranks 1 � 2 � 3, then the item set {1} will be ordinally acceptable for him under
the compatible valuation v(1) = 100 and v(2) = v(3) = 1. Note however that
item set {1} is not ordinally acceptable for him, since under another compatible
valuation v′(1) = 100 and v′(2) = v′(3) = 99 the set would not be proportionally
fair for him.

Here is the second central definition of this paper.
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Definition 2. An allocation I1, . . . , Ik is ordinally fair, if for every agent j the
set Ij is ordinally acceptable.

An ordinally fair allocation is the cheapest and simplest way of reaching a com-
promise that is ordinally acceptable for all participating agents. In the following
sections, we discuss how to recognize whether a particular situation allows such
an ordinally fair allocation.

3 Combinatorial Characterizations

In this section we derive combinatorial results on ordinally acceptable item sets
and ordinally fair allocations. Our first result is a purely combinatorial charac-
terization of ordinally acceptable item sets whose statement does not use item
valuations.

Lemma 1. A subset J ⊆ I of items is ordinally acceptable for agent j, if and
only if for every p with 1 ≤ p ≤ n the following condition is satisfied:

|J ∩ {πj(1), . . . , πj(p)}| ≥ ajp. (1)

Proof. To simplify the presentation, we will assume throughout the proof that
the ordinal ranking of agent j is 1 �j 2 �j 3 �j · · · �j n and hence πj(i) = i
holds for all i. Furthermore, we will only consider valuations v that satisfy 0 ≤
v(i) ≤ 1 for all items i ∈ I; this can be done without loss of generality since the
values v(i) can be scaled and normalized.

Now consider a valuation v as a geometric point in n-dimensional Euclidean
space. Which points in R

n correspond to valuations that are compatible with
agent j’s ordinal ranking? First, every coordinate i with 1 ≤ i ≤ n must satisfy
v(i) ≥ 0 and v(i) ≤ 1. Secondly, every coordinate i with 1 ≤ i ≤ n − 1 must
satisfy v(i) ≥ v(i+ 1). Hence we are dealing with a convex compact subset V of
the n-dimensional unit cube that is the intersection of the halfspaces bounded
by these 3n − 1 hyperplanes. The extreme points of the polytope V are the
intersection points of n-element subsets of these hyperplanes, that is, the n +
1 points E0, . . . , En, where the first p coordinates of point Ep are 1 and the
remaining n − p coordinates are 0. To see that Ep is an extreme point of V ,
note that Ep is the unique point in V maximizing

∑p
i=1 v(i). To see that there

are no other extreme points in V consider a linear objective
∑n

i=1 βiv(i), and a
candidate extreme point v̂. If there are a v̂(i) and v̂(i+1), where neither is 0 or 1,
then one can increase and decrease the value of this objective, while maintaining
feasibility, by increasing and decreasing v̂(i) and v̂(i+1) by some identical small
amount.

Next consider an item set J ⊆ I. Under which valuations v ∈ V will set J be
ordinally acceptable for agent j? By definition, these are the valuations v that
satisfy the linear inequality

∑
i∈J v(i) ≥ αj

∑
i∈I v(i) and hence are contained

in the closed halfspace H ⊆ R
n that underlies this inequality. Set J is ordinally

acceptable for agent j if and only if the polytope V is entirely contained in H ,
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which is the case if and only if all the extreme points Ep with 0 ≤ p ≤ n of the
polytope are contained in H . Now the origin E0 is trivially contained in H , and
the statement Ep ∈ H for 1 ≤ p ≤ n is equivalent to condition (1). 
�
The following lemma yields a second combinatorial characterization of ordinally
acceptable item sets.

Lemma 2. Let J ⊆ I be a set of m items, and let r1 < r2 < · · · < rm denote
the ranks of the items in J in the ranking of agent j (in other words, this set
J consists of the r1-most favorite item, the r2-most favorite item, . . . , and the
rm-most favorite item for agent j). Then set J is ordinally acceptable for agent
j, if and only if the following two conditions hold: First

ajn ≤ m, (2)

and secondly all � with 1 ≤ � ≤ m satisfy

r� ≤ (�− 1)
1

aj
+ 1. (3)

Proof. We use the characterization in Lemma 1. For the if-statement, assume
that set J satisfies (2) and (3), and note that this implies r1 = 1. Consider some
p with 1 ≤ p ≤ n. If r�−1 ≤ p ≤ r� − 1 with 2 ≤ � ≤ m, then (3) implies

|J ∩ {πj(1), . . . , πj(p)}| = �− 1 ≥ aj(r� − 1) ≥ ajp,

which yields (1). If rm ≤ p ≤ n, then (2) implies

|J ∩ {πj(1), . . . , πj(p)}| = m ≥ ajn ≥ ajp,

which again yields (1). For the only-if-statement, assume that J is ordinally
acceptable. Then by setting p = 1, respectively by setting p = r� − 1 with
2 ≤ � ≤ m, condition (1) implies condition (3). Finally (2) follows by using
p = n in (1). 
�
The statements in Lemma 1 and Lemma 2 put severe constraints on situations
that allow ordinally fair allocations. The following lemma shows that in ordinally
fair allocations the aj ’s must be rational numbers of a very special form, and
that the numerators of these rational numbers a priori determine the number of
items that are allocated to every agent.

Lemma 3. Assume that there exists an ordinally fair allocation where agent j
(j = 1, . . . , k) receives bj items. Then aj = bj/n holds for j = 1, . . . , k.

Proof. Consider an ordinally fair allocation that allocates bj items to agent j.
Then condition (2) in Lemma 2 implies bj ≥ ajn. Since all proportions aj add
up to a total of 1, this leads to

n =

k∑

j=1

bj ≥ n

k∑

j=1

aj = n.

This implies that every inequality in fact is an equality, and consequently that
bj = ajn holds for all j. 
�
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4 An Efficient Algorithmic Characterization

In this section, we provide a fast algorithm that recognizes situations that allow
ordinally fair allocations, and that computes such an allocation whenever one
exists. The main idea is to translate the problem into an equivalent matching
problem in a bipartite graph; see for instance Lovász & Plummer (1986).

Consider an instance of the allocation problem with n agents. We assume
that the numbers bj = ajn (1 ≤ j ≤ k) are integers, as otherwise by Lemma 3
an ordinally fair allocation cannot exist. For every agent j = 1, . . . , k and for
� = 1, . . . , bj , let I(j, �) denote the (� − 1)/aj + 1 highest ranked items in the
ordinal ranking of j. According to condition (3) in Lemma 2, the �-best item
assigned to agent j should be from this set I(j, �). We create a bipartite graph
(X ∪ Y,E) with vertex set X ∪ Y and a set E of edges between X and Y .

– For every item i ∈ I, there is a corresponding vertex x(i) in X .
– For every agent j = 1, . . . , k and for every � = 1, . . . , bj, there is a corre-

sponding vertex y(j, �) in Y . Intuitively speaking, this vertex encodes the
�-th item that is assigned to agent j.

– For every agent j = 1, . . . , k, for every � = 1, . . . , bj, and for every item
i ∈ I(j, �), there is a corresponding edge in E that connects vertex x(i) to
vertex y(j, �).

By Lemma 2, some fixed item set J is ordinally acceptable for some fixed agent
j, if and only if the bipartite graph contains a matching Mj between the vertices
x(i) with i ∈ J and the vertices y(j, �) with 1 ≤ � ≤ bj. Furthermore, an
allocation I1, . . . , Ik is ordinally fair if such matchings Mj exist for j = 1, . . . , k.
Then the union of all matchings Mj with 1 ≤ j ≤ k forms a perfect matching
between the vertex sets X and Y , that is, a subset of the edges that touches
every vertex in X ∪ Y exactly once.

Lemma 4. A ordinally fair allocation exists if and only if the corresponding
bipartite graph possesses a perfect matching. 
�
It is well-known that perfect matchings can be detected and computed in poly-
nomial time; see Lovász & Plummer (1986). Whence we arrive at the theoretical
main result of this paper.

Theorem 1. It is possible in polynomial time to determine if an ordinally fair
allocation exists, and if so, to find one. 
�
Although Theorem 1 fully settles the problem from the mathematical point of
view, its applicability in real world scenarios may be limited: First, the behavior
of perfect matching algorithms are quite intricate, and hence will be hard to
understand and impossible to reproduce for the litigant parties (who in a real
world scenario will most likely be mathematically illiterate). Secondly, the re-
sulting ordinally fair allocation is not uniquely determined. The bipartite graph
might have many distinct perfect matchings, and the perfect matching algo-
rithm will simply pick and output one of them. This type of behavior may not
be tolerable as part of a legal negotiation process.
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As a partial way out of this dilemma, we could try and make the agents choose
their items in alternating turns. A turn of agent j would consist in picking the
most desired item in his ranking πj that (i) has not been allocated in any of the
earlier turns, and that (ii) yields a partial allocation that still can be extended
to an ordinally fair allocation. Unfortunately, this approach does not resolve
the first limitation (since the perfect matching algorithm still plays a major
role in the process), and it does not remove but only shift the headache in the
second limitation to the choice of the alternating turn sequence. And finding
an appropriate turn sequence is a challenging task on its own. In the following
section, we offer a full remedy for the important special case with k = 2 agents
who both are entitled to a proportion of 1

2 .

5 A Simple Allocation Rule for Divorce Situations

In this section we consider a divorce situation where a set I with n items has
to be allocated to two agents (called husband [Donald] and wife [Ivana]) with
entitled proportions a1 = a2 = 1

2 . For 1 ≤ � ≤ n we denote by H� and W� the
set of the � most desired items in the rankings of husband and wife, respectively.
By Lemma 3, we will throughout assume that n is an even number.

The Trump rule

For � := 1 to n/2 do

Let x be the unallocated item in H2�−1 that the wife likes
least
Allocate x to the husband

Let y be the unallocated item in W2�−1 that the husband
likes least
Allocate y to the wife

Fig. 1. An allocation rule for two divorcing agents with entitled proportions 1
2

Figure 1 presents our allocation rule called Trump. The naming of our rule
is inspired by certain trick-taking card games where a trump card automatically
prevails over all other cards and wins the trick. Similarly our rule prevails over
all other rules (in the cases where it succeeds!). To start the analysis of Trump,
we note that Trump might get stuck during the �th round of the loop, if all the
items in set H2�−1 or W2�−1 have already been allocated in earlier rounds. In
such a case we say that Trump fails. Otherwise the rule succeeds, and then at
termination has allocated n/2 of the items to the husband and the remaining
n/2 items to the wife.
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Lemma 5. For every divorce situation with an even number n of items, the
following three statements are pairwise equivalent:

(i) The Trump rule succeeds.
(ii) There exists an ordinally fair allocation.
(iii) H2�−1 = W2�−1 holds for � = 1, . . . , n/2.

Proof. We show that (i) implies (ii) implies (iii) implies (i).
First assume (i). Then the allocation computed by Trump assigns n/2 items

to the husband and n/2 items to the wife, and hence satisfies condition (2) in
Lemma 2. Since the �th item (1 ≤ � ≤ n/2) assigned to husband and wife belongs
to their 2�− 1 top-ranked items, the computed allocation also satisfies condition
(3). Then Lemma 2 yields that the computed allocation is ordinally acceptable
for husband and wife, and hence (ii) holds.

Next assume that (ii) holds, and consider some fixed ordinally fair allocation.
Let � be an integer from the range 1 ≤ � ≤ n/2. According to condition (3)
in Lemma 2, the ordinally fair allocation gives at least � items from H2�−1 to
the husband and at least � items from W2�−1 to the wife. This implies |H2�−1 ∪
W2�−1| ≥ 2�, and makes H2�−1 = W2�−1 impossible. This yields (iii).

Finally assume (iii). Consider the moment in time when Trump enters the
loop for the �th time (1 ≤ � ≤ n/2). Up to this moment husband and wife
each have received � − 1 items. Since only 2� − 2 items have been allocated,
there exists at least one eligible element x among the 2� − 1 items in H2�−1,
and hence Trump cannot get stuck while selecting x. Next, let z denote the
element in H2�−1 that the wife likes the least. From H2�−1 = W2�−1 we conclude
z /∈ W2�−1. If Trump has not assigned item z to the husband in one of the earlier
rounds, it must assign z to the husband in the current round. In any case, at the
moment when item y is to be selected for the wife, at most 2�− 2 of the up to
now 2� − 1 allocated items are in W2�−1. Hence Trump can also not get stuck
while selecting y. This yields (i). 
�

The above lemma and its proof imply the main theorem of this section.

Theorem 2. Whenever a divorce situation allows an ordinally fair allocation,
the Trump rule succeeds in finding one. 
�
Since Trump always assigns to the husband those items that the wife wants the
least, the highly ranked items in the wife’s ranking will remain available for the
wife. And by symmetry, the highly ranked items in the husband’s ranking will
remain available for the husband. These observations suggest that there should
be no other ordinally fair allocation that makes both husband and wife happier.
The following lemma makes this intuition mathematically precise.

Lemma 6. Consider a divorce situation for which Trump computes the ordi-
nally fair allocation H and W . Then there does not exist any other ordinally
fair allocation H ′ and W ′ in which the husband lexicographically prefers H ′ to
H and in which the wife lexicographically prefers W ′ to W .
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Proof. Suppose otherwise. Let x0 denote the item in H ′ −H = W −W ′ ranked
highest by the husband, and let y0 denote the item in W ′−W = H−H ′ ranked
highest by the wife. Then by the definition of lexicographical preference the
husband prefers x0 to y0, whereas the wife prefers y0 to x0.

By symmetry, we may assume that Trump allocates y0 to the husband before
it assigns x0 to the wife. Then at the moment when Trump allocates y0, also
item x0 would be eligible. Since the wife ranks y0 above x0, Trump would not
allocate item y0 at that moment. 
�

Finally, we note that Trump does not treat husband and wife in a perfectly
symmetric fashion: In every round the husband receives his item x before the
wife does receive her item y, and hence x is not an eligible option for the
wife. Consequently if husband and wife switch places, the output of Trump
might change. Assume that the husband ranks 〈1, 2, 3, 4〉 whereas the wife ranks
〈4, 2, 3, 1〉. Then Trump gives {1, 3} to the husband. But if husband and wife
would switch places, the husband would receive the set {1, 2}, which he lexico-
graphically prefers to {1, 3}.
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