Deep learning primer



The archetype

layer 1 layer 2 layer 3

3
Way

wf;, is the weight from the & neuron

in the (I —1)*" layer to the j*" neuron
in the [*" layer




What is deep learning

What can it do Flexibility
capable of fitting complex functions

How to train it Computable gradient
function smooth



Flexibility

 Universal representation theorem:

Any function in finite dimensions can be approximated arbitrarily well with a
two-layer neural network with finite number of hidden unit

output



Flexibility

 Universal representation theorem (improved):

There exists a two-layer neural network with RelLLU activations and 2n+d
weights that can represent any function on a sample of size n in d dimensions.

/Zhang, et al. 2016, Understanding deep learning requires rethinking generalization

output



Flexibility

* Depth efficiency hypothesis

(widely held belief + proof for certain models):

Some functions expressed in multi-layer models requires super-
polynomial sized units to express in shallow models

output



Flexibility

* Flexible model does not generalize?

Rademacher complexity-based

21n(4/4)

1
Radg(F') = — E, liug
S

Z g; f(zz

1=1

m

] Lp(h) — Lg(h) < 2Rad(F o S) + 4\/

with probability at least 1- sigma

Fun fact: neural network usually has the capacity to memorize random
labels perfectly

Zhang et al. Understanding deep learning requires rethinking generalization.



Flexibility

* Flexible model does not generalize?

In practice, models are never trained to obtain the minimal training loss

High complexity

Low complexity
Training on random data

InitialiZzation

Training onfeal data

Notion of generalization based on the ‘length’ of training path?



Gradient

e Implicit assumption is that deep learning models
can be learned by simply gradient descent

It will be interesting to know theoretically when this assumption fails
(e.g. | guess, prime factorization)



Computation of Gradient: Automatic differentiation

Allow trivial solution to complex models /
changing model structure dynamically (data-dependent)

 The basics: dy _ dy do
T
e K,

« Computational graph: o
e
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e [he basics;

Computation of Gradient: Automatic differentiation

Allow trivial solution to complex models /
changing model structure dynamically (data-dependent)

dy _ dy dw
dr dw dz

e Two modes: forward mode and backward mode

(optimal traversal path for arbitrary computational graph is NP-complete)

e The future?

Compiler for mathematical expressions that achieves acceleration and
numeric stability

Mixing programing language (conditionals, loops, etc with
mathematical functions)

Higher-order derivative (e.g. Hessian)



Use gradient efficiently: Stochastic gradient descent

1//t error rate ( ) vs 1/t error rate (batch)

‘High optimization error’ is tolerable:

No need to optimize beyond the statistical limits

Is SGD adaptive to the data uncertainty?



Connection between Stochastic Gradient Descent
and Bayesian inference

SGD as MCMC Stochastic gradient Langevin dynamics, Welling and Teh, 2011
SGD MCMC by Langevin dynamics
n N
AG, = 5 (v log p(6) + % v 1ogp(xm-|9t>) AG = 5 (V logp(6:) + )V 10gp(xil9t>) +m
=1 =1

MCMC by Stochastic gradient Langevin dynamics ne ~ N (0,€) (3)

N n
Ab, = % (V logp(6;) + p ; Vlogp(:ctiwt)) +

ne ~ N(Oa et) (4)

SGD as VI Stochastic Gradient Descent as Approximate Bayesian Inference, Mandt, 2017



Optimization: scale invariance

Naive gradient descent is not scale-invariant

Known solution: use curvature of the surface (second order methods)

The exact way: compute Hessian matrix (second order derivatives) / Newton’s method

The cheap way : approximation using the history of gradients

- SGD

-  Momentum
- NAG

- Adagrad
Adadelta
Rmsprop
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Optimization: variance reduction and scale invariance

SGD+momentum g_t=09"g_{t-1} +0.1"g
n
RMSpro Or41 = 0; — 8t
PIop \/E[g2]t + €
Adam m; = pim_1 + (1 = f1)g:. .
Orp1 = 0, — —~ m;.
Vi + €

vi = Pavicr + (1 = Bo)g?.

http://sebastianruder.com/optimizing-gradient-descent/



Learning representations

Raw data that lives in some arbitrary (high-dimensional) space

embedding

Representation space with
smooth and linear structure



smoothness

Representation

Bedroom (LSUN)

Digits (MNIST)
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Embedding learned by
generative adversarial networks (GAN)

Embedding learned by
variational autoencoder (VAE)



Representation: smoothness

Human Input Human Input

RNN autoencoder https://arxiv.org/abs/1704.03477
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GAN  github.com/kaonashi-tyc/zi2zi


https://arxiv.org/abs/1704.03477

king

Representation: linearity

A

man

"~

o “~.~* woman
~~~~ ‘
“a
O
queen
—
Male-Female

O

walking

Pretrained word vectors for >70 languages are publicly available

A
walked
@)
Ik
A swam
o
swimming
Verb tense

Spa in \
Italy -—-—~____-—.________-~Madrid
Rome

Germany =
=== Berlin
Ankara
Russia
Moscow
Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing

Country-Capital



Representation: linearity

smiling neutral neutral smiling man
woman woman man

man man woman

with glasses without glasses without glasses woman with glasses



Representation learning

This is one of Crichton's best

Seriously, the screenplay AND the directing were
horrendous and clearly done by people who could not fathom what was good about the
novel. I can't fault the actors because frankly a chance to make this

LUT KA

u

The movie is just dreadfi

“Sentiment neuron”

Trained on 82 million Amazon reviews to
predict the next character method: multiplicative LSTM

Reference: https://blog.openai.com/unsupervised-sentiment-neuron/



Practical neural network structure

Convolutional network Long Short Term Memory
* |Image recognition  Machine translation
* |Image super-resolution / in-painting « Basic question answering
* Play Go e Jext understanding e.g. sentiment analysis

Main application area: CV Main application area: NLP



Convolutional network / Convnet

»
»
s—h’. .‘..

night bridge city suspension bridge train subway railroad railway station competition tennis athlete stadium ball

river transportation many spectators

Human level image recognition

https://www.clarifai.com/



Convolutional network / Convnet

raditional architecture The essential part

1 (Cl) 4 feature maps (S52) 6 feature maps (C2) 6 feature maps

Convolution
(Spatial weight sharing)

convolution layer |

1x1 1x0 1x1 0 0
OxO 1x1 1x0 1 0 4
Oxl OxO 1x1 1 1
- . 0/0[1]1]0
The recipe that won ImageNet 2012 competition
(1.3M images in 1000 categories): 0]1j1]0j0
| Convolved
ConvNet + RelLU + dropout + GPU mage Feature

16.4% error vs 26.1% 2nd place



Neural style transter

Pretrained convnet
(e.g. Imagenet classifier)

Objective 1:

Minimize distance of
high level representations
to the content image

Objective 2:

Minimize distance of
correlation matrix of

low level representations
to the style image

Scene from 'Visit to Picasso', a documentary by Paul Haesaert



Photo style transfer: Improving photorealism

Deep Photo Style Transfer: arXiv:1703.07511
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additional regularization term to encourage transformation to be locally affine



State-of-the-art Computer Vision ConvNet
at 2017

60 | Inception-v4
Inception-v3 ResNet-152
751 ReSNet_S’O’ ResNet-101 VEC0 Yesu?
ResNet-34
e ‘ -
Batch normalization layer:
O standardization of representations
60 1 5M 65M 95M 125M----155M
Ao (Loffe and Szegedy, 2015)
55 1 AlexNet
o ‘Shortcut’ connections:

Operations [G-Ops]

address vanishing gradients

Reduce number of weights:
Use exclusively 1x1 convolution
and 3x3 convolution.

More layers.
No fully connected layer

Huang et al. Densely Connected Convolutional Networks



Convolution + Pooling is a general technique for enforcing
invariance in representations

Can be extended to introduce translation, rotation, or scaling invariance etc.

Mathematical perspective: invariant transformations as symmetry groups
Cohen and Welling, 2016 Group Equivariant Convolutional Networks

Mallat, 2012 Group Invariant Scattering

Computational challenge: how to compute efficiently?

Possible transtormations grow multiplicatively if we stack invariances

Stochastic approximation (one random transformation at a time)?



Convnet can be easily tricked
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® m -
1y Slgn(va(os x, y)) esign(VmJ(O, x, y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 09.3 % confidence

So do most high dimensional models



LSTM - recurrent neural networks
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Long Short-term Memory (LSTM) network - Gate

Standard structure

Forgetgate f, — o (W;a; + Ushy_ 1 + by)

Input gate  §;, = o, (W;z; + U;hs—1 + b;)

Outputgate o, = o,(W,z; + U, hi—1 + by)

Memorycell ¢; = fioc; 1 + it 00, (Wezy + U hi— 1 + bC)

Hidden units h; = o; o o}, (¢¢)
from: wikipedia

The essential part

Forget gate

Greff et al., 2015, LSTM: A Search Space Odyssey



Seqguence to sequence (Seg25Seq)

ENCODER Reply
R Yes, __ what's ___ up? <END>
¥ ¥y 8 | I I I
»—(X)——F) p > 8
& ~® >
IES2RIERD NERIESIEN |
J X J U 3
| I T T 5 o J
Are you free tomorrow? (O <START>
Incoming Email DECODER

Question-answering
Machine translation

http://suriyadeepan.github.io/2016-12-31-practical-seg2seq/



Seq25Seq + Attention

Encoder o g e ey e2 — es e e4 e es

Decoder do — d e d

Attention - dynamic weighting of the input



Neural Turing machine / Differentiable Neural Computer

Memory is an array of vectors.

[’I‘ T 1

T 0 ] [ A
Network A \./
write
writes and reads -

from this memory
each step.

'P’P] [7!7I 1‘1‘] [7'71
A

x0 yO x1 vyl X2 y2 X3 vy3

L
>

http://distill.pub/2016/augmented-rnns/

Graves et al. 2014, Neural Turing machines



Reinforcement learning

CINEMA 3

The Force

Awakens
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Image credit: daily.doodl @ instagram

reward
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Agent

Environment

T

action
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Deep Q learning:
Predict future rewards with deep networks

Q Learning

Q(state, action) = maximal future rewards (with the optimal actions)

Bellman equation

Q(s,a) =r +ymax,Q(s', a")

Training: minimize MSE

Minh et al, 2013 Playing Atari with Deep Reinforcement Learning



AlphaGo - surpass human-level game playing in Go

(the nature publication version)

d Policy network a P Value network
T : 8888338
° PS - +% 33344443
: +4444+4 444

®
. SLK.
5 %

38;‘_-— \° 3 35

)

SL policy network: predict expert human moves Value network: predict outcome of self-play
convnet / GLM l / convnet

RL policy network: optimized by self-play

convnet

REINFORCE algorithm (Williams, 1992)
Silver et al., 2016, Mastering the game of Go with deep

neural networks and tree search



AlphaGo - Monte carlo tree search
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Deep learning for probabilistic models
Why
 Toward tractable inference for more expressive probabilistic models

iIntractable distributions (unnormalized distributions)

p(X | 0)p(0 | )

Posterior distribution p(0| X, a) = x p(X | 0)p(f | )
p(X | a)
Energy-based models P(z) = %exp f(z)

Similar to deep learning, inference method are often gradient based

 Variational inference

« MCMC (e.g. Hamiltonian Monte Carlo uses gradient to speed up sampling)

http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html



Deep learning for probabilistic models
Why
 Toward tractable inference for more expressive probabilistic models

iIntractable distributions (unnormalized distributions)

p(X | 0)p(0 | )

Posterior distribution p(0| X, a) = x p(X | 0)p(f | )
p(X | a)
Energy-based models P(z) = %exp f(z)

Potential approaches for NN-assisted inference

e Neural variational inference

 Neural sampler



Probabilistic modeling with neural networks: NVI

Neural variational inference

(Kingma and Welling, 2014)

Use neural network for describing P(X|Z) or Q(Z|X)
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Probabilistic modeling with neural networks: NVI

Neural variational inference

(Kingma and Welling, 2014 Auto-Encoding Variational Bayes)

Use neural network for describing P(X|Z) or Q(Z|X)

4 )
O+

] log po(x\Y) = Dic1.(qe(zx™)||pe(z[x)) + L£(8, ¢; x)

1~ log pe(x")) > L(8, d;x'") = Eq, o)) [~ log g (2[x) + log pe(x, )]

<1>' @ = D1, (ap(21x ) [p6(2)) + E gy a0y |logpe(xV|2)]

\ NJ The variational objective




Backpropagation over stochastic units:
Reparametrization trick

How to compute good gradient estimate of

—Drcr.(4(2l% ) 106 (2)) +E gy a0y |logpe(xV|2)]

Gradient of expectation -> expectation of stochastic gradient

O
22

& GO

Original Reparametrized

v,u,aEzwp,,a[f(Z)] — Ezw,u,a[f(z)vﬂ,d 10g (p(zm, 0))] v,u,aEewp(e) [f(Z)] — Eewp(e) [V,u,,af (g(:ua g, 6))]

Williams, 1992 “REINFORCE” estimator Kingma , et al. 2014. Auto-Encoding Variational Bayes



Backpropagation over stochastic units:
Reparametrization trick for discrete variables

The Gumbel trick for sampling from discrete distributions P(X = k) x o,

G = —log(—log(U)) withU ~ Unif|0, 1]

X = arg max (log ar + Gy) -

Softmax function for approximating the max operation with a differentiable function

osﬂ o'(z) j= forj=1, ..., K

Discrete variables can always be represented by binary vectors



Toward flexible and normalized probabilistic models

~Dicr (4 (2lx) [P0 (2)) + Eqy a0 |logpo(xV[2)]

1.Fully factorized models

Neural autoregressive models

Probability function is fully factorial

However, it has to commit to a sequence



Toward flexible and normalized probabilistic models

2. Invertible transformations

of () |
or "

f
O— px(2) = prr(f(a))|det
X £

Examples:
Invertible

NICE Normalizing tflow .
autoregressive tlow

Ycipher <’> <=> Ykey
A A

Yn> f(z) =z +uh(w'z+b) O
DANG

determinant fixed determinant O(D) time

determinant O(D) time

Dinh 2015, NICE: NON-LINEAR Rezende 2016. Variational Inference with Normalizing Flows Kingma, 2017 Invertible autoregressive flow
INDEPENDENT COMPONENTS
ESTIMATION Hidden variables are equal in dimensionality.




Probabilistic modeling with neural networks: Learn to sample

Generative adversarial networks

Fine Tune Training

Real
Samples
Latent
Space
. s R
—i.| D
; .. Correct?
4 ™ e Discriminator]
N J/
G ?
@ =
L—l Generated 5
A Generator Fake !
N x ~ samples |
SRR S vkttt SO




Probabilistic modeling with neural networks: Learn to sample

Generative adversarial networks
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Formulating Generative adversarial networks as a proper probabilistic model

Real
Samples
Latent E_
Space
: 4).\;0—* :::,,/'COIrsreDCt?
° v Discriminato

- Generator Ger;:rkaeted :
- x Samples ;
- | *F'nETuneTrammg _______

Noise

L 0lo

__ g P Of (x Of (x
P(x) o E eXp f(x) 90 = E.’L’Ndata( (‘;0 )) — E.’L'NTTLOdel( 859 ))

(Generator network: use x~Generator instead of x~mode|

Discriminator network: f(x)

Question: can we do exact sampling instead of approximate sampling?



Formulating Generative adversarial networks as a proper probabilistic model

Real
Samples

. IsD
4).\5\‘._> D Correct? ’4';
* v Discriminato

C
B _'®_' G Generated

F

-

_ 9log P of (x) of (x)
P(‘T) _ E eXp .f(aj) (99 — Ewwdata( (99 )_ E:crvmodel(W)
Two proposals :
1. Design Generator that generate reversible sequence of samples (allows
Metropolis-Hasting sampling)
2. Allows computing (unnormalized) probability for generator networks (allows

Metropolis sampling)

Question: can we do exact sampling instead of approximate sampling?



Coding: choice of packages

pytorch

torch7

Tensorflow

Pros

Fastest automatic
differentiation engine

Fast and low level
Good code base

High-level abstraction

Distributed computation

Cons

IN beta

written in lua

hard for implementing
new technigques

Poor support for
Interactive mode



Coding

* https://github.com/pytorch/tutorials



Training algorithm

??

( N Gaussian random variable Proposal* 2:

with fixed mean e.g. 0 and e.g. 1 (CE Z) (Z) (513
() pa) =" =

Nonlinear dependency Problem: P(z|x) is generally as intractable as p(x)

@ Gaussian random variable

Conditional distribution

p(z]z) = N (f(2),0(2))

Marginal distribution

pa) = [ plalo)plz)dz =



Training algorithm

??

( N Gaussian random variable Proposal* 2:

with fixed mean e.g. 0 and e.g. 1 (CE Z) (Z) (513
() pa) =" =

Nonlinear dependency Problem: P(z|x) is generally as intractable as p(x)

@ Gaussian random variable

Conditional distribution

p(z]z) = N (f(2),0(2))

Marginal distribution

pa) = [ plalo)plz)dz =



Training algorithm

??

( \ Gaussian random variable Proposal 3: (Variational Autoencoder)

with fixed mean e.g. 0 and e.g. 1
«—— 6
@ 4 N

<

| (D)t
Nonlinear dependency
Gaussian random variable
(with diagonal covariance matrix) o @

Conditional distribution
p(x|z) =N (f(2),0(2)) log pe(xV) > £(0, ¢;xV) = By, (a5 [ log g¢(z[x) + log pe(x, 2)]

— _DKL(q¢(Z|X(i))||p9(Z)) + qub(zlx(i)) [1ng9(x(i)|2)]
Marginal distribution

p(z) = /P(ﬂf\Z)P(Z)dZ =7 The variational objective



L4

NS

Gene expression

Model 1.

Transpose to
1x1 image
with n-channels

upsampling
l convolution
upsampling
A/ \
convolution
U o

Imaging data

P(X|Z)

Z*

? ? ?. Sampling

0

AN S

pooling

Gene expression convolution

Model 1. Imaging data

Q(Z|X)



—DKL(Q¢(ZIX(i))||p0 (2)) HEqy z1x®) [10gpo (X(i) |Z)}
KL divergence between two Gaussians Use stochastic gradient estimator

Stochastic gradient for p_6 is straightforward

Stochastic gradient for g_®:

Sampling ? ? ? o
: 2

: & SO

Original Reparametrized

vu,oEewp(e)[f(z)] — Ee~p(e)[vu,of (g(,LL, g, 6))]

Kingma , et al. 2014. Auto-Encoding Variational Bayes



—Dx1.(qp(2z|xD)||pe(z)) Prior loss

Transpose to
1x1 image
with n-channels

I |
convolution
o !
Gene expression upsampling
N
convolution
U o
Model 1. Imaging data
P(X|Z)

Eq, (21x9) [log Do (x("') |z)} Likelihood loss

Z*

0

Gene expression

Model 1.

Sampling

vV

convolution
pooling
convolution

Imaging data

Q(Z|X)



Transpose to
1x1 image
with n-channels

/\\« l upsampling

I |
convolution
o !
Gene expression upsampling
N
convolution
U o
Model 1. Imaging data
P(X|Z)

Limitation: Q(Z|X) is still limited to independent Gaussians

Z*

? ? ?. Sampling

0

AN S

pooling

Gene expression convolution

Model 1. Imaging data

Q(Z|X)



Reparametrized

Transpose to

Transpose to
1x1 image . = 1x1 image
with n-channels \J with n-channels
/N upsampling /N upsampling
l /zl/ ZH’ l
convolution convolution
‘* o \.l
Gene expression upsampling Gene expression upsampling
convolution convolution
o) o o) o
Model 2. Imaging data Model 2. Imaging data

P(X|Z)

P(X|Z) being independent Gaussians
does not limit its flexibility



-
Use neural network as flexible distributions ? ? ? Sampling

Prototype for stochastic neural network VA
o
(O—¢ s
Multilayer %

nonlinear transformation

+
pooling
P(f(x)) is in general intractable for stochastic Gene expression convolution
neural networks
$
of (z)

px(z) = pr(f (2))|det =57

is applicable when fis invertible Imaqing data
Model 1. IS

Invertible models

~

nvertible ) Q(Z|X)

autoregressive flow

Yeipher <§> é> Ykey
T &y
k Tptin Sty )

NICE Normalizing flow




Use neural network as flexible distributions

Prototype for stochastic neural network Fully factorized model
4_ .
@ o 8 Neural autoregressive models R
Multilayer

nonlinear transformation

\4

© ) )

P(f(x)) is in general intractable for stochastic
neural networks

px(z) = pa(f(a))ldet 22|

Any other family of tractable models existing?

is applicable when f is invertible

Invertible models

8 NICE

Invertible w
autoregressive flow

Yeipher <£> é> Ykey
T &y

Normalizing flow




Use neural network as flexible distributions

Route 1: Easy sampling, hard probability evaluation

Prototype for stochastic neural network Fully factorized model
4_ .
@ o r Neural autoregressive models \
Multilayer

nonlinear transformation

\4

© ) )

P(f(x)) is in general intractable for stochastic
neural networks

px (@) = pu(f(@))ldet 212

is applicable when f is invertible

. Any other more flexible
tractable families existing?

Invertible models

8 NICE

Invertible \
autoregressive flow

Yeipher o é> Ykey

Normalizing flow




Use neural network as flexible distributions

Route 2: Easy (unnormalized) probability calculation, hard sampling

Prototype for neural network-based energy model Use stochastic neural network as
proposal distribution to assist sampling

X ()—-

Multilayer

nonlinear transformation Multilayer

nonlinear transformation

@ :
P(x):%expf(:v) Qx)  or  QXX)

Metropolis sampling

Direct gradient-based MCMC sampling like HMC is feasible, . : P(CU’) Q(SU)
but generally too slow Acceptance probability  min | 1, P() Q(r)
Is it possible to design trainable Metropolis-Hastings sampling

reversible conditional stochastic
neural network ?

Q(X'[x)=Q(x|x’)

/
Acceptance probability min (1’ P(x ))
P



