
Deep learning primer 



The archetype



What is deep learning

Flexibility  
capable of fitting complex functions

Computable gradient  
function largely smooth

What can it do

How to train it



Flexibility

• Universal representation theorem: 

Any function in finite dimensions can be approximated arbitrarily well with a 
two-layer neural network with finite number of hidden unit 



Flexibility

• Universal representation theorem (improved): 

There exists a two-layer neural network with ReLU activations and 2n+d 
weights that can represent any function on a sample of size n in d dimensions. 
Zhang, et al. 2016, Understanding deep learning requires rethinking generalization 



Flexibility

• Depth efficiency hypothesis  
(widely held belief + proof for certain models):  

Some functions expressed in multi-layer models requires super-
polynomial sized units to express in shallow models



Flexibility

• Flexible model does not generalize?

Rademacher complexity-based generalization bound

Zhang et al. Understanding deep learning requires rethinking generalization.

with probability at least 1- sigma 

Fun fact: neural network usually has the capacity to memorize random 
labels perfectly 



Flexibility

• Flexible model does not generalize?

In practice, models are never trained to obtain the minimal training loss

High complexity

Low complexity

Initialization

Training on random data

Training on real data

Notion of generalization based on the ‘length’ of training path?



Gradient

• Implicit assumption is that deep learning models 
can be learned by simply gradient descent

It will be interesting to know theoretically when this assumption fails  
(e.g. I guess, prime factorization) 



Computation of Gradient: Automatic differentiation 

• The basics: 

• Computational graph:

Allow trivial solution to complex models /  
changing model structure dynamically (data-dependent)



Computation of Gradient: Automatic differentiation 

• The basics: 
• Two modes: forward mode and backward mode 

(optimal traversal path for arbitrary computational graph is NP-complete) 

• The future?  
• Compiler for mathematical expressions that achieves acceleration and 

numeric stability 

• Mixing programing language (conditionals, loops, etc with 
mathematical functions) 

• Higher-order derivative (e.g. Hessian)

Allow trivial solution to complex models /  
changing model structure dynamically (data-dependent)



Use gradient efficiently: Stochastic gradient descent

error rate (stochastic) vs 1/t error rate (batch)

‘High optimization error’ is tolerable:  

No need to optimize beyond the statistical limits

Is SGD adaptive to the data uncertainty?



Connection between Stochastic Gradient Descent 
and Bayesian inference

SGD as VI

SGD as MCMC Stochastic gradient Langevin dynamics, Welling and Teh, 2011

SGD MCMC by Langevin dynamics

MCMC by Stochastic gradient Langevin dynamics

Stochastic Gradient Descent as Approximate Bayesian Inference, Mandt, 2017



Optimization: scale invariance
Naive gradient descent is not scale-invariant

(Image credit: Alec Radford)

Known solution: use curvature of the surface (second order methods) 

The exact way: compute Hessian matrix (second order derivatives) / Newton’s method 

The cheap way : approximation using the history of gradients



Optimization: variance reduction and scale invariance

RMSprop

SGD+momentum g_t = 0.9* g_{t-1} + 0.1 * g

Adam

http://sebastianruder.com/optimizing-gradient-descent/



Learning representations

Raw data that lives in some arbitrary (high-dimensional) space

Representation space with  
smooth and linear structure

embedding



Representation: smoothness

Embedding learned by 
variational autoencoder (VAE)

Embedding learned by 
generative adversarial networks (GAN)

Bedroom (LSUN)Digits (MNIST)



Representation: smoothness

GAN github.com/kaonashi-tyc/zi2zi

RNN autoencoder https://arxiv.org/abs/1704.03477

https://arxiv.org/abs/1704.03477


Representation: linearity

Pretrained word vectors for >70 languages are publicly available 



Representation: linearity



Representation learning

Trained on 82 million Amazon reviews to 
predict the next character 

“Sentiment neuron”

method: multiplicative LSTM

Reference: https://blog.openai.com/unsupervised-sentiment-neuron/



Practical neural network structure 

Convolutional network

• Image recognition 

• Image super-resolution / in-painting 

• Play Go 

Long Short Term Memory

• Machine translation 

• Basic question answering 

• Text understanding e.g. sentiment analysis

Main application area: CV Main application area: NLP



Convolutional network / Convnet

https://www.clarifai.com/

Human level image recognition



Convolutional network / Convnet

Traditional architecture The essential part

Convolution 
(Spatial weight sharing)

ConvNet + ReLU + dropout + GPU 

The recipe that won ImageNet 2012 competition  
(1.3M images in 1000 categories):

16.4% error vs 26.1% 2nd place



Neural style transfer

Minimize distance of  
high level representations 
to the content image

Minimize distance of  
correlation matrix of   
low level representations 
to the style image

Pretrained convnet  
(e.g. Imagenet classifier)

Scene from 'Visit to Picasso', a documentary by Paul Haesaert

Objective 1:

Objective 2:



Photo style transfer: Improving photorealism
Deep Photo Style Transfer: arXiv:1703.07511

additional regularization term to encourage transformation to be locally affine 



State-of-the-art Computer Vision ConvNet 
at 2017

Batch normalization layer:
standardization of representations

‘Shortcut’ connections:
address vanishing gradients

Huang et al. Densely Connected Convolutional Networks

Reduce number of weights:
Use exclusively 1x1 convolution  
and 3x3 convolution.  
More layers. 
No fully connected layer  

(Loffe and Szegedy, 2015)

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥10

6 to 155⇥10
6 params. Both

these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2



Convolution + Pooling is a general technique for enforcing 
invariance in representations

Group Equivariant Convolutional NetworksCohen and Welling, 2016

Can be extended to introduce translation, rotation, or scaling invariance etc.

Computational challenge: how to compute efficiently?

Mathematical perspective: invariant transformations as symmetry groups

Possible transformations grow multiplicatively if we stack invariances

Stochastic approximation (one random transformation at a time)?

Mallat, 2012 Group Invariant Scattering 



Convnet can be easily tricked

So do most high dimensional models 



LSTM - recurrent neural networks



Long Short-term Memory (LSTM) network - Gate

Standard structure The essential part

Forget gate

Forget gate
Input gate
Output gate
Memory cell
Hidden units

Greff et al., 2015, LSTM: A Search Space Odyssey

from: wikipedia



Sequence to sequence (Seq2Seq) 

http://suriyadeepan.github.io/2016-12-31-practical-seq2seq/

Question-answering 
Machine translation 

…



Seq2Seq + Attention

Attention - dynamic weighting of the input



Neural Turing machine / Differentiable Neural Computer

Graves et al. 2014, Neural Turing machines

http://distill.pub/2016/augmented-rnns/



Reinforcement learning

Image credit: daily.doodl @ instagram

Given state, choose action, get reward



Deep Q learning: 
Predict future rewards with deep networks 

Q(state, action)  =  maximal future rewards (with the optimal actions)

Bellman equation

Q Learning

Minh et al, 2013 Playing Atari with Deep Reinforcement Learning 

Training: minimize MSE



AlphaGo - surpass human-level game playing in Go

SL policy network: predict expert human moves Value network: predict outcome of self-play

RL policy network: optimized by self-play

REINFORCE algorithm (Williams, 1992)

(the nature publication version)

Silver et al., 2016, Mastering the game of Go with deep 
neural networks and tree search

convnet / GLM

convnet

convnet



AlphaGo - Monte carlo tree search



Deep learning for probabilistic models

• Variational inference  
• MCMC (e.g. Hamiltonian Monte Carlo uses gradient to speed up sampling)

• Toward tractable inference for more expressive probabilistic models

Similar to deep learning, inference method are often gradient based

Why

intractable distributions (unnormalized distributions)

http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html

Posterior distribution

Energy-based models



Deep learning for probabilistic models

• Neural variational inference  
• Neural sampler

• Toward tractable inference for more expressive probabilistic models

Potential approaches for NN-assisted inference

Why

intractable distributions (unnormalized distributions)

Posterior distribution

Energy-based models



Neural variational inference

Z

X
N

θ

φ

Use neural network for describing P(X|Z)  or Q(Z|X)

(Kingma and Welling, 2014)

Probabilistic modeling with neural networks: NVI



Neural variational inference

Z

X
N

θ

φ

Use neural network for describing P(X|Z)  or Q(Z|X)

(Kingma and Welling, 2014 Auto-Encoding Variational Bayes)

Probabilistic modeling with neural networks: NVI

The variational objective



Backpropagation over stochastic units:
Reparametrization trick

How to compute good gradient estimate of 

Gradient of expectation -> expectation of stochastic gradient

Kingma , et al. 2014. Auto-Encoding Variational BayesWilliams, 1992  “REINFORCE” estimator



Backpropagation over stochastic units:
Reparametrization trick for discrete variables

Discrete variables can always be represented by binary vectors

The Gumbel trick for sampling from discrete distributions

Softmax function for approximating the max operation with a differentiable function 



Toward flexible and normalized probabilistic models

1.Fully factorized models

Probability function is fully factorial 
However, it has to commit to a sequence

Neural autoregressive models



Toward flexible and normalized probabilistic models

2. Invertible transformations

Hidden variables are equal in dimensionality.

f

x f(x)

Dinh 2015, NICE: NON-LINEAR 
INDEPENDENT COMPONENTS 
ESTIMATION

NICE Normalizing flow

Rezende 2016. Variational Inference with Normalizing Flows

determinant fixed determinant O(D) time
determinant O(D) time

Invertible  
autoregressive flow

Kingma, 2017 Invertible autoregressive flow

Examples:



Generative adversarial networks

Probabilistic modeling with neural networks: Learn to sample



Generative adversarial networks

Probabilistic modeling with neural networks: Learn to sample



Formulating Generative adversarial networks as a proper probabilistic model

Discriminator network:

Generator network:      use x~Generator instead of x~model 

Question: can we do exact sampling instead of approximate sampling?



Formulating Generative adversarial networks as a proper probabilistic model

Question: can we do exact sampling instead of approximate sampling?

1. Design Generator that generate reversible sequence of samples (allows 
Metropolis-Hasting sampling) 

2.         Allows computing (unnormalized) probability for generator networks (allows        
Metropolis sampling)

Two proposals :  



Coding: choice of packages

Pros Cons

pytorch Fastest automatic  
differentiation engine in beta

torch7 Fast and low level 
Good code base written in lua

Keras High-level abstraction hard for implementing 
new techniques

Tensorflow Distributed computation Poor support for 
interactive mode



Coding 

• https://github.com/pytorch/tutorials



??

Z

X
N

θ

Gaussian random variable  
 with fixed mean e.g. 0  and e.g. 1

Gaussian random variable 
(with diagonal covariance matrix)

Nonlinear dependency

Conditional distribution

Marginal distribution

Training algorithm

Proposal* 2:

Deep probabilistic model 

Problem: P(z|x) is generally as intractable as p(x)



??

Z

X
N

θ

Gaussian random variable  
 with fixed mean e.g. 0  and e.g. 1

Gaussian random variable 
(with diagonal covariance matrix)

Nonlinear dependency

Conditional distribution

Marginal distribution

Training algorithm

Proposal* 2:

Deep probabilistic model 

Problem: P(z|x) is generally as intractable as p(x)



Deep probabilistic model 

??

Z

X
N

θ

Gaussian random variable  
 with fixed mean e.g. 0  and e.g. 1

Gaussian random variable 
(with diagonal covariance matrix)

Nonlinear dependency

Conditional distribution

Marginal distribution

Training algorithm

Proposal 3: (Variational Autoencoder)

φ

The variational objective

Z

X
N

θ



Deep probabilistic model 

Gene expression

Transpose to 
1x1 image  

with n-channels

upsampling

convolution

upsampling

convolution

Z

Imaging dataModel 1.

Gene expression

convolution

pooling

convolution

Z

Imaging dataModel 1.

Sampling

P(X|Z) Q(Z|X)

Z*



KL divergence between two Gaussians Use stochastic gradient estimator

Kingma , et al. 2014. Auto-Encoding Variational Bayes

Stochastic gradient for p_θ is straightforward 

Stochastic gradient for q_Φ:

Z

Sampling

Z*



Deep probabilistic model 

Gene expression

Transpose to 
1x1 image  

with n-channels

upsampling

convolution

upsampling

convolution

Z

Imaging dataModel 1.

Gene expression

convolution

pooling

convolution

Z

Imaging dataModel 1.

Sampling

Q(Z|X)

Z*
Prior loss

Likelihood loss

P(X|Z)



Deep probabilistic model 

Gene expression

Transpose to 
1x1 image  

with n-channels

upsampling

convolution

upsampling

convolution

Z

Imaging dataModel 1.

Gene expression

convolution

pooling

convolution

Z

Imaging dataModel 1.

Sampling

P(X|Z) Q(Z|X)

Z*

Limitation: Q(Z|X) is still limited to independent Gaussians 



Deep probabilistic model 

Gene expression

Transpose to 
1x1 image  

with n-channels

upsampling

convolution

upsampling

convolution

Z

Imaging dataModel 2.

P(X|Z)

P(X|Z) being independent Gaussians  
does not limit its flexibility

Gene expression

Transpose to 
1x1 image  

with n-channels

upsampling

convolution

upsampling

convolution

Z

Imaging dataModel 2.

Z’’

Z’’’

Z’

Reparametrized



Deep probabilistic model 

Gene expression

convolution

pooling

convolution

Z

Imaging dataModel 1.

Sampling

Q(Z|X)

Z*
Use neural network as flexible distributions

P(f(x)) is in general intractable for stochastic 
 neural networks

Prototype for stochastic neural network

x

f(x)

θ

Multilayer 
nonlinear transformation

is applicable when f is invertible 

NICE Invertible  
autoregressive flow

Normalizing flow

Invertible models



Deep probabilistic model 

Use neural network as flexible distributions

Fully factorized model

Neural autoregressive models

Any other family of tractable models existing?

P(f(x)) is in general intractable for stochastic 
 neural networks

Prototype for stochastic neural network

x

f(x)

θ

Multilayer 
nonlinear transformation

is applicable when f is invertible 

NICE Invertible  
autoregressive flow

Normalizing flow

Invertible models



Deep probabilistic model 

Use neural network as flexible distributions

P(f(x)) is in general intractable for stochastic 
 neural networks

Prototype for stochastic neural network

x

f(x)

θ

Multilayer 
nonlinear transformation

Fully factorized model

Neural autoregressive models

is applicable when f is invertible 

NICE Invertible  
autoregressive flow

Normalizing flow

Invertible models

Any other more flexible 
tractable families existing?

Route 1: Easy sampling, hard probability evaluation



Deep probabilistic model 

Use neural network as flexible distributions

Prototype for neural network-based energy model

x

f(x)

Multilayer 
nonlinear transformation

Route 2: Easy (unnormalized) probability calculation, hard sampling 

x

f(x)

θ

Multilayer 
nonlinear transformation

Use stochastic neural network as 
proposal distribution to assist sampling

Direct gradient-based MCMC sampling like HMC is feasible, 
but generally too slow

Q(x)

Metropolis sampling  

Acceptance probability

Metropolis-Hastings sampling  

Acceptance probability

Is it possible to design trainable 
reversible conditional stochastic 

neural network ?

Q(x’|x)or

Q(x’|x)=Q(x|x’)


