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Matchings

A  matching M  of a graph  G = (V,E)  is a set of edges  such that every 

vertex is incident to at most one edge from  M

Bipartite graphs:   bipartition  X, Y

The Bipartite Matching Problem

Instance:

A bipartite graph  G

Objective:

Find a matching in  G  of maximal size
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Algorithm

We show how to reduce the Bipartite Matching problem to Network Flow

Let  G  be a bipartite graph with bipartition  X, Y

- orient all edges from  X  to  Y

- add source  s  and sink  t

- add arcs from  s  to all nodes in  X,  and from all nodes in  Y  to  t

- set the weight of all arcs to be  1

ts
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Analysis

Lemma

Suppose there is a matching  of  G                                            

containing  k  edges.  Then there is a flow in  G’  of value  k

Proof

Straightforward

ts
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Analysis  (cntd)

Lemma

Suppose there is a flow in  G’  of value  k,  then there is a matching  of  

G   containing  k  edges.  

Proof

Let  f  be a flow in  G’  of value  k.

Since all capacities in  G’  are integer,  there is an integer flow of value 

at least  k.  So we can assume  f  is integer.

f(e)  equals 0  or  1  for every edge  e

Let  M  be the set of arcs with the flow value  1
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Analysis  (cntd)

M  contains  k  edges

Indeed, consider the cut  (A,B)  with  A = X ∪ {s}

The value of the flow through the cut equals the number of arcs from  X  

to  Y  where the flow is non-zero

The set of such arcs is exactly the set  M

Every node from  X  is the beginning of at most one arc from  M

It follows straightforwardly from the conservation property

Every node from  Y  is the end of at most one arc from  M

Same argument

Therefore  M  is a matching
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Running Time

Proof

We can assume that  G  has no isolated vertices,  and so  m ≥ n/2

The maximal value of a flow in  G’  does not exceed  C = c(s) = |X| ≤ n

By the theorem on the running time of the F.-F. algorithm,  it runs in  

O(mC) = O(mn)  time

QED

Theorem

The Ford-Falkerson algorithm can be used to find a maximal matching 

in a bipartite graph in  O(mn)  time
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Augmenting Paths in Bipartite Graphs

There is another algorithm for Bipartite Matching. It finds  alternating

paths

ts
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Perfect Matching and Hall’s Theorem

If both parts of a bipartite graph have the same number of elements ,  a 

perfect matching  can exist, that is a matching that includes all 

vertices of the graph

How is it possible that a bipartite graph does not have a perfect matching

If there is  A ⊆ X  such that for the set of 

neighbors   N(A) 

|N(A)| < |A|

(or same for  Y)

Theorem (Hall)

If  G  is a bipartite graph, and for any  A ⊆ X  and  any  B ⊆ Y,  we have  

|A| ≤ |N(A)|,  |B| ≤ |N(B)|,  then there is a perfect matching of  G.
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Perfect Matching and Hall’s Theorem (cntd)

Proof

We use graph  G’.       Assume  |X| = |Y| = n

If there is no perfect matching of  G,  a maximal flow in  G’  has value 

less than  n

We use this fact to find a set  A  (a subset of  X  or  Y)  such that         

|N(A)| < |A|

Since the value of maximal flow equals the capacity of a minimal cut,  

there is a cut  (A’, B’)  with capacity  < n

Set  A’  contains  s,  but can

contain vertices from both

sides

Set  A = X ∩ A’

s t
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Perfect Matching and Hall’s Theorem (cntd)

We show that  (A’, B’)  can be chosen such that  N(A) ⊆ A’

Take a node  y ∈ B’ ∩ N(A)

Prove that  (A’ ∪ {y}, B – {y})

is a cut of capacity not 

exceeding that of  (A’,B’)

Indeed, the new cut crosses 

the arc  (y,t),

but since  y ∈ N(A),  there is at least one arc arriving to  y  from  A,  and 

so now it is not crossed

Consider the capacity of  (A’,B’)  assuming  N(A) ⊆ A’

The only arcs out of  A’  are those leaving  s,  or arriving to  t

t
y

s
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Perfect Matching and Hall’s Theorem (cntd)

Thus

c(A’,B’) = |X ∩ B’| + |Y ∩ A’|.

Observe that  |X ∩ B’| = n – |A|, and  |Y ∩ A’| ≥ |N(A)|

Then  the assumption   c(A’,B’) < n  implies

n – |A| + |N(A)| ≤ |X ∩ B’| + |Y ∩ A’| = c(A’,B’) < n

We get

|A| > |N(A)|

QED
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Algorithms – Disjoint Paths

Disjoint Paths

Design and Analysis of Algorithms

Andrei Bulatov
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Disjoint Paths Problem

A set of paths are said to be  disjoint  if they do not have common edges

The Directed Edge-Disjoint Paths Problem

Instance:

A digraph  G, and distinguished vertices  s, t  of  G

Objective:

Find a maximum number of edge-disjoint paths  from  s  to  t

The Undirected Edge-Disjoint Paths Problem

The same only for undirected graphs
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Directed Paths vs. Flows

Let  G  be a digraph,  s, t   distinguished nodes

We can always assume that  s  is a source,  and  t  is a sink

Why?

Define a flow network by making  s  and  t  the distinguished source and 

sink, resp.,  and setting the capacity of each arc to be  1

Lemma

If there are  k  edge-disjoint paths in a directed graph  G  from  s  to  t,  

then the value of the maximum flow in  G  is at least  k

Proof

Set  f(e) = 1  if  e  belongs to one of the paths, and  f(e) = 0  otherwise

QED
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Directed Paths vs. Flows  (cntd)

We can choose an integer maximal flow. Its values are  0  and  1

Lemma

If  f  is a flow with values  0  and  1  of value  k, then the set of edges 

with flow value  f(e) = 1  contains a set of  k  edge-disjoint paths.

Proof

We proceed by induction on  k

Base Case:  If  k = 0  then there is nothing to prove.

Induction Hypothesis: Suppose the claim is true for all flows of value < k

Induction Step:

Construct a sequence of arcs as follows:

start with  s.
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Directed Paths vs. Flows  (cntd)

Take any edge  e = (s,u)  such that  f(e) = 1

By Conservation property, there is an edge  e’ = (u,w)  with  f(e’) = 1

Continue until

either we reach  t ,  and so obtain a path  P  from  s  to  t

or  we reach some node  v  for the second time

In the first case set  f(e) = 0  for all arcs  e  from  P

We obtain a flow of value  k – 1  (why?), and get the result by the 

Induction Hypothesis.

In the second case, we remove the cycle between the two appearances 

of  v

QED
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Finding Disjoint Directed Paths

Algorithm:

- apply the  F.-F. algorithm

- use the inductive procedure from the proof  (it is called  path 

decomposition)

Theorem

The Ford-Falkerson algorithm can be used to find a maximal set of 

edge-disjoint paths in a digraph in  O(mn)  time
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Undirected Paths vs. Flows

Let  G  be a an undirected graph,  s, t   distinguished vertices

Finding paths in  G  can be reduced to finding paths in a directed graph 

as follows:

Replace every edge of  G  with 2 arcs going into opposite directions

Remove arcs coming into  s,  and going out  of  t

Problem:

Paths in the digraph can use the arcs going opposite directions.

Lemma

For any flow network, there is a maximum flow  f  where for all opposite 

directed  arcs  e = (u,v)  and  e’ = (v,u), either  f(e) = 0,  or   f(e’) = 0
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Undirected Paths vs. Flows (cntd)

Proof

Take any (integer)  maximal flow  f  such  that  f(e) ≠ 0  and  f(e’) ≠ 0  

for some  e = (u,v),  e’ =(v,u)

Let  k  be the smallest of these two values

Decreasing  f(e)  and  f(e’)  by  k,  we obtain a flow that is  0  on one of 

these two opposite arcs.

QED

Theorem

The Ford-Falkerson algorithm can be used to find a maximal set of 

edge-disjoint paths in an undirected graph in O(mn)  time


