Matchings

Design and Analysis of Algorithms
Andrei Bulatov

Algorithms - Matchings

Matchings

A matching M of a graph G = (V,E) is a set of edges such that every vertex is incident to at most one edge from M

Bipartite graphs: bipartition X, Y

The Bipartite Matching Problem

Instance

A bipartite graph G

Objective:

Find a matching in G of maximal size

Algorithms – Matchings 12

Algorithm

We show how to reduce the Bipartite Matching problem to Network Flow Let $\,G\,$ be a bipartite graph with bipartition $\,X,\,Y\,$

- orient all edges from X to Y
- add source s and sink t
- add arcs from s to all nodes in X, and from all nodes in Y to t
- set the weight of all arcs to be 1

Analysis

Lemma

Suppose there is a matching of G $(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$ containing k edges. Then there is a flow in G' of value k

Proof

Straightforward

Algorithms - Matchings

Analysis (cntd)

Lemma

Suppose there is a flow in $\ensuremath{G^{\prime}}$ of value k, then there is a matching of G containing k edges.

Proof

Let f be a flow in G' of value k.

Since all capacities in $\,G'\,$ are integer, there is an integer flow of value at least $\,k.\,$ So we can assume $\,f\,$ is integer.

f(e) equals 0 or 1 for every edge e

Let M be the set of arcs with the flow value 1

Algorithms - Matchings

- 1

Analysis (cntd)

M contains k edges

Indeed, consider the cut (A,B) with $A = X \cup \{s\}$

The value of the flow through the cut equals the number of arcs from $\, X \,$ to $\, Y \,$ where the flow is non-zero

The set of such arcs is exactly the set $\, M \,$

Every node from $\, X \,$ is the beginning of at most one arc from $\, M \,$ It follows straightforwardly from the conservation property

Every node from $\, Y \,$ is the end of at most one arc from $\, M \,$ Same argument

Therefore M is a matching

Algorithms - Matchings

Running Time

Theorem

The Ford-Falkerson algorithm can be used to find a maximal matching in a bipartite graph in O(mn) time

We can assume that G has no isolated vertices, and so $m \ge n/2$ The maximal value of a flow in G' does not exceed $C = c(s) = |X| \le n$ By the theorem on the running time of the F.-F. algorithm, it runs in O(mC) = O(mn) time

QED

Algorithms - Matchings

Perfect Matching and Hall's Theorem

If both parts of a bipartite graph have the same number of elements, a perfect matching can exist, that is a matching that includes all vertices of the graph

How is it possible that a bipartite graph does not have a perfect matching

If there is $A \subseteq X$ such that for the set of

neighbors N(A)

|N(A)| < |A|

(or same for Y)

Theorem (Hall)

If G is a bipartite graph, and for any $A \subseteq X$ and any $B \subseteq Y$, we have $|A| \le |N(A)|$, $|B| \le |N(B)|$, then there is a perfect matching of G.

Algorithms - Matchings

Perfect Matching and Hall's Theorem (cntd)

Proof

We use graph G'. Assume |X| = |Y| = n

If there is no perfect matching of G, a maximal flow in G' has value less than n

We use this fact to find a set $\,A\,$ (a subset of $\,X\,$ or $\,Y$) such that |N(A)| < |A|

Since the value of maximal flow equals the capacity of a minimal cut, there is a cut (A', B') with capacity < n

Set A' contains s, but can contain vertices from both

sides Set $A = X \cap A'$

Algorithms - Matchings

Perfect Matching and Hall's Theorem (cntd)

We show that (A', B') can be chosen such that $N(A) \subseteq A'$

Take a node $y \in B' \cap N(A)$

Prove that $(A' \cup \{y\}, B - \{y\})$ is a cut of capacity not exceeding that of (A',B')

Indeed, the new cut crosses

the arc (y,t),

but since $y \in N(A)$, there is at least one arc arriving to y from A, and so now it is not crossed

Consider the capacity of (A',B') assuming $N(A) \subseteq A'$

The only arcs out of $\,A'\,$ are those leaving $\,s,\,$ or arriving to $\,t\,$

Algorithms - Matchings

Perfect Matching and Hall's Theorem (cntd)

 $c(A',B') = |X \cap B'| + |Y \cap A'|.$

Observe that $|X \cap B'| = n - |A|$, and $|Y \cap A'| \ge |N(A)|$

Then the assumption c(A',B') < n implies

 $n-|A|+|N(A)|\leq |X\cap B'|+|Y\cap A'|=c(A',B')\leq n$

We get

|A| > |N(A)|

QED

Algorithms - Disjoint Paths

Disjoint Paths

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms - Disjoint Paths

13-14

Disjoint Paths Problem

A set of paths are said to be disjoint if they do not have common edges

The Directed Edge-Disjoint Paths Problem

Instance:

A digraph $\,G$, and distinguished vertices $\,s,t\,$ of $\,G\,$ Objective:

Find a maximum number of edge-disjoint paths from s to t

The Undirected Edge-Disjoint Paths Problem

The same only for undirected graphs

Algorithms - Disjoint Paths

13.15

Directed Paths vs. Flows

Let $\,G\,$ be a digraph, $\,s,t\,$ distinguished nodes

We can always assume that $\,s\,$ is a source, and $\,t\,$ is a sink Why?

Define a flow network by making s and t the distinguished source and sink, resp., and setting the capacity of each arc to be 1

Lamms

If there are $\,k\,$ edge-disjoint paths in a directed graph $\,G\,$ from $\,s\,$ to $\,t,$ then the value of the maximum flow in $\,G\,$ is at least $\,k\,$

Proof

Set f(e) = 1 if e belongs to one of the paths, and f(e) = 0 otherwise

OFD

Algorithms - Disjoint Paths

Directed Paths vs. Flows (cntd)

We can choose an integer maximal flow. Its values are $\,0\,$ and $\,1\,$

Lemma

If f is a flow with values 0 and 1 of value k, then the set of edges with flow value f(e) = 1 contains a set of k edge-disjoint paths.

Proof

We proceed by induction on k

Base Case: If k = 0 then there is nothing to prove.

Induction Hypothesis: Suppose the claim is true for all flows of value < k Induction Step:

Construct a sequence of arcs as follows:

start with s.

Algorithms - Disjoint Paths

13-17

Directed Paths vs. Flows (cntd)

Take any edge e = (s,u) such that f(e) = 1

By Conservation property, there is an edge e' = (u,w) with f(e') = 1 Continue until

either we reach $\,t\,,\,\,$ and so obtain a path $\,P\,$ from $\,s\,$ to $\,t\,$ or we reach some node $\,v\,$ for the second time

In the first case set f(e) = 0 for all arcs e from P

We obtain a flow of value $\,k-1\,$ (why?), and get the result by the Induction Hypothesis.

In the second case, we remove the cycle between the two appearances of ν

QED

Algorithms - Disjoint Paths

13-18

Finding Disjoint Directed Paths

Algorithm

- apply the F.-F. algorithm
- use the inductive procedure from the proof (it is called path decomposition)

Theorem

The Ford-Falkerson algorithm can be used to find a maximal set of edge-disjoint paths in a digraph in O(mn) time

Algorithms - Disjoint Paths

13.10

Undirected Paths vs. Flows

Let $\,G\,$ be a an undirected graph, $\,s,t\,$ distinguished vertices Finding paths in $\,G\,$ can be reduced to finding paths in a directed graph as follows:

Replace every edge of $\,G\,$ with 2 arcs going into opposite directions Remove arcs coming into $\,s,\,$ and going out of $\,t\,$

Problem

Paths in the digraph can use the arcs going opposite directions.

Lemma

For any flow network, there is a maximum flow $\,f\,$ where for all opposite directed arcs $\,e$ = (u,v) and $\,e'$ = (v,u), either $\,f(e)$ = 0, or $\,f(e')$ = 0

Algorithms - Disjoint Paths

12.20

Undirected Paths vs. Flows (cntd)

Droo

Take any (integer) maximal flow $\,f\,$ such that $\,f(e)\neq 0\,$ and $\,f(e')\neq 0\,$ for some $\,e=(u,v),\,$ $\,e'=(v,u)\,$

Let k be the smallest of these two values

Decreasing f(e) and f(e') by k, we obtain a flow that is 0 on one of these two opposite arcs.

OFD

Theorem

The Ford-Falkerson algorithm can be used to find a maximal set of edge-disjoint paths in an undirected graph in O(mn) time