
9/28/2016

1

Matchings

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms – Matchings 12-2

Matchings

A matching M of a graph G = (V,E) is a set of edges such that every

vertex is incident to at most one edge from M

Bipartite graphs: bipartition X, Y

The Bipartite Matching Problem

Instance:

A bipartite graph G

Objective:

Find a matching in G of maximal size

Algorithms – Matchings 12-3

Algorithm

We show how to reduce the Bipartite Matching problem to Network Flow

Let G be a bipartite graph with bipartition X, Y

- orient all edges from X to Y

- add source s and sink t

- add arcs from s to all nodes in X, and from all nodes in Y to t

- set the weight of all arcs to be 1

ts

Algorithms – Matchings 12-4

Analysis

Lemma

Suppose there is a matching of G

containing k edges. Then there is a flow in G’ of value k

Proof

Straightforward

ts

),(,),,(),,(2211 kk yxyxyx K

Algorithms – Matchings 12-5

Analysis (cntd)

Lemma

Suppose there is a flow in G’ of value k, then there is a matching of

G containing k edges.

Proof

Let f be a flow in G’ of value k.

Since all capacities in G’ are integer, there is an integer flow of value

at least k. So we can assume f is integer.

f(e) equals 0 or 1 for every edge e

Let M be the set of arcs with the flow value 1

Algorithms – Matchings 12-6

Analysis (cntd)

M contains k edges

Indeed, consider the cut (A,B) with A = X ∪ {s}

The value of the flow through the cut equals the number of arcs from X

to Y where the flow is non-zero

The set of such arcs is exactly the set M

Every node from X is the beginning of at most one arc from M

It follows straightforwardly from the conservation property

Every node from Y is the end of at most one arc from M

Same argument

Therefore M is a matching

9/28/2016

2

Algorithms – Matchings 12-7

Running Time

Proof

We can assume that G has no isolated vertices, and so m ≥ n/2

The maximal value of a flow in G’ does not exceed C = c(s) = |X| ≤ n

By the theorem on the running time of the F.-F. algorithm, it runs in

O(mC) = O(mn) time

QED

Theorem

The Ford-Falkerson algorithm can be used to find a maximal matching

in a bipartite graph in O(mn) time

Algorithms – Matchings 12-8

Augmenting Paths in Bipartite Graphs

There is another algorithm for Bipartite Matching. It finds alternating

paths

ts

Algorithms – Matchings 12-9

Perfect Matching and Hall’s Theorem

If both parts of a bipartite graph have the same number of elements , a

perfect matching can exist, that is a matching that includes all

vertices of the graph

How is it possible that a bipartite graph does not have a perfect matching

If there is A ⊆ X such that for the set of

neighbors N(A)

|N(A)| < |A|

(or same for Y)

Theorem (Hall)

If G is a bipartite graph, and for any A ⊆ X and any B ⊆ Y, we have

|A| ≤ |N(A)|, |B| ≤ |N(B)|, then there is a perfect matching of G.

Algorithms – Matchings 12-10

Perfect Matching and Hall’s Theorem (cntd)

Proof

We use graph G’. Assume |X| = |Y| = n

If there is no perfect matching of G, a maximal flow in G’ has value

less than n

We use this fact to find a set A (a subset of X or Y) such that

|N(A)| < |A|

Since the value of maximal flow equals the capacity of a minimal cut,

there is a cut (A’, B’) with capacity < n

Set A’ contains s, but can

contain vertices from both

sides

Set A = X ∩ A’

s t

Algorithms – Matchings 12-11

Perfect Matching and Hall’s Theorem (cntd)

We show that (A’, B’) can be chosen such that N(A) ⊆ A’

Take a node y ∈ B’ ∩ N(A)

Prove that (A’ ∪ {y}, B – {y})

is a cut of capacity not

exceeding that of (A’,B’)

Indeed, the new cut crosses

the arc (y,t),

but since y ∈ N(A), there is at least one arc arriving to y from A, and

so now it is not crossed

Consider the capacity of (A’,B’) assuming N(A) ⊆ A’

The only arcs out of A’ are those leaving s, or arriving to t

t
y

s

Algorithms – Matchings 12-12

Perfect Matching and Hall’s Theorem (cntd)

Thus

c(A’,B’) = |X ∩ B’| + |Y ∩ A’|.

Observe that |X ∩ B’| = n – |A|, and |Y ∩ A’| ≥ |N(A)|

Then the assumption c(A’,B’) < n implies

n – |A| + |N(A)| ≤ |X ∩ B’| + |Y ∩ A’| = c(A’,B’) < n

We get

|A| > |N(A)|

QED

9/28/2016

3

Algorithms – Disjoint Paths

Disjoint Paths

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms – Disjoint Paths 13-14

Disjoint Paths Problem

A set of paths are said to be disjoint if they do not have common edges

The Directed Edge-Disjoint Paths Problem

Instance:

A digraph G, and distinguished vertices s, t of G

Objective:

Find a maximum number of edge-disjoint paths from s to t

The Undirected Edge-Disjoint Paths Problem

The same only for undirected graphs

Algorithms – Disjoint Paths 13-15

Directed Paths vs. Flows

Let G be a digraph, s, t distinguished nodes

We can always assume that s is a source, and t is a sink

Why?

Define a flow network by making s and t the distinguished source and

sink, resp., and setting the capacity of each arc to be 1

Lemma

If there are k edge-disjoint paths in a directed graph G from s to t,

then the value of the maximum flow in G is at least k

Proof

Set f(e) = 1 if e belongs to one of the paths, and f(e) = 0 otherwise

QED

Algorithms – Disjoint Paths 13-16

Directed Paths vs. Flows (cntd)

We can choose an integer maximal flow. Its values are 0 and 1

Lemma

If f is a flow with values 0 and 1 of value k, then the set of edges

with flow value f(e) = 1 contains a set of k edge-disjoint paths.

Proof

We proceed by induction on k

Base Case: If k = 0 then there is nothing to prove.

Induction Hypothesis: Suppose the claim is true for all flows of value < k

Induction Step:

Construct a sequence of arcs as follows:

start with s.

Algorithms – Disjoint Paths 13-17

Directed Paths vs. Flows (cntd)

Take any edge e = (s,u) such that f(e) = 1

By Conservation property, there is an edge e’ = (u,w) with f(e’) = 1

Continue until

either we reach t , and so obtain a path P from s to t

or we reach some node v for the second time

In the first case set f(e) = 0 for all arcs e from P

We obtain a flow of value k – 1 (why?), and get the result by the

Induction Hypothesis.

In the second case, we remove the cycle between the two appearances

of v

QED

Algorithms – Disjoint Paths 13-18

Finding Disjoint Directed Paths

Algorithm:

- apply the F.-F. algorithm

- use the inductive procedure from the proof (it is called path

decomposition)

Theorem

The Ford-Falkerson algorithm can be used to find a maximal set of

edge-disjoint paths in a digraph in O(mn) time

9/28/2016

4

Algorithms – Disjoint Paths 13-19

Undirected Paths vs. Flows

Let G be a an undirected graph, s, t distinguished vertices

Finding paths in G can be reduced to finding paths in a directed graph

as follows:

Replace every edge of G with 2 arcs going into opposite directions

Remove arcs coming into s, and going out of t

Problem:

Paths in the digraph can use the arcs going opposite directions.

Lemma

For any flow network, there is a maximum flow f where for all opposite

directed arcs e = (u,v) and e’ = (v,u), either f(e) = 0, or f(e’) = 0

Algorithms – Disjoint Paths 13-20

Undirected Paths vs. Flows (cntd)

Proof

Take any (integer) maximal flow f such that f(e) ≠ 0 and f(e’) ≠ 0

for some e = (u,v), e’ =(v,u)

Let k be the smallest of these two values

Decreasing f(e) and f(e’) by k, we obtain a flow that is 0 on one of

these two opposite arcs.

QED

Theorem

The Ford-Falkerson algorithm can be used to find a maximal set of

edge-disjoint paths in an undirected graph in O(mn) time

