
MEDIASOUP
BUILDING MULTI-PARTY VIDEO APPS WITH

Iñaki Baz
@ibc_tw

José Luis Millán
@jomivi

BACKGROUND

WHAT WE DO

▸ RFC 7118 “The WebSocket protocol as a Transport for SIP”

▸ JsSIP “The JavaScript SIP library”

▸ OverSIP (first SIP proxy with WebSocket support)

▸ mediasoup “Cutting Edge WebRTC Video Conferencing”

MEDIASOUP…

▸ is:

▸ a client and server side library

▸ a muti-party video component

▸ is not:

▸ an application itself

▸ an end product

WEBRTC SERVER TOPOLOGIES

MULTIPOINT CONTROL UNIT (MCU)
Participants send their media to the server

Participants receive others media in a single
stream, mixed by the server

✓ Clients need to handle a single remote stream

✓ Server performs transcoding

✓ Low download link required

๏ CPU intensive in server side

๏ High latency

๏ Fixed remote participants representation

๏ Low flexibility in client side

WEBRTC SERVER TOPOLOGIES

SELECTIVE FORWARDING UNIT (SFU)
Participants send their media to the server

Participants receive others media in separate
streams, one each

✓ Server simply routes. High throughput, low latency

✓ Low CPU usage in server side

✓ Client can decide what streams to receive

✓ Client/Server can choose quality for each stream

๏ Higher download link required

๏ No transcoding

MEDIASOUP
SERVER

MEDIASOUP SERVER

▸ Programmable WebRTC Selective Forwarding Unit (SFU)

▸ Written in C++ in its core, using libuv for asynchronous IO

▸ Written in JavaScript ES6 in the surface

▸ Offers a ORTC like API (no SDP but RTC Objects)

▸ Presented as a Node.js module

$ npm install mediasoup

MEDIASOUP SERVER

NODE.JS MODULE ARCHITECTURE

▸ Server instance launches the C++ workers

▸ Rooms are created within a server

▸ Peers are created within a room

MEDIASOUP SERVER

MEDIASOUP PEER

▸ WebRTC endpoint in the server side

▸ Interacts with a remote endpoint (browser, native client)

▸ Handles transports, producers and consumers

▸ A Transport represents the channel for ICE, DTLS, SRTP

▸ A Producer represents a media track produced by the remote
peer

▸ A Consumer represents a media track produced by other peer
and consumed by this one

MEDIASOUP
CLIENT

MEDIASOUP CLIENT

▸ client-side javascript SDK

$ npm install mediasoup-client

$ bower install mediasoup-client

▸ Abstracts the app from the underlaying WebRTC device

▸ SDP specifics, WebRTC API, ORTC API

▸ Handles message exchange with mediasoup server

MEDIASOUP CLIENT

MEDIASOUP CLIENT SDK ARCHITECTURE

▸ Room representing the room in mediasoup server

▸ Local peer representing the local WebRTC endpoint

▸ It consists of Transports and Producers

▸ Remote Peers are added to the room as they join

▸ They consist of Consumers

MEDIASOUP
CLIENT AND
SERVER
INTERACTION

MEDIASOUP CLIENT AND SERVER MESSAGE EXCHANGE

MEDIASOUP CLIENT AND SERVER MESSAGE EXCHANGE (SIMPLIFIED)

BUILDING THE
APPLICATION

APPLICATION

APPLICATION EXAMPLE

▸ Campus X has decided to offer online live classes

▸ Teacher talks, students listen and see the teacher’s
webcam

▸ Students can “raise the hand” when they want to talk

▸ If they are granted permission, they talk and are seen

TEACHER LOGS IN THE CAMPUS AND CREATES THE ‘MASTERCLASS’ ROOM

TEACHER JOINS THE ROOM

TEACHER STARTS SENDING MEDIA

STUDENT JOINS THE ROOM AND STARTS RECEIVING TEACHER’S MEDIA

STUDENT REQUESTS PERMISSION FOR TALKING

STUDENT STARTS SENDING MEDIA

TEACHER STARTS RECEIVING STUDENT’S MEDIA

DEMO

DEMO

FIRSTSIGHT

▸ https://firstsight.mediasoup.org

▸ Join using desktop or Android Chrome/Firefox

https://firstsight.mediasoup.org

