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We study a dynamic appointment scheduling problem with cancellations and overbooking motivated by a

medical clinic, where appointment requests arrive over time. The objective is to balance patient waiting

time with service providers' overtime and idle time. The problem is formulated as a �nite-horizon stochastic

dynamic program. However, the formulation su�ers from the curse of dimensionality as the state is the service

schedule, which is inherently high dimensional. We propose a solution approach based on approximate policy

iteration and value function approximation. We validate the approach with data from a public hospital in the

US. We use the data to develop a Weibull accelerated failure time model to estimate the time- and patient-

dependent cancellation and no-show probabilities. Our solution approach allows treating each patient as

his or her own class. The approximate policy iteration approach is simulation-based and can accommodate

complex system dynamics. Our numerical study shows that the approach is competitive against several

computational benchmarks.
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1. Introduction

In medical services, it is common to book appointments weeks, or even months, in advance. Due

to the long appointment lead time, a scheduled appointment may be cancelled ahead of time. In

addition, patients may fail to show up (no-show) for their appointments. If not properly managed,

appointment cancellations and no-shows can lead to the under-utilization of doctors, as they will

have schedules with empty time slots. To compensate for cancellations and no-shows, many hospitals

overbook appointments. However, in the event of unexpectedly high patient show-ups, overbooking

can lead to excessive patients' waiting time and doctors' overtime. Service providers want to make

appointment decisions that account for rejection costs (e.g. cost of goodwill), patients' waiting costs,

doctors' idle time, and overtime costs.

We consider a dynamic appointment scheduling problem where appointment requests arrive over

time, and patients with reservations may cancel or no-show for their appointments. Patients can

di�er in their rejection and waiting costs, as well as cancellation and no-show probabilities. We
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formulate the problem as a �nite-horizon stochastic dynamic program. A major challenge in solving

the stochastic dynamic program is the well-known �curse of dimensionality� caused by the state

space growing exponentially in the number of appointment slots and patient classes. Unlike other

applications, such as the airline revenue management with overbooking and cancellations (Subra-

manian et al. 1999), the cost evaluation of a �xed appointment schedule is non-trivial. Furthermore,

scheduling appointments is complex even when patients are homogeneous because of the intricate

system dynamics (Robinson and Chen 2010). Due to the complexities associated with solving the

problem exactly, the literature focuses on approximation methods, broadly classi�ed as approximate

dynamic programming (ADP).

We propose an approximate policy iteration (API) algorithm (Bertsekas and Tsitsiklis 1996,

Powell 2007, Bertsekas 2011), which can accommodate the nonlinear structure of the terminal value

function. API is a broad class of ADP methods that use iterative simulations to learn the dynamic

programming value functions. We validate the API algorithm on data obtained from a large public

hospital in the US. Rather than clustering patients prior to scheduling, we develop and evaluate a

personalized scheduling model, where each patient is treated as his or her own class. We estimate

the arrival patterns of appointment requests, cancellation probabilities of existing appointments,

and no-show probabilities for each patient. In particular, we use a Weibull accelerated failure time

model (Klein and Moeschberger 2006) to estimate the cancellation and no-show probabilities. The

model is parametric and dynamic, and the estimated cancellation and no-show probabilities are

time- and patient-dependent.

We perform a simulation study to evaluate the proposed API algorithm. Since it is not possible

to compare the performance of the algorithm against an optimal policy, we propose a lower bound

on the expected total cost based on ideas from information relaxation, where the cost is evaluated

by assuming that arrivals and cancellations are observed but no-shows are not. The lower bound

provides a benchmark to evaluate the optimality gap of the policy based on the proposed API

algorithm. We also consider several scheduling policies, which provide upper bounds on the cost.

Finally, we compare our model to the heuristic policy presented in Section 6 of Zacharias and Pinedo

(2014).

We contribute to the appointment scheduling literature by generalizing the expected terminal

cost evaluation in Robinson and Chen (2010) and Zacharias and Pinedo (2014) for multiple pa-

tient classes. Our model can be viewed as a generalization of the single-leg revenue management

problem with overbooking and cancellation in Subramanian et al. (1999). We demonstrate that our

model outperforms several alternative policies. In particular, it outperforms the policy proposed by

Zacharias and Pinedo (2014) in 77% of the tested settings.
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The remainder of this paper is organized as follows. We review the literature in Section 2. Section 3

presents the dynamic programming formulation. We introduce our API algorithm in Section 4.

Section 5 presents several benchmark policies. Section 6 discusses parameter estimation. Section 7

presents our numerical results and their implications. Section 8 concludes.

2. Literature Review

In this section, we review the relevant literature with a focus on dynamic appointment scheduling

and approximate dynamic programming.

In recent years, the operations research community has paid signi�cant attention to scheduling

problems in the medical industry (Cayirli and Veral 2003, Mondschein and Weintraub 2003, Gupta

and Denton 2008, Ahmadi-Javid et al. 2017). Many papers in the appointment scheduling litera-

ture consider static appointment scheduling where the system dynamics is simpli�ed or completely

ignored (Kaandorp and Koole 2007, Hassin and Mendel 2008, Klassen and Yoogalingam 2009,

Robinson and Chen 2010). More recent work in this area studies dynamic appointment scheduling

problems where the system dynamics is explicitly modeled and analyzed (Liu et al. 2010, Zacharias

and Pinedo 2014). Some researchers consider systems with enriched system dynamics, such as pa-

tients' appointment time preferences (Gupta and Wang 2008, Wang and Gupta 2011, Feldman et al.

2012).

Dynamic programming has been widely used in healthcare operations, see Alagoz et al. (2010) for

a review and Kolesar (1970) for an early reference. Grant et al. (2017) study the trade-o� between

delaying an appointment at the risk of costly failures versus the additional cost of scheduling the

appointment sooner using surge capacity. They show that some simple policies can be optimal under

certain technical assumptions. When these assumptions are violated, they evaluate the dynamic

programming formulation exactly using a numerical procedure. Other recent papers that use dy-

namic programming models for appointment scheduling problems include LaGanga and Lawrence

(2007), Patrick et al. (2008), Liu et al. (2010), Gocgun et al. (2011), LaGanga and Lawrence (2012),

Patrick (2012), Sauré et al. (2012), Schütz and Kolisch (2012), Barz and Rajaram (2013), Samorani

and LaGanga (2013), Gocgun and Puterman (2014), and Samiedaluie et al. (2014).

As noted in Section 1, we use an ADP method to tackle the �curse of dimensionality� when

scheduling appointments (Bertsekas and Tsitsiklis 1996, Powell 2007, Bertsekas 2011). Most of the

aforementioned articles use linear programming-based ADP (LP-based ADP) (Adelman 2003, 2004,

de Farias and Van Roy 2004, de Farias and Van Roy 2006). The linear programming formulation

for dynamic programs originated in the 1960s; see Puterman (1994) for a discussion of the early

literature. The LP-based ADP starts with the linear programming formulation of the corresponding
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dynamic program and typically assumes speci�c parametric forms for the value functions (Schweitzer

and Seidmann 1985). The parameterization of the value function helps reduce the number of decision

variables because only function coe�cients need to be determined instead of the full set of function

values. Nevertheless, the resulting approximate linear programs (ALPs) are still quite challenging

to solve because they are typically accompanied by a signi�cant number of constraints. The focus of

this literature has been on applying specialized algorithms, such as column generation or constraint

sampling, to solve the ALPs. For the dynamic appointment scheduling problem considered in our

paper, it is not clear whether the LP-based ADP can be immediately applicable as the terminal

value function is highly nonlinear.

API algorithms possess solid theoretical properties when a lookup table representation of the value

function is used. Even though the theoretical development of APIs is incomplete when the value

function approximations are used, there is ample evidence of strong performance in practice. Sauré

et al. (2015) propose an API algorithm based on a post-decision state formulation and a logistic

value function approximation, which is applied to a multi-priority patient scheduling problem. Their

focus is to compare the solution quality and policies from the API algorithm with the LP-based ADP

(Patrick et al. 2008). They show that the policies from the API algorithm have several advantages

over the policies produced by the LP-based ADP. More recently, Koch (2017) shows that API

combined with some well-known value function approximations leads to policies that are competitive

when compared to solution methods based on LP-based ADP for the network revenue management

problem. As LP-based ADP cannot be directly applied in our setting, we build computational

benchmarks based on the heuristic from Zacharias and Pinedo (2014) and show that the API

algorithm can obtain higher quality solutions. Liu et al. (2010) propose an API algorithm in a

similar setting. Unlike us, they only evaluate their API algorithm once. Our numerical study shows

that performing multiple iterations is crucial for obtaining high quality solutions.

3. Model Formulation

This section introduces a �nite-horizon dynamic programming model for a dynamic appointment

scheduling problem. We consider a medical clinic with N appointment slots per day. We assume that

appointments are made in advance. The booking horizon is divided into T discrete time periods.

Time counts forward, so that the �rst period is period 1 and the last period is period T . Medical

appointments occur in period T + 1. Patients are classi�ed into K classes, which have di�erent

arrival rates, cancellation probabilities, and rejection costs. We assume that there is at most one

event occurring in the booking period t, which can be either the arrival of an appointment request or

an appointment cancellation. The arrival rate of a patient from class k in period t is λtk. An existing
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appointment in class k will be canceled in period t with probability qtk. A rejected appointment

request from class k in period t incurs a cost rtk. In period T + 1, each class-k patient shows up

with a probability of 1− qT+1,k.

The �nite-horizon stochastic dynamic programming model can be stated as follows. The state is

an N ×K matrix X= (xnk), where xnk is the number of class k patients scheduled in appointment

slot n. Without loss of generality, we assume that the number of patients booked in slot n is bounded

by a number bn. We require that

∑
k

λtk +
∑
n

bn max
k
qtk ≤ 1, ∀t.

Let Vt(X) denote the total expected cost given state X in period t. For each t and X, the dynamic

programming equation is given by

Vt(X) =
∑
k

λtk min
{
rtk +Vt+1(X),min

n
Vt+1(X+ enk)

}
+
∑
k

∑
n

qtkxnkVt+1(X− enk)

+

(
1−

∑
k

λtk−
∑
k

∑
n

qtkxnk

)
Vt+1(X)

=
∑
k

λtk min
{
rtk,min

n
∆nkVt+1(X)

}
−
∑
k

∑
n

qtkxnk∆nkVt+1(X− enk) +Vt+1(X). (1)

In the above, enk is a matrix where the (n,k)-th entry is one and all other entries are zeros and

∆nkVt+1(X) = Vt+1(X+ enk)−Vt+1(X), ∀n,k,X.

We also de�ne the following notations:

• α: unit waiting cost for all patients.

• β: the overtime premium for doctors; β = 50% by default.

• D: the doctor's expected length of day.

• I: the doctor's expected idle time before the end of day.

• O: the doctor's expected overtime.

• W : the expected waiting time of the patients.

Thus, the total cost of a schedule X is given by

VT+1(X) = I +αW +βO. (2)

We discuss how to evaluate the terminal value (2) in the next section.

Before proceeding, we point out that the optimal policy is relatively simple. We state the result

without a proof in the following proposition.
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Proposition 1. Given state X in period t, it is optimal to schedule a class-k patient in slot n∗

if

rtk ≤min
n

∆nkVt+1(X), n∗ ∈ arg min
n

∆nkVt+1(X).

Otherwise, it is optimal to reject the patient.

The structure of the optimal policy in Proposition 1 is implied by the optimality equation 1.

Proposition 1 states that it is optimal to schedule a patient to a slot with the smallest opportunity

cost, which should be lower than the rejection cost. Otherwise, it is optimal to reject the patient.

Therefore, once the value function Vt(X) is determined, it is trivial to compute the optimal policy.

4. An Approximate Policy Iteration (API) Algorithm

We introduce an API algorithm with value function approximation to solve the problem (1). The

main challenge in solving the problem stems from the high dimensionality of the state variable X,

which is an N ×K matrix. In order to address the state space explosion, we introduce a value

function approximation based on least squares regression. The heart of policy iteration is the so-

called policy improvement step. In order to reduce the number of policy-improvement iterations,

it is important to start with a reasonably strong initial policy. We describe our procedure in the

following sections. Section 4.1 brie�y describes the procedure used to generate sample paths. We

discuss the initialization in Section 4.2. Section 4.3 introduces the value function approximation

based on least-squares regression. Section 4.4 describes the API algorithm in detail. We emphasize

that the API algorithm is simulation-based and therefore can incorporate rather complex system

dynamics. Furthermore, it is decoupled from the value function approximation architecture and can

be used with di�erent value function approximations.

4.1 Generating Sample Paths

A sample path can be denoted by the vector u= (u1, . . . , uT ), where ut is a random number between 0

and 1 for each t. The value of ut can be used to determine whether there is an arrival or a cancellation

from a class k patient. If ut ∈ [0, λt1), then there is a class-1 customer arrival. For k= 2, . . . ,K, if ut ∈

[
∑k−1

j=1 λtj,
∑k

j=1 λtj), then there is a class-k customer arrival. If ut ∈ [
∑K

j=1 λtj,
∑K

j=1 λtj +
∑

n qt1xn1),

then there is a class-1 cancellation. For k= 2, . . . ,K, if ut ∈ [
∑K

j=1 λtj +
∑

n

∑k−1
j=1 qtjxnj,

∑K

j=1 λtj +∑
n

∑k

j=1 qtjxnj), then there is a class-k cancellation. Since all class-k (k= 1, . . . ,K) customers have

equal probability of cancellation, we can also use ut to determine which customer from class k

canceled his or her appointment.
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4.2 Initialization

To ensure that the algorithm produces a high-quality scheduling policies within a small number of

iterations, we need to start with a reasonably good initial policy. We use an initialization policy

where all appointment requests are accepted. We also assume that all cancellations are observed prior

to period T + 1. Once all patients attending the clinic in period T + 1 are known, we schedule them

following the procedure in Proposition 1 of Zacharias and Pinedo (2014). The produced schedule

is X. Based on X, we can calculate the expected cost ṼT+1(X) and the predictors presented in

Section 4.3. We estimate ṼT+1(θt,X) using a stepwise least squares regression model; see Algorithm

1. A reasonable initial policy can be computed by setting

Ṽt(X)≈ ṼT+1(X), ∀t,X.

In period T + 1, each class-k patient shows up with a probability of 1− qT+1,k. We can generalize

the model in Robinson and Chen (2010) and Zacharias and Pinedo (2014) to calculate the expected

cost VT+1(X).

Before proceeding, we introduce some additional notations.

• xn: the n-th row of X.

• xk: the k-th column of X.

• yn: the vector of show-up appointments in slot n.

• nmax = max{n :
∑

k xnk ≥ 1}: the last time slot with at least one patient scheduled.

• b(i, p, j): the probability that a binomial random variable with parameters i and p takes a value

equal to j.

• zn = (zn,1, . . . , zn,K): the vector denoting the number of patients in each class at the beginning

of slot n (i.e. at the end of time slot n− 1). We have z1 = 0.

• k(zn) = max{k : zn,k ≥ 1}: the largest index of the positive element of a vector zn.

• ek: a vector with the k-th element 1 and all other elements 0.

The vector zn satis�es

z1 = 0,

zn =

{
zn−1 +yn−1− ek(zn−1+yn−1), if zn−1 +yn−1 6= 0,

0, otherwise,
∀n= 2, . . . ,N,

zN+1 = zN − ek(zN ).

The probability that yn out of xn scheduled patients show up in period n equals:

P (yn) =
∏
k

P (yn,k) =
∏
k

b(xn,k,1− qT+1,k, yn,k).
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Let P (zn = z|zn−1) be the probability that z individuals are in the o�ce (system) at the beginning of

slot n given that there are zn−1 patients in the system at the beginning of slot n−1. The probability

that the o�ce is not empty (z 6= 0) at time n conditional on zn−1 can be represented as

P (zn = z|zn−1) = P (zn−1 +yn−1− ek(zn−1+yn−1) = z|zn−1) = P (yn−1− ek(zn−1+yn−1) = z− zn−1|zn−1).

Therefore, the di�culty of an explicit formula for the probability of zn relates to the ek(zn−1+yn−1)

term. However, this probability can be easily evaluated using simulation.

We assume that the doctor will leave after examining his or her last patient for the day. To

determine whether there is at least one patient showing up in period nmax, the doctor must stay

in the o�ce until the end of slot nmax− 1. Furthermore, the expected length of a doctor's day will

depend on the expected number of patients (i) not completed by the end of period nmax−1 and (ii)

arriving in time slot nmax given schedule X.

Let s(·) denote the component sum of a vector, for example s(zn) =
∑K

k=1 zn,k. We have

D= nmax− 1 +

s(znmax )∑
j=1

j
∑

s(z)=j

P (znmax = z) +

s(xnmax )∑
j=1

j
∑

s(y)=j

P (ynmax = y).

The expected idle time equals the di�erence between a doctor's length of day (D) and his/her

workload:

I =D−
∑
k

(1− qT+1,k)

(∑
n

xn,k

)
The expected overtime is calculated as the di�erence between the appointments' completion time

(D) and overall length (N). Thus, it depends on N , nmax, and the number of patients at the end

of nmax (i.e. znmax +1
).

O=

{
0, if 0<nmax ≤N − s(znmax+1),∑s(znmax+1)−(N−nmax)

j=1 j
∑
〈i,z〉=j P (znmax+1 = z), if N − s(znmax+1)<nmax ≤N.

In the �rst case the overtime is 0 because the number of leftover appointments at the end of period

nmax (i.e., s(znmax+1)) is at most equal to the leftover slots between periods N and nmax, which

ensures that everybody will be seen by the end of the day. The second case corresponds to the number

of leftover patients at the end of period nmax exceeding the number of leftover appointment slots,

i.e. s(znmax+1) > N − nmax. The equation quanti�es the expected number of excess appointments

(j). Because overtime cost does not depend on patient's class, we aggregate the probabilities across

all z which contain the same total number of patients (i.e. s(znmax+1) = j).

Waiting time should be examined separately for patients at the end of slot nmax (znmax+1) and

at the end of slots 1 through nmax− 1 (z2, ...,znmax). Without loss of generality, we can ignore the
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class composition of patients waiting at the end of slot n, as the unit waiting cost (α) is the same

for all k. The total expected patient waiting time is given by

W =

nmax∑
n=2

s(zn)∑
j=1

j
∑

s(zn)=j

P (zn = z) +

s(znmax+1)∑
j=1

j∑
l=1

l
∑

s(z)=j

P (znmax+1 = z).

The total cost of a schedule X is given by VT+1(X) de�ned in (2).

Algorithm 1 API algorithm

1: for s= 1 to S do

2: X
(s)
1 ← 0

3: for t= 1 to T do

4: Ut←Uniform[0,1]
5: u∗t ← f(ut,λt,qt) (see Section 4.1)
6: end for

7: Update X
(s)
T based on u∗t , t∈ {1, T}, X

(s)
1 & following Proposition 1 in Zacharias and Pinedo (2014)

8: if X
(s)
T+1 = 0 then

9: Ṽ
(s)
T+1(X

(s)
T+1)← 0

10: else

11: Simulate no-shows based on X
(s)
T+1 and qT+1

12: Serve the patients that show-up in X
(s)
T+1

13: Calculate Ṽ (s)
T+1(X

(s)
T+1)

14: end if

15: end for

16: Save β̂
(1)

T+1 � a model where ṼT+1 is regressed on XT+1

17: Save β̂
(1)′

t ← β̂
(1)

T+1 ∀t∈ {1,2, ..., T}

4.3 Approximating the Value Function

The main di�culty in solving problem (1) is the high dimensional state space. A standard policy

iteration algorithm requires enumerating the states, which is impractical for problem (1). Instead,

we use a least squares regression to approximate the value function Vt(X) as a function of the state

X. Instead of storing the value for each state X, we only need to store the collection of regression

coe�cients. The regression coe�cients can be estimated from a collection of randomly sampled

states. In our algorithm, the sampled states are those visited when executing certain control policies.

A crucial decision is the speci�cation of the regression model. The simplest choice would be to

approximate the value function as an a�ne function of the state. Indeed, the a�ne approximation

is a popular approximation architecture in ADP. However, we do not expect such an approximation

architecture to represent the cost well in our problem; in general, we do not expect the value function

to be linear in the schedule.

In determining an appropriate set of variables, we seek to capture important �features� of the state

variable; this is called �feature extraction� in Bertsekas and Tsitsiklis (1996). We create two sets of

variables to approximate the value function. The �rst set captures the expected and total number of

scheduled patients. To calculate the expected number of patients who show up at their appointment

times, we take into account the cancellation and no-show probabilities of each scheduled patient.
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We use second- and third-order polynomials of these variables in order to account for the possible

non-linear relationship between these variables and the value function Vt(X). The second set of

variables describe the empty and overbooked appointment slots in X. We record the number of

empty slots, the maximum number of patients scheduled in a single slot and the variability in the

number of patients assigned across slots. For example, consider a schedule with �ve slots where

three patients are scheduled in slot 1 and one patient is scheduled in slots 2 through 5. Then, we

have zero empty slots, a maximum of three patients scheduled in a single slot, and a variability

index of 0.894, which corresponds to the standard deviation of 3, 1, 1, 1, and 1. The schedule-based

predictors are especially important in ensuring that individuals are assigned to the available empty

slots �rst before any overbooking is initiated. The list of predictor variables is given in Table 1. In

total, there are 9 predictors. We use stepwise regression to select the variables to include in the �nal

regression model.

Table 1 Model Predictors

Type Predictor

Requests Total # Patients
Total # Patients2

Total # Patients3

E[Total # Patients]
E[Total # Patients]2

E[Total # Patients]3

Schedule Empty Slots
Max. Patients per Slot
Overbooking Variability

4.4 Approximate Policy Iteration

In this section, we provide an overview of the API algorithm (see Algorithm 2). The procedure to

generate arrivals and cancellations described in Section 4.1 is denoted by f(ut,λt,qt). X
(s) contains

the schedule for sample path s and X
(s)
t is the schedule in period t for sample path s.

In the initialization step (Algorithm 1) for every sample path, we �rst set the schedule as empty;

i.e. X
(s)
1 ← 0 (line 2). As noted in Section 4.2, we observe all arrivals until period T and schedule

the patients based on Proposition 1 of Zacharias and Pinedo (2014) (lines 3 � 7). If the schedule is

empty, its cost equals zero (lines 8 � 9); otherwise, we observe who shows up for their appointments

and calculate the cost of the schedule (lines 10 � 14). The costs recorded for all S sample paths are

regressed on the predictors listed in Table 1 and the regression parameters (β
(1)
T+1) are assigned to

β
(1)
t , ∀t.

Following the initialization of the API, we repeat the loop in lines 2 � 43 of Algorithm 2 until the

algorithm converges. We initialize the value function (line 4). For every sample path s we initialize
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Algorithm 2 API algorithm

1: i← 1
2: repeat

3: i← i+1
4: Vt← null, ∀t∈ {1,2, ..., T +1}
5: for s= 1 to S do

6: X
(s)
1 ← 0

7: A← null
8: for t= 1 to T do

9: ut←Uniform[0,1]
10: u∗t ← f(ut,λt,qt) (see Section 4.1)
11: for k= 1 to K do

12: if u∗t = cancellation in class k then

13: atk← 0
14: Update X

(s)
t+1 based on u∗t & X

(s)
t

15: end if

16: if u∗t = arrival in class k then

17: if rtk ≥minn{Ṽ (s)
t+1(X

(s)
t + enk, β̂

(i−1)

t+1 )− Ṽ (s)
t+1(X

(s)
t , β̂

(i−1)

t+1 )} then
18: atk← 0
19: Update X

(s)
t+1 based on u∗t , X

(s)
t & n∗ = argmin

n

{Ṽ (s)
t+1(X

(s)
t + enk, β̂

(i−1)

t+1 )− Ṽ (s)
t+1(X

(s)
t , β̂

(i−1)

t+1 )}
20: else

21: atk← 1
22: X

(s)
t+1←X

(s)
t

23: end if

24: end if

25: if u∗t = neither arrival nor cancellation in class k then

26: atk← 0
27: X

(s)
t+1←X

(s)
t

28: end if

29: end for

30: end for

31: if X
(s)
T+1 = 0 then

32: Ṽ
(s)
T+1(X

(s)
T+1)← 0

33: else

34: Simulate no-shows based on X
(s)
T+1 and qT+1

35: Serve the patients that show-up in X
(s)
T+1

36: Calculate Ṽ (s)
T+1(X

(s)
T+1)

37: end if

38: Ṽ
(s)
t (X

(s)
t )←

∑T
i=t

∑
k
aikrik + Ṽ

(s)
T+1(X

(s)
T+1)

39: end for

40: for t= 1 to T +1 do

41: Save β̂
(i)

t � a model where Ṽt is regressed on Xt

42: β̂
(i)′

t = (1− ai) ∗ β̂
(i−1)′

t + ai ∗ β̂
(i)

t , where ai = a/(a+ i− 1), a > 0
43: end for

44: until Test if µṼi
T+1

(XT+1) 6= µ
Ṽ

i−1
T+1

(XT+1)
, stop if p-value > 0.01

the schedule X
(s)
1 and A (lines 6 � 7). A is the action matrix which contains the information on the

arrival time and class of all rejected appointment requests. The loop in lines 8 � 30 shows how the

algorithm makes scheduling decisions. If a patient cancels an appointment at time t (lines 12 � 15),

we update our schedule (X
(s)
t+1) by removing him or her from the schedule compiled between periods

1 and t− 1. If a class-k patient requests an appointment (lines 16 � 24), he or she is assigned to

the optimal time slot n∗ when the expected cost increase in period t resulting from accepting the

request does not exceed the rejection cost rtk (lines 16 � 19). Otherwise the appointment request is

rejected, and the rejection action is recorded (lines 20 � 23). The system stays the same when no

event is observed (lines 25 � 28).

Once the X
(s)
T+1 schedule is set, we observe its cost Ṽ

(s)
T+1(X

(s)
T+1) (lines 31 � 37). To calculate
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Ṽ
(s)
t (X

(s)
t ) for all t, we incorporate the cost of the rejected requests (line 38). Given a schedule X

(s)
t

and its cost Ṽ
(s)
t (X

(s)
t ) for all S sample paths, we obtained the new regression parameters (β

(i)
t )

for iteration i (i≥ 2) for all t. The algorithm is terminated when the mean cost at time T + 1 in

iteration i is no longer signi�cantly di�erent at α= 0.01 from the mean cost in period T +1 observed

in iteration i− 1 (line 44).

5. A Lower Bound and Benchmark Policies

This section introduces a lower bound on the total expected cost and several benchmark policies. The

lower bound is based on the idea of information relaxation, where we assume full information (FI)

on the arrivals and cancellations before scheduling patients in period T + 1. We also introduce a no

overbooking policy and two policies that accept all patient requests but di�er in how overbooking is

handled. These policies are compared with the one produced by our API algorithm in the numerical

study.

Full Information (FI) Lower Bound: The procedure to compute the bound is summarized

in Algorithm 3. For every sample path s, we observe all appointment and cancellation requests

before a schedule is produced (lines 2 � 8). Therefore, we know the maximum number of individuals

who could be seen at T + 1 (M � line 9). Following Zacharias and Pinedo (2014), we rank patients

(ranktk � line 10) based on their cost (rtk) and no-show probabilities (qT+1,k). We estimate the cost

of scheduling them (m= {N,N+1, ...,M}) highest ranktk patients. We (1) schedule them patients

(line 15) using Proposition 1 in Zacharias and Pinedo (2014), (2) simulate the patients who show

up at T + 1 given qT+1,k one thousand times (lines 16 � 19) and (3) calculate the average observed

costs based on the simulated results (line 20). We pick m∗ which has the lowest average observed

simulation-based cost (line 23) and calculate Ṽ
(s)
t , ∀t given m∗ (lines 24 � 28).

Proposition 2. Assuming that the cost evaluation is exact, the cost produced by Algorithm 3

gives a lower bound on the total expected cost.

The proof is immediate since Algorithm 3 utilizes additional information that is not available

in the original problem. We make the assumption of exact cost evaluation since Algorithm 3 uses

simulation to evaluate cost and naturally would introduce simulation error. We expect the simulation

error to be small when the number of sample paths are relatively large.

No Overbooking (NO) Policy: Schedule patients on a �rst-come-�rst-serve basis. Do not

overbook any appointment slots.

Accept All and Assign to Overtime Slots (ALL-I policy): Accept all appointment requests.

Do not overbook appointment slots. See all overload patients during after hours.
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Algorithm 3 Full Information Lower Bound

1: for s= 1 to S do

2: X
(s)
1 ← 0

3: A←− null
4: for t= 1 to T do

5: ut←Uniform[0,1]
6: u∗t ← f(ut,λt,qt) (see Section 4.1)
7: end for

8: Update X
(s)
T based on u∗t , t∈ {1, T}, X

(s)
1 & following Proposition 1 in Zacharias and Pinedo (2014)

9: M =
∑

X
(s)
T

10: Rank patient request ranktk =
rtk

1−qT+1,k

11: if X
(s)
T+1 = 0 then

12: Ṽ
(s)
T+1(X

(s)
T+1)← 0

13: else

14: for m=N to M do

15: Accept the m highest rank ranktk patients (X(m,s)
T+1 )

16: for i= 1 to 1000 do

17: Simulate no-shows based on X
(m,s)
T+1 and qT+1

18: Calculate Ṽ (i,s)
T+1 (X

(m,s)
T+1 )

19: end for

20: Calculate E[Ṽ
(s)
T+1(X

(m,s)
T+1 )] =

∑1000
i=1

Ṽ
(i,s)
T+1

(X
(m,s)
T+1

)

1000

21: end for

22: end if

23: m∗ = argmin
m

E[Ṽ
(s)
T+1(X

(m,s)
T+1 )]

24: Accept the m∗ highest rank ranktk patients (X(m∗,s)
T+1 )

25: Save the information on the M −m∗ rejected patients in A
26: Simulate no-shows based on X

(m∗,s)
T+1 and qT+1

27: Calculate Ṽ (s)
T+1(X

(m∗,s)
T+1 )

28: Ṽ
(s)
t (X

(m∗,s)
t )←

∑T
i=t

∑
k aikrik + Ṽ

(s)
T+1(X

(m∗,s)
T+1 )

29: end for

Accept All and Equally Disperse Across Slots (ALL-II policy): Accept all patient re-

quests. If there are more requests than available slots, slots are evenly overbooked. For, example,

if M = 26 and N = 12, 3 patients will be assigned to slot 1 and slot 7 and 2 individuals will be

assigned to each remaining slot.

In addition, we also compare the API policy with a heuristic introduced in Zacharias and Pinedo

(2014).

6. Parameter Estimation

This section estimates parameters for our dynamic programming model using a dataset obtained

from a large public hospital in the US. The analysis in this section serves two purposes. First,

we illustrate how the model parameters can be estimated using a real dataset. Second, the anal-

ysis allows us to construct realistic problem instances that are subsequently tested in Section 7.

Section 6.1 describes the data. Section 6.2 estimates cancellation and no-show probabilities using

survival analysis. Section 6.3 estimates arrival probabilities from the same dataset.

6.1 Data Description

The data contains information on 35,765 endocrinology appointments made by 12,593 individuals

between January 1, 2011 and December 31, 2013. Tables 2 and 3 report summary statistics for
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the appointment and patient data, respectively. 36% of the appointments are associated with indi-

viduals who are �rst time patients since January 1, 2011. The remaining appointments (64%) are

for follow-up endocrinology visits. Most patients are seen on Monday (22.67%), Tuesday (25.30%)

and Thursday (23.08%) and are almost exclusively allocated to 10 doctors and 2 clinics. 35.36% of

the appointments are associated with individuals above the age of 65, evident in the proportion of

visits covered under Medicare. On average, appointments are scheduled about 2 months in advance

(average appointment lag ≈ 65). Some urgent visits are accommodated within a day (minimum

appointment lag = 1), while preventative check-ups are sometimes scheduled more than a year in

advance (maximum appointment lag = 375). Appointments take place between 7:00 AM and 5:00

PM. Most patients are female (78.92%) who speak English as their �rst language (97.58%), and are

Caucasian (57.75%) and/or non-Hispanic (97.82%). A signi�cant portion of the patients is married

(45.14%) and/or unemployed (37.03%). The patient population is diverse with respect to age, in-

cluding both infants (min age = 3) and centenarians (max age = 103). The average patient age is

about 55. Patients tend to see the same provider (mean number of providers = 1.2470) and have the

same insurance (mean number of insurances = 1.0932). On average, each patient requests 3.0295

appointments, where he or she attends 1.7684, cancels 0.7314 and no-shows for 0.5297 of them.

Therefore, cancellations and no-shows account for a signi�cant proportions of the appointments.

Table 2 Summary Statistics for the Appointment Data (35,765 observations)
A: Last Appointment = Arrival

No Yes
Proportion 0.6419 0.3581

B: Last Appointment = Cancellation
No Yes

Proportion 0.8318 0.1682
C: Last Appointment = No-Show

No Yes
Proportion 0.8863 0.1137

D: Days of the Week
Monday Tuesday Wednesday Thursday Friday

Proportion 0.2267 0.2530 0.1404 0.2308 0.1491
E: Insurance Provider

Aetna Anthem BCBS Cigna Coventry HealthKeepers Indigent Optima United Medicaid Medicare VA Self-pay Other
Proportion 0.0298 0.2148 0.1170 0.0146 0.05114 0.02147 0.0117 0.0292 0.0560 0.3536 0.0573 0.0175 0.0259

F: Medical Care Provider
Doctor 1 Doctor 2 Doctor 3 Doctor 4 Doctor 5 Doctor 6 Doctor 7 Doctor 8 Doctor 9 Doctor 10 Nurse 1 Nurse 2 Nurse 3 Clinic 1 Clinic 2 Other

Proportion 0.1363 0.1176 0.0577 0.0589 0.0492 0.0290 0.0170 0.0145 0.0088 0.0053 0.1547 0.0208 0.0106 0.1989 0.1201 0.0008
G: Continuous Variables

Mean SD Min Max
Appointment Lag 65.0298 72.3230 1 375
Appointment Time 259.1735 136.9254 0 (7:00 AM) 600 (5:00 PM)
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Table 3 Summary Statistics for Patient Data (12,593 observations)

A: Gender

Male Female

Proportion 0.2108 0.7892

B: Language

English Other

Proportion 0.9758 0.0242

C: Race

Black Caucasian Other

Proportion 0.3693 0.5775 0.0533

D: Ethnicity

Hispanic Not Hispanic Other

Proportion 0.01668 0.9782 0.0051

E: Marital Status

Divorced Married Separated Single Widow Other

Proportion 0.1201 0.4514 0.0313 0.3063 0.0858 0.0052

F: Employment Status

Full-Time Part-Time Self-Employed Unemployed Retired Other

Proportion 0.2895 0.0524 0.0254 0.3703 0.2573 0.0052

G: Continuous Variables

Mean SD Min Max

Age 55.2915 16.8133 3 103
No. of Providers 1.2470 0.5524 1 5
No. of Insurances 1.0932 0.3363 1 5
No. of Appointments 3.0295 3.2770 1 40
No. of Arrivals 1.7684 2.1319 0 31
No. of Cancellations 0.7314 1.2362 0 23
No. of No-Shows 0.5297 1.0227 0 15

6.2 Estimating Cancellation and No-show Probabilities

We examine �ve popular survival analysis models (see Table 4) to estimate the cancellation and

no-show probabilities. They include a Cox proportional hazard model and four accelerated failure

time (AFT) models (Klein and Moeschberger 2006). The four AFT models �t di�erent distributions

to the dependent variable: exponential, log-normal, log-logistic, and Weibull. We de�ne a no-show as

a cancellation made less than 24 hours before the actual appointment. The survival models consider

cancellations (7,601) and no-shows (6,600) as events. Thus, there are 14,201 (= 7,601 + 6,600)

events and 21,564 non-events (i.e. arrivals) in our survival analysis data set. The event time is set

as the di�erence in days between the time the patient requests an appointment and cancels, does

not show, or attends (whichever comes �rst).

We use the same predictors in all �ve models. They include (1) the lag between the appointment

request and the actual visit, (2) the age of the patient when the request is made, (3) the gender, (4)

whether the individual speaks English, the total number of previous appointments (5) scheduled,

(6) attended, (7) canceled, the total number of appointment requests made in the last year, which

are (8) scheduled, (9) attended, (10) canceled, whether a patient has (11) attended, (12) canceled

or (13) not showed for his/her last appointment. We also incorporate a list of indicator variables

pertaining to the request's (1) day of the week, (2) insurance provider, (3) medical care provider, as

well as the patient's (4) race, (5) ethnicity, (6) marital status and (7) employment status. For more

granular information on the seven categorical variables, refer to the groups in Table 3. The models

are compared based on their AIC, BIC, and log-likelihood measures (Lambrecht and Tucker 2013,

Sunder et al. 2017). The best model is a Weibull AFT model with the lowest AIC and BIC, and

the highest log-likelihood.
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Table 4 Survival Models

Predictor Cox PH Exponential Log-Normal Log-Logistic Weibull

Appointment Lag −0.0734∗∗∗ 0.0110∗∗∗ 0.0115∗∗∗ 0.0111∗∗∗ 0.0120∗∗∗

(0.0008) (0.0002) (0.0001) (0.0001) (0.0001)
Age −0.0029∗∗∗ 0.0023∗∗∗ 0.0008 0.0016∗∗ 0.0009∗

(0.0008) (0.0008) (0.0006) (0.0007) (0.0005)
Male −0.0714∗∗∗ 0.0829∗∗∗ 0.0693∗∗∗ 0.0855∗∗∗ 0.0589∗∗∗

(0.0207) (0.0207) (0.0145) (0.0186) (0.0125)
Language 0.2597∗∗∗ −0.2277∗∗∗ −0.1504∗∗∗ −0.1733∗∗∗ −0.1433∗∗∗

(0.0689) (0.0689) (0.0510) (0.0658) (0.0417)
No. of Appointments 0.0784∗∗∗ −0.0768∗∗∗ −0.0455∗∗∗ −0.0564∗∗∗ −0.0445∗∗∗

(0.0148) (0.0147) (0.0112) (0.0147) (0.0089)
No. of Arrivals −0.1619∗∗∗ 0.1538∗∗∗ 0.0945∗∗∗ 0.1224∗∗∗ 0.0909∗∗∗

(0.0187) (0.0186) (0.0138) (0.0179) (0.0113)
No. of Cancellations −0.0191 0.0305 0.0100 0.0102 0.0156

(0.0203) (0.0202) (0.0154) (0.0199) (0.0122)
No. of Appointments Last Year 0.0388∗ −0.0502∗∗ −0.0475∗∗∗ −0.0640∗∗∗ −0.0348∗∗∗

(0.0219) (0.0218) (0.0165) (0.0215) (0.0132)
No. of Arrivals Last Year −0.0059 0.0413 0.0492∗∗ 0.0578∗∗ 0.0352∗∗

(0.0277) (0.0277) (0.0204) (0.0264) (0.0167)
No. of Cancellations Last Year −0.0098 0.0295 0.0381∗ 0.0566∗∗ 0.0236

(0.0297) (0.0296) (0.0222) (0.0287) (0.0179)
Last Appointment = Arrival 0.1182∗∗∗ −0.0994∗∗∗ −0.0598∗∗∗ −0.0762∗∗∗ −0.0604∗∗∗

(0.0255) (0.0256) (0.0182) (0.0229) (0.0155)
Last Appointment = Cancellation −0.1074∗∗∗ 0.1048∗∗∗ 0.0950∗∗∗ 0.1291∗∗∗ 0.0741∗∗∗

(0.0298) (0.0297) (0.0213) (0.0271) (0.0180)
Last Appointment = No-show 0.0117 −0.0611∗ −0.0607∗∗ −0.0744∗∗ −0.0493∗∗

(0.0336) (0.0335) (0.0247) (0.0317) (0.0202)
Days of the Week Yes Yes Yes Yes Yes
Insurance Provider Yes Yes Yes Yes Yes
Medical Care Provider Yes Yes Yes Yes Yes
Race Yes Yes Yes Yes Yes
Ethnicity Yes Yes Yes Yes Yes
Marital Status Yes Yes Yes Yes Yes
Employment Status Yes Yes Yes Yes Yes

AIC 242,081.2 159,377.7 160,824.2 157,606.9 155,499.1

BIC 241,973.4 159,267.9 160,712.4 157,495.1 155,387.3

Log-likelihood -120,982.6 -79,629.85 -80,352.1 -78,743.47 -77,689.54

∗p < 0.10
∗ ∗ p < 0.05
∗ ∗ ∗p < 0.001

After selecting the Weibull model, we examine its estimates and summarize the results in Table

5, which includes only the signi�cant model predictors. According to the model, as the appointment

lag increases, so does the patient's survival time (1.21% improvement per single day increase in the

lag between a request and an actual appointment). Furthermore, older patients (0.09% increase) and

males (6.07% increase) have higher survival times than younger patients and females. Patients whose

�rst language is not English have signi�cantly lower survival times (13.35% decrease). The more

scheduled appointments patients attend overall (4.75% increase) as well as in the last 12 months

(4.75% increase), the higher their survival times are. The opposite relationship is true when examin-

ing patients overall (2.85% decrease) as well as last year's (3.93% decrease) cancellations. Our model

also suggests that patients who cancel their last appointment are more punctual (7.69% increase

in survival time), while not showing up for an appointment further exacerbates one's punctuality

problem (4.81% decrease in survival time).

We examined 10 variations on the Weibull AFT model (see Table 6). The models di�er with

respect to their predictors. Note that Model 6 in Table 6 is the same as the Weibull model in Table

4. Models 9 and 10 include the same independent variables as the ones in Model 6 plus one extra

predictor, Appointment Time (Model 9) and the squared Appointment Lag (Model 10). While both

models outperform Model 6, Model 10 is superior due to its low AIC, BIC and high log-likelihood.
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Table 5 Weibull Model Signi�cant Predictors' Interpretations

Predictors Direction of Change Percentage Change

Appointment Lag ↑ 1.21
Age* ↑ 0.09
Male ↑ 6.07
Language ↓ 13.35
No. of Arrivals ↑ 4.75
No. of Cancellations ↓ 2.85
No. of Arrivals Last Year ↑ 4.75
No. of Cancellations Last Year ↓ 3.93
Last Appointment = Arrival ↓ 5.86
Last Appointment = Cancellation ↑ 7.69
Last Appointment = No-Show ↓ 4.81
Days of the Week (Baseline � Friday) Monday ↑ 9.25

Tuesday ↑ 5.03
Wednesday ↑ 5.34
Thursday ↑ 5.39

Insurance Provider (Baseline � Aetna) Medicaid* ↓ 6.45
Self-pay ↓ 34.98
VA ↓ 9.91
Others ↓ 9.2

Medical Provider (Baseline � Clinic 1) Clinic 2 ↓ 7.66
Doctor 1 ↑ 33.36
Doctor 2 ↑ 28.27
Doctor 3 ↑ 44.87
Doctor 4 ↑ 64.91
Doctor 5 ↑ 36.38
Doctor 6 ↑ 13.25
Doctor 8 ↓ 18.86
Nurse 1 ↑ 28.4

Race (Baseline � African American) Others ↑ 6.61
Marital Status (Baseline � Divorced) Widow* ↓ 4.14
Employee Status (Baseline � Full-Time) Not Employed* ↓ 2.95

Retired ↑ 5.43
Others ↓ 14.48

∗0.05 < p< 0.10 � borderline signi�cant
↑ � increase
↓ � decrease

Therefore, we selected Model 10 as our �nal model. We do not provide a table similar to Table

5 for Model 10, as the coe�cients in Models 6 and 10 are consistent with the exception of the

Appointment Lag predictor, whose value changes in Model 10 due to the introduction of its squared

transformation.

6.3 Estimating Arrival Rates

We estimate the arrival rates using the same predictors as the ones used in the survival analysis

model. We obtain the frequency of requests coming from each unique patient-type (as described by

the survival model predictors), which we call the unique patient frequency (UPF). As the dynamic

programming model is week-day and provider speci�c, we aggregate the UPF values across these

two predictors and refer to them as aggregate patient frequencies (APF). The ratio between the

UPF and APF estimates the arrival rates used in the dynamic programming model. For example,

on Monday, Doctor #1 has 2,159 unique patient types and there are two individuals with UPF #1,

thus their arrival rate will be 2/2,159. Note that the UPF is conditional on the appointment lag.

Thus, a patient of certain type can only request an appointment at a time consistent with his or

her Appointment Lag value.

7. Numerical Study

In this section, we evaluate our model using a real world dataset. Section 7.1 compares the result

of the API policy with the benchmark policies introduced in Section 5. Section 7.2 compares the
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Table 6 Weibull Models

Predictor Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10
Appointment Lag 0.0135∗∗∗ 0.0124∗∗∗ 0.0123∗∗∗ 0.0120∗∗∗ 0.0120∗∗∗ 0.0120∗∗∗ 0.0121∗∗∗ 0.0121∗∗∗ 0.0119∗∗∗ 164.2549∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.9713)
Squared Appointment Lag −76.9768∗∗∗

(0.8759)
Appointment Times −0.0004∗∗∗

(0.0000)
Age 0.0014∗∗∗ 0.0009∗∗ 0.0009∗ 0.0009∗ 0.0011∗∗ 0.0009∗ 0.0009∗∗

(0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0004)
Male 0.0653∗∗∗ 0.0571∗∗∗ 0.0581∗∗∗ 0.0589∗∗∗ 0.0577∗∗∗ 0.0623∗∗∗ 0.0552∗∗∗ 0.0298∗∗∗

(0.0125) (0.0125) (0.0125) (0.0125) (0.0125) (0.0123) (0.0125) (0.0100)
Language −0.1524∗∗∗ −0.1417∗∗∗ −0.1423∗∗∗ −0.1433∗∗∗ −0.1664∗∗∗ −0.1612∗∗∗ −0.1391∗∗∗ −0.1245∗∗∗

(0.0419) (0.0417) (0.0417) (0.0417) (0.0395) (0.0395) (0.0416) (0.0330)
No. of Appointments −0.0697∗∗∗ −0.0450∗∗∗ −0.0445∗∗∗ −0.0344∗∗∗ −0.0346∗∗∗ −0.0434∗∗∗ −0.0373∗∗∗

(0.0047) (0.0089) (0.0089) (0.0052) (0.0052) (0.0089) (0.0071)
No. of Arrivals 0.1101∗∗∗ 0.0913∗∗∗ 0.0909∗∗∗ 0.0807∗∗∗ 0.0813∗∗∗ 0.0893∗∗∗ 0.0721∗∗∗

(0.0060) (0.0113) (0.0113) (0.0087) (0.0087) (0.0113) (0.0090)
No. of Cancellations 0.0482∗∗∗ 0.0132 0.0156 0.0157 0.0115

(0.0064) (0.0122) (0.0122) (0.0122) (0.0099)
No. of Appointments Last Year −0.0433∗∗∗ −0.0348∗∗∗ −0.0191∗∗ −0.0193∗∗ −0.0332∗∗ −0.0138

(0.0125) (0.0132) (0.0076) (0.0076) (0.0131) (0.0104)
No. of Arrivals Last Year 0.0303∗ 0.0352∗∗ 0.0199 0.0197 0.0329∗∗ 0.0024

(0.0158) (0.0167) (0.0130) (0.0129) (0.0167) (0.0132)
No. of Cancellations Last Year 0.0578∗∗∗ 0.0236 0.0221 0.0046

(0.0168) (0.0179) (0.0179) (0.0143)
Last Appointment = Arrival −0.0604∗∗∗ −0.0614∗∗∗ −0.0608∗∗∗ −0.0669∗∗∗ −0.0669∗∗∗

(0.0155) (0.0155) (0.0155) (0.0155) (0.0122)
Last Appointment = Cancellation 0.0741∗∗∗ 0.0903∗∗∗ 0.0917∗∗∗ 0.0710∗∗∗ 0.0729∗∗∗

(0.0180) (0.0174) (0.0174) (0.0179) (0.0143)
Last Appointment = No-show −0.0493∗∗ −0.0820∗∗∗ −0.0825∗∗∗ −0.0482∗∗ −0.0133

(0.0202) (0.0185) (0.0185) (0.0202) (0.0161)
Days of the Week No Yes Yes Yes Yes Yes Yes Yes Yes Yes
Insurance Provider No Yes Yes Yes Yes Yes Yes Yes Yes Yes
Medical Care Provider No Yes Yes Yes Yes Yes Yes Yes Yes Yes
Race No No Yes Yes Yes Yes Yes Yes Yes Yes
Ethnicity No No Yes Yes Yes Yes No No Yes Yes
Marital Status No No Yes Yes Yes Yes Yes No Yes Yes
Employment Status No No Yes Yes Yes Yes Yes Yes Yes Yes
AIC 157,357.1 156,036.8 155,907.7 155,564.7 155,552.8 155,499.1 155,513.3 155,522.9 155,398.3 150,455.5
BIC 157,353.3 155,975.9 155,813.6 155,464.6 155,446.9 155,387.3 155,409.3 155,430.7 155,284.5 150,341.7
Log-likelihood -78,675.57 -77,984.42 -77,902.87 -77,728.33 -77,719.4 -77,689.54 -77,700.63 -77,711.44 -77,638.15 -75,166.76

∗p < 0.10
∗ ∗ p < 0.05
∗ ∗ ∗p < 0.001

performance of the API policy to the heuristic introduced in Zacharias and Pinedo (2014).

7.1 The API Policy vs. Benchmark Policies

We compare the API policy to the benchmark policies with respect to the most popular doctor on

her busiest day: Doctor #1 on Monday in Table 7. We focus on the 120-day time window as 84.67%

of all 35,765 appointment requests are within 120 days. 2,160 of the 2,725 patients were seen by

Doctor #1 within 120 days of an appointment request. Of the 2,160 patients, 2,159 represented

unique patient classes as de�ned by the predictors in the survival analysis model in Table 6 because

we had 2 patients with the exact same characteristics as de�ned by these predictors. Thus, our

model accounted for 2,159 patient classes with appointment requests arriving over 120 days. All

accepted appointments are scheduled on day 121.

We simulate S = 11,000 sample paths with patient requests. We use 1,000 sample paths to train

the API algorithm and evaluate it on the remaining 10,000. All sample paths are simulated using the

arrival rates and cancellation probabilities discussed in Section 6. We also evaluate all benchmark
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Table 7 Medical Care Provider & Work-day Frequencies
Provider Monday Tuesday Wednesday Thursday Friday Total

Doctor #1 2,725 1,541 36 517 54 4,873
Doctor #2 350 1,228 116 1,312 1,199 4,205
Doctor #3 17 13 5 8 2,022 2,065
Doctor #4 655 728 55 662 5 2,105
Doctor #5 971 500 129 27 134 1,761
Doctor #6 0 0 341 696 0 1,037
Doctor #7 17 11 9 565 6 608
Doctor #8 102 155 121 141 0 519
Doctor #9 98 75 35 0 106 314
Doctor #10 88 47 0 0 53 188
Nurse #1 218 1,806 1,750 1,663 95 5,532
Nurse #2 238 102 0 230 174 744
Nurse #3 120 249 3 6 0 378
Clinic #1 1,536 1,607 1,557 1,622 792 7,114
Clinic #2 946 985 863 807 693 4,294
Other 28 0 0 0 0 28

policies on the same 10,000 sample paths.

To evaluate how the API policy performs across di�erent system loads, we vary the available

appointment slots at time T + 1, such that N ∈ {4,6,8,10,12,14,16}. The corresponding system

loads are 2.57, 1.72, 1.29, 1.03, 0.86, 0.74 and 0.64, respectively. As noted in line 42 of Algorithm

2, we need to specify the value of a. We examine the API algorithm for a ∈ {5,10,20,30,40} and

determined that a= 20 provides the best overall performance.

Table 8 API Model Results

N Summary FI Policy API Iteration
Statistics Bound ALL-I ALL-II NO Best API 1 2 3 4 5 6 7 8 9 10 11 12

4 mean 3.60 6.76 9.29 6.63 4.02 6.60 6.92 6.73 5.56 5.35 5.61 4.02 4.23 4.60 4.31 4.44 4.30
median 3.49 6.50 7.70 6.58 3.83 6.51 5.94 6.66 5.19 5.27 5.51 3.83 4.10 4.47 4.16 4.30 4.18
max 11.35 18.00 44.70 14.30 13.83 16.63 43.32 14.47 26.67 14.23 18.44 15.02 14.45 13.83 14.53 15.13 14.53
s.d. 1.73 2.46 5.94 2.07 1.74 2.05 5.01 1.82 3.44 1.74 2.25 1.94 1.85 1.86 1.96 1.92 1.85

6 mean 2.47 5.76 6.88 5.94 2.58 5.26 4.20 6.07 3.74 3.40 3.59 2.58
median 2.33 5.50 5.60 5.88 2.44 5.19 3.36 6.00 3.00 3.29 3.42 2.44
max 10.24 17.00 39.50 13.42 12.17 14.80 33.23 16.37 23.20 12.17 15.37 13.26
s.d. 1.65 2.46 5.39 2.11 1.63 2.06 4.36 1.80 3.25 1.67 1.94 1.63

8 mean 1.49 4.79 4.73 4.77 2.38 4.00 2.93 3.16 2.38
median 1.19 4.50 3.40 4.72 2.04 3.88 2.04 3.05 2.26
max 9.01 16.00 34.70 12.20 12.86 13.80 20.61 13.69 12.86
s.d. 1.45 2.41 4.42 2.02 1.53 1.98 2.95 1.66 1.53

10 mean 0.73 3.92 3.56 3.83 1.66 3.26 2.15 2.96 2.02 1.66 1.69 1.70
median 0.00 3.50 2.50 3.71 1.19 3.02 1.19 2.83 1.88 1.53 1.56 1.58
max 7.63 15.00 34.00 10.75 10.71 11.85 26.98 11.68 11.57 11.19 10.88 10.71
s.d. 1.11 2.27 3.36 1.89 1.39 1.84 2.97 1.62 1.50 1.46 1.40 1.39

12 mean 0.28 3.26 2.98 3.19 1.38 2.82 1.96 2.25 1.38
median 0.00 3.00 2.40 3.00 1.25 2.60 1.40 2.13 1.25
max 6.42 14.00 24.70 9.75 10.65 11.22 27.05 11.33 10.65
s.d. 0.71 2.05 2.46 1.81 1.47 1.64 2.42 1.47 1.50

14 mean 0.08 2.86 2.74 2.82 1.85 2.70 2.21 1.85
median 0.00 3.00 2.20 2.90 1.68 2.49 1.81 1.68
max 5.70 13.00 22.10 8.70 10.82 10.82 23.46 12.37
s.d. 0.38 1.84 1.93 1.69 1.52 1.56 2.05 1.52

16 mean 0.02 2.69 2.66 2.68 1.26 2.68 2.11 1.83 1.26 1.26 1.48
median 0.00 2.00 2.00 2.00 1.07 2.47 1.81 1.60 1.07 1.11 1.37
max 4.05 12.00 17.90 10.92 9.99 9.99 25.01 11.90 11.68 10.32 10.36
s.d. 0.18 1.71 1.70 1.66 1.34 1.55 1.75 1.57 1.34 1.39 1.37

Table 8 shows the costs for di�erent policies. Based on Table 8, the API algorithm converges

within at most 12 iterations. It outperforms the NO and both ALL policies, with the exception

of the maximum summary statistics for N = 12 and 14, where the NO policy has slightly better

results. When compared to the FI lower bound, the API policy produces comparable results when

the demand for care surpasses the supply (N = 4,6,8,10). The performance of the API policy

deteriorates as the system load decreases. The gap from the bound is most pronounced when the

system load is below 1 (N = 12,14,16). Note that the FI lower bound is very optimistic as it assumes
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full knowledge of arrivals and cancellations before any appointment decisions are made. In contrast,

the API policy can book an appointment request, which is subsequently cancelled close to period

T + 1. We point out that 15.33% of the appointment requests in our data are made more than 120

days in advance (1.03% of them over 1 year in advance). Thus, it is unlikely that the true system

load in the hospital under study is below 1.

7.2 The API Policy vs. Zacharias and Pinedo (2014) Heuristic

In this section, we compare the performance of the API policy against the heuristic presented in

Zacharias and Pinedo (2014). We follow the settings described in Section 6.2 of Zacharias and

Pinedo (2014) and simulate 11,000 sample paths. Note that the instances involve no-shows but no

cancellations. We use 1,000 of the sample paths to train the API algorithm. The remaining 10,000

are used to evaluate the performance of the two policies. We compare the two approaches across all

settings identi�ed in Table 4 on page 12 of Zacharias and Pinedo (2014).

We should note that when comparing our model to the results reported in Zacharias and Pinedo

(2014) we include 14 predictors not included in Table 1. To evaluate their heuristic, Zacharias and

Pinedo (2014) assume that patients can be grouped into 4 classes. Thus, it is manageable to include

the Total # of Patients from class k and E[Total # of Patients from class k], where k ∈ {1,2,3,4}.

Note that in the numerical study based on real appointment data (see �7.1) we treat each patient as

belonging to his/her own class, resulting in 2,159 unique patient types. This is why we do not use

separate variables for each of our patient classes. Because the evaluation performed by Zacharias

and Pinedo focuses on scheduling 14 patients over 12 appointment slots, we introduce six indicator

variables that determine if the distance between the two overbooked appointment slots (if two slots

end up being overbooked) is 0 (i.e. the overbooked slots neighbor one another), 1, 2, 3, 4, or more

than 4. We use binary variables here because patients do not cancel (cancellation probability is 0).

We report the percentage di�erence between the mean cost of the heuristic policy vs. the mean cost

of the API policy ((µVAPI
− µVhuristic

)/µVhuristic
) across the 10,000 sample paths. We also perform

a two-sided paired means hypothesis test to determine if the di�erence between the two policies is

signi�cant. A negative di�erence indicates that the API policy outperforms the heuristic.

The results from the 96 settings are reported in Table 9. The Zacharias and Pinedo (2014) heuristic

dominates in only 2 settings (italicized). Both settings were associated with patient populations

which had fairly homogeneous no-show probabilities (i.e. 0. and 0.05). There was no signi�cant

di�erence in 20 settings, which were once again associated with relatively high patient homogeneity �

i.e., ∆q ∈ {0,0.05,0.1,0.15,0.2}. The API policy signi�cantly outperform the Zacharias and Pinedo

(2014) heuristic in the remaining 74 settings (in bold).
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Table 9 API Model Results
PPPPP∆w

∆q
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0 −0.33 −2.41∗∗∗ −3.51∗∗∗ −3.32∗∗∗ −3.66∗∗∗ −3.64∗∗∗ −4.33∗∗∗ −4.54∗∗∗ −6.20∗∗∗ −6.88∗∗∗ −6.12∗∗∗ −6.82∗∗∗

0.05 −0.63 −1.96∗∗ −2.99∗∗∗ −3.01∗∗∗ −3.22∗∗∗ −4.30∗∗∗ −4.69∗∗∗ −4.83∗∗∗ −6.36∗∗∗ −7.07∗∗∗ −4.52∗∗∗ −5.73∗∗∗

0.1 −0.94 −1.37∗ −2.57∗∗∗ −0.91 −2.97∗∗∗ −4.00∗∗∗ −4.46∗∗∗ −4.96∗∗∗ −6.51∗∗∗ −7.13∗∗∗ −6.50∗∗∗ −8.03∗∗∗

0.15 1 .96∗∗∗ −0.49 −2.02∗∗ −1.68∗ −2.41∗∗∗ −3.30∗∗∗ −3.84∗∗∗ −4.17∗∗∗ −6.53∗∗∗ −7.07∗∗∗ −6.12∗∗∗ −7.76∗∗∗

0.2 0.15 0.37 −1.32 −1.03 −2.26∗∗ −3.39∗∗∗ −4.09∗∗∗ −4.35∗∗∗ −6.85∗∗∗ −7.33∗∗∗ −6.52∗∗∗ −8.02∗∗∗

0.25 −1.33∗ 0.71 −0.90 −0.43 −1.12 −2.82∗∗∗ −3.72∗∗∗ −3.84∗∗∗ −6.50∗∗∗ −7.05∗∗∗ −6.45∗∗∗ −8.19∗∗∗

0.3 −2.16∗∗∗ 1.15 −1.24 −0.85 −1.37 −3.12∗∗∗ −4.39∗∗∗ −4.83∗∗∗ −6.94∗∗∗ −7.16∗∗∗ −7.18∗∗∗ −8.98∗∗∗

0.35 −2.36∗∗∗ 1 .87∗ −0.17 0.44 −0.80 −2.44∗∗ −3.17∗∗∗ −3.84∗∗∗ −7.43∗∗∗ −7.05∗∗∗ −6.33∗∗∗ −8.48∗∗∗

∗p < 0.10
∗ ∗ p < 0.05
∗ ∗ ∗p < 0.001

8. Conclusion

We study the dynamic appointment scheduling problem with cancellations and overbooking. The

problem is formulated as a �nite-horizon stochastic dynamic program. The model has high dimen-

sional state space and is not amenable to exact solution methods. We propose an API algorithm

together with a value function approximation. We validate the model with data from a large public

hospital and compare our solution methods with several benchmarks. Our numerical results indicate

that the proposed method is competitive against several computational benchmarks.

The proposed solution method has several essential strengths. First, we use a least-squares re-

gression to estimate the value function. Our approximation architecture is nonlinear, since the

regression model incorporates higher order polynomial terms. In contrast, with LP-based ADP,

the polynomial terms in the value function approximation accounts for non-linearity and make it

necessary to solve large scale nonlinear optimization problems that are not well structured (e.g.,

lack of convexity). Second, the method is simulation-based, and therefore can incorporate rather

complex system dynamics. This latter feature makes the proposed approach particularly appealing

for practical implementation, where complex customer behavior might arise and necessitate more

detailed modeling. Third, the solution method can be used to produce control policies o�ine, which

can then be used for online control. Therefore, the solution time is not a major obstacle.

The test instances considered in our numerical study are produced based on a dataset from a large

hospital. We use a Weibull AFT model to estimate patients' cancellation and no-show behavior

over time. Our empirical approach is fully personalizable as patients are not clustered into classes.

Taken together, the empirical part of our work constitutes a viable approach to estimate problem

parameters from data.

The value function approximation in our work is based on least-squares regression. An alternative

is to consider other reasonable choices for the approximation architecture, such as regression trees

and neural networks. Using a more �exible approximation architecture, such as trees or neural

networks, is likely to increase the computational time. Such an increase in computational time would

be worthwhile if the solution quality increases substantially. We leave such investigation to future

research.
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Appendix A: Summary of Notations

T The number of periods (t∈ {1,2, ..., T}).
K The number of patient classes (k ∈ {1,2, ...,K}).
N The number of appointment slots in period T + 1.
S The number of sample paths generated.
λtk The arrival rate of a class-k patient in period t.
qtk The cancellation probability of a class-k patient in period t.
qT+1,k The no-show probability of a class-k patient.
rtk The rejection cost of a class-k patient in period t.
α The unit waiting cost.
β The overtime premium for doctors.

Appendix B: Descriptive Statistics

(a) All Data (b) Doctor #1 on Monday
Figure B1 Arrivals Given Request Lag Time

(a) All Data (b) Doctor #1 on Monday
Figure B2 Cancelled Appointments Given Request Lag Time

(a) All Data (b) Doctor #1 on Monday
Figure B3 No-Shows Given Request Lag Time
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Table B1 Correlation Categorical Predictors

Male Language Last Appointment = Arrival Last Appointment = Cancellation Last Appointment = No-Show Day of the Week Insurance Provider Medical Care Provider Race Ethnicity Marital Status Employment Status
Male −0.0076 0.0824∗∗∗ −0.0254∗∗∗ 0.0075 0.009∗ 0.0043 0.0480∗∗∗ 0.0183∗∗∗ 0.0129∗∗ −0.0334∗∗∗ 0.0105∗∗

Language −0.0076 −0.0457∗∗∗ −0.0126∗∗ -0.0023 0.0029 0.0614∗∗∗ −0.0472∗∗∗ −0.0200∗∗∗ −0.0715∗∗∗ 0.0093∗ 0.0033
Last Appointment = Arrival 0.0824∗∗∗ −0.0457∗∗∗ −0.3358∗∗∗ −0.2675∗∗∗ −0.0390∗∗∗ −0.0345∗∗∗ 0.1554∗∗∗ 0.0138∗∗ -0.0067 −0.0158∗∗ -0.0015
Last Appointment = Cancellation −0.0254∗∗∗ −0.0126∗∗ −0.3358∗∗∗ −0.1611∗∗∗ 0.0047 −0.0212∗∗∗ 0.0074 0.0321∗∗∗ 0.0021 −0.0097∗ −0.0128∗∗

Last Appointment = No-Show 0.0075 -0.0023 −0.2675∗∗∗ −0.1611∗∗∗ 0.0135∗∗ 0.0568∗∗∗ 0.0058 −0.0909∗∗∗ -0.0074 0.0289∗∗∗ 0.0067
Day of the Week 0.009∗ 0.0029 −0.0390∗∗∗ 0.0047 0.0135∗∗ 0.0508∗∗∗ 0.1459∗∗∗ −0.0597∗∗∗ −0.0074 0.0263∗∗∗ 0.0465∗∗∗

Insurance Provider 0.0043 0.0614∗∗∗ −0.0345∗∗∗ −0.0212∗∗∗ 0.0568∗∗∗ 0.0508∗∗∗ −0.0731∗∗∗ −0.1829∗∗∗ −0.0147∗∗ 0.0705∗∗∗ 0.3345∗∗∗

Medical Care Provider 0.0480∗∗∗ −0.0472∗∗∗ 0.1554∗∗∗ 0.0074 0.0058 0.1459∗∗∗ −0.0731∗∗∗ 0.0287∗∗∗ 0.0060 0.0178∗∗∗ −0.0205∗∗∗

Race 0.0183∗∗∗ −0.0200∗∗∗ 0.0138∗∗ 0.0321∗∗∗ −0.0909∗∗∗ −0.0597∗∗∗ −0.1829∗∗∗ 0.0287∗∗∗ −0.0033 −0.1681∗∗∗ −0.0183∗∗∗

Ethnicity 0.0129∗∗ −0.0715∗∗∗ -0.0067 0.0021 -0.0074 −0.0074 −0.0147∗∗ 0.0060 −0.0033 0.0029 0.0163∗∗

Marital Status −0.0334∗∗∗ 0.0093∗ −0.0158∗∗ −0.0097∗ 0.0289∗∗∗ 0.0263∗∗∗ 0.0705∗∗∗ 0.0178∗∗∗ −0.1681∗∗∗ 0.0029 0.0259∗∗∗

Employment Status 0.0105∗∗ 0.0033 -0.0015 −0.0128∗∗ 0.0067 0.0465∗∗∗ 0.3345∗∗∗ −0.0205∗∗∗ −0.0183∗∗∗ 0.0163∗∗ 0.0259∗∗∗

∗p < 0.10
∗ ∗ p < 0.05
∗ ∗ ∗p < 0.001

Table B2 Correlation Continuous Predictors

Appointment Lag Appointment Times Age No. of Appointments No. of Arrivals No. of Cancellations No. of Appointment Last Year No. of Arrivals Last Year No. of Cancellations Last Year
Appointment Lag −0.18∗∗∗ 0.06∗∗∗ 0.10∗∗∗ 0.15∗∗∗ 0.04∗∗∗ 0.03∗∗∗ 0.12∗∗∗ −0.01∗

Appointment Times −0.18∗∗∗ −0.06∗∗∗ −0.01∗∗ −0.04∗∗∗ 0.00 0.00 −0.04∗∗∗ 0.04
Age 0.06∗∗∗ −0.06∗∗∗ −0.04∗∗∗ −0.03∗∗∗ 0.00 −0.07∗∗∗ −0.06∗∗∗ −0.01∗∗

No. of Appointments 0.10∗∗∗ −0.01∗∗ −0.04∗∗∗ 0.90∗∗∗ 0.72∗∗∗ 0.83∗∗∗ 0.72∗∗∗ 0.55∗∗∗

No. of Arrivals 0.15∗∗∗ −0.04∗∗∗ −0.03∗∗∗ 0.90∗∗∗ 0.46∗∗∗ 0.73∗∗∗ 0.83∗∗∗ 0.31∗∗∗

No. of Cancellations 0.04∗∗∗ 0.00 0.00 0.72∗∗∗ 0.46∗∗∗ 0.63∗∗∗ 0.34∗∗∗ 0.84∗∗∗

No. of Appointment Last Year 0.03∗∗∗ 0.00 −0.07∗∗∗ 0.83∗∗∗ 0.73∗∗∗ 0.63∗∗∗ 0.84∗∗∗ 0.68∗∗∗

No. of Arrivals Last Year 0.12∗∗∗ −0.04∗∗∗ −0.06∗∗∗ 0.72∗∗∗ 0.83∗∗∗ 0.34∗∗∗ 0.84∗∗∗ 0.31∗∗∗

No. of Cancellations Last Year −0.01∗ 0.04 −0.01∗∗ 0.55∗∗∗ 0.31∗∗∗ 0.84∗∗∗ 0.68∗∗∗ 0.31∗∗∗

∗p < 0.10
∗ ∗ p < 0.05
∗ ∗ ∗p < 0.001


