Calculus I Formula Sheet Chapter 4

Section 4.1

- Definition of the <u>Extrema</u> of a function: Let *f* be defined on interval *I*:
 - f(c) is <u>abs min</u> when $f(c) \le f(x)$ on I
 - f(c) is <u>abs max</u> when $f(c) \ge f(x)$ on I
- 2. Exterme Value Theorem:
 If *f* is cts on [*a*,*b*]
 Then *f* has both max/min on [*a*,*b*]
- 3. Definition of <u>Relative Extrema</u>:
 - If f(c) is max on (a,b) (open interval) Then f(c) is <u>rel max</u>
 - If f(c) is min on (a,b) (open interval)
 - Then f(c) is <u>rel min</u>
- Definition of a <u>Critical Number</u>:
 Let *f* be defined at *c*

Then c is a critical number if

$$\circ f'(c) = 0 \text{ or }$$

o
$$f'(c)$$
 dne

- 5. Relative extrema occur only at c.n.
- 6. Find extrema on [*a*,*b*]:
 - *f* cts on [*a*,*b*]
 - o Find c.n. on (a,b)
 - \circ Eval f at: a, all c.n., b
 - Smallest = abs max
 - Largest = abs min

Section 4.2

- 7. Rolle's Theorem
 - *f* cts on [*a*,*b*]
 - f diff on (a,b)
 - f(a) = f(b) \Rightarrow there is at least one c in (a,b) such that f'(c) = 0

- 8. Mean Value Theorem
 - *f* cts on [*a*,*b*]
 - f diff on (a,b)

$$\Rightarrow$$
 there exists a c in (a,b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Section 4.3

- 9. Definition of Increasing and Decreasing
 - Increasing: $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
 - Decreasing: $x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$
- 10. Test for Increasing and Decreasing
 - *f* cts on [*a*,*b*]
 - f diff on (a,b)
 - o f'(x) > 0 on $(a,b) \Rightarrow$ increasing
 - o f'(x) < 0 on $(a,b) \Rightarrow$ decreasing

o f'(x) = 0 on $(a,b) \Rightarrow$ constant

- 11. Find interval of increasing and decreasing
 - f cts on (a,b)
 - Find c.n. on (a,b)
 - Create intervals
 - Find the sign of f'(x) on each interval
 - \circ + \Rightarrow increasing
 - $\circ \quad \Rightarrow \text{ decreasing}$
- 12. The First Derivative Test
 - c is a c.n. in (a,b)
 - f cts on (a,b)
 - f diff on (a,b) except possibly at c
 - o f'(c) change to +
 - $\Rightarrow f(c)$ is rel min
 - f'(c) change + to $\Rightarrow f(c)$ is rel max
 - o + to + or − to − ⇒ neither max nor min

Section 4.4

- 13. Definition of Concavity
 - f diff on (a,b)
 - o f'(x) increasing
 - \Rightarrow concave upward
 - o f'(x) decreasing
 - \Rightarrow concave downward
- 14. Test for Concavity
 - Find Intervals using

 $\circ \quad f''(x) = 0$

- $\circ \quad f'' \, \mathrm{DNE}$
- \circ *f* undefined
- Write Intervals
- f'' exists on interval (a,b)
 - o $f''(x) > 0 \Rightarrow$ concave upward

•
$$f''(x) < 0 \Rightarrow$$
 concave downward

- 15. Definition of Point of Inflection
 - f cts on (a,b)
 - c in (a,b)
 - Graph of *f* has tangent line at *c*
 - Graph changes from:
 - $\circ \quad \text{Concave up to concave down} \\$
 - \circ $\,$ Concave down to concave up
 - \Rightarrow $\left(c, f(c)\right)$ is a point of inflection
- 16. Find possible points of inflection:

If (c, f(c)) is a point of inflection

Then either

- $\circ \quad f''(c) = 0 \quad \text{or} \quad$
- o f''(c) DNE
- 17. Second Derivative Test
 - f'(c) = 0
 - f''(x) exists on (a,b)
 - $\circ \quad f''(c) > 0 \Rightarrow \text{rel min at } (c, f(c))$
 - o $f''(c) < 0 \Rightarrow$ rel max at (c, f(c))
 - $\circ \quad f''(c) = 0 \Longrightarrow \text{test fails}$

rel min, rel max, neither??

Section 4.6

- 18. Slant Asymptote
 - Rational function $f(x) = \frac{poly}{poly}$
 - Degree of numerator is exactly one more than degree of denominator
 - Divide throw away the remainder
 - y = what's left is the SA
- 19. See "Summary of Graphing" sheet under "Notes" on website

Section 4.7

- 20. Optimization
 - Primary equation the equation involving the variable to be maximized or minimized.
 - Secondary equation the equation used to substitute into the primary equation to make the primary equation a function of only one variable.

Section 4.8

21. Tangent line approximation at (c, f(c))

$$y - f(c) = f'(c)(x - c)$$

$$\Rightarrow y = f(c) + f'(c)(x - c)$$

- 22. Differential of x: dx = any nonzero real number
- 23. Differential of y: dy = f'(x)dx
- 24. Measurement error: $\triangle x = dx$
- **25.** Propagated error: $\triangle y = f(x + \triangle x) f(x)$
- 26. Relative error (volume example): $\frac{dV}{V}$
- 27. Percent error: relative error as %