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Preface

This book discusses recent advances in biomedical sensing as well as image
analysis and processing techniques so as to develop a unified framework for
computer-aided disease diagnosis. One of the aims is to discuss different approa-
ches that will enable us to efficiently and reliably identify different features that are
present in biomedical images. Another aim is to provide a generic framework for
image classification.

The following four biomedical imaging modalities are considered: terahertz
(THz) imaging, dynamic contrast-enhanced MRIs (DCE-MRIs) including func-
tional MRI (fMRI), retinal fundus imaging and optical coherence tomography
(OCT). THz imaging is chosen as it is a very promising emergent diagnostic
modality that complements MRI. Under certain circumstances, it can also be
independently used to identify and assess disease proliferation. OCT is a
non-invasive imaging technique relying on low-coherence interferometry to gen-
erate in vivo, cross-sectional imagery of ocular tissue, and it complements fundus
photography. Furthermore, OCT data sets have a structure similar to that found in
THz imaging and MRI. Commonalities in these data structures can be explored by
developing a unified multichannel signal processing framework for biomedical
image analysis. Integration of complementary data sets provides additional features
which can assist in inferring disease proliferation.

This book also provides an account of recent advances in artificial intelligence
(AI) algorithms that may be applied to the multichannel framework discussed.
Feature extraction and classification methods taking into consideration recent
advances in support vector machine (SVM) and extreme learning machine
(ELM) classifiers are also explained, and these formulations are extended to higher
dimensional spaces for multiclass signal classification. The discussion also provides
some future directions for machine learning approaches using Clifford algebra
classifiers and deep learning architectures with geometric neurons. These recent
advances can potentially lead to particularly powerful artificial intelligence AI
algorithms that may one day automate several diagnostic processes.

Because of the multidisciplinary exposure of the subject, this book should be
useful to final-year undergraduate or graduate students and research practitioners in
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Biomedical Engineering, Applied Physics and Computer Science departments, who
have already some familiarity with the topics discussed and are interested in
learning about the latest advances on the subject. The different topics covered
should also provide new ideas for discipline hopping, improving employability and
career progression.

In addition, Chaps. 3–6 this book provides a generic framework for biomedical
signal processing and classification which should be useful to computer science
practitioners and AI software developers entering the biomedical field. The pro-
posed multichannel framework points towards the direction of developing an open
software architecture for signal denoising and feature extraction upon which spe-
cialized routines – tailored to different biomedical applications – can be developed.
This is also beneficial from a software standardization perspective.

One of the issues commonly encountered in biomedical image analysis is that
scientists from different disciplines focus on the different aspects associated with an
image. A molecular spectroscopist will be focusing on locations in an image where
efficient energy exchange between the excitatory signal and the tissue under study
has taken place. This process would include the identification of specific
ro-vibrational lines (for gases) or bands (for liquids and solids) as biomarkers under
different physiological conditions. In contrast, an engineer would be focusing on
signal processing, whereas a computer scientist on identifying the boundaries
between different types of tissues or identifying and suppressing artefacts arising
from different illumination conditions. In contrast, clinicians would be mostly
concerned with the identification of different types and the pathological state of
tissue as well as the visualization of small regions in the body and the mapping of
opaque objects using a particular imaging technique. All these scientists tend to
operate at different levels of complexity across a range of hierarchy levels from
molecules all the way to the cellular, tissue, organ or organism level. The diversity
of processing algorithms and the fact that modelling at one level of hierarchy does
not scale well to higher levels of complexity due to the multiparametric emergent
properties of biological media, are major contributing factors that have impeded
progress towards automating the diagnostic process. An effort has been made to
account for these different perspectives.

This book is, therefore, structured as follows:
Chapter 1 provides a general introduction to THz spectroscopy and then focuses

on THz-transient spectrometry. The different system configurations and types of
signals recorded are explained. The MRI imaging modality is also introduced. The
tensorial nature of the MRI signal is also explained. THz and MRI time series
analysis are placed in a common signal processing framework on the basis of the
data structures associated with single pixels or voxels. An introduction to retinal
fundus imaging as well as optical coherence tomography is also provided.
Similarities and differences between these four different measurement modalities
are highlighted.

Chapter 2 provides an overview of clinical applications using the four imaging
modalities discussed in Chap. 1. This includes biomedical applications of THz
spectroscopy and MRI, contrast imaging on the basis of tissue water content,
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identification of biomarkers and the visualization of tissue oxygenation levels on
the basis of the BOLD signal observed through fMRI. In addition, possibilities for
combining THz spectroscopy and MRI with other sensing techniques using a
multichannel framework are highlighted. Finally, recent advances in the application
of fundus imaging to disease diagnosis and the application of OCT imaging for the
visualization of increased vascularization in mammograms as well as the detection
of abnormalities in infant brains are reported.

The following chapters take the view that the problem of developing automated
classifier solutions for assessing disease progression should be seen as the tuning of
three different modules that may be individually optimized for particular samples
and data sets: the data acquisition imaging module, the data denoising
pre-processing and feature extraction module and finally the classifier module.
Tuning may be tailored separately for each module according to the features
resolved by each measurement modality so as to optimize the classifier learning
process.

Chapter 3 discusses different signal denoising methodologies applicable to both
THz and MRI systems as well as fundus photography and OCT. Data windowing,
apodization, parametric model fitting and multiresolution feature extraction
methodologies with wavelets as well as adaptive wavelets for both THz and MRI
data sets are also reviewed. The above discussions are effectively focusing on
robust feature extraction and selection strategies, firstly from a single pixel per-
spective and then from an imaging perspective. Benefits from adopting a fractional
order calculus approach to detect features in an image are explained. Recent
advances in fundus image denoising are also highlighted. A multiresolution image
fusion scheme that could be used to combine MRI with THz data sets is proposed.
This chapter then discusses several feature selection strategies for both THz and
MRI data sets. In the case of THz data sets features in time, frequency or wavelet
domains associated with single pixels are considered. In the case of MRI data sets,
the discussion focuses on features observed across entire images, taking into con-
sideration textural information. Spatiotemporal correlations across different areas in
an image, as identified through fMRI, are discussed. Advances in a
graph-theoretical framework that can potentially elucidate such correlations are also
mentioned. In addition, feature extraction and selection in retinal fundus imaging
and OCT are reviewed.

Chapter 4 discusses recent advances in different classifier methodologies, with
an emphasis on complex support vector machine and extreme learning machine
approaches. An extension to multidimensional extreme learning machine classifiers
is provided. Examples of binary as well as multiclass classification tasks using THz
data sets are presented. The performance of other classifiers such as multimodal
logistic regression, and naïve Bayesian, in performing classification of THz data
sets is compared. In addition, some recent advances in clustering and segmentation
techniques for THz data sets as well as for fundus images are discussed. Current
methods for automatic retinal vessel classification are highlighted, as it is envisaged
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that the improved edge detection algorithms discussed in the previous chapters in
conjunction with the proposed classification methodologies, can lead to better
discrimination between arteries and veins. Finally, this chapter discusses some
recent advances in automated image classification using performance criteria
directly developed by clinicians.

Chapter 5 provides a more in-depth analysis of MRI data sets. A recently
developed spatiotemporal enhancement methodology for DCE-MRIs that makes
use of a tensorial multichannel framework is explained. Examples from breast
tumour reconstruction are provided to showcase the proposed methodology. It is
shown that tumour voxels registered in three-dimensional space can be recon-
structed better after increasing contrast from background images using the proposed
methodology. The algorithm can be used to perform both feature extraction and
image registration. This chapter also discusses the general structure of supervised
learning algorithms for functional MRI data sets. Advances in supervised multi-
variate learning from fMRI data sets that promise to further elucidate brain disor-
ders are discussed. Finally, the general structure of topological graph kernels in
functional connectivity networks is explained. The prospects for developing
machine learning algorithms that would automatically provide spatiotemporal
associations of brain activity across different regions using graph theory method-
ologies are discussed. A more critical view of what may be achieved taking into
consideration limitations in the fMRI measurement modality is provided. Finally,
some recent advances from the computer vision community of relevance are
highlighted as possible future research directions.

Chapter 6 provides an outlook to future multichannel classifiers, incorporating
multiple features in their input space. Such approaches are also suitable for clas-
sifying multidimensional tensorial data sets. The discussion focuses on Clifford
algebra-based feature classification. A multichannel approach enables the fusion of
information acquired from multiple images at different time stamps, so it can
potentially elucidate disease progression. In addition, this chapter discusses recent
advances in deep learning as related to MRI as well as THz imaging data sets. The
use of geometric neurons which can combine information from complementary
sensing modalities is highlighted as an important future research direction for
feature extraction and classification in MRI. In addition, the proposed Clifford
framework could also benefit the THz imaging community, providing improved
classification results when these systems undergo clinical trials.

Chapter 7 provides some concluding remarks related to the recent advances in
signal processing and classification across the four imaging modalities discussed
throughout this book. It aims to highlight how progress in each of the above
research areas can be shared to accelerate progress across different biomedical
imaging modalities. Furthermore, this chapter summarizes some of the main aspects
of the unified multichannel framework that was developed throughout this book.
Finally, this chapter concludes by providing some future directions towards a
generic framework for the automated quantitative assessment of disease prolifera-
tion. It is envisioned that in the near future, a combination of several biomedical
sensing modalities will be integrated through sensor fusion and that artificial
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intelligence techniques will efficiently use the complementary information, to
improve disease diagnosis.

The authors would like to gratefully acknowledge Dr. John W. Bowen from
Reading University, Prof. Roberto K.H. Galvão from Instituto Tecnológico de
Aeronáutica, São José dos Campos, Brazil, and Prof. Derek Abbott from the
University of Adelaide for their valuable discussions over the years that have led to
the development of our current understanding of the topics discussed in this book.

Melbourne, Australia Xiao-Xia Yin
Reading, UK Sillas Hadjiloucas
Melbourne, Australia Yanchun Zhang
March 2017
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Chapter 1
Introduction and Motivation for Conducting
Medical Image Analysis

The demand for advanced image analysis techniques stems from the recent prolifera-
tion of new biomedical imagingmodalities across the electromagnetic spectrum. The
number of scans currently performed in most hospital environments has exploded
placing unprecedented workloads on personnel associated with their interpretation.
At the same time, we are also witnessing remarkable advances in artificial intelli-
gence (AI). New algorithms are paving the way for the provision of automatic image
interpretation which can lead to improved diagnosis and better understanding of dis-
ease progression. Furthermore, advances in biomedical equipment suitable for home
use are also providing new opportunities for the further proliferation of AI systems
and lead to advances in networked home care technologies which promise to make
possible the remote diagnosis of the onset of disease much earlier than before, thus
minimizing the need for consultation by experts. Such practice is also likely to pro-
vide almost expert opinion at reduced cost. Through these advances, one can foresee
some inevitable developments that will affect how the provision of health care will
be managed in the near future across the developed world.

From a signal processing and AI perspective, most of the imaging modalities
display some underlining commonalities. In order to establish the generic underly-
ing common problems encountered across the various imaging methods, this book
focuses on just four representativemodalities that operate at different parts of the elec-
tromagnetic spectrum: THz pulse imaging or TPI, MRI, fundus imaging and OCT.
The aim of the first chapter is to introduce each measurement modality and explain
how they complement each other. This will enable us to introduce in subsequent
chapters a possible common framework that can lead to unified signal processing
and image classification using machine learning. The common underlying theme in
all four diagnostic methods considered is the imaging of tissue at various states of
hydration and the possibility of providing diagnosis of the onset of disease or an
assessment of disease proliferation on the basis of changes in the physicochemical
environment of the cells, e.g. through changes in blood flow or through the use of
biomarkers which can also lead to textural changes in the tissue. We first discuss

© Springer International Publishing AG 2017
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2 1 Introduction and Motivation for Conducting Medical Image Analysis

the technological aspects of THz spectroscopy, the different system configurations
commonly used as well as the type of signals generated. An introduction to MRI
and recent developments in contrast enhanced imaging is then provided. The need
to develop a tensorial representation of the signal to account for anisotropy is also
highlighted. This chapter also places THz imaging and MRI imaging in a common
multi-dimensional signal processing framework. In addition, an introduction to reti-
nal fundus imaging and OCT imaging is provided. Finally, similarities with the other
two imaging modalities are highlighted. The similarity in these data structures nat-
urally leads to a unified approach for data pre-processing and image classification
extending pattern recognition to new application areas [1].

1.1 Introduction to Time-Resolved Terahertz
Spectroscopy and Imaging

1.1.1 Time Domain and Frequency Domain
THz Spectroscopy

Investigations at the terahertz (THz) part of the electromagnetic (EM) spectrum
loosely defined between 100GHz–10THz are of much relevance to the biological
sciences because THz radiation interacts strongly with polar molecules [2–4]. Bio-
logical tissue is generally composed of polar liquids so discrimination between tissue
types can be made on the basis of water content. The technique is very sensitive in
providing contrast between samples at various degrees of water saturation [5–7], and
has applications in the evaluation of the severity of burns or partially necrotic skin
samples [8] and the imaging of basal cell carcinomas [9–12] which can show an
increase in interstitial water within the diseased tissue [5, 13].

Since THz photons have significantly lower energies (e.g. only 1.24meV at
300GHz) thanX-rays, they have been considered bymany as non-invasive. Although
non-linear interactions between biological tissue and coherent THz radiation have
been predicted by Fröhlich [14] and experimentally verified by the careful work of
Grundler and the analysis of Kaiser [15] in the ’90s, the current and widely held
view is that any measurement technique that operates at THz frequencies should
be evaluated using current guidelines on specific absorption rates. These are only
associated with the thermal effects of the radiation with the tissue; so from a clini-
cal perspective, such irradiation can be considered as non-invasive. Such a view is
also further supported by noting that the Gibbs free energy conveyed in the THz
light beam is insufficient to directly drive chemical reactions. For example, the
molar energy at a frequency f of 100GHz would be given from E = Nhf where
N = 6.023 × 1023 mol−1, Avogadro’s number), and h = 6.626 × 10−34 Js (Planck’s
constant), resulting in a calculated value of only E = 0.04kJmol−1 which is so low
(approximately 100 times lower than the amount of molar energy required for ATP



1.1 Introduction to Time-Resolved Terahertz Spectroscopy and Imaging 3

Fig. 1.1 Multidisciplinary interpretation of the electromagnetic spectrum

hydrolysis) that for most practical purposes; we may assume that the interference
with biochemical processes would be minimal (Fig. 1.1).

Furthermore, in the THz part of the spectrum, many molecules have character-
istic ‘fingerprint’ absorption spectra [16–18]. Substances in the condensed phase
are held together by either ionic, covalent or electrostatic forces, and therefore the
lowest frequency modes will be associated with intermolecular motion [19]. The
interaction between THz radiation and biological molecules, cells, and tissues can
be understood using assumptions of propagation of an angular spectrum of plane
waves through the material [21]. Following standard postulates of dielectric the-
ory, a medium may be characterized in terms of its permittivity ε (the ability of the
medium to be polarized) and conductivity σ (the ability of ions to move through the
medium). At higher frequencies, transitions between different molecular vibrational
and rotational energy levels become increasingly dominant and are more readily
understood using a quantum-mechanical framework [22]. THz pulse spectroscopy
provides information on low-frequency intermolecular vibrational modes [23].

THz imaging can thus be remarkably informative regarding a sample’s compo-
sition. The Fourier transform of the associated time domain waveform over a broad
spectral range allows the calculation of the frequency dependent refractive index and
absorption coefficients of the sample. Sincewavelengths are longer in the THz part of
the spectrum, there is sufficient phase stability in the experimental apparatus enabling
the extraction of phase information by varying the time delay between the THz wave
and the probe beam [16]. When some materials are sufficiently transparent to THz
radiation, it is feasible to measure transmission responses and acquire spectral infor-
mation. Reflectance imaging is also straightforward, and through the combination
of transmittance and reflectance, a spectral absorbance may be inferred. This is not
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always possible at the infrared, optical and ultraviolet parts of the spectrum where
errors, due to scattering of shorter waves due to the surface roughness of the samples,
preclude direct calculations of absorbance. Reduced scattering of THz waves thus
minimises errors in inferred absorbance from measurements of transmittance and
reflectance. Alternative measurement topologies which provide differential absorp-
tion have also been developed; such systems can produce very informative contrast
images for the evaluation of disease progression.

Further advantages of imaging using THz radiation include the improved penetra-
tion depthwithin the tissue and the ability to differentiate between organs on the basis
of tissue water content. Since 70% of the human body is composed of water, a large
proportion of the excitation energy is significantly attenuated and, as a consequence,
the resultant spectra in many biomedical experiments may only be unambiguously
resolved after the application of elaborate post-processing techniques. Excluding
super-resolution techniques, imaging resolution is limited by the diffraction wave-
length and is thus inferior to infrared or optical imaging but superior to microwave
based imaging modalities.

Although much of the pioneering work in building interferometric spectro-
radiometers and other continuous wave measurement systems at the THz part of
the spectrum took place at Queen Mary College over a period of almost 30 years
under the guidance of D. H. Martin [20], it was only during the past two decades that
THz science and technology has flourished as a universally accepted new sensing
modality. Using continuous wave systems [24], there is a variety of instruments that
may be assembled using quasi-optical active and passive components. The AB Mil-
limetre vector network analyser, if available, is the preferred choice for continuous
wave measurements with significant signal-to-noise per spectral bin all the way up to
1.2 THz. It is not, however, as user friendly for extracting scattering parameters as
other commercially available solutions that operate at lower frequencies. An account
of different topologies using null-balance methods can be found in [25] whereas
polarimetric measurements for dichroic samples should ideally be performed using
the topologies discussed in [26, 27] or Fabry-Perot structures, e.g. [28]. Alterna-
tive broadband experimental configurations may include Mach–Zehnder or Martin-
Puplett configurations as discussed in [7, 20, 21]. When high power per spectral bin
is needed, THz imaging may also be performed (at significant cost) with high-power
THz sources under pulsed scanningmode and pulse-gated detection using large scale
facilities (e.g. Jefferson lab, FELIX etc.). Currently, however, bio-medical investiga-
tions using these facilities are fewer than those performed in the physical sciences
e.g. the semiconductor community.

Although there are several THz imaging systems that can be built using contin-
uous wave sources by appropriately adapting the above configurations to perform
raster-imaging of the sample [24], the focus of this book is on time domain spec-
troscopy (TDS) with ultrashort-pulse laser sources because of their recent prolifera-
tion. Such systems are more versatile for biomarker identification than their continu-
ous wave counterparts because they are inherently very broadband without requiring
liquid-helium cooled detectors (heterodyne based continuous wave systems aremore
narrow-band and lack such versatility because of the lack of such wide tunability of
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the sources). Furthermore THz pulse imaging (THz-TPI) has important applications
in in vivo, in vitro and ex vivo biosensing [8, 16, 29, 33]; identifying ‘fingerprint’
resonances due to overtone and combination bands [5, 30].

At this point it is worth noting that there are several similarities between THz-TDS
and the pulsed radar sensing modality. In THz-TDS, the time gated reflections are
analysed directly in the time domain by observing their attenuation, phase delay and
temporal spread after interacting with matter. Good temporal definition can provide
localization of tissue interfaces on the basis of refractive index differences (the real
part associated with impedance mismatch and the complex part with the attenuation
due to the number of absorbers and their extinction coefficient). Studies in reflection
geometry can occasionally also enable the indirect assessment of sample or layer
thickness, as well as determining the position of embedded unknown objects, etc.
[16].

An important advantage of time-domain systems over their continuouswave coun-
terparts that are plagued by etalon effects is that of being able to perform pulse time
gating. This is possible as long as the multiple reflections in the measurement system
are sufficiently far apart so as not to bemixedwith themolecular de-excitation signals
of the sample. The typical time-resolvedTHz spectrometer used inmost of the studies
discussed so far, utilize a short coherence length infrared source (centered at around
800nm) to generate a sub-100 femtosecond duration pulse train with repetition fre-
quency of around 80MHz. Each infrared pulse, is split into separate pump and probe
beams. The pump beam is used to excite an optical rectification crystal, which acts as
a T-ray emitter, and the T-rays produced (duration around 200 fs) are collimated and
focused onto a sample by a pair of parabolic mirrors. The T-rays emerging from the
sample are re-collimated by another pair of mirrors, before being combined with the
probe beam in a T-ray detector crystal. As a result, the modification by the sample T-
ray and the probe beams propagates through the THz detector crystal co-linearly. The
pump beam, which is also transmitted through a chopper, travels through an optical
delay stage that is modulated accordingly, so that the pump and probe beams arrive at
the detector in a time-coincident manner. The electro-optic detector crystal produces
an output that is proportional to the birefringence observed from the interaction of
the THz pulse with the time-coincident infrared pulse replica within the crystal. This
output is proportional to the T-ray response of the sample and this signal is measured
with the use of a balanced optical photo-detection scheme. A lock-in amplifier (LIA)
is also used to demodulate the signal, and this avoids 1/f (flicker) noise problems
that are present in this detector-limited measurement scheme. Typically, THz-TPI is
performed through a 2D raster scan after translating the sample in both the x and y
direction, while keeping it at the focal plane of the parabolic mirrors. A typical setup
[31, 34], is shown in Fig. 1.2.

Details of typical THz transient systems can be found elsewhere [33]. An inter-
esting quasi-optical circuit topology for simultaneous measurements of both trans-
mittance and reflectance that was reported by Ung et al. [35] is shown in Fig. 1.3.
In that system, the frequency dependent reflectance R(ω) and transmittance T(ω)

signatures are given from:
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Fig. 1.2 A schematic experimental setup for electrooptic transmission THz imaging with ZnTe as
EO generation and detection, illuminated by a femtosecond laser

R(ω) = 1 − ñ(ω)

1 + ñ(ω)
+

4̃n(ω)[̃n(ω)−1]
(̃n(ω)+1)3 · exp[−i2̃n(ω)ω

c d]
1 − ( ñ(ω)−1

ñ(ω)+1 )
2 · exp[−i2̃n(ω)ω

c d] (1.1)

T(ω) = 4̃n(ω)

[1 + ñ(ω)]2 · exp{−i[̃n(ω) − 1]ω
c d}

1 − ( ñ(ω)−1
ñ(ω)+1 )

2 · exp[−i2̃n(ω)ω
c d] (1.2)

where the normal incidence complex refractive index is (ω) = n(ω) − ik(ω) and the
absorption coefficient is: α(ω) = 4πk(ω)/c where c is the speed of light, k is the
wave number, d is the sample thickness and the tilde denotes a complex quantity. An
alternative phase-sensitive topology is reported in the work by Pashkin et al. [36]. An
interesting prospect for dispensing with the conventional x, y, z scanning stages for
image formation at the focus of the paraboloids by adopting a metamaterials based
scanning technique for image formation is discussed in [37, 38].

The resultant measurement at each pixel position of an image is an entire time-
dependent waveform. Therefore, the result from TDS-TPI is a three-dimensional
(3D) data set, which then can potentially be mapped to two-dimensional (2D) images
[39], where structural and compositional discrimination based on a sample’s optical
properties may be conveniently performed using pattern recognition algorithms. In
the following chapters, sample responses from multiple THz spectrometry exper-
iments are used as examples to provide a generic pattern recognition framework.
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The proposed approach extends the range of applications of pattern recognition to
emergent sensing modalities [1, 40].

A further advantage of the associated phase stability in THz spectrometers (due
to the associated longer wavelength) is that it enables direct measurement of both the
real and imaginary (complex) components of the permittivity. A Debye relaxation
model can be used to analyze the strong absorption of terahertz radiation in polar
liquids at least up to 1THz [5, 32]. Thismodel can be directly related to the associated
intermolecular dynamics. Spectroscopic studies can, therefore, potentially elucidate
the way proteins influence the state of water and can lead to further understanding
of the role of hydration shells in protein interactions [41, 42].

It is also worth noting that in all of the above experimental set-ups one needs to
always consider that there may also be additional pseudocoherence errors because
different parts of the beam across its aperture travel different paths through different
regions of the sample (if it is of non-uniform thickness), interfering constructively or
destructively with each other when they recombine. A recent account of advances in
THz metrology discussing errors in both continuous wave as well as THz-transient
systems can be found in [43]. Such errors are endemic to much of the THz literature
although this is not extensively discussed. Management of these artefacts and their
relevance to imaging applications is therefore an open issue requiring further consid-
eration. For the case of reflectometric measurements using continuous wave sources,
it is occasionally possible to de-embed the reflection signature from different layers
as discussed in the work by Hadjiloucas et al. [44]. The technique has been applied
to waveguide measurements but has yet to be applied to reflection measurements of
biological tissue when the different strata contain different water content (Fig. 1.3).

Fig. 1.3 Quasi-optical setup for simultaneous reflection and transmissionTHz-TDSmeasurements.
The path of the 800nm laser beam is depicted in red, while the THz beam path is shown in green,
with all beams horizontally polarized. The sample is placed in the focus of the parabolic mirrors
and, for a reference measurement in reflection geometry, a mirror is used adopted from [35]
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From a technological point of view, THz imaging is thus an emergent complemen-
tary imagingmodality ofmuch interest within the biomedical community, potentially
competing with positron emission tomography (PET) imaging which has picomo-
lar sensitivity but poor spatial resolution and magnetic resonance imaging (MRI),
which provides millimolar sensitivity with high spatial resolution. A diffraction lim-
ited imaging system operating at 2THz would have a spatial resolution of 150µm,
which may be considered limiting for many biomedical applications for which this
imaging modality offers niche applications (e.g. differential imaging of cancer cells
in breast tissue of pregnant or lactating women). From a clinical perspective, tumours
need to be identified at the earliest possible developmental stage and, unless suitable
THz super-resolution techniques can be adopted (a difficult task since beams are dif-
fractively spreading and the optics community has yet to extend existing algorithms
from the infrared to the THz part of the spectrum), it is unlikely that current sys-
tems will be adopted by clinicians. Imaging systems integrating either PET or MRI
modalities with THz pulse imaging to enable the generation of composite images is
the most likely way forward for the integration of this technology in a clinical setting.

1.1.2 Recent Advances in Simultaneous Time-Frequency
Dependent THz Spectroscopy

Time-frequency analysismethods have been developed to provide very parsimonious
parametrizations of time series datasets and, in this sense, nicely complement other
parametrization schemes performed in either time or frequency domains [45, 46].
The wavelet transform (WT) is a popular technique suited to the analysis of short-
duration signals [47]. It decomposes the time series signal using two filter banks
separating the high (detail) and low (approximation) frequency components of the
signal assuming a pre-defined mother wavelet function. The approach provides very
efficient de-noising capabilities in the presence of Gaussian white noise and has
very parsimonious representation. An important feature of this transform is that it
has orthogonal basis functions so that it enjoys perfect reconstruction symmetry,
enabling its inverse transform to reproduce the original dataset without loss of infor-
mation. This is a particularly important property from a biomedical signal processing
perspective as software certification for biomedical purposes should require complete
traceability of all the data processing steps. A further development in the biomedical
signal processing literature has been the use of adaptive wavelets [48], where the
mother wavelet is specifically tailored at each decomposition level (wavelet scale),
to minimize the least squares error associated with the difference between the trans-
formed signal from its original one. The approach holds great promise for optimizing
the extraction of the spectroscopic information contained in each THz pulse tran-
sient as well as in THz TPI generally [49–52]. Figure1.4 showcases the advantages
of time-frequency analysis in terms of the reduction in classification errors. To gen-
erate this graph, the standard deviation of the noise was varied from 0.001 to 0.5. For
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Fig. 1.4 Classification errors (%) as a function of noise level in the interferograms. Nonoptimized
db4 wavelet (green), optimized wavelet (red) and Euclidean distance (blue) classifiers. The inset
shows an inferogram of leather with (a) no artificially added noise and noise with standard deviation
of (b) 0.1 and (c) 0.5. After [52]

each noise level, 250 noisy patterns were generated for each class (lycra and leather).
As can be seen, the classification is much more robust to noise when carried out in
the wavelet domain than in the original domain. Moreover, the robustness to noise
is further increased by the optimization of the WT.

In addition to the above more elaborate routines, there have also been other
examples of studies that incorporateWT pre-processing routines for signal-to-noise-
ratio enhancement and classification of THz spectra [8, 53]. Such a pre-processing
step enabled the successful discrimination of cancerous from normal tissue in wax-
embedded histopathological melanoma sections as well as the classification of den-
tine and enamel regions in teeth [49]. It is now generally accepted that the perfor-
mance of a classifier based on the output of a wavelet filter bank is improved over
that of an Euclidean distance classifier in the original spectral domain [52]. Finally,
an alternative very promising approach for the modelling of de-excitation dynam-
ics, which has its origins to the theory of complex dielectrics, is through the use of
fractional order calculus and the fitting of fractional order models. In this approach,
the time series experimental datasets are modelled using very parsimonious pole-
zero expressions associated with the dynamics of resistive, capacitive or inductive
networks [54–56]. Although the fractional-order system identification literature is
still in its infancy, it promises to provide much lower residual errors in the identified
models, thus significantly advancing the science of chemometrics that is of signif-
icance to the further advancement of the discussed biomedical investigations. The
approach can account for spectral shifts in amorphous materials as well as de-embed
solvation dynamics.

Since dual modality THz/MRI tandem hybrid imaging systems have already been
discussed in the literature [57], it is appropriate to look more closely at recent
advances in MRI sensing before a combined signal/image processing framework
is proposed.
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1.2 The Application of Magnetic Resonance to Biomedical
Imaging

Magnetic resonance imaging (MRI) was established as a new diagnostic modality
in the early 1980s and rapidly gained wide acceptance as an imaging tool for a
diverse range of biomedical disciplines such as neurology, oncology, obstetrics and
gynaecology. In a clinical setting, it is now routinely used in cardiovascular, muscu-
loskeletal, gastrointestinal and liver imaging as well as in neuroimaging, providing
information on their physiological status and pathologies. This imaging modality
has become a standard tool in radiology because it provides high resolution images
with good contrast between different tissues. It works by exploiting the fact that
the nucleus of a hydrogen atom behaves like a small magnet. MRIs employ pow-
erful magnets which produce a strong magnetic field that forces protons from the
nucleus of a hydrogen atom to align with that field. In a magnetic field, spins of
protons can either align with or against the direction of the field. The magnetization
is initially parallel to the magnetic field B0. When a radio frequency (RF) current
is then pulsed through the patient, the magnetic component of this electromagnetic
wave generates a gradient magnetic field that exerts a force on the spinning top of a
proton leading to a torque. The protons are stimulated and spin out of equilibrium.
This causes the spinning top to precess around the gradient field. Excitation stops
when the magnetization is tipped sufficiently into the transverse plane, forming a
flip angle. When the radio frequency field is turned off, the precessing magnetization
generates the energy released as the protons realign with the magnetic field. The time
it takes for the protons to realign with the magnetic field, as well as the amount of
energy released, changes depending on the environment and the chemical nature of
the molecules. When a rotating field gradient is used, linear positioning information
is collected along a number of different directions. Assuming the field strength to
be 1T, the protons are revolving 42.5 million times per second and it is at this fre-
quency the molecular system under investigation is excited with a pulse (i.e. at the
Larmor frequency). One of the principal determinants of the strength of the NMR
signal from a given region is spin density, relating to the concentration of nuclei in
the tissue precessing at the Larmor frequency. Using nuclear magnetic resonance
(NMR), the hydrogen nuclei can be manipulated so that they generate a signal that
can be mapped and turned into an image. A general schematic of the MRI excitation
process in a clinical setting is illustrated in Fig. 1.5.

For a 90◦ flip angle, the produced NMR signal satisfies the following contrast
equation:

Signal ∝ ρ(1 − e−TR/T1)e−TE/T2 (1.3)

where ρ denotes spin density, the (1 − e−TR/T1) term indicates T1-weighting images,
and e−TE/T2 indicates T2-weighting images. Repetition Time (TR) refers to the time
gap at which consecutive RF pulses are applied; while TE (Echo Time) refers to
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Fig. 1.5 Schematic of MRI in a clinical setting

Fig. 1.6 Illustration of conventional (single echo) SE pulse sequence

the time delay between the applied RF pulse and its reception (echo). T1 weighted
images (T1W) are produced by keeping TR and TE relatively short to minimize T2
relaxation effects, while T2 weighted images (T2W) are produced by keeping TR
and TE relatively long to minimize T1 relaxation effects. The simplest form of the
spin-echo (SE) pulse sequence consists of a 90◦-pulse, a 180◦-pulse, and then an
echo. The time between the middle of the first RF pulse and the peak of the spin echo
is called the echo time (TE). The sequence then repeats at time TR, the repetition
time. Figure1.6 illustrates a conventional (single echo) SE pulse sequence.

As illustrated in Fig. 1.5, a T1weighted image relies on the longitudinal relaxation
of a tissue’s net magnetisation vector (NMV). Spins aligned to an external field (B0)
are aligned into the transverse plane by an RF pulse. They then slide back toward
the original equilibrium direction based on B0.
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MRI de-embeds structural details of the various organs on the basis of the obser-
vation of hydrogen atom (proton) de-excitation rates as they arise following an exci-
tation by an oscillatory radio signal within a magnetic field. The energy emission
stemming from the spinning hydrogen molecules is determined by the two time con-
stants, T1 and T2, and the contrast between different tissues is determined by the
rate at which excited atoms return to the equilibrium state. The radio signals can
be made to encode position information by varying the main magnetic field using
gradient coils, enabling the formation of images.

Regions of fat present in the human tissue quickly realign its longitudinal magne-
tization with B0, and it therefore appears bright on a T1 weighted image. Conversely,
water has a much slower longitudinal magnetization realignment after an RF pulse,
and therefore has less transverse magnetization after an RF pulse. Thus, regions
composed of water produce a significantly lower signal and appear dark. Anatomi-
cal features can be identified fairly reliably by trained personnel to recognise regions
with different water content. A T2W signal relies upon the transverse relaxation of
the net magnetisation vector. T2 relaxation is seen only with gradient-echo (GRE)
imaging because transverse relaxation caused by magnetic field inhomogeneities
is eliminated by the 180◦ pulse at spin-echo imaging. T2 relaxation is one of the
main determinants of image contrast with GRE sequences, and forms the basis for
many magnetic resonance (MR) applications such as susceptibility-weighted (SW)
imaging, perfusion MR imaging, and functional MR imaging [58–60]. For long TE
imaging, tissues with short T2’s (rapidly recovering) appear darkest. Compartments
filled with water (e.g. CSF compartments) appear bright and tissues with high fat
content (e.g. white matter) appear dark. This is sufficient for demonstrating various
pathological conditions asmost (but unfortunately not all) lesions are associated with
an increase in water content. Figure1.7 illustrates T1W and T2W images.

Fig. 1.7 Illustration of T1 weighted and T2 weighted images
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An important advantage that MRI has over its computed axial tomography (CAT)
counterpart is that it avoids the deleterious effects associated with X-ray irradiation.
A recent advance in MRI methodology enabling the detection of tumour features
with high sensitivity [61], has been the use of exogenous contrast agents, the well-
known dynamic contrast enhanced MRI modality (DCE-MRI) [62]. The crucial
advantage of DCE-MRIs over standard MRIs is that it provides registration of 3D
spatial lesion information as well as temporal information regarding the progres-
sion of lesions. In addition, it provides additional information on vascularization
by showing variations in contrast agent uptake rates, thus enabling a more accurate
assessment of the extent of lesions and new opportunities for their better characteri-
sation [63–65]. From a classification perspective, DCE-MRI produces a sequence of
three-dimensional (3D) patterns recorded at different time instances. These datasets
are therefore four-dimensional, with three spatial dimensions and a quantization in
the time domain defined by the image interval lapse time. The detection of anom-
alies in spatiotemporal datasets is an emergent interdisciplinary topic that requires
the development of completely new software tools [66]. Furthermore, as discussed in
[67–70], analysing spatiotemporal patterns is critical for the correct identification of
tumour anomalies in DCE-MRIs, establishing whether they are malignant or benign.

An important advance in MRI technology is its ability in detecting tumour anom-
alies with high sensitivity [61], has been the use of exogenous contrast agents, the
well-known dynamic contrast enhanced MRI modality (DCE-MRI). The crucial
advantage ofDCE-MRIs over standardMRIs is that it provides registration of 3D spa-
tial lesion information as well as temporal information regarding the progression of
lesions. In addition, it provides additional information on vascularization by showing
variations in contrast agent uptake rates, thus enabling a more accurate assessment of
the extent of lesions and new opportunities for their better characterisation [63–65].

An important advance of relevance to the neuroimaging community, which was
introduced in the 1990s and greatly improved temporal resolution (on the order of
seconds), has been that of blood oxygen level dependent (BOLD) functionalmagnetic
resonance imaging (fMRI). In this modality, the BOLD fMRI signal has no stable,
absolute interpretation and tends to slowly drift up and down over time. Other recent
developments in clinical MRI that need to be considered are that of high field fMRI
e.g. using 4T magnets (which have the advantage of improving T1 times) and the
emergence of low-field techniques (milli-Tesla systems) which are combined with
cryogenically cooled phased array detectors. In the case of low field techniques, these
developments are likely to lead to the proliferation of more versatile imaging systems
which will be less claustrophobic to patients and provide improved compatibility for
patients with implants. Such systems are likely to have different requirements for
de-noising and classification, placing them in a unified algorithmic context at such
an early stage of development is useful.

Much of the work on MRI focuses on the measurement of an effective diffusion
tensor of water in tissues [71], following nuclear induction [72–75]. MRI provides
unique characterization of the biological tissue (in terms of tissue composition, the
physical properties of its tissue constituents, and microstructure and its architectural
organization) as well as clinically relevant information that is not available from
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other imaging modalities. Brain gray matter is sufficiently homogeneous so a scalar
representation of the apparent diffusion coefficient (ADC) is used. The need for a
tensorial representation arises most often when considering diffusion in skeletal and
cardiac muscle [76–78], and in white matter where the measured diffusivity is known
to depend upon the orientation of the tissue [79–81].

Processing of the MR signal entails relating the measured echo attenuation in
each voxel with the applied magnetic field gradient sequence [82, 83]. In its simplest
form, the measurement provides a scalar b-factor value which is calculated for each
diffusion-weighted image (DWI). The b-factor summarizes the attenuating effect on
the MR signal of all diffusion and imaging gradients in only one direction [75]. It
effectively measures the projection of all molecular displacements along one direc-
tion at a time. For non-homogeneous samples, a symmetric b-matrix is used [84];
this again is calculated for each DWI. The b-matrix captures the attenuating effect
of all gradient waveforms as applied in all three directions(x, y and z) [84, 85]. The
effective diffusion tensor, D, is similarly estimated from a series of DWIs.

A commonly used expression relating the effective diffusion tensor to the mea-
sured echo is:

ln

(

A(b)

A(b = 0)

)

= −
3

∑

i= 1

3
∑

i= 1

bijDij (1.4)

= −(bxxDxx + 2bxyDxy + 2bxzDxz + byyDyy

+2byzDyz + bzzDzz) = −Trace(bD)

where A(b) and A(b=0) are the echo magnitudes of the diffusion weighted and
non-diffusion weighted signals respectively, and bij is a component of the symmetric
b-matrix, b. When the medium is isotropic, b = bxx + byy + bzz = Trace(b).

The first moment of the diffusion tensor field, or the orientationally averaged
value of the diffusion tensor field can be calculated at each point within an imaging
volume:

< D > = Trace(D)/3 = (Dxx + Dyy + Dzz)/3 (1.5)

= (λ1 + λ2 + λ3) =< λ >

where λ1, λ2, λ3 are the three eigenvalues and< λ > labels their mean. An estimate
of < D > is obtained by taking the arithmetic average of ADCs acquired in all
possible directions.

In contrast, in a trace-weighted image, the geometric mean of N DWIs A(bi) is

used to produce a trace weighted intensity: TWI = N

√

∑N
i= 1 A(bi).
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If the DWI signal attenuation is given by:

A(bi) = A(0) × (1.6)

e−(bixxDxx+2bixyDxy+2bixzDxz+biyyDyy+2biyzDyz+bizzDzz)

then the conditions for producing a Trace-weighted DWI are:

N
∑

i= 1

bixx =
N

∑

i= 1

biyy =
N

∑

i= 1

bizz = Nβ > 0 (1.7)

i.e. that the total diffusion weighting along the x, y, z directions is the same, and

N
∑

i= 1

bixy =
N

∑

i= 1

biyz =
N

∑

i= 1

bixz = 0 (1.8)

i.e. that the sum of each of the off-diagonal elements of the b-marix is zero. In this
way,

TWI = A(0)e−βTrace(D) (1.9)

which results in an image whose intensity is ‘weighted’ by Trace(D).
When selecting a model for the dataset, one needs to consider that gray matter,

white matter and cerebrospinal fluid (CSF) could all occupy the same macroscopic
voxel. As a result, a three compartment model can be built:

A

A0
= f1e

−Trace(bDwm) + f2e
−Trace(bDgm) + f3e

−Trace(bDcsf )

where Dwm represents the diffusion tensor for white matter, and Dgm and Dcsf rep-
resent the apparent diffusion coefficients for gray matter and for CSF, respectively,
which are assumed to be isotropic. This is a model requiring 11 parameters, there-
fore ARX and subspace signal processing schemes become appropriate. Addition of
intracellular and extracellular compartments to the abovemodel increases rapidly the
number of parameters that need to be estimated. This gives rise to parametrization
issues which can overwhelm a classifier.

For N non-interacting compartments, with the same T1 and T2, each described
by its own diffusion tensor, a simplification in the processing can be made by taking
a Taylor series expansions of the signal about Trace(bDi) = 0:
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+ · · · = 1 − Trace(bDeff) + · · ·

A

A0
≈ e−Trace(bDeff ) (1.12)

where Deff = ∑N
i= 1 fiDi.

Looking at the problem froma systems identification perspective, if the parameters
of the above model need to account for non-linear interactions resulting from the
exchange of spins in each compartment, a Wiener of Hammerstein model needs
to be identified. This formulation would account for a multi-compartment/multi-
component model, where differences in relaxation parameters can lead to different
rates of echo attenuation in each compartment, making it more difficult to explain
the cause of signal loss within a voxel. In practice, there are irregular boundaries
between macromolecular and microscopic-scale compartments that need to be taken
into account. In addition, the different macromolecular structures comprising these
boundaries may affect the displacement distribution of water molecules differently,
necessitating the formulation of even more complex models or potentially nonlinear
modelswith fractional order dynamics. Assuming the system dynamics are described
in state space, the problem may be formulated as a multiple-input multiple output
problemwith a deficient rank in the observabilitymatrix thatwould require additional
information for it to be uniquely solved. Furthermore, one can potentially address
the deficient matrix problem by using the complementary information fromTHz-TPI
measurements.

Diffusion weighted intensities as a function of the b factor also tend to vary when
there is an exchange of blood between compartments [91]. A multi-exponential
fractional order calculus methodology can provide a good model of long range inter-
actions as this can be associated with the change in the relaxation rates of the spin
system. Furthermore, models for the movement of water within and between com-
partments have been proposed. These vary in terms of complexity and number of
components considered so their application for the interpretation of clinical datasets
is at its infancy. The best way to address this is to place the problem explicitly within
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a biophysical context and assign reflection coefficients for the membranes present
in different parts of the tissue. Then, a model should be derived after assuming a
diffusion process due to potential chemical changes.

Since often there are also thermal gradients in a tissue there are differences in blood
flow and thermal conductivity, and temperature cannot be assumed to be uniform
throughout a tissue sample. Temperature gradients can be associated with changes in
the measured diffusivity (to the extent of about 1.5% per 1 ◦C) [91–94], and changes
in the DWI from adjacent voxels limit the precision of the technique. This is, again,
another area where THz imaging in tandem can potentially be used tominimize these
artefacts by providing an independent measure of flow.

Finally, it is worth noting that a source of artefacts in MRI stems from eddy
currents associatedwith large, rapidly switchedmagnetic field gradients produced by
the gradient coils during the diffusion sequence. As a consequence, the field gradient
at the sample differs from the prescribed field gradient, resulting in a difference
between the actual and prescribed b-matrix. Furthermore, a slowly decaying field
during readout of the image causes geometrical distortion of the diffusion-weighted
images. These issues may be addressed by adopting pule shaping methodologies.

Progress in machine learning offers new opportunities for automated tumour
screening. In addition, it can also potentially provide associations and correlations
through the time series analysis of datasets, thus elucidating disease progression
[95–100]. Image processing techniques can be used to extract quantitative informa-
tion on lesion morphology, volume and kinetics, as well as to distinguish viable from
nonviable tissue [63, 98]. Techniques for processing large volumes of medical image
datasets with high dimensionality are not, however, sufficientlymature. Experts often
distinguish tissue states on the basis of tumour information from radiological reports
by characterizing lesions either as malignant or as benign [63, 101–104]. Current
tumour detection methodologies based on analysing a series of two-dimensional
texture features is not only time consuming, but can also be problematic as experts
are often unable to take into consideration more complex morphological features of
tumour anomalies across the entire tissue volume [70, 98, 105].

1.3 Placing THz Imaging and MRI Time-Series
in a Common Signal Processing Framework

In addition tomolecular fingerprinting, anothermotivation for using THz pulse imag-
ing in conjunctionwithMRI stems from the possibility of separately performing fiber
tractography, following fiber-tract trajectories within the brain and other fibrous
tissues [86–88]. This has important applications to neuroscience as it enables the
tracking of neuronal fiber pathways [90]. An important question that still needs to
be addressed in THz transient spectroscopy is whether the extinction coefficient of
water at THz frequencies, as well as the de-excitation dynamics observed in the time
domain sequences associated with a single voxel, are different when the water is free
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or bound. The energy state of water (water potential) provides additional information
regarding the surrounding tissue, because different tissue has different osmotic and
matric potential. It is also very common for diseased tissue to be accompanied by
a dramatic change in cellular water potential as stressed cells over-produce certain
amino-acids e.g. proline. Correlating potential osmotic measurements with water
absorbance at the THz part of the spectrum, should, therefore provide information
complementary to that associated with the diffusion tensor of the MRI modality.

Of relevance to both THz pulse imaging as well as DCE-MRI systems, is the
need for multi-channel acquisition [89]. In the case of DCE-MRI this is necessary
to account and correct for patient movement during the scan (often by fusing infor-
mation from heterogeneous sensing modalities) [106]. Correlations with breathing,
enables pixel de-blurring at the post-processing stage, minimizing artefacts [107].
Similarly, in THz pulse imaging, hyperspectral imaging may be used to improve
the signal-to-noise ratio (SNR) at each pixel or voxel in an image. This is possible
because a single femtosecond pulse from the spectrometer is associated with a very
broad spectrum, so differentiation between tissues can be performed after integrat-
ing the differences in the complex insertion loss function over a large number of
frequencies (making use of Fellgett’s multiplex advantage).

Both MRI as well as THz pulse imaging systems have shortcomings in that they
require comparatively long integration time for the acquisition of an image. Thus,
in order to speed-up measurement time, different approaches are considered: either
accepting a higher noise level per pixel or voxel or limiting the resolution (number
of pixels or voxels) or reducing the number of tomographic projections. A common
shortcoming with such practices is to introduce undesirable image artefacts due to an
inadequate Nyquist sampling rate in the spatial domain [108, 385]. A pre-processing
step that can reduce the dimensionality of the hyperspectral or multi-channel datasets
by compressing them tomore parsimonious representations can potentiallyminimise
the dimensionality of the input dataset presented to a classifier. This can help improve
its classification accuracy and generalization ability. An additional advantage from
compression is the potential signal-to-noise ratio improvement.

Algorithms for material extraction parameters on the basis of the expressions
provided above are discussed in the work by Duvillaret et al. [109, 110] as well as
the work by Mittleman’s group [111] and Koch’s group [112–114]. Suppression of
etalon effects (interference caused by multiple reflections from dielectric layers) in
THz reflection spectroscopy is possible by fitting a Lorentzian dispersion model as
discussed by Kniffin and Zurk [115]. The treatment of errors in THz spectroscopy is
discussed extensively in the recent book edited by Naftaly [43]. Such considerations
have also significant ramifications in image reconstruction and registration as there is
a danger that classifiers will be trained on features resulting from systematic errors.

At this point it is worth noting that, in all these approaches, in experiments with
samples of complex composition, one has to evoke an effective medium theory
if absorption bands are too close together or if the modelling process assumes a
frequency-dependentmulti-exponential composite transmittance response of the type

T(ω) = e− ∑N
i= 1 εi

∫ d
0 ci(d)dd(ω) to account for the presence of multiple (N) absorbers.
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This is often the case when the modelling process assigns a different concentration ci
(with subscript i denoting the number of absorbers), and molar extinction coefficient
εi for each of the chemical species present. Such modelling is usually performed on
the basis of the Beer-Bouguer-Lambert Law assuming the medium is homogeneous
within the considered interaction volume (over a path length dd of uniform compo-
sition). The fitting of these multi-exponential expressions requires the assumption
of a linear interaction of the components in the mixture (which is not always the
case), as well as a large number of calibration samples so that a sufficiently large
number of linearly independent equations can be obtained (over-parametrization).
From a mathematical perspective, this problem is similar to that encountered in MRI
where a number of lifetimes can be observed either because of instability of a sig-
nal at longer timescales (e.g. in BOLD fMRI) as discussed by Aguirre et al. [116],
or as a result of changes in neuro-vascular coupling, or in complex mixtures using
multiple spin labels (e.g. in Arterial Spin Labelling ASL perfusion fMRI which is
analogous to 15O PET imaging and the labelled protons act as a diffusible tracer,
as implemented in either continuous CASL or pulsed PASL mode), or when spa-
tiotemporal correlations affecting T1/T2 ratios need to be weighted and extracted.
In addition, in a neuroimaging context, the variance in T1/T2 ratios across different
populations (groups of subjects) can also be placed in a more informative context
using a multi-exponential fit algorithm. Finally, similar problems can be encountered
in multi-pulse-field-gradient experiments [117].

Every measurement at each pixel position of a TDS-TPI image is an entire time-
dependent waveform, i.e. a three-dimensional (3D) data set, which then can poten-
tially be mapped to two-dimensional (2D) images [39], where structural and com-
positional discrimination can be performed on the basis of a sample’s frequency
dependent complex refractive index using pattern recognition algorithms. In cases
where the user has to process multi-channel or tensorial datasets, the needed expo-
nential data fitting can be performed usingmultilinear algebra routines.A particularly
elegant formulation can be found in the work by Papy et al. (2005) [118].

1.4 Introduction to Retinal Fundus Imaging

Fundus photography is the acquisition of images (nowadays digitally) of the back
of the eye, to resolve features of the retina, optic disc, and macula [119, 226, 345].
The technique can be used clinically to diagnose and monitor the progression of a
disease through the measurement of vessel width, colour, and reflectivity [227].

In fundus retinal photography, the camera records color images of the condition
of the interior surface of the eye. Repeated photography at regular intervals provides
an assessment of relative changes of specific features over time (Fig. 1.8).

In both cases, the camera system comprises a low power microscope with an
attached camera designed to photograph the interior surface of the eye, including the
retina, retinal vasculature, optic disc, macula, and posterior pole (i.e. the fundus). An
example of such system is illustrated in Fig. 1.9.
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Fig. 1.8 Typical fundus photography set-up comprising high resolution imaging system that can
resolve features at the back of the eye (retina); informative features include the appearance and size
of the optic nerve or macula and the presence of freckle (choroidal nevus)

Fundus photography can also be performed with the use of colored filters, or with
specialized dyes including fluorescein and indocyanine green. The optical design
of a fundus camera is based on the indirect ophthalmoscope. Fundus cameras are
characterized by the angle of view—the optical angle of acceptance of the lens. An
angle of 30◦, is considered the normal angle of view, this creates an image with a
magnification factor of 2.5. Wide angle fundus cameras capture images between 45
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Fig. 1.9 GDx-MM (MM for Mueller Matrix) optical and polarization path. NPBS: non-polarizing
beam splitter; PBS: polarizing beam splitter; APD: avalanche photodiode; LCR: liquid crystal
retarder.Modifications from theGDxpath are emphasized in red and include the following: insertion
of LCR-G in generator path; insertion of LCR-A in analyzer path; and changing the retardance and
rotational increment of the rotating wave plate. After [228]

and 140◦ and provide proportionately lower retinal magnification. A narrow angle
fundus camera has an angle of view of 20◦ or less.

An evolution to the above design is the Mueller matrix polarimeter [228]. Such
system has recently been used to image the retinas of normal subjects; a system
of this type is illustrated in Fig. 1.9. Light from a linearly polarized 780nm laser
was passed through a system of variable retarders and scanned across the retina. In
this configuration, light returned from the eye passes through a second system of
retarders and a polarizing beam splitter to reach two confocal detection channels.
The accuracy and repeatability of polarization parameter measurements are typically
within ± 5%. At the signal processing stage, optimization of the polarimetric data
reduction matrix can be achieved using a condition number metric.

The GDx, is an incomplete polarimeter, which can be used to probe the increase
of scattered light concomitant with retinal disease [228–231]. It is a scanning laser
polarimetry (SLP) with a linearly polarized 780nm laser source, a rotating half wave
plate, and a polarizing beam splitter which directs the co- and cross- polarized return
light to two detection channels. A two-dimensional retinal scan is usually performed
at 20 different wave plate orientations. The signals from the co- and cross-polarized
detectors are processed to produce a linear retardance map of the scanned region. A
constant birefringence factor is then used to convert the retardancemap to a thickness
map of the retinal nerve fiber layer. The resolution at the retina is about 15µm, and
the scan covers a visual field of 15◦. Scanning is normally performed using a slow
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Fig. 1.10 A normal retinal image registered using retinal fundus photography

scan galvanometer driven at 26Hz coupled to a fast resonant scanner oscillating at
4kHz.

The retina is a layered tissue lining the interior of the eye that enables the conver-
sion of incoming light into a neural signal that is suitable for further processing by
the visual cortex of the brain. Because the retina is used in all visual tasks, all ocular
structures have to be optically transparent for image formation. This makes the reti-
nal tissue accessible for imaging noninvasively, as illustrated in Fig. 1.10. Because
the retina’s function makes it a highly metabolically active tissue constantly needing
significant volumes of blood supply, the retina allows direct noninvasive assessment
of circulation [119].

1.5 Introduction to Optical Coherence Tomography (OCT)

Since its introduction in 1959, fluorescein angiography has been the preferredmethod
for performing retinal imaging. After 1991, however, a new modality, that of Opti-
cal Coherence Tomography (OCT) was introduced [232]. OCT is a novel imag-
ing technology that produces high resolution cross-sectional images of the internal
microstructure of living tissue [238, 239]. Its roots lie in the earlywork onwhite-light
interferometry that led to the development of optical coherence-domain reflectometry
(OCDR), a one-dimensional (1-D) optical ranging technique [240]. Since its intro-
duction, OCT has played a pivotal role in improving retinal diagnostic imaging. An
important recent advance that is likely to significantly benefit the range of application
ofOCT for vascular imaging is the use of cowpeamosaic virus (CPMV)nanoparticles
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[120]. The bioavailable cowpea mosaic virus (CPMV) can be fluorescently labelled
to high densities with nomeasurable quenching, resulting in exceptionally bright par-
ticles with in vivo dispersion properties that allow high-resolution intravital imaging
of vascular endothelium for periods of at least 72 h. There is significant potential for
example to perform intravital visualization of human fibrosarcoma-mediated tumor
angiogenesis using fluorescent CPMV as it provides a means to identify arterial and
venous vessels and to monitor the neovascularization of the tumor microenviron-
ment. OCT uses 3D imaging technology to achieve highly detailed internal imaging
of the human eye with an optimal resolution of just a few micrometres. It gener-
ates cross sectional images by analyzing the time delay and magnitude change of
low coherence light as it is backscattered by ocular tissues. An infrared scanning
beam is split into a sample arm (directed toward the subject) and a reference arm
(directed toward a mirror). As the sample signal returns to the instrument it is corre-
lated with the signal at its reference arm. Minute imbalances between the two arms
of the instrument are registered at the photodetector plane; these are highly sensitive
to the distance of the sample from the instrument port. The resulting change in signal
amplitude provides tissue differentiation by analysis of the reflective properties of
each layer in the tissue. As the scanning beam moves across the tissue studied, the
sequential longitudinal signals, or A-scans, can be reassembled into a transverse scan
yielding cross-sectional images, or B-scans, of the subject. The scans can then be
analyzed in a variety of ways providing both empirical measurements (e.g. RNFL
or retinal thickness/volume) and qualitative morphological information. A generic
block diagram of different OCT system configurations is illustrated in Fig. 1.11. An
example of an OCT fundus image showing the multiple de-embedded tissue layers
is illustrated in Fig. 1.12.

OCT uses 3D imaging technology to achieve highly detailed internal imaging of
the human eye with an optimal resolution of just a few micrometres. It generates
cross sectional images by analyzing the time delay and magnitude change of low
coherence light as it is backscattered by ocular tissues. An infrared scanning beam
is split into a sample arm (directed toward the subject) and a reference arm (directed
toward a mirror). As the sample signal returns to the instrument it is correlated with
the signal at its reference arm. Minute imbalances between the two arms of the
instrument are registered at the photodetector plane; these are highly sensitive to
the distance of the sample from the instrument port. The resulting change in signal
amplitude provides tissue differentiation by analysis of the reflective properties of
each layer in the tissue. As the scanning beam moves across the tissue studied, the
sequential longitudinal signals, or A-scans, can be reassembled into a transverse scan
yielding cross-sectional images, or B-scans, of the subject. The scans can then be
analyzed in a variety of ways providing both empirical measurements (e.g. RNFL
or retinal thickness/volume) and qualitative morphological information. A generic
block diagram of an OCT system is illustrated in Fig. 1.11. OCT imaging provides
similar information to an ultrasound or MRI. The use of OCT enables optometrists
to determine, track and manage the health of human eyes, as illustrated in Fig. 1.12.

Over the past few years, OCT technology has continually evolved and expanded
within ophthalmology. Furthermore, its uses have been adopted in other medical
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Fig. 1.11 Top: Generic block diagram of an OCT system based on white light interferometry, at
the center (left) fiber optic interferometric implementation, and on the right balanced configuration
based on 2 × 2 fiber optic couplers, at the bottom free-space Michelson (on the left) and Mach-
Zehnder topologies (on the right). After [238]

environments [242, 243]. In the skin and other highly scattering tissues, OCT can
image small blood vessels and other structures as deep as 1–2mmbeneath the surface.
A variance of the technique, called ultrahigh resolution (UHR) OCT was introduced
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Fig. 1.12 A color fundus image showing the retinal surface (top left) and a macula center SD-
OCT B-scan image (top right), a portion of the cross section across green line (top left image),
defining the layers in the SD-OCT B-scan image. Proposed segmented boundaries are delineated
in an SD-OCT image (bottom). After [241]

in 2004 [244]. This significantly improves image quality and enables better visu-
alization of individual retinal layers. Anterior segment OCT scanners have become
widely available since 2005 and the introduction of Spectral (Fourier) Domain OCT
(SD-OCT, FD-OCT) technology now provides greater tissue resolving power, sig-
nificantly higher scan density, and faster data acquisition than that achieved with the
original Time Domain OCT systems [245]. Swept source OCT (SSOCT) is a popular
alternative technique.

Optical coherence tomography angiography (OCTA) is currently the most suc-
cessful functional extension of OCT, due to the fact that it can be implemented in
any OCT platform and it meets an immediate clinical diagnostic needs [246, 247].
The main aim of OCTA is to sense dynamic structural changes between successive
tomograms [248]. The simplest approach is to calculate the average of pairwise dif-
ferences of a set of linearly or logarithmically scaled intensity tomograms taken at
the same position [250, 251]. This can be conveniently implemented using functional
extensions of OCT such as Doppler OCT (DOCT) or Time Domain OCT (TD-OCT)
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[252, 253] as both are extensively used nowadays to assess blood flow. Using these
techniques, the flow signature may also be used to contrast vascular structure. With
the advent of high-speed Fourier domain OCT (FDOCT), the full potential of DOCT
to perform non-invasive volumetric angiographywas realised [254]. The phase infor-
mation of the FDOCT signal obtained after the Fourier transform of spectral data can
also be used to this effect [255, 256]. Alternative techniques include heterodyning
of the signal so as to directly extract phase information [257].

In many respects, OCT imaging with pulsed sources has the same structural char-
acteristics (displaying attenuation, delay, frequency dependent dispersion) as that of
an ultrasound scan, a THz scan or an MRI scan in the sense that different layers
in the image are systematically de-embedded from their individual signatures, pro-
vided there is sufficient contrast between the layers and the scanning system has
transversally oversampled the individual layers of the imaged tissue. As this is an
interferometric technique, the associated expressions of the intensity that impinges
on the photodetector are very similar to those found in systems designed to per-
form reflection THz spectroscopy (continuous wave or pulsed configurations) [239].
Finally, a recent non-invasive structural andmicrovascular contrast imagingmodality
is a phase difference swept source OCT angiography (pOCTA) [258]. The advantage
of pOCTA is its independency of backscattering intensity changes, yielding poten-
tially better vascular contrast for highly scattering tissue [130]. At the forefront of
these OCT developments are the clinical studies of UHR-OCT and pOCTA currently
underway at the New England Eye Center (NEEC) in collaboration with Drexler’s
group at the Medical University of Vienna.



Chapter 2
Overview of Clinical Applications
Using THz Pulse Imaging, MRI,
OCT and Fundus Imaging

After establishing the technological aspects of the four different imaging modalities
in the previous chapter, this chapter focuses on their biomedical applications. First,
THz pulse imaging is discussedwithin the context of assessing tissue vascularization,
tissue water content, and the possibility of developing molecular fingerprinting. A
similar discussion of recent applications ofMRI to bio-imaging is also provided. The
complementarity of the two imaging methods is also highlighted. Finally, the use of
fundus photography and OCT to perform disease diagnosis are also discussed.

2.1 Recent Advances in the Application of THz Pulse
Spectroscopy to Biomedical Imaging

As discussed earlier, THz-TDS is a time-domain technique, where time gated reflec-
tions are analysed directly in the time domain by observing their attenuation, phase
delay and temporal spread after interacting with matter. Their temporally good def-
inition can provide localization of tissue interfaces on the basis of their different
refractive index. Different tissues have a different frequency dependent refractive
index. The real part of the refractive index is associated with the impedance mis-
match of the excitation THz wave, whereas the complex part is associated with the
absorbance. Studies in reflection geometry enable the indirect assessment of sample
or layer thickness, and can be used to determine the position of embedded unknown
objects, etc. [16, 24]. In addition to their relatively non-invasive interaction with bio-
logical tissue T-rays have significant potential in advancing both in vivo and in vitro
biosensing applications [8, 16, 29]. Furthermore, a significant number of biomole-
cules have several characteristic ‘fingerprint’ resonances due to discrete molecular
vibrational, torsional and librational modes, both in liquids and solids [4, 5, 30].
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2.1.1 THz Radiation Absorption and Detection in Tissue

THz radiation interacts strongly with polar molecules, a prime example being water
[2]. Polar water molecules are active in the infrared region and have various vibra-
tional modes [3]. In the mid- to far-infrared, the vibrations involve combinations of
the symmetric stretch (ν1), asymmetric stretch (ν3), and bending (ν2) of the covalent
bonds. The vibrations of water molecules may be thought of as restricted rotations,
resulting in a rocking motion, as shown in Fig. 2.1a. In liquid water, since hydro-
gen bonds are much weaker than the covalent bonds (intra-molecular), their bond
lengths are much longer (1.97 Å versus 0.96 Å), as shown in Fig. 2.1b. Steric effects
from dipole moments in water clusters vary according to hydrogen proximity and,
as a consequence, shifts in ro-vibrational modes at THz frequencies are encoun-
tered. Furthermore, these shifts are expected to be loosely correlated with different
water potential values, which indirectly affects molecule’s ability to interact with
its surrounding molecules. This has further important ramification on the way pro-
teins influence the state of water. An analysis of steric forces can lead to further
understanding of the function of hydration shells in proteins [17, 41, 42].

hydrogen
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length
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covalent
bond
length
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A
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Fig. 2.1 a The main vibrational modes in water. bA schematic diagram illustrating the differences
between intra- and inter-molecular bonding in water. After [3]
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As discussed earlier, THz-TDSprovides a directmeasure of the real and imaginary
components of tissue permittivity. A Debye relaxation model can be used to analyze
the strong absorption of THz radiation in polar liquids at least up to 1THz [5, 32].
This model can be directly related to the associated intermolecular dynamics.

Biological tissue is generally composed of polar liquids. Due to the exceptionally
high absorption losses of polar liquids at THz frequencies and the low source power
in TPI systems, it is difficult for the THz radiation to propagate through biological
tissue along a substantial distance. However, the same high absorption coefficient
that limits penetration in tissue also provides extreme contrast between samples at
various degrees of water saturation [5]. This property has proven advantageous in the
examination of the properties of water uptake and distribution in plants [6, 7], as well
as in the evaluation of the severity of burns through the study of necrotic skin samples
[8]. In addition, [9, 10] describe the application of TPI techniques for imaging of
basal cell carcinomas (BCC) ex vivo and in vivo. Note that BCCs typically show
an increase in absorption of THz radiation compared to normal tissue. This may be
attributed to either an increase in interstitial water within the diseased tissue [13] or a
change in the vibrational modes of water molecules through interactions with other
functional groups. Systematic studies in tissue identification are reviewed in [5].

2.1.2 Identification of Compounds with Complex
Composition

T-ray spectroscopic studies also provide complementary information on low-
frequency bond vibrations, hydrogen bond stretching and torsions in liquids and
gases with the lowest frequency modes associated with intermolecular motion [19,
22, 23], as illustrated in Fig. 1.1. The vibrational spectral characteristics of bio-
molecules, which lie in this range (wavenumbers between 3.3 and 333cm−1) make
T-ray imaging systems a promising sensing modality for clinical diagnosis. Another
advantage of performing spectroscopic investigations at this part of the spectrum
is that many molecules have characteristic ‘fingerprint’ absorption spectra [16, 18],
thusmaking T-ray imaging systems a promising sensingmodality for clinical diagno-
sis. The identification of pure compounds using molecular signatures with THz-TDS
systems, however, is still not straightforward because of the inherently broad spectral
signatures in liquids and solids. Nevertheless, there is a growing number of multiple
confirmed observations of particular resonant signatures that may be attributed to the
presence of compounds in pure form [142]. Of particular relevance here is the grow-
ing interest in studying the conformational structure, binding states, and vibrational
or torsional modes of proteins and oligonucleotides [131, 132] through the analysis
of spectral features [133]. Different reflection or absorption signatures may also be
attributed to a change of density or polarizability, and these can be further associated
with a dehydration state, or a denaturing process which give rise to a new amorphous
absorption band or a temperature related absorption band shift [24, 33].

http://dx.doi.org/10.1007/978-3-319-57027-3_1
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PulsedTHzwave technology has been applied extensively in biosensing [4].Many
pioneering investigations in biomolecule characterization were performed by the
Aachen group [136] and Jepsen’s group [134]. Thesewere followed by a rapid growth
of investigations by other researchers worldwide [135, 137, 138]. An interesting
example is that of an affinity biosensor monitoring of the binding between biotin and
avidin molecules on supported membranes composed of biotin layers on a quartz
surfaces treated with octadecanol, as proposed by Menikh et al. [139]. In that work,
an amplified detection of biotin-avidin binding was very clearly observed through
the dithering of the samples in a THz beam. This was attributed to the conjugation
of agarose particles and avidin molecules and a change in contrast due to a change
of the refractive index resulting from the chemical binding process [30, 140]. Avidin
has a very strong affinity for biotin and is capable of being bound to any biotin-
containing molecules. The importance of the work is that it showcases THz pulse
sensing as a generic detection technique that can potentially be used to detect DNA
hybridization and antigen-antibody interactions [30]. THz transient spectrometry has
also been used to successfully distinguish between two artificial RNA single strands,
composed of polyadenylic acid (poly-A) and polycytidylic acid (poly-C), from their
different THz spectral transmission responses [17, 141].

The identification of pure compounds using molecular signatures with THz-TDS
systems is still not straightforward because of the inherently broad spectral signatures
in liquids and solids. Nevertheless, there is a growing number of multiple confirmed
observations of particular resonant signatures that may be attributed to the presence
of many compounds in pure form [142]. Of particular relevance here is the growing
interest in studying the conformational structure, binding states, and vibrational or
torsional modes of proteins and oligonucleotides [131, 132] through the analysis
of spectral features [133]. Different reflection or absorption signatures may also be
attributed to a change in density or polarizability, or may indicate a dehydration state,
or a denaturing process leading to a new amorphous absorption band or a temperature
related absorption band shift. A compilation of readily identifiable spectral signa-
tures of complex biomolecules in an atlas has already been considered at Durham
University, and significant progress has been made to include a significant variety of
different tissue types. Yet there is a wider recognition by the THz community that
this approach although very useful it is unlikely to have the universal applicability
that can be found in other databases such as HITRAN, because of the variability in
the location of the spectral bands observed. Such problems are further compounded
by noting the variation in spectra of similar substances when these are recorded at
different labs. Different sample preparation techniques and a lack of protocol stan-
dardization have been a problemwithin the THz community. Sample standardization
which is normally found in the crystallographic community could be significantly
beneficial in that respect.

In addition to the above, there are also other relevant studies based on frequency
specific fingerprinting of biomolecules that have been discussed in the literature.
Nishizawa et al. [144] illustrated the use of a widely tunable coherent THz scanning
system forTHz transmission spectroscopy to study samples consistingof nucleobases
and nucleotides in crystalline form to further gain an insight of the composition of
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RNA and DNA molecules. The THz spectra of those samples were measured in the
0.4–5.8THz range. These studies showed that the molecules have quite different
characteristic spectral patterns in this frequency region, furthermore, the absorption
signature patterns observed were sufficiently clear and reproducible for identifying
and discriminating between these molecules.

Using pulsed THz spectroscopy [31, 131], it has also been possible to study
the low frequency collective vibrational modes of bio-molecules, i.e. DNA, Bovine
Serum Albumin and Collagen in the range 0.1–2.0THz. It is generally accepted
that for most samples, broadband absorption increases with frequency and a large
number of the low frequency collective modes for these systems is also deemed
as IR active. Herrmann et al. [143] also carried out measurements of THz spec-
tra of Poly(dA-dT)-Poly(dT-dA) DNA and Poly(dG)-Poly(dC) DNA and used new
signal processing routines to infer the THz complex refractive index. The resul-
tant spectral features showed that those samples were indeed distinguishable in the
range 0.1–2.4 THz. Several research groups in Germany and Australia, have also
studied the photo-isomerization of retinal chromophores [145, 146] focusing on the
conjugated polyene chain of the biologically important chromophore retinal and its
low-frequency torsional vibration modes. In that work, the absorption and disper-
sion spectra of different retinal isomers (all-trans; 13-cis; and 9-cis retinal) in the
far-infrared region between 10 and 100cm−1 were measured by THz-TDS at 298
and 10 K. At low temperatures, it was observed that the broad absorption bands
resolve into narrow peaks that directly correlated to torsional modes of the molecule.
The study also confirmed that vibrational modes within the molecule can be approx-
imately localized through a comparison of the absorption spectra of different retinal
isomers.

An alternative important research direction vigorously pursued by Teraview Ltd.,
Cambridge, U.K., aims to put an end to patent infringements within the pharmaceu-
tical industry by detecting the presence of drug polymorphs [23, 147, 148]. Such
studies, for example, have successfully used TPI to examine the variation in the crys-
talline structure of Ranitidine Hydrochloride polymorphs. Significant differences in
the spectra of two different polymorphs were clearly observed at around 1.10THz
enabling their correct identification. A recent account on advances in the identifica-
tion of the crystalline structure of drugs using TPI is provided in [149]. Furthermore,
the observation of the crystallization of compounds has also been possible [150].

2.1.3 Recent Advances in the Application of DCE-MRI
Imaging Techniques to Biomedical Imaging

MRI has proven to be of clinical importance to the classification, grading, and diag-
nosis of tumours. Clinical management of many tumour types is now reliant onMRI.
Clinical information for both surgical planning and clinical management is derived
from tumour morphology and the relationship of lesions to neighbouring structures
that are revealed using MRI. Magnetic resonance provides images for clear identifi-
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cation of some cases of pathological change, as well as delineation of organ location
and the identification of anatomical features.

An evolution of this imaging modality since the 1980s has been an alternative
high-performance imaging modality which is called dynamic contrast enhanced
DCE-MRI. This is now widely used in the diagnosis of cancer and is becoming
a promising tool for monitoring tumour response to treatment [151]. DCE-MRI pat-
terns can be affected by a wide range of physiological factors; these include vessel
density, blood flow, endothelial permeability and the size of the extravascular extra-
cellular space in which contrast is distributed [151, 152]. The crucial difference from
traditional medical imaging (i.e. X-rays) is that the DCE-MRI modality provides 3D
spatial information about lesions as well as temporal information about lesion physi-
ology (showing variations in contrast agent uptake rates), allowing for more accurate
assessment of lesion extent and improved lesion characterisation [68, 89].

Typically, DCE-MRI images are acquired with the use of a conventional gradient
echo (GRE) pulse sequences that repeatedly image a volume of interest after injecting
a contrast agent, such as gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA)
into the patient’s blood stream. The DCE imaging employs a full k-space sampling
strategy, (where the k-space relates to the associated wavenumber, a terminology
originally introduced by the semiconductor industry to denote momentum space
but in MRI is associated with spatial frequency). Three dimensional (3D) volume
acquisition of slice profiles is normally performed. These are generally rectangular
and always contiguous slices. By registering slices in a contiguousmanner, the signal
is recorded and integrated uniformly from all tissue coordinates in each slice, thus
avoiding cross-talk.

One of the biggest advantages of the gradient-echo pulse sequence is that it can
be performed quickly enough to enable 3D FT (3DFT) data acquisitions. In 3DFT
imaging, a volume or slab of tissue is excited, rather than merely a thin slice of
tissue. This means the 3D MRI data acquisition consists of three different phase
encoding directions: the transaxial plane, the sagittal plane, and the coronal plane.
Images are obtained sequentially every few seconds over a period of up to 5 to 10min.
There is always a trade-off between spatial (sRes) and temporal (tRes) resolution.
Usually, most radiologists clinical protocols show a preference for scans at high sRes
allocating only 1–2min for tRes data acquisition [153].

A typical DCE-MRI dataset consists of one baseline 3D MR image which is
used as a reference before contrast agent injection [31, 62]. Additional scans are
performed to acquire post-contrast images at the second, third, and subsequent slices
(usually 6 or 7). Each time slice has a typical time interval of 60 s.

Following the terminology introduced independently by Ljunggren [154] and
Twieg [155] we shall refer to the, k-space to denote the spatial (either 2-D or
3-D) frequency domain of the imaging system.Within the context of temporal image
processing the k-matrix, is composed of digitized MR signals stored during the
data acquisition process before any reconstruction computations. The complex data
entries are associatedwith the pulse sequence of the accurately timed radio frequency
and gradient pulses.



2.1 Recent Advances in the Application of THz Pulse Spectroscopy to Biomedical Imaging 33

In clinical practice e.g. during a DCE-MRI mammogram, reducing the signal
acquisition time is desirable, and this is normally achieved by undersampling the
k-space. Undersampling may be achieved by adopting a random partial k-space
updating [156] protocol. The HASTE sequence, which samples half the k-space
[157], is now routinely used in clinical MRI.

Aliasing from sampling the k-space below the Nyquist rate, however, introduces
imaging artifacts [385]. Since there is always a need for better tRes while preserving
adequate SNR and sRes, several groups [158–160] have shown that it is possible to
accelerate DCE-MRI (without employing parallel imaging) by a factor of ten using
compressed sensing (CS) based for image reconstruction as proposed in [108]. The
approach allows the filling of missing k-space data using a constrained optimization
technique to interpolate the values between under-sampled adjacent data points in
the spatial domain.

Recentwork byYin et al. [65] based on the broad principles of compressed sensing
represents an important advancement in the above mentioned CS modality. The
technique makes use of the fact that, when under-sampling the k-space, it is possible
to use variable density sampling schemes in a Cartesian coordinate system to widely
distribute the resulting artifacts and reduce their visual impact. Such an approach was
further exploredusing amodel-basedmethod for the restorationofMRIswith sparsity
representation in a transformed domain, e.g. spatial finite-differences (FD), or after
using the discrete cosine transform (DCT). The reduced-order model, in which a
full-system-response is projected onto a subspace of lower dimensionality, has been
used to accelerate image reconstruction by reducing the size of the linear system
associatedwith themeasurement space. The singular value threshold technique [161]
(SVT) was used in the denoising scheme to reduce and select the model order of the
inverseFT image, and to restoremulti-slice breastMRIs that have been compressively
sampled in k-space. Restored MRIs with SVT de-noising show reduced sampling
errors compared to direct MRI restoration methods via spatial FD, or DCT. The
difference image related to IT, shown in Fig. 2.2b, contains a relatively large number
of noisy (error) pixels that are located around the boundary of the imaged section.
Reconstruction with the identity transform (IT) also shows some blurring at the
image edges. In contrast, the reconstructed image using SVT denoising illustrated
in Fig. 2.2a, shows a reduced number of error pixels compared to the reconstructed
image in Fig. 2.2b.

2.1.4 Recent Advances in the Application of fMRI Imaging to
Biomedical Imaging

Functional Magnetic Resonance Imging (fMRI) is a non-invasive imaging technique
that does not require the injection of contrast agent [59]. Functional MRI has rel-
atively high spatial and reasonable temporal resolution, and can be acquired in the
same session as structural MRI. It effectively captures the changes in the Blood
Oxygenation Level Dependent (BOLD) contrast, allowing the evaluation of brain
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Fig. 2.2 a Illustration of the
difference image segment
between the measured MRI
and reconstructed image
using SVT for denoising. b
The difference image
segment between the
measured MRI and
transformed image from
sampled k-space
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activity due to external stimuli. The low signal-to noise ratio (SNR) of fMRI data
makes detection of the activations-related signal changes difficult; hence most of
the data is collected from periodic stimulation after alternating with the rest con-
dition. The temporal dynamics of the activation response, which is delayed and is
relatively slow compared to actual brain activity, is another problem that must be
dealt with during analysis. Most of the present methods rely on exclusive modelling
of the hemodynamic response function to detect this delayed activation. The most
extensively used fMIR data analysis techniques are variants of the general linear
models based on the t-test, the F-test, on correlation coefficients (between observed
responses and stimulus function) or multiple linear regression. A general drawback
in all these techniques is that they require accurate knowledge of the actual stimulus
function.
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At this point it is also worth noting that, in experimental NMR studies, the trans-
verse magnetization decays at rates much faster than what would be theoretically
predicted by natural atomic or molecular mechanisms; this accelerated rate is com-
monly denoted as T2* (‘T2-star’). These T2* relaxations relate to the decay of
transverse magnetization caused by a combination of spin-spin relaxation and mag-
netic field inhomogeneity. For this reason, theMR sequences obtained using gradient
echoes and relatively long TE values are also called T2*-weighted. They are often
used to accentuate local magnetic homogeneity effects to aid in the detection of
hemorrhages or calcification. T2*-sensitive sequences also form the basis for func-
tional MRI (fMRI) using the BOLD technique. From the above description it may
be concluded that T2* is always less than or equal to T2.

Figure2.3 illustrates the general principle of fMRI. Oxygen is delivered to neu-
rons by haemoglobin in capillary red blood cells. When neuronal activity increases
there is an increased demand for oxygen and the local response is an increase in
blood flow to those regions of increased neural activity. Haemoglobin is diamagnetic
when oxygenated but paramagnetic when deoxygenated. This difference in mag-
netic properties leads to small differences in the MR lifetime signal in the blood in
that region according to its level of oxygenation. Since blood oxygenation varies
according to the levels of neural activity, these differences can be used to spatially
localise and temporally resolve brain activity. Brain fMRI BOLD imaging is one of
the most promising emergent measurement modalities with several applications in
neuroscience, neurosurgery, rehabilitation and psychology. An overview of recent
advances of functional imaging in oncology can be found in the comprehensive book
edited by Luna et al., (2014) [163]

Fig. 2.3 Simplified illustration of different levels of oxygenation in blood on the basis of a resting
or activation state of a nearby neuron as observed through fMRI. After [162]
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2.1.5 Advantages and Shortfalls of T-Rays
and DCE-MRI & FMRI

As TPI and MRI time series are becoming more widely available in conventional
clinical practice, it is envisaged that data acquisition and analysis will be performed
in tandem to benefit from the complementarity of each signal, thus capitalizing on
the inherent differences in signal generation and tissue contrast mechanism. One
of the primary advantages of THz imaging over MRI, is the availability of various
spectroscopic signatures within a frequency bandwhichmay be attributed to changes
of THz biomarker concentration.

Although, a number of papers discuss spectroscopic investigations of biomole-
cules such as DNA [4, 17, 131, 143, 144], unfortunately the responses of many
biological tissues are unknown in this band. A further related problem is the current
lack of development of reliable computer aided diagnostic algorithms for interpret-
ing the multispectral images obtained by T-ray imaging [164]. A number of authors
have partly addressed this question by fitting the measured data to linear models and
using the filter coefficients as a means of classifying different tissue types [11]. One
of the most important potential applications for THz technology along this line of
research is the detection and identification of specific biological and chemical agents
[165]. Although it is widely recognized that T-rays can be used to image tumour
microvasculature, most reports focus on the feasibility of using TPI to image breast
tumours [166, 167] and skin cancer [168]. In both these cases, the contrast observed
is mainly due to the absorption of THz waves by the water that is present in biologi-
cal tissue and the actual state of hydration of the tissue under study. A recent review
carried out by Yu et al. [169], extensively discusses such investigations and relates
them to the future potential of THz imaging and spectroscopy for performing cancer
diagnosis. A further important development in THz tumour image analysis has been
reported by Huang et al. [170], where gold nanorods were used in vitro as novel
contrast agents for both molecular imaging and photothermal cancer therapy. With
the aid of a laboratory microscope, those investigations showed that, as a result of
the strongly scattered red light from gold nanorods in the dark field, malignant cells
can be clearly visualized and identified from non-malignant cells.

As THz time domain spectroscopy (THz-TDS) and imaging are being extended
to address new biomedical problems, the identification of specific proteins is likely
to be the focal point in those investigations. Such research direction can draw upon
previous investigations on histo-morphology studies of healthy and diseased excised
tissue [171, 172]. Lyophilized tissue samples from various organs have also been
imaged [173] and this approach has the advantage of eliminating the effects of water
absorption thus providing a more reproducible THz signature by eliminating the
variability commonly present in various levels of hydration of the sample. A good
application example for such investigations would be the study of the collective
vibrational modes of protein deposits found in amyloidosis. In humans, the accumu-
lation of protein deposits in tissue occurs as part of the natural ageing process. An
unnaturally rapid accumulation of deposits, however, can occur in diseases such as
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Fig. 2.4 a The standard
canonical model for the HRF
used in fMRI data analysis
illustrates the main features
of the response. b Examples
of empirical HRFs measured
over the visual and motor
cortices in response to a
visual-motor task. c The
initial 2 s of the empirical
HRFs give strong indication
of an initial decrease in
signal immediately following
activation. After [175]

Alzheimer’s Disease (AD), resulting in the functional decline of the tissue, leading
to dementia. This is a particularly promising research direction for THz spectroscopy
investigations as the early detection of AD can lead to a much better management of
the disease.

Furthermore, as mentioned earlier, fMRI is often used to identify brain areas
activated by a stimulus. The observed change in the fMR signal, however, is the
result of an indirect effect related to the changes in both blood flow rates as well
as level of oxygenation following changes in neural activity. The underlying evoked
hemodynamic response to a neural event is typically referred to as the hemodynamic
response function (HRF). Figure2.4 shows the typical shape of such a curve after
modelling the HRF; this is sometimes also called the canonical HRF. The increased
metabolic demands due to neuronal activity lead to an increase in the inflow of
oxygenated blood to active regions of the brain. Since more oxygen is supplied
than actually consumed, this leads to a decrease in the concentration of deoxy-
hemoglobin which, in turn, leads to a small, but measurable, signal increase because
deoxyhemoglobin is paramagnetic.

When considering the complementarity between BOLD-fMRI and THz-TDI in
the above example, it is worth noting that the BOLD-fMRI modality is correlated
to both levels of hemoglobin oxygenation as well as flow rate, and an independent
measurement of water content spatially resolved using THz-TDI can enable a bet-
ter differentiation between the two signals. This becomes particularly useful, for
example, when standard diffusion tensor models are deemed inaccurate.
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From the perspective of both spatial and temporal resolution, the two techniques
are complementary to each other [175]. In fMRI, it is impossible to simultaneously
increase both, as increases in temporal resolution limit the number of k-space mea-
surements that can be made in the allocated sampling window and thereby directly
influence the spatial resolution of the image. Unlike conventional enhanced MRI,
which simply provides a snapshot of enhancement at one point in time, DCE-MRI
permits a more complete depiction of the wash-in and wash-out contrast kinetics
within tumors. Signal intensity data are often normalized to concentration prior to
analysis [174].

THzmeasurementswith femtosecond transients of tumours produces significantly
different signatures to those produced when imaging normal adipose (fatty) tissue
[11, 12]. Such differences may be attributed to the absorption coefficient and refrac-
tive index of each tissue. Similarly, changes in signal intensity taken from DCE-MR
images are different for healthy and tumour tissues according to the different degree
of absorption of the contrast agent. A further difference between the two datasets
stems from the fact that DCE-MRIs are typically acquired at several time frames.
This process is associated with a restricted temporal resolution.

2.1.6 Combining MRI with Alternative THz Spectrometric
Systems and Other Imaging Modalities

2.1.6.1 Alternative THz Spectrometric Imaging Modalities
for Biomedical Applications

Over the years, several alternative THz systems to the ones described in Sect. 1.1
have also been proposed [176–181], and these may also form the basis of THz
spectrometric systems which can eventually be combined with MRI or fluorescence
imagingmodalities. Of particular note in such systems are the spectrometers based on
the asynchronous optical sampling (ASOPS) scheme [182–185]. The technique uses
two pumped femtosecond Ti:sapphire ring oscillators which produce femtosecond
pulses with a repetition rate f and f + Δ f as set by the optical path length of
each resonator (around 1GHz when free running). Using beam splitters, a small
portion of the signal (ratio 90:10) is directed to fast photodiodes which produce
electrical trigger signals which are further amplified by low-noise high bandwidth
microwave amplifiers (e.g. model ZFL 1000LN from Mini-circuits) operated in a
trans-impedance configuration (converting a photo-current into a voltage). Although
the photodetectors are not preserving the shape of the pulse, this is of no consequence
to the stabilization scheme as the goal is to just generate a triggering event for
the synchronization process. The difference in repetition rate (Δ f ≈ 10kHz) is
obtained using a microwave mixer and the signal is subsequently sent to a frequency-
to voltage converter which serves as an input to a proportional integral derivative
(PID) controller that drives the piezoelectric transducer that controls the path length
in the slave resonator cavity. Figure2.5 illustrates the asynchronous optical sampling
scheme.

http://dx.doi.org/10.1007/978-3-319-57027-3_1
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Fig. 2.5 ASOPS spectrometer and external frequency difference stabilization scheme that controls
the repetition rate of the slave ring laser resonator to be always offset by a small amount e.g. 10kHz
to that of the master laser resonator

The close-loop system has a large linear gain in the forward path (composed of
the cascaded PID signal, high voltage amplifier signal, the transducer voltage to
displacement conversion, and the conversion of resonator path length to frequency
comb repetition rate) and unity gain in the feedback path. With reference to Fig. 2.6,
using transfer function notation and using A � 1:

Vout = A

1 + AB
VREF ≈ A

AB
VREF = VREF

B
(2.1)

so that the characteristics of the system are governed by the stable characteristics of
the feedback path B. The difference in the repetition rate between the two resonators
is set by VREF.More recently, an alternative version of that system (TL-1000-ASOPS)
incorporating substantially improved locking between the two femtosecond resonator
lasers as well as carrier envelope phase stabilization options, have been made avail-
able byLaserQuantumLtd to complement theirHASSP-THz system. The bandwidth
of this spectrometer is up to 6THz when operated with their proprietary Tera-SED
planar large-area GaAs based photo-conductive emitters.

An important advantage of eliminating the translation stage from the spectrometer
is that the spot size of the optical beam propagating through the reference path of
the interferometer is no longer of variable size (due to diffractive spreading of the
infrared beam) for different path lengths imposed by the translation stage, as is in
the case for a conventional THz transient spectrometer. This is a very important
advantage in ASOPS as a dilution of the gate pulse in an Auston receiver changes
its multimoded antenna pattern in both amplitude and phase delay. This type of error
has not been systematically addressed by the THz community although careful work
[186] has shown that changing the spot size dramatically alters the recorded time-
domain signature and hence the corresponding Fourier transformed spectrum. Such
errors are endemic to most THz transient spectrometers and can be exacerbated
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Fig. 2.6 Explanation of the feedback locking scheme found in ASOPSTHz transient spectrometers
currently marketed by Laser Quantum Ltd. Adopted from [185]

when ratioing the background and sample spectra. This is particularly important
when interpreting spectra from imaged biological tissue.

An interesting alternative to the above scheme for the 9–12µm part of the spec-
trum that may also be combined with other imaging modalities is that proposed
by Keilmann’s group (2004) [201, 202]. In this technique, the mid-infrared radia-
tion from two electromagnetic waves (femtosecond duration pulses) is focused onto
0.5 and 1mm GaSe crystals respectively, and through second order non-linearity 2
pulses whose overlapping bandwidth is centered at different frequencies is obtained.
The two outputs of slightly different frequency are then superimposed to interfere
on a power detector as shown in the figure below. A ZnSe combiner is used to
direct the two beams to the detector and the down-converted signal is captured by
a fast HgCdTe detector. The detector output signal contains a modulation (“beat”)
at the difference frequency Δ, which is conveniently selected to lie at the RF part
of the spectrum (the technique is also known as multi-heterodyne spectroscopy),
i.e. f ′

r = fr − Δ. Interference modulation is produced by each heterodyne element.
All modulations together may be viewed as a time-domain interferogram, that when
Fourier transformed in the frequency domain, results in a harmonic radio frequency
comb spectrum that is an exact replica of the dual beam’s spectrum. A particularly
attractive feature of the technique is that it can provide video-rate chemical imaging.
Figure2.7 illustrates the general principles of frequency comb spectrometry.

Such systems may also be further modified to perform imaging at subwavelength
scale using near-field microscopy by observing the elastic light scattering from a tip
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Fig. 2.7 Frequency comb spectrometrywhere a beat frequency signal at the RF part of the spectrum
is generated after heterodyning the femtosecond pulses of two lasers (these are offset by a fewHertz).
Multiplexed (MUX) lock-in amplifiers are subsequently used to select specific signatures for further
chemometric analysis. After [202]

[188–191, 201]. The s-SNOM technique which provides vibrational contrast espe-
cially in the mid-infrared fingerprint spectral region, uses a light focused beam to
illuminate the tip region of an atomic forcemicroscope (AFM).By recording the scat-
tered light in the backward direction, an optical image is simultaneously generated.
The tip oscillates at the cantillever’smechanical resonance frequency (trappingmode)
with the important consequence that the near-field optical image becomes modulated
at the cantillever’s resonance harmonics allowing electronic filtering against other-
wise overwhelming scattering coming from the shaft and cantilever.

2.1.6.2 Combining MRI with THz and Other Imaging Modalities

The case for adopting a dual MRI-THz modality has been made clear in the semi-
nal works by Oh et al. [192] as well as Park et al. [57], where the authors applied
the technique to detect the onset of ovarian cancer. The diagnostic performance of
such imaging has been significantly enhanced by the use of nanoparticle probes
(NPPs). Multimodal probes enable the combination of various imaging techniques.
THz waves for example, can efficiently interact with surface plasmons (SPs) asso-
ciated with the injected nanoparticles. Such interactions are of a polaritonic nature.
Polaritons are the product of combining an exciton (a bound state of an electron
and an electron-hole which are attracted to each other by the electrostatic Coulomb
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force) with Planck’s energy-frequency relation. A surface plasmon polariton (SPP),
therefore, is an electromagnetic wave that propagates along the interface between a
metal and a dielectric; it is thus coupled to a charge density oscillation in the metal.
The imaginary part of the wave’s transverse wave vector attenuates the wave ampli-
tude perpendicular to the interface, so that the wave is confined near the interface.
The wave also extends a finite distance into the metal so that it propagates with both
loss (ohmic losses in the metal) and dispersion. Thus, the most strongly bound SPPs
are also the most lossy ones.

In the visible and near-infrared regions, where many common metals have
relatively large resistivities, the interaction between the wave and the electron
plasma is very strong, and hence the propagation distance is relatively short. At
the microwave and radio-frequency regions, however, where metallic resistivity is
typically extremely low, this interaction is very weak. Such plane waves propagating
parallel to the interface are often referred to as surface waves, and do not have a plas-
monic character. In the case of THz frequencies, which lie between the microwave
and infrared parts of the spectrum, the interaction between the electromagnetic mode
and the electrons in the metal are stronger than in the microwave range, but weaker
than in the infrared region. This gives rise to several unique possibilities for medical
imaging. For example, if a metal surface of an injected nanoparticle is curved, a sig-
nificant fraction of the propagating THz wave will follow the curving metal. This is
in contrast to the case in the microwave region, where almost none of the electromag-
netic energy of a surface wave follows the curved surface. Furthermore, THz SPPs
can have propagation distances of hundreds or thousands of wavelengths, whereas
SPPs at higher frequencies typically have propagation lengths of only a few tens of
wavelengths. If near-infrared (NIR) excitation of NPPs targeted to cancer cells is
used, SPs around the nanoparticles will be generated, increasing the temperature of
the water inside the cells, inducing a change in the THz signal. The combination of
THzwaves and NPPs, and the use of differential detection techniques, can thus result
in more accurate imaging of cancerous tumours with high sensitivity. The excitation
of localized nanoparticles with waves of different electromagnetic frequencies, can,
therefore, provide complementary information which can assist clinicians in more
accurately establishing the boundaries of different type of tissue. Furthermore, they
may provide an assessment of molecular and cellular activities.

A typical example of such a multifunction probe is that of Feridex� (Gurbet
Group, Paris, France), superparamagnetic iron oxide nanoparticles (SPIOs). When
these are used, they can enhance the magnetic resonance image contrast by reducing
the RF relaxation time of the water protons. Feridex� SPIOs consist of a metallic
nanoshell with a core size of 10–15nm which is coated with dextran (to improve
MRI by helping the nanoshell travel in the body). These particles, however, can also
be utilized as a contrast agent for THz imaging, following induction of SPs by an
NIR laser. Figure2.8 illustrates the response of a SPIO to a THz pulse and an RF
pulse.

This type of system follows other recent trends in combining multiple imaging
modalities for the early detection of cancer; for example MRI with fluorescence
imaging as discussed by Lee et al. [193] or positron emission tomography with near-
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Fig. 2.8 Response of a SPIO to a THz pulse and an RF pulse. The SPIO has two functionalities,
firstly it reduces the relaxation time of water protons in response to RF pulses in a strong magnetic
field and raises the THz signal amplitude through SPs induced on the SPIO surface when exposed
to an electric field. The magnetic feature is used for MRI and the electrical feature is used for THz
imaging. After [57]

infrared fluorescence to characterize tumour vasculature as discussed in the work
by Cai et al. [194], which combines positron emission tomography with fluorescent
semiconductor nanocrystals (quantum dots) [195]. The use of quantum dots has sig-
nificant advantages over their conventional organic fluorophore counterparts in that
they have reduced photo-bleaching and a broad excitation spectrum with a narrow
emission spectrum (with a sharp well-defined symmetric emission peak as opposed
to a red tail) [196–199]. The resulting fluorescence is thus 10–20 times brighter so
the associated images have better signal to noise ratio. A further advantage is that
they have a large Stokes shift (difference between peak absorption and peak emission
wavelengths) which reduces auto-fluorescence thus increasing sensitivity and clarity
of the resulting images [200]. Because such nanocrystals can also be tailor-made
to various sizes and shapes (which enables them to emit at different frequencies)
their active uptake to different compartments in a cell can be identified and visu-
alized simultaneously using wavelength multiplexing techniques [203–205]. Their
inorganic composition also makes them more robust toward metabolic degradation
which contributes to their longevity in vivo [206]. The multi-colour emission prop-
erty of quantum dots allows the use of many probes to track several targets in vivo
simultaneously [207, 208]. Furthermore, the yield obtained from quantum dots is
almost 90% at room temperature [209]. Finally, they can also be easily functionalized
[210]. An alternative is also to use lanthanide ion metal coordination complexes as
luminescent molecular probes e.g. Yb(III), Er(III) and Nd(III) Eu(III) and Tb(III)
complexes [211].

Following a critical review of MRI’s ability to detect ovarian tumours [212], the
need for imaging modalities with improved sensitivity has been established. The use
ofmultifunctionmagnetic nanoparticles not only improves contrast in imaging [193],
but also provides new opportunities for localized drug delivery [213, 214]. Further-
more, it opens-up the possibility of gaining further understanding of the biophysical
environment and metabolic properties of the targeted cells [215]. The general idea of
further combining multiple imaging modalities which can provide complementary
information to existing imaging techniques is a rapidly evolving research topic that
merits future exploration. For example, one could envisage that 2-photonmicroscopy
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[217, 218, 222] could be combined with THz transient spectrometry since the fem-
tosecond laser, used to create the seed pulses for the 2-photon system, can also be
used at the same time to generate the pulses for the Auston switch or non-linear
crystal for THz generation. Fluorescence lifetime imaging is a particularly useful
experimental modality to the biomedical community as the de-excitation lifetime of
the excited molecules is proportional to their concentration. Near-infrared radiation
used in two-photon excitation suffers from significantly less absorption in biological
specimens than UV or blue-green light, making the technique more appropriate for
imaging thick specimens. The gradual loss in intensity (or ‘attenuation’) of excita-
tion light from scattering is also reduced, as scattering decreases with decreasing
excitation frequency. The technique can be label free and can rely on the natural
fluorescence of compounds within the cell, so no additional dyes or quantum dots
need to be added for the measurements. This can have important advantages since
the physicochemical environment of the cells is not altered during the measurement
process. Furthermore, because the technique relies on the use of short duration pulses
for the excitation, there is less photo-bleaching of and photo-damage to the cells. The
associated pulses may also be used for simultaneous chemical photoactivation or the
activation of optogenetic switches. A further advantage of 2-photon microscopy over
confocal microscopy is that it achieves confocality by using the emission pinhole
aperture to reject out-of-focus light. However, inside thick specimens, scattering of
the fluorescent photons is inevitable, resulting in significant loss of photons at the
confocal pinhole. Two-photon microscopy limits the excitation volume, requiring no
pinhole aperture, thus minimizing signal loss.

Alternative imaging modalities include variances of the well-known electron spin
resonance (ESR) technique. The theoretical basis of ESR spectroscopy is similar to
that of nuclear magnetic resonance (NMR), except that an electron spin, rather than
a nuclear spin, is the focus [219]. Unpaired electrons in biological systems are in
much lower abundance than nuclei, so ESR is a technique that focuses on local sites
while NMR is more global. When biomolecules exhibit paramagnetism as a result of
unpaired electron spins, transitions can be induced between spin states by applying a
magnetic field and then supplying electromagnetic energy, usually in the microwave
range of frequencies.

The interaction of an external magnetic field with an electron spin depends upon
the magnetic moment associated with the spin, and the nature of an isolated electron
spin is such that two and only two orientations are possible. The application of the
magnetic field thus provides a magnetic potential energy which splits the spin states
by an amount proportional to the magnetic field (Zeeman effect), and then radio
frequency radiation of the appropriate frequency can cause a transition from one
spin state to the other. The resulting ESR absorption spectra (also known as electron
paramagnetic resonance (EPR) spectra) can be particularly useful to the study of
radicals. This is because radicals typically produce an unpaired spin on the molecule
from which an electron is removed. ESR is particularly suitable for studying basic
molecular mechanisms in membranes and proteins by using nitroxide spin labels. In
particular, nitroxide spin label studies with high-field/high-frequency ESR and two-
dimensional Fourier transform ESR enable one to accurately determine distances in
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biomolecules, unravel the details of the complex dynamics in proteins, characterize
the dynamic structure of membrane domains, and discriminate between bulk lipids
and boundary lipids that coat transmembrane peptides or proteins [220]. The semi-
conductor community has already combined an ASOPS THz transient spectrometer
with a high magnetic field pulser for the characterization of materials [221]. It is
therefore, appropriate to consider in the near future the adaptation of such a set-up to
perform spectrometry of biomolecules.

Finally, it is worth mentioning the new opportunities to study biomolecules using
dynamic nuclear polarization (DNP) techniques which increase the sensitivity of
NMR spectroscopy by using high frequency microwaves to transfer the polarization
of the electrons to the nuclear spins. The enhancement inNMRsensitivity can amount
to a factor of well above 100, enabling faster data acquisition and greatly improved
NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR
research, the required frequency for DNP falls into the THz band (140–600GHz)
[223, 224].

2.1.7 Recent Advances in the Application of the Fundus
Camera to Disease Diagnosis

As stated earlier, a fundus camera or retinal camera is a specialized low power
microscope with an attached camera designed to photograph the interior surface of
the eye, including the retina, retinal vasculature, optic disc, macula, and posterior
pole (i.e. the fundus). The fundus enables direct observation of microcirculation
non-invasively [225].

Many important eye as well as systemic diseases manifest themselves in the retina
[119, 226, 227]. Changes in microcirculation can damage the retina. Assessment of
vascular characteristics plays an important role in various medical diagnoses, such
as diabetes [267, 268] hypertension [269] and arteriosclerosis [270]. Since the retina
is normally not illuminated internally, external illumination projected into the eye,
as well as the light reflected by the retina, must traverse the pupillary plane. Thus,
the limited size of the pupil and the small opening in the iris (usually between 2 and
8mm in diameter), has always been the primary technical challenge in fundus imag-
ing [119]. Fundus imaging is further complicated by the fact that the illumination and
imaging beams cannot overlap because this results in corneal and lenticular reflec-
tions, which tend to diminish image contrast. Consequently, separate paths are used
in the pupillary plane resulting in optical apertures of the order of only a fewmillime-
ters. Because the resulting imaging setup is technically challenging, fundus imaging
historically involved relatively expensive equipment and highly trained practitioners.
Over the last ten years or so however, there has been a major effort to make fundus
imaging more accessible, resulting in a reduced dependence on personnel expertise.
This has also contributed to the wider proliferation of the technique.

One of the main applications for the fundus camera is in diagnosing microcircu-
lation problems when the flow of blood in the smallest blood vessels in the network
become blocked [225]. These changes inmicrocirculation can damage the retina. The
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Fig. 2.9 (Left panel) Mild hypertensive retinopathy: generalized and focal arteriolar narrowing
(black arrow) with arteriovenous nicking (white arrow). After [272]. (Right panel) An example of
focal arteriolar narrowing. After [273]

abnormalities seen on a retinal image can be divided into two groups, those related
to vascular changes and those related to extravascular changes. Both abnormalities
can be used to predict the onset of hypertensive retinopathy, diabetic retinopathy, or
a minute stroke. In addition there are features that are well correlated with anemia.
Retinal arteries subjected to chronic hypertension show areas of focal or general-
ized narrowing. The light reflex is also narrowed. The arterial wall also thickens
and becomes less transparent. As illustrated in the left panel of Fig. 2.9, mild hyper-
tensive retinopathy shows generalized and focal arteriolar narrowing (black arrow)
with arteriovenous nicking (white arrow). The right panel of Fig. 2.9 shows a retinal
image with significant focal arteriolar narrowing.

A hallmark of diabetic retinopathy has been the identification of microaneurysms.
Such a case is illustrated in the left panel of Fig. 2.10. The condition is characterized
by tiny, round, red spots commonly seen in and around the macular area. These spots
correspond to minute dilations of very small retinal vessels; the vascular connections
are too small to be seen with an ophthalmoscope. In the right panel of Fig. 2.10, a
case of non-proliferative diabetic retinopathy is illustrated. In the superior temporal
quadrant, one can observe a large retinal hemorrhage between the two cotton-wool
patches, this is accompanied by some beading of the retinal vein just above them, and
by the presence of tiny tortuous retinal vessels above the superior temporal artery.

Stroke affects many elderly people, and sadly is a leading cause of death and
disability. A simple and non-invasive method that predicts risk of stroke and stroke
mortality which has been investigated developed by The Centre for Vision Research
at Sydney University’s Westmead Millennium Institute involves the use of fundus
photography of the retina. An image that simultaneously shows the onset of a micro-
aneurysm, the narrowing of retinal vesicles and athero-venous nicking which is
typical of a patientwhomight have a stroke in the near future is illustrated in Fig. 2.11.
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Fig. 2.10 The left panel shows tiny, round, red spots commonly seen in and around themacular area,
which are the hallmark of diabetic retinopathy. The image on the right panel depicts nonproliferative
retinopathy related to severe diabetic retinopathy. After [272]

Fig. 2.11 A retina showing
patient predisposition to
stroke—The arrows indicate
(clockwise from the top
arrow in the picture). White
arrow 1—A micro-
aneurysm/haemorrhage;
Black arrow—Narrowing of
retinal vesicle;White arrow
2—Athero-venous nicking

2.1.8 Recent Advances in the Application of OCT Techniques
to Disease Diagnosis

Optical coherence tomography (OCT) [232] has been used in a wide range of bio-
medical applications. [233, 234] OCT noninvasively acquires high-resolution, cross-
sectional images of the retina [235]. A time-domain OCT system, such as the Stratus
OCT device (Carl Zeiss Meditec, Dublin, CA), is capable of acquiring OCT reflec-
tivity data at a rate of 400 axial scans per second. In addition, spectral-domain OCT
(SD-OCT) systems, such as the Cirrus HD-OCT (Carl Zeiss Meditec) for example,
have recently gainedU.S. Food andDrugAdministration approval. SD-OCT technol-
ogy improves on time-domain systems, allowing performance of up to 27,000 axial
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Fig. 2.12 A 32-channel time resolved OCT imaging system. After [266]

scans per second [237, 245]. The increased axial scan rate results in approximately
50 times faster data acquisition rates in practice.

OCTscanning candetect a number of eyediseases at their initial stages (sometimes
years before symptoms become obvious), making treatment much more effective
and reducing the chances of irreversible damage. For example, it can help provide
early detection or rule out diseases such as glaucoma, macular degeneration and
diabetic maculopathy. Macular hole disease is associated with a hole in the retina
that can result in deterioration of vision. Prior to treatment, the loss of vision can
vary depending on the size of the hole. This is further illustrated in Fig. 2.12. A case
of age-related macular degeneration is illustrated in Fig. 2.14. Deterioration of the
macula can interfere with a patient’s central vision because it affects the part of the
retina responsible for detailed central and colour vision.(Fig. 2.13)

Fig. 2.13 Illustration of typical macular hole case, the hole in the retina that can result in deterio-
ration of vision
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Fig. 2.14 Illustration of a case of macular degeneration. The condition is associated with a partial
or complete loss of a patient’s central vision

2.1.9 Alternative Multichannel and MEMS Based OCT
Imaging Modalities

Beyond the applications of OCT described in the previous sections, there are
also alternative multi-channel implementations which are particularly useful to
biomedical imaging e.g. for the visualization of increased vascularization in mam-
mograms as well as the detection of abnormalities in infant brains [259]. Using
Ti:sapphire lasers or alternative fibre lasers (e.g. ytterbium-doped femtosecond fiber
lasers as well as large-mode-area fibre based systems) [260, 261] which can achieve
high-power using chirped-pulse amplification techniques [262, 263] to generate fem-
tosecond or few picosecond pulses, the signal-to-noise ratio of such imaging tech-
niques has been steadily improving over the past 20 years. These multi-channel
techniques use transmitted light between pairs of points to perform reconstruction of
an arbitrary three-dimensional distribution of internal scatterers and absorbers. As
this type of imaging suffers from significant scattering, the Radon transform [264]
which is used in MRI, may not be used and alternative algorithms for the extrac-
tion of the effective refractive index and scattering coefficients have been developed
[265, 266]. An excellent example of such imaging system is the one developed at
University College London known as the multichannel optoelectronic near-infrared
system for time-resolved image reconstruction (MONSTIR). This system has now
evolved to provide multispectral imaging at 4 wavelengths between 650 and 900nm
[122] and has significant potential for generating functional images of newborn brain
[123].

This multi-spectral approach to diffuse optical imaging leads to the generation
of independent images of changes in concentration of oxyhemoglobin and deoxyhe-
moglobin so current efforts focus on the development of data-driven approaches for
optimum wavelength selection [124]. Another interesting aspect of current work in
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this area is the application of spatio-temporal regularisation techniques [125] which
can provide real-time three-dimensional dynamic reconstruction of the optical prop-
erties of a hemispherical infant head phantom, taking into consideration the moving
absorption as well as scattering targets. These signal processing techniques are of
much relevance to the THz transient tomography community, if adapted accordingly
so that the THz scattering component associated with the shortest wavelengths of
the broadband signal is significantly suppressed.

Finally, it is worth noting that alternative implementations of OCT using micro-
electromechanical systems for endoscopic applications [126, 127] are also rapidly
evolving and have important biomedical applications e.g. in bladder cancer diagnosis
[127]. Such techniques also show significant potential for further integration with
alternative complementary imaging techniques such as photoacoustic microscopy
and ultrasound imaging [128, 129]. The development of new image processing algo-
rithms that can perform de-noising, image segmentation as well as classification that
can lead to improved spatio-temporal correlations for improved functional imaging
across different tissues is a unifying theme that will be discussed in the following
chapters.



Chapter 3
Recent Advances in Medical Data
Preprocessing and Feature Extraction
Techniques

This chapter discusses different feature extraction and selection strategies for the four
imaging modalities considered.Windowing andmodel fitting parametric approaches
are first considered. Then, recent advances inmulti-resolution algorithms andwavelet
analysis are presented. The algorithms discussed can provide de-noising as well as
a generic multi-resolution sensor fusion framework. The focus is on robust feature
extraction and selection strategies, firstly from a single pixel perspective and then
from an imaging perspective. The benefits from adopting a fractional order calculus
approach to detect features in an image are explained. Recent advances in fundus
image denoising are also highlighted. A multiresolution image fusion scheme that
could be used to combine MRI with THz datasets is proposed. This chapter then dis-
cusses several feature selection strategies for both THz aswell as forMRI datasets. In
the case of THz datasets, features in time, frequency or wavelet domains associated
to single pixels are considered. In the case of MRI datasets, the discussion focuses
on features observed across entire images, taking into consideration textural infor-
mation. Spatio-temporal correlations across different areas in an image, as identified
through fMRI are also discussed. Advances in a graph-theoretical framework that
can potentially elucidate such correlations are also mentioned. In addition, feature
extraction and selection in retinal fundus imaging and OCT are reviewed.

© Springer International Publishing AG 2017
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3.1 Overview of Medical Image Data Preprocessing
Strategies

3.1.1 Data Windowing and Model Fitting Parametric
Approaches

In the case of THz TPI datasets, data pre-processing aims to isolate the real T-ray
responses from the effects of amplitude and phase noise associated with the pulse-to-
pulse THz emitter instability and laser beam pointing stability, which is temperature
dependent, and related to translation stage movement uniformity and detector shot
noise, thus reducing artefacts that could compromise the classifier performance. Co-
averaging multiple measurements improves signal-to-noise-ratio per pixel but at the
expense of significantly increased measurement time and image acquisition rate.
Since there is only a square root advantage in signal-to-noise ratio as a function of
time by co-averaging, post-processing for de-noising is essential in the THz com-
munity. Furthermore, long integration times are unsuitable in applications where the
THz response is time-dependent, for example, in sample drying. Signal processing
can partly alleviate some of these issues. Window apodization, for example, reduces
frequency domain Gibbs ripple due to the data discontinuities at the edge of the
recorded time domain interferograms. Optimization of the apodization function is
now possible even for dispersive samples using algorithms accounting for the asym-
metry of the propagating femtosecond THz pulses [274]. The proposed approach also
has important applications in a completely different context, potentially improving
time resolution in perfusion MRI datasets.

Well established techniques for filtering include Wiener filtering [276], principal
component analysis [277], artificial neural networks [278], and Maximum-Entropy
techniques [226, 279]. These are applicable to both THz-TPI and MRI datasets, as
well as retinal fundus images. A recent advance in the modelling of de-excitation
dynamics which has its origins to the theory of complex dielectrics is the use of
fractional order calculus and the fitting of fractional order models. In this approach,
the time series experimental datasets aremodelled using very parsimonious pole-zero
expressions. Such filters can be implemented in real time using resistive, capacitive
or inductive networks [54–56]. Although the fractional-order system identification
literature is still in its infancy, it promises to provide much lower residual errors in
the identified models of a given process, thus significantly advancing the science of
Chemometrics as applicable to both THz TPI as well as DCE-MRI and functional
MRI datasets. The essence of such parametrization is that a fractional order model
of the form:

G(s) = b0 + b1sβ1 + b2sβ2 + · · · + bmsβm

1 + a1sα1 + a2sα2 + · · · + ansαn
(3.1)

where b0, b1, . . . bm, a1, a2, . . . an are coefficients to be identified andβ1, β2, . . . βm ,
α1, α2, . . . αn are positive real valued exponents, can account for collective interac-
tions from multiple species and intermolecular forces (such as charge screening at a
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distance) providing a very parsimonious model of the interactions. In this context the
approach can account for spectral shifts in amorphous materials as well as de-embed
solvation dynamics. As discussed in [280], the application of fractional order calcu-
lus for MRI datasets is still in its infancy but already there have been cases where a
Debye relaxation in combination with a Kohlrausch-Williams-Watts function [281]
and a Rigaut type asymptotic fractal expression [282] have been used to represent
such datasets. These studies are leading to Bloch-Torrey type diffusion expressions
[283–285], which can be placed in a system identification framework along the lines
of the generic polynomial expression above.

A well-established methodology for extracting fractional order dynamics is
through the use of the CRONE toolbox for Matlab [286–289].

3.1.2 Multi-resolution Wavelet Analysis for Noise Removal

Wavelet denoising [47, 309–312] complements other parametrization schemes
performed in either time or frequency domains [45, 46]. In THz TPI, multireso-
lution techniques such as wavelet transforms are particularly effective to further
de-noise mean-centered apodized interferograms. Furthermore, they enable direct
time-frequency information to be extracted while at the same time ensuring very
parsimonious parametrizations of these time series datasets. A typical de-noising
procedure consists of decomposing the original signal using the Discrete Wavelet
Packet Transform (DWPT) or the Discrete Wavelet Transform (DWT) [304–306],
thresholding the detail coefficients, and reconstructing the signal by applying the
appropriate inverse transform (IDWT or IDWPT respectively). For the de-noising of
femtosecond THz transients, a three-level decomposition is usually sufficient [307],
and unnecessary computational load associated with more decomposition levels can
be avoided.

A wavelet filter bank decomposes a time series signal by separating the high
(detail) and low (approximation) frequency components of the signal assuming a
pre-defined mother wavelet function. The approach has very efficient de-noising
capabilities in the presence of Gaussian white noise and provides very parsimonious
representation of the THz TPI signal. An important feature of this transform is that
it is orthogonal so that it enjoys perfect reconstruction symmetry. This enables its
inverse transform to reproduce the original dataset without loss of information. The
approach provides a way forward for easier biomedical software certification as it
provides complete traceability of all the data processing steps. More specifically,
in a wavelet filter bank, the low-pass filtering result undergoes successive filtering
iterations with the number of iterations Nit chosen by the analyst as shown in Fig. 3.1.

The final result of the decomposition of data vector x is a vector resulting from the
concatenation of row vectors c(Nit ) (termed approximation coefficient at the largest
scale level) and d(s) (termed detail coefficients at the sth scale level, s = 1, . . . , Nit )
in the following manner:
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Fig. 3.1 Two-channel filter bank implementation of the wavelet transform applied to data vector x.
Blocks H and G represent a low pass and a high-pass filter respectively and the ↓ 2, ↑ 2 symbols
denote the dyadic down-sampling and up-sampling operators respectively. The decomposition can
be carried out tomore resolution levels by successively splitting the low-pass channelBars indicating
reconstructed channels (after either hard or soft thresholding). The large arrow indicates adaptive
filtering

t = [c(Nit )|d(Nit )|d(Nit − 1)| · · · |d(1)] (3.2)

with coefficients in larger scales (e.g. d(Nit ),d(Nit - 1),d(Nit - 2),. . .) associated
with broad features in the data vector, and coefficients in smaller scales (e.g.
d(1),d(2),d(3),. . .) associated with narrower features such as sharp peaks. The filter
bank transform can be regarded as a change in variables according to the following
operation,

t j =
J−1∑

n=0

xnv j (n), j = 0, 1, . . . , J − 1 (3.3)

where t j is a transformedvariable andv j (n) ∈ R is a transformweight. The transform
can be written in matrix form as:

t1× j = x1×JVJ×J (3.4)

where x = [x0 x1, . . . , xJ−1] is the row vector of original variables, t is the row
vector of new (transformed) variables and V is the matrix of weights. Choosing
V to be unitary (that is, VTV = I), the transform is said to be orthogonal. For
{h0, h1, . . . , h2N−1} and {g0, g1, . . . , g2N−1} impulse responses of the low-pass and
high-pass filters respectively, a circular convolution consisting of flipping the filter-
ing sequence and moving it alongside the data vector. This is used for generating the
approximation coefficients from the data vector x. The approximation c and detail d
coefficients are stacked in vector t = [c|d], so the wavelet transform can be expressed
in matrix form as follows:
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V =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · h2N−4 h2N−2 0 0 · · · g2N−4 g2N−2

h2N−1 0 · · · h2N−5 h2N−3 g2N−1 0 · · · g2N−5 g2N−3

h2N−2 0 · · · h2N−6 h2N−4 g2N−2 0 · · · g2N−6 g2N−4

h2N−3 h2N−1 · · · h2N−7 h2N−5 g2N−3 g2N−1 · · · g2N−7 g2N−5
...

...
...

...
...

...
...

...
...

...

h0 h2 · · · 0 0 g0 g2 · · · 0 0
0 h1 · · · 0 0 0 g1 · · · 0 0
0 h0 · · · 0 0 0 g0 · · · 0 0
...

...
...

...
...

...
...

...
...

...

0 0 · · · h2N−2 0 0 0 · · · g2N−2 0
0 0 · · · h2N−3 h2N−1 0 0 · · · g2N−3 g2N−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.5)

where the following conditions for orthogonality need to be satisfied:

2N−1−2l∑

n=0

(hnhn+2l) =
{
1, l = 0

0, 0 < l < N
(3.6)

gn = (−1)n+1h2N−1−n, n = 0, 1, . . . , 2N − 1 (3.7)

The above expressions have universal applicability to bothTHz transient time domain
sequences as well as MRI and OCT signals.

An important development in the wavelet signal processing literature has been
the use of adaptive wavelets [48, 313, 314] where the mother wavelet is specifically
tailored at each decomposition level (wavelet scale) accordingly, to minimize the
least squares error associated with the difference between the transformed signal
from its original one. The general structure of the algorithm is shown in Fig. 3.2.

This approach provides a remarkably efficient way for extracting information
contained in each THz pulse transient associated with each pixel in an image [12,
17, 18, 33, 49–52, 59, 60, 226, 350, 447]. The transform can also be applied to
datasets acquired using continuous wave systems. Figure3.3 showcases the advan-
tage of optimal wavelet de-noising in a classification context. To generate this graph,
the standard deviation of the noise was varied from 0.001 to 0.5. For each noise level,
250 noisy patterns were generated for each class (lycra and leather datasets acquired
using a continuous wave Fourier transform spectometer). As can be seen, the clas-
sification is much more robust to noise when carried out in the wavelet domain than
in the original domain. Moreover, the robustness to noise is further increased by the
optimization of the wavelet transform (green line) as opposed to the application of
standard db4 wavelets. The work clearly supports the notion that the performance
of a classifier based on the output of a wavelet filter bank is better than that of an
Euclidean distance classifier in the original spectral domain [52].

Other interesting parametrizations of relevance are the ones discussed in [315],
those in [316] and more recently in the work by Galvão’s group [317, 318]. These
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Fig. 3.2 a Procedure for parameterizing wavelet filter banks by N angles. b Recursive generation
of low-pass filter weights {hk+1

n } in terms of {hkn} by adding one additional angular parameter at a
time. Sk and Dk represent the sine and cosine of angular parameter θk respectively. By using this
procedure, any set of N angles {θ0, θ1, . . . , θN−1} leads to a sequence of low-pass filter weights
that satisfies the orthogonality condition

algorithms, with minimal modification (appropriate tuning of the mother wavelet)
can also be used for de-noising in fundus photography studies.

Other examples of wavelet transform pre-processing routines for signal-to-noise-
ratio enhancement and classification of THz spectra can be found in [8, 53]. Such
pre-processing steps have enabled the successful discrimination of cancerous from
normal tissue in wax-embedded histopathological melanoma sections as well as the
classification of dentine and enamel regions in teeth [49]. It is, nowadays, generally
accepted that the performance of a classifier based on the output of a wavelet filter
bank, is better than that of an Euclidean distance classifier in the original spectral
domain [52].

An alternative promising pixel de-noising method involves the use of wavelet
power spectrum estimation techniques (WPSET), as discussed by Kim et al. [255].
This approach may remove spectral artefacts without distorting spectral features.
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Fig. 3.3 Illustration of the
classification errors (%) as a
function of noise level in the
interferograms.
Nonoptimized db4 wavelet
(green), optimized wavelet
(red) and Euclidean distance
(blue) classifiers. The inset
shows a leather
interferogram with (a) no
artificially added noise and
noise with standard deviation
of (b) 0.1 and (c) 0.5. After
[52]

This is a nonparametric approach based on a wavelet representation of the logarithm
of the power spectrum [320]. The authors applied the WPSET to the transmission
spectrum of water vapor and verified the effectiveness of the approach. Alterna-
tive signal pre-processing methods for de-noising include base line correction [321],
smoothing [322], first and second derivative [322, 323], multiplicative scatter or (sig-
nal) correction [324], and standard normal variate analysis [325]. All these methods
have their own merit under different experimental conditions, and further confirm
the universal applicability of wavelets for de-noising THz TPI datasets. [326].

3.1.3 Current Standards and Recent Developments in
Multiresolution Feature Representation in Imaging

Extending the discussion from time domain sequences to an imaging perspective,
the discrete cosine transform (DCT) using Wang factorization, Lee’s power of two
block lengths DCT scheme [290], Arai’s scheme [291], Loffler’s algorithm or Feig-
Winograd factorization [292] are particularly useful. The attractiveness of the DCT
algorithm stems from the fact that it is asymptotically equivalent to the Karhunen-
Love transform which possesses optimal de-correlation as well as optimal energy
compaction properties. Two-dimensional wavelet transforms are also well estab-
lished in multimedia coding standards (H.265 and JPEG2000) [293] are of interest
to all the imaging modalities discussed so far, as well as retinal fundus photog-
raphy. Because of the possible preservation of information in the signals in the
wavelet transform when a perfect reconstruction orthogonal transform is used, these
multi-resolution approaches have unique advantages and can be part of any signal
pre-processing routine where classification is the end goal. Further examples of the
application of these algorithms are discussed in more detail in the following sections.
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Fig. 3.4 a The maximum of the derivative f (1)(x) determines the abscissa x0 of the inflexion
point of transition f (x). b The ratio 1/Δx defines detection selectivity, c Selectivity improvement
by creating a cusp, d Construction of the response of the CRONE detector for 1 < n < 2: (i)
f (n)(x) calculatedwith increasing x ; (ii) opposite f (n)(x) calculatedwith decreasing x ; (iii) detector
response. Adopted after [299]

It is also worth noting that fractional order signal processing can significantly ben-
efit current segmentation practices across all the four imaging modalities discussed
throughout this book. An image can be interpreted as a function of two variables
which are defined within a bounded area. The function’s value always lies within a
bounded interval, and through a discretization step, the image is normally spatially
sampled so that quantification of its luminous intensity is performed. The extraction
of contours consists of detecting all inflexion points of luminance transitions. In
most of the current image processing literature, edge detection is performed using
integer-order differentiation operators. Normally these operators are first order on
the basis of the gradient in the image or second order on the basis of the Laplacian
(finding an inflexion point where the slope is maximal). The application of a differ-
entiation operation, however, ensures amplification of high frequencies which can
be unwanted if the image is noisy. In [294–299], the authors demonstrated that an
edge detector based on fractional differentiation can improve the existing criterion
for thin features detection, or can improve detection selectivity in the case of par-
abolic luminance transitions and the criterion of immunity to noise, which can be
interpreted in terms of a general robustness to noise. A comparison of integral order
and fractional order transitions generated using the CRONE detector along a single
dimension are shown in Fig. 3.4 above, the authors also discussed the case of using
two vectorial operators with two independent components (horizontal and vertical)
to account for the 2-dimensioinal case.
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From the above discussion, it may be concluded that such fractional order image
processing modalities are an important emergent research area which is likely to
be adopted by the biomedical imaging community. The proposed approach should
be seen within a more general framework for constructing fractional generalized
orthogonal bases [301, 302] which are likely to be soon also adopted for image
processing. An object-oriented approach to the CRONE toolbox has already been
proposed [288], and this could provide better integration of the signal processing
algorithms discussed with the classification approaches proposed in the subsequent
chapters of this book.

3.1.4 Recent Advances in MRI Wavelet Denoising

The rationale for a wavelet-based statistical analysis of fMRI data can be found in the
work by Dinov et al. [327] andWeaver [328]. An important consideration in this type
of filtering is that the noise in magnitude MR images is signal-dependent (Rician),
whereas most de-noising algorithms assume additive Gaussian (white) noise [329].

In [330], a bilateral filter was introduced at the low pass filter bank corresponding
to the highest scale of MRI images to suppress Rician noise in an image, a task more
difficult than the removal of Gaussian noise. Because filtering was introduced at the
approximation coefficients of the filter bank, this had the effect of preserving the edge
features in the image. Subsequent soft thresholding and Neigh Shrink thresholding
on a power basis were adopted for the reconstruction of the signal. The structured
similarity index, the root mean square error or the Bhattacharrya coefficient, which
is normally used for finding the statistical similarity between two data samples can
be used for validation purposes of the proposed decomposition and reconstruction.
The work in [330] followed the pioneering investigations by Nowak [331] who
first proposed the removal of Rician noise using wavelets. An alternative to the
abovementionedwavelet thresholding approaches is also proposed in [332]. The idea
behind the proposed algorithm is to perform a preliminary coefficient classification
to empirically estimate the statistical distributions of the coefficients that represent
useful image features. The approach however, although shown to be particularly
effective, still requires further evaluation.

Rather than power based signal decomposition, an alternative is to preserve the
real and complex aspects of a signal by performing filtering separately [333]. There is
significant merit in this approach when considering that the output of a dual channel
filter bank can be coupled directly to the input stage of a complex support vector
machine classifier (aswill be discussed in the following chapters). A similar approach
where the complex part of the signal was treated separately was adopted in [334] for
diffusion-weighted imaging.

An important difference between standard MRI images and fMRI ones (e.g.
BOLD) is that the noise distribution in BOLD images has recently been shown to fol-
low a Gaussian model, which simplifies denoising [335, 336]; this is not necessarily
the case for all types of fMRI, however. In the particular case ofBOLD fMRI datasets,
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the spatial coherence features associated with individual time series are related to
specific voxels within the image [337]. Spatial coherence is very closely related to the
“smoothness”, encountered across an image, but also includes components of spatial
correlation that cannot be captured by a continuously differentiable auto-covariance
function (e.g., measurements of full-width at half-maximum smoothness). Spatial
coherence is in effect a measure of the degree to which power at a particular tempo-
ral frequency shares phase across space. In BOLD fMRI, spatial coherence has been
found to vary systematically across temporal frequency. Lower temporal frequen-
cies tend to share phase to a greater extent across space than high frequencies [337].
Algorithms developed for spatial smoothing of BOLD datasets often augment tem-
poral noise in the low frequency range, and can deleteriously impact experimental
fidelity [338]. Because perfusion fMRI data do not possess temporal autocorrelation
in time, there is less of an influence of temporal frequency upon spatial coherence
[339]. A multi-resolution de-noising framework is therefore most appropriate to
BOLD datasets. Perfusion fMRI data will also usually benefit from spatial smooth-
ing during pre-processing [340], although the standard caveats regarding the optimal
detection of the activation function at different scales still remains an open problem
[341].

3.1.5 Recent Advances in Fundus Image Denoising

Because of the difficulty in taking pictures of the eye fundus, as stated earlier, captured
images often have inadequate contrast, lighting variations across the image, localized
noise and anatomic variability affecting both the retinal background texture and the
blood vessel structures [226, 342]. Yin et al. [226] observed that textured features
in retinal photography can show either fine-grained or coarse-grained noise. Speckle
noise can be reduced at a post-processing stage by applying a connectivity constraint
on the extracted curvature based enhanced image. This constraint is varied over the
image according to each noise region’s predominant blood vessel size. Figure 3.5
provides an illustration of texture-based partitioning that can be applied in a fundus
photograph.

Thin vessel detection in a noisy retinal image presents the biggest challenge
from a software post-processing perspective. Aggressive noise suppression is asso-
ciated with the loss of true blood vessel features so must be exercised cautiously
as it can lead to registration of false positive classification readings. The denoising
process involves transformation of noisy images into some domain where noise com-
ponents are more easily recognized. To remove noise, a thresholding procedure is
implemented and the transformation is reversed to reconstruct a noise-free image.
The most commonly used denoising method in fundus photography is based on the
use of a complex valued log-Gabor wavelet filter where amplitude information is
decomposed while preserving important phase information across the image [343].
The process begins by calculating amplitude and local phase at each point of a
retinal image and then applying the previously mentioned log-Gabor wavelet filter
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Fig. 3.5 Illustration of the texture-based partitioning of a fundus photograph. On the left panel,
colour-coded mapping of the vessel texture is illustrated with the original image selected from the
DRIVE database. The right panel illustrates colour-coded mapping of the two partitions on the
basis of vessel texture: one region is dominated by small blood vessels (labeled in blue) and the
other region is dominated by large blood vessels (labeled in red). After [226]

[344] which has a Gaussian transfer function on a logarithmic frequency scale. The
amplitude information of the wavelet filtered image shows that most of the energy is
concentrated in the centre of the image. However, the local phase information is dis-
tributed throughout the image across all frequencies. Amplitude or phase information
alone is not capable of reconstructing the image efficiently. Hence, it is advisable to
adopt a phase preservation technique while shrinking the amplitude information at
different scaling factors and at different orientations. For an image I(x, y), the image
response for even symmetric (Me

n ) and odd symmetric (Mo
n ) wavelets at scale n is

given by Eq.3.8. The amplitude An(x, y) and phase φn(x, y) at a wavelet scale n are
calculated as Eqs. 3.9 and 3.10 respectively.

[Ren(x, y), Imn(x, y)] = [I (x, y) × Me
n , I (x, y) × Mo

n ] (3.8)

where Ren(x, y) and Imn(x, y) are the real and imaginary parts of the complex
valued frequency component.

An(x, y) =
√
Ren(x, y)2 + Imn(x, y)2 (3.9)

φn(x, y) = atan2(Imn(x, y)/Ren(x, y)) (3.10)

During the denoising procedure, a noise threshold at each wavelet scale is deter-
mined and the amplitude of the filtered vector is attenuated leaving the phase
unchanged. An image can be reconstructed by summing the remaining even-
symmetric filter responses over all scales and orientations. The above procedure
ensures preservation of phase across different wavelet scales. The estimation of noise
threshold is determined on the basis of the mean μR and variance σ 2

R of the Rayleigh
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distribution R(x). These parameters are given by:

R(x) = x/σ 2e−(x)2/2σ 2
(3.11)

μR = σ
√

π/2, σ 2
R = 4 − π

2
σ 2 (3.12)

where σ is the scale parameter of the Rayleigh distribution. The noise threshold τ1
is calculated as

τ1 = μR + cσR (3.13)

where, c specifies the standard deviation values of noise to reject. It is assumed that
a lower value of c produces an ideal wave shape. If the value of c is high, thin vessels
are treated as noise and removed. In practical applications, therefore, the value of c
is tuned close to 1.

Fig. 3.6 Illustration of resultant images obtained without phase preserved denoising (as shown in
a and b) and with (as shown in c and d) phase preserved denoising. a The image before using line
detection. b The resultant image after using local normalization. c The denoised image with scale
factor of 2 and 15 degrees of orientation before using line detection. d The denoised image with
scaling factor of 8 and 15 degrees of orientation. After [345]



3.1 Overview of Medical Image Data Preprocessing Strategies 63

Figure3.6 compares the resultant retinal fundus images with or without the use of
phase preserving denoising. Figure3.6a, b are the results before using line detection
and after local normalization, both are processed in the absence of phase preserving
denoising. Similarly, Fig. 3.6c, d are the results before using line detection and after
using the local normalization operation but with phase preserving denoising. It is
clearly seen that the denoising technique is able to remove a significant amount of
noise without losing vessel features.

3.1.6 The Need for a Multiresolution Image Fusion
Approach

Another area where wavelet transforms have proven to be useful is in cases where
images are acquired using parallelMRIs as the technique introduces spatially varying
noise levels [346]. In this case, wavelet based de-noising can be used to extract
the edges from the original image and then generate a noise map from the wavelet
coefficients at finer scales. Thenoisemap is zeroed at locationswhere edges havebeen
detected and directional analysis is used to calculate noise in regions of low-contrast
edges that may not have been detected. An advantage of the proposed methodology
is that it is fully automated and can be applied on final reconstructed images without
requiring sensitivity profiles or noise matrices of the receiver coils.

A further application of wavelet transforms is in combining information present
in multiple images of the same scene. It is also worth noting that the application of
wavelet transforms represents an evolution of the standard pyramid transform which
is extensively used by the sensor fusion community. The result of image fusion using
wavelet transforms is, therefore, a new image which is more suitable for human
and machine perception or further image-processing tasks such as segmentation,
feature extraction and object recognition [347]. This becomes particularly important
in multi-channel tensorial datasets as will be discussed in the following chapters, and
is of much relevance to the future integration of both THz-TPI and MRI datasets as
shown in Fig. 3.7.

Finally, as discussed in the excellent paper by Lustig et al. [108], wavelet trans-
forms have applications in sparse MRI and compressed sensing. These algorithms
are of much relevance to the THz imaging community.

From the discussion so far, it may be concluded that pre-processing techniques
focusing on dimensionality reduction in the feature space as well as the fusion of
information are at the core of a successful pattern recognition system. Inclusion of
more features improves classifier performance but may compromise the generaliza-
tion ability of the classifier. This is the well-known curse of dimensionality [348],
which becomes quite prominent if the number of features is large. An overview of
informative features suitable for selection is provided in the next section.
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3.2 Overview of Feature Selection Strategies

In both THz TPI as well as MRI, after the de-noising pre-processing step, input
data vectors must be grouped together into sets of feature vectors [1]. The choice
of parameters for grouping is fundamental to the subsequent performance of the
classifier. As a requirement for a classification system is to automatically make gen-
eralizations on its input space, often on the basis of its training set [349], the feature
selection process is crucial to the subsequent efficiency of the classifier. A very large
input space can overwhelm the classifier and a non-representative feature can lead to
classification errors or have the training after a number of epochs converge to local
minima. Furthermore, the chosen features should bewell selected so as to ensure they
are representative of the samples. There is a wide range of parameters one can select,
and these can display non-transformed structural characteristics: moments, power,
amplitude information, energy, etc., as well as transformed structural characteristics:
phase and amplitude spectra, coefficients from wavelet decomposition etc.

3.2.1 Feature Selection Strategies in THz TPI Datasets

In the case of THz TPI based feature extraction, every measurement at each pixel
position of an image is an entire time-dependent waveform, for example, a four-
dimensional data set (x , y, z co-ordinates associated with a peak signal in amplitude
or phase delay or maximum group velocity dispersion, the area under a portion of the
time-domain waveform, the value corresponding to the logarithm of the absorbance
or a differential absorbance value with reference to another wavelength). A good
example of using selected features in the spectrum can be found in the work by
Yin et al. [17, 18], which was applied to identify six different powder samples:
sand, talcum, salt, powdered sugar, wheat flour, and baking soda in a multiclass
classification context. An advantage of this approach is the small dimensionality of
the feature vectors.

Alternatively, it can also be beneficial to consider a higher-dimensional dataset,
taking into consideration real and complex coefficients of a Fourier transformation,
principal components (PCs) from PCA, wavelet coefficients from time-frequency

Fig. 3.7 Multiresolution image fusion scheme combining MRI and THz-TPI datasets
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analysis, Auto Regressive (AR), Auto Regressive Moving Average (ARMA), coeffi-
cients, or a mixture of wavelets with AR and ARMA coefficients [11]. The selection
of features in the PCA domain are discussed in [45, 166]. The usual problem with
such an approach is the need to have a reliable set of calibration samples.

To achieve effective feature extraction, the fast WT may be adopted. The features
presented to the classifier, in this case, become the extractedwavelet coefficients [17].
The use of AR andARMAmodels on theWTs of measured T-ray pulse data has been
previously discussed elsewhere [11]. In that work, the features of a processed THz
signal are eventually classified by an Mahalanobis distance classifier. The effective-
ness of this method was demonstrated by performing cancer cell discrimination from
normal tissue (a binary classifier); the same classifier was also used in the multi-class
classification task of recognising different kinds of powders.

Furthermore, coefficients derived using subspace identification methods from
state space analysis of the corresponding time series (e.g. from Multivariable Out-
put Error State sPace (MOESP) or Canonical Variable (CVA) Algorithms), or frac-
tional order identification expressions which may be in the form of Cole, Harviliak
-Negami, Fröhlich-mixture orDebye screening expressions, or parameters associated
with fractional deconvolution information can also be used. Other characteristics in
the signal that can be associated with additional features with discriminative power
are as follows: [350] mean, standard deviation, skewness, kurtosis, 1st quartile (Q1),
3rd quartile (Q3), inter-quartile range (IQR), median, maximum and minimum as
calculated from entire cross-correlation sequences between samples or samples and
a reference. As will be discussed in the following section, it is beneficial to augment
the classifier input space by treating real and complex parts of the signal separately
so that the classification is performed on the basis of a sample’s frequency depen-
dent complex refractive index (or complex insertion loss) or to further augment it by
providing additional channels to further accommodate structural and textural infor-
mation. This can often be necessary due to either a channel spectrum or because of
pseudo-coherence issues in the sample which can lead to an overestimation of the
complex insertion loss due to a variation in the thickness or composition of the sam-
ple across the aperture. Problems in sample uniformity across the aperture arise more
often is spectroscopy at the THz part of the spectrum because THz imaging systems
have a diffraction limited minimal aperture that is larger than that of other conven-
tional optical or infrared spectrometers. The resulting features n can be viewed as a
vector in a n dimensional space, known as a pattern space.

Linear transforms are useful both for noise extraction and for representing the
information in the data using fewer coefficients. Noise extraction can be performed
by assuming that the system is detector noise limited rather than source noise lim-
ited. In this case, the noise spreads equally among all transform coefficients, while
useful information will generally be concentrated in fewer coefficients. Examples
of commonly used linear transformations for the processing of spectroscopic data
include the FT, windowed FTs, WTs, and principal-component analysis (PCA). A
comprehensive evaluation of various linear transforms that may be used for the de-
noising of spectra from continuous wave THz spectrometers can be found in [45].
The main conclusions of the work are summarized in Table3.1.
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Table 3.1 Advantages and drawbacks of linear transforms

Transform Advantages Disadvantages

PCA:Y=U Δ V T Maximum information
compression

Each PC is related to the whole spectrum.
No a priori assumption on a particular model
associated with the dataset structure so no
artefacts
“Problematic” regions in the spectrum cannot
be excluded after the computation of the PCs
Since the analysis functions are obtained from
the statistics of the data, many calibration
samples may be required to obtain reliable PCs

Fourier The analysis functions are
fixed.

Spatial information is lost. Problematic
regions in the spectrum cannot be excluded
after the transform. Compacting a waveform
using Fourier coefficients
is not as efficient when samples have complex
spectra and filtering
too many Fourier coefficients can lead to signal
distortion

Wavelet Spatial information is
kept. The width of the
analysis window is
automatically varied. For
best performance,
adaptive wavelets should
be considered but the
optimization methodology
can have significant
impact on classifier
performance

The choice of the mother wavelet is usually
difficult

An example of the use of spectral features to perform classification of TPI signals
is discussed in Yin et al. [17]. The amplitude and phase at certain key frequency com-
ponents constitute pairs of feature subsets on which the classification is based. An
important advantage of this approach is the small dimensionality of feature vectors.
This allows the features to be directly extracted from the pulse responses with rela-
tively low computational complexity. Figure3.8 shows the phase and amplitude plots
in the frequency domain for six different powder samples: sand, talcum, salt, pow-
dered sugar, wheat flour, and baking soda. Each curve is associatedwith a single pixel
sampled from the image data. The spectrum has a cut-off frequency at 3THz. Sharp
changes of amplitude at the second frequency bin may be observed in Fig. 3.8a. It
can also be seen that samples have significantly different frequency dependent phase
patterns, so that a classifier using this information can be implemented as illustrated
in Fig. 3.8b.

The main objective of feature extraction techniques for THz pattern analysis is to
isolate the relevant features from the T-ray signals and use these features to improve
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Fig. 3.8 Illustration of
Fourier spectrum regarding
the THz response of a
number of powder samples.
a Amplitude (attenuation) as
a function of THz frequency.
b Corresponding frequency
dependent phase delay
(equivalent to chromatic
dispersion)
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classifier performance.As stated inChap. 2,WTs complement the traditional Fourier-
based techniques in THz signal analysis by providing superior time-frequency local-
ization characteristics. The work by Stephani et al. [351] discussed the use of wavelet
coefficients to extract features from hyperspectral THz-RDS datasets. An alternative
approach is through the wave atoms transform (WAT) which was first introduced by
Fu et al. [352] in the context of THz transient processing of reflectance signatures.
This is a multi-resolution technique that has a sparser expansion for oscillatory and
oriented sample textures. It can provide improved resolution for pattern identifica-
tion, when textural artefacts contaminating the THz transient response are concealing
the compositional absorbance or reflectance of the sample. An alternative to occa-
sionally generate even more parsimonious feature matrices, reported by Yin et al.
[11], assuming AR, MA and ARMA models of different order, may also be consid-
ered depending on the data structure. In that approach, the averages of the modelling
coefficients, (denoted as DC values in Fig. 3.9), are computed over the three decom-

http://dx.doi.org/10.1007/978-3-319-57027-3_2
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Fig. 3.9 In this modelling, H and G denote the low- and high-pass filters, respectively, w f is the
de-noised T-ray input. The arrow depicts the diadic down-sampling operator. Similar illustration
related to DCAR and DCMA feature matrix are assumed

position levels of theWT employed on each data set. The model coefficient averages
are then joined to produce feature vectors with a dimension equal to the number
of sub-bands in the adopted wavelet decomposition. The feature vectors obtained
from two different AR orders, andMA orders may be combined respectively to form
the final AR and MA feature matrices. The ARMA feature matrix is obtained by
combining two different orders of AR and MA vectors. The extracted AR and MA
feature vectors are calculated at each decomposition level j. This approach may be
introduced to further suppress the number of features in the input of the classifier
so as to further improve its generalization ability. The complete procedure for cal-
culating DCARMA

j is depicted in Fig. 3.9. The technique is now being superseded as
adaptive wavelets, which are optimised at each decomposition level to account for
most of the energy in the signal at each sub-band, offer similarly compact support.

A particularly interesting pre-processing methodology for linear system identifi-
cation in frequency sub-bands by using wavelet packets was pioneered by Galvão’s
group [353]. The technique uses a wavelet-packet decomposition tree to establish
frequency bands where sub-band models are created. An algorithm is then used to
adjust the tree structure to achieve a compromise between accuracy and parsimony
of the model.

Figure3.10 illustrates the procedure adopted to identify each subbandmodelMi, j .
Symbol u is the input signal for identification. Symbols y and ǔi, j are the waveform
dynamics and subbandmodel outputs, respectively. Residue ei, j denotes the wavelet-
packet coefficients of the difference between y and ǔi, j , in the frequency band under
consideration.

The structure adopted for the subband model is a transfer function of the form

Mi, j (z) = Pi, j (z)Qi, j (z) (3.14)
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Fig. 3.10 Identification of subband model Mi, j . After [353]

where

Pi, j (z) =
[

1

1 − z−1

]si, j

, si, j ∈ z; Qi, j (z) = αi, j + βi, j z
−1, αi, j , βi, j ∈ P (3.15)

Function Pi, j (z) is aimed at roughly approximating the band-limited frequency
response of the waveform dynamics, whereas the FIR term Qi, j (z) provides a fine-
tuning for the approximation. The identification procedure could be easily extended
to accommodate more filter taps in Qi, j (z). However, since the model (Eq. 3.14)
only needs to represent the system on a limited frequency band, only two taps are
used in Qi, j (z) in the formulation. Such an over-simplification is compensated by the
flexibility of adjusting the structure of the decomposition tree to improve the match
between the waveform dynamics and the approximation model.

A least-square adjustment for the parameters of Mi, j can be carried out by mini-
mizing the following cost function Ji, j : Z × P2 → P:

Ji, j (Si, j , αi, j , βi, j ) = ei, j (ei, j )
T (3.16)

where ei, j denotes the row vector of residues for the identification procedure shown
in Fig. 3.10.

This algorithm was subsequently adapted to perform the classification of lactose,
mandelic acid and dl-mandelic acid, on the basis of their respective THz transient
spectra [354]. In this case, a wavelet-packet decomposition tree was used to estab-
lish the frequency bands at which the sub-band models of the respective spectra will
be created as illustrated in Fig. 3.11. Each leaf node of the decomposition tree was
associated with a THz frequency band, and the complete set of leaf nodes composed
the entire span of the frequency range covered by the spectrometer. For each fre-
quency band, a sub-band model was therefore created. An optimization of the tree
structure was then performed using a generalized cross-validation method in order to
achieve a compromise between accuracy and parsimony of the overall model. Such a
procedure automatically determined the most appropriate frequency partitioning for
the sub-band models. The figure below shows, as an example, the implementation
of the algorithm to the processing of the lactose sample. The complex insertion loss
function of the sample after ratioing the spectra of the background and sample are
shown (an asymmetric Mertz apodization window was used for the FFT calcula-
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Fig. 3.11 a Wavelet-packet tree corresponding to the complex insertion loss of lactose as deter-
mined through measurements using a THz transient spectrometer and b the FFT result as obtained
from conventional processing and the wavelet packet identification routine. The frequency-domain
segmentation automatically defined in the identification procedure is indicated by vertical lines at
the bottom of the graph. As can be seen, the segmentation is more refined in the spectral region
corresponding to the THz absorption region. After [354]

tions). A db12 wavelet is used in the identification, and a dyadic tree with a depth of
9 (including the root node) was identified by the algorithm. The tree is deeper in a
particular frequency range, which actually corresponds to the THz absorption region.
It is worth noting that the segmentation is more refined in the frequency region cor-
responding to deeper levels of the tree. This tree structure was automatically defined
by the identification algorithm, with no prior knowledge of the spectral features of
the sample under consideration.

Other feature extraction methods include those proposed by Zhang et al. [355]
that avoid samplemisplacement phase error in terahertz reflection time-domain spec-
troscopy (THz-RTDS). They showed that the first or second derivative of the phase
of the relative sample reflectance (with respect to the background reflectance) can
be used to extract the frequency dependent absorption signatures of the materials
under study. Ryniec et al. [364] applied decision trees to assist with feature selection
demonstrating the effectiveness of decision tree methods in THz spectra classifica-
tion. Finally, features extracted using theRadon transform have also been considered.
This transform has been used extensively for the identification of micro-Doppler
motion of a target and has its origins in the high-resolution radar community. Xu et
al. [365] suggested a combination of time-frequency analysis with the Radon trans-
form to performmicro-feature extraction. This transform should be carefully applied
to datasets because the approach incorporates echo-cancellation that often leads to an
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undesirable channel spectrum in the frequency domain which, as discussed earlier,
is a common source of error in TPI imaging that can seriously compromise classifier
performance.

Advantages and shortcomings of some of the more widely used linear transforms
can be found in [45]. Generally, Fourier expansions suffer fromdrawbacks such as the
notion of an infinite support in the time domain [31], which compromises the quality
of the signal unless apodization routines are adopted [45] to eliminate Gibb’s ripple
resulting from discontinuities at the edges of the time domain interferogram. This
is especially true when fast scan data acquisition is performed in TPI applications
where the time domain signals are more truncated.

These drawbacks are more efficiently addressed through the use of windowed
FTs that further reduce the number of coefficients needed to describe the transformed
dataset in featureless parts of the spectrum aswell as through theWTwhich addresses
the issue by successively increasing the resolution (increase in scale) of both the
temporal and frequency domain features of the TPI signal.

3.2.2 Feature Extraction and Selection on the Basis of
Cross-correlation Sequences

Recent work by Siuly et al. [350] explored the use of a cross correlation between
the reference and sample time domain signatures from each sample class. In this
study, each powder substance is considered to belong to a single class: sand (Class
1), talcum (Class 2), salt (Class 3), powdered sugar (Class 4), wheat flour (Class 5),
and baking soda (Class 6). The sample holder response (which should be seen as a
free-space equivalent of a cuvette) provides the reference signal used for evaluating
the complex insertion loss. Using the reference signal in conjunction with the other
sample signal in a class, the cross-correlation sequence is computed on a pixel by
pixel basis. Once the characteristic features are extracted from each cross-correlation
sequence associated with every class, all features are integrated forming a feature
set.

Once cross-correlation features between sample and background are generated, a
further 2-D cross-correlation technique [366–368] is used to calculate a spatial cross-
correlation sequence (denoted by CC(k, l)) across the image. The graphical presen-
tation of a cross-correlation sequence is commonly known as a cross-correlogram.
The 2-D cross-correlation of X (M × N matrix) and H (P × Q matrix) is a matrix
CC of size (M + P − 1) × (N + Q − 1):

CC(k, l) =
M−1∑

m=0

N−1∑

n=0

X (m, n)H(m − k, n − l); (3.17)

where−(P − 1) ≤ k ≤ M − 1 and−(Q − 1) ≤ l ≤ N − 1. The symbol X denotes
the reference signal and H is regarded as any other signal belonging to a sample
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class. The bar over H denotes complex conjugation. The output matrix, CC(k, l),
has negative and positive row and column indices. A negative row index corresponds
to an upward shift of the rows of H and a negative column index corresponds to a
leftward shift of the columns of H . A positive row index corresponds to a downward
shift of the rows of H . A positive column index corresponds to a rightward shift of
the columns. It is worth noting that each of the signals, X and H , consist of a finite
number samples S, so the resultant cross-correlation sequence has 2S − 1 samples.

The THz transient transmission reference signal is considered as noiseless for
most parts of the spectrum, so the variance in the noise when ratioing a sample with
a background does not get disproportionally amplified [52]. Each powder sample
is considered as belonging to a distinct class. Figure3.12 illustrates how a cross-
correlogram is obtained from a reference signal (holder) and any of the other sample
signals, on the basis of Eq.3.17.

The cross-correlogram signals convey greater information than the original pow-
der spectra of the sample and reference signals and thus have superior signal to
noise ratio than the original signals. In addition, cross-correlograms contain addi-
tional information regarding the spectral coherence of the waveforms. As the cross-
correlation sequences still contain a large number of data points, these need to be
further compressed into a more parsimonious feature space so as not to overwhelm
the classifier.

3.2.2.1 Statistical Feature Extraction from Cross-correlation Sequences

To reduce the dimensions of the cross-correlation sequences, one can consider the fol-
lowing statistical features: mean, standard deviation, skewness, kurtosis, 1st quartile
(Q1), 3rd quartile (Q3), inter-quartile range (IQR), median, maximum and minimum
as calculated from each cross-correlation sequence. This information can be used to
create new feature vector sets. There are several valid reasons for the considerations
of these. Mean and standard deviation are particularly informative in describing a
distribution [369]. Skewness provides information on the degree of asymmetry of the
observed distribution around its mean [367]. Kurtosis provides a measure of flatness
relative to a normal distribution. Q1 and Q3, measure how the data are distributed
in the two sides of the median. IQR is the difference between Q3 and Q1 and is
used in measuring the spread of a data set, such information can be used to exclude
outliers [370]. Median, which is associated with the observation encountered most
often, is also an additional valuable metric that needs to be retained for classifica-
tion purposes. Maximum and minimum values are also used to describe the range
of observations within the distribution. For the example in Fig. 3.8, subroutines can
be run for each cross-correlation sequence associated with each powder substance.
All ten statistical features from each cross correlation sequence and each powder
substance form the content of a feature set that can finally be associated with each
powder material sample.
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Fig. 3.12 Typical
cross-correlogram from THz
background and sample time
domain signatures. After
[350]
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3.2.3 Feature Selection Strategies for MRI Datasets

When interpreting DCE-MRIs, several parameters are simultaneously considered
by clinicians. These include vascular kinetics, texture, shape, and size of tumour.
As stated in [371], significant prognostic value can be obtained from pre-treatment
DCE-MRIs on the basis of the observed vascularization as well as the texture, shape,
and size of tumours. Such information can be particularly useful to patients diagnosed
with advanced breast cancer and can provide important direction for therapy. In the
work discussed in [371] the authors showed that multivariate survival analysis has
revealed that model-retained DCE-MRI variables provide independent prognostic
information complementing traditional survival indicators. Clearly, such parameters
are worth incorporating in a classification framework if appropriate robust math-
ematical representations can be effectively formulated. This is, however, a multi-
parametric problem that may not be simplified by a simple reduction of image infor-
mation in parameter space. There is already concern, for example, that just relying
on intensity-time curves does not provide sufficient information for a complete eval-
uation of disease progression [372]. In addition, it is worth noting that measurements
are often associated with a large range of parameters; for example, vascular kinetics
reflects both blood flow, vascular density, and vessel permeability.

When considering the vascular kinetics, the pixel-by-pixel nature of the analy-
sis makes possible an assessment of lesion heterogeneity. Interestingly, mean and
median kinetics values seem of little prognostic value, and do not sufficiently char-
acterize a tumour [373–378]. It is also worth noting that the above list of features
is not exhaustive. For example, as discussed in [379] in the case of breast cancer,
there are also other parameters in an image that should be presented to a classifier
when developing an automated classification framework, and MR-derived angular
second moment and entropy features representing heterogeneity provide important
information on tissue composition. Furthermore, as the authors state, entropy fea-
tures can differentiate between histological and immune-histochemical subtypes of
breast cancer (ductal and lobular histological grade cancers). Differing entropy fea-
tures between breast cancer subtypes implies differences in lesion heterogeneity. The
study also acknowledged that texture analysis of breast cancer potentially provides
added information for decision making. Another example further strengthening the
above argument in [380] shows that higher order correlation analysis might also
lead to the observation of additional features that need to be taken into considera-
tion in an automated feature extraction framework. A further suggestion discussed
in [381] points at the necessity for optimizing feature selection for mass and non-
mass lesions. The author concluded that an analysis of feature importance (through
a ranking process) revealed that kinetic and textural features have higher importance
weighting among mass lesions than among non-mass lesions, whereas morphologic
features have higher importance weighting among non-mass lesions.

A case for textural analysis is conducted when considering triple negative breast
cancer (TNBC) where estrogen (ER), progesterone (PR), and human epidermal,
growth factor (HER2) are combined to determine a patient’s treatment protocol.
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Such cancers respond more readily to chemotherapy treatment due to their increased
surrounding vasculature. In those cancers, texture analysis is rapidly becoming the
preferred diagnostic tool. In its simplest form, texture analysis relates gray-level
intensity with spatial variation across the image [382] and extracts features that can
characterize the underlying structure of the object under investigation. Textural fea-
tures have been linked, not only with traditional breast cancer prognostic indicators,
but also the initial response to neoadjuvant chemotherapy (NAC) treatment. Quan-
tification of texture is discussed in [383]. Furthermore, in a very comprehensive
study taking into consideration 16 texture features (angular second moment, con-
trast, correlation, variance, inverse difference moment, sum variance, sum entropy,
entropy and difference variance, difference entropy, two information measures of
correlation, maximal correlation coefficient, cluster shade and cluster prominence)
[384], it was concluded that several of those features could provide clinicians with
additional information to increase the accuracy of the prediction of an individual
response before NAC is started.

Changes in the intensity of imaged tumours in MRIs are common in clinical
practice and, as a consequence, this leads to an inherent difficulty in the segmenta-
tion of an object of interest. This variation is mainly attributed to intrascan inten-
sity inhomogeneities. Susceptibility artefacts in gradient echo images are known
to frequently affect the observed intensities, causing significant intrascan intensity
inhomogeneities [640]. Therefore, although MRI images may appear visually uni-
form, the intrascan inhomogeneities often scramble intensity-based segmentation. A
typical example of such an intra-scan intensity inconsistency for a tumorous breast
tissue is illustrated in Fig. 3.13a. The image depicts a ductal carcinoma (malignant
tumour) in situ. Although the parts depicted by the arrows show the same anatomical
structure taken from the same tumour region, the intensity values are different. The
intensity indicated by a yellow arrow is higher than the intensity indicated by the
red arrows. After conducting intensity based segmentation, i.e. FCM, as illustrated
in Fig. 3.13b, the region with low intensity either forms an irregular ring, or forms a
gap that separates the image into two disconnected parts. The gap is shown as an area
with reduced intensity without well defined edges. In the absence of reconstruction
artefacts, this area should be filled-in by voxels of increased intensities.

The unified reconstruction of a volume image from multiple channels [59] is
illustrated in Fig. 3.13c. This shows a greatly improved intensity consistency with
the tumorous regions colour-coded in blue clearly separated from the red background
region. Figure3.13d illustrates the resultant segment of the tumour after recon-
struction. When this is compared with Fig. 3.13b, where the whole tumour region
shows intensity inhomogeneity and not well defined edges, the resulting segmen-
tation through the multi-channel reconstruction shows more homogeneous bound-
aries for the tumours; in addition, the entire tumour shape and tumour position are
clearly retrieved. This can be validated further by the overlapping images, shown in
Fig. 3.13e, where the yellow region consists of voxels mainly from the reconstructed
tumour used to fill in the missing voxels from the classified pre-processed image.
As a result, the reconstruction correctly locates tumour boundaries while eliminat-
ing inconsistent detection of boundaries in the original enhanced tumour image. The
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Fig. 3.13 a Illustration of intensity inconsistency for breast tumour tissue images. Yellow arrows
indicate a high intensity and red arrows low intensity. b Illustration of intensity based segmentation
with inhomogeneous boundaries; yellow arrows indicate an irregular annular region and the green
arrow indicates missing areas. c Reconstructed volume image from multiple channels. d Tumour
segment after reconstruction. eOverlapped images (brown) between original tumour segment (blue)
and reconstructed tumor segment (yellow). The green arrow indicates the fuzzy edges associated
with the original image. The imaged tumour corresponds to an in situ ductal carcinoma

proposed reconstruction leads to a better segmentation of the enhanced patterns com-
pared to regions where heterogeneous internal enhancement patterns were originally
achieved. A unified analysis of MRIs for tumour identification is discussed in [62].
This analysis can be combined with fast dynamic magnetic resonance imaging using
the sparse recovery methods discussed in [385]. The use of both methods decreases
sampling errors and significantly reduces storage space; furthermore because of the
sparsity in the datasets, it has improved computational speed.

Recently, Minkowski functionals (MFs) have been proposed as a novel way
of describing image texture [386]. The technique, has been used successfully in
computed tomography (CT) and mammography, [387–389] as well as to analyze
MRI images to determine malignancy [390] in the breast and measure response to
chemotherapy [391, 392]. It is, therefore, important to note that textural analysis can
also be placed in a more generic unified topological framework, from which addi-
tional features may be extracted for use in a classification context [393]. This is a
particularly interesting approach where points in an image forming a point-cloud are
associated with elementary blocks such as vertices, edges, triangles, or simplices of
higher dimensions (which would potentially account for folds in a tissue). All closed
surfaces can be approximated by using triangles after identifying some of their edges
in this simplicial complex framework. C̆ech complexes are generated using a set of
points associated with the point-cloud and constructing balls of radius r around each
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point, and then connecting the vertices by an edge if the balls intersect, adding a
triangle. The resulting C̆ech complexes are an enlargement of the point cloud. If due
to folds, a high-dimensional Euclidean space is required to fully describe the dataset,
the full embedding information is needed to generate an accurate distance metric for
the points in hand. When sufficient information is not available for the generation
of complexes, filled-in triangles generating flag complexes are generated, requiring
all three edges. The flag complexes are an approximation of the topological space
reconstructed.

A Vietoris-Rips complex is another possible construction of a simplicial complex
related to the point-cloud. The advantage of this complex is that it is determined from
only the distances between the points, without having to know their exact embedding.
The construction of a topological invariant for the above mentioned complexes starts
with the generation of a vector space whose basis elements are all the vertices, edges
and triangles of a given simplicial complex. A linear difference or boundary operator
is then defined. This, when applied to an edge, yields a difference in vertices. Higher
order boundary operators are similarly defined to act on triangles and other sim-
plices. A matrix representation of these linear operators is then obtained. As further
explained in [393], the algebraic structure that is imposed on the basic construction
of the spaces makes sequential application of boundary operators possible in any
higher dimension. This construction contains information about the holes or bound-
ing areas that are not filled in, thus defining homology spaces where higher-order
Laplacian operators are used for identifying higher-order topological properties of
any simplicial complex. The discretization of texture traces [394, 395] is still an
emergent area in computer vision which should have significant applications within
the MRI community, not only for texture analysis, but also in segmentation [396] as
well as with motion analysis [397], which can also be associated with MRI scans.
The proposed technique could complement other attempts to use computer aided
texture analysis in DCE-MRI [398].

Another study that correlates radiomic image phenotyping for identifying triple-
negative breast cancers with quantitative texture features (heterogeneity of back-
ground parenchymal enhancement) fromDCE-MRI considering the tumor as well as
its surrounding parenchyma, is discussed in [399]. The aim of the study was to deter-
mine the discriminative value of detailed quantitative characterization of background
parenchymal enhancement. The technique showed that quantitative texture features
provided better differentiation for triple-negative subtype cancers. Both these studies
make a strong case for the incorporation of textural features in a feature selection
framework. Such efficient feature extraction strategies incorporating texture infor-
mation can also assist in disease treatment selection. For example, in a recent study
[401] it was shown that pre-NAC texture and kinetic parameters help predict treat-
ments of non-benefit to NAC and demonstrated that NAC has advantages compared
with adjuvant chemotherapy. In addition, segmentation defining shape and size of
lesions is another area where textural information needs to be considered [402].

Finally, there are new studies [403, 404] aiming to identify associations between
semi-automatically extracted DCE-MRI features and breast cancer luminal A and
luminal B molecular subtypes, taking into consideration imaging information of
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the volume of the enhancing background parenchyma as a function of the total
background parenchyma volume, so as to make a link between morphologic, texture,
and dynamic features with radio-genomics. Another study in this context that showed
progress towards making an association between a validated gene-expression-based
aggressiveness assay (Oncotype Dx RS), morphological image features and texture-
based (gray-scale correlation matrix Gray-Level Co-Occurrence Matrix (GLCM)
based features in invasive ductal carcinomas (IDCs) is discussed in [405]. These
studies also make a strong case for further potential benefits that can be realized
through the associations of image features with specific molecular markers. Such
benefits could potentially be more easily realized through the further integration of
the DCE-MRI and THz-TPI modalities.

At this point it is worth noting that, although independent component analysis
(ICA) can also be seen as a very promising feature extraction methodology for both
MRI as well as THz-TPI on the basis of the additional degrees of freedom associated
with non-orthogonal projections associated with PCA, the current discussion does
not provide many examples of this line of work because, in an inaugural article in
PNAS, by Daubechies et al. [406], it was shown that the effectiveness of independent
component analysis (ICA) of brain fMRI using InfoMax and FastICA algorithms for
separating a signal mixture into its components was more linked to their ability to
handle effectively sparse components rather than independent components. Their
work concluded that future work on the mathematical design of better analysis tools
for brain fMRI should emphasize mathematical characteristics other than indepen-
dence.

A key challenge for cognitive neuroscience is determining how mental represen-
tations map onto patterns of neural activity [357]. Structural and functional MRI data
are inherently multivariate in nature, since each scan contains information about, for
example, tissue structure or brain activation at thousands of measured locations (vox-
els). Considering that most brain functions are distributed processes involving a wide
network of connected neuronal tissue brain regions, it would seem desirable to use
the spatially distributed information contained in the data to obtain a better under-
standing of brain functions in normal and abnormal conditions. This spatially distrib-
uted information can be investigated using Multivariate Pattern Analysis (MVPA) in
fMRI. The basic MVPA method is a straightforward application of pattern classifi-
cation techniques, where the patterns to be classified are (typically) vectors of voxel
activity values.

The requirement to understand spatiotemporal correlations in datasets from dif-
ferent voxels is currently leading to the development of new multidimensional fMRI
datasets. The MVPA approach seeks to boost sensitivity by simultaneously process-
ing datasets across multiple voxels. A study by Haxby et al. [363] illustrates how
multi-voxel patterns of activity can be used to distinguish between cognitive states.
Subjects viewed faces, houses, and a variety of object categories (e.g. chairs, shoes,
bottles). The data were split in half, and the multi-voxel pattern of response to each
category in ventral temporal (VT) cortex was characterized separately for each half.
By correlating the first-half patterns with the second-half patterns (within a particular
subject), Haxby et al. were able to show that each category was associated with a
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reliable, distinct pattern of activity in the VT cortex (e.g. the first-half ‘shoe’ pattern
matched the second-half ‘shoe’ pattern more than it matched the patterns associated
with other categories). Voxels with particularly high levels of noise (and low levels
of signal) can sharply reduce classifier performance. This suggests that classifier
performance will benefit from feature selection methods that remove noisy and/or
un-informative voxels before classification. One way to select features is to limit the
analysis to specific anatomical regions (e.g. in their study of visual object processing,
Haxby et al. [363] focused on the ventral temporal cortex). Figure3.14 provides an
example where the use of correlations used as indices of similarity are identified as
useful features for multi-voxel pattern analysis.

The above discussion, makes it clear that there are similarities in the structure
of both THz TPI and DCE-MRI feature vectors, and developed feature extraction
techniques in one imaging modality can benefit the other. Many of the parameters
used by the DCE-MRI community have yet to be explored in a THz-TPI context as
this is a newmodality for biomedical imaging.Nevertheless, somepotential synergies
for feature extraction on the basis of molecular discrimination offered by THz-TPI
should be of significant benefit to the DCE-MRI community.

3.2.4 Spatiotemporal Correlations and Cluster Analysis
of Brain Activity Using fMRI

Recent studies on functional connectivitymagnetic resonance imaging (fcMRI) [362]
are paving the way for the modelling of brain activity as a functional network on the
basis of spatio-temporal correlations. Currently, it is possible to distinguish between
resting-state and active-state regions in the brain on the basis of the BOLD signal.

This approach detects temporal correlations in neural activity between distant
brain regions bymonitoring the oscillatory signal associatedwith blood oxygenwhile
subjects rest quietly in a scanner [407]. These correlations provide an assessment
of brain functional connectivity between particular brain regions, making functional
neuro-imaging currently a very active area of research. An increasing number of
pathologic conditions appear to have specific patterns and thus bewell reflected [408]
in these scans. FMRI is enabling physicians to provide both a more comprehensive
diagnosis of seveal conditions with increased confidence as well as to further explore
noninvasively the functional network structure of the human brain [409].

It is convenient to invoke a graph theoretical framework to model neuronal con-
nectivity patterns [410]. A graph or network can be defined by a collection of nodes
(vertices), and links (edges) between pairs of nodes. Nodes (neural elements) in large
scale brain networks usually represent brain regions, while links represent region-
to-region relationships including anatomical, functional, or effective connections,
depending on the dataset.

The network structure of a graph is described by the graph’s adjacency matrix (or
connection matrix) [411, 412]. Rows and columns in these matrices denote nodes,
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Fig. 3.14 Illustration of recorded fMRI patterns associated with specific stimuli from everyday
objects (faces, houses, chairs and shoes), that invoke a known cognitive response. Brain images
shown here are the normalized response patterns from two axial slices in a single subject. The
responses from the ventral temporal cortex are subsequently compared. The left side of the brain
corresponds to the left side of each image. The pattern of response to each category was measured
separately from data obtained on even-numbered and odd-numbered runs in each individual subject.
These patterns were normalized and baseline filtered to ensure a zero mean value for each voxel
across all categories by subtracting the mean response across all categories. For each pairwise
comparison, the within-category correlation is compared with one between-category correlation. a
Comparisons between response patterns to faces and houses for one subject. The within-category
correlations for faces (r=0.81) and houses (r=0.87) are both markedly larger than the between-
category correlations, confirming that, when the subject correctly identifies each category, a similar
response in the MRI scan is invoked. b Comparisons between the patterns of response to chairs and
shoes from the same subject are shown. The category being viewed was always correctly identified
from the MRI scan. After [363]
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while matrix entries denote links. A matrix element ai j is nonzero if the connection
from j to i is present. In binary adjacent matrices, the link between nodes j and i is
represented by 1 whereas when there is no connection, this is represented by 0. The
resulting matrix also has an all-zero main diagonal, as shown in Fig. 3.15a. When the
adjacency matrix is weighted and normalized, the value of ai j will lie in the interval
between 0 and 1, as shown in Fig. 3.15c. Moreover, network links can be classified
as un-directed (Fig. 3.15a) or directed (Fig. 3.15b). In an un-directed network, the
number of links in a node, k, corresponds to the degree of this node. An un-directed
network is represented by a symmetric matrix. In a directed network, the in-degree
and the out-degree attributes correspond to the number of in-coming and out-going
links, respectively. The average degree of all the nodes defines the degree of the
network. A weighted adjacency matrix is used to express the connection strength of
an edge between two vertices, and this is given by its entry value. An entry equal to
0 implies that there is no edge between the two vertices i and j . In most of cases, the
strength given by the edge weight and the degree of the end vertices ki and k j are
well correlated. A large weight is attributed when there is a high value to the degree
of connectivity between vertices.

In graph theory, a source vertex (or edge) j is linked to a target vertex (or edge)
i . If j = i through a path. Paths are all ordered sequences of distinct edges and
vertices. When a source vertex is linked to itself, this is called a cycle [413]. A
problem that often arises in optimisation theory is that of finding a path between
two vertices (or nodes) in a graph such that the sum of the weights of its constituent
edges is minimized. A graphical representation of the shortest path length between
two nodes is illustrated in Fig. 3.15d.

Assuming parallel flux of information, the efficiency ε of communication between
two nodes i and j is defined to be inversely proportional to the shortest path length
d, εi j = 1/di j [415]. The efficiency of a set of nodes N is the sum of the efficiencies
of all node pairs, normalized by the maximal number of links N (N − 1)/2.

At this point, it is worth noting that, in any graph representation of a collection
of neurons, there will be vertices that are more central than others. The following
metrics are defined to identify these vertices. The Center of a graph is a descriptive
metric that is formed by evaluating the distances between vertices; the associated
vertices are chosen so that the distance of each vertex to the most distant vertex is as
small as possible. TheMedian of a graph corresponds to the center of a graph so that
the total distance from a vertex to all the other vertices is as small as possible. The
Shortest-path betweenness center of a graph is a metric chosen to solve optimization
problems in communication networks where the load at each vertex is of interest. It
is defined as the ratio of the number of shortest paths that pass through a vertex to
the number of all shortest paths. The shortest-path betweenness can be adapted to
find the center of a graph. This metric is more significant if it yields a higher value of
shortest-path betweenness than the other vertices [416]. Figure3.16 is an illustration
of establishing nodal characteristics of group-based functional brain networks [400].

Another fundamental characteristic of brain networks is their functional inte-
gration. This metric indicates how integrated a network is and, thus, how easily
information flows across its nodes [410]. The average of the shortest path length
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Fig. 3.15 Examples of undirected a, directed b, and weighted c networks and their corresponding
adjacency matrices. d A graphical representation of shortest path length between nodes 5 and 9
(thick line) (above) and (below) its path length matrix (or distance matrix). After [414]
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Fig. 3.16 Establishing nodal characteristics of group-based functional brain networks. a Nodal
degree, efficiency and betweenness for both binary and weighted resting-state fMRI brain networks
mapped using both the correlation and sparsity thresholding procedures (only nodeswith centralities
larger than themean of thewhole brain network are shown).bTypical cross-correlogramof observed
spatial distributions among the three nodal centrality measures regardless of network type and
threshold procedure used; in this case, nodal betweenness revealed unique spatial patterns. These
patterns were also correlated to nodal degree and efficiency, identified using hierarchical cluster
analysis. After [400]

between all pairs of nodes in a network is called the characteristic path length. A
small characteristic path length implies that there is a stronger potential for integra-
tion [410].

Prior to topological characterization, a thresholding procedure is typically applied
to exclude the confounding effects of spurious relationships between inter-regional
connectivity matrices. Two thresholding strategies are normally adopted. These are
based on an absolute connectivity strength threshold metric and a relative sparsity
threshold metric [417].

The connectivity strength threshold is defined in such way that network connec-
tions with weights greater than a given threshold are retained, whereas those below
the threshold value are ignored. The connectivity strength provides a quantitative
description of the overall absolute network organization.

Sparsity is defined as the ratio of the number of actual edges divided by the max-
imum possible number of edges in the network. For networks with the same number
of nodes, the sparsity threshold ensures the same number of edges for each network
This is achieved by applying a subject specific connectivity strength threshold. Spar-
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Fig. 3.17 Example of three networks and respective clustering coefficients in undirected networks.
In a, Ci = 10(2)

5(4) = 1 (the vertices around node i are fully connected), b Ci = 3(2)
5(4) = 0.3 and c

Ci = 0(2)
5(4) = 0. After [419]

sity provides a quantitative description of the overall relative network organization
[417].

Cluster analysis is particularly helpful in elucidating how information processing
is distributed across different regions in brain networks, and provides functional
segregation of the different regions in the brain. The clustering coefficient of a node,
Ci , is a measure of the number of edges ‘around’ the vertex i , which can be calculated
as the ratio of the number of links that exist between the nearest neighbours of the
chosen node and the maximum number of edges among possible links [418]. The
maximumnumber of edges among the neighbours of vertex i is given by ki (ki − 1)/2
where ki denotes the number of the nearest neighbours of i . In undirected networks,
the clustering coefficient Ci of a node i is defined as Ci = ei (2)

ki (ki−1) , ei is the number
of connected pairs between all neighbors of i . In directed networks, the definition is
slightly different: Ci = ei

ki (ki−1) . An example of three networks and their respective
clustering coefficients in undirected networks is shown in Fig. 3.17.

To illustrate how the hierarchical cluster structure depicting brain connectivity
analysis is developed, an example is provided in Fig. 3.18. This shows the modu-
lar organization of human cortico-cortical connectivity, as identified from diffusion
spectrum imaging [420]. Cortical areas are arranged in a circle so that highly inter-
linked areas are placed close to each other (Fig. 3.18a). The nodes in the same cluster
show a high structural similarity which is also correlated to a similarity in function.
The degree of this correlation is used to develop a dendrogram using hierarchical
clustering as shown in Fig. 3.18b. The dendrogram, when observed from its base on
the left and after following the branching to the right, connects the different objects
in the tree. The distance of each branching point on the x-axis is proportional to the
structural and functional cross-correlation.
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Fig. 3.18 Clusters. a Cluster structure of human cortico-cortical connectivity. Cortical areas are
arranged in a circle using evolutionary optimization, so that highly inter-linked areas are placed
close to each other. b Dendrogram of the same network using hierarchical clustering. After [420]

3.2.5 Feature Selection in Retinal Fundus Photography
Following Image Enhancement

As stated in the previous chapter, retinal images acquired using a fundus camera
are usually characterized by low level contrast and low dynamic range. This may
seriously affect any subsequent automatic segmentation operation aimed at assisting
diagnosis. Therefore, it is necessary to carry-out preprocessing before segmentation
to improve image contrast effectively. To facilitate segmentation, various kernels (or
filters) have been designed to enhance the vessels in an image. Most filtering tech-
niques are based on image intensity (amplitude) and adopt matched filtering tech-
niques [421], amplitude-modified second order Gaussian filtering [422], eigenvalue-
based filtering [423], multi-scale linear operators [424], wavelets [425], contourlets
[426], Gabor filters [427], or COSFIRE filters [428].

An alternative approach that conducts local curvature analysis of retinal image
contrast features using a Hessian matrix, has been suggested by Yin et al. [226].
Feature extraction and segmentation is thenperformedusingmorphological operators
following a maximum entropy binarization step.

3.2.5.1 Eigenvalue Analysis of the Hessian Matrix of a Fundus Image

The first step of the algorithm requires an eigenvalue analysis of the image Hessian
matrix at a single scale. This is a simplification of themultiscale algorithm that Frangi
et al. proposed [423]. The fundus photograph is once again pre-processed using a



86 3 Recent Advances in Medical Data Preprocessing …

Fig. 3.19 Illustration of a
curvature based
enhancement of the image of
the retina from the
eigenvalue analysis of the
Hessian matrix. The image
used is 02_test from the
DRIVE database

top-hat transformation to produce IT . The local behaviour of each point in the pre-
processed image IT (l, k) is then determined from a second order Taylor’s series
expansion in the neighbourhood of each point (l0, k0). For convenience, simplified
point coordinates are adopted IT (l, k) to IT (x) and (l0, k0) to (x0). The second order
Taylor’s series expansion corresponds to the associated second order directional
derivative given from:

(δx0)
TH0δx0 = (

∂

∂δx0
)(

∂

∂δx0
)IT (x0). (3.18)

The main idea behind eigenvalue analysis of the Hessian matrixH0 is to extract the
principal directions in which the local second order structure of the image can be
decomposed [423]. In this case, the direction of smallest curvature along the vessel
can be computed directly. This is achieved by finding the eigenvectors corresponding
to the smallest eigenvalues. Figure3.19 shows the resulting enhancement following
eigenvalue analysis.

3.2.5.2 Threshold Binarization Using Maximization of Entropy
Criteria

When a grayscale image is binarised, a threshold value must be specified. In our
approach, the optimum threshold value is determined according to the pixel intensity
from the histogram of the image that exhibits the maximum entropy over the entire
image.To represent spatial structural information of an image, a co-occurrencematrix
is generated from the pre-processed image. It is a mapping of the pixel to pixel
greyscale transitions (i.e. the gray level i follows the gray level j) in the image
between the neighbouring pixel to the right and below each pixel in the image. The
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co-occurrence matrix of the pre-processed image IT (l, k) is a P × Q dimensional
matrix C = [ci j ]P × Q , where the elements ci j are defined as:

ci j =
P∑

l=1

Q∑

k=1

δlk, (3.19)

where δlk = 1, if {
IT (l, k) = i, IT (l, k + 1) = j

IT (l, k) = i, IT (l + 1, k) = j
,

and otherwise, δlk = 0.
The probability of co-occurrence satisfies the equation, pi j = ci j∑

i

∑
j ci j

. The can-

didate threshold 0 ≤ s ≤ L − 1 co-occurrence matrix that may be split into four
regions representing class transitions within object (PA), within background (PC ),
object to background (PB), and background to object (PD). Let L be the maximum
intensity value of the image to be analysed. The second-order entropy of the object
(H (2)

A (s)) and background (H (2)
C (s)) are defined as:

H (2)
A (s) = −1

2

s∑

i=0

s∑

j=0

(Pi j/PA) log2(Pi j/PA)

H (2)
C (s) = −1

2

L−1∑

i=s+1

L−1∑

j=s+1

(Pi j/PC) log2(Pi j/PC).

Finally, the total second-order entropy of the object and the background are calcu-
lated, and the optimal threshold is estimated by maximizing the associated entropies
as a function of the threshold. Using the proposed entropy based binarisation algo-
rithm, one can obtain the threshold surface s̄(x, y) to be usedwith s(x, y). An analysis
of the entropy based filtered output shows that the response magnitude of the vessel
pixels is larger near the centreline than near the vessel edges. Therefore binarisation
is performed as follows:

Out(x, y) =
{
1, s̄(x, y) ≤ s(x, y)

0, otherwise

where Out(·) stands for the finally segmented binary mask of the vessel image. To
obtain the initialmask of retinal vessels, a smallermagnitude of the threshold at vessel
pixels near the vessel edges is selected. Finally, the eigenvalue based enhanced image
(after threshold) shown in Fig. 3.19, is convolved with the entropy basedmask shown
in Fig. 3.20a. The resulting image is shown in Fig. 3.20b. The method performs well
in extracting the enhanced retinal vessels from the background with significantly
reduced noise compared to other unsupervised mask or segmentation techniques.
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(a) (b)

Fig. 3.20 Multiplication of images with an original image named 02_test extracted from the
DRIVE database. a Illustration of the resulting mask used for extraction of the enhanced retinal ves-
sels through entropy based binarisation. b The resulting global thresholded image after combining
(a) and the information in Fig. 3.19

3.2.5.3 Performing Segmentation on the Basis of Curvature Analysis

Segmentation using the proposed curvature analysis method often shows obvious
signs of central light reflex. According to Spencer, the normal light reflex of the
retinal vasculature is formed by reflection from the interface between the blood col-
umn and the vessel walls, and the thicker these vessel walls are, the more diffuse the
light reflex becomes. This phenomenon is also accompanied by an overall decrease
in the observed intensity [429–431]. In order to eliminate the undesirable effects of
the central light reflex, the binarisation procedure using the top-hat pre-processing
step of the images is repeated, this time using a larger threshold at the vessel pix-
els near the related centre-line of the retina vessels mostly affected by the central
light reflex. The thresholds are manually adjusted and the ideal segments of the
central light reflex vessels are re-calculated. The final segmentation is the result of
a superposition of the segmentation from the extracted enhanced image, shown in
Fig. 3.20b and the image binarisation step that was performed on the basis of the
entropy criterion discussed earlier. This is shown in Fig. 3.21a, where the effect of
the central light reflex, indicated by green arrows in Fig. 3.20b, has been removed in
the resultant image, as shown in Fig. 3.21b. The proposed method is now known as
the dual-threshold entropy approach, to differentiate it from the other retina vessel
segmentation methods discussed in the literature, e.g. [434] (Fig. 3.21).

To achieve a clearer segmentation of blood vessels in the images of the retina,
it is advisable to conduct additional morphology post-processing. This requires the
use of morphological connectivity constraint operations which are applied on the
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Fig. 3.21 Outputs of interim processing steps. The left panel is an illustration of binarisation with
threshold selected to maximise entropy. The right panel is an illustration of the final segmentation,
where the effect of central light reflex, indicated by green arrows in Fig. 3.20b has been removed
in the resultant image

Fig. 3.22 Overview of the main steps in the proposed algorithm when processing a fundus image.
a Illustration of globally thresholded image after multiplication between Figs. 3.19 and 3.20a. b
and c Illustration of two partitions using segmentation of (a) on the basis of color coded mapping
in Fig. 3.5b. d Illustration of good overlap (blue) between the resultant segment (yellow) and a gold
standard segment (green)

extracted curvature based enhanced images. The connectivity constraint is deter-
mined according to the features present in the different textural regions. When the
images display non-uniform illumination they can be partitioned into two regions
by taking into consideration both variation in illumination as well as vessel size.
For example, the extracted enhanced image illustrated in Fig. 3.22a, consists of two
regions: one where small vessels are dominant Fig. 3.22b, where it is reasonable to
select the smaller connectivity constraint and regions that consist mainly of larger
vessels Fig. 3.22c. The vessel segments corresponding to different image textures
are then linearly combined to produce the final segmentation of the curvature-based
enhanced image. A similar method may be used to provide segmentation for a retinal
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image with tissue that depicts a pathological condition; in this case, the resulting seg-
mented image differentiates well the two regions showing the presence or absence
of pathology.

3.2.6 Feature Extraction and Pattern Identification
of Pathology Distortion in SD-OCT Imaging

As discussed in Chap. 1, spectroscopic OCT provides additional information on the
spectral content of backscattered light obtained by detection and processing of the
interferometric OCT signal. The spectrum of backscattered light over the entire
available optical bandwidth can bemeasured simultaneously in a singlemeasurement
[245].

Research carried out in [241], discusses current automatic methods of retinal
SD-OCT image analysis by broadly separating them into four categories: (1) retinal
layer tracking, (2) optic disc segmentation (3) vessel tracking and (4) pathology
quantification [119, 432]. The layer tracking methods can be classified further into
the following two groups: layer segmentation of normal or healthy subjects’ images
and layer segmentation in the presence of pathology [119, 432].

For clinical purposes, retinal SD-OCT image analysis should be capable of identi-
fying and extracting the associated pathological features present in the image. This is
discussed further in [241] where a method for automatic identification of the bound-
ary of different layers captured in an SD-OCT image in the presence of pathology is
presented. The approach first establishes an approximate location of three reference
layers, and then uses these to bound the search space for the actual layers. This is
achieved by representing the problem as a graphmodel and applyingDijkstra’s short-
est path algorithm so that the most likely order of the layers can be de-embedded.
This work showed that the proposed method clearly identified retinal ILM-RNFL,
ISLEZ,IZ-RPE and RBC boundaries from retinal SD-OCT B-scan images even in
the presence of pathology.

The different steps involved in the implementation of the algorithm are shown in
Fig. 3.23. In the first step, additive and speckle noise in the image are reduced by
applying Wiener and Anisotropic Diffusion (AD) filters. Their function is to remove
the associated impulse noise in the image while preserving the boundary position in
all layers captured in the image. The second step computes the approximate locations
of three reference (aprxTR) layers using their relative positions and pixel intensities.
Following this procedure, the aprxTR layers are used as reference layers to detect the
ILM-RNFL boundary. Due to its high contrast, the ILM-RNFL boundary is easily
identifiable compared to other boundaries. This forms the basis for a reduced search
space for computing the other boundaries. In step 4, the location of aprxTR layers
is further refined to increase the accuracy of identification of other layer boundaries.
In step 5, the RBC boundary is identified using the refined aprxTR layers. Through
this procedure, the search region is further reduced to within the ILM-RNFL and

http://dx.doi.org/10.1007/978-3-319-57027-3_1
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Fig. 3.23 Flow diagram of the proposed method by Hussain et al. [241] for automatic identification
of pathology distorted retinal layer boundaries via SD-OCT imaging

RBC boundaries. This further reduced search space is used to identify the ISL-EZ
boundary more accurately, in step 6. In the final step of the algorithm, the IZ-RPE
boundary is identified by searching between the ISL-EZ and RBC boundaries.

It should be noted that IZ-RPE and RBC are the most difficult boundaries of the
retina to be identified due to their low contrast and potential distortion by drusen
(yellow deposits under the retina) as well as OCT identified atrophy. The boundary-
confined search provides excellent accuracy even in the presence of pathology and
displays superior performance over other methods discussed in the literature. A sto-
chastic optimization method, Simulated Annealing (SA) [433], is used for approxi-
mating the global optimum which is used for finding each constant parameter.

Of particular note to the discussion above is that the algorithms developed for the
identification of different layers in an image as developedby theSD-OCTcommunity,
may be further adapted to the identification of layered tissues in THz reflection
tomography. In THz transient spectroscopy, it is currently not possible to identify
different layers in an image when the layer thickness is smaller than the width of a
pulse. Although in principle one could start with a very narrow pulse at the emitter
port of the instrument, it is often the case that most samples will be quite dispersive
so that, upon reflection on the sample, the pulse would have broadened too much for
individual layers to be de-embedded by the gated echoes. The proposedmethodology
may thus provide a way for super-resolving the individual signatures from multiple
layers if additional features in the image can be identified as discussed by the work
in [241].

In a similar manner, the THz time-domain spectroscopy community has also
developed their own super-resolution algorithms [274] which may be adopted by the
OCT community. For continuous wave OCT methods, the work discussed in [44]
may be adapted by developing specialized polarimetric fibre optic hardware to per-
form the reflectometricmeasurements using a null-balance de-embedding procedure.
Alternatively, one could adapt to the optical part of the spectrum, the methodology
discussed in [275], although the technique requires a more complex data acquisition
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procedure where the illumination would have to be performed over a range of angles
(by systematically rotating the source at increments of one degree with respect to
normal incidence to the eye over a range of angles).

3.2.7 Statistical Analysis Based on Feature Selection
Strategies

Finally, it is worth noting that in medical research, data are often collected serially
on subjects. The statistical analysis of such data is often inadequate in two ways: it
may fail to settle clinically relevant questions and it may be statistically invalid. A
commonly used method which compares groups at a series of time points, possibly
with ‘t’ tests, is flawed on both counts. As discussed by Matthews et al., (1990),
however, [300] there may, be a remedy, which takes the form of a two stage method
that uses summary measures. In the first stage a suitable summary of the response
corresponding to an individual metric, such as a rate of change or an area under a
curve, is identified and calculated for each subject. In the second stage these sum-
mary measures discussed in Sects. 3.2.2 and 3.2.3 are analysed by simple statistical
techniques as though they were raw data. The method is statistically valid and likely
to be more relevant to the study questions. If this type of analysis is borne in mind
when the experiment is being planned it should promote studies with enough sub-
jects and sufficient observations at critical times to enable useful conclusions to be
drawn. Use of summary measures to analyse serial measurements, though not new, is
potentially a useful and simple tool in medical research which could also be adopted
when evaluating the performance of AI classifiers.



Chapter 4
Pattern Classification

This chapter discusses pattern classification of high dimensional medical datasets of
breast, brain, and retinal tissue on the basis of their extracted features. The extracted
features can show linear or non-linear separability, furthermore, they may also be
multi-modal or highly correlated. Different algorithms that can be used to generate
decision boundaries associated with the observed features are considered. Each fea-
ture is presented to a feature vector as a separate entry. The entire set or a subset of
feature vectors is then used to perform the classification task. Statistical techniques
commonly used for classification include those based on similarity measures (e.g.
template matching, k-nearest neighbor), or those based on probabilistic assumptions
(e.g. Bayes rule), definition of boundaries (e.g. decision trees, neural networks), and
clustering (e.g. k-means, or hierarchical). In addition, this chapter discusses recent
advances in complex support vector machine and extreme learning machine clas-
sifiers. An extension to multidimensional extreme learning machine classifiers is
also provided. Examples of binary as well as multiclass classification tasks using
THz datasets are presented. The performance of other classifiers such as multimodal
logistic regression, and nave Bayesian, in classifying THz datasets is also compared.
In addition, some recent advances in clustering and segmentation techniques for
THz datasets as well as for fundus images are also discussed. Current methods for
automatic retinal vessel classification are also highlighted, as it is envisaged that the
improved edge detection algorithms discussed in the previous chapters in conjunc-
tion with the proposed classification methodologies can lead to better discrimination
between arteries and veins. Finally, this chapter discusses some recent advances
in automated image classification using performance criteria directly developed by
clinicians.

4.1 Introduction to Pattern Classification

Following the discussions in the previous chapter regarding feature extraction, the
quantitative features extracted from each object are organized into a fixed length fea-
ture vector. Each feature is representedwithin the vector (i.e. the first feature describes
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a particular characteristic of the data, the second feature describes another charac-
teristic, and so on). The collection of feature vectors generated by the description
task are then passed on to perform the classification task. Statistical techniques used
for the classification task include those based on similarity measures (e.g. template
matching, k-nearest neighbor), or can be based on probabilistic assumptions (e.g.
Bayes rule), or on the definition of boundaries (e.g. decision trees, neural networks),
and clustering (e.g. k-means, hierarchical, multi-channel reconstruction [89]).

The quantitative nature of statistical pattern recognition makes it difficult to dis-
criminate across different groups based solely on the morphological (i.e. shape based
or structural) sub-patterns and their interrelationships embedded within the data.
This limitation provided the impetus for the development of a structural approach
to pattern recognition that is supported by psychological evidence pertaining to the
functioning of human perception and cognition. Object recognition in humans has
been demonstrated to involve mental representations of explicit, structure-oriented
characteristics of objects, and human classification decisions have been shown to
be made on the basis of the degree of similarity between the extracted features and
those of a prototype developed for each group. For instance, the recognition by com-
ponents theory explains the process of pattern recognition in humans: (1) the object
is segmented into separate regions according to edges defined by differences in sur-
face characteristics (e.g. luminance, texture, and color), (2) each segmented region
is approximated by a simple geometric shape, and (3) the object is identified based
on the similarity in composition between its geometric representation and the main
characteristic features of each group. This theorized functioning of human percep-
tion and cognition serves as the foundation for the structural approach to pattern
recognition.

The classification scheme is usually based on training sets that have already been
successfully classified (supervised learning strategies) [31]. Learning can also be
unsupervised, but such approaches usually fall short from a biomedical software
certification perspective. The following sections discuss several schemes that have
been successfully implemented for the imaging modalities considered such as sta-
tistical (or decision-theoretic) approaches using a Mahalanobis distance classifier
[11, 12, 18], an Euclidean discrimination matrix, Support Vector Machines (SVMs)
[17], Extreme Learning Machine [226, 447] (ELM) classifiers, ridge estimators, k-
nearest neighbours (KNN), and naïve Bayes (NB) [350]. An overview of the adopted
algorithms is also provided.

4.2 Feature Based Mahalanobis Distance Classifiers

The Mahalanobis distance classifier [435] is a type of minimum distance classifier
that is optimal for normally distributed classes with equal covariance matrices (lin-
ear discriminant) and equal a priori probabilities. Such a classifier is often chosen
because it is simple to implement and provides reasonable results for a variety of
biomedical waveforms.
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One possible approach is to formulate the Mahalanobis classification scheme on
a set of feature matrices of Auto Regressive Moving Average (ARMA) modelled
datasets after signal decomposition in wavelet subbands [11]. For a given class, m,
the distance from a feature matrix DCl

j to the class mean Am , is defined as

ρm(X) =
√

(DCl
j − Am)TC−1

m (DCl
j − Am) (4.1)

whereCm is the covariance matrix of the feature vectors regarding classm,DCl
j with

l = 1, 2, 3 represents the averaged coefficients matrix related to AR (l = 1), MA
(l = 2), and ARMA (l = 3) modeling of wavelet approximation coefficients at three
decomposition levels j, that is, DC1

j being DCAR
j , DC2

j being DCMA
j , DC3

j being
DCARMA

j . In practice, the covariance matrix is estimated from the training vectors.
During classification, the minimum Mahalanobis distance from the feature matrix
DCl

j to each class centre Am , is used to assign the appropriate class label.

4.3 Support Vector Machine Classifiers (SVMs)

Recent advances in statistical learning theory [451] have led to a wide prolifera-
tion of an important class of machine learning algorithms known as Support Vec-
tor Machines. (SVM) These algorithms perform a mapping of lower-dimensional
datasets into a high-dimensional feature space where a separating hyperplane, which
maximizes the boundary margin between two classes, can be established. Although
originally SVMs have been used for binary classification tasks, recent extensions
have extended their use to multiclass classification problems. Both of these algo-
rithms are discussed in the following sections.

4.3.1 Binary Classification of SVMs

In their simplest implementation, support vector machines are binary classifiers,
which classify data on the basis of a set of support vectors [452]. The training data
sets are obtained from a set of labelled samples called learning vectors. We denote
such a set of learning vectors as (xi, yi ) ∈ RN ×{±1}, i = 1, . . . , l, and yi denote the
class label corresponding to each input vector xi . The support vectors are subsets of
the training data sets and are used to construct an l-dimensional hyperplane in feature
space, which acts as a boundary separating the different classes. A decision function
f (α) : RN → ±1 is calculated based on a given class function f (α) : α ∈ Λ, and
the aim is to correctly assign class labels to test unclassified samples x. The Vapnik-
Chervonenkis (VC) dimension [451, 453] is a property of a set of functions f (α),
which is defined as the maximum number of training points that can be segmented
by f (α). Note that α corresponds to the weights and biases, which can be adjusted
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to label the output f (x, α) based on the input x. The expectation of the test error for
a learning machine is:

R(α) =
∫

1

2
|y − f (x, α)|dP(x, y) (4.2)

where, R(α) is called the expected risk. It is the quantity associated with density
p(x, y) that the user is ultimately interested in. The ‘empirical risk’ Remp(α) is defined
to be the measured mean training error for a fixed, finite number of observations:

Remp(α) = 1

2l

l∑
i = 1

|yi − f (xi , α)|. (4.3)

The quantity 1
2 |yi − f (xi , α)|, which is called the loss, and may have two values, 0

or 1. When the user sets the probability to 1 − η, the following bound is observed
for the classification task:

R(α) ≤ Remp(α) +
√( h(log(2l/h)+1)−log(η/4)

l

)
. (4.4)

The non-negative integer h is called the VC dimension, and provides a measure
of the capacity of multiple hypotheses that can be considered on the basis of the
available training data. When a sufficiently small η is selected, the right hand side of
the equation is minimized, and the f (x, α) functions provide the lowest upper bound
of the actual classification risk. This is the reason SVMs are often associated with
structural risk minimization.

As minimizing the training error (the computation of VC-dimension) does not
guarantee a small test error, to make the decision function f perform well on pre-
viously unseen patterns, the principle of structural risk minimization needs to be
applied to minimize the test error and achieve a capacity that is suitable for the
amount of available training data sets.

The learning algorithm is designed to allow the computation of support vectors by
implicitly performing structure risk minimization. In other words, a VC-dimension
bound is calculated to identify the optimal hyperplane that maximizes the margin
of the nearest learning vectors. The decision hyperplane is calculated based on the
following equation:

f (x) = sgn(
s∑

i = 1

yiαi (xi · x) + b) (4.5)

where xi , (i = 1, . . . , s) are support vectors, which are the closest points from the
training vectors (learning vectors) to the separate hyperplane where sgn is the signum
function. The solution of this large-scale quadratic programming problem is used to
calculate the coefficients αi and b. The procedure requires the solving of the well
known dual problem, which is to maximize
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L(α) =
l∑

i = 1

αi − 1

2

l∑
i, j = 1

αiα j yi y j (xi · x j ) (4.6)

subject to
∑l

i = 1 αi yi = 0 and 0 ≤ αi ≤ C for i = 1, . . . , l.
The penalty parameter C is selected by the user. This should be viewed as a

regularization parameter for the linearly inseparable learning vectors aiming to accept
the possible misclassifications.

Note that SVMs use a kernel function [349, 454], which allows the fitting of the
hyperplane to the data. Instead of a linear classifier, which is limited to producing
linear decision surfaces, the hyperplane [455] may also need to be modified to fit
nonlinear decision surfaces. In order to generate such non-linear decision surface, a
dot product space is constructed by re-mapping the data, this is realised by performing
a nonlinear mapping operation φ : RN → F . The above linear algorithm then can be
applied in the new feature space F . The solution satisfies the following expression:

f (x) = sgn(
s∑

i = 1

yiαiφ(xi ) · φ(x) + b). (4.7)

This is a nonlinear transformation of the original input vectors x.
According to Cover’s theorem [456], a new feature space F can be defined in a

multidimensional space, where the dimensionality of the feature space is high enough
to allow the target patterns to be linearly separable with a high probability. The inner
products (dot products) enable the high dimensional space to be identified through
the mapping of function φ. Accordingly, the kernel function K is defined as:

K (x, y) = φ(x) · φ(y). (4.8)

There are four popular kernel functions:

• linear Kernel:
K (x, y) = xTy (4.9)

• polynomial kernel:
K (x, y) = (γ xTy + r)p, γ > 0 (4.10)

• RBF (Gaussian) kernel:

K (x, y) = exp(−λ ‖x − y‖2), λ > 0 (4.11)

• Hyperbolic tangent kernel:

K (x, y) = tanh(γ xTy + r), γ > 0 (4.12)
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where x, y are SVM data vectors, T denotes vector transpose, γ and r denote the
scale and offset of the corresponding kernels respectively (they are normally set to
1), p denotes the degree of polynomial kernel, and λ denotes the width parameter of
the Gaussian kernel.

In the instance of identifying RNA samples, presented in Fig. 4.6, the RBF kernel
function is used as the preferred choice, and it was found to give good classification
performance. Meanwhile, it was found that polynomial kernels were best suited to
achieve multiclass classification of powdered samples.

4.3.2 Pairwise SVM Classification of Multiple Classes

The previous section described a SVM for two-class THz pulse signal classification.
This type of binary hypothesis is addressed by dichotomy (fromGreek‘τoμη’, or sec-
tioning), classifiers. This is appropriate for simple two-class classification problems
where, say, different objects from T-ray pulses need to be discriminated. However,
the majority of object recognition problems require the simultaneous classification
of several objects. The optimal choice of design parameters of multiclass SVM clas-
sifiers is still an area of active research. One frequently adopted method is to use a
pairwise classifier, based on one-against-one decomposition, and a decision function,
fkl . Here, kl indicates each pair of classes selected from separated target classes. One
can write fkl = − fkl , where fkl satisfies the following equation:

fkl(x) = wklx + bkl (4.13)

where w is normal to the hyperplane between class k and class l, |b|/||w|| is the
perpendicular distance from the hyperplane to the origin, and ||w|| is the Euclidean
norm of w with a vector dimension of M .

The signum function is used for the hard threshold decisions:

sgn( fkl(x)) =
{
1, fkl(x) > 0

−1, fkl(x) ≤ 0.
(4.14)

The class decision can be achieved by summing up the pairwise decision functions
according to:

fk(x) =
n∑

k �=l,l=1

sgn( fkl(x)) (4.15)

where n is the number of the separated target classes.
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Thepairwise classifier proceeds as follows: assign a label to the class, {argmax fk(x),
(k = 1, . . . , n)}. The max number of votes for k classes holds {max k → fk =
(k − 1)}. If Eq. (4.15) is satisfied for {max k → fk < (k − 1)}, x is unclassifiable.
The pairwise classification procedure, iteratively converts the n-class classification
problem into n(n − 1)/2 two-class problems which cover all pairs of classes.

4.3.3 Application of SVM Classifiers to THz-TPI
Measurements

Kernel based learning and SVMmethodologies reside at the core of a range of inter-
disciplinary challenges. Their formulation shares concepts from different disciplines
such as: linear algebra, mathematics, statistics, signal processing, systems and con-
trol theory, optimization, machine learning, pattern recognition, data mining and
neural networks. As stated earlier, the idea of the SVM is to map data from the input
space into a high-dimensional feature space, in which an optimal separating hyper-
plane that maximizes the boundary margin between two classes can be established.
At its core, SVMs are two-class classifiers. Recently, SVMs have been extended
to solve multi-class classification problems from noisy biomedical measurements.
Furthermore, there are several reports discussing the use of SVMs for THz material
identification. Pan et al. [436] used SVMs to classify THz absorption spectra for the
purpose of illicit drug identification. They successfully identified seven pure illicit
drugs establishing this methodology for drug identification. Fitzgerald et al. [166]
applied the SVM approaches combined with a radial basis function to discriminate
normal from malignant breast tissue from THz-TPI. Yin et al. [17] applied SVMs
to perform multi-class classification of THz powder spectra for six types of powder
materials with similar optical properties. Figure4.1 illustrates the multi-class separa-
tion for these six types of powder substances using SVMs, after adopting according
to a pair wise-strategy. One real Gaussian kernel withC = 1000 and σ = 1×10−7 is
used to map the input data into a 2D Fourier feature space for visualisation purposes.
The support vectors indicated by cyan circles are subsets of the training data sets
and are used to construct a two-dimensional hyperplane in feature space that acts as
a boundary separating each class of different powder materials.

Within the MRI community, SVM is also quickly being established as an impor-
tant emergent classification modality. Examples of early adoption of the technique
include the work by Selvaraj et al. who used linear as well as nonlinear Radial Basis
Function (RBF) kernels and compared those with other classifiers like SVM with
linear and nonlinear RBF kernels, an RBF classifier, aMulti Layer Perceptron (MLP)
classifier and a K-NN classifier to identify normal and abnormal slices of brain MRI
data [437]. Their work showed promising results using least-squares (LSSVM) clas-
sifiers. Other examples include SVM based meta-analysis combining information
from magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission
tomography (FDG-PET) for improved detection and differentiation of Alzheimer’s
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Fig. 4.1 Learning vectors
for the powder data sets
plotted to illustrate the linear
decision function between
the pairs of classes after
applying a Gaussian kernel
for mapping. There are 49
pixels randomly selected
from each of the six powder
samples. Background colour
clearly shows the contour
shape of the decision
surface. The small yellow
region on the bottom of the
right hand side denotes
undecided classification
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disease, dementia and frontotemporal lobar degeneration [438]. Singh and Kaur dis-
cussed the possibility of performing classification of abnormalities in brain MRI
images using GLCM, PCA and SVM [439]. Zacharaki et al. provided preliminary
results on MRI data classification of brain tumour types and grades [440]. This work
was followed by another study [440] combining textural (Gabor texture) and shape
information using a ranking based criterion for feature selection (RFE) before pre-
senting the sub-features to SVM-RFE, LDA, and k-NN classifiers. Zhang et al. [441]
proposedmulti-kernel SVM integrated with a fusion process, to segment brain tumor
frommulti-sequenceMRI (T2, PD, FLAIR) images. Ortiz et al. [442] discussedMRI
image segmentation using SOMandCONN linkage and subsequent feature reduction
based on Fisher Discriminant Ratio (FDR) and Learning Vector Quantization (LVQ)
using a hybrid (LVQ-SVM) algorithm for the diagnosis of the Alzheimer’s Disease
(AD). There have also been examples of deep learning based feature representation
such as the work in [443] which proposed computer-aided diagnosis of AD at early
stages ofmild cognitive impairment. The comprehensive study byAguilar et al. [444]
that used four supervised learning methods to classify AD patients: controls orthog-
onal projections to latent structures (OPLS), decision trees (Trees), artificial neural
networks (ANN) and LIBSVM implementation of SVM also paves the way for the
adoption of deep learning techniques in the future. Another study byAkselrod-Ballin
et al. [445] that combines amultiscale multi-channel three dimensional segmentation
algorithmwith an SVM classifier for the automatic identification of anatomical brain
structures in MRI, can also be placed in a deep learning context. Feature selection in
that work is also biased using an MRI probabilistic atlas. As discussed in a follow-
ing section, the above studies make artificial intelligence algorithms based on deep
architectures, a focal point for future research. Recent multispectral MRI studies
[446] are also pointing towards a need to consider a multi-parametric input classifier
space. So in the following section an extreme learning machine (ELM) classifier is
discussed as it has been recently extended to higher dimensional spaces.
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4.4 Real-Valued Extreme Learning Machine Classifier

The real-valued extreme learning machine is a generalised single-hidden-layer feed-
forward network (SLFN). It maps the training data X from input space to feature
space using a feature map ψ(X) with output weights ω. In contrast to SVMs,
ELM theory [448, 449] shows that the item bias b should not be given in the
ELM learning. Therefore, in this feature space, a linear decision function fL is
constructed as fL(X) = ψ(X)ωv where ωv = [ω1, . . . , ωL ]T is the vector of
the output weights between the hidden layer of L nodes and the output node and
ψ(X) = [ϕ1(X), . . . , ϕL(X)] is the output feature vector of the hidden layer with
respect to the input X. The latter maps the data from the λ dimensional input space
to the L-dimensional hidden-layer feature space or ELM feature space H .

Given a set of training data (xi , ϑv
i ), and θ = [ϑv

1 , . . . , ϑ
v
N ]T with ϑv

i (i ∈
1, . . . , N ) real-valued known label matrix corresponding to m classes, the func-
tion of the ELM algorithm is to minimize the training error ‖ψω− θ‖2 and the norm
of the output weights ‖ω‖. The hidden-layer feature mapping matrix ψ is
represented as:

ψ =
⎡
⎢⎣

ϕ1(x1) · · · ϕL(x1)
...

...
...

ϕ1(xN ) · · · ϕL(xN )

⎤
⎥⎦ (4.16)

where the size of ψ is only decided by the numbers of training samples N and the
number of hidden nodes L , which is irrelevant to the number of output nodes (number
of classes), and x1, . . . , xn ∈ X.

For an m class classifier with m output nodes where m > 1, the classification
problem (denoted by �P ) using the ELM classifier can be formulated as

min : �P = 1

2
‖ω‖2 + C

1

2

N∑
i=1

‖ξ v
i ‖2 (4.17)

where ξ v
i
T = ϑvT

i −ψ(xi )ω, i = 1, . . . , N , ϑv
i = ϑi,1, . . . , ϑi,N , ω = [ωv

1, . . . , ω
v
m],

and the training error vector ξ v
i = [ξi,1, . . . , ξi,m]T . Symbol C is a penalty variable,

which is a user-specific parameter and provides a trade-off between the distance of
the separating margin and the training errors. When the Sth element ϑi,S is one and
the remaining of ϑv

i are zero, that means the original class label is S.
The Karush-Khun-Tuker (KKT) theorem is used to solve the dual optimization

problem (denoted by �D) in order to train the ELM classifier:
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�D = 1

2
‖ω‖2 + C

1

2

N∑
i=1

‖ξ v
i ‖2

−
N∑
i=1

m∑
ι=1

ai,ι(ψ(xi )ωι − ϑi,ι − ξi,ι) (4.18)

where ωv
ι is the vector of the weights linking the hidden layer to the ιth output node,

and ω = [ωv
1, . . . , ω

v
m]. The Lagrange multiplier A = [a1, . . . , aN ]T is used with

each element ai = [ai,1, . . . , ai,m] to be a vector. The rules of Wirtinger’s Calculus
are employed to compute the respective gradients:

∂�D

∂ωv
ι

= 0 → ω = ψTA (4.19)

∂�D

∂ξ v
i

= 0 → ai = Cξ v
i , i = 1, . . . , N (4.20)

∂�D

∂ai
= 0 → ψ(xi )ω − ϑvT

i + ξ vT
i = 0, i = 1, . . . , N (4.21)

According to the aforementioned equations, for the case where the number
of training samples is not too large (L >> N ) the output function of the ELM
classifier is:

f(X) = ψ(X)ω = ψ(X)ψT (
I
C

+ ψψT )−1θ (4.22)

where I = [1, 1, . . . , 1]T .
With fι(X) denoting the output function of the ιth output node and f(X) =

[f1(X), . . . , fm(X)], the predicted class label of sample X is

label(X) = argi∈1,...,m max fi (X). (4.23)

In this case where the number of training samples is very large (N >> L), the
output function of the ELM classifier is given from:

f(X) = ψ(X)ω = ψ(X)(
I
C

+ ψTψ)−1ψT θ (4.24)
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4.5 Complex Valued ELMs for Classification

Another important direction for feature classification is discussed in the recent work
by Yin et al. [447], where they discussed the application of extended Extreme Learn-
ing Machines (ELMs) [448, 449] to complex valued problems. The motivation for
the proposed extension stems from the fact that the real valued ELM has shown
some of the lowest training errors among machine learning algorithms and in par-
ticular SVM classifiers [17, 31, 450, 451]. Furthermore, existing machine learning
techniques are focused on real valued datasets.

Traditional amplitude only based pattern mining approaches of spatio-temporal
images has classification limitations in samples that display highly correlated
time-frequency or time-space features. The complex-valued ELMs (CELMs) adopt
induced complexRKHSkernels [458] tomap inputs from complex-valued non-linear
spaces to other real valued higher dimensional linear spaces. This permits us to clas-
sify the inputs with linear complex valued feature vectors, for example, preserving
the information in the phase of the signal (dispersion). This approach is based on
concepts developed for complex or quaternion variable classification, through the
introduction of two complex-coupled hyperplanes [459]. A widely linear estimation
processing approach is adopted and the argument composed of the sum of the two
parts (real and imaginary) is employed to relate the input feature space to the output
feature space through the hidden layer of the classifier. This approach enables us to
define a kernel function specific for the separation of the data in high dimensional
complex coupled hyperplanes. The approach is also compatible with the processing
of datasets in tensorial format which enable additional image features (hyperspectral,
amplitude, phase, polarization or spatiotemporal components) to be simultaneously
retained.

4.5.1 Review of Complex-Valued RKHS and Wirtinger’s
Calculus

Kernel based methods have been used as popular tools to solve non-linear classifica-
tion problems inmachine learning, amongwhichReproducingKernel Hilbert Spaces
(RKHS) algorithms play a central role. Recently, a novel class of complex-valued
RKHS (CRKHS) algorithms was introduced aimed at mapping the inputs to the pri-
mal and dual Hilbert space [459]. The general class of CRKHS algorithms develop
kernel algorithms in the widely linear sense [459] that are suitable for the processing
of complex-valued data, i.e. higher dimensional datasets which are often associated
with separable features in both space and time. Throughout this section, we denote
the sets of all integers, real and complex numbers by N , R, and C respectively.
We use � and � to denote the real and imaginary parts. The imaginary operator is
denoted by J . Complex-valued quantities are denoted using the caret symbol and
matrix and vector valued quantities are labelled by boldfaced symbols.
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The CRKHS algorithm performs a nonlinear estimation via mapping the input
space to an infinite dimensional feature space, where the output is a linear combi-
nation of the feature maps. The presented methods build upon kernel matrices of
the form (ψ̂(ẑ1), . . . , ψ̂(ẑN )), N ∈ N , and ẑn (n = 1, 2, . . . , N ) denotes the nth

set of complex valued input data with ẑn ∈ C (�) and � denoting the number of
dimensions of ẑn . The complex data Ẑ = ẑ1, ẑ2, . . . , ẑN are mapped to the feature
space Ĥ such that ψ̂ : C n → Ĥ : ψ̂(Ẑ) = κ̂(·, Ẑ), where Ĥ is also called
complex-valued Hilbert spaces and is the complex-valued RKHS induced by the
complex kernel function κ̂ : χ̂ × χ̂ → f̂ with Ẑ = X+JY ∈ χ̂ , and f̂ is a complex
decision function. We call ψ̂ , the feature map of Ĥ . An important complex kernel
that may be used is the complex Gaussian kernel. This is defined as follows:

κ
j
σ j ,C d (Ẑ, ω̂) := exp

(
−

∑d
k = 1(ẑk − ω̂

∗
k)

2

σ 2
j

)
, (4.25)

where Ẑ, ω̂ ∈ C d , d ∈ N or infinite, and ω̂ labels complex weight (margin), with
the symbol ∗ denoting a Hermitian matrix, ẑk denoting the k-th component of the
complex vector Ẑ ∈ C d and exp(·) denotes the extended exponential function in the
complex domain. Here, κ j indicates the j-th kernel function, depending on the value
of kernel parameter σ j , which in our case can be varied to account for different input
requirements. A simpler method is to fix the value of kernel parameter σ j to σ for
all kernels in order to simplify computation [457].

The inner product of a complex kernel function κ̂ is defined so that it satisfies the
following equations:

κ̂(Ẑ, Ẑ′) = (〈κ̂(·, Ẑ), κ̂(·, Ẑ′)〉Ĥ )∗ (4.26)

This equation shows that the inner product of the complex kernel function κ̂

is Hermitian, indicated by ∗. We define the spaces X 2 ≡ X × X ⊆ R2n and
Ẑ, Ẑ′ ∈ χ̂ ⊆ C n (two complex inputs to be classified on the basis of Ẑ and Ẑ′). Then
every f̂ ∈ Ĥ can be viewed as a function defined on either X 2 or χ̂ such that

f̂(Ẑ) = f̂(X + JY) = f̂(X,Y). (4.27)

According to [458], the complexity of Hilbert space Ĥ = f̂� + I f̂�; f̂�, f̂� ∈ H

is a doubled real space H , and satisfies Ĥ = H × H = H 2. The complexified
space Ĥ is a complex RKHSwith complex kernel κ̂ , which can be represented by its
respective real kernelwith corresponding imaginary part of zero. The complex feature
map ψ̂(Ẑ) of the sampled data from the complex input space to the complexified
RKHS Ĥ follows the equation:

ψ̂(Ẑ) = ψ̂(X + JY) = ψ̂(X,Y) = ψ(X,Y) + Jψ(X,Y) (4.28)

whereψ ∈ R is the feature map of the real reproducing kernel κ ∈ R and satisfying
ψ(X,Y) = κ(·, (X,Y)).
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We deduce the following equation:

〈ψ̂(Ẑ), ψ̂(Ẑ′)〉Ĥ = 2〈ψ(X,Y),ψ(X′,Y′)〉H
= 2κ〈(X′,Y)′, (X,Y)〉 (4.29)

We can extend the two-dimensional complex inner product to three dimensions.
This can be described as

〈ψ̂(Ẑ), ψ̂(Ẑ′)〉Ĥ = 〈ψ(X,Y,V),ψ(X′,Y′,V′)〉H 3

= 2〈[e′
1, e

′
2], [e1, e2]〉 + 2〈[e′

2, e
′
3], [e2, e3]〉 + 2〈[e′

1, e
′
3], [e1, e3]〉 (4.30)

where [e1, e2] = ψ(X,Y) = ψ(Y,X) = [X,Y] with X,Y ∈ R, and similar to
[e1, e3], [e2, e3], [e′

1, e
′
2], [e′

1, e
′
3], and [e′

2, e
′
3]. The bivectors eυ and e′

υ , υ = 1, 2, 3
are the orthonormal basis (planes) of the two complex inputs Ẑ and Ẑ′ = RX′ +
JY′ +K V′, respectively, where the quantitiesR,J andK are the scalar parts of
a hypercomplex-like inner product structure; the kernel function with the equation
κ(, ) = 〈, 〉 reproduces a Hilbert space H . By following Eq.4.30, we can easily
deduce that the dual of the 3D complexified ELM task is equivalent to six real ELM
tasks employing the kernel 2κ .

4.5.2 Defining Higher-Dimension Hyprplanes Using
Quaternion and Other Division Algebras for
Classification

An important aspect in machine learning is to find hyperplanes that separate the
associated input and output vector spaces according to different target classes. Using
a binary classification for example, as shown in Fig. 4.2, a hyperplane can be defined

Fig. 4.2 Illustration of a
hyperplane in EML to
separate the space H into
two parts, H+ and H−
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for the Extreme Learning Machine to separate the spaceH into two parts,H+ and
H−.

Recall that in any real Hilbert spaceH , a hyperplane may be defined, containing
all the elements f ∈ H that satisfy

〈f,ω〉H = 0, (4.31)

for some ω ∈ H . In contrast to real-valued SVM algorithms, in the real-valued
ELM algorithms, the offset of the hyperplane from the origin has been removed. As
shown in Fig. 4.2, where ELM is used to obtain binary classification of inputs, any
hyperplane of H divides the space into two parts, H+ = f ∈ H ; 〈f,ω〉H > 0
and H− = f ∈ H ; 〈f,ω〉H < 0. The goal of the ELM classifiers is to sepa-
rate distinct classes of data via minimising the norm of output weights ‖ω‖ that
actually leads to a maximum margin hyperplane [457]. To generalize the ELM clas-
sifier to operate in a complex space, we adopt the method proposed in [458], and
define a complex hyperplane that divides the complex space Ĥ into four parts
by introducing a Hermitian matrix, label ∗. This approach enables the classifica-
tion of objects into four classes (instead of two), as shown in Fig. 4.3. In imag-
ing applications, spatial features in adjacent pixels can be retained, i.e. we have
real and imaginary components in x and y directions. According to [458], we
have 〈f̂, ω̂〉Ĥ = 〈f̂�, ν̂

�〉H + 〈f̂�, ω̂
�〉H + I (〈f̂�, ω̂

�〉H − 〈f̂�, ω̂
�〉H ) where

Ĥ = H 2, f̂, ω̂ indicates a complex decision function and the corresponding mar-
gin of the hyperplane Ĥ . The symbol of 〈·〉H denotes the inner product in the
corresponding real-valued input space. It can be represented by its respective real
kernel with corresponding imaginary part of zero. It satisfies the equation:

κ(X,Y) = 〈κ(·,X), κ(·,Y)〉H
= κ〈(·,Y), κ(·,X)〉H = κ∗(X,Y) (4.32)

Fig. 4.3 Illustration of a
complex couple of
hyperplanes in ELM to
divide the complex space Ĥ
into four parts via
introducing Hermitian
matrix, label ∗. Symbols of
ω̂ and ν̂ denote the output
weights in relation to
decision function of f̂L and
its couple f̂L∗
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The Hermitian matrix, indicated by ∗, is a matrix with complex entries and is equal
to its own conjugate transpose. The kernel κ(·,X) is used for a feature map of
real-valued input space H , labelled by ψ(X). The corresponding complex kernel
κ̂(·, Ẑ) is a linear combination of real value kernels. We use symbols ψ̂(Ẑ) to denote
complex feature mapping in the context. In this, as well as in the following section, in
addition to the bold-faced symbols used for the vector and matrix valued quantities,
we use the symbol caret above all the complex-valued quantities that are related to
matrices, with specific subscripts to denote the corresponding row and/or column of
the complex-valued entries.

Let Ĥ be a complex Hilbert space. The complex couple of hyperplanes is defined
as the set of all f ∈ Ĥ that satisfy one of the following relations

�(〈f̂L , ω̂〉Ĥ + 〈f̂L∗, ν̂〉Ĥ ) = 0 (4.33a)

�(〈f̂L , ω̂〉Ĥ + 〈f̂L∗, ν̂〉Ĥ ) = 0 (4.33b)

for some ω̂, ν̂ ∈ Ĥ , where f̂L ∈ Ĥ represents two hyperplanes of the doubled real
space, H 2.

The input space is divided into four portionswhich are associatedwith the complex
couple of hyperplanes as shown below:

H++ =
{

�(〈f̂L , ω̂〉Ĥ + 〈f̂L∗ , ν̂〉Ĥ ) > 0

�(〈f̂L , ω̂〉Ĥ + 〈f̂L∗ , ν̂〉Ĥ ) > 0
(4.34a)

H+− =
{

�(〈f̂L , ω̂〉Ĥ + 〈f̂L∗ , ν̂〉Ĥ ) > 0

�(〈f̂L , ω̂〉Ĥ + 〈f̂L∗ , ν̂〉Ĥ ) < 0
(4.34b)

H−+ =
{

�(〈f̂L , ω̂〉Ĥ + 〈f̂L∗ , ν̂〉Ĥ ) < 0

�(〈f̂L , ω̂〉Ĥ + 〈f̂L∗ , ν̂〉Ĥ ) > 0
(4.34c)

H−− =
{

�(〈f̂L , ω̂〉Ĥ + 〈f̂L∗ , ν̂〉Ĥ ) < 0

�(〈f̂L , ω̂〉Ĥ + 〈f̂L∗ , ν̂〉Ĥ ) < 0
(4.34d)

We now extend the formulation to 3D complex inputs. The 3D complex inputs
are orthogonally projected into three 2D complex input spaces along horizontal (e1),
vertical (e2) and frontal (e3) directions.As a result,we obtain three decision functions:
f̂Le1 , f̂Le2 , f̂Le3 and the associated output weights ω̂e1 , ω̂e2 , ω̂e3 . The three decision
functions span the subspace of the three real hyperplanes HE, E = e1, e2, e3. That
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Fig. 4.4 Illustration of a
rational complex
hyperpspace consisting of
three complex couples of
hyperplanes calculated via
ELMs

is, f̂Le1 ∈ He1 , f̂Le2 ∈ He2 , f̂Le3 ∈ He3 . As the three coupled hyperplanes form
3D hyperspaces, in the following equations, we use Ω instead of H to represent
the real hyperspace in three dimensions. The complexified hyperspace ω̂ in three
dimensions is equivalent to tripleH . The coupled parts consist of f̂∗Le1, f̂

∗
Le2

, f̂∗Le3 andˆ̈ωe1 ,
ˆ̈ωe2 ,

ˆ̈ωe3 . As shown in Fig. 4.4, we label the coordinate planes of x − y, x − z
and y − z with e1, e2, e3, respectively. We use r, j, k instead of −, + to label
the 3D complex hyperspaces ω̂ split into eight quadrants. The symbols of r, j, k
are associated with the x-axis, y-axis, z-axis, respectively, and satisfy the functions:
r = e2e3, j = e3e1, and k = e1e2. These complex hyper-spaces are represented as
follows:

Ωrr j =

⎧
⎪⎪⎨
⎪⎪⎩

R(〈f̂Le1 , ω̂e1〉Ĥe1
+ 〈f̂∗Le1 , ˆ̈ωe1〉Ĥe1

) > 0

R(〈f̂Le2 , ω̂e2〉Ĥe1
+ 〈f̂∗Le2 , ˆ̈ωe2〉Ĥe2

) > 0

J (〈f̂Le3 , ω̂e3〉Ĥe1
+ 〈f̂∗Le3 , ˆ̈ωe3〉Ĥe3

) > 0

(4.35a)

Ω jrk =

⎧
⎪⎪⎨
⎪⎪⎩

J (〈f̂Le1 , ω̂e1〉Ĥe1
+ 〈f̂∗Le1 , ˆ̈ωe1〉Ĥe1

) > 0

R(〈f̂Le2 , ω̂e2〉Ĥe1
+ 〈f̂∗Le2 , ˆ̈ωe2〉Ĥe2

) > 0

K (〈f̂Le3 , ω̂e3〉Ĥe1
+ 〈f̂∗Le3 , ˆ̈ωe3〉Ĥe3

) > 0

(4.35b)

Ωrkk =

⎧
⎪⎪⎨
⎪⎪⎩

R(〈f̂Le1 , ω̂e1〉Ĥe1
+ 〈f̂∗Le1 , ˆ̈ωe1〉Ĥe1

) < 0

K (〈f̂Le2 , ω̂e2〉Ĥe1
+ 〈f̂∗Le2 , ˆ̈ωe2〉Ĥe2

) > 0

K (〈f̂Le3 , ω̂e3〉Ĥe1
+ 〈f̂∗Le3 , ˆ̈ωe3〉Ĥe3

) > 0

(4.35c)
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Ω jk j =

⎧
⎪⎪⎨
⎪⎪⎩

J (〈f̂Le1 , ω̂e1〉Ĥe1
+ 〈f̂∗Le1 , ˆ̈ωe1〉Ĥe1

) < 0

K (〈f̂Le2 , ω̂e2〉Ĥe1
+ 〈f̂∗Le2 , ˆ̈ωe2〉Ĥe2

) > 0

J (〈f̂Le3 , ω̂e3〉Ĥe1
+ 〈f̂∗Le3 , ˆ̈ωe3〉Ĥe3

) > 0

(4.35d)

Ω−rkk =

⎧
⎪⎪⎨
⎪⎪⎩

R(〈f̂Le1 , ω̂e1〉Ĥe1
+ 〈f̂∗Le1 , ˆ̈ωe1〉Ĥe1

) > 0

K (〈f̂Le2 , ω̂e2〉Ĥe1
+ 〈f̂∗Le2 , ˆ̈ωe2〉Ĥe2

) < 0

K (〈f̂Le3, ω̂e3〉Ĥe1
+ 〈f̂∗Le3 , ˆ̈ωe3〉Ĥe3

) < 0

(4.35e)

Ω− jk j =

⎧
⎪⎪⎨
⎪⎪⎩

J (〈f̂Le1 , ω̂e1〉Ĥe1
+ 〈f̂∗Le1 , ˆ̈ωe1〉Ĥe1

) > 0

K (〈f̂Le2 , ω̂e2〉Ĥe1
+ 〈f̂∗Le2 , ˆ̈ωe2〉Ĥe2

) < 0

J (〈f̂Le3 , ω̂e3〉Ĥe1
+ 〈f̂∗Le3 , ˆ̈ωe3〉Ĥe3

) < 0

(4.35f)

Ω−rr j =

⎧
⎪⎪⎨
⎪⎪⎩

R(〈f̂Le1 , ω̂e1〉Ĥe1
+ 〈f̂∗Le1 , ˆ̈ωe1〉Ĥe1

) < 0

R(〈f̂Le2 , ω̂e2〉Ĥe1
+ 〈f̂∗Le2 , ˆ̈ωe2〉Ĥe2

) < 0

J (〈f̂Le3 , ω̂e3〉Ĥe1
+ 〈f̂∗Le3 , ˆ̈ωe3〉Ĥe3

) < 0

(4.35g)

Ω− jrk =

⎧
⎪⎪⎨
⎪⎪⎩

J (〈f̂Le1 , ω̂e1〉Ĥe1
+ 〈f̂∗Le1 , ˆ̈ωe1〉Ĥe1

) < 0

R(〈f̂Le2 , ω̂e2〉Ĥe1
+ 〈f̂∗Le2 , ˆ̈ωe2〉Ĥe2

) < 0

K (〈f̂Le3 , ω̂e3〉Ĥe1
+ 〈f̂∗Le3 , ˆ̈ωe3〉Ĥe3

) < 0

(4.35h)

Here, H− denotes the opposite site associated with the complex hyperplane sur-
facesH . The decision functions f̂, ĝ, d̂ are implemented using the same kernel with
different coordinates. As shown in Fig. 4.4, the three complex couples (indicated by
three red solid lines) of hyperplanes in the fourth quadrant form a rational complex
hyperplane (a 3D rational complex hyper-space). The complex hyper-spaces divide
the 3D complex entries into eight parts. For classification of m > 1 classes, these
inputs will be further grouped with total 23−1 × m classes via ELM.

We formulate the complexELMclassification task as follows. The given complex-
valued training samples consist of eight separate classes Λrr j , Λ jrk , Λrkk , Λ jk j ,
Λ−rkk , Λ− jk j , Λ−rr j , Λ jrk such as {(ẑn, ϑn); n = 1, . . . , N } ⊂ Ψ × {±r ± j ± k}.
That is: if ϑn = +R + R + J , then ẑn ∈ Λrr j ; If ϑn = +J + R + K , then
ẑn ∈ Λ jrk; If ϑn = −R +K +K , then ẑn ∈ Λrkk ; If ϑn = −J +K +J , then
ẑn ∈ Λ jk j ; If ϑn = +R − K − K , then ẑn ∈ Λ−rkk ; If ϑn = +J − K − J ,
then ẑn ∈ Λ− jk j ; If ϑn = −R −R −J , then ẑn ∈ Λ−rr j ; If ϑn = −J −R −K ,
then ẑn ∈ Λ− jrk . Here, ẑn = X + JY + K Z, Λ− + Λ = 0, and Λ,Ψ ∈ ω̂.
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4.5.3 Determination of the Maximum-Margin Hyperplanes
of CELM

The goal of the complex machine learning task is to estimate a complex couple of
maximummargin hyperplanes. According to the work in [458], for a 2D simple case,
the aim is to minimise

∥∥∥∥
ω̂
r + ν̂

r

ω̂
j − ν̂

j

∥∥∥∥
2

H 2

+
∥∥∥∥
−(ω̂

j + ν̂
j
)

ω̂
r − ν̂

r

∥∥∥∥
2

H 2

= 2(‖ω̂‖2H + ‖ν̂‖2H ).

In a similar manner to the ELM algorithm, for the classification task, CELM is
used to minimize the training error δ̂ = ‖ψω̂ + ψ∗ν̂ − θ̂‖2 with θ̂ = [ϑ̂1, . . . , ϑ̂N ]T
being a known complex-valued label matrix corresponding to m classes, as well
as the norm of the output margins (weights). Therefore, the primal complex ELM
optimization problem can be formulated as

min
(ω̂,ν̂,C)

=
(
1

2
‖ ω̂ ‖2

Ĥ
+1

2
‖ ν̂ ‖2

Ĥ
+C

N

N∑
n=1

(δ̂n
2
)

)
, (4.36)

Subject to:

{
�(〈ψ̂Ĥ (ẑn), ω̂〉 + 〈ψ̂∗

Ĥ (ẑn), ν̂〉) ≥ ϑ̂r
n − δ̂rn

�(〈ψ̂Ĥ (ẑn), ω̂〉 + 〈ψ̂∗
Ĥ (ẑn), ν̂〉) ≥ ϑ̂

j
n − δ̂

j
n

(4.37)

whereC is a parameter givenbyusers aiming to trade-off the distance to the separating
margin with the training error. Using positive Lagrangian multipliers a and b, the
Lagrangian function becomes:

L(ω̂,ν̂, a,b) = 1

2
‖ ω̂ ‖2

Ĥ
+1

2
‖ ν̂ ‖2

Ĥ
+C

N
‖ δ̂rn,ρ + δ̂ j

n,ρ ‖2

−
N∑

n=1

m∑
ρ=1

an,ρ

(
�(〈ψ̂Ĥ (ẑn), ω̂ρ〉 + 〈ψ̂∗

Ĥ (ẑn), ν̂ρ〉
) − ϑ̂r

n,ρ + δ̂rn,ρ

)

−
N∑

n=1

m∑
ρ=1

bn,ρ

(
�(〈ψ̂Ĥ (ẑn), ω̂ρ〉 + 〈ψ̂∗

Ĥ (ẑn), ν̂ρ〉
) − ϑ̂ j

n,ρ + δ̂ j
n,ρ

)
(4.38)
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Here, θ̂n = {ϑ̂n,ρ} with ρ = 1, . . . ,m and n ∈ 1, . . . , N , where {ϑ̂n,ρ} denotes
the output value of the ρth output node for the training data ẑn and m labels the
number of the classes of the output. When both the real and imaginary parts of the
Sth element ϑ̂n,S are one and the remaining elements of ϑ̂n are zero, the original
class label is S +J S. According to Wirtinger’s Calculus to compute the respective
gradients, we have

∂L

ω̂
∗
ρ

= 1

2
ω̂ρ − 1

2

N∑
n = 1

an,ρψ̂
T

Ĥ (ẑn) + J

2

N∑
n = 1

bn,ρψ̂
T

Ĥ (ẑn) = 0

⇒ ω̂ρ =
N∑

n = 1

(
αn,ρ − J bn,ρ

)
ψ̂

T

Ĥ (ẑn) (4.39)

∂L

ν̂
∗
ρ

= 1

2
ν̂ρ − 1

2

N∑
n = 1

an,ρψ̂
∗T

Ĥ (ẑn)+J

2

N∑
n = 1

bn,ρψ̂
∗T

Ĥ (ẑn) = 0

⇒ ν̂ρ =
N∑

n = 1

(
an,ρ − J bn,ρ

)
ψ̂

∗T
Ĥ (ẑn) (4.40)

∂L

δ̂rn,ρ

= 2C

N
δ̂rn,ρ − an,ρ = 0 ⇒ δ̂rn,ρ = N

2C
an,ρ

∂L

δ̂
j
n,ρ

= 2C

N
δ̂ j
n,ρ − bn,ρ = 0 ⇒ δ̂ j

n,ρ = N

2C
bn,ρ (4.41)

∂L

an,ρ

= −1

2

(
�

(
〈ψ̂Ĥ (ẑn), ω̂ρ〉 + 〈ψ̂∗

Ĥ (ẑn), ν̂ρ〉
))

−1

2

(
−ϑ̂r

n,ρ + δ̂rn,ρ

)
= 0 (4.42)

∂L

bn,ρ

= −1

2

(
�

(
〈ψ̂Ĥ (ẑn), ω̂ρ〉 + 〈ψ̂∗

Ĥ (ẑn), ν̂ρ〉
))

−1

2

(
−ϑ̂ j

n,ρ + δ̂ j
n,ρ

)
= 0 (4.43)
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According to the last two equations,

〈ψ̂Ĥ (ẑn), ω̂ρ〉 + 〈ψ̂∗
Ĥ (ẑn), ν̂ρ〉 − ϑ̂n,ρ + δ̂n,ρ = 0 (4.44)

By substituting Eqs. 4.39–4.41 and 4.44 can be written as

(
a − J b

) (
ψ̂Ĥ (ẑn)ψ̂

T

Ĥ (ẑn) + ψ̂
∗
Ĥ (ẑn)ψ̂

∗T
Ĥ (ẑn)

)

+ N

2C
(a + J b) = θ̂ (4.45)

The output decision functions of the CELM classifier are:

�(f̂L(Ẑ)) = �
(
ψ̂Ĥ (Ẑ), ω̂

)

= �
(

ψ̂Ĥ (Ẑ)ψ̂
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((
ψ̂Ĥ ψ̂

T

Ĥ + ψ̂
∗
Ĥ ψ̂

∗T
Ĥ

)
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I
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)
(4.46a)
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T
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Ĥ ψ̂
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2C
I
)−1

θ̂

)
(4.46b)
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(4.46c)
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ψ̂

∗
Ĥ (Ẑ), ν̂

)

= − �
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ψ̂
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Ĥ (Ẑ)ψ̂
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Ĥ
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ψ̂Ĥ ψ̂

T

Ĥ + ψ̂
∗
Ĥ ψ̂

∗T
Ĥ

)
+ N

2C
I
)−1
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)
(4.46d)

where ψ̂Ĥ ψ̂
T

Ĥ and ψ̂
∗
Ĥ ψ̂

∗T
Ĥ are N × N or L × L matrices, according to the size

of the inputs. The predicted class label of sample Ẑ:

label(Ẑ) = arg max
n=1,...,m

(〈ψ̂Ĥ (Ẑ), ω̂〉 + 〈ψ̂∗
Ĥ (Ẑ), ν̂〉) (4.47)
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where label(Ẑ) = label(�(Ẑ)) +J label(�(Ẑ)). Here, we employ the induced real
kernel 2κ̂r instead of the complex kernel κ̂ for the solution of the complex labelling
function.

For the 3Dmulticlass classification, the complex labelling function can be written
as the linear combination of 2Dmulticlass classification tasks along three orthogonal
coordinate planes. It satisfies the following expression:

label(Ẑ) = arg max
n=1,...,m

〈ψ̂(Ẑ), ω̂e1〉Ĥe1
+ 〈ψ̂∗

(Ẑ), ˆ̈ωe1〉Ĥe1

+ 〈ψ̂(Ẑ), ω̂e2〉Ĥe2
+ 〈ψ̂∗

(Ẑ), ˆ̈ωe2〉Ĥe2

+ 〈ψ̂(Ẑ), ω̂e3〉Ĥe3
+ 〈ψ̂∗

(Ẑ), ˆ̈ωe3〉Ĥe3
(4.48)

This is consistent with Sect. 4.5.2.
The block diagramof the proposed algorithm is illustrated inFig. 4.5. The complex

extreme learning machine enables multi-class classification when both the input and
output variables, as well as the optimisation variables, are all complex-valued. The
label for a given testing sample from multi-class is complex-valued and has the
highest output value of the complex-coupled output decision functions f̂L and f̂L∗ for
the given testing sample.

The CELM classifier approach has a very broad applications domain across the
biomedical community, encompassing all types of research associated with the study
of the interaction of matter with waves, and in particular spectroscopy (acoustic,
dielectric, optical, THz, infrared, electron-spin resonance, nuclear magnetic or para-
magnetic resonance, etc.), as well as imaging and tomography modalities encoun-
tered across the physical, chemical and biomedical disciplines. It is thus fundamental,
both from a machine learning, as well as from a chemometrics perspective [460].
Because the above relations are also analogous to the blurring function (relating
amplitude and phase) developed by Bode [461] to describe the dynamics of physical

Fig. 4.5 Illustration of the procedure for 2D complex-valued learning via complex extreme learning
machine. The system facilitates multi-class classification when both input and output variables are
complex-valued. The approach also uses optimisation variables that are complex-valued. The label
for a given testing sample from the multi-class is a complex-valued entity which has the highest
output value associated with the complex-coupled output decision functions f̂L and f̂L∗ for the given
testing sample
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systems, CELMs have a wide range of applications across all physical sciences. A
typical example of the proposed approach is the recent study [226] which focused on
the use of CELM to perform binary andmulti-class classification of RNA and powder
samples respectively, on the basis of images acquired by THz-TPI. The analysis was
performed on large data sets as would be the case in a typical biomedical or quality
control setting. Classification was performed on the basis of discernible features in
the measured THz spectra.

Examples of learning vector patterns for two-class recognition via CELM, and a
comparison with SVM classification are shown in Fig. 4.6. Figure4.6a, b depict 36
training vectors for illustration purposes. The background colour shows the shape
of the decision surface. Figure4.6a illustrates a SVMs classification scheme, where
dark blue regions represent the class belonging to the poly-C sample labelled by 1,
and light blue regions indicate the class related to poly-A sample labelled by −1.
Separating hyperplanes for two classes are indicated by 0. The circles represent the
calculated support vectors.Comparedwith the training vectors, the number of support
vectors are reduced, thus enabling quick derivation of the optimal hyperplane shape
and speeding up the overall classification time. In both cases, the machine learning
for two-class samples—poly-A and poly-C respectively, denoted by white “+" and
black “×", are approximately separated by their own boundary lines though there is
a little overlapping. Detailed results on classification accuracy are described in the
following section, where 200 random selections of training vectors are fed to the
classifiers.

InFig. 4.6b, red regions represent the class belonging to the poly-C sample labelled
by 1, and blue regions indicate the class related to poly-A sample labelled by −1.
Contrary to real-valued machine learning, the labels of CELMs are complex valued.
The numbered labels to be output are shown in Fig. 4.6b. These values are calculated
as the sum of a doubled value of the real part (R) and the value of the complex part
(J ), in relation to the complex valued labels, with zero indicating non-classified data.
Therefore, each of the numbered labels (Y) satisfies the equation:Y = 2×R+J(�)2

with (�)2 = −1. Specifically, we set the classification label belonging to poly-A as
I+�(I), and that belonging to poly-C as -I+�(-I). The I indicates an identitymatrix.
As discussed in [447], CELMs may be extended naturally to multi-pixel or voxel
images for the classification of features resulting from tensorial decomposition using
additional input and output hyperplanes designed through orthogonal projections.
The approach enables us to define additional kernel functionswhich can be optimized
for each input class.

Examples of learning vector patterns for multiclass recognition via CELM, are
shown in Fig. 4.7a after FT of the time-domain signatures and extraction of the
corresponding complex valued features in frequency domain, regarding phase and
amplitude. We used 49 input vectors related to each powder sample for training the
classifier. Two real RKHS kernels were used for mapping. The optimal Gaussian
parameter σ was set to 100 and the penalty parameter C was set to 0.1. The labels
were complex-valued and produced 12 output classes. Background colour shows the
contour shape of the decision surface (these are numbered from 2–12), and these
correspond to the amplitude calculations derived from the sum of real and imaginary
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Fig. 4.6 Illustration of
binary classification for the
recognition of RNA samples
consisting of 36 training
vectors for each. a
Illustration of a CELM
classification scheme, using
two real Gaussian kernels to
map the training vectors to a
2-D complex-valued feature
space, with the penalty
parameter C = 0.5 and
σ = 1. b Illustration of a real
SVM classification scheme,
using a real Gaussian kernel
to map the training vectors to
a 2-D complex-valued
feature space. The penalty
parameter C is set to infinity
and the width parameter of
the Gaussian kernel σ is set
to 1 × e−5. c T-ray
transmission image of the
poly-A and poly-C,showing
stronger absorption in
poly-C compared with
poly-A. Each spot contained
200μg of either poly-A or
poly-C in alternating order,
as indicated in the diagram
on the right. The colour scale
indicates the normalized
peak values of the two RNA
samples
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values of the respective complex labels. It can be observed that THz measurements
of powder samples of salt, sand, talcum, are grouped more tightly than the powder
samples of flour, soda and sugar. The labelled contours that correspond to different
real and imaginary parts (the real and imaginary parts label the different classes) are
illustrated in Fig. 4.7b. These regions are undecided in the classification process and
are therefore excluded to avoid over-fitting problems.
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Fig. 4.7 Illustration of
CELM multi-class
classification scheme. a
Complex valued learning
vectors for the six samples
plotted to illustrate the linear
decision function among
each class by applying
induced real RKHS kernels
to map the complex input
data into 2D complex valued
feature space. There are 49
pixels randomly selected
from each of the six powder
samples. The labels are
complex valued, generating
12 classes. b Illustration of
the colour coded regions
with non-zeros indicated by
the colour bar. The colour
regions with non-zero value
indicate that the multi-class
powder sample classification
process remains undecided
by CELM as the real and
imaginary parts are not equal
to each other
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The CELMs may be naturally extended to multi-pixel or voxel images. This aims
to achieve complex valued learning of 3D inputs of complex valued features, i.e. to
classify the complex valued input data selected from a tensor. The proposed approach
could further be extended to address aspects of quaternary classification within a
tensor algebra context. For 3D inputs, three pairs of complex coupled hyperplanes
may be designed through orthogonal projections. The approach enables us to define
a kernel function specific for the calculation of high dimensional complex coupled
hyperplanes. It allows effective classification with a more natural representation of
the data in a tensor format. The approach is also extendable to hierarchical clustering
as discussed in the following section.
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4.5.4 Multinomial Logistic Regression Classifier with Ridge
Estimators (MLR)

Ridge estimators are used inmultinomial logistic regression to improve the parameter
estimation and to diminish the error associated with further prediction when the
application of maximum likelihood estimators (MLE) is inappropriate, because of
the non-uniqueness of the solution in the data fitting process. When the number
of explanatory variables is relatively large and/or when the explanatory variables
are highly correlated, the estimates of the parameters become unstable, and are not
uniquely defined (some are infinite) so themaximumof the log-likelihood is achieved
at 0 value [462, 463]. In this situation, ridge estimators are used to ensure finiteness
and uniqueness of theMLE to overcome such problems. The above rationale provides
the necessary justification for considering the use of such classifier to the current
task. For a response variable Y ∈ {1, 2, . . . , k} with k possible values (categories),
there are k classes for n instances with m attributes (explanatory variables), and the
parameter matrix B that requires to be calculated will have dimension m × (k − 1).
In this case, the probability for Class j with the exception of the last class is given
from:

Pj (Xi ) = exp(Xi B j )

(
∑k

j=1 exp(Xi B j )) + 1
(4.49)

The last class has a probability of occurring given by:

1 −
k−1∑
j−1

Pj (Xi ) = 1∑k−1
j−1 exp(Xi B j ) + 1

(4.50)

and the (negative) multinomial log-likelihood is given from:

L = −
n∑

i=1

{
k−1∑
j=1

(Yi j × ln(Pj (Xi ))) + (1 −
∑

j = 1k−1Yi j × (4.51)

ln(1 −
k−1∑
j=1

Pj (Xi ))} + ridge × B2

In order to find the matrix B for which L is minimized, a Quasi-Newton method
is used to search for the optimized values of the m × (k − 1) variables [462]. At this
stage it is worth noting that in the current implementation of the algorithm, before we
use the optimization procedure, we ‘squeeze’ thematrix B into anm×(k−1)matrix.
A more detailed description of the MLR adopted can be found in [462, 463]. With
reference to the example shown in Fig. 4.1, X relates to the feature set associated
with the six powder substances and Y denotes the different categories.
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4.5.5 Naive Bayesian (NB) Classifier

The NB classifier is chosen for the study shown in Fig. 4.1, as it is straightforward
in its implementation. Furthermore, this is a frequently used probabilistic classifier
based on applying Bayes’ theorem with strong (naive) independence assumptions
[464]. TheNB classifier assumes that the presence (or absence) of a particular feature
of a class is unrelated to the presence (or absence) of any other feature. Depending on
the precise nature of the adopted probability model, the NB classifier can be trained
very efficiently in a supervised learning setting. In practical applications, parameter
estimation for naive Bayesmodels uses themaximum likelihoodmethod, where each
class with the highest post-probability is labelled as the resulting class.

Suppose, X = {X1, X2, X3, . . . , Xn} is a feature vector set that contains Ck(k =
1, 2, . . . ,m) classes of data to be classified. Each class is associated with a proba-
bility P(Ck) that represents the prior probability of identifying a feature into Ck and
the values of P(Ck) can be estimated from the training dataset. For the n feature
values of X , the goal of classification is clearly to find the conditional probability
P(Ck |X1, X2, X3, . . . , Xn). By Bayes’s rule, this probability is equivalent to

P(Ck |X1, X2, X3, . . . , Xn) = P(Ck)P(X1, X2, X3, . . . , Xn|Ck)∑
P(Ck)P(X1, X2, X3, . . . , Xn|Ck)

(4.52)

The final decision rule for the NB classifier is:

classify(X1,X2,X3, . . . ,Xn) = argmax P(Ck)

n∏
i=1

P(Xi|Ck) (4.53)

For the example shown in Fig. 4.1, we used the extracted feature vector set as the
input in Eq.4.53 and Ck (k = 1, 2, . . . , 6) indicates the number of the six powder
classes within which the unknown samples had to be classified. In the training stage,
P(Xi |Ck) is estimated with respect to the training data. In the testing stage, based
on the posterior probability P(Ck |Xi ), a decision whether a test sample belongs to a
particular class Ck or not is made.

4.5.6 Performance Evaluation of Several Different Classifiers

Cross-validation, sometimes called rotation estimation, [4, 30, 465] is a model vali-
dation technique for assessing how the results of a statistical analysis will generalize
to an independent data set. To reduce any bias of training and test data, a k-fold
cross-validation technique is employed [466, 467] by setting k = 10 for the example
shown in Fig. 4.1. This technique is implemented to create the training set and testing
set for evaluation. Generally, with k-fold cross validation, the feature vector set is
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divided into k subsets of (approximately) equal size. The proposed classifiers are
trained and tested k times. Each time, one of the subsets from the training set is left
out. One of the subsets (folds) is used as a test set and the other k − 1 subsets (folds)
are put together to form a new training set. Then the average accuracy across all k
trials is computed to assess the performance of the classifier.

Subsequently, the individual feature sets from each powder class are combined
to form a composite feature set that contains all the features from all T-ray pulse
signals associatedwith all powder substances, i.e. on the basis of the statistical feature
extraction process using the cross-correlation sequences. We assess the performance
of the proposed classifiers using widely accepted metrics such as accuracy, true
positive rate (TPR) (also called sensitivity or recall), false positive rate (FPR) (also
called false alarm rate or (1-specificity)), precision (also called positive predictive
value), F-measure, mean absolute error (MAE) and kappa statistics. All these criteria
were considered when assessing all extracted feature data. The evaluation metric
adopted is accuracy rate as a percentage of correct prediction [368]. TheTPRprovides
the fraction of positive cases that are classified as positive [468, 469]. The FPR is
the percentage of false positives predicted as positive from samples belonging to
the negative class. The FPR usually refers to the expectancy of the false positive
ratio. Precision is a measure which is used to estimate the probability that a positive
prediction is correct. The F-measure is a metric that provides a combined measure
for precision and recall calculated as 2 × Precision × Recall/(Precision + Recall)
[468]. Mean absolute error (MAE) is used to measure how close predictions are to
the eventual outcomes [468]. The Kappa statistic is a chance-corrected measure of
agreement between the classifications and the true classes [470]. It is calculated by
subtracting the agreement expected by chance from the observed agreement, and
dividing it by the maximum possible agreement.

Figure4.8 represents the classification outcomes for the mixture of 2, 3 and 4mm
thickness samples for all six powder substances with spectra shown in Fig. 3.8 [350].
This classification task is set up as a three class problem. Here, the 2mm thickness
powder substance is considered as belonging to the first class, the 3mm thickness
powder substance is considered as belonging to the second class and the 4mm thick-
ness powder substance is considered as belonging to the third class. As can be seen
from this table, the overall accuracy for theMLR classifier is 99.56% for all the pow-
der samples while this value is 99.35% for the KNN classifier, 91.83% for the SVM
classifier and 91.82% for the NB classifier respectively. Similarly to the classification
results discussed in the previous sections, in most of the cases, the MLR classifier
consistently yields the highest performance whereas NB classifier shows the lowest
performance. As shown in Fig. 4.9, good classification performance and classifica-
tion consistency of the 2D cross correlation based feature extraction approach shows
successful denoising, while at the same time enables us to resolve useful features
in the time domain signals associated with each pixel in the image in a consistent
manner. This is significant bearing in mind that classification tasks that were diffi-
cult to perform in the past, due to the presence of some unquantifiable scattering,
become now possible. It is also worth noting that although in analytical sciences,
cross-correlation techniques have mainly been explored within a de-noising con-

http://dx.doi.org/10.1007/978-3-319-57027-3_3
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Fig. 4.8 Classification performance in three thickness: 2, 3 and 4mm of each powder

text, the proposed methodology places these algorithms within a machine learning
context.

It may also be concluded that the MLR is a powerful and less complex algorithm
for THz pulse signals classification. The proposed technique should extend the use
of classification algorithms to experiments where samples are not placed in a cuvette,
a sample holder or compressed in pellet form in order to perform the spectroscopic
investigations, and points towards a newway of performing industrial quality control
using THz imaging systems ‘in situ’ when samples are still in powder form where
a different degree of scattering may also be present in the measurement process
across the different spectral bands. The proposed methodology therefore, has the
potential to significantly extend the applications domain of classifiers for material
characterization. This has important applications in high valuemanufacturing such as
the pharmaceutical industry as well as for tissue differentiation and characterization
in biomedical imaging.

Figure4.9 displays kappa statistics for all classifiers assuming a 10 feature input.
The aim of the kappa statistics test is to evaluate the consistency of the classifiers.
Consistency is considered mild if kappa values are less than 0.2 (20%), fair if they
lie between 0.21–0.40 (21–40%), moderate if they lie between 0.41–0.60 (41–60%),
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Fig. 4.9 Kappa statistics values for theMLR,KNN, SVMandNB classifiers for datasets associated
with different powder thickness samples

good if it is between 0.61–0.80 (61–80%), and excellent if it is greater than 0.81
(81%). As shown in Fig. 4.9, the highest kappa values are obtained by the MLR on
both 2mm thickness sample datasets (100%), as well as 4mm (98.43%) datasets. In
addition, highest kappa values are obtained for the mixture of 2, 3 and 4mm samples
of talc (100%), salt (100%), flour (100%) and soda (100%). The KNN algorithm also
demonstrated very good performance (second best overall) as can be seen in the case
of the 3mm thickness sample datasets (96.86%), and the mixtures of 2, 3 and 4mm
sand (98.04%), talc (100%), sugar (100%) and flour (100%). The kappa values of
the other two classifiers (SVM and NB) are systematically lower compared to those
achieved by the MLR and KNN irrespective of sample type, furthermore, the values
are consistently lowest for the NB classifier. In this figure, the error bars indicate the
associated kappa value standard error. In most of the cases, the highest kappa values
are obtained using the MLR algorithm.

In another classification example, Eadie et al. [471] carried out multi-dimensional
THz imaging analysis for colon cancer diagnosis. Their research uses decision trees to
find important parameters of relevance to classification; these are subsequently used
with neural networks (NN) and SVMs to classify the THz datasets thus identifying
normal and abnormal samples. Their work reports sensitivity values of 90–100% and
specificity values of 86–90%. This is a good example where THz reflection imaging
is combined with an optimized feature extraction and classification methodology to
identify colon cancer.

4.5.7 Clustering Techniques to Segment THz Images

Clustering, also termed cluster analysis, is the formal study of algorithms and meth-
ods for grouping unlabelled data into subsets (called clusters) according to measured
or perceived intrinsic characteristics or degree of similarity. Clustering deals with
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data without using category labels that tag objects with prior identifiers, i.e. class
labels. The absence of category information distinguishes data clustering (unsuper-
vised learning) from classification or discriminant analysis (supervised learning).
The two most frequently used clustering techniques that are used in spatial cluster-
ing are the k-means and the ISODATA clustering algorithm. Both of these algorithms
use iterative procedures in their cluster estimation process. In general, both of them
assign first an arbitrary initial cluster vector. Then each pixel is classified as belong-
ing to the closest cluster. Finally the new cluster mean vectors are calculated based on
all the pixels in one cluster. The second and third steps are repeated until the change
between each subsequent iteration is smaller than a set threshold. The change can
be defined in several different ways, either by measuring the distances that the mean
cluster vector have changed from one iteration to another or by the percentage of
pixels that have changed between iterations. The ISODATA algorithm incorporates
some further refinements such as the option of splitting andmerging of clusters [472].
Clusters are merged if either the number of members (pixel) in a cluster is less than a
certain threshold, or if the centers of two clusters are closer than a certain threshold.
Clusters are split into parts (thus forming additional clusters) if the cluster standard
deviation exceeds a predefined value and the number of members (pixels) is twice
the threshold for the minimum number of members.

Currently, several papers report clustering techniques to segment THz images.
Brun et al. [473] reported on THz-TDS imaging of 10μm thick histological sections,
where clustering methods were used in THz spectral images that are produced on
the basis of the extracted refractive index data. His study showed that THz spectral
differences exist, not only between tumor and healthy tissues, but also within tumors.
Ayech andZiou [474] also discussed k-means clusteringmethods for segmentation of
THz imaging. They used a combination of an autoregressive (AR) model and PCA to
extract effective temporal/spectral features fromTPI before carrying out soft decision
thresholding of the associated k-harmonic-means (KHM). Their method outperform
the algorithmsbasedonhard decision thresholding of traditional k-meansmethods. In
[475, 476], a novel approach of segmentation in THz images is also proposed, where
the k-means technique is reformulated using a ranked set sample principle. This
approach consists of estimating the expected cluster centers, selecting the relevant
features and their scores, and classifying the observed pixels of THz images. In
another recent study [477], a two-step partitioning clustering approach was used to
segment THz measurements of the inner structure of teeth which were extracted
from cave bears so as to identify evolutionary traits, life spans and feeding habits.
The tomographic measurements with the imaging system showed that the layer-
like structures are discernable within the material, giving a more detailed image
of the inner structure of the tooth. A k-nearest neighbor graph that is built on the
reduced channel information [478] was also used to further assign the observed
spatial features in the images into segments, it was achieved by using a minimum
edge cut bi-sectioning method.

The use of the ISODATA algorithm to cluster THz spectra and perform image
segmentation was first suggested by Berry et al. [479]. In their work, two types
of specimens were examined, the first one was of a basal cell carcinoma and the
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second of a melanoma. Unsupervised ISODATA classification was then compared
qualitatively with k-means classification that was performed using the information
from the entire time domain sequence for each pixel. In addition, classification was
then correlated with conventional stained microscope slides. There was good quali-
tative agreement between the two classifications methods. Classification results were
consistent and preserved the observed characteristics. The results point toward the
use of a small number of features to perform classification. If this line of work
can be further validated through additional studies, this could lead to considerably
reduced acquisition times. In addition, the ISODATA algorithm is particularly use-
ful in further developing convolution network classification approaches, a technique
well established within the machine learning community.

4.6 Retinal Fundus Image Analysis via Supervised
and Non-supervised Learning

The motivation for using classifiers in fundus photography is to identify specific
anatomical structures in the retina. Structures of interest include the optic disk and
macula [227]. Identification of abnormal structures, such as retinal vasculature, are
also of interest as they can be used to diagnose the presence and severity of diseases
such as diabetic retinopathy, occlusion, glaucoma etc. [226, 345].

Features in the optic disk also include the start of optic nerve head (white stock)
which connects the eye to the brain as it is also a entry point for major blood vessels
to the eye. In the presence of disease, a tree-like structure called blood vasculature
(which contains very high frequency components from an image processing perspec-
tive) spanning across the fundus image is also likely to change as is the distribution
and thickness which is seen in the blood vessels present in the retina. Most diseases
in the retina cause substantial changes in the vasculature network characteristics, and
if they aren’t detected at an early stage, they can lead to vision loss.

4.6.1 Fundus Image Vessel Segmentation

Machine learning classification approaches are perhaps the simplest to adopt for
fundus image vessel segmentation. Two distinct categories of pattern classification
techniques for vessel segmentation may be considered, and these can be based on
supervised [360] and unsupervised training [480]. Training of the classifier is usually
performed using datasets of manually labelled vessel images. The aim is usually to
allow the classifier to recognise retinal vessel regions from the background. Such
techniques have been employed by Staale et al. [481] and Soares et al. [427], among
others. In contrast, unsupervised classifiers attempt to find, directly, inherent differ-
ences between blood vessels and the background in images of the retina; examples
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include fuzzy C-means clustering [358] and Bayesian classification. It is generally
accepted [434] that supervised classification has improved performance over unsu-
pervised schemes, although performance is affected by issues such as non-uniform
illumination. Vessel segmentation can also be used as part of a pre-processing step
for the further identification of other retinal structures like optic disc, fovea, location
of microaneurisms etc.

Pixel feature classification of retinal blood vessels is performed using the numer-
ical values of individual pixels in combination with their surrounding pixels using a
supervised approach. Originally, pixel intensity was used as the sole feature for the
classification task. More recently however, n-dimensional multi-feature vectors are
utilized; features include pixel contrast with the surrounding region, its proximity to
an edge, and similarity metrics. In addition, some other multi-feature vectors calcu-
lated for each pixel, including local convolutions with multiple Gaussian derivative,
Gabor, or other wavelet kernels [119] have also been proposed. The image is thus
transformed into an n-dimensional feature space and pixels are classified according
to their position in that feature space. The resulting hard (categorical) or soft (prob-
abilistic) classification is then used to either assign labels to each pixel (for example
vessel or nonvessel in the case of hard classification), or to construct class-specific
likelihoodmaps (e.g. amap of the degree of vessel vasculature for soft classification).

4.6.2 Algorithmic Detection of the Optic Disk

Locating and segmenting the optic disc (OD) is important in retinal image analysis,
since all the vessels emerge from the OD in the retina. In order to segment vessels
or perform an identification of a Region of Interest (ROI) for vessels classification,
analysis ofODswelling, in conjunctionwithOD localization is necessary. There have
been several studies in the literature on the automatic detection and segmentation of
OD.Usually, the candidate regions forODare first detected using template-matching,
then the accurate candidate region is selected on the basis of a ‘vessel-pattern’ prop-
erty inside the OD, and finally the OD boundary segmentation is analysed by making
use of local gradient information.

The proposed method has been tested on the publically available MESSIDOR
dataset and achieved 99% accuracy. There have been some additional studies using
morphological operations for OD detection. Choukikar et al. [482] located the OD
position by applying histogram equalization on original RGB fundus images, this
was followed by the application of closing and opening morphological operations.
Furthermore, Aquino et al. [484] suggested a new template-based methodology for
segmenting the OD from digital retinal images. This methodology uses morpholog-
ical and edge detection techniques followed by the Circular Hough Transform to
obtain a circular OD boundary approximation. A drawback of the technique is that
it requires the identification of a pixel located within the OD, this seeding process is
formed using a voting-type algorithm which can be somehow arbitrary. Figure4.10
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Fig. 4.10 Illustration of the process for the calculation of the circular OD boundary approximation:
(C) Initial RBG sub-image containing an OD affected by peripapillary atrophy. On the image on
the right, the top row shows the process performed on the red channel, whereas the image at the
bottom depicts the process applied to the green component. (R) and (G) Subimages extracted from
the red and green channels of (C), respectively. (R-1) and (G-1) Vessel elimination. (R-2) and (G-2)
Gradient magnitude image. (R-3) and (G-3) Binary image. (R-4) and (G-4) Cleaner version of the
binary image. (R-5) and (G-5) Circular OD boundary approximation. The scores obtained in the
Circular Hough Transform algorithm are, 264 for segmentation in (R-5) and 130 for segmentation
in (G-5), so the segmentation selected last would be the one performed on the red channel. After
[484]

provides an illustration of the process for the calculation of the circular OD boundary
approximation.

Most recently, Akyol et al. [359] proposed a method which is comprised of a
combination of fivemain approaches: image processing, key point extraction, texture
analysis, visual dictionary, and data mining classifier techniques. In addition, Usman
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et al. [485] proposed a newmodel for OD localizationwhich uses template-matching,
and is based on vessel-contrast. In this method, first the difference between the
average pixel value associated with the inside and the outside region of a red lesion
is calculated using a filtering procedure, then a machine leaning method is used to
identify haemorrhages using 64 different textural features. The proposed method
yielded a sensitivity of 83% and a specificity of 67% when applied to the DRIVE
dataset.

4.6.3 Retinal Vessel Classification: Identifying and Sorting
Arteries and Veins

Automatic retinal blood vessels classification has also been evolving rapidly over
recent years. For the discovery of biomarkers in the retinal vasculature, it is essential
to distinguish between arteries and veins [486]. The systems discussed in the current
literature are either automatic or semi-automatic. In the work discussed by Saez
et al. [487], two approaches (pixel-based or profile-based) are considered for the
formation of feature vectors. Pixel-based feature vectors are extracted on the basis
of the values of different colour channels of the pixels as well as the mode of the
values for the component under study. In the profile-based approach, feature vectors
are constructed by taking the mean or median of the colour component in the profile.
Vessels are labelled afterwards as veins and arteries using an unsupervised clustering
k-means algorithm. The image is divided into overlapping regions so the vessels can
be classified multiple times, and feature-vectors are identified after calculating the
probabilities of occurrence of the features. Then, the mean of those probabilities is
calculated and vessels are labelled as belonging to a particular class according to
whether they correspond to a class with the highest probability.

For all images and radii, a sensitivity of 0.7819 for arteries, and 0.8790 for veins
was calculated. The mean intensity for the red colour is preferred in [488] for the
classification of vessels. The red channel of the image is selected because arteries
systematically show a higher intensity than veins in the red channel. The mean
intensity of all individual components is then calculated and vessels are classified as
arteries on the basis of a highermean intensity. In their study, the authors examined 15
images to further evaluate the proposed technique, arteries were correctly identified
82% of the time whereas the accuracy in detecting veins was only 50%.

Finally, Estrada et al. [489] proposed a novel, graph-theoretic framework for dis-
tinguishing arteries from veins in a fundus image. This group took into consideration
the underlying vessel topology to better classify small and midsized vessels. They
extended a tree topology estimation framework by incorporating expert, domain-
specific features to construct a simple yet powerful global likelihood model. This
approach is capable of analysing the entire vasculature, including peripheral vessels,
inwide field-of-view fundus photographs. This topology-basedmethod shows signif-
icant potential for diagnosing diseases that show retinal vascular changes. Figure4.11
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Fig. 4.11 The left panel shows retinal arteries and veins as they overlap each other throughout a
wide field-of-view color fundus image. The middle panel is a constructed planar graph (overlaid in
white) that captures the projected vascular topology. On the right panel, each edge in the graph is
identified either as an artery (in red) or a vein (in blue). After [489]

provides an illustration of arteries and veins as identified using the proposed vascular
topology approach.

4.6.4 Automated Image Classification Using Criteria
Directly Developed from Clinicians

Currently, most MRI equipment manufacturers are in the process of also developing
AI based software for the interpretation of images generated from their scanners.
In addition, there are also newly established companies which should soon provide
novel AI solutions that will enable complementary interpretation of scans through
their own in-house software algorithms. A company at the forefront of such devel-
opments that should soon provide automatic interpretation of non-contrast enhanced
computed tomography (NCCT) scans (which can have similar database structures as
those found inMRI datasets), is Brainomix Ltd. The company is currently developing
new software which combines AI based image interpretation with the Alberta Stroke
Program Early Computed Tomography Score (ASPECTS), an established 10-point
quantitative topographic computed tomography scan score that is currently used
by clinicians to assess early ischemic changes in stroke patients. The e-ASPECTS
software that Brainomix Ltd developed which is currently undergoing clinical tri-
als across Europe, can provide very quickly an interpretation of the physiological
state of regions in the brain in patients, potentially saving valuable clinician time
in granting eligibility for endovascular treatment using thrombolytic drugs. As the
administration of drugs needs to take place as soon as possible after a stroke episode
to minimize damage to the different regions in the brain, the automation of the diag-
nostic process can have a significant impact on the patient’s future quality of life. It
is worth noting that, as reported in the work by Herweh et al. (2016), [490] as well as
in the work reported by Nagel et al. (2016) [491] that was based on a multicentre trial
with 132 patients and 2560 ASPECTS regions, the e-ASPECTS showed a similar
performance in terms of ROC sensitivity and specificity, as well as accuracy based
on true positive (TP), true negative (TN), false positives (FP), and false negative (FN)
scores to that of stroke expert neuroradiologists in the assessment of brain computed
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tomography of acute ischemic stroke patients. In addition, Bland-Altman plots [492,
493] and associated histograms of score error, showed excellent agreement in terms
of the established ground truth in the images. It is also worth noting that Matthews
correlation coefficients [494, 495] for e-ASPECTS were higher (0.36 and 0.34) than
those of all neuroradiologists (0.32, 0.31, and 0.3 NRAD scores), indicating that
through further fine-tuning of the algorithms, better diagnosis than that currently
achieved by experts can be potentially achieved. Clearly, the e-ASPECTS method-
ology is a particularly interesting paradigm of relevance to all imaging modalities
discussed in this book as it points towards a direction where a combination of both
expert knowledge as well as standardized AI routines can be nicely integrated to pro-
vide expert diagnosis with improved consistency, while at the same time providing
diagnosis immediately after the patient scans have been concluded.



Chapter 5
Introduction to MRI Time Series Image
Analysis Techniques

This chapter discusses opportunities for spatiotemporal enhancement in DCE-MRIs
using a tensorialmulti-channel framework. Examples frombreast tumour reconstruc-
tion are provided to showcase the proposedmethodology. It is shown that tumour vox-
els registered in three-dimensional space can be reconstructing better after increasing
contrast from background images using the proposed methodology. The algorithm
can be used to perform both feature extraction as well as image registration. This
chapter also discusses the general structure of supervised learning algorithms for
functional MRI datasets. Advances in supervised multivariate learning from fMRI
datasets that promise to further elucidate brain disorders are discussed. Finally, the
general structure of topological graph kernels in functional connectivity networks
is also explained. The prospects for developing machine learning algorithms that
would automatically provide spatio-temporal associations of brain activity across
different regions using graph theory methodologies are discussed. A more criti-
cal view of what may be achieved taking into consideration limitations in the fMRI
measurementmodality is also provided. Finally, some recent advances from the com-
puter vision community of relevance are also highlighted as possible future research
directions.

5.1 Analysis of DCE-MRI Data

Since 1995,MRI has been used extensively for the detection of invasive breast cancer
[59, 60, 89, 496]. Because of its high 3D resolution and its ability to acquire kinetic
contrast information, it has steadily gained popularity over traditional diagnostic
techniques such as X-ray mammography and ultrasound [497]. For breast tumours,
lesion diagnostic sensitivities can reach 97% [498]. Moreover, in addition to its
wide use in functional neuroscience, the technique has also been extensively used
for mapping and identifying brain tumours. In all of these measurement modalities,
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multiple images are collected, and one of the problems commonly encountered is how
to extract the useful information that simultaneously resides across all the images
obtained through separate scans. In the case of DCE-MRI T1-weighted imaging
for example, after an intravenous injection of the contrast agent, blood vessels are
imaged repeatedly before a tumour or local inflammation can be observed. There can
be significant differences in the signal from the contrast agent across the image. This
often occurs because the contrast agent is blocked by the regular brain-blood-barrier
but is not blocked in the blood vessels generated by the tumour. The concentration
of the contrast agent is then measured when it passes from the blood vessels to the
extra-cellular space of the tissue and on its path back towards the blood vessels.

However, specificity of breast DCE-MRI is still rather low, with rates of between
30 and 70% [499, 500]. High false positive detection rates on MRI often lead, not
only to anxiety for the patient, but may also result in an unnecessary invasive biopsy
[497, 499]. This hinders its use as a routine imaging technique in breast cancer
patients. Benefits of breast MRI include better cancer detection rates in high-risk
women and the provision of additional information regarding the extent of disease
in women with known breast cancer.

Computer-aided diagnosis (CAD) approaches for breast MRI are typically
employed for automatically identifying tumours from normal tissues when these
are at a stage of rapid development [68, 97, 501, 502], whereas the more complex
task of classifying a lesion as benign ormalignant [63, 104, 501, 503–510] is proving
more difficult to address. In order to interpret the patterns resulting from contrast
enhancement across a series of MRI volumes, intensity changes per voxel are color-
coded by an automated kinetic assessment protocol. However, the technique is not
fully automated and requires continuous feedback from experts.

A major challenge in the diagnosis of breast DCE-MRI is the spatiotemporal
association of tumour enhancement patterns, a task that humans are not as optimized
to perform [63]. With many CAD systems now available commercially, Pan et al.
[511] evaluated them to ascertain which system is best in detecting signs of cancer
on breast MRIs. The most commonly used CAD systems in the USA are CADstream
(CS) (Merge Healthcare Inc., Chicago, IL) and DynaCAD for Breast (DC) (Invivo,
Gainesville, FL). Pan et al.’s primary objective (discussed in more detail in the
following section) was to compare the CS and DC breast MRI CAD systems for
diagnostic accuracy and post processed image quality. The experiments were aimed
at evaluating 177 lesions in 175 consecutive patients who underwent second-look
ultrasound guided biopsy or MRI-guided biopsy. The results illustrate that the two
CAD systems had similar sensitivity and specificity (CS had 70% sensitivity and
32% specificity whereas DC had 81% sensitivity and 34% specificity). Both CS and
DC had a high sensitivity for detecting malignant lesions on breast tissue. However,
neither system significantly improved specificity for the diagnosis of benign lesions.
Assesmentwas performed on the basis of theReceiverOperatingCharacteristic curve
(or ROC curves). ROC is a plot of the true positive rate against the false positive rate
for the different possible cut points of a diagnostic test. The ROC curve plots using
both CS and DC systems are illustrated in Fig. 5.1.
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Fig. 5.1 ROC curves of the
mean scores for CADstream
and DynaCAD for Breast
samples. The figure shows
the ROC curves based on the
two mean diagnostic scores
for each software system
(CS: CADstream, DC:
DynaCAD for Breast, AUC:
area under the curve, ROC:
receiver operating
characteristic). After [511]

5.1.1 Outlook for Future Tensorial Algebra Based Feature
and Image Registration

In dynamic pattern recognition methods for the analysis of DCE-MRI, the emphasis
has been on either high temporal resolution and empirical analysis [159, 512] or
high spatial resolution with a stand-alone morphologic feature extraction [512, 513].
Time-series analysis is a time-consuming task due to the often encountered spa-
tiotemporal lesion variability. Changes in spatial intensity of imaged tumours are a
further complication as they cause an inherent difficulty in segmentation of an object
of interest [377]. In the discussed example, the previously mentioned multi-channel
image reconstruction is assumed. Figure5.2a depicts an imaged ductal carcinoma
in situ (DCIS). While the parts depicted by the arrows show the same anatomical
structure taken from the same tumour region, the intensity values are different. The
intensity indicated by the yellow arrow is higher than the intensity indicated by the
red arrows. After conducting intensity based segmentation as illustrated in Fig.5.2b,
the region with low intensity may feature as a gap separating the image into two
disconnected parts. The gap forms an area without edge. A multi-channel classifi-
cation method that considers the associations between spatial and temporal features
of high-dimensional images is proposed in order to achieve accurate diagnosis of
tumour tissues. Generally, the detection of anomalies in spatiotemporal data is an
emergent interdisciplinary topic that involves innovative computer science methods.
Mining spatiotemporal patterns is critical for the correct identification of tumour
anomalies in DCE-MRI. This task still remains challenging, however, because of the
complexity associated with the sparse features in voxel data when this is associated
to consecutive scans obtained at separate points in time.

The need for a multi-channel framework that captures a multitude of features
extracted using the signal processing routines discussed earlier, leads to a require-
ment for developing alternative classifiers capable of accommodating a large num-
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Fig. 5.2 Imaged breast tumours obtained by MRIs. a Illustration of intensity inconsistency for
breast tumour tissue images. Yellow arrows indicate a high intensity and red arrows low intensity. b
Illustration of intensity based segmentationwith inhomogeneous boundaries; yellowarrows indicate
an irregular ring region with a hole inside and the green arrow indicates missing areas

ber of input vectors. In addition, recently, tensor decomposition of high-dimensional
medical image data, i.e. fMRI, has also gained popularity since it can explore the
multi-way structure in the datasets which inherently exists in human organ imag-
ing [514]. Tensors are multimode (multi-way) arrays, where vectors (i.e. one-mode
tensors) and matrices (i.e. two-mode tensors) are special cases. The tensor repre-
sentation captures useful information that is difficult to capture in a conventional
vectorial formalism, for example, accounting for specific morphological features
such as directional striations in muscle tissue or vessels.

To effectively utilize the additional information contained in tensors, we propose
to extend the CELM algorithms for effective tensor classification.Multi-dimensional
classifiers do not require a dimensionality reduction of the datasets, thus preserving
the information presented at the input stage of the classifier which could otherwise
be lost in a conventional dataset fusion framework. Since most standard learning
algorithms assume data obtained at separate scans are just vectors composed of
different features, it is not straightforward to apply these algorithms on tensorial data.
The CELMmethod (discussed in the previous chapter) enables the identification and
learning of inter-mode relations across different features.

As stated earlier, within a THz imaging context, the aim is to preserve the fea-
tures extracted and ideally present them as separate entities to the classifier. Similarly,
within the MRI community, in addition to the components of relevance in a multi-
dimensional feature space described earlier, there is a need for observing changes in
fMRI signals taking into consideration information obtained at different time stamps
so data can also have a tensorial structure. Since an assessment of disease progres-
sion is made by cross-correlating images taken from different examinations, again
a tensorial framework is often needed. Multi-dimensional classifiers are therefore
ideally placed to further explore such cross-correlations.
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Currently, there are several approaches for multiclass SVM [515]. The naive
approach is constructing and combining several binary classifiers and considering
all data as elements within one big optimization problem [516], or by learning inter-
dependent and structured output spaces [517]. Unlike classic SVMs, the complex
valued hyper-planes of CELM are calculated using the smallest norm of output
weights with the smallest training error in a similar manner as in ELM classification.
The technique discards the normal threshold found in SVMs, without calculating
support vectors. The extended CELM has significant potential for solving complex
valued problems for multiclass classification of tensorial datasets with dramatically
reduced computational complexity and significantly improved computational speed.
It enables the classification of tensorial data while preserving information associ-
ated with adjacent and overlapping data vectors as well as differentially extracted
features.

In addition, registration of images is a crucial step in many image processing
applications where the final information is obtained by combining multiple input
images. In many applications multi-channel images are also available, requiring
innovative processing of vector data. Traditional approaches in achieving multi-
channel image registration can cause inaccuracies by introducing information loss or
misinterpretations.An alternativeway to perform registration ofmultichannel images
described by associated vectorial datasets is through the use of Geometric Algebras
such as Clifford Algebra (discussed in the next chapter). The main advantage of this
methods is that it operates on the multichannel signal, instead of scaling the signal
down to one dimension (e.g. by averaging) and thereby loosing a lot of information. A
further advantage is that it enables the fusion of datasets from heterogeneous sensing
modalities, thus allowing for future dataset integration, as will be made possible in
the near future through further progress in biomedical sensing.

5.1.2 Performance Measures

Evaluation of diagnostic tests is generally necessary not only for confirming the pres-
ence of disease, but also for ruling out the disease in healthy subjects. The diseased
subject detection process via DCE-MRI aims to provide a voxel-based classification
result. When providing disease diagnosis to patients based on the gold standard, any
voxel in MRIs can be classified either as healthy or diseased, and as tumorous or
surrounding tissue. Consequently, there are four possibilities; two classifications and
two misclassifications. The classifications are the true positive (TP) and the true neg-
ative (TN) where the number of tumour voxels and background voxels is correctly
detected; the false positive (FP) is the number of pixels not belonging to a vessel,
but are mistakenly recognised as one, and the false negative (FN) is the number of
pixels belonging to a vessel, but are recognised as background pixels.

One can further derive the probability of a positive test result for patients with
disease and the probability of negative test results for patientswithout disease. Several
relevant terms are defined as follows.
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Table 5.1 Performance metrics in the diseased tissue detection process via DCE-MRIs

Measure Description

TPR TP/deased voxel count

FPR FP/non-diseased voxel count

Specificity TN/(TN + FP)

Sensitivity TP/(TP + FN)

Accuracy (Acc) (TP +TN)/FOV voxel count

• The true positive rate (TPR) represents the fraction of voxels correctly detected as
diseased voxels.

• The false positive rate (FPR) is the fraction of voxels erroneously detected as
diseased voxels.

• The accuracy (Acc) is measured by the ratio of the total number of correctly
classified voxels (sum of true positives and true negatives) to the number of voxels
in the image field of view.

• Sensitivity (SN) reflects the ability of the algorithm to detect the diseased voxels.
• Specificity (SP) is the ability to detect non-diseased voxels. It can be expressed
as 1-FPR. The positive predictive value (PPV) gives the proportion of identified
diseased voxels which are true diseased voxels.

• The PPV is the probability that an identified diseased voxel is a true positive.

A receiver operating characteristic (ROC) analysis has become a popular method
for evaluating the accuracy of medical diagnostic systems. The ROC curve plots the
fraction of diseased voxels correctly classified as diseased tissues, namely the TPR,
versus the fraction of non-diseased voxels wrongly classified as diseased voxels,
namely the FPR. The better the performance of the system is, the closer to the upper
left hand corner of the ROC space it registers. The most frequently used performance
measure extracted from the ROC curve is the value of the area under the curve (AUC)
which is 1 for an optimal system. For MRI images, the TPR and FPR are computed
considering only voxels inside theFOV.Table5.1 summaries the performancemetrics
used by DCE-MRI image segmentation algorithms. A recently developed algorithm
that combines chemometric analystical techniques from spectroscopic datasets with
the ROC and AUC metrics is discussed further in [647].

5.2 Tensorial Representations in MRI

Tensorial analysis is directional so interactions of components within the associ-
ated matrices provide additional degrees of freedom for data analysis, enabling spa-
tiotemporal data correlations to be made along each co-ordinate direction as shown
in Fig. 5.3a. The isolation of such correlations in each co-ordinate plane can provide
a clearer picture of disease progression. A third order tensor that may be associated
with a DCE-MRI dataset is illustrated in Fig. 5.3b–d. Figure5.3e illustrates how to
flatten the third order tensors along frontal slices.
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Fig. 5.3 a Illustration of the directions associated with the x-, y-, and z-axes. (b), (c), and (d).
Illustration of three directional slices of a third order tensor: horizontal, vertical, and frontal, respec-
tively, which are perpendicular to the x-, y-, and z-axes, respectively. e Illustration of the way to
flatten the third order tensors along the frontal slices. The colon (:) used in the figure indicates all
the column elements at a given direction are involved to form an image matrix

Tensor factorisation of a 3D spatial matrix uses multilinear algebra to analyse
an ensemble of volume images, to separate and parsimoniously represent high-
dimensional spatial datasets into constituent factors [557]. The 3D spatial image
datasets are treated as a third order tensor. The image dataset tensorA (3) ∈ R

I1×I2×I3

is decomposed [559] or factorised to a core tensor C ∈ R
J1×J2×J3 and three different

modes of 2D image matrices X(n) ∈ R
In×Jn , n = 1, 2, 3, as illustrated in Fig. 5.4.

In our recent research [385], we explored tensor decomposition for the identi-
fication of shape with mirror symmetry. We concluded that if both the first mode
matrix (i.e. along the y and the z axes) and second mode matrix (i.e. along the x and
the z axes) are symmetric, the frontal plane (along the x and the y axes) is a mirror
symmetric plane, and vice versa.
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Fig. 5.4 Illustration of a third-order decomposition

5.3 Extensions to Multi-channel Classifiers

By using a tensor algebra framework analysis of spatiotemporally associated fea-
tures becomes possible, and such advances, therefore, lead to the development of a
multidimensional unified MRI framework for processing DCE-MRIs. Mining spa-
tiotemporally associated features of lesions fromMRIs can increase the accuracy and
efficiency of pattern identification. Current DCE-MRI is not sufficiently accurate for
the early detection of tumours because of a lack of association between the spatial
and temporal features.

Tensor factorisation of a 3D spatial matrix is a universal methodology that is
well suited to the analysis of an ensemble of volume images. In this section, we
introduce a novel dynamic tensor reconstruction algorithm after adopting a principal
component separationmethodology.This is implementedon anoffline tensor analysis
algorithm (OTA) which results in a combined PCA-OTA algorithm. The algorithm
is then implemented on the analysis of dynamic projection matrices for principal
component separation of cancerous and healthy tissues.

Before conducting the tensor reconstruction, the intensity-scaled (IS) DCE-MRI
datasets are loaded into MatLab (v. R2013b, MathWorks, Natick, MA) and their
corresponding enhancement-scaled (ES) datasets are generated. Enhancement of the
ES data is defined as the difference per voxel in the intensity of the post-contrast and
pre-contrast images. In ES datasets, the reconstruction is performed on the region of
interest (ROI) through the use of a pre-processing step according to morphological
operations and standard FCMmethods. A dynamic tensor data structure is introduced
to store the DCE-MR image datasets, as this provides a simple way of extracting data
from different dimensions. Another advantage of adopting a tensorial framework
in our data structure is that the DCE-MR image data can be easily projected in
different directions by using tensor or kronecker products. Tensor factorization is
conducted on each three-dimensional (3D) MRI image by decomposing it into three
two-dimensional (2D) subspaces (basis images) that are, respectively, associatedwith
eachmode (spatial orientations) of observations. These three-modes of dynamic basis
images are further aligned to different time frames. For added clarity, we call these
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aligned basis images with time course, a temporal set of basis images at a different
mode.

With the use of HOSVD, the dynamic ES dataset (a dynamic tensor Xτ ) is
decomposed into three-mode basis image matrices A ι

τ and a core tensor Cτ , where
ι = 1, 2, 3 is associated with each mode of basis images; τ = 1, 2, ..., 6 corresponds
to a single time frame. PCA is applied on a temporal set of basis images. The tempo-
ral signal intensity variations vτ ι

i for each pixel within the decomposed basis image
at each mode are associated with a state vector: uι

i = u1ιi , u2ιi , . . . , unι
i (n = 6 for

ES datasets). The set of all state vectors in one mode of the basis images over a
pre-determined time course is defined as Υ ι = {uι

i }, 1 ≤ i ≤ ε with ε the number of
pixels in the basis image at a different mode ι. The first-order covariance matrix of
Υ ι, Δι, is calculated according to:

Δι = 1

ε

∑

uι
i∈Υ ι

(uι
i − ūι)(uι

i − ūι)T and ūι = 1

ε

∑

uι
i∈Υ ι

uι
i (5.1)

A linear PCA transformation is then applied to obtain the corresponding eigenvec-
tors E ι

ς = {eι
ς }, and eigenvalues λ = {λ1, λ2, ..., λ6} by solving λE = ΔE. A PCA of

dynamic basis image datasets at each of the imagemodes yields 6 eigenvectors. After
indexing and sorting according to their eigenvalues, the eigenvector corresponding
to the largest eigenvalue is called the first channel eigenvector, the second largest
eigenvalue is called second channel eigenvector and so on. As a result, a new mode
vector is re-constructed Aι

ς = ΔιE ι
ς for each of the different channels (state points)

(ς = 1, 2, . . . , 6). We matricise A to A ∈ N ι × M ι, to generate ι modes of basis
images. To reconstruct a tensor for a 3DMRI approximation, we calculate the tensor
product between the averaged core tensor and three modes of filtered basis images.
The resultant reconstruction based on the first channel eigenvector nicely retrieves
the spatial structure of tumours with uniform enhancement in intensity so subsequent
eigenvector values are filtered out. That is 	ς = Cτ A ×1 A 1

ς ×2 A 2
ς ×3 A 3

ς , where

CτA = 1
3

∑3
τ=1 Cτ , and ς = 1. Finally, we reconstruct the spatio-temporal features in

a 3D space. Tensor based multi-channel reconstruction models successfully preserve
the intrinsic structures in an image providing a higher contrast per voxel. The gener-
ated images, therefore, convey improved diagnostic information. The procedure also
allows the simultaneous multi-channel reconstruction of spatial and temporal fea-
tures simultaneously in relation to DCE-MRIs under a uniform tensor framework.
Figure5.5 illustrates the flow chart of this proposed multi-channel reconstruction
algorithm. The pseudo code for multi-channel tensor reconstruction is illustrated in
Fig. 5.6. Finally, the multi-channel reconstruction incorporates the FCM technique
to segment the tumour region effectively.

Figure5.7a–c provides an illustration of the differentiation between the fourth
post-contrast enhanced images and base line images. Subfigures (d)–(f) show the
result of applying the proposed tensor reconstruction algorithm on the subtracted
images acquired at different image layers. Subfigures (g)–(i) show the extracted
volume image in relation to the tumor region through the application of FCM on
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Fig. 5.5 Illustrates the proposed multi-channel tensor reconstruction algorithm

Fig. 5.6 Pseudo code of tensor reconstruction
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Fig. 5.7 Tensor reconstruction of preprocessed DCE-MRIs. a–c Illustration of the differentiation
between the fourth post-contrast enhanced images and base line images from three different layers.
d–f Illustration of the images achieved by applying the proposed tensor reconstruction algorithm.
g–i Illustration of the extracted volume image in relation to its originally imaged tumor region after
applying FCM on the reconstructed images shown in (d)–(f)

the reconstructed images shown in (d)–(f). The tensorisation of DCE-MRI is recon-
structed via multidimensional unified analysis of the MRI data according to tensor
factorization. One of the advantages of such reconstruction is the incorporation of the
temporal information into spatial voxels. The technique projects four-dimensional
time-spatial vectors into a three-dimensional space that shows spatial and temporal
information fusion with a decreased number of dimensions. An additional benefit of
this methodology is that it makes wide use of the sparsity present in the spatiotem-
poral matrices which leads to reduced computational cost.

Apart from the properties represented in Fig. 5.2 in Sect. 3.2.3 in relation to the
removal of intensity inconsistencies through multi-channel reconstruction, the pro-
posed multi-channel reconstruction has additional advantages, as discussed in the
following subsections.

http://dx.doi.org/10.1007/978-3-319-57027-3_3
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5.3.1 Suppression of Background Voxels Through
Multi-channel Reconstruction

Intensity-based classification of MR images has proven to be the Achilles heel of
all automated segmentation methods. For example, when differentiating between
tumours from healthy breast tissue, the inter-scan or spatial intensity variations often
originate from the presence of inhomogeneous magnetic field gradients in the MRI
equipment during the image acquisition process. These field variations are often
of sufficient magnitude to cause an ambiguity in reconstructed tissue boundaries
across different tissue classes to overlap, thereby undermining the fidelity associated
with such intensity-based classification. An example of such spatial intensity inho-
mogeneities is illustrated in Fig. 5.8a. In this figure, the spatial intensities between
background and tumour regions are relatively uniform. It is, therefore, difficult to
recognize the tumour region from background images on the basis of a variation in
intensity [641, 642]. This is investigated further by comparing the results obtained
using the proposed hybrid classification and standard FCM classification algorithms.
FCM classification is applied on each of the originally dynamic enhanced images.

Figure5.8a illustrates the original enhanced image associated with a scan at
the second time frame. After applying FCM, the red and brown regions (shown
in Fig. 5.8b) correspond largely to the tumour region. The blue and green regions

Fig. 5.8 Investigating the effect of spatial intensity inhomogeneities on the proposed classification
and FCM. a Illustration of the pre-processed images before reconstruction of a granular cell tumour.
b Colour coded images after application of the FCM algorithm on (a). c Magnification of the
extracted tumour region shown in (b). The yellow circle and green arrows indicate a misclassified
tumour region.dReconstructed volume image frommultiple channels. e Illustration of the classified
image using the proposed hybrid algorithm. f Extracted tumour region according to (e). The yellow
circle indicates that fatty tissue regions that are misclassified as tumour regions and have been
shrunk to a very small region depicted as a single dot. This region is small enough to be ignored



5.3 Extensions to Multi-channel Classifiers 141

in Fig. 5.8b correspond mainly to the background. The extracted tumour regions,
as shown in Fig. 5.8c, also include imaged fatty tissues, which are indicated by a
yellow circle. The two green arrows denote misclassified tumour regions. The pro-
posedmulti-channel reconstruction addresses the problem of removingmisclassified
tumour voxels well because it consistently produces images showing a consistent
depression of the intensity associated with all fatty tissue. Compared to the image
in Fig. 5.8a, where there is no obvious variation in intensity between the tumour
region and the background, the multi-channel reconstruction shown in Fig. 5.8d,
attributes most of the image intensity to the local tumour region and better differ-
entiates tumorous from fatty tissue and background, as indicated by a yellow circle
at the bottom right section of the recovered image, shown in Fig. 5.8f. This result
can be further visualized based on the proposed hybrid classification assuming five
classes, as illustrated in Fig. 5.8e. It can be seen that the tumour region is mainly
colour coded in brown, whereas background tissue is colour coded in red, green and
blue. The extracted tumour regions including the imaged fatty tissue, are shown in
Fig. 5.8f. The FCM classified imaged fatty tissues, indicated by a large yellow circle
shown in Fig. 5.8c, have shrunk to a single voxel as indicated by the small yellow
circle shown in the recovered image. It should be highlighted that, in Fig. 5.13c, the
size of the region associated with the noise pixels is nearly comparable with the
size of the region associated with the tumour, leading to difficulty in distinguishing
between tumorous and healthy tissues. The proposed hybrid classification shown
in Fig. 5.13d makes it easier to identify different tissue types. Reconstruction based
on information from the first channel only, recovers tumours voxels from the back-
ground well, and this recovery is also correlated with an overall depression in the
intensity of the imaged background tissue.

5.3.2 Increased Image Contrast Between Tumours and
Background Through Multi-channel Reconstruction

Due to a different intensity distribution associated with different types of tissues, in
theory, the background voxels should be more easily separated from tumorous tissue
voxels. Frequently, however, interscan intensity inhomogeneities lead to an erroneous
depiction of background fatty tissue, and tumour tissue can appear co-located across
different parts of the image, as shown in Fig. 5.9a. As a consequence, in certain
cases it can become difficult to define clear boundaries. This is further illustrated in
Fig. 5.9b, where a single layer associated with the second sequential FCM segment
of the enhanced imaged tumour is displayed, and Fig. 5.9c, where sixty layers of
identified tumours are superposed after FCMclassification. The regions coded in light
blue (brighter than background blue) illustrated in Fig. 5.9c correspond to imaged
fatty tissue voxels (Fig. 5.9g). This region shows several large fuzzy edges, which
implies that many regions of fatty tissue have been misclassified as tumorous tissue.
In this case, a clear boundary between tumorous and background tissue needs to be
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Fig. 5.9 Assessment of an incremental change in intensity contrast between tumours and back-
ground through multi-channel reconstruction. a Pre-processed images of invasive ductal carcinoma
before reconstruction. b Illustration of the extracted tumorous regions after the application of FCM
classification. The green arrows indicate misclassified healthy tissue regions as tumorous regions.
c Superposition of images after conducting FCM classification for the identified tumour region. d
Illustration of tumour reconstruction. e Resultant classified tumours through the proposed hybrid
approach. f Superposition images after conducting the proposed hybrid classification. g Magnifi-
cation of the extracted fuzzy edges of the FCM classified tumour segments shown in (d). h Detail
of the smooth reconstructed edge shown in (f)

defined. This can be achieved through step-by-step systematic increases in intensity
contrast. The first channel reconstruction of imaged tumours, as shown in Fig. 5.9d,
addresses this problem well. Compared with Fig. 5.9b, where some joined healthy
tissues are clearly visible (as indicated by green arrows), Fig. 5.9e preserves the
whole spatial structure of tumours and removes the fatty tissue related background
region that has been misclassified as tumorous. Sixty layers of identified tumours in
the reconstructed image are superposed and shown in Fig. 5.9f. After classification
using the newly proposed hybrid approach, regions denoted by light-blue voxels
can be extracted, as illustrated in Fig. 5.9h. The classified voxels form a clear edge
region around the tumours, and remove all fuzzy edges as shown in Fig. 5.9g. The
proposed multi-channel reconstruction therefore enables us to achieve uniformly



5.3 Extensions to Multi-channel Classifiers 143

enhanced intensity distributions for all image regions associated with the tumours.
Furthermore, increased image contrast between tumours and background is also
achieved.

5.4 Image Registration of MRIs

In DCE-MRI and fMRI, there are spatial motion artefacts caused by patient move-
ment, respiratory motion, intestinal peristalsis and cardiac pulsations during data
collection [526–528]. Especially, for DCE-MRI, signal intensity changes in T1-
weighted images when the contrast agent diffuses out from the vascular tissue and
accumulates in the interstitial space. These signal intensity variations lead to contrast
agent concentration estimation errors which can further amplify errors in pharma-
cokinetic models of tissue blood volume and vascular permeability, compromising
evaluations of therapeutic response [529]. Proper registration of pixels in the chosen
co-ordinate frame is a critical step in the data acquisition process as uncorrected
voxel displacements from the motion artefacts will corrupt the voxel information.

In DCE-MRI data, there are also further challenges as time progresses after com-
pound injection. Both rigid (alignment using only translation and rotation) and non-
rigid algorithms (associated with more complex deformations) have been proposed
for image registration, i.e. in DCE-MRIs of kidney [530], breast [531], liver [532],
lungs [533, 534] and the heart [535]. Reviews discussing advances in DCE-MRI
image registration can be found in [526, 536, 537]. A conceptually straightforward
rigid transformation is through manual delineation of the volume images of the tar-
get object after aligning the centers of gravity [538]. An automated feature-based
algorithm has been presented by Song et al. [539]. In this work, wavelet-based edge
detection is followed by the computation of a geometric transformation based on a
FT. Zikic et al. proposed a locally rigid registration algorithm with a gradient-based
similarity measure to allow for global changes in kidney image feature enhancement
[530]. Another approach is to register the images by optimizing the fit of the enhance-
ment curves to a pharmacokinetic model [540, 541]. Nonrigid algorithms include
a vertical, deformable transformation minimizing a cost function which suppresses
motion and smoothes the enhancement curves [542] while at the same time maxi-
mize the mutual information using a cubic B-splines deformation [531, 543]. More
recent approaches to registration aim to incorporate additional a priori information
based on specific anatomical markers [544], volume preservation of tissue [545] or
local rigidity assumptions [546]. Schäfer et al. [547] proposed a regional segmenta-
tion approach to study breast tissue lesions taking into consideration whether there
was an observed similarity in the tissue perfusion characteristics, thus improving on
single voxel-based approaches [548]. This approach has additional advantages from
a clinical diagnostics perspective.

Current literature [532] suggests that there are advantages in non-rigid registration
when compared to rigid registration. For non-rigid registration, deformable image
registration of DCE-MRI time series is accomplished using (normalized) mutual
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information (MI) [528, 549] approaches. Normally, the images contain edge infor-
mation between various tissue types. In these studies, a gradient dependent cost
function has been proposed to improve image registration. In recent work, it was
also shown that normalized gradient fields (NGF) provide a viable alternative to MI
for the registration of DCE-MRI images [526].

An alternative approach to non-rigidmotion correction uses aBayesian framework
[550] to provide pharmacokinetic parameter estimation in DCE-MRI sequences.
In this study, a physiological image formation model was proposed to provide the
similarity measure used for motion correction. Hodneland et al. [526] compared a
normalized gradients approach with the mutual information approach for motion
correction of DCE-MRI datasets, and showed that using cost functions based on nor-
malized gradients can successfully suppress artifacts from moving organs in clinical
DCE-MRI records.

An alternative approach, proposed by Lin et al. [551], discusses a respiratory
motion-compensated DCE-MRI technique using k-space-weighted image contrast
(KWIC) radial filtering. The technique combines the self-gating properties of radial
imaging with the reconstruction flexibility provided by the golden-angle view-order
strategy. The signal at the k-space center is used to determine the respiratory cycle,
and consecutive views during the expiratory phase of each respiratory period are
grouped into individual segments. The principle is to divide k-space into concentric
rings. The boundary of each circular region is determined by the Nyquist criterion,
after assuming that the views within each region have uniform azimuthal spacing.

The feature extraction algorithms mentioned earlier are relevant to both med-
ical image registration as well as motion compensation [552, 553]. An alternative
approach to localize anatomical features in DCE-MRI is through the use of level
sets, an approach originally proposed in [554, 555]. The method is applicable to
post-contrast enhanced MR images to delineate the variable shape of features of
interest. Yin et al. [62] proposed such approach to localize anatomical features in
breast costal cartilage imaged using DCE-MRI. The contours in each layer are cumu-
latively added to the first contour to produce the results illustrated in Fig. 5.10a. The
shape of the feature of interest clearly varies from layer to layer. The variable shape
of contours acquired from a level-set-based segment image actually determines the
feature region of interest. This is subsequently used as a guide to specify initial
masks for feature extraction. Figure5.10b shows the superposition of the mask and
the level-set based projection of Fig. 5.10a. The motion action of the fourth pair of
breast costal cartilages are obtained by re-projecting the resultant segments from
transaxial planes to sagittal planes. Rotational motion artefacts in the DCE-MRI are
illustrated in Fig. 5.10c.

Pre-processing is necessary in fMRI analysis to clean up artificial noise and pre-
pare images for further processing to establish the network characteristics of the dif-
ferent interconnected brain regions. Motion and slice timing correction, spatial and
temporal filter artifacts, as well as intensity normalisation and covariance removal,
are common problems when dealing with fMRIs. Motion correction amounts to
finding a common orientation for all images within a given imaging session and re-
sampling the original data to this reference orientation. Image alignment is usually
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Fig. 5.10 Illustration of magnetic resonance image analysis using tensor algebra. a Cumulative
contours using the level-set method, with two white arrows indicating the positions of features
of interest. b Illustration of the superposition between the total segment and the level-set based
segment. c Illustration of the 3D plots of plane centroid produced datasets generated according to
the 2nd, 4th, and 6th time slice

achieved by performing a separate 3D image registration of each image in the series
with a chosen reference image to remove movement artifacts. To deal with general
motion-related intensity variations, it is necessary to remove all trends from the time
series that have the same form as that of a the voxel displacement (as measured dur-
ing the transformation estimation stage in motion correction). This assumes that the
artefact will be proportional to the displacement of the voxel from its usual position.
However, as there is significant interaction amongst the various artefacts, which also
degrade the accuracy of the basic motion correction methods, current research is
focusing on simultaneous motion correction and artefact removal methods [556].
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5.5 Pattern Identification of Spatiotemporal Association of
Features in Tumours from DCE-MRI Data

One of the current challenges in breast DCE-MRI as a screeningmodality, is reducing
false positive detection errors, therebyboostingdetection specificity.Computer-aided
diagnosis (CAD) approaches for breast MRI are typically employed for automati-
cally identifying tumors from normal tissues when these are at a stage of rapid
development [68, 97, 501, 502], whereas the more complex task of classifying a
lesion as benign or malignant [63, 104, 501, 503–510] is proving more difficult to
address. In dynamic pattern recognation methods, the emphasis has been on either
high temporal resolution and empirical analyses [63, 101–104] or on high spatial res-
olutionwith a stand-alonemorphologic feature extraction [63, 68, 69, 502, 507, 510].
Even though time-series analysis enables radiologists to infer information regarding
the tissue state, such assessment is a time-consuming task because of spatiotempo-
ral lesion variability. Currently, most studies consider aggregate measurements for
tumour morphological characterization [63, 502, 510] with an initially model-free
[502, 510] and data-driven [97, 501] segmentation according to manually marked
region-of-interest (ROI).

Common practice in these methods is to process the imaged 3D volumes sep-
arately, and then incorporate the temporal information into the spatial databases
through a separate processing step. Image reduction based feature extraction enables
identification on the basis of the dominant features present in the image. For example,
in [98, 99], PCA was applied on enhanced and scaled datasets for a whole 2D object
region obtained by DCE-MRIs. This is in contrast to traditional PCA applied in two-
dimensional MRI image analysis which ignores any spatial information associated
with a time series that records the evolution of disease progression. The analysis of
spatiotemporal patterns however, remains a challenging problem [63], and address-
ing the issues of low specificity and high inter-observer variability found in breast
DCE-MRI, requires the development of new software tools.

Representation of multi-dimensional features in a tensor space is a relatively new
concept in the computer science and pattern recognition literature. The use of tensor
decomposition is motivated by the need to explore multimodal data analysis of the
spatiotemporal correlations of sequences existing in DCE-MR images. Recent work
[385] shows that there is potential to identify tumour shape by combining non-
negative tensor decomposition and directional texture synthesis. The approach uses
symmetry information associated with the 3D shapes of the organs under study, and
projects this information into the 2D space that is synthesized on the basis of textural
features from sparse, decomposed images.

In the following figure (Fig. 5.11), spatial shape datasets with a simple geometry
are used for illustration purposes. These images show a three-dimensional mirror
symmetry analysis of a spherical object with a radius of 31 pixels. Figure5.11a
illustrates that the flattened basis images are cropped in the middle area after a
non-negative tensor decomposition of the sphere. As an example, reconstruction is
performed using tensor multiplication of the core tensor, on the basis of first mode
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Fig. 5.11 Illustration of three-dimensional mirror symmetry analysis of a spherical object. a Non-
negative tensor decomposition. b Sparse texture extraction. c Synthesis of the extracted texture

Fig. 5.12 Illustration of the
mirror symmetry of brain
structural MRI with rough
resolution. The brain MRI
size is 58 × 47 × 43. a–c
Illustration of 2D
cross-sectional slices along a
horizontal plane, vertical
plane, and frontal plane. d
Illustration of a brain slice
image with asymmetry along
an the x-y plane
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and second mode matrices. Figure5.11b illustrates sparse texture extraction of the
spherical object. Figure5.11c shows the extracted texture on a pixel by pixel basis
of the sphere. The resultant synthesised image is symmetric with respect to both
vertical and horizontal symmetry axes, implying that the object is symmetric with
the frontal plane providing a reflective mirror image.

In the following example, we explore the mirror symmetry of brain structural
MRI of white mass as imaged under a rough resolution. The MR image size is
47 × 58 × 43. Figure5.12a–c illustrate one of the 2D cross-sectional slices along
a horizontal plane, vertical plane, and frontal plane. Figure5.12d illustrates a brain
slice image with asymmetry along the x-y plane.

As a first step in the proposed algorithm, the generated 3D images showing either
symmetry or asymmetry are assembled and re-mapped into the third order tensors.
After this step, non-negative tensor decomposition is applied to factorise the non-
negative tensors to factors. The core tensor size is 32 × 32 × 32 and the flatten
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Fig. 5.13 Illustration of the synthesised images related to the generated 3D brain structural MR
image with symmetry (refer to Fig. 5.12a–c and asymmetry (refer to Fig. 5.12a, b, and d). a–d
Illustration of the resultant synthesis for the symmetric brain structural MRI, and the generation of
the first (with 15 asymmetric layers), the second (with 25 asymmetric layers), and the third (with
35 asymmetric layers) from asymmetric brain structural MR images, respectively

basis image size is 58 × 1024. The center region of the basis images is cropped to a
size of 58 × 180. Figure5.13a–d illustrate the resultant synthesis for the symmetric
MRI, and the generation of the first (with 15 asymmetric layers), the second (with
25 asymmetric layers), and the third (with 35 asymmetric layers) from asymmetric
MR images.
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To ascertain the degree of symmetry (or the lack of it), k means clustering is
used to group the synthesis patterns and find the associated 2-dimensional geometric
pattern; then histogram images from the synthesis patterns are used to evaluate the
degree of intensity symmetry in the image. Thisway, the analysis of a 3D shape can be
mapped into a 2D space, therefore performing the required dimensionality reduction.
The above mentioned examples thus propose a way forward towards addressing
the challenges associated with tensor decomposition of MRIs for the detection of
structural abnormalities in both simulated breast tumours aswell as in brain structural
MRI.

The proposed methodology is currently most relevant to MRI in clinical practice,
but can also benefit theTPI community, especially if such systems are soon to undergo
further clinical trials. Such advances are likely to provide improved diagnosis for
Alzheimer’s Disease and may assist, in the near future, with the early diagnosis
of dementia by translating current understanding in cell biology into therapeutic
advances [560–562].

5.6 Pattern Classification of Spatiotemporal Association
Features in fMRI Data

Over the past several years, through large brainmapping initiatives across the US and
Europe, there has been a growing interest in applying pattern classification meth-
ods on time series imaging to study the process of brain tissue aging, as well as
to diagnose systemic brain disease. FMRI in particular is increasingly used across
the clinical and cognitive neuroscience communities, to measure brain activity and
reveal brain function. As discussed earlier, this is possible because cerebral blood
flow and neuronal activation are coupled. For fMRI, a key challenge is to investigate
the associations between spatial and temporal features of fMRIs. Supervised tensor
based learning and multivariate classification are two effective supervised classifi-
cation approaches for the recognition of distributed patterns in relation to fMRI data
with consideration of both spatial and temporal futures. For unsupervised learning,
the geometric characteristics of a brain network can be discovered from a given neu-
roimage when extensive datasets regarding both spatial and temporal features are
simultaneously recorded.

5.6.1 Supervised Tensor Learning of Brain Disorders
in fMRI Datasets

Supervised tensor based learning may be seen as an extension of the methods dis-
cussed in the previous sections. Some of the earliest works establishing its formu-
lation were discussed by Tao et al. [563] and Signoretto et al. [564]. These works
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formulate the learning problem as an optimization task of support tensor machines
(STMs); essentially a generalization of the standard support vectormachines (SVMs)
from vector spaces to tensor spaces. The objective of such learning algorithms is to
generate a hyperplane by which the samples with different labels are divided at dis-
tances as far away as possible on a Cartesian co-ordinate hyperplane. A problem
often encountered however, is that tensor data may not be linearly separable in the
input space. This problemmay be addressed by considering nonlinear transformation
of the original tensorial data, after taking into consideration the interrelationships of
the dataset within the tensor itself. He et al. studied the problem of supervised tensor
learning with nonlinear kernels which can preserve the structure of tensor data [565].
The proposed solution is an extension of kernels from vector spaces to tensor spaces,
thus taking the multidimensional tensorial structure into account. This is achieved by
representing each tensor object as a sum of rank-one tensors in the original space and
mapping them into the tensor product feature space for kernel learning. The tensor
kernel mapping on a rank-one tensor can be represented as follows:

φ :
N∏

n=1

⊗x (n) →
N∏

n=1

⊗φ
(
x (n)

) ∈ RI1 × I2 × . . . × IN (5.2)

Two image tensors of X , Y can be decomposed via candecomp/parafac (CP)
tensor factorization as X = ∑R
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tively. By using the concept of the kernel function, we can directly derive the naive
tensor product kernels with R = 1 as
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)
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To achieve a compact and informative presentation of the original tensorial dataset
using a simple rank-one tensor, the challenge is how to design a feature mapping
function when the value of R is more than one. Based on the definition of the kernel
function, if the feature space is a high-dimensional space of the original space, the
tensor data can be directly factorised in the feature space in the same way as if it was
in the original space by performing the following mapping:

φ :
R∑

r=1

N∏

n=1

⊗x (n)
r →
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r=1
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n=1

⊗φ
(
x (n)

)
(5.4)

This transformation enables the mapping of the raw data tensors into new high-
dimensional tensors which also retain the original structure and inter-relations in
the data. The process can be regarded as a mapping of the original data into a tensor
feature space followed by a CP factorization in the feature space. This transformation
is known as the dual-tensorial mapping function, and is illustrated in Fig. 5.14.
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Fig. 5.14 Conceptual diagram for illustration of dual-tensor mapping. The symbols a, b, and c are
the basis factors obtained by projecting the data tensor onto the feature subspace after conducting
the CP facorization. After [565]

After mapping the CP factorization of the data into the tensor product feature
space, the kernel itself is just the standard inner product of tensors in that feature
space:
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R∑

r=1

N∏

n=1

⊗x (n)
r

) =
R∑

i=1

R∑

j=1

N∏

(n=1)

κ
(
x (n)
i , y(n)

j

)
(5.5)

However, the dual-tensorial mapping function cannot automatically consider the
spatio-temporally complex information that can be found in most neuroimaging
datasets in an integral manner. Han et al., applied a deep learning algorithm, known
as hierarchical convolutional sparse auto-encoder, to extract robust features and con-
serve the detailed information associated with the neuroimaging process to perform
classification [566]. This seems to be a particularly interesting research direction so
the use of deep learning networks is further discussed in the following chapter.

5.6.2 Supervised Multivariate Learning of Brain Disorders
from fMRI Data

Traditionally, univariate or voxel based analysis approaches have beenused to analyse
neuroimaging data (for example, General Liner Model and Voxel Based Morphom-
etry) [567]. These are significantly less powerful than tensorial learning techniques
and only appropriate in cases where the group differences are spatially distributed
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and subtle [356]. Structural and functional MRI data are inherently multivariate in
nature, since each scan contains information about, for example, tissue structure
or brain activation, at thousands of measured locations (voxels). Considering that
most brain functions are distributed processes involving a network of different inter-
connected brain regions, it would seem desirable to use the spatially distributed
information contained in the data to obtain a better understanding of brain functions
under normal and diseased conditions. Such spatially distributed information can be
investigated using Multivariate Pattern Analysis (MVPA) using Machine Learning
in fMRI.

As discussed in [357], several different machine learning techniques have been
used for multivariate pattern analysis in fMRI studies in order to gain an understand-
ing of different neural processes. Support vector machines and linear discriminant
analysis were applied to successfully classify patterns of fMRI activation observed
due to the visual presentation of pictorial cues of various categories of objects in
[568]. It was demonstrated that, fMRI activity patterns in early visual areas, contain
detailed orientation information that can reliably predict subjective perception using
linear SVM in [569]. The basic MVPA method is a straightforward application of
pattern classification techniques, where the patterns to be classified are (typically)
vectors of voxel activity values.

Figure5.15 illustrates the four basic steps in an MVPA analysis. The first step,
feature selection, involves deciding which voxels will be included in the classifica-
tion analysis, as shown in Fig. 5.15a; Box 1 describes the feature selection process in
more detail. The second step, pattern assembly, involves sorting the data into discrete
‘brain patterns’ corresponding to the pattern of activity across the selected voxels at
a particular time in the experiment, as shown in Fig. 5.15b. Brain patterns are labeled
according to which experimental condition generated the pattern; this labeling pro-
cedure needs to account for the fact that the hemodynamic response measured by
the scanner is delayed and smeared out in time, relative to the instigating neural
event. The third step, classifier training, involves feeding a subset of these labeled
patterns into a multivariate pattern classification algorithm. Based on these patterns,
the classification algorithm learns a function that maps the voxel activity patterns to
the experimental conditions, as shown in Fig. 5.15c. The fourth step is generaliza-
tion testing: Given a new pattern of brain activity (not previously presented to the
classifier), the trained classifier should be validated on the basis of how correctly it
can determine the experimental condition associated with that pattern, as shown in
Fig. 5.15d.

Multivariate pattern analysis (MVPA) has been gaining popularity within the neu-
roimaging community, and has been used in studies of both adult healthy and clini-
cal populations. These studies have shown that information present in neuroimaging
data can be used to decode intentions and perceptual states, as well as discriminate
between healthy and diseased regions in the brain [570]. Depression is characterized
by a mood change that typically includes sadness and anhedonia or an impaired
ability to experience pleasure [571]. Neuroimaging studies in major depression dis-
order have identified neurophysiologic abnormalities in multiple areas of the orbital
and medial prefrontal cortex, the amygdala, and related parts of the striatum and
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Fig. 5.15 Illustration of a hypothetical experiment and how it could be analyzed using MVPA. a
Subjects view stimuli from two object categories (bottles and shoes). A ‘feature selection’ procedure
is used to determine which voxels will be included in the classification analysis. b The fMRI time
series is decomposed into discrete brain patterns that correspond to the pattern of activity across
the selected voxels at a particular point in time. Each brain pattern is labeled according to the
corresponding experimental condition (bottle vs. shoe). The patterns are divided into a training set
and a testing set. c Patterns from the training set are used to train a classifier function that maps
between brain patterns and experimental conditions. d The trained classifier function defines a
decision boundary (red dashed line, right) in the high-dimensional space of voxel patterns. Each
dot corresponds to a pattern and the color of the dot indicates its category. The background color
of the figure corresponds to the predicted classes that the region belongs to. The trained classifier
aims to asign a label to the patterns from the test set. The figure shows one example of the classifier
correctly identifying a bottle pattern (green dot) as a bottle, and one example of the classifier
misidentifying a shoe pattern (blue dot) as a bottle. After [357]
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thalamus. Some of these abnormalities appear mood state-dependent and are located
in regions where cerebral blood flow increases during normal and other pathologic
emotional states [572].

Machine learning methods using MVPA, have been explored by Fu et al. [573]
who used them to examine the patterns of cerebral activity over the whole brain.
These studies have also been used to identify and predict neurocognitive states and
to distinguish healthy individuals from patient groups. The study aimed to diagnose
psychiatric disorders and to predict responses to treatment. To model the BOLD
response, training/test examples were created by averaging the volumes within the
event. A linear kernel SVM algorithm provided a direct extraction of the weight
vector as an image. To validate the performance of the classifier, a leave-one-out
cross-validation test was performed. Group classification was performed at each
intensity of facial expression and a combined analysis from all the facial expression
levels was conducted for diagnosis and comparison of acutely depressed unipolar
patients and healthy control subjects, alongwith the predictors of treatment response.
Figure5.16 shows the cerebral regions with the greatest discriminating activation
pattern. Because this is a result of a multivariate process, it encompasses the whole
brain, where the regions with the highest weight vectors are contributing to the
demarcation between patients and control subjects.

5.6.3 Topological Graph Kernel on Multiply Thresholded
Functional Connectivity Networks

Although a tensor can be decomposed into several factors, unconstrained tensor
decomposition resulting from fMRI data may not be suitable for node discovery
because each factor does not necessarily correspond to a spatially contiguous region
nor does it necessarilymatch an anatomical region [574]. Furthermore,many spatially
adjacent voxels in the same structure may not appear as they are not active in the
same factor which is anatomically impossible. Therefore, in order to discover active
nodes while preserving anatomical adjacency, known anatomical regions in the brain
are used as masks and constraints are added to enforce the close matching of the
discovered factors and these masks [575].

A structural representation is an alternative approach to addressing the above
problem. In brain connectivity studies, graphs have been shown to be suitable for
representing the location of activity in the brain and account for the movement of the
information.Usually, topological descriptors such asmodularity, centrality and node-
degree distribution, are computed to characterize these networks.Despite the analysis
of these topological properties of a graph, which may be useful in elucidating the
correlations between functionality and localization of brain activity, the application
of classifiers on graph data would be a more robust approach [576].

Graph kernels are one of the most recent methods that can be used in pattern
recognition studies [577]. They are particularly useful in the analysis of the more
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Fig. 5.16 Cerebral regions that showed the greatest discrimination between patients and healthy
control subjects during presentation of the highest intensity of sad faces based on single events
modeling. A linear kernel SVM algorithm allows the direct extraction of the weight vector from
analysed fMRIs. Regions with the largest weight vectors provide a stronger contribution to the
classification decision. Increasingly positive weight vector values indicate the subjects are patients
(red) whereas negative values are associated with healthy control subjects (blue). Transverse brain
images are presented with z-coordinates ranging from −18 to +30 and the section where z = 0 is
indicated by crosshairs (left hand side second row). After [573]

complex graph data types, capturing the semantics inherent in the graph structure
[578, 579]. After a graph kernel is defined, many learning algorithms such as SVM,
can be implemented. A number of methods have been proposed to construct a graph
kernel. Graph kernels can mainly be divided into the following three classes: (1)
kernels based on common random walks and paths between two graphs [580–582],
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Fig. 5.17 Illustration of relevant annotations and typical walk found in labeled graphs. After [577]

(2) kernels based on common limited-size subgraphs between two graphs [583], and
(3) kernels based on common subtree patterns between two graphs [584]. All of
the above kernels have been successfully applied to a variety of problems such as
image classification [585] and protein function prediction [580] etc. More recently,
there have also been studies applying graph kernel methodologies to neuroimaging
studies. For example, they may be used to discriminate between healthy controls
from patients with schizophrenia on the basis of the derived functional connectivity
of individual networks in the brain [586].

In graph classification, labelled graphs are analysed after nodes and edges are
labeled with numerical values, as shown in Fig. 5.17a. The shortest-path kernel is
one of the kernels that can be applied to such graphs. A path in a graph relates to a
sequence of nodes in such way that consecutive nodes in the sequence are connected
by an edge in the graph and any node is not repeated more than once in the sequence.
Path length relates to the number of edges along the path that must be traversed to
reach from one node to another. In a weighted graph, the definition of path length
changes according to the sum of the weights of the traversed edges. The shortest path
again corresponds to the path with the minimum length.

For a graphG(V, E) inwhichV and E are the sets of nodes and edges respectively,
the shortest-path kernel transforms each graph G(V, EG) into a shortest-path graph
S(V, ES). The shortest-paths graph S includes the same set of nodes as the original
graph G, and there is an edge between the nodes in S which are connected by a path
inG. Every edge in S between nodes vi and v j is labeled by the length of shortest path
between these two nodes in G. The Floyd algorithm provides a way of incorporating
the shortest path information into the kernel functions and uses a similar strategy.
The shortest path kernel between two graphs is converted into a simple comparison
between corresponding shortest-paths graphs [587]. In this transform, a shortest-
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paths graph S contains the same set of nodes as the input graph I . Unlike in the input
graph, there exists an edge between all nodes in S which are connected by a walk
in I . Every edge in S between nodes vi and v j is labeled by the shortest distance
between these two nodes. Floyd’s algorithm is used to solve the all-pairs-shortest-
paths problem that can be applied to determine all the shortest distance edge labels
in S.

To clarify the above description, a mathematical expression of the shortest-path
kernel is provided below, after assuming in the following example that there are
two graphs G(V, EG) and Ĝ(V̂ , ÊG) which are transformed into the corresponding
shortest-paths graphs S(V, ES) and Ŝ(V̂ , ÊS), respectively. Then the shortest-path
kernel can be defined over S(V, ES) and Ŝ(V̂ , ÊS) as

κshortlest−path(S, Ŝ) =
∑

e∈ES

∑

ê∈ÊS

κ1
walk(e, ê) (5.6)

where κ1
walk is a positive definite kernel of walks length 1 or a kernel on edges.

Therefore the shortest-path kernel [587] is converted to a walk kernel on the
Floyd-transformed graphs after considering walks of length 1 only. The symbol κ1

walk
is defined based on the approach of Kashima et al. (2003) which chooses a positive
definite kernel on nodes and a positive definite kernel on edges. A kernel on pairs of
walks of length 1, κ1

walk, is then defined as the product of kernels on nodes and edges
encountered along the walk. An elegant approach to determine all pairs of matching
walks is based on the methodology discussed by Gartner et al. [581]. Assuming that
there are two input graphs G = (V, E) and Ĝ = (V̂ , Ê) related through a direct
product graph G×:

κ×(G, Ĝ) =
|V×|∑

i, j=1

[ ∞∑

n=0

λn A
n
×

]

i j

(5.7)

where A× is the adjacency matrix of G×. The adjacency matrix A of G is
defined as

[A]i j =
{
1, if(vi , v j ) ∈ E

0, otherwise
(5.8)

Here, G× = (V×, E×), is defined through the following mapping:

V×(G, Ĝ) = {(v1, ω1) ∈ V × V̂ : label(v1) = label(ω1)} (5.9)
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Fig. 5.18 Two graphs (top
left and right) and their
direct product (bottom). Each
node of the direct product
graph is labeled with a pair
of nodes; an edge exists in
the direct product if and only
if the corresponding nodes
are adjacent in both original
graphs. For instance, nodes
11’ and 32’ are adjacent
because there is an edge
between nodes 1 and 3 in the
first graph, and 1’and 2’ in
the second graph. After [579]

E×(G, Ĝ) = {(v1, ω1), (v2, ω2) ∈ V 2(G1 × G2 : (5.10)

(v1, v2) ∈ E ∧ (ω1, ω2) ∈ Ê

∧label(v1, v2) = label(ω1, ω2)}

where λn must be chosen appropriately for k× to converge. A graph kernel may thus
be seen as a measure of similarity between walks that are not identically labeled
[580]. Node and edge labels along the walks are compared via kernel functions. The
direct product of two graphs G(V, E) and Ĝ(V̂ , Ê) can be illustrated in Fig. 5.18.

Generally, an undirected graph is one where the edges do not have a particular
orientation, whereas a directed graph is characterized by edges that have a defined
orientation. A graph is called a labeled graph if its vertices are assigned labels from
the vertex label alphabet. At this point it is worth distinguishing between a walk
and a path. A walk is a finite sequence of neighboring vertices, whereas a path is
a walk such that all its vertices are distinctive. Tracing a walk in the product graph
corresponds to simultaneously tracing common walks in the two original graphs.
Common labeled walks of length k can now be computed from the adjacency matrix
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Fig. 5.19 Product graph
consisting of pairs of
identically labeled nodes and
edges from G and Ĝ

of the product graph Ak
x , noting that the structure of the product graph ensures that

only walks with matching labels are counted.
Another example of a product graph that consists of pairs of identically labeled

nodes and edges is shown in Fig. 5.19. In this figure, for the yellow lablled nodes
from the two graphs G and Ĝ, the joint nodes exist between 1a and 2b and 2a and 1b
as there is an edge between 1 and 2 in the graph of G and a and b in the graph Ĝ. The
blue labelled nodes in the product graph are labelled 3c, 4c and 3e, 4e respectively.
Nodes 3c and 2b are adjacent, considering edges exist between nodes 2 and 3. The
same applies for the nodes between 4c and 2b. The yellow labled nodes 1d and 2d are
the nodes in the product graph. The node 2d is connected with nodes 3d, 4d and 3e,
4e in the product graph as edges exist between each of the two nodes in both original
graphs. Node 1d is isolated as no edge exist in the other nodes that correspond to the
original graphs.

Graph kernels are based on limited-size subgraphs. A subtree is a subgraph of a
graph which has no cycles (i.e. any two vertices are connected by exactly one simple
path). A subtree pattern extends the notion of a subtree by allowing repetitions of
nodes and edges. However, these same nodes (edges) are treated as distinct nodes
(edges).A subtree pattern of height 2 from the directed graph is illustrated inFig. 5.20.
The repetitions of nodes in the unfolded subtree pattern on the right are also shown.

Fig. 5.20 A subtree pattern of height 2 rooted at the node 1 from the directed graph. After [579]
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5.6.4 Machine Learning Using Information from Brain
Graphs

In parallel with the rise of interest in brain networks, there has also been an increase
in the use of machine-learning algorithms in the neuroscience community [588].
Indeed, the high-dimensional nature of fMRI data hinders the application of many
multivariate methods using standard statistical techniques. This has prompted an
increasing number of researchers to rely on regularization methods commonly found
in machine learning and signal processing in addition to well-established univari-
ate analysis techniques. Predictive modeling using machine-learning techniques has
been suggested byRichiardi et al. [589], and is nowcommonly applied to various sub-
disciplines such as cognitive, clinical, affective, and social neuroscience. Figure5.21
illustrates an emerging approach that applies machine-learning techniques to brain
connectivity data.

Finally, it is worth noting that regression techniques have also been proposed
in [590] for support vector regression (SVR). They showed that it is possible to

Fig. 5.21 Overview of a generic machine learning scheme to perform brain graph mining. a In the
first step, the imaging dataset is preprocessed, and divided into regions, along with the associated
representative time series signals from each region. b A labelled simple graph is computed from
the correlations in the regional time series, where edge labels correspond to statistical dependency
between brain regions, and brain regions are mapped to graph vertices. c The graph is converted
into a vector space, for further statistical machine learning which is shown in the plot in (d). An
interpretation of the classified pattern for brain-space visualisation is generated in (e). Finally, there
is a step for the validation of the graph classification techniques as shown in (f) e.g. to elicit imaging
markers in clinical applications. After [589]
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Fig. 5.22 Illustration of mapping showing different levels of importance in edges associated with
the networks associated with distinct locations in the brain. The average SVR weight of 156 edges
that were selected in all cross-validation folds is shown in a sagittal projection. The width of edges
is proportional to their weight according to the regression coefficients vector value. Edges that are
red indicates increased label value with age, whereas green labelling indicates a decreased label
value. The importance of individual vertices is indicated by the size of the associated spheres, and
sphere color indicates the functional subnetwork to which the vertex is part. After [589, 590]

perform age prediction from resting-state brain fMRIs scans. In their work, meta-
analyses were used to define 160 regions of interest, yielding graphs with 12,270
different edge labels. Univariate filter feature selection was then performed, with the
use of correlation operations between edge label with age. The approach aimed to
reduce dimensionality to 200 edges on a separate data set. Following this step, a
radial basis function kernel was used with an SVM solver to predict age from these
200 edges. Figure5.22 illustrates a brain-space map of the more predictive edges.

5.6.5 Additional Considerations Regarding MRI Feature
Extraction Methodologies

As discussed by Logothetis and Pfeuffer (2004), [593] a comparison of local
field potentials (LFPs), single- and multi-unit spiking activity with highly spatio-
temporally resolved BOLD fMRI responses from the visual cortex of monkeys
showed that the largest magnitude changes were observed in LFPs, furthermore, the
impulse response of the neurovascular system is both animal- and site-specific, and
that LFPs yield a better estimate of BOLD responses than the multi-unit responses.
These findings suggest that the BOLD contrast mechanism reflects the input and
intracortical processing of a given area rather than its spiking output [591–593, 595].



162 5 Introduction to MRI Time Series Image Analysis Techniques

Further to the above studies in a critical review byN.K. Logothetis inNature [594] he
suggested that the current limitations of the fMRI modality are not related to physics
or poor engineering, and are unlikely to be resolved by increasing the sophistication
and power of the scanners; they are instead due to the circuitry and functional organi-
zation of the brain, as well as to inappropriate experimental protocols that ignore this
organization. The fMRI signal cannot easily differentiate between function-specific
processing and neuromodulation, between bottom-up and top-down signals, and it
may potentially confuse excitation and inhibition [596]. The magnitude of the fMRI
signal cannot be quantified to reflect accurately differences between brain regions,
or between tasks within the same region [597]. The origin of the latter problem is
not due to our current inability to estimate accurately cerebral metabolic rate of oxy-
gen (CMRO2) from the BOLD signal, but to the fact that haemodynamic responses
are sensitive to the size of the activated population of cells, which may change as
the sparsity of neural representations varies spatially and temporally [598]. In corti-
cal regions in which stimulus- or task-related perceptual or cognitive capacities are
sparsely represented (for example, instantiated in the activity of a very small num-
ber of neurons), volume transmission which probably underlies the altered states of
motivation, attention, learning andmemory may dominate haemodynamic responses
and make it impossible to deduce the exact role of the area in the task at hand. Neuro-
modulation is also likely to affect the ultimate spatiotemporal resolution of the signal.
In addition, electrical measurements of brain activity, including invasive techniques
with single or multiple electrodes, also fall short of providing real answers about
network activity. It is thus widely accepted that single-unit recordings and firing
rates are better suited to the study of cellular properties than of neuronal assemblies;
furthermore, field potentials share much of the ambiguity discussed in the context
of the fMRI signal [599]. From the above discussion, it follows that our future
understanding of perception or cognition will ultimately depend on the development
and application of integrative approaches. Single cell recordings, large electrode
or tetrode-array recordings, monitoring of action potentials and slow waves must
be employed in combination with neuroimaging using calibrated BOLD signals,
cerebral blood flow (CBF), volume (CBV) and MR spectroscopy (MRS) of cerebral
metabolites and neurotransmitters to obtain the information required for studying the
brain’s capacity to generate various behaviors. The recent development of high-field
MRI and functional CBF imaging as well as MR spectroscopic imaging [chemical
shift imaging (CSI)] point to the direction that such integrative approaches can and
must be applied in systems neuroscience. Integrative approaches, however, require
the interdisciplinary education of researchers and a thorough understanding of, at
least, the basics of closely associated research fields. A multimodal approach using
multichannel heterogeneous measurement modalities with appropriate sensor fusion
techniques as discussed in the following chaptersmay thus provide newopportunities
for further interpreting brain function and disorders.
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5.6.6 Recent Relevant Advances from the Computer Vision
Community

The idea of using multiple kernels in SVM classification where each kernel captures
a different feature in the channel (e.g. the distribution of edges in an image) is not new
and there is considerable work performed in this direction by the computer vision
community [600]. In addition, nonlinear SVMs can be efficiently approximated by
several linear ones [601] to simplify the computational aspects as well as provide a
more systematic evaluation of algorithms used in biomedical classification problems.
The computer vision community has also been making important advances in object
localization which can provide better class segmentation which are also of relevance
to the biomedical community [605]. Convex optimization routines may be adopted
in the process of learning local feature descriptors [602] and deep matching [603]
as well as recent advances in convolutional neural networks [604] are particularly
promising emerging methodologies. To this effect, improved description of textural
features that can be adopted by both the clinicians as well as the computer vision
community would also be an important development that will facilitate the better
tuning and evaluation of future algorithms [606].



Chapter 6
Outlook for Clifford Algebra Based
Feature and Deep Learning
AI Architectures

As stated in previous chapters, the interpretation ofmedical images requires advances
in image segmentation and analysis, shape approximation, three-dimensional (3D)
modelling, and registration of volumetric data. In the last few years, Clifford Algebra
has emerged as a generic methodology for image processing and pattern recognition.
Its attractiveness stems from the fact that it uses a more generic class of operators
for the representation and solution of complex geometric problems. One of the main
goals in this chapter is to discuss the new opportunities that Clifford algebras can
provide to solve problems encountered in multichannel image processing and pattern
recognition. In addition, we place into context recent advances in deep learning, as a
new very promising classification modality which despite its success in other fields,
is yet to be fully explored and applied tomedical image analysis. The incorporation of
geometric (Clifford) neurons to a deep learning framework seems to be a particularly
exciting future research direction.

6.1 Prospects for Medical Image Analysis
Under a Clifford Algebra Framework

The necessity for a multi-channel framework [89] that captures a multitude of fea-
tures extracted using the signal processing routines discussed earlier, leads to a need
for developing alternative classifiers capable of accommodating a large number of
input vectors. Multi-dimensional classifiers do not require a dimensionality reduc-
tion of the datasets, thus preserving the information presented at the input stage of
the classifier which could otherwise be lost in a conventional dataset fusion frame-
work.Within a THz imaging context, the aim is to preserve the features extracted and
ideally present them as separate entities to the classifier. Similarly, within the MRI
community, in addition to the components of relevance in amulti-dimensional feature
space described earlier, there is a need for observing changes in fMRI signals taking
into consideration information obtained at different time stamps so data structures
can have a tensorial structure. In addition, since an assessment of disease progres-
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sion is made by cross-correlating images taken from different examinations, again
a tensorial framework is often needed. Multi-dimensional classifiers are, therefore,
ideally placed to further explore such cross-correlations.

Currently, there are several approaches to multiclass SVM [17, 59, 60, 350, 515].
The most promising way forward however, is through a Clifford algebra framework
[518]. This framework allows us to express in a compact way several geometric
entities in a multiclass context. Real and complex-valued support multi-vectors can
be accommodated using the multi-vector Gramm matrix formalism. Through the
Clifford product, one obtains the direct sum of linear spaces to achieve multiple
outputs. A single kernel involving the Clifford product is used to provide nonlinear
multi-vector input-output mappings reducing the complexity of the computation.

In a Clifford algebra framework, the geometric product of two vectors a and b
is defined as a sum of their inner product (symmetric part) and their wedge product
(antisymmetric part)

ab = a · b + a ∧ b (6.1)

where the inner product a · b and the outer product a ∧ b are defined as

a · b = 1

2
(ab + ba) (6.2)

a ∧ b = 1

2
(ab − ba) (6.3)

The inner product of two vectors is the standard scalar or dot product and produces
a scalar. The outer or wedge product of two vectors is called a bivector, an oriented
area in the plane containing a and b, formed by sweeping a along b. The outer
product is immediately generalizable to higher dimensions, so a trivector a ∧ b ∧ c
is interpreted as the oriented volume formed by sweeping the area a ∧ b along vector
c. The outer product of k vectors is a k-vector or k-blade, and such a quantity is said
to have grade k and a multivector A ∈ gn is the sum of k-blades of different or
equal grade. For an n-dimensinal spaceVn , orthonormal basis vectors are introduced
{ei }, i = 1, ..., n such that ei · e j = δi j , so that a basis that spans 1, {ei }, {ei ∧ e j },
{ei ∧ e j ∧ ek}, . . . , e1 ∧ e2 ∧ . . . ∧ en = I is generated, where I corresponds to the
hypervolume associated with the dataset. The set of all k-vectors is a vector space
k∧
Vn spanned by vectors (

n
k

)

:= n!
(n − k)!k! (6.4)

and the geometric algebra gn is spanned by a number of
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n∑

k=0

(
n
k

)

= 2n (6.5)

elements where gn =
0∧
Vn ⊕

1∧
Vn ⊕

2∧
Vn ⊕ . . . ⊕

n∧
Vn corresponds to the lin-

ear n dimensional vector space. Any multivector of gn is expressed in terms of the
basis of these subspaces. In the case of a three-dimensional space, this has 23 = 8
elements:

{1 (scalar), {e1, e2, e3} (vectors), {e1e2, e2e3, e3e1}
(bivectors), {e1e2e3} (trivectors) ≡ I}

In g3,0,0 a typical multivector v will be of the form v = ααα0 + ααα1e1 + ααα2e2 +
ααα3e3 + ααα4e2e3 + ααα5e3e1 + ααα6e1e2 + ααα7I3=〈v〉0 + 〈v〉1 + 〈v〉2 + 〈v〉3,where theαααi ’s

are real numbers and 〈v〉0 = ααα0 ∈
0∧
Vn , 〈v〉1 = ααα1e1 + ααα2e2 + ααα3e3 ∈

1∧
Vn , 〈v〉2 =

ααα4e2e3 + ααα5e3e1 + ααα6e1e2 ∈
2∧
Vn , 〈v〉3 = ααα7I3 ∈

3∧
Vn .

As discussed inmore detail in [518] inClifford algebra, rotations are performed by
rotorsR, which are even-grade elements of the algebra that satisfy RRRR̃RR = 1, where R̃RR
stands for the conjugate of R. Rotors may be combined in a straightforward manner.
For an input comprising of D multivectors and one multivector output, i.e., each
data i th-vector has D multivector entries xi = [xi1, xi2 , . . . , xiD]T , where xi j ∈ gn
and D is its dimension. Thus, the i th-vector dimension is D × 2n , then each data
i th-vector xi ∈ gDn . This i th-vector will be associated with one output of the total of
all 2n possibilities given by the following multivector output:

yyyi = yyyis + yyyieee1 + yyyieee2 (6.6)

+ · · · + yyyiI ∈ {±1 ± eee1 ± eee2 · · · ± III }

where the first subindex s stands for the scalar part outputs. For the classification,
Clifford-SVMseparates thesemultivector-valued samples into 2n groups by selecting
a good enough function from the set of functions:

f (xxx) = ω†T xxx + b (6.7)

= [ωωω†
1,ωωω

†
2, . . . ,ωωω

†
D]T [xxx1, xxx2, . . . , xxxD] + bbb

=
D∑

i=1

ωωω
†
i xxxi + bbb (6.8)

where ωωω
†
i xxxi corresponds to the Clifford product of two multi-vectors, ωωω

†
i is the

reversion of the multivector ωωωi , xxx, ωωω ∈ gDn and f (xxx),bbb ∈ gn . An entry of the
normal of the optimal hyperplane ωωω = [ωωω1, ωωω2, . . . , ωωωD]T is given by ωωωk =
ωωωks + . . . + ωωωke1e2eee1eee2 + . . . + ωωωk I III .
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This problem is solved by considering a loss function ε using linear constraint
quadratic programming:

minL(ωωω,bbb, ε) = 1

2
ωωω†Tωωω +CCC

∑

i,j

εij (6.9)

subject to

yi j ( f (xxxi )) j = yi j (ωωω
†T xxxi + b) j >= 1 − εi j (6.10)

εi j >= 0 for all i, j (6.11)

where εi j stands for the slack variables, i indicates the data i th-vector and j indexes
the multivector component, i.e., j = 1 for the coefficent of the scalar part, j = 2 for
the coefficient of eee1, ..., j = 2n for the coefficient of I.

An entry ωk of the optimal hyperplaneωωω is computed using l multivector samples
using the following expressions:

ωks =
l∑

j=1

(

(αααs) j (yyys) j

)

(xxxks) j (6.12)

ωke1 =
l∑

j=1

(

(αααe1) j (yyye1) j

)

(xxxke1) j (6.13)

…

ωk I =
l∑

j=1

(

(ααα I ) j (yyy I ) j

)

(xxxi I ) j (6.14)

where (αααs) j , (αααe1) j , . . . , (ααα I ) j , j = 1, . . . , l, are the Lagrange multipliers. Further
details as well as an extension of this approach to non-linear Clifford-SVM using
a Clifford algebra kernel K (xxx, yyy) that performs the mapping component-wise are
discussed in [518]. Concise introductions to geometric algebras can be found in
[519] and in [520–523]. The representation of rigid body motions within a Clifford
algebra framework, as would be needed to account for movement of patients during
MRI scans, can be addressed using the analysis discussed in [524]. Furthermore, a
Matlab implementation of the Clifford framework can be found in [525]. As will be
discussed in the following section, the above analysis places geometric algebras at
the center of a future deep learning framework suitable for both MRI as well as THz
imaging datasets.
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Fig. 6.1 The basic 15 cases of surface intersecting cubes. The spheres are numbered starting at
left-superior corner, from 1 to 15. After [607]

An illustration of the use of geometric/Clifford algebra for medical image volume
representation is provided in the work discussed by Jorge and Eduardo [607]. In their
work, themarching cubes concept is introduced. This concept uses spheres to account
for 15 basic cases of surface intersecting cubes, as illustrated in Fig. 6.1. Figure6.2
shows a CT image of the skull with balloons (only one slide), for the case of a patient
with a tumour. The segmentation results as well as approximation of the surface
obtained by using circles, are based on a 2D version implementation of the marching
cubes.

6.2 Outlook for Developing a Geometric Neuron Deep
Learning of Time Series Datasets in Medical Images

Within the context of approximation theory, any given continuous function g(x) rep-
resenting MRI or THz-TPI/OCT datasets can be seen as a superposition of weighted
functions [60]:

y(xxx) =
N∑

j=1

ωωω jσσσ j (www
T
j xxx + θθθ j ) (6.15)

where σ(.) is a continuous discriminatory function which can have the shape of a
sigmoid, ωωω j ∈ R and xxx, θθθ j , www ∈ Rn . The finite sums of the form of Eq.6.15 are
dense if |g(xxx) − y(xxx)| < ε for a given ε > 0 and for all xxx ∈ [0, 1]n . This is known
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Fig. 6.2 Patient cranial image: a original of one CT slide; b segmented object (the tumor); c
approximation by circles, 2D version of marching cube idea; d zoom of (c) for better visualization.
After [607]

as the a density theorem and is a fundamental concept in approximation theory and
nonlinear systemmodelling [608–610].Multilayer feed-forward networks are known
to be good universal approximators and can thus be used in the estimation process
of the above function. As discussed in [611], the above expression depicting a scalar
product can be conveniently extended to the case of a Clifford or geometric product,
as illustrated in Fig. 6.3.

The function f(m) for an n-dimensional multivector m is given from:
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Fig. 6.3 Geometric neuron based on theMcCulloch-Pitts neuron forMRIorTHz-TPI/OCTdatasets
based on the generic framework discussed in [611]. The symbol sp denotes scalar product and gp
denotes geometric product

f (mmm) = f (mmm0 +mmmiσσσ i +mmm jσσσ j +mmmkσσσ k + ... +mmmi jσσσ i ∧ σσσ j (6.16)

+... +mmmi jkσσσ i ∧ σσσ j ∧ σσσ k + ... +mmmn ∧ σσσ 1 ∧ σσσ 2 ∧ ... ∧ σσσ n)

= f (mmm0) + f (mmmi )σσσ i + f (mmm j )σσσ j + f (mmmk)σσσ k + ...

+ f (mmmi j )σσσ i ∧ σσσ j + ... + f (mmmi jk)σσσ i ∧ σσσ j ∧ σσσ k + ...

+ f (mmmn) ∧ σσσ 1 ∧ σσσ 2 ∧ ... ∧ σσσ n.

The standard scalar product in the neuron is replaced by the Clifford product

ωωωxxx + θθθ = ωωω · xxx + ωωω ∧ xxx + θθθ (6.17)

so the output is

ooo = f (ωωωxxx + θθθ) = f (ωωω · xxx + ωωω ∧ xxx + θθθ) (6.18)

which is composed of the scalar product expression

f (ωωω · xxx + θθθ) = f (s0) ≡ f (
N∑

i=1

ωωωi xxxi + θθθ) (6.19)

and an additional expression:
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Fig. 6.4 Illustration of a multilayered geometric neuron that enables simplification of the learning
rule as discussed in [611]. In the training of geometric feed forward networks, the weights of the
output layer could be real values (the output weight multivectors could be scalars of k-grade)
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f (ωωωxxx + θθθ − θθθ) = f (sss1)σσσ 1 + f (s2)σσσ 2 + f (s3)σσσ 3 + f (s4)σσσ 1σσσ 2 (6.20)

+... + f (s5)σσσ 1σσσ 3 + f (s6)σσσ 2σσσ 3 + f (sss7)σσσ 1σσσ 2σσσ 3.

A general representation of the geometric multilayered perception is shown in
Fig. 6.4 below. The general expressions incorporating the geometric product of the
outputs of hidden and output layers are:

ooo j = f j (
Ni∑

i=1

ωωω j i · xxx ji + ωωω j i ∧ xxx ji + θθθ j ) (6.21)

yyyk = fk(
N j∑

j=1

ωωωk j · oookj + ωωωk j ∧ oookj + θθθ k) (6.22)

The updating equation for the multivector weights of any hidden layer j is given
from

ωωωi j (t + 1) = η[(
Nk∑

k

δk j ⊗ ωωωk j ) 	 FFF ′(neti j )] (6.23)

⊗oooi + αωωωi j (t),

and for any k-output with a linear activation function:

ωωω jk(t + 1) = η[(yyykt − yyykα
) 	 FFF ′(net jk)] (6.24)

⊗ooo j + αωωω jk(t),

⇓

ωωω jk(t + 1) = η(yyykt − yyykα
) ⊗ o j + αωωω jk(t),

where F is the activation function, t is the update step, η and α are the learning rate
and the momentum respectively,⊗ is the Clifford or geometric product,	 is a scalar
component by component product and (·) is a multivector anti-involution operator
(reversion or conjugation).

So far, the discussion has focused on methods for developing hyper-complex ker-
nel based algorithms preserving and potentially fusing the information found in the
extracted features of MRI or THz-TPI/OCT datasets. One further problem encoun-
tered, especiallywithin an imaging context is that some of themathematical functions
describingmalignant or benign tissue can be highly non-linear displaying a very large
number of variations across the domain of interest. In the case of large voxel varia-
tions across an image for example, direction of excitatory signal and its intensity, as
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well as tissue texture can vary significantly and independently. An analytical under-
standing of these factors contributing to the overall observed variation may often
be too complex to be captured in a single machine learning framework (as already
discussed). An intuitive strategy, as discussed in [612], is first extracting low-level
features that are invariant to small geometric variations such as edge detectors from
Gabor filters, and then transforms them gradually to make them invariant to contrast
changes and contrast inversion. This should be followed by focusing on the presence
of edges, the detection of more complex but local shapes, up to the identification
of more abstract categories associated with sub-objects and objects which are parts
of the image, until these can be integrated. The above process is based on multiple
stages of transformation and representation similar to cognition. Therefore, future
AI based expert systems are likely to need to mimic such architectures in order to
perform automated diagnosis.

Artificial neurons, performing an affine transformation followed by a non-
linearity, form the basis ofmulti-layer neural networks whichmay be used to perform
a learning task. In most of the neural networks encountered in the literature, ‘shal-
low architectures’ of up to 3 layers are discussed, the reason being that a 3-layered
architecture can successfully approximate any function. Shallow architectures, how-
ever, have limitations, as some functions cannot be efficiently represented in terms
of the number of tunable elements. It is not uncommon for them to fail to efficiently
represent and, hence, learn a task of interest.

In contrast, ‘deep architectures’ (where depth of architecture refers to the depth
of that graph, i.e., the longest path from an input node to an output node) are often
associated with up to ten levels of representation at different levels of abstraction and
have shown improved ability in learning. The development of Deep Belief Networks
(DBNs) [613] is paving the way for a new class of unsupervised learning algorithms
that greedily train one layer at a time. In essence, these architectures guide the
training of intermediate levels of representation, this is a task performed locally at
each level. As discussed in [612], once a good representation has been found at
each level, it can be used to initialize and successfully train a deep neural network by
supervised gradient-based optimization. DBNs can therefore be successfully applied
in dimensionality reduction [614], classification tasks [615–619], regression [620],
texture analysis [621, 622], segmentation [623] as well as motion [626] and it is only
a matter of time before they are systematically used by the biomedical community
in the processing of MRI and THz-TPI as well as OCT datasets.

Other aspects of the human brain that a biomedical AI systemwould have to emu-
late to provide human-like responses include a distributed and sparse representation
[625, 627] as not all neurons are simultaneously used in a decision making process.
Another aspect closely associated with human cognition is that of locality of rep-
resentation, which is intimately connected with the notion of local generalization.
Many existing machine learning methods are local in input space: to obtain a learned
function that behaves differently in different regions of data-space, they require the
fragmentation of that space and the use of different tunable parameters for each
of these regions. This, of course, can be addressed partly with the Clifford algebra
framework (discussed earlier) by adjusting the number of components used in the
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Clifford product. Furthermore, there is the problem of making a choice for present-
ing local or distributed representations of data structures for learning to a classifier.
In contrast to learning methods based on local generalization, the total number of
patterns that can be distinguished using a distributed representation scales, possibly
exponentially, with the dimension of the representation (i.e., the number of learned
features). This is a common problem in the AI literature known as multi-task learn-
ing [628–630]. Deep learning algorithms address this issue by learning intermediate
representations which can be shared across tasks. Hence, they can use data from
similar tasks in the training process [631] to boost classification performance. This
approach also provides a solution in instances where data is poorly labelled [632]. It
may be argued that the simultaneous learning of a broad set of interrelated concepts
enables the kind of broad generalizations that human experts appear to do well.

Unfortunately, from a computational perspective, the task of training deep archi-
tectures withmany layers is not a trivial one. Very often the first problem encountered
is that of initializing the network. Some work in this direction has been performed
by Hinton [613] who introduced unsupervised learning algorithms that could be
exploited to initialize deep neural networks. The auto-encoder is a simple unsuper-
vised algorithm for learning a one-layer model that computes a distributed represen-
tation for its input [633], and stacked auto-encoders [616, 634] can provide greedy
layer-wise training of deep networks. This is an important step, as within the AI
community, there is a belief that part of the success of current learning strategies for
deep architectures is connected to the optimization of lower layers.

It is also not uncommon that in order to improve the learning ability of a neural
network, boosting is performed. Boosting adds one more layer level to its base
learners so that a vote or linear combination of the outputs of the base learners
can be used in the learning process [635]. Stacking [636] is another meta-learning
algorithm that adds one layer in order to improve the generalization ability of the
network. As discussed in [612], theoretical results suggest that it is not the absolute
number of levels that matters, but the number of levels relative to how many are
required to efficiently represent the target function (the more complex the function,
the larger the number of levels needed). Furthermore, when a function needs a very
large shallow architecture for successful representation, an alternative is to consider
a compactly represented deep architecture.

Another important class of classifiers worth exploring with MRI, THz-TPI and
OCT datasets, is that of decision trees [624]. A review of decision tree classifiers can
be found in [638]. Decision trees need at least as many training examples as there
are variations of interest in the target function, and they cannot generalize to new
variations not covered in the training set. To improve on their generalization ability,
one may consider soft decision tree algorithms [643]. These define an important
class of hierarchical structures composed of internal decision nodes and terminal
leaves. In the hard decision tree, a single path from the root to one of the leaves
is traversed, whereas in the case of soft decision trees, all children are selected but
selection is probabilistic, after allocating different weights with probabilities given
by a sigmoid gating function. An alternative decision tree model [644], where a node
can be a leaf and an internal node at the same time is also very promising and is
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worth considering in classification problems of MRI and THz-TPI datasets. Unlike
traditional trees which solve incremental sub-problems greedily, budding trees solve
the optimization problem taking all the parameters into account one tree at a time.
During training, as new nodes are added, the existing node parameters are not fixed
but the whole tree is continuously updated so as to better take account of the changes
in the model. Budding trees have a soft architecture and provide a continuous and
differentiable response in terms of their parameters and hence can be trained using
a continuous optimization method like gradient-descent. With the utilization of the
chain rule, the parameters in all the layers and nodes can be trained together, each
proportional to its responsibility.

Other general aspects that may have to be taken into consideration when aiming
to improve the learning process is that the number of samples necessary to achieve
a particular error rate with a Gaussian kernel machine is exponential in the input
dimension. Therefore, there are diminishing returns from a strategy of developing
extensive libraries of MRI or THz/OCT images to train the classifier. The geometric
algebra framework seems more appropriate in this respect, as the kernel is multidi-
mensional with its value being optimized in each dimension. Furthermore, a larger
number of inputs in the classifier imply better similarity between the inputs, which
also ensures smoothness in the learning function facilitating the learning process.
Finally, it is worth noting that the modeling of temporal dependencies as associated
with disease progression is also an area open for further development as changes
in the data structure would have to be captured by the dynamics of a network, and
a dynamically reconfigured network has more degrees of freedom to perform such
tasks than a static one.

Fig. 6.5 Illustration of a probabilistic segmentation example based entirely on unlabelled data. a T2
input image, b PD input image, c probabilistic segmentation result, d ground truth. DSC = 73.15%
After [645]



6.3 Prospects for Alternative Classifiers in Deep Learning … 177

6.3 Prospects for Alternative Classifiers in Deep Learning
of Unlabelled Medical Image Data

Recently, an automatic method for multiple sclerosis (MS) lesion segmentation of
multi-channel 3DMR images was proposed in [645]. The novelty of the method lies
in the fact that it can learn the spatial image features needed for training a super-
vised classifier entirely from unlabelled data. This is in contrast to the previously
discussed supervised methods, which typically require the user to preselect or design
the features to be used. The method can learn an extensive set of image features with
minimal user effort and bias. In addition, by separating the feature learning process
from the classifier training process that uses labelled (pre-segmented data), feature
learning can take advantage of the much more widely available unlabelled data. The
method uses deep learning and a random forest for supervised classification. In their
reportedwork, the authors carried out quantitative validation using 1450T2-weighted
and proton density (PD) weighted pairs of MRIs of MS patients, where 1400 pairs
were used for feature learning (100 of those for labelled training), and 50 pairs were
used for testing. The results demonstrate that the learned features are very similar to
those features isolated and identified by experts in terms of segmentation accuracy.
They also showed that segmentation performance increased with the amount of unla-
belled data used, even when the number of labelled images was fixed. An example
of a segmentation result with a larger lesion load is shown in Fig. 6.5.



Chapter 7
Concluding Remarks

This book considers four different imaging modalities THz-TPI, MRI, fundus imag-
ing and OCT. It is shown that, because of the complementarity between THz-TPI and
MRI datasets along with OCT techniques, there is potential for developing a unified
biomedical signal processing framework. THz-TPI is currently being explored as a
viable alternative imaging modality to assess disease progression in a non-invasive
manner. DCE-MRI is well established and is regularly used in clinical environments.
In contrast, TPI has yet to gain popularity although there is a general recognition of
its potential to provide complementary information to clinicians.

TPI scans provide information from individual pixels that showwavelength depen-
dent attenuation, dispersion and phase delay according to the state of hydration of
the tissue and the wavelength-dependent extinction coefficient of the sample. Spe-
cific vibrational signatures may also be identified in the frequency domain after
Fourier transformation of the time-domain data. Hyper-spectral imaging can pro-
vide additional information for de-noising or classification. Similarly, MRI datasets
are based on observations of de-excitation lifetimes so there are common grounds
for a unified approach in processing these signals. In both cases, specific signatures
may be identified as biomarkers, thereby assisting the molecular identification of
compounds. Alternative imaging modalities such as fluorescence lifetime imaging,
2-photon microscopy, electron spin resonance spectrometry and dynamic neutron
polarization techniques have also been mentioned as there are potential synergies
with existing TPI, MRI or OCT modalities. These modalities may also benefit from
the unified signal processing framework discussed.

Signal de-noising assumingGaussian noise is probablymore advanced in the THz
community, whereas routines for Rician noise suppression are more advanced in the
MRI community. Techniques that have been developed by the THz community such
as adaptive apodization, adaptive wavelet decomposition and fractional order system
identification are likely to benefit theMRI as well as the OCT community. The fitting
of ARX, ARMAX subspace or fractional order identification models or the approx-
imation of time domain signatures or spectral features with wavelet coefficients in
both datasets, can provide a more parsimonious signal representation. This enables
the extraction of lifetimes in a very parsimonious manner so classification can be
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improved. Modelling using fractional order routines is an emerging modality of par-
ticular interest for all imaging systems. In all of the three modalities where pulses
are used as excitation modalities, there is scope for selective sample excitation by
pulse shaping methodologies.

In contrast to the above well-established signal processing approaches, pixel fea-
ture classification of retinal blood vessels can be performed using machine learning
techniques that assign one or more classes to the individual pixels in a retinal image.
Pixel feature classification is typically performed using a supervised approach. Orig-
inally, pixel intensity was used as the only feature in most studies. More recently,
however, n-dimensional multi-feature vectors have been utilized. These incorporate
information regarding pixel contrast with the surrounding region, their proximity to
an edge, and similarity measures. Other multi-feature vectors utilizing local con-
volutions with multiple Gaussian derivative, Gabor, or other wavelet kernels [119],
may also be used. Furthermore, alternative de-noising algorithms based on entropic
principles have been developed by the fundus photography community, but have yet
to be tested with MRI or THz-TPI or OCT datasets. Current 3-D imaging modalities
are focusing on volume segmentation along with 3-D rendering and visualization.
Some interferometric techniques are very well developed by the OCT community
and these topologies may be further adopted and implemented by the THz commu-
nity. Similarly, the null-balance polarizing techniques developed by the continuous
wave THz community are equivalent to normal incidence ellipsometry and may thus
be implemented with optical fibres for the OCT community. Retinal image seg-
mentation from OCT measurements can benefit from advances in fundus imaging
segmentationmodalities, but, segmentation in THz-TPI is not sufficiently well devel-
oped. Advances in de-embedding different layers of tissue developed by the OCT
community are also particularly useful to the THz-TPI community. Processing time
in OCT can also be an issue as discussed in [646], and can also benefit frommethods
developed by the MRI community.

In contrast to fundus imaging and OCT, both MRI and THz-TPI systems are
characterized by slow image acquisition rates. This can be distressing to patients in
a clinical environment and leads to movement artefacts which need to be corrected.
Compressed sensing techniques and techniques based on sparser data acquisition
with k-space under-sampling are more developed in the MRI community and can
benefit THz imaging systems when these are operated as a tomographic modality as
opposed to imaging in a single plane. Correction algorithms using image registration
can account for the movement of organs in DCE-MRI, but have yet to be used by the
TPI community.

To achieve accurate detection and diagnosis of tumours, emphasis should be
placed on the analysis of spatiotemporal features using a unified perspective. Auto-
matic classification of both THz and MRI data sets is feasible using either SVM
or ELM classifiers. In the case of SVM and ELM algorithms, their complex exten-
sions are more useful because features in amplitude and phase or time and frequency
respectively, may be simultaneously presented to the classifier as different entities.
For both THz TPI as well as MRI datasets, treating the real and complex compo-
nents in the datasets as separate entities from the de-noising step all the way to the
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classification step by adopting the complex extensions of the preferred classifier, is
advantageous from a de-noising perspective as filtering can be optimized in each
domain. This is also advantageous from a classification perspective because sepa-
rately tuned kernels can improve classification accuracy. Textural information aswell
as PCA or ICA extracted features are associated with non-local features in an image
or spectrum so will probably need to be processed within a distributed learning AI
context. Some of these methodologies also have the potential to benefit the analysis
of fundus images, leading to better segmentation.

Functional MRIs can record BOLD responses related to neural activity and are
important in the analysis of neuronal diseases in the brain. Furthermore they can elu-
cidate the functional aspects of the brain as a result of network alteration following
disease or trauma. Two generic types of pattern mining methods based on neuronal
connectivity information were discussed: the first is based on multivariable pattern
classification, whereas the second makes use of the spatio-temporal correlations of
the data structures across different regions in the brain. Multivariate pattern analysis
has been used extensively in neuroimaging studies over the last few years because
it also provides an assessment of the subject’s mental state. Network analysis of
regions in the brain using graph theoretical approaches provides a powerful means
for quantifying functional connectivity. In addition, it is considered to be efficient in
identifying functional changes due to psychiatric and neurological disorders [639].
THz-TPI has not been used systematically in brain imaging studies because of the
thickness of the associated tissue but if further developed, it could in principle com-
plement the current fMRI and OCT modalities for regions in the periphery of the
skull.

Tensorial image registration enables the simultaneous consideration of additional
measurement parameters such as polarization, hyperspectral components, morpho-
logical or textural features such as tissue folds and striations, and enable this type of
information to be incorporated into the input space of the classifiers. This leads to
a need for developing multi-channel kernels based on quaternion or other division
2 algebras. An alternative more versatile approach is to assume a Clifford algebra
framework. In principle, such an approach should lead to improved classification
accuracy. Multi-channel classifiers also enable fusion of information from other
alternative complementary sensing modalities. Furthermore, they enable the integra-
tion of information acquired at different time stamps before being presented to the
classifier. This can be important from a disease progression diagnostics perspective.

The work also makes a case for the further development of deep learning architec-
tures. As discussed extensively in [612], the open problems that deep AI is trying to
address require an ability of the networks to perform generalization at higher levels
of abstraction, an ability to learn complex, highly-varying functions with a num-
ber of variations much greater than the number of training examples, an ability to
perform unsupervised learning and learning from mostly unlabelled data in a semi-
supervised setting, as well as demonstrate capability to exploit the synergies present
in multi-task learning. These are generic problems which will have to be addressed
eventually by the biomedical community through systematic investigations on the
basis of sensitivity specificity and accuracy performance metrics.
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What is clear, however, is that the variety of features that can be extracted using
both MRI and THz TPI and OCT sensing modalities require novel and more elab-
orate classifier architectures to be developed. Synergies from adopting multilayer
networks in conjunction with formulations using geometric algebras and geometric
neurons are likely to play a central role in future classifier developments for biomed-
ical applications. In addition, there is the potential for developing unlabelled data
classifiers, which will make further use of very large datasets. This is an alternative
methodology that becomes more relevant as existing databases become larger and
more comprehensive.

The current open problems encountered from an AI perspective are making a
case for researchers to develop more generic transferable skills which will pave the
way for a unified data analysis and visualization framework that can be used across
many sensing modalities. The further development and integration of the algorithms
discussed, has the potential to advance biomedical AI by providing an improved and
eventually fully automated quantitative assessment of disease proliferation.

Finally, it is worth noting that throughout this book a case was made for adopting
a unified approach to the further processing of the various datasets generated through
different imaging systems. A case was thus made of the possible benefits from con-
vergent evolution of algorithms. It is anticipated however, that most of the future
solutions that will eventually prevail as the most successful for each of the above
imaging modalities, will go through several evolutionary steps, taking into consid-
eration the extensive testing that is needed in clinical environments. As a result, it is
expected that research will lead to solutions showing divergent evolutional charac-
teristics.
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